1 /*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
30
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
38
__kmp_cleanup_hierarchy()39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41 #if KMP_AFFINITY_SUPPORTED
42 // Helper class to see if place lists further restrict the fullMask
43 class kmp_full_mask_modifier_t {
44 kmp_affin_mask_t *mask;
45
46 public:
kmp_full_mask_modifier_t()47 kmp_full_mask_modifier_t() {
48 KMP_CPU_ALLOC(mask);
49 KMP_CPU_ZERO(mask);
50 }
~kmp_full_mask_modifier_t()51 ~kmp_full_mask_modifier_t() {
52 KMP_CPU_FREE(mask);
53 mask = nullptr;
54 }
include(const kmp_affin_mask_t * other)55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56 // If the new full mask is different from the current full mask,
57 // then switch them. Returns true if full mask was affected, false otherwise.
restrict_to_mask()58 bool restrict_to_mask() {
59 // See if the new mask further restricts or changes the full mask
60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61 return false;
62 return __kmp_topology->restrict_to_mask(mask);
63 }
64 };
65
66 static inline const char *
__kmp_get_affinity_env_var(const kmp_affinity_t & affinity,bool for_binding=false)67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68 bool for_binding = false) {
69 if (affinity.flags.omp_places) {
70 if (for_binding)
71 return "OMP_PROC_BIND";
72 return "OMP_PLACES";
73 }
74 return affinity.env_var;
75 }
76 #endif // KMP_AFFINITY_SUPPORTED
77
__kmp_get_hierarchy(kmp_uint32 nproc,kmp_bstate_t * thr_bar)78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79 kmp_uint32 depth;
80 // The test below is true if affinity is available, but set to "none". Need to
81 // init on first use of hierarchical barrier.
82 if (TCR_1(machine_hierarchy.uninitialized))
83 machine_hierarchy.init(nproc);
84
85 // Adjust the hierarchy in case num threads exceeds original
86 if (nproc > machine_hierarchy.base_num_threads)
87 machine_hierarchy.resize(nproc);
88
89 depth = machine_hierarchy.depth;
90 KMP_DEBUG_ASSERT(depth > 0);
91
92 thr_bar->depth = depth;
93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
94 &(thr_bar->base_leaf_kids));
95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
96 }
97
98 static int nCoresPerPkg, nPackages;
99 static int __kmp_nThreadsPerCore;
100 #ifndef KMP_DFLT_NTH_CORES
101 static int __kmp_ncores;
102 #endif
103
__kmp_hw_get_catalog_string(kmp_hw_t type,bool plural)104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105 switch (type) {
106 case KMP_HW_SOCKET:
107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108 case KMP_HW_DIE:
109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110 case KMP_HW_MODULE:
111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112 case KMP_HW_TILE:
113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114 case KMP_HW_NUMA:
115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116 case KMP_HW_L3:
117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118 case KMP_HW_L2:
119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120 case KMP_HW_L1:
121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122 case KMP_HW_LLC:
123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124 case KMP_HW_CORE:
125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126 case KMP_HW_THREAD:
127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128 case KMP_HW_PROC_GROUP:
129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130 case KMP_HW_UNKNOWN:
131 case KMP_HW_LAST:
132 return KMP_I18N_STR(Unknown);
133 }
134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135 KMP_BUILTIN_UNREACHABLE;
136 }
137
__kmp_hw_get_keyword(kmp_hw_t type,bool plural)138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139 switch (type) {
140 case KMP_HW_SOCKET:
141 return ((plural) ? "sockets" : "socket");
142 case KMP_HW_DIE:
143 return ((plural) ? "dice" : "die");
144 case KMP_HW_MODULE:
145 return ((plural) ? "modules" : "module");
146 case KMP_HW_TILE:
147 return ((plural) ? "tiles" : "tile");
148 case KMP_HW_NUMA:
149 return ((plural) ? "numa_domains" : "numa_domain");
150 case KMP_HW_L3:
151 return ((plural) ? "l3_caches" : "l3_cache");
152 case KMP_HW_L2:
153 return ((plural) ? "l2_caches" : "l2_cache");
154 case KMP_HW_L1:
155 return ((plural) ? "l1_caches" : "l1_cache");
156 case KMP_HW_LLC:
157 return ((plural) ? "ll_caches" : "ll_cache");
158 case KMP_HW_CORE:
159 return ((plural) ? "cores" : "core");
160 case KMP_HW_THREAD:
161 return ((plural) ? "threads" : "thread");
162 case KMP_HW_PROC_GROUP:
163 return ((plural) ? "proc_groups" : "proc_group");
164 case KMP_HW_UNKNOWN:
165 case KMP_HW_LAST:
166 return ((plural) ? "unknowns" : "unknown");
167 }
168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169 KMP_BUILTIN_UNREACHABLE;
170 }
171
__kmp_hw_get_core_type_string(kmp_hw_core_type_t type)172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173 switch (type) {
174 case KMP_HW_CORE_TYPE_UNKNOWN:
175 case KMP_HW_MAX_NUM_CORE_TYPES:
176 return "unknown";
177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
178 case KMP_HW_CORE_TYPE_ATOM:
179 return "Intel Atom(R) processor";
180 case KMP_HW_CORE_TYPE_CORE:
181 return "Intel(R) Core(TM) processor";
182 #endif
183 }
184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185 KMP_BUILTIN_UNREACHABLE;
186 }
187
188 #if KMP_AFFINITY_SUPPORTED
189 // If affinity is supported, check the affinity
190 // verbose and warning flags before printing warning
191 #define KMP_AFF_WARNING(s, ...) \
192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
193 KMP_WARNING(__VA_ARGS__); \
194 }
195 #else
196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197 #endif
198
199 ////////////////////////////////////////////////////////////////////////////////
200 // kmp_hw_thread_t methods
compare_ids(const void * a,const void * b)201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204 int depth = __kmp_topology->get_depth();
205 for (int level = 0; level < depth; ++level) {
206 if (ahwthread->ids[level] < bhwthread->ids[level])
207 return -1;
208 else if (ahwthread->ids[level] > bhwthread->ids[level])
209 return 1;
210 }
211 if (ahwthread->os_id < bhwthread->os_id)
212 return -1;
213 else if (ahwthread->os_id > bhwthread->os_id)
214 return 1;
215 return 0;
216 }
217
218 #if KMP_AFFINITY_SUPPORTED
compare_compact(const void * a,const void * b)219 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
220 int i;
221 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
222 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
223 int depth = __kmp_topology->get_depth();
224 int compact = __kmp_topology->compact;
225 KMP_DEBUG_ASSERT(compact >= 0);
226 KMP_DEBUG_ASSERT(compact <= depth);
227 for (i = 0; i < compact; i++) {
228 int j = depth - i - 1;
229 if (aa->sub_ids[j] < bb->sub_ids[j])
230 return -1;
231 if (aa->sub_ids[j] > bb->sub_ids[j])
232 return 1;
233 }
234 for (; i < depth; i++) {
235 int j = i - compact;
236 if (aa->sub_ids[j] < bb->sub_ids[j])
237 return -1;
238 if (aa->sub_ids[j] > bb->sub_ids[j])
239 return 1;
240 }
241 return 0;
242 }
243 #endif
244
print() const245 void kmp_hw_thread_t::print() const {
246 int depth = __kmp_topology->get_depth();
247 printf("%4d ", os_id);
248 for (int i = 0; i < depth; ++i) {
249 printf("%4d ", ids[i]);
250 }
251 if (attrs) {
252 if (attrs.is_core_type_valid())
253 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
254 if (attrs.is_core_eff_valid())
255 printf(" (eff=%d)", attrs.get_core_eff());
256 }
257 if (leader)
258 printf(" (leader)");
259 printf("\n");
260 }
261
262 ////////////////////////////////////////////////////////////////////////////////
263 // kmp_topology_t methods
264
265 // Add a layer to the topology based on the ids. Assume the topology
266 // is perfectly nested (i.e., so no object has more than one parent)
_insert_layer(kmp_hw_t type,const int * ids)267 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
268 // Figure out where the layer should go by comparing the ids of the current
269 // layers with the new ids
270 int target_layer;
271 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
272 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
273
274 // Start from the highest layer and work down to find target layer
275 // If new layer is equal to another layer then put the new layer above
276 for (target_layer = 0; target_layer < depth; ++target_layer) {
277 bool layers_equal = true;
278 bool strictly_above_target_layer = false;
279 for (int i = 0; i < num_hw_threads; ++i) {
280 int id = hw_threads[i].ids[target_layer];
281 int new_id = ids[i];
282 if (id != previous_id && new_id == previous_new_id) {
283 // Found the layer we are strictly above
284 strictly_above_target_layer = true;
285 layers_equal = false;
286 break;
287 } else if (id == previous_id && new_id != previous_new_id) {
288 // Found a layer we are below. Move to next layer and check.
289 layers_equal = false;
290 break;
291 }
292 previous_id = id;
293 previous_new_id = new_id;
294 }
295 if (strictly_above_target_layer || layers_equal)
296 break;
297 }
298
299 // Found the layer we are above. Now move everything to accommodate the new
300 // layer. And put the new ids and type into the topology.
301 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
302 types[j] = types[i];
303 types[target_layer] = type;
304 for (int k = 0; k < num_hw_threads; ++k) {
305 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
306 hw_threads[k].ids[j] = hw_threads[k].ids[i];
307 hw_threads[k].ids[target_layer] = ids[k];
308 }
309 equivalent[type] = type;
310 depth++;
311 }
312
313 #if KMP_GROUP_AFFINITY
314 // Insert the Windows Processor Group structure into the topology
_insert_windows_proc_groups()315 void kmp_topology_t::_insert_windows_proc_groups() {
316 // Do not insert the processor group structure for a single group
317 if (__kmp_num_proc_groups == 1)
318 return;
319 kmp_affin_mask_t *mask;
320 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
321 KMP_CPU_ALLOC(mask);
322 for (int i = 0; i < num_hw_threads; ++i) {
323 KMP_CPU_ZERO(mask);
324 KMP_CPU_SET(hw_threads[i].os_id, mask);
325 ids[i] = __kmp_get_proc_group(mask);
326 }
327 KMP_CPU_FREE(mask);
328 _insert_layer(KMP_HW_PROC_GROUP, ids);
329 __kmp_free(ids);
330
331 // sort topology after adding proc groups
332 __kmp_topology->sort_ids();
333 }
334 #endif
335
336 // Remove layers that don't add information to the topology.
337 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
_remove_radix1_layers()338 void kmp_topology_t::_remove_radix1_layers() {
339 int preference[KMP_HW_LAST];
340 int top_index1, top_index2;
341 // Set up preference associative array
342 preference[KMP_HW_SOCKET] = 110;
343 preference[KMP_HW_PROC_GROUP] = 100;
344 preference[KMP_HW_CORE] = 95;
345 preference[KMP_HW_THREAD] = 90;
346 preference[KMP_HW_NUMA] = 85;
347 preference[KMP_HW_DIE] = 80;
348 preference[KMP_HW_TILE] = 75;
349 preference[KMP_HW_MODULE] = 73;
350 preference[KMP_HW_L3] = 70;
351 preference[KMP_HW_L2] = 65;
352 preference[KMP_HW_L1] = 60;
353 preference[KMP_HW_LLC] = 5;
354 top_index1 = 0;
355 top_index2 = 1;
356 while (top_index1 < depth - 1 && top_index2 < depth) {
357 kmp_hw_t type1 = types[top_index1];
358 kmp_hw_t type2 = types[top_index2];
359 KMP_ASSERT_VALID_HW_TYPE(type1);
360 KMP_ASSERT_VALID_HW_TYPE(type2);
361 // Do not allow the three main topology levels (sockets, cores, threads) to
362 // be compacted down
363 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
364 type1 == KMP_HW_SOCKET) &&
365 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
366 type2 == KMP_HW_SOCKET)) {
367 top_index1 = top_index2++;
368 continue;
369 }
370 bool radix1 = true;
371 bool all_same = true;
372 int id1 = hw_threads[0].ids[top_index1];
373 int id2 = hw_threads[0].ids[top_index2];
374 int pref1 = preference[type1];
375 int pref2 = preference[type2];
376 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
377 if (hw_threads[hwidx].ids[top_index1] == id1 &&
378 hw_threads[hwidx].ids[top_index2] != id2) {
379 radix1 = false;
380 break;
381 }
382 if (hw_threads[hwidx].ids[top_index2] != id2)
383 all_same = false;
384 id1 = hw_threads[hwidx].ids[top_index1];
385 id2 = hw_threads[hwidx].ids[top_index2];
386 }
387 if (radix1) {
388 // Select the layer to remove based on preference
389 kmp_hw_t remove_type, keep_type;
390 int remove_layer, remove_layer_ids;
391 if (pref1 > pref2) {
392 remove_type = type2;
393 remove_layer = remove_layer_ids = top_index2;
394 keep_type = type1;
395 } else {
396 remove_type = type1;
397 remove_layer = remove_layer_ids = top_index1;
398 keep_type = type2;
399 }
400 // If all the indexes for the second (deeper) layer are the same.
401 // e.g., all are zero, then make sure to keep the first layer's ids
402 if (all_same)
403 remove_layer_ids = top_index2;
404 // Remove radix one type by setting the equivalence, removing the id from
405 // the hw threads and removing the layer from types and depth
406 set_equivalent_type(remove_type, keep_type);
407 for (int idx = 0; idx < num_hw_threads; ++idx) {
408 kmp_hw_thread_t &hw_thread = hw_threads[idx];
409 for (int d = remove_layer_ids; d < depth - 1; ++d)
410 hw_thread.ids[d] = hw_thread.ids[d + 1];
411 }
412 for (int idx = remove_layer; idx < depth - 1; ++idx)
413 types[idx] = types[idx + 1];
414 depth--;
415 } else {
416 top_index1 = top_index2++;
417 }
418 }
419 KMP_ASSERT(depth > 0);
420 }
421
_set_last_level_cache()422 void kmp_topology_t::_set_last_level_cache() {
423 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
424 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
425 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
426 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
427 #if KMP_MIC_SUPPORTED
428 else if (__kmp_mic_type == mic3) {
429 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
430 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
431 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
432 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
433 // L2/Tile wasn't detected so just say L1
434 else
435 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
436 }
437 #endif
438 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
439 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
440 // Fallback is to set last level cache to socket or core
441 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
442 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
443 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
444 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
445 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
446 }
447 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
448 }
449
450 // Gather the count of each topology layer and the ratio
_gather_enumeration_information()451 void kmp_topology_t::_gather_enumeration_information() {
452 int previous_id[KMP_HW_LAST];
453 int max[KMP_HW_LAST];
454
455 for (int i = 0; i < depth; ++i) {
456 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
457 max[i] = 0;
458 count[i] = 0;
459 ratio[i] = 0;
460 }
461 int core_level = get_level(KMP_HW_CORE);
462 for (int i = 0; i < num_hw_threads; ++i) {
463 kmp_hw_thread_t &hw_thread = hw_threads[i];
464 for (int layer = 0; layer < depth; ++layer) {
465 int id = hw_thread.ids[layer];
466 if (id != previous_id[layer]) {
467 // Add an additional increment to each count
468 for (int l = layer; l < depth; ++l)
469 count[l]++;
470 // Keep track of topology layer ratio statistics
471 max[layer]++;
472 for (int l = layer + 1; l < depth; ++l) {
473 if (max[l] > ratio[l])
474 ratio[l] = max[l];
475 max[l] = 1;
476 }
477 // Figure out the number of different core types
478 // and efficiencies for hybrid CPUs
479 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
480 if (hw_thread.attrs.is_core_eff_valid() &&
481 hw_thread.attrs.core_eff >= num_core_efficiencies) {
482 // Because efficiencies can range from 0 to max efficiency - 1,
483 // the number of efficiencies is max efficiency + 1
484 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
485 }
486 if (hw_thread.attrs.is_core_type_valid()) {
487 bool found = false;
488 for (int j = 0; j < num_core_types; ++j) {
489 if (hw_thread.attrs.get_core_type() == core_types[j]) {
490 found = true;
491 break;
492 }
493 }
494 if (!found) {
495 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
496 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
497 }
498 }
499 }
500 break;
501 }
502 }
503 for (int layer = 0; layer < depth; ++layer) {
504 previous_id[layer] = hw_thread.ids[layer];
505 }
506 }
507 for (int layer = 0; layer < depth; ++layer) {
508 if (max[layer] > ratio[layer])
509 ratio[layer] = max[layer];
510 }
511 }
512
_get_ncores_with_attr(const kmp_hw_attr_t & attr,int above_level,bool find_all) const513 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
514 int above_level,
515 bool find_all) const {
516 int current, current_max;
517 int previous_id[KMP_HW_LAST];
518 for (int i = 0; i < depth; ++i)
519 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
520 int core_level = get_level(KMP_HW_CORE);
521 if (find_all)
522 above_level = -1;
523 KMP_ASSERT(above_level < core_level);
524 current_max = 0;
525 current = 0;
526 for (int i = 0; i < num_hw_threads; ++i) {
527 kmp_hw_thread_t &hw_thread = hw_threads[i];
528 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
529 if (current > current_max)
530 current_max = current;
531 current = hw_thread.attrs.contains(attr);
532 } else {
533 for (int level = above_level + 1; level <= core_level; ++level) {
534 if (hw_thread.ids[level] != previous_id[level]) {
535 if (hw_thread.attrs.contains(attr))
536 current++;
537 break;
538 }
539 }
540 }
541 for (int level = 0; level < depth; ++level)
542 previous_id[level] = hw_thread.ids[level];
543 }
544 if (current > current_max)
545 current_max = current;
546 return current_max;
547 }
548
549 // Find out if the topology is uniform
_discover_uniformity()550 void kmp_topology_t::_discover_uniformity() {
551 int num = 1;
552 for (int level = 0; level < depth; ++level)
553 num *= ratio[level];
554 flags.uniform = (num == count[depth - 1]);
555 }
556
557 // Set all the sub_ids for each hardware thread
_set_sub_ids()558 void kmp_topology_t::_set_sub_ids() {
559 int previous_id[KMP_HW_LAST];
560 int sub_id[KMP_HW_LAST];
561
562 for (int i = 0; i < depth; ++i) {
563 previous_id[i] = -1;
564 sub_id[i] = -1;
565 }
566 for (int i = 0; i < num_hw_threads; ++i) {
567 kmp_hw_thread_t &hw_thread = hw_threads[i];
568 // Setup the sub_id
569 for (int j = 0; j < depth; ++j) {
570 if (hw_thread.ids[j] != previous_id[j]) {
571 sub_id[j]++;
572 for (int k = j + 1; k < depth; ++k) {
573 sub_id[k] = 0;
574 }
575 break;
576 }
577 }
578 // Set previous_id
579 for (int j = 0; j < depth; ++j) {
580 previous_id[j] = hw_thread.ids[j];
581 }
582 // Set the sub_ids field
583 for (int j = 0; j < depth; ++j) {
584 hw_thread.sub_ids[j] = sub_id[j];
585 }
586 }
587 }
588
_set_globals()589 void kmp_topology_t::_set_globals() {
590 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
591 int core_level, thread_level, package_level;
592 package_level = get_level(KMP_HW_SOCKET);
593 #if KMP_GROUP_AFFINITY
594 if (package_level == -1)
595 package_level = get_level(KMP_HW_PROC_GROUP);
596 #endif
597 core_level = get_level(KMP_HW_CORE);
598 thread_level = get_level(KMP_HW_THREAD);
599
600 KMP_ASSERT(core_level != -1);
601 KMP_ASSERT(thread_level != -1);
602
603 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
604 if (package_level != -1) {
605 nCoresPerPkg = calculate_ratio(core_level, package_level);
606 nPackages = get_count(package_level);
607 } else {
608 // assume one socket
609 nCoresPerPkg = get_count(core_level);
610 nPackages = 1;
611 }
612 #ifndef KMP_DFLT_NTH_CORES
613 __kmp_ncores = get_count(core_level);
614 #endif
615 }
616
allocate(int nproc,int ndepth,const kmp_hw_t * types)617 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
618 const kmp_hw_t *types) {
619 kmp_topology_t *retval;
620 // Allocate all data in one large allocation
621 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
622 sizeof(int) * (size_t)KMP_HW_LAST * 3;
623 char *bytes = (char *)__kmp_allocate(size);
624 retval = (kmp_topology_t *)bytes;
625 if (nproc > 0) {
626 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
627 } else {
628 retval->hw_threads = nullptr;
629 }
630 retval->num_hw_threads = nproc;
631 retval->depth = ndepth;
632 int *arr =
633 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
634 retval->types = (kmp_hw_t *)arr;
635 retval->ratio = arr + (size_t)KMP_HW_LAST;
636 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
637 retval->num_core_efficiencies = 0;
638 retval->num_core_types = 0;
639 retval->compact = 0;
640 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
641 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
642 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
643 for (int i = 0; i < ndepth; ++i) {
644 retval->types[i] = types[i];
645 retval->equivalent[types[i]] = types[i];
646 }
647 return retval;
648 }
649
deallocate(kmp_topology_t * topology)650 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
651 if (topology)
652 __kmp_free(topology);
653 }
654
check_ids() const655 bool kmp_topology_t::check_ids() const {
656 // Assume ids have been sorted
657 if (num_hw_threads == 0)
658 return true;
659 for (int i = 1; i < num_hw_threads; ++i) {
660 kmp_hw_thread_t ¤t_thread = hw_threads[i];
661 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
662 bool unique = false;
663 for (int j = 0; j < depth; ++j) {
664 if (previous_thread.ids[j] != current_thread.ids[j]) {
665 unique = true;
666 break;
667 }
668 }
669 if (unique)
670 continue;
671 return false;
672 }
673 return true;
674 }
675
dump() const676 void kmp_topology_t::dump() const {
677 printf("***********************\n");
678 printf("*** __kmp_topology: ***\n");
679 printf("***********************\n");
680 printf("* depth: %d\n", depth);
681
682 printf("* types: ");
683 for (int i = 0; i < depth; ++i)
684 printf("%15s ", __kmp_hw_get_keyword(types[i]));
685 printf("\n");
686
687 printf("* ratio: ");
688 for (int i = 0; i < depth; ++i) {
689 printf("%15d ", ratio[i]);
690 }
691 printf("\n");
692
693 printf("* count: ");
694 for (int i = 0; i < depth; ++i) {
695 printf("%15d ", count[i]);
696 }
697 printf("\n");
698
699 printf("* num_core_eff: %d\n", num_core_efficiencies);
700 printf("* num_core_types: %d\n", num_core_types);
701 printf("* core_types: ");
702 for (int i = 0; i < num_core_types; ++i)
703 printf("%3d ", core_types[i]);
704 printf("\n");
705
706 printf("* equivalent map:\n");
707 KMP_FOREACH_HW_TYPE(i) {
708 const char *key = __kmp_hw_get_keyword(i);
709 const char *value = __kmp_hw_get_keyword(equivalent[i]);
710 printf("%-15s -> %-15s\n", key, value);
711 }
712
713 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
714
715 printf("* num_hw_threads: %d\n", num_hw_threads);
716 printf("* hw_threads:\n");
717 for (int i = 0; i < num_hw_threads; ++i) {
718 hw_threads[i].print();
719 }
720 printf("***********************\n");
721 }
722
print(const char * env_var) const723 void kmp_topology_t::print(const char *env_var) const {
724 kmp_str_buf_t buf;
725 int print_types_depth;
726 __kmp_str_buf_init(&buf);
727 kmp_hw_t print_types[KMP_HW_LAST + 2];
728
729 // Num Available Threads
730 if (num_hw_threads) {
731 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
732 } else {
733 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
734 }
735
736 // Uniform or not
737 if (is_uniform()) {
738 KMP_INFORM(Uniform, env_var);
739 } else {
740 KMP_INFORM(NonUniform, env_var);
741 }
742
743 // Equivalent types
744 KMP_FOREACH_HW_TYPE(type) {
745 kmp_hw_t eq_type = equivalent[type];
746 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
747 KMP_INFORM(AffEqualTopologyTypes, env_var,
748 __kmp_hw_get_catalog_string(type),
749 __kmp_hw_get_catalog_string(eq_type));
750 }
751 }
752
753 // Quick topology
754 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
755 // Create a print types array that always guarantees printing
756 // the core and thread level
757 print_types_depth = 0;
758 for (int level = 0; level < depth; ++level)
759 print_types[print_types_depth++] = types[level];
760 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
761 // Force in the core level for quick topology
762 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
763 // Force core before thread e.g., 1 socket X 2 threads/socket
764 // becomes 1 socket X 1 core/socket X 2 threads/socket
765 print_types[print_types_depth - 1] = KMP_HW_CORE;
766 print_types[print_types_depth++] = KMP_HW_THREAD;
767 } else {
768 print_types[print_types_depth++] = KMP_HW_CORE;
769 }
770 }
771 // Always put threads at very end of quick topology
772 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
773 print_types[print_types_depth++] = KMP_HW_THREAD;
774
775 __kmp_str_buf_clear(&buf);
776 kmp_hw_t numerator_type;
777 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
778 int core_level = get_level(KMP_HW_CORE);
779 int ncores = get_count(core_level);
780
781 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
782 int c;
783 bool plural;
784 numerator_type = print_types[plevel];
785 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
786 if (equivalent[numerator_type] != numerator_type)
787 c = 1;
788 else
789 c = get_ratio(level++);
790 plural = (c > 1);
791 if (plevel == 0) {
792 __kmp_str_buf_print(&buf, "%d %s", c,
793 __kmp_hw_get_catalog_string(numerator_type, plural));
794 } else {
795 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
796 __kmp_hw_get_catalog_string(numerator_type, plural),
797 __kmp_hw_get_catalog_string(denominator_type));
798 }
799 denominator_type = numerator_type;
800 }
801 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
802
803 // Hybrid topology information
804 if (__kmp_is_hybrid_cpu()) {
805 for (int i = 0; i < num_core_types; ++i) {
806 kmp_hw_core_type_t core_type = core_types[i];
807 kmp_hw_attr_t attr;
808 attr.clear();
809 attr.set_core_type(core_type);
810 int ncores = get_ncores_with_attr(attr);
811 if (ncores > 0) {
812 KMP_INFORM(TopologyHybrid, env_var, ncores,
813 __kmp_hw_get_core_type_string(core_type));
814 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
815 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
816 attr.set_core_eff(eff);
817 int ncores_with_eff = get_ncores_with_attr(attr);
818 if (ncores_with_eff > 0) {
819 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
820 }
821 }
822 }
823 }
824 }
825
826 if (num_hw_threads <= 0) {
827 __kmp_str_buf_free(&buf);
828 return;
829 }
830
831 // Full OS proc to hardware thread map
832 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
833 for (int i = 0; i < num_hw_threads; i++) {
834 __kmp_str_buf_clear(&buf);
835 for (int level = 0; level < depth; ++level) {
836 kmp_hw_t type = types[level];
837 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
838 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
839 }
840 if (__kmp_is_hybrid_cpu())
841 __kmp_str_buf_print(
842 &buf, "(%s)",
843 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
844 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
845 }
846
847 __kmp_str_buf_free(&buf);
848 }
849
850 #if KMP_AFFINITY_SUPPORTED
set_granularity(kmp_affinity_t & affinity) const851 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
852 const char *env_var = __kmp_get_affinity_env_var(affinity);
853 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or
854 // KMP_AFFINITY), but none exist, then reset granularity and have below method
855 // select a granularity and warn user.
856 if (!__kmp_is_hybrid_cpu()) {
857 if (affinity.core_attr_gran.valid) {
858 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
859 // instead
860 KMP_AFF_WARNING(
861 affinity, AffIgnoringNonHybrid, env_var,
862 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
863 affinity.gran = KMP_HW_CORE;
864 affinity.gran_levels = -1;
865 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
866 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
867 } else if (affinity.flags.core_types_gran ||
868 affinity.flags.core_effs_gran) {
869 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
870 if (affinity.flags.omp_places) {
871 KMP_AFF_WARNING(
872 affinity, AffIgnoringNonHybrid, env_var,
873 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
874 } else {
875 // KMP_AFFINITY=granularity=core_type|core_eff,...
876 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
877 "Intel(R) Hybrid Technology core attribute",
878 __kmp_hw_get_catalog_string(KMP_HW_CORE));
879 }
880 affinity.gran = KMP_HW_CORE;
881 affinity.gran_levels = -1;
882 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
883 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
884 }
885 }
886 // Set the number of affinity granularity levels
887 if (affinity.gran_levels < 0) {
888 kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
889 // Check if user's granularity request is valid
890 if (gran_type == KMP_HW_UNKNOWN) {
891 // First try core, then thread, then package
892 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
893 for (auto g : gran_types) {
894 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
895 gran_type = g;
896 break;
897 }
898 }
899 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
900 // Warn user what granularity setting will be used instead
901 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
902 __kmp_hw_get_catalog_string(affinity.gran),
903 __kmp_hw_get_catalog_string(gran_type));
904 affinity.gran = gran_type;
905 }
906 #if KMP_GROUP_AFFINITY
907 // If more than one processor group exists, and the level of
908 // granularity specified by the user is too coarse, then the
909 // granularity must be adjusted "down" to processor group affinity
910 // because threads can only exist within one processor group.
911 // For example, if a user sets granularity=socket and there are two
912 // processor groups that cover a socket, then the runtime must
913 // restrict the granularity down to the processor group level.
914 if (__kmp_num_proc_groups > 1) {
915 int gran_depth = get_level(gran_type);
916 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
917 if (gran_depth >= 0 && proc_group_depth >= 0 &&
918 gran_depth < proc_group_depth) {
919 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
920 __kmp_hw_get_catalog_string(affinity.gran));
921 affinity.gran = gran_type = KMP_HW_PROC_GROUP;
922 }
923 }
924 #endif
925 affinity.gran_levels = 0;
926 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
927 affinity.gran_levels++;
928 }
929 }
930 #endif
931
canonicalize()932 void kmp_topology_t::canonicalize() {
933 #if KMP_GROUP_AFFINITY
934 _insert_windows_proc_groups();
935 #endif
936 _remove_radix1_layers();
937 _gather_enumeration_information();
938 _discover_uniformity();
939 _set_sub_ids();
940 _set_globals();
941 _set_last_level_cache();
942
943 #if KMP_MIC_SUPPORTED
944 // Manually Add L2 = Tile equivalence
945 if (__kmp_mic_type == mic3) {
946 if (get_level(KMP_HW_L2) != -1)
947 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
948 else if (get_level(KMP_HW_TILE) != -1)
949 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
950 }
951 #endif
952
953 // Perform post canonicalization checking
954 KMP_ASSERT(depth > 0);
955 for (int level = 0; level < depth; ++level) {
956 // All counts, ratios, and types must be valid
957 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
958 KMP_ASSERT_VALID_HW_TYPE(types[level]);
959 // Detected types must point to themselves
960 KMP_ASSERT(equivalent[types[level]] == types[level]);
961 }
962 }
963
964 // Canonicalize an explicit packages X cores/pkg X threads/core topology
canonicalize(int npackages,int ncores_per_pkg,int nthreads_per_core,int ncores)965 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
966 int nthreads_per_core, int ncores) {
967 int ndepth = 3;
968 depth = ndepth;
969 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
970 for (int level = 0; level < depth; ++level) {
971 count[level] = 0;
972 ratio[level] = 0;
973 }
974 count[0] = npackages;
975 count[1] = ncores;
976 count[2] = __kmp_xproc;
977 ratio[0] = npackages;
978 ratio[1] = ncores_per_pkg;
979 ratio[2] = nthreads_per_core;
980 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
981 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
982 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
983 types[0] = KMP_HW_SOCKET;
984 types[1] = KMP_HW_CORE;
985 types[2] = KMP_HW_THREAD;
986 //__kmp_avail_proc = __kmp_xproc;
987 _discover_uniformity();
988 }
989
990 #if KMP_AFFINITY_SUPPORTED
991 static kmp_str_buf_t *
__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t & attr,kmp_str_buf_t * buf,bool plural)992 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
993 bool plural) {
994 __kmp_str_buf_init(buf);
995 if (attr.is_core_type_valid())
996 __kmp_str_buf_print(buf, "%s %s",
997 __kmp_hw_get_core_type_string(attr.get_core_type()),
998 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
999 else
1000 __kmp_str_buf_print(buf, "%s eff=%d",
1001 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
1002 attr.get_core_eff());
1003 return buf;
1004 }
1005
restrict_to_mask(const kmp_affin_mask_t * mask)1006 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1007 // Apply the filter
1008 bool affected;
1009 int new_index = 0;
1010 for (int i = 0; i < num_hw_threads; ++i) {
1011 int os_id = hw_threads[i].os_id;
1012 if (KMP_CPU_ISSET(os_id, mask)) {
1013 if (i != new_index)
1014 hw_threads[new_index] = hw_threads[i];
1015 new_index++;
1016 } else {
1017 KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1018 __kmp_avail_proc--;
1019 }
1020 }
1021
1022 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1023 affected = (num_hw_threads != new_index);
1024 num_hw_threads = new_index;
1025
1026 // Post hardware subset canonicalization
1027 if (affected) {
1028 _gather_enumeration_information();
1029 _discover_uniformity();
1030 _set_globals();
1031 _set_last_level_cache();
1032 #if KMP_OS_WINDOWS
1033 // Copy filtered full mask if topology has single processor group
1034 if (__kmp_num_proc_groups <= 1)
1035 #endif
1036 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
1037 }
1038 return affected;
1039 }
1040
1041 // Apply the KMP_HW_SUBSET envirable to the topology
1042 // Returns true if KMP_HW_SUBSET filtered any processors
1043 // otherwise, returns false
filter_hw_subset()1044 bool kmp_topology_t::filter_hw_subset() {
1045 // If KMP_HW_SUBSET wasn't requested, then do nothing.
1046 if (!__kmp_hw_subset)
1047 return false;
1048
1049 // First, sort the KMP_HW_SUBSET items by the machine topology
1050 __kmp_hw_subset->sort();
1051
1052 __kmp_hw_subset->canonicalize(__kmp_topology);
1053
1054 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1055 bool using_core_types = false;
1056 bool using_core_effs = false;
1057 bool is_absolute = __kmp_hw_subset->is_absolute();
1058 int hw_subset_depth = __kmp_hw_subset->get_depth();
1059 kmp_hw_t specified[KMP_HW_LAST];
1060 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1061 KMP_ASSERT(hw_subset_depth > 0);
1062 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1063 int core_level = get_level(KMP_HW_CORE);
1064 for (int i = 0; i < hw_subset_depth; ++i) {
1065 int max_count;
1066 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
1067 int num = item.num[0];
1068 int offset = item.offset[0];
1069 kmp_hw_t type = item.type;
1070 kmp_hw_t equivalent_type = equivalent[type];
1071 int level = get_level(type);
1072 topology_levels[i] = level;
1073
1074 // Check to see if current layer is in detected machine topology
1075 if (equivalent_type != KMP_HW_UNKNOWN) {
1076 __kmp_hw_subset->at(i).type = equivalent_type;
1077 } else {
1078 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1079 __kmp_hw_get_catalog_string(type));
1080 return false;
1081 }
1082
1083 // Check to see if current layer has already been
1084 // specified either directly or through an equivalent type
1085 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1086 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1087 __kmp_hw_get_catalog_string(type),
1088 __kmp_hw_get_catalog_string(specified[equivalent_type]));
1089 return false;
1090 }
1091 specified[equivalent_type] = type;
1092
1093 // Check to see if each layer's num & offset parameters are valid
1094 max_count = get_ratio(level);
1095 if (!is_absolute) {
1096 if (max_count < 0 ||
1097 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1098 bool plural = (num > 1);
1099 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1100 __kmp_hw_get_catalog_string(type, plural));
1101 return false;
1102 }
1103 }
1104
1105 // Check to see if core attributes are consistent
1106 if (core_level == level) {
1107 // Determine which core attributes are specified
1108 for (int j = 0; j < item.num_attrs; ++j) {
1109 if (item.attr[j].is_core_type_valid())
1110 using_core_types = true;
1111 if (item.attr[j].is_core_eff_valid())
1112 using_core_effs = true;
1113 }
1114
1115 // Check if using a single core attribute on non-hybrid arch.
1116 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1117 //
1118 // Check if using multiple core attributes on non-hyrbid arch.
1119 // Ignore all of KMP_HW_SUBSET if this is the case.
1120 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1121 if (item.num_attrs == 1) {
1122 if (using_core_effs) {
1123 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1124 "efficiency");
1125 } else {
1126 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1127 "core_type");
1128 }
1129 using_core_effs = false;
1130 using_core_types = false;
1131 } else {
1132 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1133 return false;
1134 }
1135 }
1136
1137 // Check if using both core types and core efficiencies together
1138 if (using_core_types && using_core_effs) {
1139 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1140 "efficiency");
1141 return false;
1142 }
1143
1144 // Check that core efficiency values are valid
1145 if (using_core_effs) {
1146 for (int j = 0; j < item.num_attrs; ++j) {
1147 if (item.attr[j].is_core_eff_valid()) {
1148 int core_eff = item.attr[j].get_core_eff();
1149 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1150 kmp_str_buf_t buf;
1151 __kmp_str_buf_init(&buf);
1152 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1153 __kmp_msg(kmp_ms_warning,
1154 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1155 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1156 __kmp_msg_null);
1157 __kmp_str_buf_free(&buf);
1158 return false;
1159 }
1160 }
1161 }
1162 }
1163
1164 // Check that the number of requested cores with attributes is valid
1165 if ((using_core_types || using_core_effs) && !is_absolute) {
1166 for (int j = 0; j < item.num_attrs; ++j) {
1167 int num = item.num[j];
1168 int offset = item.offset[j];
1169 int level_above = core_level - 1;
1170 if (level_above >= 0) {
1171 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1172 if (max_count <= 0 ||
1173 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1174 kmp_str_buf_t buf;
1175 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1176 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1177 __kmp_str_buf_free(&buf);
1178 return false;
1179 }
1180 }
1181 }
1182 }
1183
1184 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1185 for (int j = 0; j < item.num_attrs; ++j) {
1186 // Ambiguous use of specific core attribute + generic core
1187 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1188 if (!item.attr[j]) {
1189 kmp_hw_attr_t other_attr;
1190 for (int k = 0; k < item.num_attrs; ++k) {
1191 if (item.attr[k] != item.attr[j]) {
1192 other_attr = item.attr[k];
1193 break;
1194 }
1195 }
1196 kmp_str_buf_t buf;
1197 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1198 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1199 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1200 __kmp_str_buf_free(&buf);
1201 return false;
1202 }
1203 // Allow specifying a specific core type or core eff exactly once
1204 for (int k = 0; k < j; ++k) {
1205 if (!item.attr[j] || !item.attr[k])
1206 continue;
1207 if (item.attr[k] == item.attr[j]) {
1208 kmp_str_buf_t buf;
1209 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1210 item.num[j] > 0);
1211 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1212 __kmp_str_buf_free(&buf);
1213 return false;
1214 }
1215 }
1216 }
1217 }
1218 }
1219 }
1220
1221 // For keeping track of sub_ids for an absolute KMP_HW_SUBSET
1222 // or core attributes (core type or efficiency)
1223 int prev_sub_ids[KMP_HW_LAST];
1224 int abs_sub_ids[KMP_HW_LAST];
1225 int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS];
1226 int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES];
1227 for (size_t i = 0; i < KMP_HW_LAST; ++i) {
1228 abs_sub_ids[i] = -1;
1229 prev_sub_ids[i] = -1;
1230 }
1231 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i)
1232 core_eff_sub_ids[i] = -1;
1233 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
1234 core_type_sub_ids[i] = -1;
1235
1236 // Determine which hardware threads should be filtered.
1237
1238 // Helpful to determine if a topology layer is targeted by an absolute subset
1239 auto is_targeted = [&](int level) {
1240 if (is_absolute) {
1241 for (int i = 0; i < hw_subset_depth; ++i)
1242 if (topology_levels[i] == level)
1243 return true;
1244 return false;
1245 }
1246 // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted
1247 return true;
1248 };
1249
1250 // Helpful to index into core type sub Ids array
1251 auto get_core_type_index = [](const kmp_hw_thread_t &t) {
1252 switch (t.attrs.get_core_type()) {
1253 case KMP_HW_CORE_TYPE_UNKNOWN:
1254 case KMP_HW_MAX_NUM_CORE_TYPES:
1255 return 0;
1256 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1257 case KMP_HW_CORE_TYPE_ATOM:
1258 return 1;
1259 case KMP_HW_CORE_TYPE_CORE:
1260 return 2;
1261 #endif
1262 }
1263 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1264 KMP_BUILTIN_UNREACHABLE;
1265 };
1266
1267 // Helpful to index into core efficiencies sub Ids array
1268 auto get_core_eff_index = [](const kmp_hw_thread_t &t) {
1269 return t.attrs.get_core_eff();
1270 };
1271
1272 int num_filtered = 0;
1273 kmp_affin_mask_t *filtered_mask;
1274 KMP_CPU_ALLOC(filtered_mask);
1275 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1276 for (int i = 0; i < num_hw_threads; ++i) {
1277 kmp_hw_thread_t &hw_thread = hw_threads[i];
1278
1279 // Figure out the absolute sub ids and core eff/type sub ids
1280 if (is_absolute || using_core_effs || using_core_types) {
1281 for (int level = 0; level < get_depth(); ++level) {
1282 if (hw_thread.sub_ids[level] != prev_sub_ids[level]) {
1283 bool found_targeted = false;
1284 for (int j = level; j < get_depth(); ++j) {
1285 bool targeted = is_targeted(j);
1286 if (!found_targeted && targeted) {
1287 found_targeted = true;
1288 abs_sub_ids[j]++;
1289 if (j == core_level && using_core_effs)
1290 core_eff_sub_ids[get_core_eff_index(hw_thread)]++;
1291 if (j == core_level && using_core_types)
1292 core_type_sub_ids[get_core_type_index(hw_thread)]++;
1293 } else if (targeted) {
1294 abs_sub_ids[j] = 0;
1295 if (j == core_level && using_core_effs)
1296 core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0;
1297 if (j == core_level && using_core_types)
1298 core_type_sub_ids[get_core_type_index(hw_thread)] = 0;
1299 }
1300 }
1301 break;
1302 }
1303 }
1304 for (int level = 0; level < get_depth(); ++level)
1305 prev_sub_ids[level] = hw_thread.sub_ids[level];
1306 }
1307
1308 // Check to see if this hardware thread should be filtered
1309 bool should_be_filtered = false;
1310 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1311 ++hw_subset_index) {
1312 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1313 int level = topology_levels[hw_subset_index];
1314 if (level == -1)
1315 continue;
1316 if ((using_core_effs || using_core_types) && level == core_level) {
1317 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1318 // to this hardware thread's core attribute. Use this num,offset plus
1319 // the running sub_id for the particular core attribute of this hardware
1320 // thread to determine if the hardware thread should be filtered or not.
1321 int attr_idx;
1322 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1323 int core_eff = hw_thread.attrs.get_core_eff();
1324 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1325 if (using_core_types &&
1326 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1327 break;
1328 if (using_core_effs &&
1329 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1330 break;
1331 }
1332 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1333 if (attr_idx == hw_subset_item.num_attrs) {
1334 should_be_filtered = true;
1335 break;
1336 }
1337 int sub_id;
1338 int num = hw_subset_item.num[attr_idx];
1339 int offset = hw_subset_item.offset[attr_idx];
1340 if (using_core_types)
1341 sub_id = core_type_sub_ids[get_core_type_index(hw_thread)];
1342 else
1343 sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)];
1344 if (sub_id < offset ||
1345 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1346 should_be_filtered = true;
1347 break;
1348 }
1349 } else {
1350 int sub_id;
1351 int num = hw_subset_item.num[0];
1352 int offset = hw_subset_item.offset[0];
1353 if (is_absolute)
1354 sub_id = abs_sub_ids[level];
1355 else
1356 sub_id = hw_thread.sub_ids[level];
1357 if (sub_id < offset ||
1358 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1359 should_be_filtered = true;
1360 break;
1361 }
1362 }
1363 }
1364 // Collect filtering information
1365 if (should_be_filtered) {
1366 KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1367 num_filtered++;
1368 }
1369 }
1370
1371 // One last check that we shouldn't allow filtering entire machine
1372 if (num_filtered == num_hw_threads) {
1373 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1374 return false;
1375 }
1376
1377 // Apply the filter
1378 restrict_to_mask(filtered_mask);
1379 return true;
1380 }
1381
is_close(int hwt1,int hwt2,const kmp_affinity_t & stgs) const1382 bool kmp_topology_t::is_close(int hwt1, int hwt2,
1383 const kmp_affinity_t &stgs) const {
1384 int hw_level = stgs.gran_levels;
1385 if (hw_level >= depth)
1386 return true;
1387 bool retval = true;
1388 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1389 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1390 if (stgs.flags.core_types_gran)
1391 return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1392 if (stgs.flags.core_effs_gran)
1393 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1394 for (int i = 0; i < (depth - hw_level); ++i) {
1395 if (t1.ids[i] != t2.ids[i])
1396 return false;
1397 }
1398 return retval;
1399 }
1400
1401 ////////////////////////////////////////////////////////////////////////////////
1402
1403 bool KMPAffinity::picked_api = false;
1404
operator new(size_t n)1405 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
operator new[](size_t n)1406 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
operator delete(void * p)1407 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
operator delete[](void * p)1408 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
operator new(size_t n)1409 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
operator delete(void * p)1410 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1411
pick_api()1412 void KMPAffinity::pick_api() {
1413 KMPAffinity *affinity_dispatch;
1414 if (picked_api)
1415 return;
1416 #if KMP_USE_HWLOC
1417 // Only use Hwloc if affinity isn't explicitly disabled and
1418 // user requests Hwloc topology method
1419 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1420 __kmp_affinity.type != affinity_disabled) {
1421 affinity_dispatch = new KMPHwlocAffinity();
1422 } else
1423 #endif
1424 {
1425 affinity_dispatch = new KMPNativeAffinity();
1426 }
1427 __kmp_affinity_dispatch = affinity_dispatch;
1428 picked_api = true;
1429 }
1430
destroy_api()1431 void KMPAffinity::destroy_api() {
1432 if (__kmp_affinity_dispatch != NULL) {
1433 delete __kmp_affinity_dispatch;
1434 __kmp_affinity_dispatch = NULL;
1435 picked_api = false;
1436 }
1437 }
1438
1439 #define KMP_ADVANCE_SCAN(scan) \
1440 while (*scan != '\0') { \
1441 scan++; \
1442 }
1443
1444 // Print the affinity mask to the character array in a pretty format.
1445 // The format is a comma separated list of non-negative integers or integer
1446 // ranges: e.g., 1,2,3-5,7,9-15
1447 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_print_mask(char * buf,int buf_len,kmp_affin_mask_t * mask)1448 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1449 kmp_affin_mask_t *mask) {
1450 int start = 0, finish = 0, previous = 0;
1451 bool first_range;
1452 KMP_ASSERT(buf);
1453 KMP_ASSERT(buf_len >= 40);
1454 KMP_ASSERT(mask);
1455 char *scan = buf;
1456 char *end = buf + buf_len - 1;
1457
1458 // Check for empty set.
1459 if (mask->begin() == mask->end()) {
1460 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1461 KMP_ADVANCE_SCAN(scan);
1462 KMP_ASSERT(scan <= end);
1463 return buf;
1464 }
1465
1466 first_range = true;
1467 start = mask->begin();
1468 while (1) {
1469 // Find next range
1470 // [start, previous] is inclusive range of contiguous bits in mask
1471 for (finish = mask->next(start), previous = start;
1472 finish == previous + 1 && finish != mask->end();
1473 finish = mask->next(finish)) {
1474 previous = finish;
1475 }
1476
1477 // The first range does not need a comma printed before it, but the rest
1478 // of the ranges do need a comma beforehand
1479 if (!first_range) {
1480 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1481 KMP_ADVANCE_SCAN(scan);
1482 } else {
1483 first_range = false;
1484 }
1485 // Range with three or more contiguous bits in the affinity mask
1486 if (previous - start > 1) {
1487 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1488 } else {
1489 // Range with one or two contiguous bits in the affinity mask
1490 KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1491 KMP_ADVANCE_SCAN(scan);
1492 if (previous - start > 0) {
1493 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1494 }
1495 }
1496 KMP_ADVANCE_SCAN(scan);
1497 // Start over with new start point
1498 start = finish;
1499 if (start == mask->end())
1500 break;
1501 // Check for overflow
1502 if (end - scan < 2)
1503 break;
1504 }
1505
1506 // Check for overflow
1507 KMP_ASSERT(scan <= end);
1508 return buf;
1509 }
1510 #undef KMP_ADVANCE_SCAN
1511
1512 // Print the affinity mask to the string buffer object in a pretty format
1513 // The format is a comma separated list of non-negative integers or integer
1514 // ranges: e.g., 1,2,3-5,7,9-15
1515 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_str_buf_mask(kmp_str_buf_t * buf,kmp_affin_mask_t * mask)1516 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1517 kmp_affin_mask_t *mask) {
1518 int start = 0, finish = 0, previous = 0;
1519 bool first_range;
1520 KMP_ASSERT(buf);
1521 KMP_ASSERT(mask);
1522
1523 __kmp_str_buf_clear(buf);
1524
1525 // Check for empty set.
1526 if (mask->begin() == mask->end()) {
1527 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1528 return buf;
1529 }
1530
1531 first_range = true;
1532 start = mask->begin();
1533 while (1) {
1534 // Find next range
1535 // [start, previous] is inclusive range of contiguous bits in mask
1536 for (finish = mask->next(start), previous = start;
1537 finish == previous + 1 && finish != mask->end();
1538 finish = mask->next(finish)) {
1539 previous = finish;
1540 }
1541
1542 // The first range does not need a comma printed before it, but the rest
1543 // of the ranges do need a comma beforehand
1544 if (!first_range) {
1545 __kmp_str_buf_print(buf, "%s", ",");
1546 } else {
1547 first_range = false;
1548 }
1549 // Range with three or more contiguous bits in the affinity mask
1550 if (previous - start > 1) {
1551 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1552 } else {
1553 // Range with one or two contiguous bits in the affinity mask
1554 __kmp_str_buf_print(buf, "%u", start);
1555 if (previous - start > 0) {
1556 __kmp_str_buf_print(buf, ",%u", previous);
1557 }
1558 }
1559 // Start over with new start point
1560 start = finish;
1561 if (start == mask->end())
1562 break;
1563 }
1564 return buf;
1565 }
1566
1567 // Return (possibly empty) affinity mask representing the offline CPUs
1568 // Caller must free the mask
__kmp_affinity_get_offline_cpus()1569 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1570 kmp_affin_mask_t *offline;
1571 KMP_CPU_ALLOC(offline);
1572 KMP_CPU_ZERO(offline);
1573 #if KMP_OS_LINUX
1574 int n, begin_cpu, end_cpu;
1575 kmp_safe_raii_file_t offline_file;
1576 auto skip_ws = [](FILE *f) {
1577 int c;
1578 do {
1579 c = fgetc(f);
1580 } while (isspace(c));
1581 if (c != EOF)
1582 ungetc(c, f);
1583 };
1584 // File contains CSV of integer ranges representing the offline CPUs
1585 // e.g., 1,2,4-7,9,11-15
1586 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1587 if (status != 0)
1588 return offline;
1589 while (!feof(offline_file)) {
1590 skip_ws(offline_file);
1591 n = fscanf(offline_file, "%d", &begin_cpu);
1592 if (n != 1)
1593 break;
1594 skip_ws(offline_file);
1595 int c = fgetc(offline_file);
1596 if (c == EOF || c == ',') {
1597 // Just single CPU
1598 end_cpu = begin_cpu;
1599 } else if (c == '-') {
1600 // Range of CPUs
1601 skip_ws(offline_file);
1602 n = fscanf(offline_file, "%d", &end_cpu);
1603 if (n != 1)
1604 break;
1605 skip_ws(offline_file);
1606 c = fgetc(offline_file); // skip ','
1607 } else {
1608 // Syntax problem
1609 break;
1610 }
1611 // Ensure a valid range of CPUs
1612 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1613 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1614 continue;
1615 }
1616 // Insert [begin_cpu, end_cpu] into offline mask
1617 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1618 KMP_CPU_SET(cpu, offline);
1619 }
1620 }
1621 #endif
1622 return offline;
1623 }
1624
1625 // Return the number of available procs
__kmp_affinity_entire_machine_mask(kmp_affin_mask_t * mask)1626 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1627 int avail_proc = 0;
1628 KMP_CPU_ZERO(mask);
1629
1630 #if KMP_GROUP_AFFINITY
1631
1632 if (__kmp_num_proc_groups > 1) {
1633 int group;
1634 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1635 for (group = 0; group < __kmp_num_proc_groups; group++) {
1636 int i;
1637 int num = __kmp_GetActiveProcessorCount(group);
1638 for (i = 0; i < num; i++) {
1639 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1640 avail_proc++;
1641 }
1642 }
1643 } else
1644
1645 #endif /* KMP_GROUP_AFFINITY */
1646
1647 {
1648 int proc;
1649 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1650 for (proc = 0; proc < __kmp_xproc; proc++) {
1651 // Skip offline CPUs
1652 if (KMP_CPU_ISSET(proc, offline_cpus))
1653 continue;
1654 KMP_CPU_SET(proc, mask);
1655 avail_proc++;
1656 }
1657 KMP_CPU_FREE(offline_cpus);
1658 }
1659
1660 return avail_proc;
1661 }
1662
1663 // All of the __kmp_affinity_create_*_map() routines should allocate the
1664 // internal topology object and set the layer ids for it. Each routine
1665 // returns a boolean on whether it was successful at doing so.
1666 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1667 // Original mask is a subset of full mask in multiple processor groups topology
1668 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1669
1670 #if KMP_USE_HWLOC
__kmp_hwloc_is_cache_type(hwloc_obj_t obj)1671 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1672 #if HWLOC_API_VERSION >= 0x00020000
1673 return hwloc_obj_type_is_cache(obj->type);
1674 #else
1675 return obj->type == HWLOC_OBJ_CACHE;
1676 #endif
1677 }
1678
1679 // Returns KMP_HW_* type derived from HWLOC_* type
__kmp_hwloc_type_2_topology_type(hwloc_obj_t obj)1680 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1681
1682 if (__kmp_hwloc_is_cache_type(obj)) {
1683 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1684 return KMP_HW_UNKNOWN;
1685 switch (obj->attr->cache.depth) {
1686 case 1:
1687 return KMP_HW_L1;
1688 case 2:
1689 #if KMP_MIC_SUPPORTED
1690 if (__kmp_mic_type == mic3) {
1691 return KMP_HW_TILE;
1692 }
1693 #endif
1694 return KMP_HW_L2;
1695 case 3:
1696 return KMP_HW_L3;
1697 }
1698 return KMP_HW_UNKNOWN;
1699 }
1700
1701 switch (obj->type) {
1702 case HWLOC_OBJ_PACKAGE:
1703 return KMP_HW_SOCKET;
1704 case HWLOC_OBJ_NUMANODE:
1705 return KMP_HW_NUMA;
1706 case HWLOC_OBJ_CORE:
1707 return KMP_HW_CORE;
1708 case HWLOC_OBJ_PU:
1709 return KMP_HW_THREAD;
1710 case HWLOC_OBJ_GROUP:
1711 #if HWLOC_API_VERSION >= 0x00020000
1712 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1713 return KMP_HW_DIE;
1714 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1715 return KMP_HW_TILE;
1716 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1717 return KMP_HW_MODULE;
1718 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1719 return KMP_HW_PROC_GROUP;
1720 #endif
1721 return KMP_HW_UNKNOWN;
1722 #if HWLOC_API_VERSION >= 0x00020100
1723 case HWLOC_OBJ_DIE:
1724 return KMP_HW_DIE;
1725 #endif
1726 }
1727 return KMP_HW_UNKNOWN;
1728 }
1729
1730 // Returns the number of objects of type 'type' below 'obj' within the topology
1731 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1732 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1733 // object.
__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,hwloc_obj_type_t type)1734 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1735 hwloc_obj_type_t type) {
1736 int retval = 0;
1737 hwloc_obj_t first;
1738 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1739 obj->logical_index, type, 0);
1740 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1741 obj->type, first) == obj;
1742 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1743 first)) {
1744 ++retval;
1745 }
1746 return retval;
1747 }
1748
1749 // This gets the sub_id for a lower object under a higher object in the
1750 // topology tree
__kmp_hwloc_get_sub_id(hwloc_topology_t t,hwloc_obj_t higher,hwloc_obj_t lower)1751 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1752 hwloc_obj_t lower) {
1753 hwloc_obj_t obj;
1754 hwloc_obj_type_t ltype = lower->type;
1755 int lindex = lower->logical_index - 1;
1756 int sub_id = 0;
1757 // Get the previous lower object
1758 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1759 while (obj && lindex >= 0 &&
1760 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1761 if (obj->userdata) {
1762 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1763 break;
1764 }
1765 sub_id++;
1766 lindex--;
1767 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1768 }
1769 // store sub_id + 1 so that 0 is differed from NULL
1770 lower->userdata = RCAST(void *, sub_id + 1);
1771 return sub_id;
1772 }
1773
__kmp_affinity_create_hwloc_map(kmp_i18n_id_t * const msg_id)1774 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1775 kmp_hw_t type;
1776 int hw_thread_index, sub_id;
1777 int depth;
1778 hwloc_obj_t pu, obj, root, prev;
1779 kmp_hw_t types[KMP_HW_LAST];
1780 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1781
1782 hwloc_topology_t tp = __kmp_hwloc_topology;
1783 *msg_id = kmp_i18n_null;
1784 if (__kmp_affinity.flags.verbose) {
1785 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1786 }
1787
1788 if (!KMP_AFFINITY_CAPABLE()) {
1789 // Hack to try and infer the machine topology using only the data
1790 // available from hwloc on the current thread, and __kmp_xproc.
1791 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1792 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1793 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1794 if (o != NULL)
1795 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1796 else
1797 nCoresPerPkg = 1; // no PACKAGE found
1798 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1799 if (o != NULL)
1800 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1801 else
1802 __kmp_nThreadsPerCore = 1; // no CORE found
1803 if (__kmp_nThreadsPerCore == 0)
1804 __kmp_nThreadsPerCore = 1;
1805 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1806 if (nCoresPerPkg == 0)
1807 nCoresPerPkg = 1; // to prevent possible division by 0
1808 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1809 return true;
1810 }
1811
1812 #if HWLOC_API_VERSION >= 0x00020400
1813 // Handle multiple types of cores if they exist on the system
1814 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1815
1816 typedef struct kmp_hwloc_cpukinds_info_t {
1817 int efficiency;
1818 kmp_hw_core_type_t core_type;
1819 hwloc_bitmap_t mask;
1820 } kmp_hwloc_cpukinds_info_t;
1821 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1822
1823 if (nr_cpu_kinds > 0) {
1824 unsigned nr_infos;
1825 struct hwloc_info_s *infos;
1826 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1827 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1828 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1829 cpukinds[idx].efficiency = -1;
1830 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1831 cpukinds[idx].mask = hwloc_bitmap_alloc();
1832 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1833 &cpukinds[idx].efficiency, &nr_infos, &infos,
1834 0) == 0) {
1835 for (unsigned i = 0; i < nr_infos; ++i) {
1836 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1837 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1838 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1839 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1840 break;
1841 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1842 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1843 break;
1844 }
1845 #endif
1846 }
1847 }
1848 }
1849 }
1850 }
1851 #endif
1852
1853 root = hwloc_get_root_obj(tp);
1854
1855 // Figure out the depth and types in the topology
1856 depth = 0;
1857 obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1858 while (obj && obj != root) {
1859 #if HWLOC_API_VERSION >= 0x00020000
1860 if (obj->memory_arity) {
1861 hwloc_obj_t memory;
1862 for (memory = obj->memory_first_child; memory;
1863 memory = hwloc_get_next_child(tp, obj, memory)) {
1864 if (memory->type == HWLOC_OBJ_NUMANODE)
1865 break;
1866 }
1867 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1868 types[depth] = KMP_HW_NUMA;
1869 hwloc_types[depth] = memory->type;
1870 depth++;
1871 }
1872 }
1873 #endif
1874 type = __kmp_hwloc_type_2_topology_type(obj);
1875 if (type != KMP_HW_UNKNOWN) {
1876 types[depth] = type;
1877 hwloc_types[depth] = obj->type;
1878 depth++;
1879 }
1880 obj = obj->parent;
1881 }
1882 KMP_ASSERT(depth > 0);
1883
1884 // Get the order for the types correct
1885 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1886 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1887 kmp_hw_t temp = types[i];
1888 types[i] = types[j];
1889 types[j] = temp;
1890 hwloc_types[i] = hwloc_types[j];
1891 hwloc_types[j] = hwloc_temp;
1892 }
1893
1894 // Allocate the data structure to be returned.
1895 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1896
1897 hw_thread_index = 0;
1898 pu = NULL;
1899 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1900 int index = depth - 1;
1901 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1902 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1903 if (included) {
1904 hw_thread.clear();
1905 hw_thread.ids[index] = pu->logical_index;
1906 hw_thread.os_id = pu->os_index;
1907 // If multiple core types, then set that attribute for the hardware thread
1908 #if HWLOC_API_VERSION >= 0x00020400
1909 if (cpukinds) {
1910 int cpukind_index = -1;
1911 for (int i = 0; i < nr_cpu_kinds; ++i) {
1912 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1913 cpukind_index = i;
1914 break;
1915 }
1916 }
1917 if (cpukind_index >= 0) {
1918 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1919 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1920 }
1921 }
1922 #endif
1923 index--;
1924 }
1925 obj = pu;
1926 prev = obj;
1927 while (obj != root && obj != NULL) {
1928 obj = obj->parent;
1929 #if HWLOC_API_VERSION >= 0x00020000
1930 // NUMA Nodes are handled differently since they are not within the
1931 // parent/child structure anymore. They are separate children
1932 // of obj (memory_first_child points to first memory child)
1933 if (obj->memory_arity) {
1934 hwloc_obj_t memory;
1935 for (memory = obj->memory_first_child; memory;
1936 memory = hwloc_get_next_child(tp, obj, memory)) {
1937 if (memory->type == HWLOC_OBJ_NUMANODE)
1938 break;
1939 }
1940 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1941 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1942 if (included) {
1943 hw_thread.ids[index] = memory->logical_index;
1944 hw_thread.ids[index + 1] = sub_id;
1945 index--;
1946 }
1947 prev = memory;
1948 }
1949 prev = obj;
1950 }
1951 #endif
1952 type = __kmp_hwloc_type_2_topology_type(obj);
1953 if (type != KMP_HW_UNKNOWN) {
1954 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1955 if (included) {
1956 hw_thread.ids[index] = obj->logical_index;
1957 hw_thread.ids[index + 1] = sub_id;
1958 index--;
1959 }
1960 prev = obj;
1961 }
1962 }
1963 if (included)
1964 hw_thread_index++;
1965 }
1966
1967 #if HWLOC_API_VERSION >= 0x00020400
1968 // Free the core types information
1969 if (cpukinds) {
1970 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1971 hwloc_bitmap_free(cpukinds[idx].mask);
1972 __kmp_free(cpukinds);
1973 }
1974 #endif
1975 __kmp_topology->sort_ids();
1976 return true;
1977 }
1978 #endif // KMP_USE_HWLOC
1979
1980 // If we don't know how to retrieve the machine's processor topology, or
1981 // encounter an error in doing so, this routine is called to form a "flat"
1982 // mapping of os thread id's <-> processor id's.
__kmp_affinity_create_flat_map(kmp_i18n_id_t * const msg_id)1983 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1984 *msg_id = kmp_i18n_null;
1985 int depth = 3;
1986 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1987
1988 if (__kmp_affinity.flags.verbose) {
1989 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1990 }
1991
1992 // Even if __kmp_affinity.type == affinity_none, this routine might still
1993 // be called to set __kmp_ncores, as well as
1994 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1995 if (!KMP_AFFINITY_CAPABLE()) {
1996 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1997 __kmp_ncores = nPackages = __kmp_xproc;
1998 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1999 return true;
2000 }
2001
2002 // When affinity is off, this routine will still be called to set
2003 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2004 // Make sure all these vars are set correctly, and return now if affinity is
2005 // not enabled.
2006 __kmp_ncores = nPackages = __kmp_avail_proc;
2007 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
2008
2009 // Construct the data structure to be returned.
2010 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2011 int avail_ct = 0;
2012 int i;
2013 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2014 // Skip this proc if it is not included in the machine model.
2015 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2016 continue;
2017 }
2018 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
2019 hw_thread.clear();
2020 hw_thread.os_id = i;
2021 hw_thread.ids[0] = i;
2022 hw_thread.ids[1] = 0;
2023 hw_thread.ids[2] = 0;
2024 avail_ct++;
2025 }
2026 if (__kmp_affinity.flags.verbose) {
2027 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2028 }
2029 return true;
2030 }
2031
2032 #if KMP_GROUP_AFFINITY
2033 // If multiple Windows* OS processor groups exist, we can create a 2-level
2034 // topology map with the groups at level 0 and the individual procs at level 1.
2035 // This facilitates letting the threads float among all procs in a group,
2036 // if granularity=group (the default when there are multiple groups).
__kmp_affinity_create_proc_group_map(kmp_i18n_id_t * const msg_id)2037 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2038 *msg_id = kmp_i18n_null;
2039 int depth = 3;
2040 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2041 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2042
2043 if (__kmp_affinity.flags.verbose) {
2044 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2045 }
2046
2047 // If we aren't affinity capable, then use flat topology
2048 if (!KMP_AFFINITY_CAPABLE()) {
2049 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2050 nPackages = __kmp_num_proc_groups;
2051 __kmp_nThreadsPerCore = 1;
2052 __kmp_ncores = __kmp_xproc;
2053 nCoresPerPkg = nPackages / __kmp_ncores;
2054 return true;
2055 }
2056
2057 // Construct the data structure to be returned.
2058 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2059 int avail_ct = 0;
2060 int i;
2061 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2062 // Skip this proc if it is not included in the machine model.
2063 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2064 continue;
2065 }
2066 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
2067 hw_thread.clear();
2068 hw_thread.os_id = i;
2069 hw_thread.ids[0] = i / BITS_PER_GROUP;
2070 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2071 }
2072 return true;
2073 }
2074 #endif /* KMP_GROUP_AFFINITY */
2075
2076 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2077
2078 template <kmp_uint32 LSB, kmp_uint32 MSB>
__kmp_extract_bits(kmp_uint32 v)2079 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2080 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2081 const kmp_uint32 SHIFT_RIGHT = LSB;
2082 kmp_uint32 retval = v;
2083 retval <<= SHIFT_LEFT;
2084 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2085 return retval;
2086 }
2087
__kmp_cpuid_mask_width(int count)2088 static int __kmp_cpuid_mask_width(int count) {
2089 int r = 0;
2090
2091 while ((1 << r) < count)
2092 ++r;
2093 return r;
2094 }
2095
2096 class apicThreadInfo {
2097 public:
2098 unsigned osId; // param to __kmp_affinity_bind_thread
2099 unsigned apicId; // from cpuid after binding
2100 unsigned maxCoresPerPkg; // ""
2101 unsigned maxThreadsPerPkg; // ""
2102 unsigned pkgId; // inferred from above values
2103 unsigned coreId; // ""
2104 unsigned threadId; // ""
2105 };
2106
__kmp_affinity_cmp_apicThreadInfo_phys_id(const void * a,const void * b)2107 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2108 const void *b) {
2109 const apicThreadInfo *aa = (const apicThreadInfo *)a;
2110 const apicThreadInfo *bb = (const apicThreadInfo *)b;
2111 if (aa->pkgId < bb->pkgId)
2112 return -1;
2113 if (aa->pkgId > bb->pkgId)
2114 return 1;
2115 if (aa->coreId < bb->coreId)
2116 return -1;
2117 if (aa->coreId > bb->coreId)
2118 return 1;
2119 if (aa->threadId < bb->threadId)
2120 return -1;
2121 if (aa->threadId > bb->threadId)
2122 return 1;
2123 return 0;
2124 }
2125
2126 class kmp_cache_info_t {
2127 public:
2128 struct info_t {
2129 unsigned level, mask;
2130 };
kmp_cache_info_t()2131 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
get_depth() const2132 size_t get_depth() const { return depth; }
operator [](size_t index)2133 info_t &operator[](size_t index) { return table[index]; }
operator [](size_t index) const2134 const info_t &operator[](size_t index) const { return table[index]; }
2135
get_topology_type(unsigned level)2136 static kmp_hw_t get_topology_type(unsigned level) {
2137 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2138 switch (level) {
2139 case 1:
2140 return KMP_HW_L1;
2141 case 2:
2142 return KMP_HW_L2;
2143 case 3:
2144 return KMP_HW_L3;
2145 }
2146 return KMP_HW_UNKNOWN;
2147 }
2148
2149 private:
2150 static const int MAX_CACHE_LEVEL = 3;
2151
2152 size_t depth;
2153 info_t table[MAX_CACHE_LEVEL];
2154
get_leaf4_levels()2155 void get_leaf4_levels() {
2156 unsigned level = 0;
2157 while (depth < MAX_CACHE_LEVEL) {
2158 unsigned cache_type, max_threads_sharing;
2159 unsigned cache_level, cache_mask_width;
2160 kmp_cpuid buf2;
2161 __kmp_x86_cpuid(4, level, &buf2);
2162 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2163 if (!cache_type)
2164 break;
2165 // Skip instruction caches
2166 if (cache_type == 2) {
2167 level++;
2168 continue;
2169 }
2170 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2171 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2172 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2173 table[depth].level = cache_level;
2174 table[depth].mask = ((-1) << cache_mask_width);
2175 depth++;
2176 level++;
2177 }
2178 }
2179 };
2180
2181 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2182 // an algorithm which cycles through the available os threads, setting
2183 // the current thread's affinity mask to that thread, and then retrieves
2184 // the Apic Id for each thread context using the cpuid instruction.
__kmp_affinity_create_apicid_map(kmp_i18n_id_t * const msg_id)2185 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2186 kmp_cpuid buf;
2187 *msg_id = kmp_i18n_null;
2188
2189 if (__kmp_affinity.flags.verbose) {
2190 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2191 }
2192
2193 // Check if cpuid leaf 4 is supported.
2194 __kmp_x86_cpuid(0, 0, &buf);
2195 if (buf.eax < 4) {
2196 *msg_id = kmp_i18n_str_NoLeaf4Support;
2197 return false;
2198 }
2199
2200 // The algorithm used starts by setting the affinity to each available thread
2201 // and retrieving info from the cpuid instruction, so if we are not capable of
2202 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2203 // need to do something else - use the defaults that we calculated from
2204 // issuing cpuid without binding to each proc.
2205 if (!KMP_AFFINITY_CAPABLE()) {
2206 // Hack to try and infer the machine topology using only the data
2207 // available from cpuid on the current thread, and __kmp_xproc.
2208 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2209
2210 // Get an upper bound on the number of threads per package using cpuid(1).
2211 // On some OS/chps combinations where HT is supported by the chip but is
2212 // disabled, this value will be 2 on a single core chip. Usually, it will be
2213 // 2 if HT is enabled and 1 if HT is disabled.
2214 __kmp_x86_cpuid(1, 0, &buf);
2215 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2216 if (maxThreadsPerPkg == 0) {
2217 maxThreadsPerPkg = 1;
2218 }
2219
2220 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2221 // value.
2222 //
2223 // The author of cpu_count.cpp treated this only an upper bound on the
2224 // number of cores, but I haven't seen any cases where it was greater than
2225 // the actual number of cores, so we will treat it as exact in this block of
2226 // code.
2227 //
2228 // First, we need to check if cpuid(4) is supported on this chip. To see if
2229 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2230 // greater.
2231 __kmp_x86_cpuid(0, 0, &buf);
2232 if (buf.eax >= 4) {
2233 __kmp_x86_cpuid(4, 0, &buf);
2234 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2235 } else {
2236 nCoresPerPkg = 1;
2237 }
2238
2239 // There is no way to reliably tell if HT is enabled without issuing the
2240 // cpuid instruction from every thread, can correlating the cpuid info, so
2241 // if the machine is not affinity capable, we assume that HT is off. We have
2242 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2243 // does not support HT.
2244 //
2245 // - Older OSes are usually found on machines with older chips, which do not
2246 // support HT.
2247 // - The performance penalty for mistakenly identifying a machine as HT when
2248 // it isn't (which results in blocktime being incorrectly set to 0) is
2249 // greater than the penalty when for mistakenly identifying a machine as
2250 // being 1 thread/core when it is really HT enabled (which results in
2251 // blocktime being incorrectly set to a positive value).
2252 __kmp_ncores = __kmp_xproc;
2253 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2254 __kmp_nThreadsPerCore = 1;
2255 return true;
2256 }
2257
2258 // From here on, we can assume that it is safe to call
2259 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2260 // __kmp_affinity.type = affinity_none.
2261
2262 // Save the affinity mask for the current thread.
2263 kmp_affinity_raii_t previous_affinity;
2264
2265 // Run through each of the available contexts, binding the current thread
2266 // to it, and obtaining the pertinent information using the cpuid instr.
2267 //
2268 // The relevant information is:
2269 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2270 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2271 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2272 // of this field determines the width of the core# + thread# fields in the
2273 // Apic Id. It is also an upper bound on the number of threads per
2274 // package, but it has been verified that situations happen were it is not
2275 // exact. In particular, on certain OS/chip combinations where Intel(R)
2276 // Hyper-Threading Technology is supported by the chip but has been
2277 // disabled, the value of this field will be 2 (for a single core chip).
2278 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2279 // Technology, the value of this field will be 1 when Intel(R)
2280 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2281 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2282 // of this field (+1) determines the width of the core# field in the Apic
2283 // Id. The comments in "cpucount.cpp" say that this value is an upper
2284 // bound, but the IA-32 architecture manual says that it is exactly the
2285 // number of cores per package, and I haven't seen any case where it
2286 // wasn't.
2287 //
2288 // From this information, deduce the package Id, core Id, and thread Id,
2289 // and set the corresponding fields in the apicThreadInfo struct.
2290 unsigned i;
2291 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2292 __kmp_avail_proc * sizeof(apicThreadInfo));
2293 unsigned nApics = 0;
2294 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2295 // Skip this proc if it is not included in the machine model.
2296 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2297 continue;
2298 }
2299 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2300
2301 __kmp_affinity_dispatch->bind_thread(i);
2302 threadInfo[nApics].osId = i;
2303
2304 // The apic id and max threads per pkg come from cpuid(1).
2305 __kmp_x86_cpuid(1, 0, &buf);
2306 if (((buf.edx >> 9) & 1) == 0) {
2307 __kmp_free(threadInfo);
2308 *msg_id = kmp_i18n_str_ApicNotPresent;
2309 return false;
2310 }
2311 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2312 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2313 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2314 threadInfo[nApics].maxThreadsPerPkg = 1;
2315 }
2316
2317 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2318 // value.
2319 //
2320 // First, we need to check if cpuid(4) is supported on this chip. To see if
2321 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2322 // or greater.
2323 __kmp_x86_cpuid(0, 0, &buf);
2324 if (buf.eax >= 4) {
2325 __kmp_x86_cpuid(4, 0, &buf);
2326 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2327 } else {
2328 threadInfo[nApics].maxCoresPerPkg = 1;
2329 }
2330
2331 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2332 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2333 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2334
2335 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2336 int widthT = widthCT - widthC;
2337 if (widthT < 0) {
2338 // I've never seen this one happen, but I suppose it could, if the cpuid
2339 // instruction on a chip was really screwed up. Make sure to restore the
2340 // affinity mask before the tail call.
2341 __kmp_free(threadInfo);
2342 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2343 return false;
2344 }
2345
2346 int maskC = (1 << widthC) - 1;
2347 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2348
2349 int maskT = (1 << widthT) - 1;
2350 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2351
2352 nApics++;
2353 }
2354
2355 // We've collected all the info we need.
2356 // Restore the old affinity mask for this thread.
2357 previous_affinity.restore();
2358
2359 // Sort the threadInfo table by physical Id.
2360 qsort(threadInfo, nApics, sizeof(*threadInfo),
2361 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2362
2363 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2364 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2365 // the chips on a system. Although coreId's are usually assigned
2366 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2367 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2368 //
2369 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2370 // total # packages) are at this point - we want to determine that now. We
2371 // only have an upper bound on the first two figures.
2372 //
2373 // We also perform a consistency check at this point: the values returned by
2374 // the cpuid instruction for any thread bound to a given package had better
2375 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2376 nPackages = 1;
2377 nCoresPerPkg = 1;
2378 __kmp_nThreadsPerCore = 1;
2379 unsigned nCores = 1;
2380
2381 unsigned pkgCt = 1; // to determine radii
2382 unsigned lastPkgId = threadInfo[0].pkgId;
2383 unsigned coreCt = 1;
2384 unsigned lastCoreId = threadInfo[0].coreId;
2385 unsigned threadCt = 1;
2386 unsigned lastThreadId = threadInfo[0].threadId;
2387
2388 // intra-pkg consist checks
2389 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2390 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2391
2392 for (i = 1; i < nApics; i++) {
2393 if (threadInfo[i].pkgId != lastPkgId) {
2394 nCores++;
2395 pkgCt++;
2396 lastPkgId = threadInfo[i].pkgId;
2397 if ((int)coreCt > nCoresPerPkg)
2398 nCoresPerPkg = coreCt;
2399 coreCt = 1;
2400 lastCoreId = threadInfo[i].coreId;
2401 if ((int)threadCt > __kmp_nThreadsPerCore)
2402 __kmp_nThreadsPerCore = threadCt;
2403 threadCt = 1;
2404 lastThreadId = threadInfo[i].threadId;
2405
2406 // This is a different package, so go on to the next iteration without
2407 // doing any consistency checks. Reset the consistency check vars, though.
2408 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2409 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2410 continue;
2411 }
2412
2413 if (threadInfo[i].coreId != lastCoreId) {
2414 nCores++;
2415 coreCt++;
2416 lastCoreId = threadInfo[i].coreId;
2417 if ((int)threadCt > __kmp_nThreadsPerCore)
2418 __kmp_nThreadsPerCore = threadCt;
2419 threadCt = 1;
2420 lastThreadId = threadInfo[i].threadId;
2421 } else if (threadInfo[i].threadId != lastThreadId) {
2422 threadCt++;
2423 lastThreadId = threadInfo[i].threadId;
2424 } else {
2425 __kmp_free(threadInfo);
2426 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2427 return false;
2428 }
2429
2430 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2431 // fields agree between all the threads bounds to a given package.
2432 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2433 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2434 __kmp_free(threadInfo);
2435 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2436 return false;
2437 }
2438 }
2439 // When affinity is off, this routine will still be called to set
2440 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2441 // Make sure all these vars are set correctly
2442 nPackages = pkgCt;
2443 if ((int)coreCt > nCoresPerPkg)
2444 nCoresPerPkg = coreCt;
2445 if ((int)threadCt > __kmp_nThreadsPerCore)
2446 __kmp_nThreadsPerCore = threadCt;
2447 __kmp_ncores = nCores;
2448 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2449
2450 // Now that we've determined the number of packages, the number of cores per
2451 // package, and the number of threads per core, we can construct the data
2452 // structure that is to be returned.
2453 int idx = 0;
2454 int pkgLevel = 0;
2455 int coreLevel = 1;
2456 int threadLevel = 2;
2457 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2458 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2459 kmp_hw_t types[3];
2460 if (pkgLevel >= 0)
2461 types[idx++] = KMP_HW_SOCKET;
2462 if (coreLevel >= 0)
2463 types[idx++] = KMP_HW_CORE;
2464 if (threadLevel >= 0)
2465 types[idx++] = KMP_HW_THREAD;
2466
2467 KMP_ASSERT(depth > 0);
2468 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2469
2470 for (i = 0; i < nApics; ++i) {
2471 idx = 0;
2472 unsigned os = threadInfo[i].osId;
2473 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2474 hw_thread.clear();
2475
2476 if (pkgLevel >= 0) {
2477 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2478 }
2479 if (coreLevel >= 0) {
2480 hw_thread.ids[idx++] = threadInfo[i].coreId;
2481 }
2482 if (threadLevel >= 0) {
2483 hw_thread.ids[idx++] = threadInfo[i].threadId;
2484 }
2485 hw_thread.os_id = os;
2486 }
2487
2488 __kmp_free(threadInfo);
2489 __kmp_topology->sort_ids();
2490 if (!__kmp_topology->check_ids()) {
2491 kmp_topology_t::deallocate(__kmp_topology);
2492 __kmp_topology = nullptr;
2493 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2494 return false;
2495 }
2496 return true;
2497 }
2498
2499 // Hybrid cpu detection using CPUID.1A
2500 // Thread should be pinned to processor already
__kmp_get_hybrid_info(kmp_hw_core_type_t * type,int * efficiency,unsigned * native_model_id)2501 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2502 unsigned *native_model_id) {
2503 kmp_cpuid buf;
2504 __kmp_x86_cpuid(0x1a, 0, &buf);
2505 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2506 switch (*type) {
2507 case KMP_HW_CORE_TYPE_ATOM:
2508 *efficiency = 0;
2509 break;
2510 case KMP_HW_CORE_TYPE_CORE:
2511 *efficiency = 1;
2512 break;
2513 default:
2514 *efficiency = 0;
2515 }
2516 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2517 }
2518
2519 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2520 // architectures support a newer interface for specifying the x2APIC Ids,
2521 // based on CPUID.B or CPUID.1F
2522 /*
2523 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2524 Bits Bits Bits Bits
2525 31-16 15-8 7-4 4-0
2526 ---+-----------+--------------+-------------+-----------------+
2527 EAX| reserved | reserved | reserved | Bits to Shift |
2528 ---+-----------|--------------+-------------+-----------------|
2529 EBX| reserved | Num logical processors at level (16 bits) |
2530 ---+-----------|--------------+-------------------------------|
2531 ECX| reserved | Level Type | Level Number (8 bits) |
2532 ---+-----------+--------------+-------------------------------|
2533 EDX| X2APIC ID (32 bits) |
2534 ---+----------------------------------------------------------+
2535 */
2536
2537 enum {
2538 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2539 INTEL_LEVEL_TYPE_SMT = 1,
2540 INTEL_LEVEL_TYPE_CORE = 2,
2541 INTEL_LEVEL_TYPE_MODULE = 3,
2542 INTEL_LEVEL_TYPE_TILE = 4,
2543 INTEL_LEVEL_TYPE_DIE = 5,
2544 INTEL_LEVEL_TYPE_LAST = 6,
2545 };
2546
2547 struct cpuid_level_info_t {
2548 unsigned level_type, mask, mask_width, nitems, cache_mask;
2549 };
2550
__kmp_intel_type_2_topology_type(int intel_type)2551 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2552 switch (intel_type) {
2553 case INTEL_LEVEL_TYPE_INVALID:
2554 return KMP_HW_SOCKET;
2555 case INTEL_LEVEL_TYPE_SMT:
2556 return KMP_HW_THREAD;
2557 case INTEL_LEVEL_TYPE_CORE:
2558 return KMP_HW_CORE;
2559 case INTEL_LEVEL_TYPE_TILE:
2560 return KMP_HW_TILE;
2561 case INTEL_LEVEL_TYPE_MODULE:
2562 return KMP_HW_MODULE;
2563 case INTEL_LEVEL_TYPE_DIE:
2564 return KMP_HW_DIE;
2565 }
2566 return KMP_HW_UNKNOWN;
2567 }
2568
2569 // This function takes the topology leaf, a levels array to store the levels
2570 // detected and a bitmap of the known levels.
2571 // Returns the number of levels in the topology
2572 static unsigned
__kmp_x2apicid_get_levels(int leaf,cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],kmp_uint64 known_levels)2573 __kmp_x2apicid_get_levels(int leaf,
2574 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2575 kmp_uint64 known_levels) {
2576 unsigned level, levels_index;
2577 unsigned level_type, mask_width, nitems;
2578 kmp_cpuid buf;
2579
2580 // New algorithm has known topology layers act as highest unknown topology
2581 // layers when unknown topology layers exist.
2582 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2583 // are unknown topology layers, Then SMT will take the characteristics of
2584 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2585 // This eliminates unknown portions of the topology while still keeping the
2586 // correct structure.
2587 level = levels_index = 0;
2588 do {
2589 __kmp_x86_cpuid(leaf, level, &buf);
2590 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2591 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2592 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2593 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2594 return 0;
2595
2596 if (known_levels & (1ull << level_type)) {
2597 // Add a new level to the topology
2598 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2599 levels[levels_index].level_type = level_type;
2600 levels[levels_index].mask_width = mask_width;
2601 levels[levels_index].nitems = nitems;
2602 levels_index++;
2603 } else {
2604 // If it is an unknown level, then logically move the previous layer up
2605 if (levels_index > 0) {
2606 levels[levels_index - 1].mask_width = mask_width;
2607 levels[levels_index - 1].nitems = nitems;
2608 }
2609 }
2610 level++;
2611 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2612
2613 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2614 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2615 return 0;
2616
2617 // Set the masks to & with apicid
2618 for (unsigned i = 0; i < levels_index; ++i) {
2619 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2620 levels[i].mask = ~((-1) << levels[i].mask_width);
2621 levels[i].cache_mask = (-1) << levels[i].mask_width;
2622 for (unsigned j = 0; j < i; ++j)
2623 levels[i].mask ^= levels[j].mask;
2624 } else {
2625 KMP_DEBUG_ASSERT(i > 0);
2626 levels[i].mask = (-1) << levels[i - 1].mask_width;
2627 levels[i].cache_mask = 0;
2628 }
2629 }
2630 return levels_index;
2631 }
2632
__kmp_affinity_create_x2apicid_map(kmp_i18n_id_t * const msg_id)2633 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2634
2635 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2636 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2637 unsigned levels_index;
2638 kmp_cpuid buf;
2639 kmp_uint64 known_levels;
2640 int topology_leaf, highest_leaf, apic_id;
2641 int num_leaves;
2642 static int leaves[] = {0, 0};
2643
2644 kmp_i18n_id_t leaf_message_id;
2645
2646 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2647
2648 *msg_id = kmp_i18n_null;
2649 if (__kmp_affinity.flags.verbose) {
2650 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2651 }
2652
2653 // Figure out the known topology levels
2654 known_levels = 0ull;
2655 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2656 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2657 known_levels |= (1ull << i);
2658 }
2659 }
2660
2661 // Get the highest cpuid leaf supported
2662 __kmp_x86_cpuid(0, 0, &buf);
2663 highest_leaf = buf.eax;
2664
2665 // If a specific topology method was requested, only allow that specific leaf
2666 // otherwise, try both leaves 31 and 11 in that order
2667 num_leaves = 0;
2668 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2669 num_leaves = 1;
2670 leaves[0] = 11;
2671 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2672 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2673 num_leaves = 1;
2674 leaves[0] = 31;
2675 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2676 } else {
2677 num_leaves = 2;
2678 leaves[0] = 31;
2679 leaves[1] = 11;
2680 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2681 }
2682
2683 // Check to see if cpuid leaf 31 or 11 is supported.
2684 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2685 topology_leaf = -1;
2686 for (int i = 0; i < num_leaves; ++i) {
2687 int leaf = leaves[i];
2688 if (highest_leaf < leaf)
2689 continue;
2690 __kmp_x86_cpuid(leaf, 0, &buf);
2691 if (buf.ebx == 0)
2692 continue;
2693 topology_leaf = leaf;
2694 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2695 if (levels_index == 0)
2696 continue;
2697 break;
2698 }
2699 if (topology_leaf == -1 || levels_index == 0) {
2700 *msg_id = leaf_message_id;
2701 return false;
2702 }
2703 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2704
2705 // The algorithm used starts by setting the affinity to each available thread
2706 // and retrieving info from the cpuid instruction, so if we are not capable of
2707 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2708 // we need to do something else - use the defaults that we calculated from
2709 // issuing cpuid without binding to each proc.
2710 if (!KMP_AFFINITY_CAPABLE()) {
2711 // Hack to try and infer the machine topology using only the data
2712 // available from cpuid on the current thread, and __kmp_xproc.
2713 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2714 for (unsigned i = 0; i < levels_index; ++i) {
2715 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2716 __kmp_nThreadsPerCore = levels[i].nitems;
2717 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2718 nCoresPerPkg = levels[i].nitems;
2719 }
2720 }
2721 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2722 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2723 return true;
2724 }
2725
2726 // Allocate the data structure to be returned.
2727 int depth = levels_index;
2728 for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2729 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2730 __kmp_topology =
2731 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2732
2733 // Insert equivalent cache types if they exist
2734 kmp_cache_info_t cache_info;
2735 for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2736 const kmp_cache_info_t::info_t &info = cache_info[i];
2737 unsigned cache_mask = info.mask;
2738 unsigned cache_level = info.level;
2739 for (unsigned j = 0; j < levels_index; ++j) {
2740 unsigned hw_cache_mask = levels[j].cache_mask;
2741 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2742 if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2743 kmp_hw_t type =
2744 __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2745 __kmp_topology->set_equivalent_type(cache_type, type);
2746 }
2747 }
2748 }
2749
2750 // From here on, we can assume that it is safe to call
2751 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2752 // __kmp_affinity.type = affinity_none.
2753
2754 // Save the affinity mask for the current thread.
2755 kmp_affinity_raii_t previous_affinity;
2756
2757 // Run through each of the available contexts, binding the current thread
2758 // to it, and obtaining the pertinent information using the cpuid instr.
2759 unsigned int proc;
2760 int hw_thread_index = 0;
2761 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2762 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2763 unsigned my_levels_index;
2764
2765 // Skip this proc if it is not included in the machine model.
2766 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2767 continue;
2768 }
2769 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2770
2771 __kmp_affinity_dispatch->bind_thread(proc);
2772
2773 // New algorithm
2774 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2775 apic_id = buf.edx;
2776 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2777 my_levels_index =
2778 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2779 if (my_levels_index == 0 || my_levels_index != levels_index) {
2780 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2781 return false;
2782 }
2783 hw_thread.clear();
2784 hw_thread.os_id = proc;
2785 // Put in topology information
2786 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2787 hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2788 if (j > 0) {
2789 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2790 }
2791 }
2792 // Hybrid information
2793 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2794 kmp_hw_core_type_t type;
2795 unsigned native_model_id;
2796 int efficiency;
2797 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2798 hw_thread.attrs.set_core_type(type);
2799 hw_thread.attrs.set_core_eff(efficiency);
2800 }
2801 hw_thread_index++;
2802 }
2803 KMP_ASSERT(hw_thread_index > 0);
2804 __kmp_topology->sort_ids();
2805 if (!__kmp_topology->check_ids()) {
2806 kmp_topology_t::deallocate(__kmp_topology);
2807 __kmp_topology = nullptr;
2808 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2809 return false;
2810 }
2811 return true;
2812 }
2813 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2814
2815 #define osIdIndex 0
2816 #define threadIdIndex 1
2817 #define coreIdIndex 2
2818 #define pkgIdIndex 3
2819 #define nodeIdIndex 4
2820
2821 typedef unsigned *ProcCpuInfo;
2822 static unsigned maxIndex = pkgIdIndex;
2823
__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void * a,const void * b)2824 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2825 const void *b) {
2826 unsigned i;
2827 const unsigned *aa = *(unsigned *const *)a;
2828 const unsigned *bb = *(unsigned *const *)b;
2829 for (i = maxIndex;; i--) {
2830 if (aa[i] < bb[i])
2831 return -1;
2832 if (aa[i] > bb[i])
2833 return 1;
2834 if (i == osIdIndex)
2835 break;
2836 }
2837 return 0;
2838 }
2839
2840 #if KMP_USE_HIER_SCHED
2841 // Set the array sizes for the hierarchy layers
__kmp_dispatch_set_hierarchy_values()2842 static void __kmp_dispatch_set_hierarchy_values() {
2843 // Set the maximum number of L1's to number of cores
2844 // Set the maximum number of L2's to either number of cores / 2 for
2845 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2846 // Or the number of cores for Intel(R) Xeon(R) processors
2847 // Set the maximum number of NUMA nodes and L3's to number of packages
2848 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2849 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2850 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2851 #if KMP_ARCH_X86_64 && \
2852 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
2853 KMP_OS_WINDOWS) && \
2854 KMP_MIC_SUPPORTED
2855 if (__kmp_mic_type >= mic3)
2856 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2857 else
2858 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2859 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2860 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2861 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2862 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2863 // Set the number of threads per unit
2864 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2865 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2866 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2867 __kmp_nThreadsPerCore;
2868 #if KMP_ARCH_X86_64 && \
2869 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
2870 KMP_OS_WINDOWS) && \
2871 KMP_MIC_SUPPORTED
2872 if (__kmp_mic_type >= mic3)
2873 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2874 2 * __kmp_nThreadsPerCore;
2875 else
2876 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2877 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2878 __kmp_nThreadsPerCore;
2879 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2880 nCoresPerPkg * __kmp_nThreadsPerCore;
2881 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2882 nCoresPerPkg * __kmp_nThreadsPerCore;
2883 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2884 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2885 }
2886
2887 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2888 // i.e., this thread's L1 or this thread's L2, etc.
__kmp_dispatch_get_index(int tid,kmp_hier_layer_e type)2889 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2890 int index = type + 1;
2891 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2892 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2893 if (type == kmp_hier_layer_e::LAYER_THREAD)
2894 return tid;
2895 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2896 return 0;
2897 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2898 if (tid >= num_hw_threads)
2899 tid = tid % num_hw_threads;
2900 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2901 }
2902
2903 // Return the number of t1's per t2
__kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,kmp_hier_layer_e t2)2904 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2905 int i1 = t1 + 1;
2906 int i2 = t2 + 1;
2907 KMP_DEBUG_ASSERT(i1 <= i2);
2908 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2909 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2910 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2911 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2912 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2913 }
2914 #endif // KMP_USE_HIER_SCHED
2915
__kmp_cpuinfo_get_filename()2916 static inline const char *__kmp_cpuinfo_get_filename() {
2917 const char *filename;
2918 if (__kmp_cpuinfo_file != nullptr)
2919 filename = __kmp_cpuinfo_file;
2920 else
2921 filename = "/proc/cpuinfo";
2922 return filename;
2923 }
2924
__kmp_cpuinfo_get_envvar()2925 static inline const char *__kmp_cpuinfo_get_envvar() {
2926 const char *envvar = nullptr;
2927 if (__kmp_cpuinfo_file != nullptr)
2928 envvar = "KMP_CPUINFO_FILE";
2929 return envvar;
2930 }
2931
2932 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2933 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler
2934 // Resource Allocation Domain).
__kmp_affinity_create_cpuinfo_map(int * line,kmp_i18n_id_t * const msg_id)2935 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2936 kmp_i18n_id_t *const msg_id) {
2937 *msg_id = kmp_i18n_null;
2938
2939 #if KMP_OS_AIX
2940 unsigned num_records = __kmp_xproc;
2941 #else
2942 const char *filename = __kmp_cpuinfo_get_filename();
2943 const char *envvar = __kmp_cpuinfo_get_envvar();
2944
2945 if (__kmp_affinity.flags.verbose) {
2946 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2947 }
2948
2949 kmp_safe_raii_file_t f(filename, "r", envvar);
2950
2951 // Scan of the file, and count the number of "processor" (osId) fields,
2952 // and find the highest value of <n> for a node_<n> field.
2953 char buf[256];
2954 unsigned num_records = 0;
2955 while (!feof(f)) {
2956 buf[sizeof(buf) - 1] = 1;
2957 if (!fgets(buf, sizeof(buf), f)) {
2958 // Read errors presumably because of EOF
2959 break;
2960 }
2961
2962 char s1[] = "processor";
2963 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2964 num_records++;
2965 continue;
2966 }
2967
2968 // FIXME - this will match "node_<n> <garbage>"
2969 unsigned level;
2970 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2971 // validate the input fisrt:
2972 if (level > (unsigned)__kmp_xproc) { // level is too big
2973 level = __kmp_xproc;
2974 }
2975 if (nodeIdIndex + level >= maxIndex) {
2976 maxIndex = nodeIdIndex + level;
2977 }
2978 continue;
2979 }
2980 }
2981
2982 // Check for empty file / no valid processor records, or too many. The number
2983 // of records can't exceed the number of valid bits in the affinity mask.
2984 if (num_records == 0) {
2985 *msg_id = kmp_i18n_str_NoProcRecords;
2986 return false;
2987 }
2988 if (num_records > (unsigned)__kmp_xproc) {
2989 *msg_id = kmp_i18n_str_TooManyProcRecords;
2990 return false;
2991 }
2992
2993 // Set the file pointer back to the beginning, so that we can scan the file
2994 // again, this time performing a full parse of the data. Allocate a vector of
2995 // ProcCpuInfo object, where we will place the data. Adding an extra element
2996 // at the end allows us to remove a lot of extra checks for termination
2997 // conditions.
2998 if (fseek(f, 0, SEEK_SET) != 0) {
2999 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
3000 return false;
3001 }
3002 #endif // KMP_OS_AIX
3003
3004 // Allocate the array of records to store the proc info in. The dummy
3005 // element at the end makes the logic in filling them out easier to code.
3006 unsigned **threadInfo =
3007 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
3008 unsigned i;
3009 for (i = 0; i <= num_records; i++) {
3010 threadInfo[i] =
3011 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3012 }
3013
3014 #define CLEANUP_THREAD_INFO \
3015 for (i = 0; i <= num_records; i++) { \
3016 __kmp_free(threadInfo[i]); \
3017 } \
3018 __kmp_free(threadInfo);
3019
3020 // A value of UINT_MAX means that we didn't find the field
3021 unsigned __index;
3022
3023 #define INIT_PROC_INFO(p) \
3024 for (__index = 0; __index <= maxIndex; __index++) { \
3025 (p)[__index] = UINT_MAX; \
3026 }
3027
3028 for (i = 0; i <= num_records; i++) {
3029 INIT_PROC_INFO(threadInfo[i]);
3030 }
3031
3032 #if KMP_OS_AIX
3033 int smt_threads;
3034 lpar_info_format1_t cpuinfo;
3035 unsigned num_avail = __kmp_xproc;
3036
3037 if (__kmp_affinity.flags.verbose)
3038 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology");
3039
3040 // Get the number of SMT threads per core.
3041 smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL);
3042
3043 // Allocate a resource set containing available system resourses.
3044 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM);
3045 if (sys_rset == NULL) {
3046 CLEANUP_THREAD_INFO;
3047 *msg_id = kmp_i18n_str_UnknownTopology;
3048 return false;
3049 }
3050 // Allocate a resource set for the SRAD info.
3051 rsethandle_t srad = rs_alloc(RS_EMPTY);
3052 if (srad == NULL) {
3053 rs_free(sys_rset);
3054 CLEANUP_THREAD_INFO;
3055 *msg_id = kmp_i18n_str_UnknownTopology;
3056 return false;
3057 }
3058
3059 // Get the SRAD system detail level.
3060 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0);
3061 if (sradsdl < 0) {
3062 rs_free(sys_rset);
3063 rs_free(srad);
3064 CLEANUP_THREAD_INFO;
3065 *msg_id = kmp_i18n_str_UnknownTopology;
3066 return false;
3067 }
3068 // Get the number of RADs at that SRAD SDL.
3069 int num_rads = rs_numrads(sys_rset, sradsdl, 0);
3070 if (num_rads < 0) {
3071 rs_free(sys_rset);
3072 rs_free(srad);
3073 CLEANUP_THREAD_INFO;
3074 *msg_id = kmp_i18n_str_UnknownTopology;
3075 return false;
3076 }
3077
3078 // Get the maximum number of procs that may be contained in a resource set.
3079 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0);
3080 if (max_procs < 0) {
3081 rs_free(sys_rset);
3082 rs_free(srad);
3083 CLEANUP_THREAD_INFO;
3084 *msg_id = kmp_i18n_str_UnknownTopology;
3085 return false;
3086 }
3087
3088 int cur_rad = 0;
3089 int num_set = 0;
3090 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS;
3091 ++srad_idx) {
3092 // Check if the SRAD is available in the RSET.
3093 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0)
3094 continue;
3095
3096 for (int cpu = 0; cpu < max_procs; cpu++) {
3097 // Set the info for the cpu if it is in the SRAD.
3098 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) {
3099 threadInfo[cpu][osIdIndex] = cpu;
3100 threadInfo[cpu][pkgIdIndex] = cur_rad;
3101 threadInfo[cpu][coreIdIndex] = cpu / smt_threads;
3102 ++num_set;
3103 if (num_set >= num_avail) {
3104 // Done if all available CPUs have been set.
3105 break;
3106 }
3107 }
3108 }
3109 ++cur_rad;
3110 }
3111 rs_free(sys_rset);
3112 rs_free(srad);
3113
3114 // The topology is already sorted.
3115
3116 #else // !KMP_OS_AIX
3117 unsigned num_avail = 0;
3118 *line = 0;
3119 #if KMP_ARCH_S390X
3120 bool reading_s390x_sys_info = true;
3121 #endif
3122 while (!feof(f)) {
3123 // Create an inner scoping level, so that all the goto targets at the end of
3124 // the loop appear in an outer scoping level. This avoids warnings about
3125 // jumping past an initialization to a target in the same block.
3126 {
3127 buf[sizeof(buf) - 1] = 1;
3128 bool long_line = false;
3129 if (!fgets(buf, sizeof(buf), f)) {
3130 // Read errors presumably because of EOF
3131 // If there is valid data in threadInfo[num_avail], then fake
3132 // a blank line in ensure that the last address gets parsed.
3133 bool valid = false;
3134 for (i = 0; i <= maxIndex; i++) {
3135 if (threadInfo[num_avail][i] != UINT_MAX) {
3136 valid = true;
3137 }
3138 }
3139 if (!valid) {
3140 break;
3141 }
3142 buf[0] = 0;
3143 } else if (!buf[sizeof(buf) - 1]) {
3144 // The line is longer than the buffer. Set a flag and don't
3145 // emit an error if we were going to ignore the line, anyway.
3146 long_line = true;
3147
3148 #define CHECK_LINE \
3149 if (long_line) { \
3150 CLEANUP_THREAD_INFO; \
3151 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
3152 return false; \
3153 }
3154 }
3155 (*line)++;
3156
3157 #if KMP_ARCH_LOONGARCH64
3158 // The parsing logic of /proc/cpuinfo in this function highly depends on
3159 // the blank lines between each processor info block. But on LoongArch a
3160 // blank line exists before the first processor info block (i.e. after the
3161 // "system type" line). This blank line was added because the "system
3162 // type" line is unrelated to any of the CPUs. We must skip this line so
3163 // that the original logic works on LoongArch.
3164 if (*buf == '\n' && *line == 2)
3165 continue;
3166 #endif
3167 #if KMP_ARCH_S390X
3168 // s390x /proc/cpuinfo starts with a variable number of lines containing
3169 // the overall system information. Skip them.
3170 if (reading_s390x_sys_info) {
3171 if (*buf == '\n')
3172 reading_s390x_sys_info = false;
3173 continue;
3174 }
3175 #endif
3176
3177 #if KMP_ARCH_S390X
3178 char s1[] = "cpu number";
3179 #else
3180 char s1[] = "processor";
3181 #endif
3182 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3183 CHECK_LINE;
3184 char *p = strchr(buf + sizeof(s1) - 1, ':');
3185 unsigned val;
3186 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3187 goto no_val;
3188 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3189 #if KMP_ARCH_AARCH64
3190 // Handle the old AArch64 /proc/cpuinfo layout differently,
3191 // it contains all of the 'processor' entries listed in a
3192 // single 'Processor' section, therefore the normal looking
3193 // for duplicates in that section will always fail.
3194 num_avail++;
3195 #else
3196 goto dup_field;
3197 #endif
3198 threadInfo[num_avail][osIdIndex] = val;
3199 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3200 char path[256];
3201 KMP_SNPRINTF(
3202 path, sizeof(path),
3203 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3204 threadInfo[num_avail][osIdIndex]);
3205 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3206
3207 #if KMP_ARCH_S390X
3208 // Disambiguate physical_package_id.
3209 unsigned book_id;
3210 KMP_SNPRINTF(path, sizeof(path),
3211 "/sys/devices/system/cpu/cpu%u/topology/book_id",
3212 threadInfo[num_avail][osIdIndex]);
3213 __kmp_read_from_file(path, "%u", &book_id);
3214 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3215
3216 unsigned drawer_id;
3217 KMP_SNPRINTF(path, sizeof(path),
3218 "/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3219 threadInfo[num_avail][osIdIndex]);
3220 __kmp_read_from_file(path, "%u", &drawer_id);
3221 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3222 #endif
3223
3224 KMP_SNPRINTF(path, sizeof(path),
3225 "/sys/devices/system/cpu/cpu%u/topology/core_id",
3226 threadInfo[num_avail][osIdIndex]);
3227 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3228 continue;
3229 #else
3230 }
3231 char s2[] = "physical id";
3232 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3233 CHECK_LINE;
3234 char *p = strchr(buf + sizeof(s2) - 1, ':');
3235 unsigned val;
3236 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3237 goto no_val;
3238 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3239 goto dup_field;
3240 threadInfo[num_avail][pkgIdIndex] = val;
3241 continue;
3242 }
3243 char s3[] = "core id";
3244 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3245 CHECK_LINE;
3246 char *p = strchr(buf + sizeof(s3) - 1, ':');
3247 unsigned val;
3248 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3249 goto no_val;
3250 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3251 goto dup_field;
3252 threadInfo[num_avail][coreIdIndex] = val;
3253 continue;
3254 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3255 }
3256 char s4[] = "thread id";
3257 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3258 CHECK_LINE;
3259 char *p = strchr(buf + sizeof(s4) - 1, ':');
3260 unsigned val;
3261 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3262 goto no_val;
3263 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3264 goto dup_field;
3265 threadInfo[num_avail][threadIdIndex] = val;
3266 continue;
3267 }
3268 unsigned level;
3269 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3270 CHECK_LINE;
3271 char *p = strchr(buf + sizeof(s4) - 1, ':');
3272 unsigned val;
3273 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3274 goto no_val;
3275 // validate the input before using level:
3276 if (level > (unsigned)__kmp_xproc) { // level is too big
3277 level = __kmp_xproc;
3278 }
3279 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3280 goto dup_field;
3281 threadInfo[num_avail][nodeIdIndex + level] = val;
3282 continue;
3283 }
3284
3285 // We didn't recognize the leading token on the line. There are lots of
3286 // leading tokens that we don't recognize - if the line isn't empty, go on
3287 // to the next line.
3288 if ((*buf != 0) && (*buf != '\n')) {
3289 // If the line is longer than the buffer, read characters
3290 // until we find a newline.
3291 if (long_line) {
3292 int ch;
3293 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3294 ;
3295 }
3296 continue;
3297 }
3298
3299 // A newline has signalled the end of the processor record.
3300 // Check that there aren't too many procs specified.
3301 if ((int)num_avail == __kmp_xproc) {
3302 CLEANUP_THREAD_INFO;
3303 *msg_id = kmp_i18n_str_TooManyEntries;
3304 return false;
3305 }
3306
3307 // Check for missing fields. The osId field must be there, and we
3308 // currently require that the physical id field is specified, also.
3309 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3310 CLEANUP_THREAD_INFO;
3311 *msg_id = kmp_i18n_str_MissingProcField;
3312 return false;
3313 }
3314 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3315 CLEANUP_THREAD_INFO;
3316 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3317 return false;
3318 }
3319
3320 // Skip this proc if it is not included in the machine model.
3321 if (KMP_AFFINITY_CAPABLE() &&
3322 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3323 __kmp_affin_fullMask)) {
3324 INIT_PROC_INFO(threadInfo[num_avail]);
3325 continue;
3326 }
3327
3328 // We have a successful parse of this proc's info.
3329 // Increment the counter, and prepare for the next proc.
3330 num_avail++;
3331 KMP_ASSERT(num_avail <= num_records);
3332 INIT_PROC_INFO(threadInfo[num_avail]);
3333 }
3334 continue;
3335
3336 no_val:
3337 CLEANUP_THREAD_INFO;
3338 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3339 return false;
3340
3341 dup_field:
3342 CLEANUP_THREAD_INFO;
3343 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3344 return false;
3345 }
3346 *line = 0;
3347
3348 #if KMP_MIC && REDUCE_TEAM_SIZE
3349 unsigned teamSize = 0;
3350 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3351
3352 // check for num_records == __kmp_xproc ???
3353
3354 // If it is configured to omit the package level when there is only a single
3355 // package, the logic at the end of this routine won't work if there is only a
3356 // single thread
3357 KMP_ASSERT(num_avail > 0);
3358 KMP_ASSERT(num_avail <= num_records);
3359
3360 // Sort the threadInfo table by physical Id.
3361 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3362 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3363
3364 #endif // KMP_OS_AIX
3365
3366 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3367 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3368 // the chips on a system. Although coreId's are usually assigned
3369 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3370 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3371 //
3372 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3373 // total # packages) are at this point - we want to determine that now. We
3374 // only have an upper bound on the first two figures.
3375 unsigned *counts =
3376 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3377 unsigned *maxCt =
3378 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3379 unsigned *totals =
3380 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3381 unsigned *lastId =
3382 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3383
3384 bool assign_thread_ids = false;
3385 unsigned threadIdCt;
3386 unsigned index;
3387
3388 restart_radix_check:
3389 threadIdCt = 0;
3390
3391 // Initialize the counter arrays with data from threadInfo[0].
3392 if (assign_thread_ids) {
3393 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3394 threadInfo[0][threadIdIndex] = threadIdCt++;
3395 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3396 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3397 }
3398 }
3399 for (index = 0; index <= maxIndex; index++) {
3400 counts[index] = 1;
3401 maxCt[index] = 1;
3402 totals[index] = 1;
3403 lastId[index] = threadInfo[0][index];
3404 ;
3405 }
3406
3407 // Run through the rest of the OS procs.
3408 for (i = 1; i < num_avail; i++) {
3409 // Find the most significant index whose id differs from the id for the
3410 // previous OS proc.
3411 for (index = maxIndex; index >= threadIdIndex; index--) {
3412 if (assign_thread_ids && (index == threadIdIndex)) {
3413 // Auto-assign the thread id field if it wasn't specified.
3414 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3415 threadInfo[i][threadIdIndex] = threadIdCt++;
3416 }
3417 // Apparently the thread id field was specified for some entries and not
3418 // others. Start the thread id counter off at the next higher thread id.
3419 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3420 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3421 }
3422 }
3423 if (threadInfo[i][index] != lastId[index]) {
3424 // Run through all indices which are less significant, and reset the
3425 // counts to 1. At all levels up to and including index, we need to
3426 // increment the totals and record the last id.
3427 unsigned index2;
3428 for (index2 = threadIdIndex; index2 < index; index2++) {
3429 totals[index2]++;
3430 if (counts[index2] > maxCt[index2]) {
3431 maxCt[index2] = counts[index2];
3432 }
3433 counts[index2] = 1;
3434 lastId[index2] = threadInfo[i][index2];
3435 }
3436 counts[index]++;
3437 totals[index]++;
3438 lastId[index] = threadInfo[i][index];
3439
3440 if (assign_thread_ids && (index > threadIdIndex)) {
3441
3442 #if KMP_MIC && REDUCE_TEAM_SIZE
3443 // The default team size is the total #threads in the machine
3444 // minus 1 thread for every core that has 3 or more threads.
3445 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3446 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3447
3448 // Restart the thread counter, as we are on a new core.
3449 threadIdCt = 0;
3450
3451 // Auto-assign the thread id field if it wasn't specified.
3452 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3453 threadInfo[i][threadIdIndex] = threadIdCt++;
3454 }
3455
3456 // Apparently the thread id field was specified for some entries and
3457 // not others. Start the thread id counter off at the next higher
3458 // thread id.
3459 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3460 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3461 }
3462 }
3463 break;
3464 }
3465 }
3466 if (index < threadIdIndex) {
3467 // If thread ids were specified, it is an error if they are not unique.
3468 // Also, check that we waven't already restarted the loop (to be safe -
3469 // shouldn't need to).
3470 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3471 __kmp_free(lastId);
3472 __kmp_free(totals);
3473 __kmp_free(maxCt);
3474 __kmp_free(counts);
3475 CLEANUP_THREAD_INFO;
3476 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3477 return false;
3478 }
3479
3480 // If the thread ids were not specified and we see entries that
3481 // are duplicates, start the loop over and assign the thread ids manually.
3482 assign_thread_ids = true;
3483 goto restart_radix_check;
3484 }
3485 }
3486
3487 #if KMP_MIC && REDUCE_TEAM_SIZE
3488 // The default team size is the total #threads in the machine
3489 // minus 1 thread for every core that has 3 or more threads.
3490 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3491 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3492
3493 for (index = threadIdIndex; index <= maxIndex; index++) {
3494 if (counts[index] > maxCt[index]) {
3495 maxCt[index] = counts[index];
3496 }
3497 }
3498
3499 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3500 nCoresPerPkg = maxCt[coreIdIndex];
3501 nPackages = totals[pkgIdIndex];
3502
3503 // When affinity is off, this routine will still be called to set
3504 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3505 // Make sure all these vars are set correctly, and return now if affinity is
3506 // not enabled.
3507 __kmp_ncores = totals[coreIdIndex];
3508 if (!KMP_AFFINITY_CAPABLE()) {
3509 KMP_ASSERT(__kmp_affinity.type == affinity_none);
3510 return true;
3511 }
3512
3513 #if KMP_MIC && REDUCE_TEAM_SIZE
3514 // Set the default team size.
3515 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3516 __kmp_dflt_team_nth = teamSize;
3517 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3518 "__kmp_dflt_team_nth = %d\n",
3519 __kmp_dflt_team_nth));
3520 }
3521 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3522
3523 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3524
3525 // Count the number of levels which have more nodes at that level than at the
3526 // parent's level (with there being an implicit root node of the top level).
3527 // This is equivalent to saying that there is at least one node at this level
3528 // which has a sibling. These levels are in the map, and the package level is
3529 // always in the map.
3530 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3531 for (index = threadIdIndex; index < maxIndex; index++) {
3532 KMP_ASSERT(totals[index] >= totals[index + 1]);
3533 inMap[index] = (totals[index] > totals[index + 1]);
3534 }
3535 inMap[maxIndex] = (totals[maxIndex] > 1);
3536 inMap[pkgIdIndex] = true;
3537 inMap[coreIdIndex] = true;
3538 inMap[threadIdIndex] = true;
3539
3540 int depth = 0;
3541 int idx = 0;
3542 kmp_hw_t types[KMP_HW_LAST];
3543 int pkgLevel = -1;
3544 int coreLevel = -1;
3545 int threadLevel = -1;
3546 for (index = threadIdIndex; index <= maxIndex; index++) {
3547 if (inMap[index]) {
3548 depth++;
3549 }
3550 }
3551 if (inMap[pkgIdIndex]) {
3552 pkgLevel = idx;
3553 types[idx++] = KMP_HW_SOCKET;
3554 }
3555 if (inMap[coreIdIndex]) {
3556 coreLevel = idx;
3557 types[idx++] = KMP_HW_CORE;
3558 }
3559 if (inMap[threadIdIndex]) {
3560 threadLevel = idx;
3561 types[idx++] = KMP_HW_THREAD;
3562 }
3563 KMP_ASSERT(depth > 0);
3564
3565 // Construct the data structure that is to be returned.
3566 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3567
3568 for (i = 0; i < num_avail; ++i) {
3569 unsigned os = threadInfo[i][osIdIndex];
3570 int src_index;
3571 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3572 hw_thread.clear();
3573 hw_thread.os_id = os;
3574
3575 idx = 0;
3576 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3577 if (!inMap[src_index]) {
3578 continue;
3579 }
3580 if (src_index == pkgIdIndex) {
3581 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3582 } else if (src_index == coreIdIndex) {
3583 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3584 } else if (src_index == threadIdIndex) {
3585 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3586 }
3587 }
3588 }
3589
3590 __kmp_free(inMap);
3591 __kmp_free(lastId);
3592 __kmp_free(totals);
3593 __kmp_free(maxCt);
3594 __kmp_free(counts);
3595 CLEANUP_THREAD_INFO;
3596 __kmp_topology->sort_ids();
3597 if (!__kmp_topology->check_ids()) {
3598 kmp_topology_t::deallocate(__kmp_topology);
3599 __kmp_topology = nullptr;
3600 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3601 return false;
3602 }
3603 return true;
3604 }
3605
3606 // Create and return a table of affinity masks, indexed by OS thread ID.
3607 // This routine handles OR'ing together all the affinity masks of threads
3608 // that are sufficiently close, if granularity > fine.
3609 template <typename FindNextFunctionType>
__kmp_create_os_id_masks(unsigned * numUnique,kmp_affinity_t & affinity,FindNextFunctionType find_next)3610 static void __kmp_create_os_id_masks(unsigned *numUnique,
3611 kmp_affinity_t &affinity,
3612 FindNextFunctionType find_next) {
3613 // First form a table of affinity masks in order of OS thread id.
3614 int maxOsId;
3615 int i;
3616 int numAddrs = __kmp_topology->get_num_hw_threads();
3617 int depth = __kmp_topology->get_depth();
3618 const char *env_var = __kmp_get_affinity_env_var(affinity);
3619 KMP_ASSERT(numAddrs);
3620 KMP_ASSERT(depth);
3621
3622 i = find_next(-1);
3623 // If could not find HW thread location with attributes, then return and
3624 // fallback to increment find_next and disregard core attributes.
3625 if (i >= numAddrs)
3626 return;
3627
3628 maxOsId = 0;
3629 for (i = numAddrs - 1;; --i) {
3630 int osId = __kmp_topology->at(i).os_id;
3631 if (osId > maxOsId) {
3632 maxOsId = osId;
3633 }
3634 if (i == 0)
3635 break;
3636 }
3637 affinity.num_os_id_masks = maxOsId + 1;
3638 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3639 KMP_ASSERT(affinity.gran_levels >= 0);
3640 if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3641 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3642 }
3643 if (affinity.gran_levels >= (int)depth) {
3644 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3645 }
3646
3647 // Run through the table, forming the masks for all threads on each core.
3648 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3649 // considering the last level, which must be the thread id. All threads on a
3650 // core will appear consecutively.
3651 int unique = 0;
3652 int j = 0; // index of 1st thread on core
3653 int leader = 0;
3654 kmp_affin_mask_t *sum;
3655 KMP_CPU_ALLOC_ON_STACK(sum);
3656 KMP_CPU_ZERO(sum);
3657
3658 i = j = leader = find_next(-1);
3659 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3660 kmp_full_mask_modifier_t full_mask;
3661 for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3662 // If this thread is sufficiently close to the leader (within the
3663 // granularity setting), then set the bit for this os thread in the
3664 // affinity mask for this group, and go on to the next thread.
3665 if (__kmp_topology->is_close(leader, i, affinity)) {
3666 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3667 continue;
3668 }
3669
3670 // For every thread in this group, copy the mask to the thread's entry in
3671 // the OS Id mask table. Mark the first address as a leader.
3672 for (; j < i; j = find_next(j)) {
3673 int osId = __kmp_topology->at(j).os_id;
3674 KMP_DEBUG_ASSERT(osId <= maxOsId);
3675 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3676 KMP_CPU_COPY(mask, sum);
3677 __kmp_topology->at(j).leader = (j == leader);
3678 }
3679 unique++;
3680
3681 // Start a new mask.
3682 leader = i;
3683 full_mask.include(sum);
3684 KMP_CPU_ZERO(sum);
3685 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3686 }
3687
3688 // For every thread in last group, copy the mask to the thread's
3689 // entry in the OS Id mask table.
3690 for (; j < i; j = find_next(j)) {
3691 int osId = __kmp_topology->at(j).os_id;
3692 KMP_DEBUG_ASSERT(osId <= maxOsId);
3693 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3694 KMP_CPU_COPY(mask, sum);
3695 __kmp_topology->at(j).leader = (j == leader);
3696 }
3697 full_mask.include(sum);
3698 unique++;
3699 KMP_CPU_FREE_FROM_STACK(sum);
3700
3701 // See if the OS Id mask table further restricts or changes the full mask
3702 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
3703 __kmp_topology->print(env_var);
3704 }
3705
3706 *numUnique = unique;
3707 }
3708
3709 // Stuff for the affinity proclist parsers. It's easier to declare these vars
3710 // as file-static than to try and pass them through the calling sequence of
3711 // the recursive-descent OMP_PLACES parser.
3712 static kmp_affin_mask_t *newMasks;
3713 static int numNewMasks;
3714 static int nextNewMask;
3715
3716 #define ADD_MASK(_mask) \
3717 { \
3718 if (nextNewMask >= numNewMasks) { \
3719 int i; \
3720 numNewMasks *= 2; \
3721 kmp_affin_mask_t *temp; \
3722 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
3723 for (i = 0; i < numNewMasks / 2; i++) { \
3724 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
3725 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
3726 KMP_CPU_COPY(dest, src); \
3727 } \
3728 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
3729 newMasks = temp; \
3730 } \
3731 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
3732 nextNewMask++; \
3733 }
3734
3735 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3736 { \
3737 if (((_osId) > _maxOsId) || \
3738 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
3739 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
3740 } else { \
3741 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
3742 } \
3743 }
3744
3745 // Re-parse the proclist (for the explicit affinity type), and form the list
3746 // of affinity newMasks indexed by gtid.
__kmp_affinity_process_proclist(kmp_affinity_t & affinity)3747 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3748 int i;
3749 kmp_affin_mask_t **out_masks = &affinity.masks;
3750 unsigned *out_numMasks = &affinity.num_masks;
3751 const char *proclist = affinity.proclist;
3752 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3753 int maxOsId = affinity.num_os_id_masks - 1;
3754 const char *scan = proclist;
3755 const char *next = proclist;
3756
3757 // We use malloc() for the temporary mask vector, so that we can use
3758 // realloc() to extend it.
3759 numNewMasks = 2;
3760 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3761 nextNewMask = 0;
3762 kmp_affin_mask_t *sumMask;
3763 KMP_CPU_ALLOC(sumMask);
3764 int setSize = 0;
3765
3766 for (;;) {
3767 int start, end, stride;
3768
3769 SKIP_WS(scan);
3770 next = scan;
3771 if (*next == '\0') {
3772 break;
3773 }
3774
3775 if (*next == '{') {
3776 int num;
3777 setSize = 0;
3778 next++; // skip '{'
3779 SKIP_WS(next);
3780 scan = next;
3781
3782 // Read the first integer in the set.
3783 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3784 SKIP_DIGITS(next);
3785 num = __kmp_str_to_int(scan, *next);
3786 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3787
3788 // Copy the mask for that osId to the sum (union) mask.
3789 if ((num > maxOsId) ||
3790 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3791 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3792 KMP_CPU_ZERO(sumMask);
3793 } else {
3794 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3795 setSize = 1;
3796 }
3797
3798 for (;;) {
3799 // Check for end of set.
3800 SKIP_WS(next);
3801 if (*next == '}') {
3802 next++; // skip '}'
3803 break;
3804 }
3805
3806 // Skip optional comma.
3807 if (*next == ',') {
3808 next++;
3809 }
3810 SKIP_WS(next);
3811
3812 // Read the next integer in the set.
3813 scan = next;
3814 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3815
3816 SKIP_DIGITS(next);
3817 num = __kmp_str_to_int(scan, *next);
3818 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3819
3820 // Add the mask for that osId to the sum mask.
3821 if ((num > maxOsId) ||
3822 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3823 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3824 } else {
3825 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3826 setSize++;
3827 }
3828 }
3829 if (setSize > 0) {
3830 ADD_MASK(sumMask);
3831 }
3832
3833 SKIP_WS(next);
3834 if (*next == ',') {
3835 next++;
3836 }
3837 scan = next;
3838 continue;
3839 }
3840
3841 // Read the first integer.
3842 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3843 SKIP_DIGITS(next);
3844 start = __kmp_str_to_int(scan, *next);
3845 KMP_ASSERT2(start >= 0, "bad explicit proc list");
3846 SKIP_WS(next);
3847
3848 // If this isn't a range, then add a mask to the list and go on.
3849 if (*next != '-') {
3850 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3851
3852 // Skip optional comma.
3853 if (*next == ',') {
3854 next++;
3855 }
3856 scan = next;
3857 continue;
3858 }
3859
3860 // This is a range. Skip over the '-' and read in the 2nd int.
3861 next++; // skip '-'
3862 SKIP_WS(next);
3863 scan = next;
3864 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3865 SKIP_DIGITS(next);
3866 end = __kmp_str_to_int(scan, *next);
3867 KMP_ASSERT2(end >= 0, "bad explicit proc list");
3868
3869 // Check for a stride parameter
3870 stride = 1;
3871 SKIP_WS(next);
3872 if (*next == ':') {
3873 // A stride is specified. Skip over the ':" and read the 3rd int.
3874 int sign = +1;
3875 next++; // skip ':'
3876 SKIP_WS(next);
3877 scan = next;
3878 if (*next == '-') {
3879 sign = -1;
3880 next++;
3881 SKIP_WS(next);
3882 scan = next;
3883 }
3884 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3885 SKIP_DIGITS(next);
3886 stride = __kmp_str_to_int(scan, *next);
3887 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3888 stride *= sign;
3889 }
3890
3891 // Do some range checks.
3892 KMP_ASSERT2(stride != 0, "bad explicit proc list");
3893 if (stride > 0) {
3894 KMP_ASSERT2(start <= end, "bad explicit proc list");
3895 } else {
3896 KMP_ASSERT2(start >= end, "bad explicit proc list");
3897 }
3898 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3899
3900 // Add the mask for each OS proc # to the list.
3901 if (stride > 0) {
3902 do {
3903 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3904 start += stride;
3905 } while (start <= end);
3906 } else {
3907 do {
3908 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3909 start += stride;
3910 } while (start >= end);
3911 }
3912
3913 // Skip optional comma.
3914 SKIP_WS(next);
3915 if (*next == ',') {
3916 next++;
3917 }
3918 scan = next;
3919 }
3920
3921 *out_numMasks = nextNewMask;
3922 if (nextNewMask == 0) {
3923 *out_masks = NULL;
3924 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3925 return;
3926 }
3927 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3928 for (i = 0; i < nextNewMask; i++) {
3929 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3930 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3931 KMP_CPU_COPY(dest, src);
3932 }
3933 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3934 KMP_CPU_FREE(sumMask);
3935 }
3936
3937 /*-----------------------------------------------------------------------------
3938 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3939 places. Again, Here is the grammar:
3940
3941 place_list := place
3942 place_list := place , place_list
3943 place := num
3944 place := place : num
3945 place := place : num : signed
3946 place := { subplacelist }
3947 place := ! place // (lowest priority)
3948 subplace_list := subplace
3949 subplace_list := subplace , subplace_list
3950 subplace := num
3951 subplace := num : num
3952 subplace := num : num : signed
3953 signed := num
3954 signed := + signed
3955 signed := - signed
3956 -----------------------------------------------------------------------------*/
__kmp_process_subplace_list(const char ** scan,kmp_affinity_t & affinity,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3957 static void __kmp_process_subplace_list(const char **scan,
3958 kmp_affinity_t &affinity, int maxOsId,
3959 kmp_affin_mask_t *tempMask,
3960 int *setSize) {
3961 const char *next;
3962 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3963
3964 for (;;) {
3965 int start, count, stride, i;
3966
3967 // Read in the starting proc id
3968 SKIP_WS(*scan);
3969 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3970 next = *scan;
3971 SKIP_DIGITS(next);
3972 start = __kmp_str_to_int(*scan, *next);
3973 KMP_ASSERT(start >= 0);
3974 *scan = next;
3975
3976 // valid follow sets are ',' ':' and '}'
3977 SKIP_WS(*scan);
3978 if (**scan == '}' || **scan == ',') {
3979 if ((start > maxOsId) ||
3980 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3981 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3982 } else {
3983 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3984 (*setSize)++;
3985 }
3986 if (**scan == '}') {
3987 break;
3988 }
3989 (*scan)++; // skip ','
3990 continue;
3991 }
3992 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3993 (*scan)++; // skip ':'
3994
3995 // Read count parameter
3996 SKIP_WS(*scan);
3997 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3998 next = *scan;
3999 SKIP_DIGITS(next);
4000 count = __kmp_str_to_int(*scan, *next);
4001 KMP_ASSERT(count >= 0);
4002 *scan = next;
4003
4004 // valid follow sets are ',' ':' and '}'
4005 SKIP_WS(*scan);
4006 if (**scan == '}' || **scan == ',') {
4007 for (i = 0; i < count; i++) {
4008 if ((start > maxOsId) ||
4009 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4010 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4011 break; // don't proliferate warnings for large count
4012 } else {
4013 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4014 start++;
4015 (*setSize)++;
4016 }
4017 }
4018 if (**scan == '}') {
4019 break;
4020 }
4021 (*scan)++; // skip ','
4022 continue;
4023 }
4024 KMP_ASSERT2(**scan == ':', "bad explicit places list");
4025 (*scan)++; // skip ':'
4026
4027 // Read stride parameter
4028 int sign = +1;
4029 for (;;) {
4030 SKIP_WS(*scan);
4031 if (**scan == '+') {
4032 (*scan)++; // skip '+'
4033 continue;
4034 }
4035 if (**scan == '-') {
4036 sign *= -1;
4037 (*scan)++; // skip '-'
4038 continue;
4039 }
4040 break;
4041 }
4042 SKIP_WS(*scan);
4043 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4044 next = *scan;
4045 SKIP_DIGITS(next);
4046 stride = __kmp_str_to_int(*scan, *next);
4047 KMP_ASSERT(stride >= 0);
4048 *scan = next;
4049 stride *= sign;
4050
4051 // valid follow sets are ',' and '}'
4052 SKIP_WS(*scan);
4053 if (**scan == '}' || **scan == ',') {
4054 for (i = 0; i < count; i++) {
4055 if ((start > maxOsId) ||
4056 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4057 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4058 break; // don't proliferate warnings for large count
4059 } else {
4060 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4061 start += stride;
4062 (*setSize)++;
4063 }
4064 }
4065 if (**scan == '}') {
4066 break;
4067 }
4068 (*scan)++; // skip ','
4069 continue;
4070 }
4071
4072 KMP_ASSERT2(0, "bad explicit places list");
4073 }
4074 }
4075
__kmp_process_place(const char ** scan,kmp_affinity_t & affinity,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)4076 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
4077 int maxOsId, kmp_affin_mask_t *tempMask,
4078 int *setSize) {
4079 const char *next;
4080 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4081
4082 // valid follow sets are '{' '!' and num
4083 SKIP_WS(*scan);
4084 if (**scan == '{') {
4085 (*scan)++; // skip '{'
4086 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
4087 KMP_ASSERT2(**scan == '}', "bad explicit places list");
4088 (*scan)++; // skip '}'
4089 } else if (**scan == '!') {
4090 (*scan)++; // skip '!'
4091 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
4092 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
4093 } else if ((**scan >= '0') && (**scan <= '9')) {
4094 next = *scan;
4095 SKIP_DIGITS(next);
4096 int num = __kmp_str_to_int(*scan, *next);
4097 KMP_ASSERT(num >= 0);
4098 if ((num > maxOsId) ||
4099 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4100 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4101 } else {
4102 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
4103 (*setSize)++;
4104 }
4105 *scan = next; // skip num
4106 } else {
4107 KMP_ASSERT2(0, "bad explicit places list");
4108 }
4109 }
4110
4111 // static void
__kmp_affinity_process_placelist(kmp_affinity_t & affinity)4112 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
4113 int i, j, count, stride, sign;
4114 kmp_affin_mask_t **out_masks = &affinity.masks;
4115 unsigned *out_numMasks = &affinity.num_masks;
4116 const char *placelist = affinity.proclist;
4117 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4118 int maxOsId = affinity.num_os_id_masks - 1;
4119 const char *scan = placelist;
4120 const char *next = placelist;
4121
4122 numNewMasks = 2;
4123 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4124 nextNewMask = 0;
4125
4126 // tempMask is modified based on the previous or initial
4127 // place to form the current place
4128 // previousMask contains the previous place
4129 kmp_affin_mask_t *tempMask;
4130 kmp_affin_mask_t *previousMask;
4131 KMP_CPU_ALLOC(tempMask);
4132 KMP_CPU_ZERO(tempMask);
4133 KMP_CPU_ALLOC(previousMask);
4134 KMP_CPU_ZERO(previousMask);
4135 int setSize = 0;
4136
4137 for (;;) {
4138 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
4139
4140 // valid follow sets are ',' ':' and EOL
4141 SKIP_WS(scan);
4142 if (*scan == '\0' || *scan == ',') {
4143 if (setSize > 0) {
4144 ADD_MASK(tempMask);
4145 }
4146 KMP_CPU_ZERO(tempMask);
4147 setSize = 0;
4148 if (*scan == '\0') {
4149 break;
4150 }
4151 scan++; // skip ','
4152 continue;
4153 }
4154
4155 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4156 scan++; // skip ':'
4157
4158 // Read count parameter
4159 SKIP_WS(scan);
4160 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4161 next = scan;
4162 SKIP_DIGITS(next);
4163 count = __kmp_str_to_int(scan, *next);
4164 KMP_ASSERT(count >= 0);
4165 scan = next;
4166
4167 // valid follow sets are ',' ':' and EOL
4168 SKIP_WS(scan);
4169 if (*scan == '\0' || *scan == ',') {
4170 stride = +1;
4171 } else {
4172 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4173 scan++; // skip ':'
4174
4175 // Read stride parameter
4176 sign = +1;
4177 for (;;) {
4178 SKIP_WS(scan);
4179 if (*scan == '+') {
4180 scan++; // skip '+'
4181 continue;
4182 }
4183 if (*scan == '-') {
4184 sign *= -1;
4185 scan++; // skip '-'
4186 continue;
4187 }
4188 break;
4189 }
4190 SKIP_WS(scan);
4191 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4192 next = scan;
4193 SKIP_DIGITS(next);
4194 stride = __kmp_str_to_int(scan, *next);
4195 KMP_DEBUG_ASSERT(stride >= 0);
4196 scan = next;
4197 stride *= sign;
4198 }
4199
4200 // Add places determined by initial_place : count : stride
4201 for (i = 0; i < count; i++) {
4202 if (setSize == 0) {
4203 break;
4204 }
4205 // Add the current place, then build the next place (tempMask) from that
4206 KMP_CPU_COPY(previousMask, tempMask);
4207 ADD_MASK(previousMask);
4208 KMP_CPU_ZERO(tempMask);
4209 setSize = 0;
4210 KMP_CPU_SET_ITERATE(j, previousMask) {
4211 if (!KMP_CPU_ISSET(j, previousMask)) {
4212 continue;
4213 }
4214 if ((j + stride > maxOsId) || (j + stride < 0) ||
4215 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4216 (!KMP_CPU_ISSET(j + stride,
4217 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4218 if (i < count - 1) {
4219 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4220 }
4221 continue;
4222 }
4223 KMP_CPU_SET(j + stride, tempMask);
4224 setSize++;
4225 }
4226 }
4227 KMP_CPU_ZERO(tempMask);
4228 setSize = 0;
4229
4230 // valid follow sets are ',' and EOL
4231 SKIP_WS(scan);
4232 if (*scan == '\0') {
4233 break;
4234 }
4235 if (*scan == ',') {
4236 scan++; // skip ','
4237 continue;
4238 }
4239
4240 KMP_ASSERT2(0, "bad explicit places list");
4241 }
4242
4243 *out_numMasks = nextNewMask;
4244 if (nextNewMask == 0) {
4245 *out_masks = NULL;
4246 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4247 return;
4248 }
4249 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4250 KMP_CPU_FREE(tempMask);
4251 KMP_CPU_FREE(previousMask);
4252 for (i = 0; i < nextNewMask; i++) {
4253 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4254 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4255 KMP_CPU_COPY(dest, src);
4256 }
4257 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4258 }
4259
4260 #undef ADD_MASK
4261 #undef ADD_MASK_OSID
4262
4263 // This function figures out the deepest level at which there is at least one
4264 // cluster/core with more than one processing unit bound to it.
__kmp_affinity_find_core_level(int nprocs,int bottom_level)4265 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4266 int core_level = 0;
4267
4268 for (int i = 0; i < nprocs; i++) {
4269 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4270 for (int j = bottom_level; j > 0; j--) {
4271 if (hw_thread.ids[j] > 0) {
4272 if (core_level < (j - 1)) {
4273 core_level = j - 1;
4274 }
4275 }
4276 }
4277 }
4278 return core_level;
4279 }
4280
4281 // This function counts number of clusters/cores at given level.
__kmp_affinity_compute_ncores(int nprocs,int bottom_level,int core_level)4282 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4283 int core_level) {
4284 return __kmp_topology->get_count(core_level);
4285 }
4286 // This function finds to which cluster/core given processing unit is bound.
__kmp_affinity_find_core(int proc,int bottom_level,int core_level)4287 static int __kmp_affinity_find_core(int proc, int bottom_level,
4288 int core_level) {
4289 int core = 0;
4290 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4291 for (int i = 0; i <= proc; ++i) {
4292 if (i + 1 <= proc) {
4293 for (int j = 0; j <= core_level; ++j) {
4294 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4295 __kmp_topology->at(i).sub_ids[j]) {
4296 core++;
4297 break;
4298 }
4299 }
4300 }
4301 }
4302 return core;
4303 }
4304
4305 // This function finds maximal number of processing units bound to a
4306 // cluster/core at given level.
__kmp_affinity_max_proc_per_core(int nprocs,int bottom_level,int core_level)4307 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4308 int core_level) {
4309 if (core_level >= bottom_level)
4310 return 1;
4311 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4312 return __kmp_topology->calculate_ratio(thread_level, core_level);
4313 }
4314
4315 static int *procarr = NULL;
4316 static int __kmp_aff_depth = 0;
4317 static int *__kmp_osid_to_hwthread_map = NULL;
4318
__kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t * mask,kmp_affinity_ids_t & ids,kmp_affinity_attrs_t & attrs)4319 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4320 kmp_affinity_ids_t &ids,
4321 kmp_affinity_attrs_t &attrs) {
4322 if (!KMP_AFFINITY_CAPABLE())
4323 return;
4324
4325 // Initiailze ids and attrs thread data
4326 for (int i = 0; i < KMP_HW_LAST; ++i)
4327 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4328 attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4329
4330 // Iterate through each os id within the mask and determine
4331 // the topology id and attribute information
4332 int cpu;
4333 int depth = __kmp_topology->get_depth();
4334 KMP_CPU_SET_ITERATE(cpu, mask) {
4335 int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4336 ids.os_id = cpu;
4337 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4338 for (int level = 0; level < depth; ++level) {
4339 kmp_hw_t type = __kmp_topology->get_type(level);
4340 int id = hw_thread.sub_ids[level];
4341 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4342 ids.ids[type] = id;
4343 } else {
4344 // This mask spans across multiple topology units, set it as such
4345 // and mark every level below as such as well.
4346 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4347 for (; level < depth; ++level) {
4348 kmp_hw_t type = __kmp_topology->get_type(level);
4349 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4350 }
4351 }
4352 }
4353 if (!attrs.valid) {
4354 attrs.core_type = hw_thread.attrs.get_core_type();
4355 attrs.core_eff = hw_thread.attrs.get_core_eff();
4356 attrs.valid = 1;
4357 } else {
4358 // This mask spans across multiple attributes, set it as such
4359 if (attrs.core_type != hw_thread.attrs.get_core_type())
4360 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4361 if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4362 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4363 }
4364 }
4365 }
4366
__kmp_affinity_get_thread_topology_info(kmp_info_t * th)4367 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4368 if (!KMP_AFFINITY_CAPABLE())
4369 return;
4370 const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4371 kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4372 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4373 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4374 }
4375
4376 // Assign the topology information to each place in the place list
4377 // A thread can then grab not only its affinity mask, but the topology
4378 // information associated with that mask. e.g., Which socket is a thread on
__kmp_affinity_get_topology_info(kmp_affinity_t & affinity)4379 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4380 if (!KMP_AFFINITY_CAPABLE())
4381 return;
4382 if (affinity.type != affinity_none) {
4383 KMP_ASSERT(affinity.num_os_id_masks);
4384 KMP_ASSERT(affinity.os_id_masks);
4385 }
4386 KMP_ASSERT(affinity.num_masks);
4387 KMP_ASSERT(affinity.masks);
4388 KMP_ASSERT(__kmp_affin_fullMask);
4389
4390 int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4391 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4392
4393 // Allocate thread topology information
4394 if (!affinity.ids) {
4395 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4396 sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4397 }
4398 if (!affinity.attrs) {
4399 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4400 sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4401 }
4402 if (!__kmp_osid_to_hwthread_map) {
4403 // Want the +1 because max_cpu should be valid index into map
4404 __kmp_osid_to_hwthread_map =
4405 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4406 }
4407
4408 // Create the OS proc to hardware thread map
4409 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4410 int os_id = __kmp_topology->at(hw_thread).os_id;
4411 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4412 __kmp_osid_to_hwthread_map[os_id] = hw_thread;
4413 }
4414
4415 for (unsigned i = 0; i < affinity.num_masks; ++i) {
4416 kmp_affinity_ids_t &ids = affinity.ids[i];
4417 kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4418 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4419 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4420 }
4421 }
4422
4423 // Called when __kmp_topology is ready
__kmp_aux_affinity_initialize_other_data(kmp_affinity_t & affinity)4424 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4425 // Initialize other data structures which depend on the topology
4426 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4427 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4428 __kmp_affinity_get_topology_info(affinity);
4429 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4430 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4431 #endif
4432 }
4433 }
4434
4435 // Create a one element mask array (set of places) which only contains the
4436 // initial process's affinity mask
__kmp_create_affinity_none_places(kmp_affinity_t & affinity)4437 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4438 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4439 KMP_ASSERT(affinity.type == affinity_none);
4440 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4441 affinity.num_masks = 1;
4442 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4443 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4444 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4445 __kmp_aux_affinity_initialize_other_data(affinity);
4446 }
4447
__kmp_aux_affinity_initialize_masks(kmp_affinity_t & affinity)4448 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4449 // Create the "full" mask - this defines all of the processors that we
4450 // consider to be in the machine model. If respect is set, then it is the
4451 // initialization thread's affinity mask. Otherwise, it is all processors that
4452 // we know about on the machine.
4453 int verbose = affinity.flags.verbose;
4454 const char *env_var = affinity.env_var;
4455
4456 // Already initialized
4457 if (__kmp_affin_fullMask && __kmp_affin_origMask)
4458 return;
4459
4460 if (__kmp_affin_fullMask == NULL) {
4461 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4462 }
4463 if (__kmp_affin_origMask == NULL) {
4464 KMP_CPU_ALLOC(__kmp_affin_origMask);
4465 }
4466 if (KMP_AFFINITY_CAPABLE()) {
4467 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4468 // Make a copy before possible expanding to the entire machine mask
4469 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4470 if (affinity.flags.respect) {
4471 // Count the number of available processors.
4472 unsigned i;
4473 __kmp_avail_proc = 0;
4474 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4475 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4476 continue;
4477 }
4478 __kmp_avail_proc++;
4479 }
4480 if (__kmp_avail_proc > __kmp_xproc) {
4481 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4482 affinity.type = affinity_none;
4483 KMP_AFFINITY_DISABLE();
4484 return;
4485 }
4486
4487 if (verbose) {
4488 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4489 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4490 __kmp_affin_fullMask);
4491 KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4492 }
4493 } else {
4494 if (verbose) {
4495 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4496 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4497 __kmp_affin_fullMask);
4498 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4499 }
4500 __kmp_avail_proc =
4501 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4502 #if KMP_OS_WINDOWS
4503 if (__kmp_num_proc_groups <= 1) {
4504 // Copy expanded full mask if topology has single processor group
4505 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4506 }
4507 // Set the process affinity mask since threads' affinity
4508 // masks must be subset of process mask in Windows* OS
4509 __kmp_affin_fullMask->set_process_affinity(true);
4510 #endif
4511 }
4512 }
4513 }
4514
__kmp_aux_affinity_initialize_topology(kmp_affinity_t & affinity)4515 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4516 bool success = false;
4517 const char *env_var = affinity.env_var;
4518 kmp_i18n_id_t msg_id = kmp_i18n_null;
4519 int verbose = affinity.flags.verbose;
4520
4521 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4522 // KMP_TOPOLOGY_METHOD=cpuinfo
4523 if ((__kmp_cpuinfo_file != NULL) &&
4524 (__kmp_affinity_top_method == affinity_top_method_all)) {
4525 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4526 }
4527
4528 if (__kmp_affinity_top_method == affinity_top_method_all) {
4529 // In the default code path, errors are not fatal - we just try using
4530 // another method. We only emit a warning message if affinity is on, or the
4531 // verbose flag is set, an the nowarnings flag was not set.
4532 #if KMP_USE_HWLOC
4533 if (!success &&
4534 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4535 if (!__kmp_hwloc_error) {
4536 success = __kmp_affinity_create_hwloc_map(&msg_id);
4537 if (!success && verbose) {
4538 KMP_INFORM(AffIgnoringHwloc, env_var);
4539 }
4540 } else if (verbose) {
4541 KMP_INFORM(AffIgnoringHwloc, env_var);
4542 }
4543 }
4544 #endif
4545
4546 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4547 if (!success) {
4548 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4549 if (!success && verbose && msg_id != kmp_i18n_null) {
4550 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4551 }
4552 }
4553 if (!success) {
4554 success = __kmp_affinity_create_apicid_map(&msg_id);
4555 if (!success && verbose && msg_id != kmp_i18n_null) {
4556 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4557 }
4558 }
4559 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4560
4561 #if KMP_OS_LINUX || KMP_OS_AIX
4562 if (!success) {
4563 int line = 0;
4564 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4565 if (!success && verbose && msg_id != kmp_i18n_null) {
4566 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4567 }
4568 }
4569 #endif /* KMP_OS_LINUX */
4570
4571 #if KMP_GROUP_AFFINITY
4572 if (!success && (__kmp_num_proc_groups > 1)) {
4573 success = __kmp_affinity_create_proc_group_map(&msg_id);
4574 if (!success && verbose && msg_id != kmp_i18n_null) {
4575 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4576 }
4577 }
4578 #endif /* KMP_GROUP_AFFINITY */
4579
4580 if (!success) {
4581 success = __kmp_affinity_create_flat_map(&msg_id);
4582 if (!success && verbose && msg_id != kmp_i18n_null) {
4583 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4584 }
4585 KMP_ASSERT(success);
4586 }
4587 }
4588
4589 // If the user has specified that a paricular topology discovery method is to be
4590 // used, then we abort if that method fails. The exception is group affinity,
4591 // which might have been implicitly set.
4592 #if KMP_USE_HWLOC
4593 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4594 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4595 success = __kmp_affinity_create_hwloc_map(&msg_id);
4596 if (!success) {
4597 KMP_ASSERT(msg_id != kmp_i18n_null);
4598 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4599 }
4600 }
4601 #endif // KMP_USE_HWLOC
4602
4603 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4604 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4605 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4606 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4607 if (!success) {
4608 KMP_ASSERT(msg_id != kmp_i18n_null);
4609 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4610 }
4611 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4612 success = __kmp_affinity_create_apicid_map(&msg_id);
4613 if (!success) {
4614 KMP_ASSERT(msg_id != kmp_i18n_null);
4615 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4616 }
4617 }
4618 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4619
4620 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4621 int line = 0;
4622 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4623 if (!success) {
4624 KMP_ASSERT(msg_id != kmp_i18n_null);
4625 const char *filename = __kmp_cpuinfo_get_filename();
4626 if (line > 0) {
4627 KMP_FATAL(FileLineMsgExiting, filename, line,
4628 __kmp_i18n_catgets(msg_id));
4629 } else {
4630 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4631 }
4632 }
4633 }
4634
4635 #if KMP_GROUP_AFFINITY
4636 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4637 success = __kmp_affinity_create_proc_group_map(&msg_id);
4638 KMP_ASSERT(success);
4639 if (!success) {
4640 KMP_ASSERT(msg_id != kmp_i18n_null);
4641 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4642 }
4643 }
4644 #endif /* KMP_GROUP_AFFINITY */
4645
4646 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4647 success = __kmp_affinity_create_flat_map(&msg_id);
4648 // should not fail
4649 KMP_ASSERT(success);
4650 }
4651
4652 // Early exit if topology could not be created
4653 if (!__kmp_topology) {
4654 if (KMP_AFFINITY_CAPABLE()) {
4655 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4656 }
4657 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4658 __kmp_ncores > 0) {
4659 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4660 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4661 __kmp_nThreadsPerCore, __kmp_ncores);
4662 if (verbose) {
4663 __kmp_topology->print(env_var);
4664 }
4665 }
4666 return false;
4667 }
4668
4669 // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4670 __kmp_topology->canonicalize();
4671 if (verbose)
4672 __kmp_topology->print(env_var);
4673 bool filtered = __kmp_topology->filter_hw_subset();
4674 if (filtered && verbose)
4675 __kmp_topology->print("KMP_HW_SUBSET");
4676 return success;
4677 }
4678
__kmp_aux_affinity_initialize(kmp_affinity_t & affinity)4679 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4680 bool is_regular_affinity = (&affinity == &__kmp_affinity);
4681 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4682 const char *env_var = __kmp_get_affinity_env_var(affinity);
4683
4684 if (affinity.flags.initialized) {
4685 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4686 return;
4687 }
4688
4689 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4690 __kmp_aux_affinity_initialize_masks(affinity);
4691
4692 if (is_regular_affinity && !__kmp_topology) {
4693 bool success = __kmp_aux_affinity_initialize_topology(affinity);
4694 if (success) {
4695 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4696 } else {
4697 affinity.type = affinity_none;
4698 KMP_AFFINITY_DISABLE();
4699 }
4700 }
4701
4702 // If KMP_AFFINITY=none, then only create the single "none" place
4703 // which is the process's initial affinity mask or the number of
4704 // hardware threads depending on respect,norespect
4705 if (affinity.type == affinity_none) {
4706 __kmp_create_affinity_none_places(affinity);
4707 #if KMP_USE_HIER_SCHED
4708 __kmp_dispatch_set_hierarchy_values();
4709 #endif
4710 affinity.flags.initialized = TRUE;
4711 return;
4712 }
4713
4714 __kmp_topology->set_granularity(affinity);
4715 int depth = __kmp_topology->get_depth();
4716
4717 // Create the table of masks, indexed by thread Id.
4718 unsigned numUnique;
4719 int numAddrs = __kmp_topology->get_num_hw_threads();
4720 // If OMP_PLACES=cores:<attribute> specified, then attempt
4721 // to make OS Id mask table using those attributes
4722 if (affinity.core_attr_gran.valid) {
4723 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
4724 KMP_ASSERT(idx >= -1);
4725 for (int i = idx + 1; i < numAddrs; ++i)
4726 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
4727 return i;
4728 return numAddrs;
4729 });
4730 if (!affinity.os_id_masks) {
4731 const char *core_attribute;
4732 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
4733 core_attribute = "core_efficiency";
4734 else
4735 core_attribute = "core_type";
4736 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
4737 core_attribute,
4738 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
4739 }
4740 }
4741 // If core attributes did not work, or none were specified,
4742 // then make OS Id mask table using typical incremental way.
4743 if (!affinity.os_id_masks) {
4744 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
4745 KMP_ASSERT(idx >= -1);
4746 return idx + 1;
4747 });
4748 }
4749 if (affinity.gran_levels == 0) {
4750 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4751 }
4752
4753 switch (affinity.type) {
4754
4755 case affinity_explicit:
4756 KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4757 if (is_hidden_helper_affinity ||
4758 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4759 __kmp_affinity_process_proclist(affinity);
4760 } else {
4761 __kmp_affinity_process_placelist(affinity);
4762 }
4763 if (affinity.num_masks == 0) {
4764 KMP_AFF_WARNING(affinity, AffNoValidProcID);
4765 affinity.type = affinity_none;
4766 __kmp_create_affinity_none_places(affinity);
4767 affinity.flags.initialized = TRUE;
4768 return;
4769 }
4770 break;
4771
4772 // The other affinity types rely on sorting the hardware threads according to
4773 // some permutation of the machine topology tree. Set affinity.compact
4774 // and affinity.offset appropriately, then jump to a common code
4775 // fragment to do the sort and create the array of affinity masks.
4776 case affinity_logical:
4777 affinity.compact = 0;
4778 if (affinity.offset) {
4779 affinity.offset =
4780 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4781 }
4782 goto sortTopology;
4783
4784 case affinity_physical:
4785 if (__kmp_nThreadsPerCore > 1) {
4786 affinity.compact = 1;
4787 if (affinity.compact >= depth) {
4788 affinity.compact = 0;
4789 }
4790 } else {
4791 affinity.compact = 0;
4792 }
4793 if (affinity.offset) {
4794 affinity.offset =
4795 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4796 }
4797 goto sortTopology;
4798
4799 case affinity_scatter:
4800 if (affinity.compact >= depth) {
4801 affinity.compact = 0;
4802 } else {
4803 affinity.compact = depth - 1 - affinity.compact;
4804 }
4805 goto sortTopology;
4806
4807 case affinity_compact:
4808 if (affinity.compact >= depth) {
4809 affinity.compact = depth - 1;
4810 }
4811 goto sortTopology;
4812
4813 case affinity_balanced:
4814 if (depth <= 1 || is_hidden_helper_affinity) {
4815 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4816 affinity.type = affinity_none;
4817 __kmp_create_affinity_none_places(affinity);
4818 affinity.flags.initialized = TRUE;
4819 return;
4820 } else if (!__kmp_topology->is_uniform()) {
4821 // Save the depth for further usage
4822 __kmp_aff_depth = depth;
4823
4824 int core_level =
4825 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4826 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4827 core_level);
4828 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4829 __kmp_avail_proc, depth - 1, core_level);
4830
4831 int nproc = ncores * maxprocpercore;
4832 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4833 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4834 affinity.type = affinity_none;
4835 __kmp_create_affinity_none_places(affinity);
4836 affinity.flags.initialized = TRUE;
4837 return;
4838 }
4839
4840 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4841 for (int i = 0; i < nproc; i++) {
4842 procarr[i] = -1;
4843 }
4844
4845 int lastcore = -1;
4846 int inlastcore = 0;
4847 for (int i = 0; i < __kmp_avail_proc; i++) {
4848 int proc = __kmp_topology->at(i).os_id;
4849 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4850
4851 if (core == lastcore) {
4852 inlastcore++;
4853 } else {
4854 inlastcore = 0;
4855 }
4856 lastcore = core;
4857
4858 procarr[core * maxprocpercore + inlastcore] = proc;
4859 }
4860 }
4861 if (affinity.compact >= depth) {
4862 affinity.compact = depth - 1;
4863 }
4864
4865 sortTopology:
4866 // Allocate the gtid->affinity mask table.
4867 if (affinity.flags.dups) {
4868 affinity.num_masks = __kmp_avail_proc;
4869 } else {
4870 affinity.num_masks = numUnique;
4871 }
4872
4873 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4874 (__kmp_affinity_num_places > 0) &&
4875 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4876 !is_hidden_helper_affinity) {
4877 affinity.num_masks = __kmp_affinity_num_places;
4878 }
4879
4880 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4881
4882 // Sort the topology table according to the current setting of
4883 // affinity.compact, then fill out affinity.masks.
4884 __kmp_topology->sort_compact(affinity);
4885 {
4886 int i;
4887 unsigned j;
4888 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4889 kmp_full_mask_modifier_t full_mask;
4890 for (i = 0, j = 0; i < num_hw_threads; i++) {
4891 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4892 continue;
4893 }
4894 int osId = __kmp_topology->at(i).os_id;
4895
4896 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4897 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4898 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4899 KMP_CPU_COPY(dest, src);
4900 full_mask.include(src);
4901 if (++j >= affinity.num_masks) {
4902 break;
4903 }
4904 }
4905 KMP_DEBUG_ASSERT(j == affinity.num_masks);
4906 // See if the places list further restricts or changes the full mask
4907 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4908 __kmp_topology->print(env_var);
4909 }
4910 }
4911 // Sort the topology back using ids
4912 __kmp_topology->sort_ids();
4913 break;
4914
4915 default:
4916 KMP_ASSERT2(0, "Unexpected affinity setting");
4917 }
4918 __kmp_aux_affinity_initialize_other_data(affinity);
4919 affinity.flags.initialized = TRUE;
4920 }
4921
__kmp_affinity_initialize(kmp_affinity_t & affinity)4922 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4923 // Much of the code above was written assuming that if a machine was not
4924 // affinity capable, then affinity type == affinity_none.
4925 // We now explicitly represent this as affinity type == affinity_disabled.
4926 // There are too many checks for affinity type == affinity_none in this code.
4927 // Instead of trying to change them all, check if
4928 // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4929 // call the real initialization routine, then restore affinity type to
4930 // affinity_disabled.
4931 int disabled = (affinity.type == affinity_disabled);
4932 if (!KMP_AFFINITY_CAPABLE())
4933 KMP_ASSERT(disabled);
4934 if (disabled)
4935 affinity.type = affinity_none;
4936 __kmp_aux_affinity_initialize(affinity);
4937 if (disabled)
4938 affinity.type = affinity_disabled;
4939 }
4940
__kmp_affinity_uninitialize(void)4941 void __kmp_affinity_uninitialize(void) {
4942 for (kmp_affinity_t *affinity : __kmp_affinities) {
4943 if (affinity->masks != NULL)
4944 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4945 if (affinity->os_id_masks != NULL)
4946 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4947 if (affinity->proclist != NULL)
4948 __kmp_free(affinity->proclist);
4949 if (affinity->ids != NULL)
4950 __kmp_free(affinity->ids);
4951 if (affinity->attrs != NULL)
4952 __kmp_free(affinity->attrs);
4953 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
4954 }
4955 if (__kmp_affin_origMask != NULL) {
4956 if (KMP_AFFINITY_CAPABLE()) {
4957 #if KMP_OS_AIX
4958 // Uninitialize by unbinding the thread.
4959 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
4960 #else
4961 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4962 #endif
4963 }
4964 KMP_CPU_FREE(__kmp_affin_origMask);
4965 __kmp_affin_origMask = NULL;
4966 }
4967 __kmp_affinity_num_places = 0;
4968 if (procarr != NULL) {
4969 __kmp_free(procarr);
4970 procarr = NULL;
4971 }
4972 if (__kmp_osid_to_hwthread_map) {
4973 __kmp_free(__kmp_osid_to_hwthread_map);
4974 __kmp_osid_to_hwthread_map = NULL;
4975 }
4976 #if KMP_USE_HWLOC
4977 if (__kmp_hwloc_topology != NULL) {
4978 hwloc_topology_destroy(__kmp_hwloc_topology);
4979 __kmp_hwloc_topology = NULL;
4980 }
4981 #endif
4982 if (__kmp_hw_subset) {
4983 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4984 __kmp_hw_subset = nullptr;
4985 }
4986 if (__kmp_topology) {
4987 kmp_topology_t::deallocate(__kmp_topology);
4988 __kmp_topology = nullptr;
4989 }
4990 KMPAffinity::destroy_api();
4991 }
4992
__kmp_select_mask_by_gtid(int gtid,const kmp_affinity_t * affinity,int * place,kmp_affin_mask_t ** mask)4993 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4994 int *place, kmp_affin_mask_t **mask) {
4995 int mask_idx;
4996 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4997 if (is_hidden_helper)
4998 // The first gtid is the regular primary thread, the second gtid is the main
4999 // thread of hidden team which does not participate in task execution.
5000 mask_idx = gtid - 2;
5001 else
5002 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
5003 KMP_DEBUG_ASSERT(affinity->num_masks > 0);
5004 *place = (mask_idx + affinity->offset) % affinity->num_masks;
5005 *mask = KMP_CPU_INDEX(affinity->masks, *place);
5006 }
5007
5008 // This function initializes the per-thread data concerning affinity including
5009 // the mask and topology information
__kmp_affinity_set_init_mask(int gtid,int isa_root)5010 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
5011
5012 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5013
5014 // Set the thread topology information to default of unknown
5015 for (int id = 0; id < KMP_HW_LAST; ++id)
5016 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
5017 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
5018
5019 if (!KMP_AFFINITY_CAPABLE()) {
5020 return;
5021 }
5022
5023 if (th->th.th_affin_mask == NULL) {
5024 KMP_CPU_ALLOC(th->th.th_affin_mask);
5025 } else {
5026 KMP_CPU_ZERO(th->th.th_affin_mask);
5027 }
5028
5029 // Copy the thread mask to the kmp_info_t structure. If
5030 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
5031 // one that has all of the OS proc ids set, or if
5032 // __kmp_affinity.flags.respect is set, then the full mask is the
5033 // same as the mask of the initialization thread.
5034 kmp_affin_mask_t *mask;
5035 int i;
5036 const kmp_affinity_t *affinity;
5037 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5038
5039 if (is_hidden_helper)
5040 affinity = &__kmp_hh_affinity;
5041 else
5042 affinity = &__kmp_affinity;
5043
5044 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
5045 if ((affinity->type == affinity_none) ||
5046 (affinity->type == affinity_balanced) ||
5047 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5048 #if KMP_GROUP_AFFINITY
5049 if (__kmp_num_proc_groups > 1) {
5050 return;
5051 }
5052 #endif
5053 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5054 i = 0;
5055 mask = __kmp_affin_fullMask;
5056 } else {
5057 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5058 }
5059 } else {
5060 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
5061 #if KMP_GROUP_AFFINITY
5062 if (__kmp_num_proc_groups > 1) {
5063 return;
5064 }
5065 #endif
5066 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5067 i = KMP_PLACE_ALL;
5068 mask = __kmp_affin_fullMask;
5069 } else {
5070 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5071 }
5072 }
5073
5074 th->th.th_current_place = i;
5075 if (isa_root && !is_hidden_helper) {
5076 th->th.th_new_place = i;
5077 th->th.th_first_place = 0;
5078 th->th.th_last_place = affinity->num_masks - 1;
5079 } else if (KMP_AFFINITY_NON_PROC_BIND) {
5080 // When using a Non-OMP_PROC_BIND affinity method,
5081 // set all threads' place-partition-var to the entire place list
5082 th->th.th_first_place = 0;
5083 th->th.th_last_place = affinity->num_masks - 1;
5084 }
5085 // Copy topology information associated with the place
5086 if (i >= 0) {
5087 th->th.th_topology_ids = __kmp_affinity.ids[i];
5088 th->th.th_topology_attrs = __kmp_affinity.attrs[i];
5089 }
5090
5091 if (i == KMP_PLACE_ALL) {
5092 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
5093 gtid));
5094 } else {
5095 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
5096 gtid, i));
5097 }
5098
5099 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5100 }
5101
__kmp_affinity_bind_init_mask(int gtid)5102 void __kmp_affinity_bind_init_mask(int gtid) {
5103 if (!KMP_AFFINITY_CAPABLE()) {
5104 return;
5105 }
5106 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5107 const kmp_affinity_t *affinity;
5108 const char *env_var;
5109 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5110
5111 if (is_hidden_helper)
5112 affinity = &__kmp_hh_affinity;
5113 else
5114 affinity = &__kmp_affinity;
5115 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
5116 /* to avoid duplicate printing (will be correctly printed on barrier) */
5117 if (affinity->flags.verbose && (affinity->type == affinity_none ||
5118 (th->th.th_current_place != KMP_PLACE_ALL &&
5119 affinity->type != affinity_balanced)) &&
5120 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5121 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5122 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5123 th->th.th_affin_mask);
5124 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5125 gtid, buf);
5126 }
5127
5128 #if KMP_OS_WINDOWS
5129 // On Windows* OS, the process affinity mask might have changed. If the user
5130 // didn't request affinity and this call fails, just continue silently.
5131 // See CQ171393.
5132 if (affinity->type == affinity_none) {
5133 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5134 } else
5135 #endif
5136 #ifndef KMP_OS_AIX
5137 // Do not set the full mask as the init mask on AIX.
5138 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5139 #endif
5140 }
5141
__kmp_affinity_bind_place(int gtid)5142 void __kmp_affinity_bind_place(int gtid) {
5143 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5144 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5145 return;
5146 }
5147
5148 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5149
5150 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5151 "place = %d)\n",
5152 gtid, th->th.th_new_place, th->th.th_current_place));
5153
5154 // Check that the new place is within this thread's partition.
5155 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5156 KMP_ASSERT(th->th.th_new_place >= 0);
5157 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5158 if (th->th.th_first_place <= th->th.th_last_place) {
5159 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5160 (th->th.th_new_place <= th->th.th_last_place));
5161 } else {
5162 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5163 (th->th.th_new_place >= th->th.th_last_place));
5164 }
5165
5166 // Copy the thread mask to the kmp_info_t structure,
5167 // and set this thread's affinity.
5168 kmp_affin_mask_t *mask =
5169 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5170 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5171 th->th.th_current_place = th->th.th_new_place;
5172
5173 if (__kmp_affinity.flags.verbose) {
5174 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5175 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5176 th->th.th_affin_mask);
5177 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5178 __kmp_gettid(), gtid, buf);
5179 }
5180 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5181 }
5182
__kmp_aux_set_affinity(void ** mask)5183 int __kmp_aux_set_affinity(void **mask) {
5184 int gtid;
5185 kmp_info_t *th;
5186 int retval;
5187
5188 if (!KMP_AFFINITY_CAPABLE()) {
5189 return -1;
5190 }
5191
5192 gtid = __kmp_entry_gtid();
5193 KA_TRACE(
5194 1000, (""); {
5195 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5196 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5197 (kmp_affin_mask_t *)(*mask));
5198 __kmp_debug_printf(
5199 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5200 gtid, buf);
5201 });
5202
5203 if (__kmp_env_consistency_check) {
5204 if ((mask == NULL) || (*mask == NULL)) {
5205 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5206 } else {
5207 unsigned proc;
5208 int num_procs = 0;
5209
5210 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5211 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5212 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5213 }
5214 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5215 continue;
5216 }
5217 num_procs++;
5218 }
5219 if (num_procs == 0) {
5220 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5221 }
5222
5223 #if KMP_GROUP_AFFINITY
5224 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5225 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5226 }
5227 #endif /* KMP_GROUP_AFFINITY */
5228 }
5229 }
5230
5231 th = __kmp_threads[gtid];
5232 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5233 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5234 if (retval == 0) {
5235 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5236 }
5237
5238 th->th.th_current_place = KMP_PLACE_UNDEFINED;
5239 th->th.th_new_place = KMP_PLACE_UNDEFINED;
5240 th->th.th_first_place = 0;
5241 th->th.th_last_place = __kmp_affinity.num_masks - 1;
5242
5243 // Turn off 4.0 affinity for the current tread at this parallel level.
5244 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5245
5246 return retval;
5247 }
5248
__kmp_aux_get_affinity(void ** mask)5249 int __kmp_aux_get_affinity(void **mask) {
5250 int gtid;
5251 int retval;
5252 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5253 kmp_info_t *th;
5254 #endif
5255 if (!KMP_AFFINITY_CAPABLE()) {
5256 return -1;
5257 }
5258
5259 gtid = __kmp_entry_gtid();
5260 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5261 th = __kmp_threads[gtid];
5262 #else
5263 (void)gtid; // unused variable
5264 #endif
5265 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5266
5267 KA_TRACE(
5268 1000, (""); {
5269 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5270 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5271 th->th.th_affin_mask);
5272 __kmp_printf(
5273 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5274 buf);
5275 });
5276
5277 if (__kmp_env_consistency_check) {
5278 if ((mask == NULL) || (*mask == NULL)) {
5279 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5280 }
5281 }
5282
5283 #if !KMP_OS_WINDOWS && !KMP_OS_AIX
5284
5285 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5286 KA_TRACE(
5287 1000, (""); {
5288 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5289 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5290 (kmp_affin_mask_t *)(*mask));
5291 __kmp_printf(
5292 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5293 buf);
5294 });
5295 return retval;
5296
5297 #else
5298 (void)retval;
5299
5300 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5301 return 0;
5302
5303 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */
5304 }
5305
__kmp_aux_get_affinity_max_proc()5306 int __kmp_aux_get_affinity_max_proc() {
5307 if (!KMP_AFFINITY_CAPABLE()) {
5308 return 0;
5309 }
5310 #if KMP_GROUP_AFFINITY
5311 if (__kmp_num_proc_groups > 1) {
5312 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5313 }
5314 #endif
5315 return __kmp_xproc;
5316 }
5317
__kmp_aux_set_affinity_mask_proc(int proc,void ** mask)5318 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5319 if (!KMP_AFFINITY_CAPABLE()) {
5320 return -1;
5321 }
5322
5323 KA_TRACE(
5324 1000, (""); {
5325 int gtid = __kmp_entry_gtid();
5326 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5327 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5328 (kmp_affin_mask_t *)(*mask));
5329 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5330 "affinity mask for thread %d = %s\n",
5331 proc, gtid, buf);
5332 });
5333
5334 if (__kmp_env_consistency_check) {
5335 if ((mask == NULL) || (*mask == NULL)) {
5336 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5337 }
5338 }
5339
5340 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5341 return -1;
5342 }
5343 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5344 return -2;
5345 }
5346
5347 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5348 return 0;
5349 }
5350
__kmp_aux_unset_affinity_mask_proc(int proc,void ** mask)5351 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5352 if (!KMP_AFFINITY_CAPABLE()) {
5353 return -1;
5354 }
5355
5356 KA_TRACE(
5357 1000, (""); {
5358 int gtid = __kmp_entry_gtid();
5359 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5360 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5361 (kmp_affin_mask_t *)(*mask));
5362 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5363 "affinity mask for thread %d = %s\n",
5364 proc, gtid, buf);
5365 });
5366
5367 if (__kmp_env_consistency_check) {
5368 if ((mask == NULL) || (*mask == NULL)) {
5369 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5370 }
5371 }
5372
5373 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5374 return -1;
5375 }
5376 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5377 return -2;
5378 }
5379
5380 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5381 return 0;
5382 }
5383
__kmp_aux_get_affinity_mask_proc(int proc,void ** mask)5384 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5385 if (!KMP_AFFINITY_CAPABLE()) {
5386 return -1;
5387 }
5388
5389 KA_TRACE(
5390 1000, (""); {
5391 int gtid = __kmp_entry_gtid();
5392 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5393 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5394 (kmp_affin_mask_t *)(*mask));
5395 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5396 "affinity mask for thread %d = %s\n",
5397 proc, gtid, buf);
5398 });
5399
5400 if (__kmp_env_consistency_check) {
5401 if ((mask == NULL) || (*mask == NULL)) {
5402 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5403 }
5404 }
5405
5406 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5407 return -1;
5408 }
5409 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5410 return 0;
5411 }
5412
5413 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5414 }
5415
5416 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5417 // Returns first os proc id with ATOM core
__kmp_get_first_osid_with_ecore(void)5418 int __kmp_get_first_osid_with_ecore(void) {
5419 int low = 0;
5420 int high = __kmp_topology->get_num_hw_threads() - 1;
5421 int mid = 0;
5422 while (high - low > 1) {
5423 mid = (high + low) / 2;
5424 if (__kmp_topology->at(mid).attrs.get_core_type() ==
5425 KMP_HW_CORE_TYPE_CORE) {
5426 low = mid + 1;
5427 } else {
5428 high = mid;
5429 }
5430 }
5431 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5432 return mid;
5433 }
5434 return -1;
5435 }
5436 #endif
5437
5438 // Dynamic affinity settings - Affinity balanced
__kmp_balanced_affinity(kmp_info_t * th,int nthreads)5439 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5440 KMP_DEBUG_ASSERT(th);
5441 bool fine_gran = true;
5442 int tid = th->th.th_info.ds.ds_tid;
5443 const char *env_var = "KMP_AFFINITY";
5444
5445 // Do not perform balanced affinity for the hidden helper threads
5446 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5447 return;
5448
5449 switch (__kmp_affinity.gran) {
5450 case KMP_HW_THREAD:
5451 break;
5452 case KMP_HW_CORE:
5453 if (__kmp_nThreadsPerCore > 1) {
5454 fine_gran = false;
5455 }
5456 break;
5457 case KMP_HW_SOCKET:
5458 if (nCoresPerPkg > 1) {
5459 fine_gran = false;
5460 }
5461 break;
5462 default:
5463 fine_gran = false;
5464 }
5465
5466 if (__kmp_topology->is_uniform()) {
5467 int coreID;
5468 int threadID;
5469 // Number of hyper threads per core in HT machine
5470 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5471 // Number of cores
5472 int ncores = __kmp_ncores;
5473 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5474 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5475 ncores = nPackages;
5476 }
5477 // How many threads will be bound to each core
5478 int chunk = nthreads / ncores;
5479 // How many cores will have an additional thread bound to it - "big cores"
5480 int big_cores = nthreads % ncores;
5481 // Number of threads on the big cores
5482 int big_nth = (chunk + 1) * big_cores;
5483 if (tid < big_nth) {
5484 coreID = tid / (chunk + 1);
5485 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5486 } else { // tid >= big_nth
5487 coreID = (tid - big_cores) / chunk;
5488 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5489 }
5490 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5491 "Illegal set affinity operation when not capable");
5492
5493 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5494 KMP_CPU_ZERO(mask);
5495
5496 if (fine_gran) {
5497 int osID =
5498 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5499 KMP_CPU_SET(osID, mask);
5500 } else {
5501 for (int i = 0; i < __kmp_nth_per_core; i++) {
5502 int osID;
5503 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5504 KMP_CPU_SET(osID, mask);
5505 }
5506 }
5507 if (__kmp_affinity.flags.verbose) {
5508 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5509 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5510 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5511 tid, buf);
5512 }
5513 __kmp_affinity_get_thread_topology_info(th);
5514 __kmp_set_system_affinity(mask, TRUE);
5515 } else { // Non-uniform topology
5516
5517 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5518 KMP_CPU_ZERO(mask);
5519
5520 int core_level =
5521 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5522 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5523 __kmp_aff_depth - 1, core_level);
5524 int nth_per_core = __kmp_affinity_max_proc_per_core(
5525 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5526
5527 // For performance gain consider the special case nthreads ==
5528 // __kmp_avail_proc
5529 if (nthreads == __kmp_avail_proc) {
5530 if (fine_gran) {
5531 int osID = __kmp_topology->at(tid).os_id;
5532 KMP_CPU_SET(osID, mask);
5533 } else {
5534 int core =
5535 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5536 for (int i = 0; i < __kmp_avail_proc; i++) {
5537 int osID = __kmp_topology->at(i).os_id;
5538 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5539 core) {
5540 KMP_CPU_SET(osID, mask);
5541 }
5542 }
5543 }
5544 } else if (nthreads <= ncores) {
5545
5546 int core = 0;
5547 for (int i = 0; i < ncores; i++) {
5548 // Check if this core from procarr[] is in the mask
5549 int in_mask = 0;
5550 for (int j = 0; j < nth_per_core; j++) {
5551 if (procarr[i * nth_per_core + j] != -1) {
5552 in_mask = 1;
5553 break;
5554 }
5555 }
5556 if (in_mask) {
5557 if (tid == core) {
5558 for (int j = 0; j < nth_per_core; j++) {
5559 int osID = procarr[i * nth_per_core + j];
5560 if (osID != -1) {
5561 KMP_CPU_SET(osID, mask);
5562 // For fine granularity it is enough to set the first available
5563 // osID for this core
5564 if (fine_gran) {
5565 break;
5566 }
5567 }
5568 }
5569 break;
5570 } else {
5571 core++;
5572 }
5573 }
5574 }
5575 } else { // nthreads > ncores
5576 // Array to save the number of processors at each core
5577 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5578 // Array to save the number of cores with "x" available processors;
5579 int *ncores_with_x_procs =
5580 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5581 // Array to save the number of cores with # procs from x to nth_per_core
5582 int *ncores_with_x_to_max_procs =
5583 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5584
5585 for (int i = 0; i <= nth_per_core; i++) {
5586 ncores_with_x_procs[i] = 0;
5587 ncores_with_x_to_max_procs[i] = 0;
5588 }
5589
5590 for (int i = 0; i < ncores; i++) {
5591 int cnt = 0;
5592 for (int j = 0; j < nth_per_core; j++) {
5593 if (procarr[i * nth_per_core + j] != -1) {
5594 cnt++;
5595 }
5596 }
5597 nproc_at_core[i] = cnt;
5598 ncores_with_x_procs[cnt]++;
5599 }
5600
5601 for (int i = 0; i <= nth_per_core; i++) {
5602 for (int j = i; j <= nth_per_core; j++) {
5603 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5604 }
5605 }
5606
5607 // Max number of processors
5608 int nproc = nth_per_core * ncores;
5609 // An array to keep number of threads per each context
5610 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5611 for (int i = 0; i < nproc; i++) {
5612 newarr[i] = 0;
5613 }
5614
5615 int nth = nthreads;
5616 int flag = 0;
5617 while (nth > 0) {
5618 for (int j = 1; j <= nth_per_core; j++) {
5619 int cnt = ncores_with_x_to_max_procs[j];
5620 for (int i = 0; i < ncores; i++) {
5621 // Skip the core with 0 processors
5622 if (nproc_at_core[i] == 0) {
5623 continue;
5624 }
5625 for (int k = 0; k < nth_per_core; k++) {
5626 if (procarr[i * nth_per_core + k] != -1) {
5627 if (newarr[i * nth_per_core + k] == 0) {
5628 newarr[i * nth_per_core + k] = 1;
5629 cnt--;
5630 nth--;
5631 break;
5632 } else {
5633 if (flag != 0) {
5634 newarr[i * nth_per_core + k]++;
5635 cnt--;
5636 nth--;
5637 break;
5638 }
5639 }
5640 }
5641 }
5642 if (cnt == 0 || nth == 0) {
5643 break;
5644 }
5645 }
5646 if (nth == 0) {
5647 break;
5648 }
5649 }
5650 flag = 1;
5651 }
5652 int sum = 0;
5653 for (int i = 0; i < nproc; i++) {
5654 sum += newarr[i];
5655 if (sum > tid) {
5656 if (fine_gran) {
5657 int osID = procarr[i];
5658 KMP_CPU_SET(osID, mask);
5659 } else {
5660 int coreID = i / nth_per_core;
5661 for (int ii = 0; ii < nth_per_core; ii++) {
5662 int osID = procarr[coreID * nth_per_core + ii];
5663 if (osID != -1) {
5664 KMP_CPU_SET(osID, mask);
5665 }
5666 }
5667 }
5668 break;
5669 }
5670 }
5671 __kmp_free(newarr);
5672 }
5673
5674 if (__kmp_affinity.flags.verbose) {
5675 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5676 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5677 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5678 tid, buf);
5679 }
5680 __kmp_affinity_get_thread_topology_info(th);
5681 __kmp_set_system_affinity(mask, TRUE);
5682 }
5683 }
5684
5685 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
5686 KMP_OS_AIX
5687 // We don't need this entry for Windows because
5688 // there is GetProcessAffinityMask() api
5689 //
5690 // The intended usage is indicated by these steps:
5691 // 1) The user gets the current affinity mask
5692 // 2) Then sets the affinity by calling this function
5693 // 3) Error check the return value
5694 // 4) Use non-OpenMP parallelization
5695 // 5) Reset the affinity to what was stored in step 1)
5696 #ifdef __cplusplus
5697 extern "C"
5698 #endif
5699 int
kmp_set_thread_affinity_mask_initial()5700 kmp_set_thread_affinity_mask_initial()
5701 // the function returns 0 on success,
5702 // -1 if we cannot bind thread
5703 // >0 (errno) if an error happened during binding
5704 {
5705 int gtid = __kmp_get_gtid();
5706 if (gtid < 0) {
5707 // Do not touch non-omp threads
5708 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5709 "non-omp thread, returning\n"));
5710 return -1;
5711 }
5712 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5713 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5714 "affinity not initialized, returning\n"));
5715 return -1;
5716 }
5717 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5718 "set full mask for thread %d\n",
5719 gtid));
5720 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5721 #if KMP_OS_AIX
5722 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
5723 #else
5724 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5725 #endif
5726 }
5727 #endif
5728
5729 #endif // KMP_AFFINITY_SUPPORTED
5730