1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 #include <uapi/linux/iommufd.h>
36
37 #include "dma-iommu.h"
38 #include "iommu-priv.h"
39
40 static struct kset *iommu_group_kset;
41 static DEFINE_IDA(iommu_group_ida);
42 static DEFINE_IDA(iommu_global_pasid_ida);
43
44 static unsigned int iommu_def_domain_type __read_mostly;
45 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
46 static u32 iommu_cmd_line __read_mostly;
47
48 /* Tags used with xa_tag_pointer() in group->pasid_array */
49 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
50
51 struct iommu_group {
52 struct kobject kobj;
53 struct kobject *devices_kobj;
54 struct list_head devices;
55 struct xarray pasid_array;
56 struct mutex mutex;
57 void *iommu_data;
58 void (*iommu_data_release)(void *iommu_data);
59 char *name;
60 int id;
61 struct iommu_domain *default_domain;
62 struct iommu_domain *blocking_domain;
63 struct iommu_domain *domain;
64 struct list_head entry;
65 unsigned int owner_cnt;
66 void *owner;
67 };
68
69 struct group_device {
70 struct list_head list;
71 struct device *dev;
72 char *name;
73 };
74
75 /* Iterate over each struct group_device in a struct iommu_group */
76 #define for_each_group_device(group, pos) \
77 list_for_each_entry(pos, &(group)->devices, list)
78
79 struct iommu_group_attribute {
80 struct attribute attr;
81 ssize_t (*show)(struct iommu_group *group, char *buf);
82 ssize_t (*store)(struct iommu_group *group,
83 const char *buf, size_t count);
84 };
85
86 static const char * const iommu_group_resv_type_string[] = {
87 [IOMMU_RESV_DIRECT] = "direct",
88 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
89 [IOMMU_RESV_RESERVED] = "reserved",
90 [IOMMU_RESV_MSI] = "msi",
91 [IOMMU_RESV_SW_MSI] = "msi",
92 };
93
94 #define IOMMU_CMD_LINE_DMA_API BIT(0)
95 #define IOMMU_CMD_LINE_STRICT BIT(1)
96
97 static int bus_iommu_probe(const struct bus_type *bus);
98 static int iommu_bus_notifier(struct notifier_block *nb,
99 unsigned long action, void *data);
100 static void iommu_release_device(struct device *dev);
101 static int __iommu_attach_device(struct iommu_domain *domain,
102 struct device *dev);
103 static int __iommu_attach_group(struct iommu_domain *domain,
104 struct iommu_group *group);
105 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
106 unsigned int type,
107 unsigned int flags);
108
109 enum {
110 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
111 };
112
113 static int __iommu_device_set_domain(struct iommu_group *group,
114 struct device *dev,
115 struct iommu_domain *new_domain,
116 unsigned int flags);
117 static int __iommu_group_set_domain_internal(struct iommu_group *group,
118 struct iommu_domain *new_domain,
119 unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)120 static int __iommu_group_set_domain(struct iommu_group *group,
121 struct iommu_domain *new_domain)
122 {
123 return __iommu_group_set_domain_internal(group, new_domain, 0);
124 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)125 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
126 struct iommu_domain *new_domain)
127 {
128 WARN_ON(__iommu_group_set_domain_internal(
129 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
130 }
131
132 static int iommu_setup_default_domain(struct iommu_group *group,
133 int target_type);
134 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
135 struct device *dev);
136 static ssize_t iommu_group_store_type(struct iommu_group *group,
137 const char *buf, size_t count);
138 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
139 struct device *dev);
140 static void __iommu_group_free_device(struct iommu_group *group,
141 struct group_device *grp_dev);
142 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
143 const struct iommu_ops *ops);
144
145 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
146 struct iommu_group_attribute iommu_group_attr_##_name = \
147 __ATTR(_name, _mode, _show, _store)
148
149 #define to_iommu_group_attr(_attr) \
150 container_of(_attr, struct iommu_group_attribute, attr)
151 #define to_iommu_group(_kobj) \
152 container_of(_kobj, struct iommu_group, kobj)
153
154 static LIST_HEAD(iommu_device_list);
155 static DEFINE_SPINLOCK(iommu_device_lock);
156
157 static const struct bus_type * const iommu_buses[] = {
158 &platform_bus_type,
159 #ifdef CONFIG_PCI
160 &pci_bus_type,
161 #endif
162 #ifdef CONFIG_ARM_AMBA
163 &amba_bustype,
164 #endif
165 #ifdef CONFIG_FSL_MC_BUS
166 &fsl_mc_bus_type,
167 #endif
168 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
169 &host1x_context_device_bus_type,
170 #endif
171 #ifdef CONFIG_CDX_BUS
172 &cdx_bus_type,
173 #endif
174 };
175
176 /*
177 * Use a function instead of an array here because the domain-type is a
178 * bit-field, so an array would waste memory.
179 */
iommu_domain_type_str(unsigned int t)180 static const char *iommu_domain_type_str(unsigned int t)
181 {
182 switch (t) {
183 case IOMMU_DOMAIN_BLOCKED:
184 return "Blocked";
185 case IOMMU_DOMAIN_IDENTITY:
186 return "Passthrough";
187 case IOMMU_DOMAIN_UNMANAGED:
188 return "Unmanaged";
189 case IOMMU_DOMAIN_DMA:
190 case IOMMU_DOMAIN_DMA_FQ:
191 return "Translated";
192 case IOMMU_DOMAIN_PLATFORM:
193 return "Platform";
194 default:
195 return "Unknown";
196 }
197 }
198
iommu_subsys_init(void)199 static int __init iommu_subsys_init(void)
200 {
201 struct notifier_block *nb;
202
203 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
204 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
205 iommu_set_default_passthrough(false);
206 else
207 iommu_set_default_translated(false);
208
209 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
210 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
211 iommu_set_default_translated(false);
212 }
213 }
214
215 if (!iommu_default_passthrough() && !iommu_dma_strict)
216 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
217
218 pr_info("Default domain type: %s%s\n",
219 iommu_domain_type_str(iommu_def_domain_type),
220 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
221 " (set via kernel command line)" : "");
222
223 if (!iommu_default_passthrough())
224 pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
225 iommu_dma_strict ? "strict" : "lazy",
226 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
227 " (set via kernel command line)" : "");
228
229 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
230 if (!nb)
231 return -ENOMEM;
232
233 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
234 nb[i].notifier_call = iommu_bus_notifier;
235 bus_register_notifier(iommu_buses[i], &nb[i]);
236 }
237
238 return 0;
239 }
240 subsys_initcall(iommu_subsys_init);
241
remove_iommu_group(struct device * dev,void * data)242 static int remove_iommu_group(struct device *dev, void *data)
243 {
244 if (dev->iommu && dev->iommu->iommu_dev == data)
245 iommu_release_device(dev);
246
247 return 0;
248 }
249
250 /**
251 * iommu_device_register() - Register an IOMMU hardware instance
252 * @iommu: IOMMU handle for the instance
253 * @ops: IOMMU ops to associate with the instance
254 * @hwdev: (optional) actual instance device, used for fwnode lookup
255 *
256 * Return: 0 on success, or an error.
257 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)258 int iommu_device_register(struct iommu_device *iommu,
259 const struct iommu_ops *ops, struct device *hwdev)
260 {
261 int err = 0;
262
263 /* We need to be able to take module references appropriately */
264 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
265 return -EINVAL;
266
267 iommu->ops = ops;
268 if (hwdev)
269 iommu->fwnode = dev_fwnode(hwdev);
270
271 spin_lock(&iommu_device_lock);
272 list_add_tail(&iommu->list, &iommu_device_list);
273 spin_unlock(&iommu_device_lock);
274
275 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
276 err = bus_iommu_probe(iommu_buses[i]);
277 if (err)
278 iommu_device_unregister(iommu);
279 return err;
280 }
281 EXPORT_SYMBOL_GPL(iommu_device_register);
282
iommu_device_unregister(struct iommu_device * iommu)283 void iommu_device_unregister(struct iommu_device *iommu)
284 {
285 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
286 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
287
288 spin_lock(&iommu_device_lock);
289 list_del(&iommu->list);
290 spin_unlock(&iommu_device_lock);
291
292 /* Pairs with the alloc in generic_single_device_group() */
293 iommu_group_put(iommu->singleton_group);
294 iommu->singleton_group = NULL;
295 }
296 EXPORT_SYMBOL_GPL(iommu_device_unregister);
297
298 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)299 void iommu_device_unregister_bus(struct iommu_device *iommu,
300 const struct bus_type *bus,
301 struct notifier_block *nb)
302 {
303 bus_unregister_notifier(bus, nb);
304 iommu_device_unregister(iommu);
305 }
306 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
307
308 /*
309 * Register an iommu driver against a single bus. This is only used by iommufd
310 * selftest to create a mock iommu driver. The caller must provide
311 * some memory to hold a notifier_block.
312 */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)313 int iommu_device_register_bus(struct iommu_device *iommu,
314 const struct iommu_ops *ops,
315 const struct bus_type *bus,
316 struct notifier_block *nb)
317 {
318 int err;
319
320 iommu->ops = ops;
321 nb->notifier_call = iommu_bus_notifier;
322 err = bus_register_notifier(bus, nb);
323 if (err)
324 return err;
325
326 spin_lock(&iommu_device_lock);
327 list_add_tail(&iommu->list, &iommu_device_list);
328 spin_unlock(&iommu_device_lock);
329
330 err = bus_iommu_probe(bus);
331 if (err) {
332 iommu_device_unregister_bus(iommu, bus, nb);
333 return err;
334 }
335 return 0;
336 }
337 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
338 #endif
339
dev_iommu_get(struct device * dev)340 static struct dev_iommu *dev_iommu_get(struct device *dev)
341 {
342 struct dev_iommu *param = dev->iommu;
343
344 lockdep_assert_held(&iommu_probe_device_lock);
345
346 if (param)
347 return param;
348
349 param = kzalloc(sizeof(*param), GFP_KERNEL);
350 if (!param)
351 return NULL;
352
353 mutex_init(¶m->lock);
354 dev->iommu = param;
355 return param;
356 }
357
dev_iommu_free(struct device * dev)358 void dev_iommu_free(struct device *dev)
359 {
360 struct dev_iommu *param = dev->iommu;
361
362 dev->iommu = NULL;
363 if (param->fwspec) {
364 fwnode_handle_put(param->fwspec->iommu_fwnode);
365 kfree(param->fwspec);
366 }
367 kfree(param);
368 }
369
370 /*
371 * Internal equivalent of device_iommu_mapped() for when we care that a device
372 * actually has API ops, and don't want false positives from VFIO-only groups.
373 */
dev_has_iommu(struct device * dev)374 static bool dev_has_iommu(struct device *dev)
375 {
376 return dev->iommu && dev->iommu->iommu_dev;
377 }
378
dev_iommu_get_max_pasids(struct device * dev)379 static u32 dev_iommu_get_max_pasids(struct device *dev)
380 {
381 u32 max_pasids = 0, bits = 0;
382 int ret;
383
384 if (dev_is_pci(dev)) {
385 ret = pci_max_pasids(to_pci_dev(dev));
386 if (ret > 0)
387 max_pasids = ret;
388 } else {
389 ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
390 if (!ret)
391 max_pasids = 1UL << bits;
392 }
393
394 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
395 }
396
dev_iommu_priv_set(struct device * dev,void * priv)397 void dev_iommu_priv_set(struct device *dev, void *priv)
398 {
399 /* FSL_PAMU does something weird */
400 if (!IS_ENABLED(CONFIG_FSL_PAMU))
401 lockdep_assert_held(&iommu_probe_device_lock);
402 dev->iommu->priv = priv;
403 }
404 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
405
406 /*
407 * Init the dev->iommu and dev->iommu_group in the struct device and get the
408 * driver probed
409 */
iommu_init_device(struct device * dev)410 static int iommu_init_device(struct device *dev)
411 {
412 const struct iommu_ops *ops;
413 struct iommu_device *iommu_dev;
414 struct iommu_group *group;
415 int ret;
416
417 if (!dev_iommu_get(dev))
418 return -ENOMEM;
419 /*
420 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
421 * is buried in the bus dma_configure path. Properly unpicking that is
422 * still a big job, so for now just invoke the whole thing. The device
423 * already having a driver bound means dma_configure has already run and
424 * either found no IOMMU to wait for, or we're in its replay call right
425 * now, so either way there's no point calling it again.
426 */
427 if (!dev->driver && dev->bus->dma_configure) {
428 mutex_unlock(&iommu_probe_device_lock);
429 dev->bus->dma_configure(dev);
430 mutex_lock(&iommu_probe_device_lock);
431 }
432 /*
433 * At this point, relevant devices either now have a fwspec which will
434 * match ops registered with a non-NULL fwnode, or we can reasonably
435 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
436 * be present, and that any of their registered instances has suitable
437 * ops for probing, and thus cheekily co-opt the same mechanism.
438 */
439 ops = iommu_fwspec_ops(dev->iommu->fwspec);
440 if (!ops) {
441 ret = -ENODEV;
442 goto err_free;
443 }
444
445 if (!try_module_get(ops->owner)) {
446 ret = -EINVAL;
447 goto err_free;
448 }
449
450 iommu_dev = ops->probe_device(dev);
451 if (IS_ERR(iommu_dev)) {
452 ret = PTR_ERR(iommu_dev);
453 goto err_module_put;
454 }
455 dev->iommu->iommu_dev = iommu_dev;
456
457 ret = iommu_device_link(iommu_dev, dev);
458 if (ret)
459 goto err_release;
460
461 group = ops->device_group(dev);
462 if (WARN_ON_ONCE(group == NULL))
463 group = ERR_PTR(-EINVAL);
464 if (IS_ERR(group)) {
465 ret = PTR_ERR(group);
466 goto err_unlink;
467 }
468 dev->iommu_group = group;
469
470 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
471 if (ops->is_attach_deferred)
472 dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
473 return 0;
474
475 err_unlink:
476 iommu_device_unlink(iommu_dev, dev);
477 err_release:
478 if (ops->release_device)
479 ops->release_device(dev);
480 err_module_put:
481 module_put(ops->owner);
482 err_free:
483 dev->iommu->iommu_dev = NULL;
484 dev_iommu_free(dev);
485 return ret;
486 }
487
iommu_deinit_device(struct device * dev)488 static void iommu_deinit_device(struct device *dev)
489 {
490 struct iommu_group *group = dev->iommu_group;
491 const struct iommu_ops *ops = dev_iommu_ops(dev);
492
493 lockdep_assert_held(&group->mutex);
494
495 iommu_device_unlink(dev->iommu->iommu_dev, dev);
496
497 /*
498 * release_device() must stop using any attached domain on the device.
499 * If there are still other devices in the group, they are not affected
500 * by this callback.
501 *
502 * If the iommu driver provides release_domain, the core code ensures
503 * that domain is attached prior to calling release_device. Drivers can
504 * use this to enforce a translation on the idle iommu. Typically, the
505 * global static blocked_domain is a good choice.
506 *
507 * Otherwise, the iommu driver must set the device to either an identity
508 * or a blocking translation in release_device() and stop using any
509 * domain pointer, as it is going to be freed.
510 *
511 * Regardless, if a delayed attach never occurred, then the release
512 * should still avoid touching any hardware configuration either.
513 */
514 if (!dev->iommu->attach_deferred && ops->release_domain)
515 ops->release_domain->ops->attach_dev(ops->release_domain, dev);
516
517 if (ops->release_device)
518 ops->release_device(dev);
519
520 /*
521 * If this is the last driver to use the group then we must free the
522 * domains before we do the module_put().
523 */
524 if (list_empty(&group->devices)) {
525 if (group->default_domain) {
526 iommu_domain_free(group->default_domain);
527 group->default_domain = NULL;
528 }
529 if (group->blocking_domain) {
530 iommu_domain_free(group->blocking_domain);
531 group->blocking_domain = NULL;
532 }
533 group->domain = NULL;
534 }
535
536 /* Caller must put iommu_group */
537 dev->iommu_group = NULL;
538 module_put(ops->owner);
539 dev_iommu_free(dev);
540 }
541
542 DEFINE_MUTEX(iommu_probe_device_lock);
543
__iommu_probe_device(struct device * dev,struct list_head * group_list)544 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
545 {
546 struct iommu_group *group;
547 struct group_device *gdev;
548 int ret;
549
550 /*
551 * Serialise to avoid races between IOMMU drivers registering in
552 * parallel and/or the "replay" calls from ACPI/OF code via client
553 * driver probe. Once the latter have been cleaned up we should
554 * probably be able to use device_lock() here to minimise the scope,
555 * but for now enforcing a simple global ordering is fine.
556 */
557 lockdep_assert_held(&iommu_probe_device_lock);
558
559 /* Device is probed already if in a group */
560 if (dev->iommu_group)
561 return 0;
562
563 ret = iommu_init_device(dev);
564 if (ret)
565 return ret;
566 /*
567 * And if we do now see any replay calls, they would indicate someone
568 * misusing the dma_configure path outside bus code.
569 */
570 if (dev->driver)
571 dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
572
573 group = dev->iommu_group;
574 gdev = iommu_group_alloc_device(group, dev);
575 mutex_lock(&group->mutex);
576 if (IS_ERR(gdev)) {
577 ret = PTR_ERR(gdev);
578 goto err_put_group;
579 }
580
581 /*
582 * The gdev must be in the list before calling
583 * iommu_setup_default_domain()
584 */
585 list_add_tail(&gdev->list, &group->devices);
586 WARN_ON(group->default_domain && !group->domain);
587 if (group->default_domain)
588 iommu_create_device_direct_mappings(group->default_domain, dev);
589 if (group->domain) {
590 ret = __iommu_device_set_domain(group, dev, group->domain, 0);
591 if (ret)
592 goto err_remove_gdev;
593 } else if (!group->default_domain && !group_list) {
594 ret = iommu_setup_default_domain(group, 0);
595 if (ret)
596 goto err_remove_gdev;
597 } else if (!group->default_domain) {
598 /*
599 * With a group_list argument we defer the default_domain setup
600 * to the caller by providing a de-duplicated list of groups
601 * that need further setup.
602 */
603 if (list_empty(&group->entry))
604 list_add_tail(&group->entry, group_list);
605 }
606
607 if (group->default_domain)
608 iommu_setup_dma_ops(dev);
609
610 mutex_unlock(&group->mutex);
611
612 return 0;
613
614 err_remove_gdev:
615 list_del(&gdev->list);
616 __iommu_group_free_device(group, gdev);
617 err_put_group:
618 iommu_deinit_device(dev);
619 mutex_unlock(&group->mutex);
620 iommu_group_put(group);
621
622 return ret;
623 }
624
iommu_probe_device(struct device * dev)625 int iommu_probe_device(struct device *dev)
626 {
627 const struct iommu_ops *ops;
628 int ret;
629
630 mutex_lock(&iommu_probe_device_lock);
631 ret = __iommu_probe_device(dev, NULL);
632 mutex_unlock(&iommu_probe_device_lock);
633 if (ret)
634 return ret;
635
636 ops = dev_iommu_ops(dev);
637 if (ops->probe_finalize)
638 ops->probe_finalize(dev);
639
640 return 0;
641 }
642
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)643 static void __iommu_group_free_device(struct iommu_group *group,
644 struct group_device *grp_dev)
645 {
646 struct device *dev = grp_dev->dev;
647
648 sysfs_remove_link(group->devices_kobj, grp_dev->name);
649 sysfs_remove_link(&dev->kobj, "iommu_group");
650
651 trace_remove_device_from_group(group->id, dev);
652
653 /*
654 * If the group has become empty then ownership must have been
655 * released, and the current domain must be set back to NULL or
656 * the default domain.
657 */
658 if (list_empty(&group->devices))
659 WARN_ON(group->owner_cnt ||
660 group->domain != group->default_domain);
661
662 kfree(grp_dev->name);
663 kfree(grp_dev);
664 }
665
666 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)667 static void __iommu_group_remove_device(struct device *dev)
668 {
669 struct iommu_group *group = dev->iommu_group;
670 struct group_device *device;
671
672 mutex_lock(&group->mutex);
673 for_each_group_device(group, device) {
674 if (device->dev != dev)
675 continue;
676
677 list_del(&device->list);
678 __iommu_group_free_device(group, device);
679 if (dev_has_iommu(dev))
680 iommu_deinit_device(dev);
681 else
682 dev->iommu_group = NULL;
683 break;
684 }
685 mutex_unlock(&group->mutex);
686
687 /*
688 * Pairs with the get in iommu_init_device() or
689 * iommu_group_add_device()
690 */
691 iommu_group_put(group);
692 }
693
iommu_release_device(struct device * dev)694 static void iommu_release_device(struct device *dev)
695 {
696 struct iommu_group *group = dev->iommu_group;
697
698 if (group)
699 __iommu_group_remove_device(dev);
700
701 /* Free any fwspec if no iommu_driver was ever attached */
702 if (dev->iommu)
703 dev_iommu_free(dev);
704 }
705
iommu_set_def_domain_type(char * str)706 static int __init iommu_set_def_domain_type(char *str)
707 {
708 bool pt;
709 int ret;
710
711 ret = kstrtobool(str, &pt);
712 if (ret)
713 return ret;
714
715 if (pt)
716 iommu_set_default_passthrough(true);
717 else
718 iommu_set_default_translated(true);
719
720 return 0;
721 }
722 early_param("iommu.passthrough", iommu_set_def_domain_type);
723
iommu_dma_setup(char * str)724 static int __init iommu_dma_setup(char *str)
725 {
726 int ret = kstrtobool(str, &iommu_dma_strict);
727
728 if (!ret)
729 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
730 return ret;
731 }
732 early_param("iommu.strict", iommu_dma_setup);
733
iommu_set_dma_strict(void)734 void iommu_set_dma_strict(void)
735 {
736 iommu_dma_strict = true;
737 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
738 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
739 }
740
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)741 static ssize_t iommu_group_attr_show(struct kobject *kobj,
742 struct attribute *__attr, char *buf)
743 {
744 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
745 struct iommu_group *group = to_iommu_group(kobj);
746 ssize_t ret = -EIO;
747
748 if (attr->show)
749 ret = attr->show(group, buf);
750 return ret;
751 }
752
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)753 static ssize_t iommu_group_attr_store(struct kobject *kobj,
754 struct attribute *__attr,
755 const char *buf, size_t count)
756 {
757 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
758 struct iommu_group *group = to_iommu_group(kobj);
759 ssize_t ret = -EIO;
760
761 if (attr->store)
762 ret = attr->store(group, buf, count);
763 return ret;
764 }
765
766 static const struct sysfs_ops iommu_group_sysfs_ops = {
767 .show = iommu_group_attr_show,
768 .store = iommu_group_attr_store,
769 };
770
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)771 static int iommu_group_create_file(struct iommu_group *group,
772 struct iommu_group_attribute *attr)
773 {
774 return sysfs_create_file(&group->kobj, &attr->attr);
775 }
776
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)777 static void iommu_group_remove_file(struct iommu_group *group,
778 struct iommu_group_attribute *attr)
779 {
780 sysfs_remove_file(&group->kobj, &attr->attr);
781 }
782
iommu_group_show_name(struct iommu_group * group,char * buf)783 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
784 {
785 return sysfs_emit(buf, "%s\n", group->name);
786 }
787
788 /**
789 * iommu_insert_resv_region - Insert a new region in the
790 * list of reserved regions.
791 * @new: new region to insert
792 * @regions: list of regions
793 *
794 * Elements are sorted by start address and overlapping segments
795 * of the same type are merged.
796 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)797 static int iommu_insert_resv_region(struct iommu_resv_region *new,
798 struct list_head *regions)
799 {
800 struct iommu_resv_region *iter, *tmp, *nr, *top;
801 LIST_HEAD(stack);
802
803 nr = iommu_alloc_resv_region(new->start, new->length,
804 new->prot, new->type, GFP_KERNEL);
805 if (!nr)
806 return -ENOMEM;
807
808 /* First add the new element based on start address sorting */
809 list_for_each_entry(iter, regions, list) {
810 if (nr->start < iter->start ||
811 (nr->start == iter->start && nr->type <= iter->type))
812 break;
813 }
814 list_add_tail(&nr->list, &iter->list);
815
816 /* Merge overlapping segments of type nr->type in @regions, if any */
817 list_for_each_entry_safe(iter, tmp, regions, list) {
818 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
819
820 /* no merge needed on elements of different types than @new */
821 if (iter->type != new->type) {
822 list_move_tail(&iter->list, &stack);
823 continue;
824 }
825
826 /* look for the last stack element of same type as @iter */
827 list_for_each_entry_reverse(top, &stack, list)
828 if (top->type == iter->type)
829 goto check_overlap;
830
831 list_move_tail(&iter->list, &stack);
832 continue;
833
834 check_overlap:
835 top_end = top->start + top->length - 1;
836
837 if (iter->start > top_end + 1) {
838 list_move_tail(&iter->list, &stack);
839 } else {
840 top->length = max(top_end, iter_end) - top->start + 1;
841 list_del(&iter->list);
842 kfree(iter);
843 }
844 }
845 list_splice(&stack, regions);
846 return 0;
847 }
848
849 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)850 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
851 struct list_head *group_resv_regions)
852 {
853 struct iommu_resv_region *entry;
854 int ret = 0;
855
856 list_for_each_entry(entry, dev_resv_regions, list) {
857 ret = iommu_insert_resv_region(entry, group_resv_regions);
858 if (ret)
859 break;
860 }
861 return ret;
862 }
863
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)864 int iommu_get_group_resv_regions(struct iommu_group *group,
865 struct list_head *head)
866 {
867 struct group_device *device;
868 int ret = 0;
869
870 mutex_lock(&group->mutex);
871 for_each_group_device(group, device) {
872 struct list_head dev_resv_regions;
873
874 /*
875 * Non-API groups still expose reserved_regions in sysfs,
876 * so filter out calls that get here that way.
877 */
878 if (!dev_has_iommu(device->dev))
879 break;
880
881 INIT_LIST_HEAD(&dev_resv_regions);
882 iommu_get_resv_regions(device->dev, &dev_resv_regions);
883 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
884 iommu_put_resv_regions(device->dev, &dev_resv_regions);
885 if (ret)
886 break;
887 }
888 mutex_unlock(&group->mutex);
889 return ret;
890 }
891 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
892
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)893 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
894 char *buf)
895 {
896 struct iommu_resv_region *region, *next;
897 struct list_head group_resv_regions;
898 int offset = 0;
899
900 INIT_LIST_HEAD(&group_resv_regions);
901 iommu_get_group_resv_regions(group, &group_resv_regions);
902
903 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
904 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
905 (long long)region->start,
906 (long long)(region->start +
907 region->length - 1),
908 iommu_group_resv_type_string[region->type]);
909 kfree(region);
910 }
911
912 return offset;
913 }
914
iommu_group_show_type(struct iommu_group * group,char * buf)915 static ssize_t iommu_group_show_type(struct iommu_group *group,
916 char *buf)
917 {
918 char *type = "unknown";
919
920 mutex_lock(&group->mutex);
921 if (group->default_domain) {
922 switch (group->default_domain->type) {
923 case IOMMU_DOMAIN_BLOCKED:
924 type = "blocked";
925 break;
926 case IOMMU_DOMAIN_IDENTITY:
927 type = "identity";
928 break;
929 case IOMMU_DOMAIN_UNMANAGED:
930 type = "unmanaged";
931 break;
932 case IOMMU_DOMAIN_DMA:
933 type = "DMA";
934 break;
935 case IOMMU_DOMAIN_DMA_FQ:
936 type = "DMA-FQ";
937 break;
938 }
939 }
940 mutex_unlock(&group->mutex);
941
942 return sysfs_emit(buf, "%s\n", type);
943 }
944
945 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
946
947 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
948 iommu_group_show_resv_regions, NULL);
949
950 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
951 iommu_group_store_type);
952
iommu_group_release(struct kobject * kobj)953 static void iommu_group_release(struct kobject *kobj)
954 {
955 struct iommu_group *group = to_iommu_group(kobj);
956
957 pr_debug("Releasing group %d\n", group->id);
958
959 if (group->iommu_data_release)
960 group->iommu_data_release(group->iommu_data);
961
962 ida_free(&iommu_group_ida, group->id);
963
964 /* Domains are free'd by iommu_deinit_device() */
965 WARN_ON(group->default_domain);
966 WARN_ON(group->blocking_domain);
967
968 kfree(group->name);
969 kfree(group);
970 }
971
972 static const struct kobj_type iommu_group_ktype = {
973 .sysfs_ops = &iommu_group_sysfs_ops,
974 .release = iommu_group_release,
975 };
976
977 /**
978 * iommu_group_alloc - Allocate a new group
979 *
980 * This function is called by an iommu driver to allocate a new iommu
981 * group. The iommu group represents the minimum granularity of the iommu.
982 * Upon successful return, the caller holds a reference to the supplied
983 * group in order to hold the group until devices are added. Use
984 * iommu_group_put() to release this extra reference count, allowing the
985 * group to be automatically reclaimed once it has no devices or external
986 * references.
987 */
iommu_group_alloc(void)988 struct iommu_group *iommu_group_alloc(void)
989 {
990 struct iommu_group *group;
991 int ret;
992
993 group = kzalloc(sizeof(*group), GFP_KERNEL);
994 if (!group)
995 return ERR_PTR(-ENOMEM);
996
997 group->kobj.kset = iommu_group_kset;
998 mutex_init(&group->mutex);
999 INIT_LIST_HEAD(&group->devices);
1000 INIT_LIST_HEAD(&group->entry);
1001 xa_init(&group->pasid_array);
1002
1003 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1004 if (ret < 0) {
1005 kfree(group);
1006 return ERR_PTR(ret);
1007 }
1008 group->id = ret;
1009
1010 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1011 NULL, "%d", group->id);
1012 if (ret) {
1013 kobject_put(&group->kobj);
1014 return ERR_PTR(ret);
1015 }
1016
1017 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1018 if (!group->devices_kobj) {
1019 kobject_put(&group->kobj); /* triggers .release & free */
1020 return ERR_PTR(-ENOMEM);
1021 }
1022
1023 /*
1024 * The devices_kobj holds a reference on the group kobject, so
1025 * as long as that exists so will the group. We can therefore
1026 * use the devices_kobj for reference counting.
1027 */
1028 kobject_put(&group->kobj);
1029
1030 ret = iommu_group_create_file(group,
1031 &iommu_group_attr_reserved_regions);
1032 if (ret) {
1033 kobject_put(group->devices_kobj);
1034 return ERR_PTR(ret);
1035 }
1036
1037 ret = iommu_group_create_file(group, &iommu_group_attr_type);
1038 if (ret) {
1039 kobject_put(group->devices_kobj);
1040 return ERR_PTR(ret);
1041 }
1042
1043 pr_debug("Allocated group %d\n", group->id);
1044
1045 return group;
1046 }
1047 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1048
1049 /**
1050 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1051 * @group: the group
1052 *
1053 * iommu drivers can store data in the group for use when doing iommu
1054 * operations. This function provides a way to retrieve it. Caller
1055 * should hold a group reference.
1056 */
iommu_group_get_iommudata(struct iommu_group * group)1057 void *iommu_group_get_iommudata(struct iommu_group *group)
1058 {
1059 return group->iommu_data;
1060 }
1061 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1062
1063 /**
1064 * iommu_group_set_iommudata - set iommu_data for a group
1065 * @group: the group
1066 * @iommu_data: new data
1067 * @release: release function for iommu_data
1068 *
1069 * iommu drivers can store data in the group for use when doing iommu
1070 * operations. This function provides a way to set the data after
1071 * the group has been allocated. Caller should hold a group reference.
1072 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1073 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1074 void (*release)(void *iommu_data))
1075 {
1076 group->iommu_data = iommu_data;
1077 group->iommu_data_release = release;
1078 }
1079 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1080
1081 /**
1082 * iommu_group_set_name - set name for a group
1083 * @group: the group
1084 * @name: name
1085 *
1086 * Allow iommu driver to set a name for a group. When set it will
1087 * appear in a name attribute file under the group in sysfs.
1088 */
iommu_group_set_name(struct iommu_group * group,const char * name)1089 int iommu_group_set_name(struct iommu_group *group, const char *name)
1090 {
1091 int ret;
1092
1093 if (group->name) {
1094 iommu_group_remove_file(group, &iommu_group_attr_name);
1095 kfree(group->name);
1096 group->name = NULL;
1097 if (!name)
1098 return 0;
1099 }
1100
1101 group->name = kstrdup(name, GFP_KERNEL);
1102 if (!group->name)
1103 return -ENOMEM;
1104
1105 ret = iommu_group_create_file(group, &iommu_group_attr_name);
1106 if (ret) {
1107 kfree(group->name);
1108 group->name = NULL;
1109 return ret;
1110 }
1111
1112 return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1115
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1116 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1117 struct device *dev)
1118 {
1119 struct iommu_resv_region *entry;
1120 struct list_head mappings;
1121 unsigned long pg_size;
1122 int ret = 0;
1123
1124 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1125 INIT_LIST_HEAD(&mappings);
1126
1127 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1128 return -EINVAL;
1129
1130 iommu_get_resv_regions(dev, &mappings);
1131
1132 /* We need to consider overlapping regions for different devices */
1133 list_for_each_entry(entry, &mappings, list) {
1134 dma_addr_t start, end, addr;
1135 size_t map_size = 0;
1136
1137 if (entry->type == IOMMU_RESV_DIRECT)
1138 dev->iommu->require_direct = 1;
1139
1140 if ((entry->type != IOMMU_RESV_DIRECT &&
1141 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1142 !iommu_is_dma_domain(domain))
1143 continue;
1144
1145 start = ALIGN(entry->start, pg_size);
1146 end = ALIGN(entry->start + entry->length, pg_size);
1147
1148 for (addr = start; addr <= end; addr += pg_size) {
1149 phys_addr_t phys_addr;
1150
1151 if (addr == end)
1152 goto map_end;
1153
1154 phys_addr = iommu_iova_to_phys(domain, addr);
1155 if (!phys_addr) {
1156 map_size += pg_size;
1157 continue;
1158 }
1159
1160 map_end:
1161 if (map_size) {
1162 ret = iommu_map(domain, addr - map_size,
1163 addr - map_size, map_size,
1164 entry->prot, GFP_KERNEL);
1165 if (ret)
1166 goto out;
1167 map_size = 0;
1168 }
1169 }
1170
1171 }
1172 out:
1173 iommu_put_resv_regions(dev, &mappings);
1174
1175 return ret;
1176 }
1177
1178 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1179 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1180 struct device *dev)
1181 {
1182 int ret, i = 0;
1183 struct group_device *device;
1184
1185 device = kzalloc(sizeof(*device), GFP_KERNEL);
1186 if (!device)
1187 return ERR_PTR(-ENOMEM);
1188
1189 device->dev = dev;
1190
1191 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1192 if (ret)
1193 goto err_free_device;
1194
1195 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1196 rename:
1197 if (!device->name) {
1198 ret = -ENOMEM;
1199 goto err_remove_link;
1200 }
1201
1202 ret = sysfs_create_link_nowarn(group->devices_kobj,
1203 &dev->kobj, device->name);
1204 if (ret) {
1205 if (ret == -EEXIST && i >= 0) {
1206 /*
1207 * Account for the slim chance of collision
1208 * and append an instance to the name.
1209 */
1210 kfree(device->name);
1211 device->name = kasprintf(GFP_KERNEL, "%s.%d",
1212 kobject_name(&dev->kobj), i++);
1213 goto rename;
1214 }
1215 goto err_free_name;
1216 }
1217
1218 trace_add_device_to_group(group->id, dev);
1219
1220 dev_info(dev, "Adding to iommu group %d\n", group->id);
1221
1222 return device;
1223
1224 err_free_name:
1225 kfree(device->name);
1226 err_remove_link:
1227 sysfs_remove_link(&dev->kobj, "iommu_group");
1228 err_free_device:
1229 kfree(device);
1230 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1231 return ERR_PTR(ret);
1232 }
1233
1234 /**
1235 * iommu_group_add_device - add a device to an iommu group
1236 * @group: the group into which to add the device (reference should be held)
1237 * @dev: the device
1238 *
1239 * This function is called by an iommu driver to add a device into a
1240 * group. Adding a device increments the group reference count.
1241 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1242 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1243 {
1244 struct group_device *gdev;
1245
1246 gdev = iommu_group_alloc_device(group, dev);
1247 if (IS_ERR(gdev))
1248 return PTR_ERR(gdev);
1249
1250 iommu_group_ref_get(group);
1251 dev->iommu_group = group;
1252
1253 mutex_lock(&group->mutex);
1254 list_add_tail(&gdev->list, &group->devices);
1255 mutex_unlock(&group->mutex);
1256 return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1259
1260 /**
1261 * iommu_group_remove_device - remove a device from it's current group
1262 * @dev: device to be removed
1263 *
1264 * This function is called by an iommu driver to remove the device from
1265 * it's current group. This decrements the iommu group reference count.
1266 */
iommu_group_remove_device(struct device * dev)1267 void iommu_group_remove_device(struct device *dev)
1268 {
1269 struct iommu_group *group = dev->iommu_group;
1270
1271 if (!group)
1272 return;
1273
1274 dev_info(dev, "Removing from iommu group %d\n", group->id);
1275
1276 __iommu_group_remove_device(dev);
1277 }
1278 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1279
1280 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1281 /**
1282 * iommu_group_mutex_assert - Check device group mutex lock
1283 * @dev: the device that has group param set
1284 *
1285 * This function is called by an iommu driver to check whether it holds
1286 * group mutex lock for the given device or not.
1287 *
1288 * Note that this function must be called after device group param is set.
1289 */
iommu_group_mutex_assert(struct device * dev)1290 void iommu_group_mutex_assert(struct device *dev)
1291 {
1292 struct iommu_group *group = dev->iommu_group;
1293
1294 lockdep_assert_held(&group->mutex);
1295 }
1296 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1297 #endif
1298
iommu_group_first_dev(struct iommu_group * group)1299 static struct device *iommu_group_first_dev(struct iommu_group *group)
1300 {
1301 lockdep_assert_held(&group->mutex);
1302 return list_first_entry(&group->devices, struct group_device, list)->dev;
1303 }
1304
1305 /**
1306 * iommu_group_for_each_dev - iterate over each device in the group
1307 * @group: the group
1308 * @data: caller opaque data to be passed to callback function
1309 * @fn: caller supplied callback function
1310 *
1311 * This function is called by group users to iterate over group devices.
1312 * Callers should hold a reference count to the group during callback.
1313 * The group->mutex is held across callbacks, which will block calls to
1314 * iommu_group_add/remove_device.
1315 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1316 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1317 int (*fn)(struct device *, void *))
1318 {
1319 struct group_device *device;
1320 int ret = 0;
1321
1322 mutex_lock(&group->mutex);
1323 for_each_group_device(group, device) {
1324 ret = fn(device->dev, data);
1325 if (ret)
1326 break;
1327 }
1328 mutex_unlock(&group->mutex);
1329
1330 return ret;
1331 }
1332 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1333
1334 /**
1335 * iommu_group_get - Return the group for a device and increment reference
1336 * @dev: get the group that this device belongs to
1337 *
1338 * This function is called by iommu drivers and users to get the group
1339 * for the specified device. If found, the group is returned and the group
1340 * reference in incremented, else NULL.
1341 */
iommu_group_get(struct device * dev)1342 struct iommu_group *iommu_group_get(struct device *dev)
1343 {
1344 struct iommu_group *group = dev->iommu_group;
1345
1346 if (group)
1347 kobject_get(group->devices_kobj);
1348
1349 return group;
1350 }
1351 EXPORT_SYMBOL_GPL(iommu_group_get);
1352
1353 /**
1354 * iommu_group_ref_get - Increment reference on a group
1355 * @group: the group to use, must not be NULL
1356 *
1357 * This function is called by iommu drivers to take additional references on an
1358 * existing group. Returns the given group for convenience.
1359 */
iommu_group_ref_get(struct iommu_group * group)1360 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1361 {
1362 kobject_get(group->devices_kobj);
1363 return group;
1364 }
1365 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1366
1367 /**
1368 * iommu_group_put - Decrement group reference
1369 * @group: the group to use
1370 *
1371 * This function is called by iommu drivers and users to release the
1372 * iommu group. Once the reference count is zero, the group is released.
1373 */
iommu_group_put(struct iommu_group * group)1374 void iommu_group_put(struct iommu_group *group)
1375 {
1376 if (group)
1377 kobject_put(group->devices_kobj);
1378 }
1379 EXPORT_SYMBOL_GPL(iommu_group_put);
1380
1381 /**
1382 * iommu_group_id - Return ID for a group
1383 * @group: the group to ID
1384 *
1385 * Return the unique ID for the group matching the sysfs group number.
1386 */
iommu_group_id(struct iommu_group * group)1387 int iommu_group_id(struct iommu_group *group)
1388 {
1389 return group->id;
1390 }
1391 EXPORT_SYMBOL_GPL(iommu_group_id);
1392
1393 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1394 unsigned long *devfns);
1395
1396 /*
1397 * To consider a PCI device isolated, we require ACS to support Source
1398 * Validation, Request Redirection, Completer Redirection, and Upstream
1399 * Forwarding. This effectively means that devices cannot spoof their
1400 * requester ID, requests and completions cannot be redirected, and all
1401 * transactions are forwarded upstream, even as it passes through a
1402 * bridge where the target device is downstream.
1403 */
1404 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1405
1406 /*
1407 * For multifunction devices which are not isolated from each other, find
1408 * all the other non-isolated functions and look for existing groups. For
1409 * each function, we also need to look for aliases to or from other devices
1410 * that may already have a group.
1411 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1412 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1413 unsigned long *devfns)
1414 {
1415 struct pci_dev *tmp = NULL;
1416 struct iommu_group *group;
1417
1418 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1419 return NULL;
1420
1421 for_each_pci_dev(tmp) {
1422 if (tmp == pdev || tmp->bus != pdev->bus ||
1423 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1424 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1425 continue;
1426
1427 group = get_pci_alias_group(tmp, devfns);
1428 if (group) {
1429 pci_dev_put(tmp);
1430 return group;
1431 }
1432 }
1433
1434 return NULL;
1435 }
1436
1437 /*
1438 * Look for aliases to or from the given device for existing groups. DMA
1439 * aliases are only supported on the same bus, therefore the search
1440 * space is quite small (especially since we're really only looking at pcie
1441 * device, and therefore only expect multiple slots on the root complex or
1442 * downstream switch ports). It's conceivable though that a pair of
1443 * multifunction devices could have aliases between them that would cause a
1444 * loop. To prevent this, we use a bitmap to track where we've been.
1445 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1446 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1447 unsigned long *devfns)
1448 {
1449 struct pci_dev *tmp = NULL;
1450 struct iommu_group *group;
1451
1452 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1453 return NULL;
1454
1455 group = iommu_group_get(&pdev->dev);
1456 if (group)
1457 return group;
1458
1459 for_each_pci_dev(tmp) {
1460 if (tmp == pdev || tmp->bus != pdev->bus)
1461 continue;
1462
1463 /* We alias them or they alias us */
1464 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1465 group = get_pci_alias_group(tmp, devfns);
1466 if (group) {
1467 pci_dev_put(tmp);
1468 return group;
1469 }
1470
1471 group = get_pci_function_alias_group(tmp, devfns);
1472 if (group) {
1473 pci_dev_put(tmp);
1474 return group;
1475 }
1476 }
1477 }
1478
1479 return NULL;
1480 }
1481
1482 struct group_for_pci_data {
1483 struct pci_dev *pdev;
1484 struct iommu_group *group;
1485 };
1486
1487 /*
1488 * DMA alias iterator callback, return the last seen device. Stop and return
1489 * the IOMMU group if we find one along the way.
1490 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1491 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1492 {
1493 struct group_for_pci_data *data = opaque;
1494
1495 data->pdev = pdev;
1496 data->group = iommu_group_get(&pdev->dev);
1497
1498 return data->group != NULL;
1499 }
1500
1501 /*
1502 * Generic device_group call-back function. It just allocates one
1503 * iommu-group per device.
1504 */
generic_device_group(struct device * dev)1505 struct iommu_group *generic_device_group(struct device *dev)
1506 {
1507 return iommu_group_alloc();
1508 }
1509 EXPORT_SYMBOL_GPL(generic_device_group);
1510
1511 /*
1512 * Generic device_group call-back function. It just allocates one
1513 * iommu-group per iommu driver instance shared by every device
1514 * probed by that iommu driver.
1515 */
generic_single_device_group(struct device * dev)1516 struct iommu_group *generic_single_device_group(struct device *dev)
1517 {
1518 struct iommu_device *iommu = dev->iommu->iommu_dev;
1519
1520 if (!iommu->singleton_group) {
1521 struct iommu_group *group;
1522
1523 group = iommu_group_alloc();
1524 if (IS_ERR(group))
1525 return group;
1526 iommu->singleton_group = group;
1527 }
1528 return iommu_group_ref_get(iommu->singleton_group);
1529 }
1530 EXPORT_SYMBOL_GPL(generic_single_device_group);
1531
1532 /*
1533 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1534 * to find or create an IOMMU group for a device.
1535 */
pci_device_group(struct device * dev)1536 struct iommu_group *pci_device_group(struct device *dev)
1537 {
1538 struct pci_dev *pdev = to_pci_dev(dev);
1539 struct group_for_pci_data data;
1540 struct pci_bus *bus;
1541 struct iommu_group *group = NULL;
1542 u64 devfns[4] = { 0 };
1543
1544 if (WARN_ON(!dev_is_pci(dev)))
1545 return ERR_PTR(-EINVAL);
1546
1547 /*
1548 * Find the upstream DMA alias for the device. A device must not
1549 * be aliased due to topology in order to have its own IOMMU group.
1550 * If we find an alias along the way that already belongs to a
1551 * group, use it.
1552 */
1553 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1554 return data.group;
1555
1556 pdev = data.pdev;
1557
1558 /*
1559 * Continue upstream from the point of minimum IOMMU granularity
1560 * due to aliases to the point where devices are protected from
1561 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1562 * group, use it.
1563 */
1564 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1565 if (!bus->self)
1566 continue;
1567
1568 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1569 break;
1570
1571 pdev = bus->self;
1572
1573 group = iommu_group_get(&pdev->dev);
1574 if (group)
1575 return group;
1576 }
1577
1578 /*
1579 * Look for existing groups on device aliases. If we alias another
1580 * device or another device aliases us, use the same group.
1581 */
1582 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1583 if (group)
1584 return group;
1585
1586 /*
1587 * Look for existing groups on non-isolated functions on the same
1588 * slot and aliases of those funcions, if any. No need to clear
1589 * the search bitmap, the tested devfns are still valid.
1590 */
1591 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1592 if (group)
1593 return group;
1594
1595 /* No shared group found, allocate new */
1596 return iommu_group_alloc();
1597 }
1598 EXPORT_SYMBOL_GPL(pci_device_group);
1599
1600 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1601 struct iommu_group *fsl_mc_device_group(struct device *dev)
1602 {
1603 struct device *cont_dev = fsl_mc_cont_dev(dev);
1604 struct iommu_group *group;
1605
1606 group = iommu_group_get(cont_dev);
1607 if (!group)
1608 group = iommu_group_alloc();
1609 return group;
1610 }
1611 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1612
__iommu_alloc_identity_domain(struct device * dev)1613 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1614 {
1615 const struct iommu_ops *ops = dev_iommu_ops(dev);
1616 struct iommu_domain *domain;
1617
1618 if (ops->identity_domain)
1619 return ops->identity_domain;
1620
1621 /* Older drivers create the identity domain via ops->domain_alloc() */
1622 if (!ops->domain_alloc)
1623 return ERR_PTR(-EOPNOTSUPP);
1624
1625 domain = ops->domain_alloc(IOMMU_DOMAIN_IDENTITY);
1626 if (IS_ERR(domain))
1627 return domain;
1628 if (!domain)
1629 return ERR_PTR(-ENOMEM);
1630
1631 iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1632 return domain;
1633 }
1634
1635 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1636 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1637 {
1638 struct device *dev = iommu_group_first_dev(group);
1639 struct iommu_domain *dom;
1640
1641 if (group->default_domain && group->default_domain->type == req_type)
1642 return group->default_domain;
1643
1644 /*
1645 * When allocating the DMA API domain assume that the driver is going to
1646 * use PASID and make sure the RID's domain is PASID compatible.
1647 */
1648 if (req_type & __IOMMU_DOMAIN_PAGING) {
1649 dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1650 dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1651
1652 /*
1653 * If driver does not support PASID feature then
1654 * try to allocate non-PASID domain
1655 */
1656 if (PTR_ERR(dom) == -EOPNOTSUPP)
1657 dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1658
1659 return dom;
1660 }
1661
1662 if (req_type == IOMMU_DOMAIN_IDENTITY)
1663 return __iommu_alloc_identity_domain(dev);
1664
1665 return ERR_PTR(-EINVAL);
1666 }
1667
1668 /*
1669 * req_type of 0 means "auto" which means to select a domain based on
1670 * iommu_def_domain_type or what the driver actually supports.
1671 */
1672 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1673 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1674 {
1675 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1676 struct iommu_domain *dom;
1677
1678 lockdep_assert_held(&group->mutex);
1679
1680 /*
1681 * Allow legacy drivers to specify the domain that will be the default
1682 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1683 * domain. Do not use in new drivers.
1684 */
1685 if (ops->default_domain) {
1686 if (req_type != ops->default_domain->type)
1687 return ERR_PTR(-EINVAL);
1688 return ops->default_domain;
1689 }
1690
1691 if (req_type)
1692 return __iommu_group_alloc_default_domain(group, req_type);
1693
1694 /* The driver gave no guidance on what type to use, try the default */
1695 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1696 if (!IS_ERR(dom))
1697 return dom;
1698
1699 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1700 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1701 return ERR_PTR(-EINVAL);
1702 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1703 if (IS_ERR(dom))
1704 return dom;
1705
1706 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1707 iommu_def_domain_type, group->name);
1708 return dom;
1709 }
1710
iommu_group_default_domain(struct iommu_group * group)1711 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1712 {
1713 return group->default_domain;
1714 }
1715
probe_iommu_group(struct device * dev,void * data)1716 static int probe_iommu_group(struct device *dev, void *data)
1717 {
1718 struct list_head *group_list = data;
1719 int ret;
1720
1721 mutex_lock(&iommu_probe_device_lock);
1722 ret = __iommu_probe_device(dev, group_list);
1723 mutex_unlock(&iommu_probe_device_lock);
1724 if (ret == -ENODEV)
1725 ret = 0;
1726
1727 return ret;
1728 }
1729
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1730 static int iommu_bus_notifier(struct notifier_block *nb,
1731 unsigned long action, void *data)
1732 {
1733 struct device *dev = data;
1734
1735 if (action == BUS_NOTIFY_ADD_DEVICE) {
1736 int ret;
1737
1738 ret = iommu_probe_device(dev);
1739 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1740 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1741 iommu_release_device(dev);
1742 return NOTIFY_OK;
1743 }
1744
1745 return 0;
1746 }
1747
1748 /*
1749 * Combine the driver's chosen def_domain_type across all the devices in a
1750 * group. Drivers must give a consistent result.
1751 */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1752 static int iommu_get_def_domain_type(struct iommu_group *group,
1753 struct device *dev, int cur_type)
1754 {
1755 const struct iommu_ops *ops = dev_iommu_ops(dev);
1756 int type;
1757
1758 if (ops->default_domain) {
1759 /*
1760 * Drivers that declare a global static default_domain will
1761 * always choose that.
1762 */
1763 type = ops->default_domain->type;
1764 } else {
1765 if (ops->def_domain_type)
1766 type = ops->def_domain_type(dev);
1767 else
1768 return cur_type;
1769 }
1770 if (!type || cur_type == type)
1771 return cur_type;
1772 if (!cur_type)
1773 return type;
1774
1775 dev_err_ratelimited(
1776 dev,
1777 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1778 iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1779 group->id);
1780
1781 /*
1782 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1783 * takes precedence.
1784 */
1785 if (type == IOMMU_DOMAIN_IDENTITY)
1786 return type;
1787 return cur_type;
1788 }
1789
1790 /*
1791 * A target_type of 0 will select the best domain type. 0 can be returned in
1792 * this case meaning the global default should be used.
1793 */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1794 static int iommu_get_default_domain_type(struct iommu_group *group,
1795 int target_type)
1796 {
1797 struct device *untrusted = NULL;
1798 struct group_device *gdev;
1799 int driver_type = 0;
1800
1801 lockdep_assert_held(&group->mutex);
1802
1803 /*
1804 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1805 * identity_domain and it will automatically become their default
1806 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1807 * Override the selection to IDENTITY.
1808 */
1809 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1810 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1811 IS_ENABLED(CONFIG_IOMMU_DMA)));
1812 driver_type = IOMMU_DOMAIN_IDENTITY;
1813 }
1814
1815 for_each_group_device(group, gdev) {
1816 driver_type = iommu_get_def_domain_type(group, gdev->dev,
1817 driver_type);
1818
1819 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1820 /*
1821 * No ARM32 using systems will set untrusted, it cannot
1822 * work.
1823 */
1824 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1825 return -1;
1826 untrusted = gdev->dev;
1827 }
1828 }
1829
1830 /*
1831 * If the common dma ops are not selected in kconfig then we cannot use
1832 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1833 * selected.
1834 */
1835 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1836 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1837 return -1;
1838 if (!driver_type)
1839 driver_type = IOMMU_DOMAIN_IDENTITY;
1840 }
1841
1842 if (untrusted) {
1843 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1844 dev_err_ratelimited(
1845 untrusted,
1846 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1847 group->id, iommu_domain_type_str(driver_type));
1848 return -1;
1849 }
1850 driver_type = IOMMU_DOMAIN_DMA;
1851 }
1852
1853 if (target_type) {
1854 if (driver_type && target_type != driver_type)
1855 return -1;
1856 return target_type;
1857 }
1858 return driver_type;
1859 }
1860
iommu_group_do_probe_finalize(struct device * dev)1861 static void iommu_group_do_probe_finalize(struct device *dev)
1862 {
1863 const struct iommu_ops *ops = dev_iommu_ops(dev);
1864
1865 if (ops->probe_finalize)
1866 ops->probe_finalize(dev);
1867 }
1868
bus_iommu_probe(const struct bus_type * bus)1869 static int bus_iommu_probe(const struct bus_type *bus)
1870 {
1871 struct iommu_group *group, *next;
1872 LIST_HEAD(group_list);
1873 int ret;
1874
1875 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1876 if (ret)
1877 return ret;
1878
1879 list_for_each_entry_safe(group, next, &group_list, entry) {
1880 struct group_device *gdev;
1881
1882 mutex_lock(&group->mutex);
1883
1884 /* Remove item from the list */
1885 list_del_init(&group->entry);
1886
1887 /*
1888 * We go to the trouble of deferred default domain creation so
1889 * that the cross-group default domain type and the setup of the
1890 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1891 */
1892 ret = iommu_setup_default_domain(group, 0);
1893 if (ret) {
1894 mutex_unlock(&group->mutex);
1895 return ret;
1896 }
1897 for_each_group_device(group, gdev)
1898 iommu_setup_dma_ops(gdev->dev);
1899 mutex_unlock(&group->mutex);
1900
1901 /*
1902 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1903 * of some IOMMU drivers calls arm_iommu_attach_device() which
1904 * in-turn might call back into IOMMU core code, where it tries
1905 * to take group->mutex, resulting in a deadlock.
1906 */
1907 for_each_group_device(group, gdev)
1908 iommu_group_do_probe_finalize(gdev->dev);
1909 }
1910
1911 return 0;
1912 }
1913
1914 /**
1915 * device_iommu_capable() - check for a general IOMMU capability
1916 * @dev: device to which the capability would be relevant, if available
1917 * @cap: IOMMU capability
1918 *
1919 * Return: true if an IOMMU is present and supports the given capability
1920 * for the given device, otherwise false.
1921 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1922 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1923 {
1924 const struct iommu_ops *ops;
1925
1926 if (!dev_has_iommu(dev))
1927 return false;
1928
1929 ops = dev_iommu_ops(dev);
1930 if (!ops->capable)
1931 return false;
1932
1933 return ops->capable(dev, cap);
1934 }
1935 EXPORT_SYMBOL_GPL(device_iommu_capable);
1936
1937 /**
1938 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1939 * for a group
1940 * @group: Group to query
1941 *
1942 * IOMMU groups should not have differing values of
1943 * msi_device_has_isolated_msi() for devices in a group. However nothing
1944 * directly prevents this, so ensure mistakes don't result in isolation failures
1945 * by checking that all the devices are the same.
1946 */
iommu_group_has_isolated_msi(struct iommu_group * group)1947 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1948 {
1949 struct group_device *group_dev;
1950 bool ret = true;
1951
1952 mutex_lock(&group->mutex);
1953 for_each_group_device(group, group_dev)
1954 ret &= msi_device_has_isolated_msi(group_dev->dev);
1955 mutex_unlock(&group->mutex);
1956 return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1959
1960 /**
1961 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1962 * @domain: iommu domain
1963 * @handler: fault handler
1964 * @token: user data, will be passed back to the fault handler
1965 *
1966 * This function should be used by IOMMU users which want to be notified
1967 * whenever an IOMMU fault happens.
1968 *
1969 * The fault handler itself should return 0 on success, and an appropriate
1970 * error code otherwise.
1971 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1972 void iommu_set_fault_handler(struct iommu_domain *domain,
1973 iommu_fault_handler_t handler,
1974 void *token)
1975 {
1976 BUG_ON(!domain);
1977
1978 domain->handler = handler;
1979 domain->handler_token = token;
1980 }
1981 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1982
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)1983 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
1984 const struct iommu_ops *ops)
1985 {
1986 domain->type = type;
1987 domain->owner = ops;
1988 if (!domain->ops)
1989 domain->ops = ops->default_domain_ops;
1990
1991 /*
1992 * If not already set, assume all sizes by default; the driver
1993 * may override this later
1994 */
1995 if (!domain->pgsize_bitmap)
1996 domain->pgsize_bitmap = ops->pgsize_bitmap;
1997 }
1998
1999 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2000 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2001 unsigned int flags)
2002 {
2003 const struct iommu_ops *ops;
2004 struct iommu_domain *domain;
2005
2006 if (!dev_has_iommu(dev))
2007 return ERR_PTR(-ENODEV);
2008
2009 ops = dev_iommu_ops(dev);
2010
2011 if (ops->domain_alloc_paging && !flags)
2012 domain = ops->domain_alloc_paging(dev);
2013 else if (ops->domain_alloc_paging_flags)
2014 domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2015 else if (ops->domain_alloc && !flags)
2016 domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2017 else
2018 return ERR_PTR(-EOPNOTSUPP);
2019
2020 if (IS_ERR(domain))
2021 return domain;
2022 if (!domain)
2023 return ERR_PTR(-ENOMEM);
2024
2025 iommu_domain_init(domain, type, ops);
2026 return domain;
2027 }
2028
2029 /**
2030 * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2031 * @dev: device for which the domain is allocated
2032 * @flags: Bitmap of iommufd_hwpt_alloc_flags
2033 *
2034 * Allocate a paging domain which will be managed by a kernel driver. Return
2035 * allocated domain if successful, or an ERR pointer for failure.
2036 */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2037 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2038 unsigned int flags)
2039 {
2040 return __iommu_paging_domain_alloc_flags(dev,
2041 IOMMU_DOMAIN_UNMANAGED, flags);
2042 }
2043 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2044
iommu_domain_free(struct iommu_domain * domain)2045 void iommu_domain_free(struct iommu_domain *domain)
2046 {
2047 if (domain->type == IOMMU_DOMAIN_SVA)
2048 mmdrop(domain->mm);
2049 iommu_put_dma_cookie(domain);
2050 if (domain->ops->free)
2051 domain->ops->free(domain);
2052 }
2053 EXPORT_SYMBOL_GPL(iommu_domain_free);
2054
2055 /*
2056 * Put the group's domain back to the appropriate core-owned domain - either the
2057 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2058 */
__iommu_group_set_core_domain(struct iommu_group * group)2059 static void __iommu_group_set_core_domain(struct iommu_group *group)
2060 {
2061 struct iommu_domain *new_domain;
2062
2063 if (group->owner)
2064 new_domain = group->blocking_domain;
2065 else
2066 new_domain = group->default_domain;
2067
2068 __iommu_group_set_domain_nofail(group, new_domain);
2069 }
2070
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2071 static int __iommu_attach_device(struct iommu_domain *domain,
2072 struct device *dev)
2073 {
2074 int ret;
2075
2076 if (unlikely(domain->ops->attach_dev == NULL))
2077 return -ENODEV;
2078
2079 ret = domain->ops->attach_dev(domain, dev);
2080 if (ret)
2081 return ret;
2082 dev->iommu->attach_deferred = 0;
2083 trace_attach_device_to_domain(dev);
2084 return 0;
2085 }
2086
2087 /**
2088 * iommu_attach_device - Attach an IOMMU domain to a device
2089 * @domain: IOMMU domain to attach
2090 * @dev: Device that will be attached
2091 *
2092 * Returns 0 on success and error code on failure
2093 *
2094 * Note that EINVAL can be treated as a soft failure, indicating
2095 * that certain configuration of the domain is incompatible with
2096 * the device. In this case attaching a different domain to the
2097 * device may succeed.
2098 */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2099 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2100 {
2101 /* Caller must be a probed driver on dev */
2102 struct iommu_group *group = dev->iommu_group;
2103 int ret;
2104
2105 if (!group)
2106 return -ENODEV;
2107
2108 /*
2109 * Lock the group to make sure the device-count doesn't
2110 * change while we are attaching
2111 */
2112 mutex_lock(&group->mutex);
2113 ret = -EINVAL;
2114 if (list_count_nodes(&group->devices) != 1)
2115 goto out_unlock;
2116
2117 ret = __iommu_attach_group(domain, group);
2118
2119 out_unlock:
2120 mutex_unlock(&group->mutex);
2121 return ret;
2122 }
2123 EXPORT_SYMBOL_GPL(iommu_attach_device);
2124
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2125 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2126 {
2127 if (dev->iommu && dev->iommu->attach_deferred)
2128 return __iommu_attach_device(domain, dev);
2129
2130 return 0;
2131 }
2132
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2133 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2134 {
2135 /* Caller must be a probed driver on dev */
2136 struct iommu_group *group = dev->iommu_group;
2137
2138 if (!group)
2139 return;
2140
2141 mutex_lock(&group->mutex);
2142 if (WARN_ON(domain != group->domain) ||
2143 WARN_ON(list_count_nodes(&group->devices) != 1))
2144 goto out_unlock;
2145 __iommu_group_set_core_domain(group);
2146
2147 out_unlock:
2148 mutex_unlock(&group->mutex);
2149 }
2150 EXPORT_SYMBOL_GPL(iommu_detach_device);
2151
iommu_get_domain_for_dev(struct device * dev)2152 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2153 {
2154 /* Caller must be a probed driver on dev */
2155 struct iommu_group *group = dev->iommu_group;
2156
2157 if (!group)
2158 return NULL;
2159
2160 return group->domain;
2161 }
2162 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2163
2164 /*
2165 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2166 * guarantees that the group and its default domain are valid and correct.
2167 */
iommu_get_dma_domain(struct device * dev)2168 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2169 {
2170 return dev->iommu_group->default_domain;
2171 }
2172
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2173 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2174 struct iommu_attach_handle *handle)
2175 {
2176 if (handle) {
2177 handle->domain = domain;
2178 return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2179 }
2180
2181 return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2182 }
2183
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2184 static int __iommu_attach_group(struct iommu_domain *domain,
2185 struct iommu_group *group)
2186 {
2187 struct device *dev;
2188
2189 if (group->domain && group->domain != group->default_domain &&
2190 group->domain != group->blocking_domain)
2191 return -EBUSY;
2192
2193 dev = iommu_group_first_dev(group);
2194 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
2195 return -EINVAL;
2196
2197 return __iommu_group_set_domain(group, domain);
2198 }
2199
2200 /**
2201 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2202 * @domain: IOMMU domain to attach
2203 * @group: IOMMU group that will be attached
2204 *
2205 * Returns 0 on success and error code on failure
2206 *
2207 * Note that EINVAL can be treated as a soft failure, indicating
2208 * that certain configuration of the domain is incompatible with
2209 * the group. In this case attaching a different domain to the
2210 * group may succeed.
2211 */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2212 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2213 {
2214 int ret;
2215
2216 mutex_lock(&group->mutex);
2217 ret = __iommu_attach_group(domain, group);
2218 mutex_unlock(&group->mutex);
2219
2220 return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(iommu_attach_group);
2223
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2224 static int __iommu_device_set_domain(struct iommu_group *group,
2225 struct device *dev,
2226 struct iommu_domain *new_domain,
2227 unsigned int flags)
2228 {
2229 int ret;
2230
2231 /*
2232 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2233 * the blocking domain to be attached as it does not contain the
2234 * required 1:1 mapping. This test effectively excludes the device
2235 * being used with iommu_group_claim_dma_owner() which will block
2236 * vfio and iommufd as well.
2237 */
2238 if (dev->iommu->require_direct &&
2239 (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2240 new_domain == group->blocking_domain)) {
2241 dev_warn(dev,
2242 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2243 return -EINVAL;
2244 }
2245
2246 if (dev->iommu->attach_deferred) {
2247 if (new_domain == group->default_domain)
2248 return 0;
2249 dev->iommu->attach_deferred = 0;
2250 }
2251
2252 ret = __iommu_attach_device(new_domain, dev);
2253 if (ret) {
2254 /*
2255 * If we have a blocking domain then try to attach that in hopes
2256 * of avoiding a UAF. Modern drivers should implement blocking
2257 * domains as global statics that cannot fail.
2258 */
2259 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2260 group->blocking_domain &&
2261 group->blocking_domain != new_domain)
2262 __iommu_attach_device(group->blocking_domain, dev);
2263 return ret;
2264 }
2265 return 0;
2266 }
2267
2268 /*
2269 * If 0 is returned the group's domain is new_domain. If an error is returned
2270 * then the group's domain will be set back to the existing domain unless
2271 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2272 * domains is left inconsistent. This is a driver bug to fail attach with a
2273 * previously good domain. We try to avoid a kernel UAF because of this.
2274 *
2275 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2276 * API works on domains and devices. Bridge that gap by iterating over the
2277 * devices in a group. Ideally we'd have a single device which represents the
2278 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2279 * defined minimum sets, where the physical hardware may be able to distiguish
2280 * members, but we wish to group them at a higher level (ex. untrusted
2281 * multi-function PCI devices). Thus we attach each device.
2282 */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2283 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2284 struct iommu_domain *new_domain,
2285 unsigned int flags)
2286 {
2287 struct group_device *last_gdev;
2288 struct group_device *gdev;
2289 int result;
2290 int ret;
2291
2292 lockdep_assert_held(&group->mutex);
2293
2294 if (group->domain == new_domain)
2295 return 0;
2296
2297 if (WARN_ON(!new_domain))
2298 return -EINVAL;
2299
2300 /*
2301 * Changing the domain is done by calling attach_dev() on the new
2302 * domain. This switch does not have to be atomic and DMA can be
2303 * discarded during the transition. DMA must only be able to access
2304 * either new_domain or group->domain, never something else.
2305 */
2306 result = 0;
2307 for_each_group_device(group, gdev) {
2308 ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2309 flags);
2310 if (ret) {
2311 result = ret;
2312 /*
2313 * Keep trying the other devices in the group. If a
2314 * driver fails attach to an otherwise good domain, and
2315 * does not support blocking domains, it should at least
2316 * drop its reference on the current domain so we don't
2317 * UAF.
2318 */
2319 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2320 continue;
2321 goto err_revert;
2322 }
2323 }
2324 group->domain = new_domain;
2325 return result;
2326
2327 err_revert:
2328 /*
2329 * This is called in error unwind paths. A well behaved driver should
2330 * always allow us to attach to a domain that was already attached.
2331 */
2332 last_gdev = gdev;
2333 for_each_group_device(group, gdev) {
2334 /*
2335 * A NULL domain can happen only for first probe, in which case
2336 * we leave group->domain as NULL and let release clean
2337 * everything up.
2338 */
2339 if (group->domain)
2340 WARN_ON(__iommu_device_set_domain(
2341 group, gdev->dev, group->domain,
2342 IOMMU_SET_DOMAIN_MUST_SUCCEED));
2343 if (gdev == last_gdev)
2344 break;
2345 }
2346 return ret;
2347 }
2348
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2349 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2350 {
2351 mutex_lock(&group->mutex);
2352 __iommu_group_set_core_domain(group);
2353 mutex_unlock(&group->mutex);
2354 }
2355 EXPORT_SYMBOL_GPL(iommu_detach_group);
2356
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2357 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2358 {
2359 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2360 return iova;
2361
2362 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2363 return 0;
2364
2365 return domain->ops->iova_to_phys(domain, iova);
2366 }
2367 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2368
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2369 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2370 phys_addr_t paddr, size_t size, size_t *count)
2371 {
2372 unsigned int pgsize_idx, pgsize_idx_next;
2373 unsigned long pgsizes;
2374 size_t offset, pgsize, pgsize_next;
2375 unsigned long addr_merge = paddr | iova;
2376
2377 /* Page sizes supported by the hardware and small enough for @size */
2378 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2379
2380 /* Constrain the page sizes further based on the maximum alignment */
2381 if (likely(addr_merge))
2382 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2383
2384 /* Make sure we have at least one suitable page size */
2385 BUG_ON(!pgsizes);
2386
2387 /* Pick the biggest page size remaining */
2388 pgsize_idx = __fls(pgsizes);
2389 pgsize = BIT(pgsize_idx);
2390 if (!count)
2391 return pgsize;
2392
2393 /* Find the next biggest support page size, if it exists */
2394 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2395 if (!pgsizes)
2396 goto out_set_count;
2397
2398 pgsize_idx_next = __ffs(pgsizes);
2399 pgsize_next = BIT(pgsize_idx_next);
2400
2401 /*
2402 * There's no point trying a bigger page size unless the virtual
2403 * and physical addresses are similarly offset within the larger page.
2404 */
2405 if ((iova ^ paddr) & (pgsize_next - 1))
2406 goto out_set_count;
2407
2408 /* Calculate the offset to the next page size alignment boundary */
2409 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2410
2411 /*
2412 * If size is big enough to accommodate the larger page, reduce
2413 * the number of smaller pages.
2414 */
2415 if (offset + pgsize_next <= size)
2416 size = offset;
2417
2418 out_set_count:
2419 *count = size >> pgsize_idx;
2420 return pgsize;
2421 }
2422
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2423 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2424 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2425 {
2426 const struct iommu_domain_ops *ops = domain->ops;
2427 unsigned long orig_iova = iova;
2428 unsigned int min_pagesz;
2429 size_t orig_size = size;
2430 phys_addr_t orig_paddr = paddr;
2431 int ret = 0;
2432
2433 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2434 return -EINVAL;
2435
2436 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2437 return -ENODEV;
2438
2439 /* find out the minimum page size supported */
2440 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2441
2442 /*
2443 * both the virtual address and the physical one, as well as
2444 * the size of the mapping, must be aligned (at least) to the
2445 * size of the smallest page supported by the hardware
2446 */
2447 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2448 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2449 iova, &paddr, size, min_pagesz);
2450 return -EINVAL;
2451 }
2452
2453 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2454
2455 while (size) {
2456 size_t pgsize, count, mapped = 0;
2457
2458 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2459
2460 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2461 iova, &paddr, pgsize, count);
2462 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2463 gfp, &mapped);
2464 /*
2465 * Some pages may have been mapped, even if an error occurred,
2466 * so we should account for those so they can be unmapped.
2467 */
2468 size -= mapped;
2469
2470 if (ret)
2471 break;
2472
2473 iova += mapped;
2474 paddr += mapped;
2475 }
2476
2477 /* unroll mapping in case something went wrong */
2478 if (ret)
2479 iommu_unmap(domain, orig_iova, orig_size - size);
2480 else
2481 trace_map(orig_iova, orig_paddr, orig_size);
2482
2483 return ret;
2484 }
2485
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2486 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2487 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2488 {
2489 const struct iommu_domain_ops *ops = domain->ops;
2490 int ret;
2491
2492 might_sleep_if(gfpflags_allow_blocking(gfp));
2493
2494 /* Discourage passing strange GFP flags */
2495 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2496 __GFP_HIGHMEM)))
2497 return -EINVAL;
2498
2499 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2500 if (ret == 0 && ops->iotlb_sync_map) {
2501 ret = ops->iotlb_sync_map(domain, iova, size);
2502 if (ret)
2503 goto out_err;
2504 }
2505
2506 return ret;
2507
2508 out_err:
2509 /* undo mappings already done */
2510 iommu_unmap(domain, iova, size);
2511
2512 return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(iommu_map);
2515
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2516 static size_t __iommu_unmap(struct iommu_domain *domain,
2517 unsigned long iova, size_t size,
2518 struct iommu_iotlb_gather *iotlb_gather)
2519 {
2520 const struct iommu_domain_ops *ops = domain->ops;
2521 size_t unmapped_page, unmapped = 0;
2522 unsigned long orig_iova = iova;
2523 unsigned int min_pagesz;
2524
2525 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2526 return 0;
2527
2528 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2529 return 0;
2530
2531 /* find out the minimum page size supported */
2532 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2533
2534 /*
2535 * The virtual address, as well as the size of the mapping, must be
2536 * aligned (at least) to the size of the smallest page supported
2537 * by the hardware
2538 */
2539 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2540 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2541 iova, size, min_pagesz);
2542 return 0;
2543 }
2544
2545 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2546
2547 /*
2548 * Keep iterating until we either unmap 'size' bytes (or more)
2549 * or we hit an area that isn't mapped.
2550 */
2551 while (unmapped < size) {
2552 size_t pgsize, count;
2553
2554 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2555 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2556 if (!unmapped_page)
2557 break;
2558
2559 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2560 iova, unmapped_page);
2561
2562 iova += unmapped_page;
2563 unmapped += unmapped_page;
2564 }
2565
2566 trace_unmap(orig_iova, size, unmapped);
2567 return unmapped;
2568 }
2569
2570 /**
2571 * iommu_unmap() - Remove mappings from a range of IOVA
2572 * @domain: Domain to manipulate
2573 * @iova: IO virtual address to start
2574 * @size: Length of the range starting from @iova
2575 *
2576 * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2577 * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2578 * ranges that match what was passed to iommu_map(). The range can aggregate
2579 * contiguous iommu_map() calls so long as no individual range is split.
2580 *
2581 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2582 * unmapping stopped.
2583 */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2584 size_t iommu_unmap(struct iommu_domain *domain,
2585 unsigned long iova, size_t size)
2586 {
2587 struct iommu_iotlb_gather iotlb_gather;
2588 size_t ret;
2589
2590 iommu_iotlb_gather_init(&iotlb_gather);
2591 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2592 iommu_iotlb_sync(domain, &iotlb_gather);
2593
2594 return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(iommu_unmap);
2597
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2598 size_t iommu_unmap_fast(struct iommu_domain *domain,
2599 unsigned long iova, size_t size,
2600 struct iommu_iotlb_gather *iotlb_gather)
2601 {
2602 return __iommu_unmap(domain, iova, size, iotlb_gather);
2603 }
2604 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2605
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2606 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2607 struct scatterlist *sg, unsigned int nents, int prot,
2608 gfp_t gfp)
2609 {
2610 const struct iommu_domain_ops *ops = domain->ops;
2611 size_t len = 0, mapped = 0;
2612 phys_addr_t start;
2613 unsigned int i = 0;
2614 int ret;
2615
2616 might_sleep_if(gfpflags_allow_blocking(gfp));
2617
2618 /* Discourage passing strange GFP flags */
2619 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2620 __GFP_HIGHMEM)))
2621 return -EINVAL;
2622
2623 while (i <= nents) {
2624 phys_addr_t s_phys = sg_phys(sg);
2625
2626 if (len && s_phys != start + len) {
2627 ret = __iommu_map(domain, iova + mapped, start,
2628 len, prot, gfp);
2629
2630 if (ret)
2631 goto out_err;
2632
2633 mapped += len;
2634 len = 0;
2635 }
2636
2637 if (sg_dma_is_bus_address(sg))
2638 goto next;
2639
2640 if (len) {
2641 len += sg->length;
2642 } else {
2643 len = sg->length;
2644 start = s_phys;
2645 }
2646
2647 next:
2648 if (++i < nents)
2649 sg = sg_next(sg);
2650 }
2651
2652 if (ops->iotlb_sync_map) {
2653 ret = ops->iotlb_sync_map(domain, iova, mapped);
2654 if (ret)
2655 goto out_err;
2656 }
2657 return mapped;
2658
2659 out_err:
2660 /* undo mappings already done */
2661 iommu_unmap(domain, iova, mapped);
2662
2663 return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(iommu_map_sg);
2666
2667 /**
2668 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2669 * @domain: the iommu domain where the fault has happened
2670 * @dev: the device where the fault has happened
2671 * @iova: the faulting address
2672 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2673 *
2674 * This function should be called by the low-level IOMMU implementations
2675 * whenever IOMMU faults happen, to allow high-level users, that are
2676 * interested in such events, to know about them.
2677 *
2678 * This event may be useful for several possible use cases:
2679 * - mere logging of the event
2680 * - dynamic TLB/PTE loading
2681 * - if restarting of the faulting device is required
2682 *
2683 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2684 * PTE/TLB loading will one day be supported, implementations will be able
2685 * to tell whether it succeeded or not according to this return value).
2686 *
2687 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2688 * (though fault handlers can also return -ENOSYS, in case they want to
2689 * elicit the default behavior of the IOMMU drivers).
2690 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2691 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2692 unsigned long iova, int flags)
2693 {
2694 int ret = -ENOSYS;
2695
2696 /*
2697 * if upper layers showed interest and installed a fault handler,
2698 * invoke it.
2699 */
2700 if (domain->handler)
2701 ret = domain->handler(domain, dev, iova, flags,
2702 domain->handler_token);
2703
2704 trace_io_page_fault(dev, iova, flags);
2705 return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(report_iommu_fault);
2708
iommu_init(void)2709 static int __init iommu_init(void)
2710 {
2711 iommu_group_kset = kset_create_and_add("iommu_groups",
2712 NULL, kernel_kobj);
2713 BUG_ON(!iommu_group_kset);
2714
2715 iommu_debugfs_setup();
2716
2717 return 0;
2718 }
2719 core_initcall(iommu_init);
2720
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2721 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2722 unsigned long quirk)
2723 {
2724 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2725 return -EINVAL;
2726 if (!domain->ops->set_pgtable_quirks)
2727 return -EINVAL;
2728 return domain->ops->set_pgtable_quirks(domain, quirk);
2729 }
2730 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2731
2732 /**
2733 * iommu_get_resv_regions - get reserved regions
2734 * @dev: device for which to get reserved regions
2735 * @list: reserved region list for device
2736 *
2737 * This returns a list of reserved IOVA regions specific to this device.
2738 * A domain user should not map IOVA in these ranges.
2739 */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2740 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2741 {
2742 const struct iommu_ops *ops = dev_iommu_ops(dev);
2743
2744 if (ops->get_resv_regions)
2745 ops->get_resv_regions(dev, list);
2746 }
2747 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2748
2749 /**
2750 * iommu_put_resv_regions - release reserved regions
2751 * @dev: device for which to free reserved regions
2752 * @list: reserved region list for device
2753 *
2754 * This releases a reserved region list acquired by iommu_get_resv_regions().
2755 */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2756 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2757 {
2758 struct iommu_resv_region *entry, *next;
2759
2760 list_for_each_entry_safe(entry, next, list, list) {
2761 if (entry->free)
2762 entry->free(dev, entry);
2763 else
2764 kfree(entry);
2765 }
2766 }
2767 EXPORT_SYMBOL(iommu_put_resv_regions);
2768
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2769 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2770 size_t length, int prot,
2771 enum iommu_resv_type type,
2772 gfp_t gfp)
2773 {
2774 struct iommu_resv_region *region;
2775
2776 region = kzalloc(sizeof(*region), gfp);
2777 if (!region)
2778 return NULL;
2779
2780 INIT_LIST_HEAD(®ion->list);
2781 region->start = start;
2782 region->length = length;
2783 region->prot = prot;
2784 region->type = type;
2785 return region;
2786 }
2787 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2788
iommu_set_default_passthrough(bool cmd_line)2789 void iommu_set_default_passthrough(bool cmd_line)
2790 {
2791 if (cmd_line)
2792 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2793 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2794 }
2795
iommu_set_default_translated(bool cmd_line)2796 void iommu_set_default_translated(bool cmd_line)
2797 {
2798 if (cmd_line)
2799 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2800 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2801 }
2802
iommu_default_passthrough(void)2803 bool iommu_default_passthrough(void)
2804 {
2805 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2806 }
2807 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2808
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2809 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2810 {
2811 const struct iommu_ops *ops = NULL;
2812 struct iommu_device *iommu;
2813
2814 spin_lock(&iommu_device_lock);
2815 list_for_each_entry(iommu, &iommu_device_list, list)
2816 if (iommu->fwnode == fwnode) {
2817 ops = iommu->ops;
2818 break;
2819 }
2820 spin_unlock(&iommu_device_lock);
2821 return ops;
2822 }
2823
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2824 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2825 {
2826 const struct iommu_ops *ops = iommu_ops_from_fwnode(iommu_fwnode);
2827 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2828
2829 if (!ops)
2830 return driver_deferred_probe_check_state(dev);
2831
2832 if (fwspec)
2833 return ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2834
2835 if (!dev_iommu_get(dev))
2836 return -ENOMEM;
2837
2838 /* Preallocate for the overwhelmingly common case of 1 ID */
2839 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2840 if (!fwspec)
2841 return -ENOMEM;
2842
2843 fwnode_handle_get(iommu_fwnode);
2844 fwspec->iommu_fwnode = iommu_fwnode;
2845 dev_iommu_fwspec_set(dev, fwspec);
2846 return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2849
iommu_fwspec_free(struct device * dev)2850 void iommu_fwspec_free(struct device *dev)
2851 {
2852 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2853
2854 if (fwspec) {
2855 fwnode_handle_put(fwspec->iommu_fwnode);
2856 kfree(fwspec);
2857 dev_iommu_fwspec_set(dev, NULL);
2858 }
2859 }
2860
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2861 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2862 {
2863 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2864 int i, new_num;
2865
2866 if (!fwspec)
2867 return -EINVAL;
2868
2869 new_num = fwspec->num_ids + num_ids;
2870 if (new_num > 1) {
2871 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2872 GFP_KERNEL);
2873 if (!fwspec)
2874 return -ENOMEM;
2875
2876 dev_iommu_fwspec_set(dev, fwspec);
2877 }
2878
2879 for (i = 0; i < num_ids; i++)
2880 fwspec->ids[fwspec->num_ids + i] = ids[i];
2881
2882 fwspec->num_ids = new_num;
2883 return 0;
2884 }
2885 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2886
2887 /*
2888 * Per device IOMMU features.
2889 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2890 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2891 {
2892 if (dev_has_iommu(dev)) {
2893 const struct iommu_ops *ops = dev_iommu_ops(dev);
2894
2895 if (ops->dev_enable_feat)
2896 return ops->dev_enable_feat(dev, feat);
2897 }
2898
2899 return -ENODEV;
2900 }
2901 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2902
2903 /*
2904 * The device drivers should do the necessary cleanups before calling this.
2905 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2906 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2907 {
2908 if (dev_has_iommu(dev)) {
2909 const struct iommu_ops *ops = dev_iommu_ops(dev);
2910
2911 if (ops->dev_disable_feat)
2912 return ops->dev_disable_feat(dev, feat);
2913 }
2914
2915 return -EBUSY;
2916 }
2917 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2918
2919 /**
2920 * iommu_setup_default_domain - Set the default_domain for the group
2921 * @group: Group to change
2922 * @target_type: Domain type to set as the default_domain
2923 *
2924 * Allocate a default domain and set it as the current domain on the group. If
2925 * the group already has a default domain it will be changed to the target_type.
2926 * When target_type is 0 the default domain is selected based on driver and
2927 * system preferences.
2928 */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2929 static int iommu_setup_default_domain(struct iommu_group *group,
2930 int target_type)
2931 {
2932 struct iommu_domain *old_dom = group->default_domain;
2933 struct group_device *gdev;
2934 struct iommu_domain *dom;
2935 bool direct_failed;
2936 int req_type;
2937 int ret;
2938
2939 lockdep_assert_held(&group->mutex);
2940
2941 req_type = iommu_get_default_domain_type(group, target_type);
2942 if (req_type < 0)
2943 return -EINVAL;
2944
2945 dom = iommu_group_alloc_default_domain(group, req_type);
2946 if (IS_ERR(dom))
2947 return PTR_ERR(dom);
2948
2949 if (group->default_domain == dom)
2950 return 0;
2951
2952 if (iommu_is_dma_domain(dom)) {
2953 ret = iommu_get_dma_cookie(dom);
2954 if (ret) {
2955 iommu_domain_free(dom);
2956 return ret;
2957 }
2958 }
2959
2960 /*
2961 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2962 * mapped before their device is attached, in order to guarantee
2963 * continuity with any FW activity
2964 */
2965 direct_failed = false;
2966 for_each_group_device(group, gdev) {
2967 if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2968 direct_failed = true;
2969 dev_warn_once(
2970 gdev->dev->iommu->iommu_dev->dev,
2971 "IOMMU driver was not able to establish FW requested direct mapping.");
2972 }
2973 }
2974
2975 /* We must set default_domain early for __iommu_device_set_domain */
2976 group->default_domain = dom;
2977 if (!group->domain) {
2978 /*
2979 * Drivers are not allowed to fail the first domain attach.
2980 * The only way to recover from this is to fail attaching the
2981 * iommu driver and call ops->release_device. Put the domain
2982 * in group->default_domain so it is freed after.
2983 */
2984 ret = __iommu_group_set_domain_internal(
2985 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2986 if (WARN_ON(ret))
2987 goto out_free_old;
2988 } else {
2989 ret = __iommu_group_set_domain(group, dom);
2990 if (ret)
2991 goto err_restore_def_domain;
2992 }
2993
2994 /*
2995 * Drivers are supposed to allow mappings to be installed in a domain
2996 * before device attachment, but some don't. Hack around this defect by
2997 * trying again after attaching. If this happens it means the device
2998 * will not continuously have the IOMMU_RESV_DIRECT map.
2999 */
3000 if (direct_failed) {
3001 for_each_group_device(group, gdev) {
3002 ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3003 if (ret)
3004 goto err_restore_domain;
3005 }
3006 }
3007
3008 out_free_old:
3009 if (old_dom)
3010 iommu_domain_free(old_dom);
3011 return ret;
3012
3013 err_restore_domain:
3014 if (old_dom)
3015 __iommu_group_set_domain_internal(
3016 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3017 err_restore_def_domain:
3018 if (old_dom) {
3019 iommu_domain_free(dom);
3020 group->default_domain = old_dom;
3021 }
3022 return ret;
3023 }
3024
3025 /*
3026 * Changing the default domain through sysfs requires the users to unbind the
3027 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3028 * transition. Return failure if this isn't met.
3029 *
3030 * We need to consider the race between this and the device release path.
3031 * group->mutex is used here to guarantee that the device release path
3032 * will not be entered at the same time.
3033 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3034 static ssize_t iommu_group_store_type(struct iommu_group *group,
3035 const char *buf, size_t count)
3036 {
3037 struct group_device *gdev;
3038 int ret, req_type;
3039
3040 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3041 return -EACCES;
3042
3043 if (WARN_ON(!group) || !group->default_domain)
3044 return -EINVAL;
3045
3046 if (sysfs_streq(buf, "identity"))
3047 req_type = IOMMU_DOMAIN_IDENTITY;
3048 else if (sysfs_streq(buf, "DMA"))
3049 req_type = IOMMU_DOMAIN_DMA;
3050 else if (sysfs_streq(buf, "DMA-FQ"))
3051 req_type = IOMMU_DOMAIN_DMA_FQ;
3052 else if (sysfs_streq(buf, "auto"))
3053 req_type = 0;
3054 else
3055 return -EINVAL;
3056
3057 mutex_lock(&group->mutex);
3058 /* We can bring up a flush queue without tearing down the domain. */
3059 if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3060 group->default_domain->type == IOMMU_DOMAIN_DMA) {
3061 ret = iommu_dma_init_fq(group->default_domain);
3062 if (ret)
3063 goto out_unlock;
3064
3065 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3066 ret = count;
3067 goto out_unlock;
3068 }
3069
3070 /* Otherwise, ensure that device exists and no driver is bound. */
3071 if (list_empty(&group->devices) || group->owner_cnt) {
3072 ret = -EPERM;
3073 goto out_unlock;
3074 }
3075
3076 ret = iommu_setup_default_domain(group, req_type);
3077 if (ret)
3078 goto out_unlock;
3079
3080 /* Make sure dma_ops is appropriatley set */
3081 for_each_group_device(group, gdev)
3082 iommu_setup_dma_ops(gdev->dev);
3083
3084 out_unlock:
3085 mutex_unlock(&group->mutex);
3086 return ret ?: count;
3087 }
3088
3089 /**
3090 * iommu_device_use_default_domain() - Device driver wants to handle device
3091 * DMA through the kernel DMA API.
3092 * @dev: The device.
3093 *
3094 * The device driver about to bind @dev wants to do DMA through the kernel
3095 * DMA API. Return 0 if it is allowed, otherwise an error.
3096 */
iommu_device_use_default_domain(struct device * dev)3097 int iommu_device_use_default_domain(struct device *dev)
3098 {
3099 /* Caller is the driver core during the pre-probe path */
3100 struct iommu_group *group = dev->iommu_group;
3101 int ret = 0;
3102
3103 if (!group)
3104 return 0;
3105
3106 mutex_lock(&group->mutex);
3107 /* We may race against bus_iommu_probe() finalising groups here */
3108 if (!group->default_domain) {
3109 ret = -EPROBE_DEFER;
3110 goto unlock_out;
3111 }
3112 if (group->owner_cnt) {
3113 if (group->domain != group->default_domain || group->owner ||
3114 !xa_empty(&group->pasid_array)) {
3115 ret = -EBUSY;
3116 goto unlock_out;
3117 }
3118 }
3119
3120 group->owner_cnt++;
3121
3122 unlock_out:
3123 mutex_unlock(&group->mutex);
3124 return ret;
3125 }
3126
3127 /**
3128 * iommu_device_unuse_default_domain() - Device driver stops handling device
3129 * DMA through the kernel DMA API.
3130 * @dev: The device.
3131 *
3132 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3133 * It must be called after iommu_device_use_default_domain().
3134 */
iommu_device_unuse_default_domain(struct device * dev)3135 void iommu_device_unuse_default_domain(struct device *dev)
3136 {
3137 /* Caller is the driver core during the post-probe path */
3138 struct iommu_group *group = dev->iommu_group;
3139
3140 if (!group)
3141 return;
3142
3143 mutex_lock(&group->mutex);
3144 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3145 group->owner_cnt--;
3146
3147 mutex_unlock(&group->mutex);
3148 }
3149
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3150 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3151 {
3152 struct device *dev = iommu_group_first_dev(group);
3153 const struct iommu_ops *ops = dev_iommu_ops(dev);
3154 struct iommu_domain *domain;
3155
3156 if (group->blocking_domain)
3157 return 0;
3158
3159 if (ops->blocked_domain) {
3160 group->blocking_domain = ops->blocked_domain;
3161 return 0;
3162 }
3163
3164 /*
3165 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3166 * empty PAGING domain instead.
3167 */
3168 domain = iommu_paging_domain_alloc(dev);
3169 if (IS_ERR(domain))
3170 return PTR_ERR(domain);
3171 group->blocking_domain = domain;
3172 return 0;
3173 }
3174
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3175 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3176 {
3177 int ret;
3178
3179 if ((group->domain && group->domain != group->default_domain) ||
3180 !xa_empty(&group->pasid_array))
3181 return -EBUSY;
3182
3183 ret = __iommu_group_alloc_blocking_domain(group);
3184 if (ret)
3185 return ret;
3186 ret = __iommu_group_set_domain(group, group->blocking_domain);
3187 if (ret)
3188 return ret;
3189
3190 group->owner = owner;
3191 group->owner_cnt++;
3192 return 0;
3193 }
3194
3195 /**
3196 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3197 * @group: The group.
3198 * @owner: Caller specified pointer. Used for exclusive ownership.
3199 *
3200 * This is to support backward compatibility for vfio which manages the dma
3201 * ownership in iommu_group level. New invocations on this interface should be
3202 * prohibited. Only a single owner may exist for a group.
3203 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3204 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3205 {
3206 int ret = 0;
3207
3208 if (WARN_ON(!owner))
3209 return -EINVAL;
3210
3211 mutex_lock(&group->mutex);
3212 if (group->owner_cnt) {
3213 ret = -EPERM;
3214 goto unlock_out;
3215 }
3216
3217 ret = __iommu_take_dma_ownership(group, owner);
3218 unlock_out:
3219 mutex_unlock(&group->mutex);
3220
3221 return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3224
3225 /**
3226 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3227 * @dev: The device.
3228 * @owner: Caller specified pointer. Used for exclusive ownership.
3229 *
3230 * Claim the DMA ownership of a device. Multiple devices in the same group may
3231 * concurrently claim ownership if they present the same owner value. Returns 0
3232 * on success and error code on failure
3233 */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3234 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3235 {
3236 /* Caller must be a probed driver on dev */
3237 struct iommu_group *group = dev->iommu_group;
3238 int ret = 0;
3239
3240 if (WARN_ON(!owner))
3241 return -EINVAL;
3242
3243 if (!group)
3244 return -ENODEV;
3245
3246 mutex_lock(&group->mutex);
3247 if (group->owner_cnt) {
3248 if (group->owner != owner) {
3249 ret = -EPERM;
3250 goto unlock_out;
3251 }
3252 group->owner_cnt++;
3253 goto unlock_out;
3254 }
3255
3256 ret = __iommu_take_dma_ownership(group, owner);
3257 unlock_out:
3258 mutex_unlock(&group->mutex);
3259 return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3262
__iommu_release_dma_ownership(struct iommu_group * group)3263 static void __iommu_release_dma_ownership(struct iommu_group *group)
3264 {
3265 if (WARN_ON(!group->owner_cnt || !group->owner ||
3266 !xa_empty(&group->pasid_array)))
3267 return;
3268
3269 group->owner_cnt = 0;
3270 group->owner = NULL;
3271 __iommu_group_set_domain_nofail(group, group->default_domain);
3272 }
3273
3274 /**
3275 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3276 * @group: The group
3277 *
3278 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3279 */
iommu_group_release_dma_owner(struct iommu_group * group)3280 void iommu_group_release_dma_owner(struct iommu_group *group)
3281 {
3282 mutex_lock(&group->mutex);
3283 __iommu_release_dma_ownership(group);
3284 mutex_unlock(&group->mutex);
3285 }
3286 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3287
3288 /**
3289 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3290 * @dev: The device.
3291 *
3292 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3293 */
iommu_device_release_dma_owner(struct device * dev)3294 void iommu_device_release_dma_owner(struct device *dev)
3295 {
3296 /* Caller must be a probed driver on dev */
3297 struct iommu_group *group = dev->iommu_group;
3298
3299 mutex_lock(&group->mutex);
3300 if (group->owner_cnt > 1)
3301 group->owner_cnt--;
3302 else
3303 __iommu_release_dma_ownership(group);
3304 mutex_unlock(&group->mutex);
3305 }
3306 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3307
3308 /**
3309 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3310 * @group: The group.
3311 *
3312 * This provides status query on a given group. It is racy and only for
3313 * non-binding status reporting.
3314 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3315 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3316 {
3317 unsigned int user;
3318
3319 mutex_lock(&group->mutex);
3320 user = group->owner_cnt;
3321 mutex_unlock(&group->mutex);
3322
3323 return user;
3324 }
3325 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3326
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3327 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3328 struct iommu_domain *domain)
3329 {
3330 const struct iommu_ops *ops = dev_iommu_ops(dev);
3331 struct iommu_domain *blocked_domain = ops->blocked_domain;
3332
3333 WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3334 dev, pasid, domain));
3335 }
3336
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid)3337 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3338 struct iommu_group *group, ioasid_t pasid)
3339 {
3340 struct group_device *device, *last_gdev;
3341 int ret;
3342
3343 for_each_group_device(group, device) {
3344 ret = domain->ops->set_dev_pasid(domain, device->dev,
3345 pasid, NULL);
3346 if (ret)
3347 goto err_revert;
3348 }
3349
3350 return 0;
3351
3352 err_revert:
3353 last_gdev = device;
3354 for_each_group_device(group, device) {
3355 if (device == last_gdev)
3356 break;
3357 iommu_remove_dev_pasid(device->dev, pasid, domain);
3358 }
3359 return ret;
3360 }
3361
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3362 static void __iommu_remove_group_pasid(struct iommu_group *group,
3363 ioasid_t pasid,
3364 struct iommu_domain *domain)
3365 {
3366 struct group_device *device;
3367
3368 for_each_group_device(group, device)
3369 iommu_remove_dev_pasid(device->dev, pasid, domain);
3370 }
3371
3372 /*
3373 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3374 * @domain: the iommu domain.
3375 * @dev: the attached device.
3376 * @pasid: the pasid of the device.
3377 * @handle: the attach handle.
3378 *
3379 * Return: 0 on success, or an error.
3380 */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3381 int iommu_attach_device_pasid(struct iommu_domain *domain,
3382 struct device *dev, ioasid_t pasid,
3383 struct iommu_attach_handle *handle)
3384 {
3385 /* Caller must be a probed driver on dev */
3386 struct iommu_group *group = dev->iommu_group;
3387 struct group_device *device;
3388 const struct iommu_ops *ops;
3389 void *entry;
3390 int ret;
3391
3392 if (!group)
3393 return -ENODEV;
3394
3395 ops = dev_iommu_ops(dev);
3396
3397 if (!domain->ops->set_dev_pasid ||
3398 !ops->blocked_domain ||
3399 !ops->blocked_domain->ops->set_dev_pasid)
3400 return -EOPNOTSUPP;
3401
3402 if (ops != domain->owner || pasid == IOMMU_NO_PASID)
3403 return -EINVAL;
3404
3405 mutex_lock(&group->mutex);
3406 for_each_group_device(group, device) {
3407 if (pasid >= device->dev->iommu->max_pasids) {
3408 ret = -EINVAL;
3409 goto out_unlock;
3410 }
3411 }
3412
3413 entry = iommu_make_pasid_array_entry(domain, handle);
3414
3415 /*
3416 * Entry present is a failure case. Use xa_insert() instead of
3417 * xa_reserve().
3418 */
3419 ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3420 if (ret)
3421 goto out_unlock;
3422
3423 ret = __iommu_set_group_pasid(domain, group, pasid);
3424 if (ret) {
3425 xa_release(&group->pasid_array, pasid);
3426 goto out_unlock;
3427 }
3428
3429 /*
3430 * The xa_insert() above reserved the memory, and the group->mutex is
3431 * held, this cannot fail. The new domain cannot be visible until the
3432 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3433 * queued and then failing attach.
3434 */
3435 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3436 pasid, entry, GFP_KERNEL)));
3437
3438 out_unlock:
3439 mutex_unlock(&group->mutex);
3440 return ret;
3441 }
3442 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3443
3444 /*
3445 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3446 * @domain: the iommu domain.
3447 * @dev: the attached device.
3448 * @pasid: the pasid of the device.
3449 *
3450 * The @domain must have been attached to @pasid of the @dev with
3451 * iommu_attach_device_pasid().
3452 */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3453 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3454 ioasid_t pasid)
3455 {
3456 /* Caller must be a probed driver on dev */
3457 struct iommu_group *group = dev->iommu_group;
3458
3459 mutex_lock(&group->mutex);
3460 __iommu_remove_group_pasid(group, pasid, domain);
3461 xa_erase(&group->pasid_array, pasid);
3462 mutex_unlock(&group->mutex);
3463 }
3464 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3465
iommu_alloc_global_pasid(struct device * dev)3466 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3467 {
3468 int ret;
3469
3470 /* max_pasids == 0 means that the device does not support PASID */
3471 if (!dev->iommu->max_pasids)
3472 return IOMMU_PASID_INVALID;
3473
3474 /*
3475 * max_pasids is set up by vendor driver based on number of PASID bits
3476 * supported but the IDA allocation is inclusive.
3477 */
3478 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3479 dev->iommu->max_pasids - 1, GFP_KERNEL);
3480 return ret < 0 ? IOMMU_PASID_INVALID : ret;
3481 }
3482 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3483
iommu_free_global_pasid(ioasid_t pasid)3484 void iommu_free_global_pasid(ioasid_t pasid)
3485 {
3486 if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3487 return;
3488
3489 ida_free(&iommu_global_pasid_ida, pasid);
3490 }
3491 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3492
3493 /**
3494 * iommu_attach_handle_get - Return the attach handle
3495 * @group: the iommu group that domain was attached to
3496 * @pasid: the pasid within the group
3497 * @type: matched domain type, 0 for any match
3498 *
3499 * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3500 *
3501 * Return the attach handle to the caller. The life cycle of an iommu attach
3502 * handle is from the time when the domain is attached to the time when the
3503 * domain is detached. Callers are required to synchronize the call of
3504 * iommu_attach_handle_get() with domain attachment and detachment. The attach
3505 * handle can only be used during its life cycle.
3506 */
3507 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3508 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3509 {
3510 struct iommu_attach_handle *handle;
3511 void *entry;
3512
3513 xa_lock(&group->pasid_array);
3514 entry = xa_load(&group->pasid_array, pasid);
3515 if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3516 handle = ERR_PTR(-ENOENT);
3517 } else {
3518 handle = xa_untag_pointer(entry);
3519 if (type && handle->domain->type != type)
3520 handle = ERR_PTR(-EBUSY);
3521 }
3522 xa_unlock(&group->pasid_array);
3523
3524 return handle;
3525 }
3526 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3527
3528 /**
3529 * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3530 * @domain: IOMMU domain to attach
3531 * @group: IOMMU group that will be attached
3532 * @handle: attach handle
3533 *
3534 * Returns 0 on success and error code on failure.
3535 *
3536 * This is a variant of iommu_attach_group(). It allows the caller to provide
3537 * an attach handle and use it when the domain is attached. This is currently
3538 * used by IOMMUFD to deliver the I/O page faults.
3539 */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3540 int iommu_attach_group_handle(struct iommu_domain *domain,
3541 struct iommu_group *group,
3542 struct iommu_attach_handle *handle)
3543 {
3544 void *entry;
3545 int ret;
3546
3547 if (!handle)
3548 return -EINVAL;
3549
3550 mutex_lock(&group->mutex);
3551 entry = iommu_make_pasid_array_entry(domain, handle);
3552 ret = xa_insert(&group->pasid_array,
3553 IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3554 if (ret)
3555 goto out_unlock;
3556
3557 ret = __iommu_attach_group(domain, group);
3558 if (ret) {
3559 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3560 goto out_unlock;
3561 }
3562
3563 /*
3564 * The xa_insert() above reserved the memory, and the group->mutex is
3565 * held, this cannot fail. The new domain cannot be visible until the
3566 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3567 * queued and then failing attach.
3568 */
3569 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3570 IOMMU_NO_PASID, entry, GFP_KERNEL)));
3571
3572 out_unlock:
3573 mutex_unlock(&group->mutex);
3574 return ret;
3575 }
3576 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3577
3578 /**
3579 * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3580 * @domain: IOMMU domain to attach
3581 * @group: IOMMU group that will be attached
3582 *
3583 * Detach the specified IOMMU domain from the specified IOMMU group.
3584 * It must be used in conjunction with iommu_attach_group_handle().
3585 */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3586 void iommu_detach_group_handle(struct iommu_domain *domain,
3587 struct iommu_group *group)
3588 {
3589 mutex_lock(&group->mutex);
3590 __iommu_group_set_core_domain(group);
3591 xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3592 mutex_unlock(&group->mutex);
3593 }
3594 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3595
3596 /**
3597 * iommu_replace_group_handle - replace the domain that a group is attached to
3598 * @group: IOMMU group that will be attached to the new domain
3599 * @new_domain: new IOMMU domain to replace with
3600 * @handle: attach handle
3601 *
3602 * This API allows the group to switch domains without being forced to go to
3603 * the blocking domain in-between. It allows the caller to provide an attach
3604 * handle for the new domain and use it when the domain is attached.
3605 *
3606 * If the currently attached domain is a core domain (e.g. a default_domain),
3607 * it will act just like the iommu_attach_group_handle().
3608 */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3609 int iommu_replace_group_handle(struct iommu_group *group,
3610 struct iommu_domain *new_domain,
3611 struct iommu_attach_handle *handle)
3612 {
3613 void *curr, *entry;
3614 int ret;
3615
3616 if (!new_domain || !handle)
3617 return -EINVAL;
3618
3619 mutex_lock(&group->mutex);
3620 entry = iommu_make_pasid_array_entry(new_domain, handle);
3621 ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3622 if (ret)
3623 goto err_unlock;
3624
3625 ret = __iommu_group_set_domain(group, new_domain);
3626 if (ret)
3627 goto err_release;
3628
3629 curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3630 WARN_ON(xa_is_err(curr));
3631
3632 mutex_unlock(&group->mutex);
3633
3634 return 0;
3635 err_release:
3636 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3637 err_unlock:
3638 mutex_unlock(&group->mutex);
3639 return ret;
3640 }
3641 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3642
3643 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3644 /**
3645 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3646 * @desc: MSI descriptor, will store the MSI page
3647 * @msi_addr: MSI target address to be mapped
3648 *
3649 * The implementation of sw_msi() should take msi_addr and map it to
3650 * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3651 * mapping information.
3652 *
3653 * Return: 0 on success or negative error code if the mapping failed.
3654 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3655 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3656 {
3657 struct device *dev = msi_desc_to_dev(desc);
3658 struct iommu_group *group = dev->iommu_group;
3659 int ret = 0;
3660
3661 if (!group)
3662 return 0;
3663
3664 mutex_lock(&group->mutex);
3665 if (group->domain && group->domain->sw_msi)
3666 ret = group->domain->sw_msi(group->domain, desc, msi_addr);
3667 mutex_unlock(&group->mutex);
3668 return ret;
3669 }
3670 #endif /* CONFIG_IRQ_MSI_IOMMU */
3671