1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_print.h"
16 #include "intel_gt_regs.h"
17 #include "intel_ring.h"
18 #include "intel_workarounds.h"
19
20 #include "display/intel_fbc_regs.h"
21
22 /**
23 * DOC: Hardware workarounds
24 *
25 * Hardware workarounds are register programming documented to be executed in
26 * the driver that fall outside of the normal programming sequences for a
27 * platform. There are some basic categories of workarounds, depending on
28 * how/when they are applied:
29 *
30 * - Context workarounds: workarounds that touch registers that are
31 * saved/restored to/from the HW context image. The list is emitted (via Load
32 * Register Immediate commands) once when initializing the device and saved in
33 * the default context. That default context is then used on every context
34 * creation to have a "primed golden context", i.e. a context image that
35 * already contains the changes needed to all the registers.
36 *
37 * Context workarounds should be implemented in the \*_ctx_workarounds_init()
38 * variants respective to the targeted platforms.
39 *
40 * - Engine workarounds: the list of these WAs is applied whenever the specific
41 * engine is reset. It's also possible that a set of engine classes share a
42 * common power domain and they are reset together. This happens on some
43 * platforms with render and compute engines. In this case (at least) one of
44 * them need to keeep the workaround programming: the approach taken in the
45 * driver is to tie those workarounds to the first compute/render engine that
46 * is registered. When executing with GuC submission, engine resets are
47 * outside of kernel driver control, hence the list of registers involved in
48 * written once, on engine initialization, and then passed to GuC, that
49 * saves/restores their values before/after the reset takes place. See
50 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
51 *
52 * Workarounds for registers specific to RCS and CCS should be implemented in
53 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
54 * registers belonging to BCS, VCS or VECS should be implemented in
55 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
56 * engine's MMIO range but that are part of of the common RCS/CCS reset domain
57 * should be implemented in general_render_compute_wa_init(). The settings
58 * about the CCS load balancing should be added in ccs_engine_wa_mode().
59 *
60 * - GT workarounds: the list of these WAs is applied whenever these registers
61 * revert to their default values: on GPU reset, suspend/resume [1]_, etc.
62 *
63 * GT workarounds should be implemented in the \*_gt_workarounds_init()
64 * variants respective to the targeted platforms.
65 *
66 * - Register whitelist: some workarounds need to be implemented in userspace,
67 * but need to touch privileged registers. The whitelist in the kernel
68 * instructs the hardware to allow the access to happen. From the kernel side,
69 * this is just a special case of a MMIO workaround (as we write the list of
70 * these to/be-whitelisted registers to some special HW registers).
71 *
72 * Register whitelisting should be done in the \*_whitelist_build() variants
73 * respective to the targeted platforms.
74 *
75 * - Workaround batchbuffers: buffers that get executed automatically by the
76 * hardware on every HW context restore. These buffers are created and
77 * programmed in the default context so the hardware always go through those
78 * programming sequences when switching contexts. The support for workaround
79 * batchbuffers is enabled these hardware mechanisms:
80 *
81 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
82 * context, pointing the hardware to jump to that location when that offset
83 * is reached in the context restore. Workaround batchbuffer in the driver
84 * currently uses this mechanism for all platforms.
85 *
86 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
87 * pointing the hardware to a buffer to continue executing after the
88 * engine registers are restored in a context restore sequence. This is
89 * currently not used in the driver.
90 *
91 * - Other: There are WAs that, due to their nature, cannot be applied from a
92 * central place. Those are peppered around the rest of the code, as needed.
93 * Workarounds related to the display IP are the main example.
94 *
95 * .. [1] Technically, some registers are powercontext saved & restored, so they
96 * survive a suspend/resume. In practice, writing them again is not too
97 * costly and simplifies things, so it's the approach taken in the driver.
98 */
99
wa_init_start(struct i915_wa_list * wal,struct intel_gt * gt,const char * name,const char * engine_name)100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
101 const char *name, const char *engine_name)
102 {
103 wal->gt = gt;
104 wal->name = name;
105 wal->engine_name = engine_name;
106 }
107
108 #define WA_LIST_CHUNK (1 << 4)
109
wa_init_finish(struct i915_wa_list * wal)110 static void wa_init_finish(struct i915_wa_list *wal)
111 {
112 /* Trim unused entries. */
113 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
114 struct i915_wa *list = kmemdup_array(wal->list, wal->count,
115 sizeof(*list), GFP_KERNEL);
116
117 if (list) {
118 kfree(wal->list);
119 wal->list = list;
120 }
121 }
122
123 if (!wal->count)
124 return;
125
126 gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
127 wal->wa_count, wal->name, wal->engine_name);
128 }
129
130 static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore * uncore,const struct i915_wa_list * wal)131 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
132 {
133 enum forcewake_domains fw = 0;
134 struct i915_wa *wa;
135 unsigned int i;
136
137 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
138 fw |= intel_uncore_forcewake_for_reg(uncore,
139 wa->reg,
140 FW_REG_READ |
141 FW_REG_WRITE);
142
143 return fw;
144 }
145
_wa_add(struct i915_wa_list * wal,const struct i915_wa * wa)146 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
147 {
148 unsigned int addr = i915_mmio_reg_offset(wa->reg);
149 struct drm_i915_private *i915 = wal->gt->i915;
150 unsigned int start = 0, end = wal->count;
151 const unsigned int grow = WA_LIST_CHUNK;
152 struct i915_wa *wa_;
153
154 GEM_BUG_ON(!is_power_of_2(grow));
155
156 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
157 struct i915_wa *list;
158
159 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*list),
160 GFP_KERNEL);
161 if (!list) {
162 drm_err(&i915->drm, "No space for workaround init!\n");
163 return;
164 }
165
166 if (wal->list) {
167 memcpy(list, wal->list, sizeof(*wa) * wal->count);
168 kfree(wal->list);
169 }
170
171 wal->list = list;
172 }
173
174 while (start < end) {
175 unsigned int mid = start + (end - start) / 2;
176
177 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
178 start = mid + 1;
179 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
180 end = mid;
181 } else {
182 wa_ = &wal->list[mid];
183
184 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
185 drm_err(&i915->drm,
186 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
187 i915_mmio_reg_offset(wa_->reg),
188 wa_->clr, wa_->set);
189
190 wa_->set &= ~wa->clr;
191 }
192
193 wal->wa_count++;
194 wa_->set |= wa->set;
195 wa_->clr |= wa->clr;
196 wa_->read |= wa->read;
197 return;
198 }
199 }
200
201 wal->wa_count++;
202 wa_ = &wal->list[wal->count++];
203 *wa_ = *wa;
204
205 while (wa_-- > wal->list) {
206 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
207 i915_mmio_reg_offset(wa_[1].reg));
208 if (i915_mmio_reg_offset(wa_[1].reg) >
209 i915_mmio_reg_offset(wa_[0].reg))
210 break;
211
212 swap(wa_[1], wa_[0]);
213 }
214 }
215
wa_add(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)216 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
217 u32 clear, u32 set, u32 read_mask, bool masked_reg)
218 {
219 struct i915_wa wa = {
220 .reg = reg,
221 .clr = clear,
222 .set = set,
223 .read = read_mask,
224 .masked_reg = masked_reg,
225 };
226
227 _wa_add(wal, &wa);
228 }
229
wa_mcr_add(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)230 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
231 u32 clear, u32 set, u32 read_mask, bool masked_reg)
232 {
233 struct i915_wa wa = {
234 .mcr_reg = reg,
235 .clr = clear,
236 .set = set,
237 .read = read_mask,
238 .masked_reg = masked_reg,
239 .is_mcr = 1,
240 };
241
242 _wa_add(wal, &wa);
243 }
244
245 static void
wa_write_clr_set(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set)246 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
247 {
248 wa_add(wal, reg, clear, set, clear | set, false);
249 }
250
251 static void
wa_mcr_write_clr_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set)252 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
253 {
254 wa_mcr_add(wal, reg, clear, set, clear | set, false);
255 }
256
257 static void
wa_write(struct i915_wa_list * wal,i915_reg_t reg,u32 set)258 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
259 {
260 wa_write_clr_set(wal, reg, ~0, set);
261 }
262
263 static void
wa_write_or(struct i915_wa_list * wal,i915_reg_t reg,u32 set)264 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
265 {
266 wa_write_clr_set(wal, reg, set, set);
267 }
268
269 static void
wa_mcr_write_or(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)270 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
271 {
272 wa_mcr_write_clr_set(wal, reg, set, set);
273 }
274
275 static void
wa_write_clr(struct i915_wa_list * wal,i915_reg_t reg,u32 clr)276 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
277 {
278 wa_write_clr_set(wal, reg, clr, 0);
279 }
280
281 static void
wa_mcr_write_clr(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clr)282 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
283 {
284 wa_mcr_write_clr_set(wal, reg, clr, 0);
285 }
286
287 /*
288 * WA operations on "masked register". A masked register has the upper 16 bits
289 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
290 * portion of the register without a rmw: you simply write in the upper 16 bits
291 * the mask of bits you are going to modify.
292 *
293 * The wa_masked_* family of functions already does the necessary operations to
294 * calculate the mask based on the parameters passed, so user only has to
295 * provide the lower 16 bits of that register.
296 */
297
298 static void
wa_masked_en(struct i915_wa_list * wal,i915_reg_t reg,u32 val)299 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
300 {
301 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
302 }
303
304 static void
wa_mcr_masked_en(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)305 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
306 {
307 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
308 }
309
310 static void
wa_masked_dis(struct i915_wa_list * wal,i915_reg_t reg,u32 val)311 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
312 {
313 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
314 }
315
316 static void
wa_mcr_masked_dis(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)317 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
318 {
319 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
320 }
321
322 static void
wa_masked_field_set(struct i915_wa_list * wal,i915_reg_t reg,u32 mask,u32 val)323 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
324 u32 mask, u32 val)
325 {
326 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
327 }
328
329 static void
wa_mcr_masked_field_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 mask,u32 val)330 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
331 u32 mask, u32 val)
332 {
333 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
334 }
335
gen6_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)336 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
337 struct i915_wa_list *wal)
338 {
339 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
340 }
341
gen7_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)342 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
343 struct i915_wa_list *wal)
344 {
345 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
346 }
347
gen8_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)348 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
349 struct i915_wa_list *wal)
350 {
351 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
352
353 /* WaDisableAsyncFlipPerfMode:bdw,chv */
354 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
355
356 /* WaDisablePartialInstShootdown:bdw,chv */
357 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
358 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
359
360 /* Use Force Non-Coherent whenever executing a 3D context. This is a
361 * workaround for a possible hang in the unlikely event a TLB
362 * invalidation occurs during a PSD flush.
363 */
364 /* WaForceEnableNonCoherent:bdw,chv */
365 /* WaHdcDisableFetchWhenMasked:bdw,chv */
366 wa_masked_en(wal, HDC_CHICKEN0,
367 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
368 HDC_FORCE_NON_COHERENT);
369
370 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
371 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
372 * polygons in the same 8x4 pixel/sample area to be processed without
373 * stalling waiting for the earlier ones to write to Hierarchical Z
374 * buffer."
375 *
376 * This optimization is off by default for BDW and CHV; turn it on.
377 */
378 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
379
380 /* Wa4x4STCOptimizationDisable:bdw,chv */
381 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
382
383 /*
384 * BSpec recommends 8x4 when MSAA is used,
385 * however in practice 16x4 seems fastest.
386 *
387 * Note that PS/WM thread counts depend on the WIZ hashing
388 * disable bit, which we don't touch here, but it's good
389 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
390 */
391 wa_masked_field_set(wal, GEN7_GT_MODE,
392 GEN6_WIZ_HASHING_MASK,
393 GEN6_WIZ_HASHING_16x4);
394 }
395
bdw_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)396 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
397 struct i915_wa_list *wal)
398 {
399 struct drm_i915_private *i915 = engine->i915;
400
401 gen8_ctx_workarounds_init(engine, wal);
402
403 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
404 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
405
406 /* WaDisableDopClockGating:bdw
407 *
408 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
409 * to disable EUTC clock gating.
410 */
411 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
412 DOP_CLOCK_GATING_DISABLE);
413
414 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
415 GEN8_SAMPLER_POWER_BYPASS_DIS);
416
417 wa_masked_en(wal, HDC_CHICKEN0,
418 /* WaForceContextSaveRestoreNonCoherent:bdw */
419 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
420 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
421 (INTEL_INFO(i915)->gt == 3 ? HDC_FENCE_DEST_SLM_DISABLE : 0));
422 }
423
chv_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)424 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
425 struct i915_wa_list *wal)
426 {
427 gen8_ctx_workarounds_init(engine, wal);
428
429 /* WaDisableThreadStallDopClockGating:chv */
430 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
431
432 /* Improve HiZ throughput on CHV. */
433 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
434 }
435
gen9_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)436 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
437 struct i915_wa_list *wal)
438 {
439 struct drm_i915_private *i915 = engine->i915;
440
441 if (HAS_LLC(i915)) {
442 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
443 *
444 * Must match Display Engine. See
445 * WaCompressedResourceDisplayNewHashMode.
446 */
447 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
448 GEN9_PBE_COMPRESSED_HASH_SELECTION);
449 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
450 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
451 }
452
453 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
454 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
455 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
456 FLOW_CONTROL_ENABLE |
457 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
458
459 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
460 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
461 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
462 GEN9_ENABLE_YV12_BUGFIX |
463 GEN9_ENABLE_GPGPU_PREEMPTION);
464
465 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
466 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
467 wa_masked_en(wal, CACHE_MODE_1,
468 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
469 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
470
471 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
472 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
473 GEN9_CCS_TLB_PREFETCH_ENABLE);
474
475 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
476 wa_masked_en(wal, HDC_CHICKEN0,
477 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
478 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
479
480 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
481 * both tied to WaForceContextSaveRestoreNonCoherent
482 * in some hsds for skl. We keep the tie for all gen9. The
483 * documentation is a bit hazy and so we want to get common behaviour,
484 * even though there is no clear evidence we would need both on kbl/bxt.
485 * This area has been source of system hangs so we play it safe
486 * and mimic the skl regardless of what bspec says.
487 *
488 * Use Force Non-Coherent whenever executing a 3D context. This
489 * is a workaround for a possible hang in the unlikely event
490 * a TLB invalidation occurs during a PSD flush.
491 */
492
493 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
494 wa_masked_en(wal, HDC_CHICKEN0,
495 HDC_FORCE_NON_COHERENT);
496
497 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
498 if (IS_SKYLAKE(i915) ||
499 IS_KABYLAKE(i915) ||
500 IS_COFFEELAKE(i915) ||
501 IS_COMETLAKE(i915))
502 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
503 GEN8_SAMPLER_POWER_BYPASS_DIS);
504
505 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
506 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
507
508 /*
509 * Supporting preemption with fine-granularity requires changes in the
510 * batch buffer programming. Since we can't break old userspace, we
511 * need to set our default preemption level to safe value. Userspace is
512 * still able to use more fine-grained preemption levels, since in
513 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
514 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
515 * not real HW workarounds, but merely a way to start using preemption
516 * while maintaining old contract with userspace.
517 */
518
519 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
520 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
521
522 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
523 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
524 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
525 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
526
527 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
528 if (IS_GEN9_LP(i915))
529 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
530 }
531
skl_tune_iz_hashing(struct intel_engine_cs * engine,struct i915_wa_list * wal)532 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
533 struct i915_wa_list *wal)
534 {
535 struct intel_gt *gt = engine->gt;
536 u8 vals[3] = { 0, 0, 0 };
537 unsigned int i;
538
539 for (i = 0; i < 3; i++) {
540 u8 ss;
541
542 /*
543 * Only consider slices where one, and only one, subslice has 7
544 * EUs
545 */
546 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
547 continue;
548
549 /*
550 * subslice_7eu[i] != 0 (because of the check above) and
551 * ss_max == 4 (maximum number of subslices possible per slice)
552 *
553 * -> 0 <= ss <= 3;
554 */
555 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
556 vals[i] = 3 - ss;
557 }
558
559 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
560 return;
561
562 /* Tune IZ hashing. See intel_device_info_runtime_init() */
563 wa_masked_field_set(wal, GEN7_GT_MODE,
564 GEN9_IZ_HASHING_MASK(2) |
565 GEN9_IZ_HASHING_MASK(1) |
566 GEN9_IZ_HASHING_MASK(0),
567 GEN9_IZ_HASHING(2, vals[2]) |
568 GEN9_IZ_HASHING(1, vals[1]) |
569 GEN9_IZ_HASHING(0, vals[0]));
570 }
571
skl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)572 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
573 struct i915_wa_list *wal)
574 {
575 gen9_ctx_workarounds_init(engine, wal);
576 skl_tune_iz_hashing(engine, wal);
577 }
578
bxt_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)579 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
580 struct i915_wa_list *wal)
581 {
582 gen9_ctx_workarounds_init(engine, wal);
583
584 /* WaDisableThreadStallDopClockGating:bxt */
585 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
586 STALL_DOP_GATING_DISABLE);
587
588 /* WaToEnableHwFixForPushConstHWBug:bxt */
589 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
590 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
591 }
592
kbl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)593 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
594 struct i915_wa_list *wal)
595 {
596 struct drm_i915_private *i915 = engine->i915;
597
598 gen9_ctx_workarounds_init(engine, wal);
599
600 /* WaToEnableHwFixForPushConstHWBug:kbl */
601 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604
605 /* WaDisableSbeCacheDispatchPortSharing:kbl */
606 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
607 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
608 }
609
glk_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)610 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
611 struct i915_wa_list *wal)
612 {
613 gen9_ctx_workarounds_init(engine, wal);
614
615 /* WaToEnableHwFixForPushConstHWBug:glk */
616 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
617 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
618 }
619
cfl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)620 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 struct i915_wa_list *wal)
622 {
623 gen9_ctx_workarounds_init(engine, wal);
624
625 /* WaToEnableHwFixForPushConstHWBug:cfl */
626 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
627 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
628
629 /* WaDisableSbeCacheDispatchPortSharing:cfl */
630 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
631 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
632 }
633
icl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)634 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
635 struct i915_wa_list *wal)
636 {
637 struct drm_i915_private *i915 = engine->i915;
638
639 /* Wa_1406697149 (WaDisableBankHangMode:icl) */
640 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
641
642 /* WaForceEnableNonCoherent:icl
643 * This is not the same workaround as in early Gen9 platforms, where
644 * lacking this could cause system hangs, but coherency performance
645 * overhead is high and only a few compute workloads really need it
646 * (the register is whitelisted in hardware now, so UMDs can opt in
647 * for coherency if they have a good reason).
648 */
649 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
650
651 /* WaEnableFloatBlendOptimization:icl */
652 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
653 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
654 0 /* write-only, so skip validation */,
655 true);
656
657 /* WaDisableGPGPUMidThreadPreemption:icl */
658 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
659 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
660 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
661
662 /* allow headerless messages for preemptible GPGPU context */
663 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
664 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
665
666 /* Wa_1604278689:icl,ehl */
667 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
668 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
669 0,
670 0xFFFFFFFF);
671
672 /* Wa_1406306137:icl,ehl */
673 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
674
675 if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) {
676 /*
677 * Disable Repacking for Compression (masked R/W access)
678 * before rendering compressed surfaces for display.
679 */
680 wa_masked_en(wal, CACHE_MODE_0_GEN7,
681 DISABLE_REPACKING_FOR_COMPRESSION);
682 }
683 }
684
685 /*
686 * These settings aren't actually workarounds, but general tuning settings that
687 * need to be programmed on dg2 platform.
688 */
dg2_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)689 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
690 struct i915_wa_list *wal)
691 {
692 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
693 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
694 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
695 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
696 FF_MODE2_TDS_TIMER_128);
697 }
698
gen12_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)699 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
700 struct i915_wa_list *wal)
701 {
702 struct drm_i915_private *i915 = engine->i915;
703
704 /*
705 * Wa_1409142259:tgl,dg1,adl-p,adl-n
706 * Wa_1409347922:tgl,dg1,adl-p
707 * Wa_1409252684:tgl,dg1,adl-p
708 * Wa_1409217633:tgl,dg1,adl-p
709 * Wa_1409207793:tgl,dg1,adl-p
710 * Wa_1409178076:tgl,dg1,adl-p,adl-n
711 * Wa_1408979724:tgl,dg1,adl-p,adl-n
712 * Wa_14010443199:tgl,rkl,dg1,adl-p,adl-n
713 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p,adl-n
714 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p,adl-n
715 * Wa_22010465259:tgl,rkl,dg1,adl-s,adl-p,adl-n
716 */
717 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
718 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
719
720 /* WaDisableGPGPUMidThreadPreemption:gen12 */
721 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
722 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
723 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
724
725 /*
726 * Wa_16011163337 - GS_TIMER
727 *
728 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
729 * need to program it even on those that don't explicitly list that
730 * workaround.
731 *
732 * Note that the programming of GEN12_FF_MODE2 is further modified
733 * according to the FF_MODE2 guidance given by Wa_1608008084.
734 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
735 * value when read from the CPU.
736 *
737 * The default value for this register is zero for all fields.
738 * So instead of doing a RMW we should just write the desired values
739 * for TDS and GS timers. Note that since the readback can't be trusted,
740 * the clear mask is just set to ~0 to make sure other bits are not
741 * inadvertently set. For the same reason read verification is ignored.
742 */
743 wa_add(wal,
744 GEN12_FF_MODE2,
745 ~0,
746 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
747 0, false);
748
749 if (!IS_DG1(i915)) {
750 /* Wa_1806527549 */
751 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
752
753 /* Wa_1606376872 */
754 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
755 }
756
757 /*
758 * This bit must be set to enable performance optimization for fast
759 * clears.
760 */
761 wa_mcr_write_or(wal, GEN8_WM_CHICKEN2, WAIT_ON_DEPTH_STALL_DONE_DISABLE);
762 }
763
dg1_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)764 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
765 struct i915_wa_list *wal)
766 {
767 gen12_ctx_workarounds_init(engine, wal);
768
769 /* Wa_1409044764 */
770 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
771 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
772
773 /* Wa_22010493298 */
774 wa_masked_en(wal, HIZ_CHICKEN,
775 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
776 }
777
dg2_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)778 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
779 struct i915_wa_list *wal)
780 {
781 dg2_ctx_gt_tuning_init(engine, wal);
782
783 /* Wa_16013271637:dg2 */
784 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
785 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
786
787 /* Wa_14014947963:dg2 */
788 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
789
790 /* Wa_18018764978:dg2 */
791 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
792
793 /* Wa_18019271663:dg2 */
794 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
795
796 /* Wa_14019877138:dg2 */
797 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
798 }
799
xelpg_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)800 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
801 struct i915_wa_list *wal)
802 {
803 struct intel_gt *gt = engine->gt;
804
805 dg2_ctx_gt_tuning_init(engine, wal);
806
807 /*
808 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
809 * gen12_emit_indirect_ctx_rcs() rather than here on some early
810 * steppings.
811 */
812 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
813 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
814 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
815 }
816
xelpg_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)817 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
818 struct i915_wa_list *wal)
819 {
820 struct intel_gt *gt = engine->gt;
821
822 xelpg_ctx_gt_tuning_init(engine, wal);
823
824 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
825 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
826 /* Wa_14014947963 */
827 wa_masked_field_set(wal, VF_PREEMPTION,
828 PREEMPTION_VERTEX_COUNT, 0x4000);
829
830 /* Wa_16013271637 */
831 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
832 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
833
834 /* Wa_18019627453 */
835 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
836
837 /* Wa_18018764978 */
838 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
839 }
840
841 /* Wa_18019271663 */
842 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
843
844 /* Wa_14019877138 */
845 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
846 }
847
fakewa_disable_nestedbb_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)848 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
849 struct i915_wa_list *wal)
850 {
851 /*
852 * This is a "fake" workaround defined by software to ensure we
853 * maintain reliable, backward-compatible behavior for userspace with
854 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
855 *
856 * The per-context setting of MI_MODE[12] determines whether the bits
857 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
858 * in the traditional manner or whether they should instead use a new
859 * tgl+ meaning that breaks backward compatibility, but allows nesting
860 * into 3rd-level batchbuffers. When this new capability was first
861 * added in TGL, it remained off by default unless a context
862 * intentionally opted in to the new behavior. However Xe_HPG now
863 * flips this on by default and requires that we explicitly opt out if
864 * we don't want the new behavior.
865 *
866 * From a SW perspective, we want to maintain the backward-compatible
867 * behavior for userspace, so we'll apply a fake workaround to set it
868 * back to the legacy behavior on platforms where the hardware default
869 * is to break compatibility. At the moment there is no Linux
870 * userspace that utilizes third-level batchbuffers, so this will avoid
871 * userspace from needing to make any changes. using the legacy
872 * meaning is the correct thing to do. If/when we have userspace
873 * consumers that want to utilize third-level batch nesting, we can
874 * provide a context parameter to allow them to opt-in.
875 */
876 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
877 }
878
gen12_ctx_gt_mocs_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)879 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
880 struct i915_wa_list *wal)
881 {
882 u8 mocs;
883
884 /*
885 * Some blitter commands do not have a field for MOCS, those
886 * commands will use MOCS index pointed by BLIT_CCTL.
887 * BLIT_CCTL registers are needed to be programmed to un-cached.
888 */
889 if (engine->class == COPY_ENGINE_CLASS) {
890 mocs = engine->gt->mocs.uc_index;
891 wa_write_clr_set(wal,
892 BLIT_CCTL(engine->mmio_base),
893 BLIT_CCTL_MASK,
894 BLIT_CCTL_MOCS(mocs, mocs));
895 }
896 }
897
898 /*
899 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
900 * defined by the hardware team, but it programming general context registers.
901 * Adding those context register programming in context workaround
902 * allow us to use the wa framework for proper application and validation.
903 */
904 static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)905 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
906 struct i915_wa_list *wal)
907 {
908 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
909 fakewa_disable_nestedbb_mode(engine, wal);
910
911 gen12_ctx_gt_mocs_init(engine, wal);
912 }
913
914 static void
__intel_engine_init_ctx_wa(struct intel_engine_cs * engine,struct i915_wa_list * wal,const char * name)915 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
916 struct i915_wa_list *wal,
917 const char *name)
918 {
919 struct drm_i915_private *i915 = engine->i915;
920
921 wa_init_start(wal, engine->gt, name, engine->name);
922
923 /* Applies to all engines */
924 /*
925 * Fake workarounds are not the actual workaround but
926 * programming of context registers using workaround framework.
927 */
928 if (GRAPHICS_VER(i915) >= 12)
929 gen12_ctx_gt_fake_wa_init(engine, wal);
930
931 if (engine->class != RENDER_CLASS)
932 goto done;
933
934 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
935 xelpg_ctx_workarounds_init(engine, wal);
936 else if (IS_DG2(i915))
937 dg2_ctx_workarounds_init(engine, wal);
938 else if (IS_DG1(i915))
939 dg1_ctx_workarounds_init(engine, wal);
940 else if (GRAPHICS_VER(i915) == 12)
941 gen12_ctx_workarounds_init(engine, wal);
942 else if (GRAPHICS_VER(i915) == 11)
943 icl_ctx_workarounds_init(engine, wal);
944 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
945 cfl_ctx_workarounds_init(engine, wal);
946 else if (IS_GEMINILAKE(i915))
947 glk_ctx_workarounds_init(engine, wal);
948 else if (IS_KABYLAKE(i915))
949 kbl_ctx_workarounds_init(engine, wal);
950 else if (IS_BROXTON(i915))
951 bxt_ctx_workarounds_init(engine, wal);
952 else if (IS_SKYLAKE(i915))
953 skl_ctx_workarounds_init(engine, wal);
954 else if (IS_CHERRYVIEW(i915))
955 chv_ctx_workarounds_init(engine, wal);
956 else if (IS_BROADWELL(i915))
957 bdw_ctx_workarounds_init(engine, wal);
958 else if (GRAPHICS_VER(i915) == 7)
959 gen7_ctx_workarounds_init(engine, wal);
960 else if (GRAPHICS_VER(i915) == 6)
961 gen6_ctx_workarounds_init(engine, wal);
962 else if (GRAPHICS_VER(i915) < 8)
963 ;
964 else
965 MISSING_CASE(GRAPHICS_VER(i915));
966
967 done:
968 wa_init_finish(wal);
969 }
970
intel_engine_init_ctx_wa(struct intel_engine_cs * engine)971 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
972 {
973 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
974 }
975
intel_engine_emit_ctx_wa(struct i915_request * rq)976 int intel_engine_emit_ctx_wa(struct i915_request *rq)
977 {
978 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
979 struct intel_uncore *uncore = rq->engine->uncore;
980 enum forcewake_domains fw;
981 unsigned long flags;
982 struct i915_wa *wa;
983 unsigned int i;
984 u32 *cs;
985 int ret;
986
987 if (wal->count == 0)
988 return 0;
989
990 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
991 if (ret)
992 return ret;
993
994 if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
995 IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
996 cs = intel_ring_begin(rq, (wal->count * 2 + 6));
997 else
998 cs = intel_ring_begin(rq, (wal->count * 2 + 2));
999
1000 if (IS_ERR(cs))
1001 return PTR_ERR(cs);
1002
1003 fw = wal_get_fw_for_rmw(uncore, wal);
1004
1005 intel_gt_mcr_lock(wal->gt, &flags);
1006 spin_lock(&uncore->lock);
1007 intel_uncore_forcewake_get__locked(uncore, fw);
1008
1009 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
1010 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1011 u32 val;
1012
1013 /* Skip reading the register if it's not really needed */
1014 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1015 val = wa->set;
1016 } else {
1017 val = wa->is_mcr ?
1018 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1019 intel_uncore_read_fw(uncore, wa->reg);
1020 val &= ~wa->clr;
1021 val |= wa->set;
1022 }
1023
1024 *cs++ = i915_mmio_reg_offset(wa->reg);
1025 *cs++ = val;
1026 }
1027 *cs++ = MI_NOOP;
1028
1029 /* Wa_14019789679 */
1030 if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1031 IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
1032 *cs++ = CMD_3DSTATE_MESH_CONTROL;
1033 *cs++ = 0;
1034 *cs++ = 0;
1035 *cs++ = MI_NOOP;
1036 }
1037
1038 intel_uncore_forcewake_put__locked(uncore, fw);
1039 spin_unlock(&uncore->lock);
1040 intel_gt_mcr_unlock(wal->gt, flags);
1041
1042 intel_ring_advance(rq, cs);
1043
1044 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1045 if (ret)
1046 return ret;
1047
1048 return 0;
1049 }
1050
1051 static void
gen4_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1052 gen4_gt_workarounds_init(struct intel_gt *gt,
1053 struct i915_wa_list *wal)
1054 {
1055 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1056 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1057 }
1058
1059 static void
g4x_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1060 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1061 {
1062 gen4_gt_workarounds_init(gt, wal);
1063
1064 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1065 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1066 }
1067
1068 static void
ilk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1069 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1070 {
1071 g4x_gt_workarounds_init(gt, wal);
1072
1073 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1074 }
1075
1076 static void
snb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1077 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1078 {
1079 }
1080
1081 static void
ivb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1082 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1083 {
1084 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1085 wa_masked_dis(wal,
1086 GEN7_COMMON_SLICE_CHICKEN1,
1087 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1088
1089 /* WaApplyL3ControlAndL3ChickenMode:ivb */
1090 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1091 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1092
1093 /* WaForceL3Serialization:ivb */
1094 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1095 }
1096
1097 static void
vlv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1098 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1099 {
1100 /* WaForceL3Serialization:vlv */
1101 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1102
1103 /*
1104 * WaIncreaseL3CreditsForVLVB0:vlv
1105 * This is the hardware default actually.
1106 */
1107 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1108 }
1109
1110 static void
hsw_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1111 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1112 {
1113 /* L3 caching of data atomics doesn't work -- disable it. */
1114 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1115
1116 wa_add(wal,
1117 HSW_ROW_CHICKEN3, 0,
1118 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1119 0 /* XXX does this reg exist? */, true);
1120
1121 /* WaVSRefCountFullforceMissDisable:hsw */
1122 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1123 }
1124
1125 static void
gen9_wa_init_mcr(struct drm_i915_private * i915,struct i915_wa_list * wal)1126 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1127 {
1128 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1129 unsigned int slice, subslice;
1130 u32 mcr, mcr_mask;
1131
1132 GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1133
1134 /*
1135 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1136 * Before any MMIO read into slice/subslice specific registers, MCR
1137 * packet control register needs to be programmed to point to any
1138 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1139 * This means each subsequent MMIO read will be forwarded to an
1140 * specific s/ss combination, but this is OK since these registers
1141 * are consistent across s/ss in almost all cases. In the rare
1142 * occasions, such as INSTDONE, where this value is dependent
1143 * on s/ss combo, the read should be done with read_subslice_reg.
1144 */
1145 slice = ffs(sseu->slice_mask) - 1;
1146 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1147 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1148 GEM_BUG_ON(!subslice);
1149 subslice--;
1150
1151 /*
1152 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1153 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1154 */
1155 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1156 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1157
1158 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1159
1160 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1161 }
1162
1163 static void
gen9_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1164 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1165 {
1166 struct drm_i915_private *i915 = gt->i915;
1167
1168 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1169 gen9_wa_init_mcr(i915, wal);
1170
1171 /* WaDisableKillLogic:bxt,skl,kbl */
1172 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1173 wa_write_or(wal,
1174 GAM_ECOCHK,
1175 ECOCHK_DIS_TLB);
1176
1177 if (HAS_LLC(i915)) {
1178 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1179 *
1180 * Must match Display Engine. See
1181 * WaCompressedResourceDisplayNewHashMode.
1182 */
1183 wa_write_or(wal,
1184 MMCD_MISC_CTRL,
1185 MMCD_PCLA | MMCD_HOTSPOT_EN);
1186 }
1187
1188 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1189 wa_write_or(wal,
1190 GAM_ECOCHK,
1191 BDW_DISABLE_HDC_INVALIDATION);
1192 }
1193
1194 static void
skl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1195 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1196 {
1197 gen9_gt_workarounds_init(gt, wal);
1198
1199 /* WaDisableGafsUnitClkGating:skl */
1200 wa_write_or(wal,
1201 GEN7_UCGCTL4,
1202 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203
1204 /* WaInPlaceDecompressionHang:skl */
1205 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1206 wa_write_or(wal,
1207 GEN9_GAMT_ECO_REG_RW_IA,
1208 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1209 }
1210
1211 static void
kbl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1212 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1213 {
1214 gen9_gt_workarounds_init(gt, wal);
1215
1216 /* WaDisableDynamicCreditSharing:kbl */
1217 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1218 wa_write_or(wal,
1219 GAMT_CHKN_BIT_REG,
1220 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1221
1222 /* WaDisableGafsUnitClkGating:kbl */
1223 wa_write_or(wal,
1224 GEN7_UCGCTL4,
1225 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1226
1227 /* WaInPlaceDecompressionHang:kbl */
1228 wa_write_or(wal,
1229 GEN9_GAMT_ECO_REG_RW_IA,
1230 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1231 }
1232
1233 static void
glk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1234 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1235 {
1236 gen9_gt_workarounds_init(gt, wal);
1237 }
1238
1239 static void
cfl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1240 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1241 {
1242 gen9_gt_workarounds_init(gt, wal);
1243
1244 /* WaDisableGafsUnitClkGating:cfl */
1245 wa_write_or(wal,
1246 GEN7_UCGCTL4,
1247 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1248
1249 /* WaInPlaceDecompressionHang:cfl */
1250 wa_write_or(wal,
1251 GEN9_GAMT_ECO_REG_RW_IA,
1252 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1253 }
1254
__set_mcr_steering(struct i915_wa_list * wal,i915_reg_t steering_reg,unsigned int slice,unsigned int subslice)1255 static void __set_mcr_steering(struct i915_wa_list *wal,
1256 i915_reg_t steering_reg,
1257 unsigned int slice, unsigned int subslice)
1258 {
1259 u32 mcr, mcr_mask;
1260
1261 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1262 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1263
1264 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1265 }
1266
debug_dump_steering(struct intel_gt * gt)1267 static void debug_dump_steering(struct intel_gt *gt)
1268 {
1269 struct drm_printer p = drm_dbg_printer(>->i915->drm, DRM_UT_DRIVER,
1270 "MCR Steering:");
1271
1272 if (drm_debug_enabled(DRM_UT_DRIVER))
1273 intel_gt_mcr_report_steering(&p, gt, false);
1274 }
1275
__add_mcr_wa(struct intel_gt * gt,struct i915_wa_list * wal,unsigned int slice,unsigned int subslice)1276 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1277 unsigned int slice, unsigned int subslice)
1278 {
1279 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1280
1281 gt->default_steering.groupid = slice;
1282 gt->default_steering.instanceid = subslice;
1283
1284 debug_dump_steering(gt);
1285 }
1286
1287 static void
icl_wa_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1288 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1289 {
1290 const struct sseu_dev_info *sseu = >->info.sseu;
1291 unsigned int subslice;
1292
1293 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1294 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1295
1296 /*
1297 * Although a platform may have subslices, we need to always steer
1298 * reads to the lowest instance that isn't fused off. When Render
1299 * Power Gating is enabled, grabbing forcewake will only power up a
1300 * single subslice (the "minconfig") if there isn't a real workload
1301 * that needs to be run; this means that if we steer register reads to
1302 * one of the higher subslices, we run the risk of reading back 0's or
1303 * random garbage.
1304 */
1305 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1306
1307 /*
1308 * If the subslice we picked above also steers us to a valid L3 bank,
1309 * then we can just rely on the default steering and won't need to
1310 * worry about explicitly re-steering L3BANK reads later.
1311 */
1312 if (gt->info.l3bank_mask & BIT(subslice))
1313 gt->steering_table[L3BANK] = NULL;
1314
1315 __add_mcr_wa(gt, wal, 0, subslice);
1316 }
1317
1318 static void
xehp_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1319 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1320 {
1321 const struct sseu_dev_info *sseu = >->info.sseu;
1322 unsigned long slice, subslice = 0, slice_mask = 0;
1323 u32 lncf_mask = 0;
1324 int i;
1325
1326 /*
1327 * On Xe_HP the steering increases in complexity. There are now several
1328 * more units that require steering and we're not guaranteed to be able
1329 * to find a common setting for all of them. These are:
1330 * - GSLICE (fusable)
1331 * - DSS (sub-unit within gslice; fusable)
1332 * - L3 Bank (fusable)
1333 * - MSLICE (fusable)
1334 * - LNCF (sub-unit within mslice; always present if mslice is present)
1335 *
1336 * We'll do our default/implicit steering based on GSLICE (in the
1337 * sliceid field) and DSS (in the subsliceid field). If we can
1338 * find overlap between the valid MSLICE and/or LNCF values with
1339 * a suitable GSLICE, then we can just reuse the default value and
1340 * skip and explicit steering at runtime.
1341 *
1342 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1343 * a valid sliceid value. DSS steering is the only type of steering
1344 * that utilizes the 'subsliceid' bits.
1345 *
1346 * Also note that, even though the steering domain is called "GSlice"
1347 * and it is encoded in the register using the gslice format, the spec
1348 * says that the combined (geometry | compute) fuse should be used to
1349 * select the steering.
1350 */
1351
1352 /* Find the potential gslice candidates */
1353 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1354 GEN_DSS_PER_GSLICE);
1355
1356 /*
1357 * Find the potential LNCF candidates. Either LNCF within a valid
1358 * mslice is fine.
1359 */
1360 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES)
1361 lncf_mask |= (0x3 << (i * 2));
1362
1363 /*
1364 * Are there any sliceid values that work for both GSLICE and LNCF
1365 * steering?
1366 */
1367 if (slice_mask & lncf_mask) {
1368 slice_mask &= lncf_mask;
1369 gt->steering_table[LNCF] = NULL;
1370 }
1371
1372 /* How about sliceid values that also work for MSLICE steering? */
1373 if (slice_mask & gt->info.mslice_mask) {
1374 slice_mask &= gt->info.mslice_mask;
1375 gt->steering_table[MSLICE] = NULL;
1376 }
1377
1378 slice = __ffs(slice_mask);
1379 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1380 GEN_DSS_PER_GSLICE;
1381
1382 __add_mcr_wa(gt, wal, slice, subslice);
1383
1384 /*
1385 * SQIDI ranges are special because they use different steering
1386 * registers than everything else we work with. On XeHP SDV and
1387 * DG2-G10, any value in the steering registers will work fine since
1388 * all instances are present, but DG2-G11 only has SQIDI instances at
1389 * ID's 2 and 3, so we need to steer to one of those. For simplicity
1390 * we'll just steer to a hardcoded "2" since that value will work
1391 * everywhere.
1392 */
1393 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1394 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1395
1396 /*
1397 * On DG2, GAM registers have a dedicated steering control register
1398 * and must always be programmed to a hardcoded groupid of "1."
1399 */
1400 if (IS_DG2(gt->i915))
1401 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1402 }
1403
1404 static void
icl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1405 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1406 {
1407 struct drm_i915_private *i915 = gt->i915;
1408
1409 icl_wa_init_mcr(gt, wal);
1410
1411 /* WaModifyGamTlbPartitioning:icl */
1412 wa_write_clr_set(wal,
1413 GEN11_GACB_PERF_CTRL,
1414 GEN11_HASH_CTRL_MASK,
1415 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1416
1417 /* Wa_1405766107:icl
1418 * Formerly known as WaCL2SFHalfMaxAlloc
1419 */
1420 wa_write_or(wal,
1421 GEN11_LSN_UNSLCVC,
1422 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1423 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1424
1425 /* Wa_220166154:icl
1426 * Formerly known as WaDisCtxReload
1427 */
1428 wa_write_or(wal,
1429 GEN8_GAMW_ECO_DEV_RW_IA,
1430 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1431
1432 /* Wa_1406463099:icl
1433 * Formerly known as WaGamTlbPendError
1434 */
1435 wa_write_or(wal,
1436 GAMT_CHKN_BIT_REG,
1437 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1438
1439 /*
1440 * Wa_1408615072:icl,ehl (vsunit)
1441 * Wa_1407596294:icl,ehl (hsunit)
1442 */
1443 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1444 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1445
1446 /* Wa_1407352427:icl,ehl */
1447 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1448 PSDUNIT_CLKGATE_DIS);
1449
1450 /* Wa_1406680159:icl,ehl */
1451 wa_mcr_write_or(wal,
1452 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1453 GWUNIT_CLKGATE_DIS);
1454
1455 /* Wa_1607087056:icl,ehl,jsl */
1456 if (IS_ICELAKE(i915) ||
1457 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1458 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1459 wa_write_or(wal,
1460 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1461 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1462
1463 /*
1464 * This is not a documented workaround, but rather an optimization
1465 * to reduce sampler power.
1466 */
1467 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1468 }
1469
1470 /*
1471 * Though there are per-engine instances of these registers,
1472 * they retain their value through engine resets and should
1473 * only be provided on the GT workaround list rather than
1474 * the engine-specific workaround list.
1475 */
1476 static void
wa_14011060649(struct intel_gt * gt,struct i915_wa_list * wal)1477 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1478 {
1479 struct intel_engine_cs *engine;
1480 int id;
1481
1482 for_each_engine(engine, gt, id) {
1483 if (engine->class != VIDEO_DECODE_CLASS ||
1484 (engine->instance % 2))
1485 continue;
1486
1487 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1488 IECPUNIT_CLKGATE_DIS);
1489 }
1490 }
1491
1492 static void
gen12_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1493 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1494 {
1495 icl_wa_init_mcr(gt, wal);
1496
1497 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1498 wa_14011060649(gt, wal);
1499
1500 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1501 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1502
1503 /*
1504 * Wa_14015795083
1505 *
1506 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1507 * preventing i915 from modifying it for this workaround. Skip the
1508 * readback verification for this workaround on debug builds; if the
1509 * workaround doesn't stick due to firmware behavior, it's not an error
1510 * that we want CI to flag.
1511 */
1512 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1513 0, 0, false);
1514 }
1515
1516 static void
dg1_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1517 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1518 {
1519 gen12_gt_workarounds_init(gt, wal);
1520
1521 /* Wa_1409420604:dg1 */
1522 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1523 CPSSUNIT_CLKGATE_DIS);
1524
1525 /* Wa_1408615072:dg1 */
1526 /* Empirical testing shows this register is unaffected by engine reset. */
1527 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1528 }
1529
1530 static void
dg2_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1531 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1532 {
1533 xehp_init_mcr(gt, wal);
1534
1535 /* Wa_14011060649:dg2 */
1536 wa_14011060649(gt, wal);
1537
1538 if (IS_DG2_G10(gt->i915)) {
1539 /* Wa_22010523718:dg2 */
1540 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1541 CG3DDISCFEG_CLKGATE_DIS);
1542
1543 /* Wa_14011006942:dg2 */
1544 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1545 DSS_ROUTER_CLKGATE_DIS);
1546 }
1547
1548 /* Wa_14014830051:dg2 */
1549 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1550
1551 /*
1552 * Wa_14015795083
1553 * Skip verification for possibly locked register.
1554 */
1555 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1556 0, 0, false);
1557
1558 /* Wa_18018781329 */
1559 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1560 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1561 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1562 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1563
1564 /* Wa_1509235366:dg2 */
1565 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1566 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1567
1568 /* Wa_14010648519:dg2 */
1569 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1570 }
1571
1572 static void
xelpg_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1573 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1574 {
1575 /* Wa_14018575942 / Wa_18018781329 */
1576 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1577 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1578
1579 /* Wa_22016670082 */
1580 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1581
1582 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1583 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1584 /* Wa_14014830051 */
1585 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1586
1587 /* Wa_14015795083 */
1588 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1589 }
1590
1591 /*
1592 * Unlike older platforms, we no longer setup implicit steering here;
1593 * all MCR accesses are explicitly steered.
1594 */
1595 debug_dump_steering(gt);
1596 }
1597
1598 static void
wa_16021867713(struct intel_gt * gt,struct i915_wa_list * wal)1599 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1600 {
1601 struct intel_engine_cs *engine;
1602 int id;
1603
1604 for_each_engine(engine, gt, id)
1605 if (engine->class == VIDEO_DECODE_CLASS)
1606 wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1607 MFXPIPE_CLKGATE_DIS);
1608 }
1609
1610 static void
xelpmp_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1611 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1612 {
1613 wa_16021867713(gt, wal);
1614
1615 /*
1616 * Wa_14018778641
1617 * Wa_18018781329
1618 *
1619 * Note that although these registers are MCR on the primary
1620 * GT, the media GT's versions are regular singleton registers.
1621 */
1622 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1623
1624 /*
1625 * Wa_14018575942
1626 *
1627 * Issue is seen on media KPI test running on VDBOX engine
1628 * especially VP9 encoding WLs
1629 */
1630 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1631
1632 /* Wa_22016670082 */
1633 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1634
1635 debug_dump_steering(gt);
1636 }
1637
1638 /*
1639 * The bspec performance guide has recommended MMIO tuning settings. These
1640 * aren't truly "workarounds" but we want to program them through the
1641 * workaround infrastructure to make sure they're (re)applied at the proper
1642 * times.
1643 *
1644 * The programming in this function is for settings that persist through
1645 * engine resets and also are not part of any engine's register state context.
1646 * I.e., settings that only need to be re-applied in the event of a full GT
1647 * reset.
1648 */
gt_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)1649 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1650 {
1651 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1652 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1653 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1654 }
1655
1656 if (IS_DG2(gt->i915)) {
1657 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1658 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1659 }
1660 }
1661
1662 static void
gt_init_workarounds(struct intel_gt * gt,struct i915_wa_list * wal)1663 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1664 {
1665 struct drm_i915_private *i915 = gt->i915;
1666
1667 gt_tuning_settings(gt, wal);
1668
1669 if (gt->type == GT_MEDIA) {
1670 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1671 xelpmp_gt_workarounds_init(gt, wal);
1672 else
1673 MISSING_CASE(MEDIA_VER_FULL(i915));
1674
1675 return;
1676 }
1677
1678 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1679 xelpg_gt_workarounds_init(gt, wal);
1680 else if (IS_DG2(i915))
1681 dg2_gt_workarounds_init(gt, wal);
1682 else if (IS_DG1(i915))
1683 dg1_gt_workarounds_init(gt, wal);
1684 else if (GRAPHICS_VER(i915) == 12)
1685 gen12_gt_workarounds_init(gt, wal);
1686 else if (GRAPHICS_VER(i915) == 11)
1687 icl_gt_workarounds_init(gt, wal);
1688 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1689 cfl_gt_workarounds_init(gt, wal);
1690 else if (IS_GEMINILAKE(i915))
1691 glk_gt_workarounds_init(gt, wal);
1692 else if (IS_KABYLAKE(i915))
1693 kbl_gt_workarounds_init(gt, wal);
1694 else if (IS_BROXTON(i915))
1695 gen9_gt_workarounds_init(gt, wal);
1696 else if (IS_SKYLAKE(i915))
1697 skl_gt_workarounds_init(gt, wal);
1698 else if (IS_HASWELL(i915))
1699 hsw_gt_workarounds_init(gt, wal);
1700 else if (IS_VALLEYVIEW(i915))
1701 vlv_gt_workarounds_init(gt, wal);
1702 else if (IS_IVYBRIDGE(i915))
1703 ivb_gt_workarounds_init(gt, wal);
1704 else if (GRAPHICS_VER(i915) == 6)
1705 snb_gt_workarounds_init(gt, wal);
1706 else if (GRAPHICS_VER(i915) == 5)
1707 ilk_gt_workarounds_init(gt, wal);
1708 else if (IS_G4X(i915))
1709 g4x_gt_workarounds_init(gt, wal);
1710 else if (GRAPHICS_VER(i915) == 4)
1711 gen4_gt_workarounds_init(gt, wal);
1712 else if (GRAPHICS_VER(i915) <= 8)
1713 ;
1714 else
1715 MISSING_CASE(GRAPHICS_VER(i915));
1716 }
1717
intel_gt_init_workarounds(struct intel_gt * gt)1718 void intel_gt_init_workarounds(struct intel_gt *gt)
1719 {
1720 struct i915_wa_list *wal = >->wa_list;
1721
1722 wa_init_start(wal, gt, "GT", "global");
1723 gt_init_workarounds(gt, wal);
1724 wa_init_finish(wal);
1725 }
1726
1727 static bool
wa_verify(struct intel_gt * gt,const struct i915_wa * wa,u32 cur,const char * name,const char * from)1728 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1729 const char *name, const char *from)
1730 {
1731 if ((cur ^ wa->set) & wa->read) {
1732 gt_err(gt,
1733 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1734 name, from, i915_mmio_reg_offset(wa->reg),
1735 cur, cur & wa->read, wa->set & wa->read);
1736
1737 return false;
1738 }
1739
1740 return true;
1741 }
1742
wa_list_apply(const struct i915_wa_list * wal)1743 static void wa_list_apply(const struct i915_wa_list *wal)
1744 {
1745 struct intel_gt *gt = wal->gt;
1746 struct intel_uncore *uncore = gt->uncore;
1747 enum forcewake_domains fw;
1748 unsigned long flags;
1749 struct i915_wa *wa;
1750 unsigned int i;
1751
1752 if (!wal->count)
1753 return;
1754
1755 fw = wal_get_fw_for_rmw(uncore, wal);
1756
1757 intel_gt_mcr_lock(gt, &flags);
1758 spin_lock(&uncore->lock);
1759 intel_uncore_forcewake_get__locked(uncore, fw);
1760
1761 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1762 u32 val, old = 0;
1763
1764 /* open-coded rmw due to steering */
1765 if (wa->clr)
1766 old = wa->is_mcr ?
1767 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1768 intel_uncore_read_fw(uncore, wa->reg);
1769 val = (old & ~wa->clr) | wa->set;
1770 if (val != old || !wa->clr) {
1771 if (wa->is_mcr)
1772 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1773 else
1774 intel_uncore_write_fw(uncore, wa->reg, val);
1775 }
1776
1777 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1778 u32 val = wa->is_mcr ?
1779 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1780 intel_uncore_read_fw(uncore, wa->reg);
1781
1782 wa_verify(gt, wa, val, wal->name, "application");
1783 }
1784 }
1785
1786 intel_uncore_forcewake_put__locked(uncore, fw);
1787 spin_unlock(&uncore->lock);
1788 intel_gt_mcr_unlock(gt, flags);
1789 }
1790
intel_gt_apply_workarounds(struct intel_gt * gt)1791 void intel_gt_apply_workarounds(struct intel_gt *gt)
1792 {
1793 wa_list_apply(>->wa_list);
1794 }
1795
wa_list_verify(struct intel_gt * gt,const struct i915_wa_list * wal,const char * from)1796 static bool wa_list_verify(struct intel_gt *gt,
1797 const struct i915_wa_list *wal,
1798 const char *from)
1799 {
1800 struct intel_uncore *uncore = gt->uncore;
1801 struct i915_wa *wa;
1802 enum forcewake_domains fw;
1803 unsigned long flags;
1804 unsigned int i;
1805 bool ok = true;
1806
1807 fw = wal_get_fw_for_rmw(uncore, wal);
1808
1809 intel_gt_mcr_lock(gt, &flags);
1810 spin_lock(&uncore->lock);
1811 intel_uncore_forcewake_get__locked(uncore, fw);
1812
1813 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1814 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1815 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1816 intel_uncore_read_fw(uncore, wa->reg),
1817 wal->name, from);
1818
1819 intel_uncore_forcewake_put__locked(uncore, fw);
1820 spin_unlock(&uncore->lock);
1821 intel_gt_mcr_unlock(gt, flags);
1822
1823 return ok;
1824 }
1825
intel_gt_verify_workarounds(struct intel_gt * gt,const char * from)1826 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1827 {
1828 return wa_list_verify(gt, >->wa_list, from);
1829 }
1830
1831 __maybe_unused
is_nonpriv_flags_valid(u32 flags)1832 static bool is_nonpriv_flags_valid(u32 flags)
1833 {
1834 /* Check only valid flag bits are set */
1835 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1836 return false;
1837
1838 /* NB: Only 3 out of 4 enum values are valid for access field */
1839 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1840 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1841 return false;
1842
1843 return true;
1844 }
1845
1846 static void
whitelist_reg_ext(struct i915_wa_list * wal,i915_reg_t reg,u32 flags)1847 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1848 {
1849 struct i915_wa wa = {
1850 .reg = reg
1851 };
1852
1853 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1854 return;
1855
1856 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1857 return;
1858
1859 wa.reg.reg |= flags;
1860 _wa_add(wal, &wa);
1861 }
1862
1863 static void
whitelist_mcr_reg_ext(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 flags)1864 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1865 {
1866 struct i915_wa wa = {
1867 .mcr_reg = reg,
1868 .is_mcr = 1,
1869 };
1870
1871 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1872 return;
1873
1874 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1875 return;
1876
1877 wa.mcr_reg.reg |= flags;
1878 _wa_add(wal, &wa);
1879 }
1880
1881 static void
whitelist_reg(struct i915_wa_list * wal,i915_reg_t reg)1882 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1883 {
1884 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1885 }
1886
1887 static void
whitelist_mcr_reg(struct i915_wa_list * wal,i915_mcr_reg_t reg)1888 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1889 {
1890 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1891 }
1892
gen9_whitelist_build(struct i915_wa_list * w)1893 static void gen9_whitelist_build(struct i915_wa_list *w)
1894 {
1895 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1896 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1897
1898 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1899 whitelist_reg(w, GEN8_CS_CHICKEN1);
1900
1901 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1902 whitelist_reg(w, GEN8_HDC_CHICKEN1);
1903
1904 /* WaSendPushConstantsFromMMIO:skl,bxt */
1905 whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1906 }
1907
skl_whitelist_build(struct intel_engine_cs * engine)1908 static void skl_whitelist_build(struct intel_engine_cs *engine)
1909 {
1910 struct i915_wa_list *w = &engine->whitelist;
1911
1912 if (engine->class != RENDER_CLASS)
1913 return;
1914
1915 gen9_whitelist_build(w);
1916
1917 /* WaDisableLSQCROPERFforOCL:skl */
1918 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1919 }
1920
bxt_whitelist_build(struct intel_engine_cs * engine)1921 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1922 {
1923 if (engine->class != RENDER_CLASS)
1924 return;
1925
1926 gen9_whitelist_build(&engine->whitelist);
1927 }
1928
kbl_whitelist_build(struct intel_engine_cs * engine)1929 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1930 {
1931 struct i915_wa_list *w = &engine->whitelist;
1932
1933 if (engine->class != RENDER_CLASS)
1934 return;
1935
1936 gen9_whitelist_build(w);
1937
1938 /* WaDisableLSQCROPERFforOCL:kbl */
1939 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1940 }
1941
glk_whitelist_build(struct intel_engine_cs * engine)1942 static void glk_whitelist_build(struct intel_engine_cs *engine)
1943 {
1944 struct i915_wa_list *w = &engine->whitelist;
1945
1946 if (engine->class != RENDER_CLASS)
1947 return;
1948
1949 gen9_whitelist_build(w);
1950
1951 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1952 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1953 }
1954
cfl_whitelist_build(struct intel_engine_cs * engine)1955 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1956 {
1957 struct i915_wa_list *w = &engine->whitelist;
1958
1959 if (engine->class != RENDER_CLASS)
1960 return;
1961
1962 gen9_whitelist_build(w);
1963
1964 /*
1965 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1966 *
1967 * This covers 4 register which are next to one another :
1968 * - PS_INVOCATION_COUNT
1969 * - PS_INVOCATION_COUNT_UDW
1970 * - PS_DEPTH_COUNT
1971 * - PS_DEPTH_COUNT_UDW
1972 */
1973 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1974 RING_FORCE_TO_NONPRIV_ACCESS_RD |
1975 RING_FORCE_TO_NONPRIV_RANGE_4);
1976 }
1977
allow_read_ctx_timestamp(struct intel_engine_cs * engine)1978 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1979 {
1980 struct i915_wa_list *w = &engine->whitelist;
1981
1982 if (engine->class != RENDER_CLASS)
1983 whitelist_reg_ext(w,
1984 RING_CTX_TIMESTAMP(engine->mmio_base),
1985 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1986 }
1987
cml_whitelist_build(struct intel_engine_cs * engine)1988 static void cml_whitelist_build(struct intel_engine_cs *engine)
1989 {
1990 allow_read_ctx_timestamp(engine);
1991
1992 cfl_whitelist_build(engine);
1993 }
1994
icl_whitelist_build(struct intel_engine_cs * engine)1995 static void icl_whitelist_build(struct intel_engine_cs *engine)
1996 {
1997 struct i915_wa_list *w = &engine->whitelist;
1998
1999 allow_read_ctx_timestamp(engine);
2000
2001 switch (engine->class) {
2002 case RENDER_CLASS:
2003 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2004 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2005
2006 /* WaAllowUMDToModifySamplerMode:icl */
2007 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2008
2009 /* WaEnableStateCacheRedirectToCS:icl */
2010 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2011
2012 /*
2013 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2014 *
2015 * This covers 4 register which are next to one another :
2016 * - PS_INVOCATION_COUNT
2017 * - PS_INVOCATION_COUNT_UDW
2018 * - PS_DEPTH_COUNT
2019 * - PS_DEPTH_COUNT_UDW
2020 */
2021 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2022 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2023 RING_FORCE_TO_NONPRIV_RANGE_4);
2024 break;
2025
2026 case VIDEO_DECODE_CLASS:
2027 /* hucStatusRegOffset */
2028 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2029 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2030 /* hucUKernelHdrInfoRegOffset */
2031 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2032 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2033 /* hucStatus2RegOffset */
2034 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2035 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2036 break;
2037
2038 default:
2039 break;
2040 }
2041 }
2042
tgl_whitelist_build(struct intel_engine_cs * engine)2043 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2044 {
2045 struct i915_wa_list *w = &engine->whitelist;
2046
2047 allow_read_ctx_timestamp(engine);
2048
2049 switch (engine->class) {
2050 case RENDER_CLASS:
2051 /*
2052 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2053 * Wa_1408556865:tgl
2054 *
2055 * This covers 4 registers which are next to one another :
2056 * - PS_INVOCATION_COUNT
2057 * - PS_INVOCATION_COUNT_UDW
2058 * - PS_DEPTH_COUNT
2059 * - PS_DEPTH_COUNT_UDW
2060 */
2061 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2062 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2063 RING_FORCE_TO_NONPRIV_RANGE_4);
2064
2065 /*
2066 * Wa_1808121037:tgl
2067 * Wa_14012131227:dg1
2068 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2069 */
2070 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2071
2072 /* Wa_1806527549:tgl */
2073 whitelist_reg(w, HIZ_CHICKEN);
2074
2075 /* Required by recommended tuning setting (not a workaround) */
2076 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2077
2078 break;
2079 default:
2080 break;
2081 }
2082 }
2083
dg2_whitelist_build(struct intel_engine_cs * engine)2084 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2085 {
2086 struct i915_wa_list *w = &engine->whitelist;
2087
2088 switch (engine->class) {
2089 case RENDER_CLASS:
2090 /* Required by recommended tuning setting (not a workaround) */
2091 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2092 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2093 break;
2094 default:
2095 break;
2096 }
2097 }
2098
xelpg_whitelist_build(struct intel_engine_cs * engine)2099 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2100 {
2101 struct i915_wa_list *w = &engine->whitelist;
2102
2103 switch (engine->class) {
2104 case RENDER_CLASS:
2105 /* Required by recommended tuning setting (not a workaround) */
2106 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2107 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2108 break;
2109 default:
2110 break;
2111 }
2112 }
2113
intel_engine_init_whitelist(struct intel_engine_cs * engine)2114 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2115 {
2116 struct drm_i915_private *i915 = engine->i915;
2117 struct i915_wa_list *w = &engine->whitelist;
2118
2119 wa_init_start(w, engine->gt, "whitelist", engine->name);
2120
2121 if (engine->gt->type == GT_MEDIA)
2122 ; /* none yet */
2123 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2124 xelpg_whitelist_build(engine);
2125 else if (IS_DG2(i915))
2126 dg2_whitelist_build(engine);
2127 else if (GRAPHICS_VER(i915) == 12)
2128 tgl_whitelist_build(engine);
2129 else if (GRAPHICS_VER(i915) == 11)
2130 icl_whitelist_build(engine);
2131 else if (IS_COMETLAKE(i915))
2132 cml_whitelist_build(engine);
2133 else if (IS_COFFEELAKE(i915))
2134 cfl_whitelist_build(engine);
2135 else if (IS_GEMINILAKE(i915))
2136 glk_whitelist_build(engine);
2137 else if (IS_KABYLAKE(i915))
2138 kbl_whitelist_build(engine);
2139 else if (IS_BROXTON(i915))
2140 bxt_whitelist_build(engine);
2141 else if (IS_SKYLAKE(i915))
2142 skl_whitelist_build(engine);
2143 else if (GRAPHICS_VER(i915) <= 8)
2144 ;
2145 else
2146 MISSING_CASE(GRAPHICS_VER(i915));
2147
2148 wa_init_finish(w);
2149 }
2150
intel_engine_apply_whitelist(struct intel_engine_cs * engine)2151 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2152 {
2153 const struct i915_wa_list *wal = &engine->whitelist;
2154 struct intel_uncore *uncore = engine->uncore;
2155 const u32 base = engine->mmio_base;
2156 struct i915_wa *wa;
2157 unsigned int i;
2158
2159 if (!wal->count)
2160 return;
2161
2162 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2163 intel_uncore_write(uncore,
2164 RING_FORCE_TO_NONPRIV(base, i),
2165 i915_mmio_reg_offset(wa->reg));
2166
2167 /* And clear the rest just in case of garbage */
2168 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2169 intel_uncore_write(uncore,
2170 RING_FORCE_TO_NONPRIV(base, i),
2171 i915_mmio_reg_offset(RING_NOPID(base)));
2172 }
2173
2174 /*
2175 * engine_fake_wa_init(), a place holder to program the registers
2176 * which are not part of an official workaround defined by the
2177 * hardware team.
2178 * Adding programming of those register inside workaround will
2179 * allow utilizing wa framework to proper application and verification.
2180 */
2181 static void
engine_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2182 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2183 {
2184 u8 mocs_w, mocs_r;
2185
2186 /*
2187 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2188 * by the command streamer when executing commands that don't have
2189 * a way to explicitly specify a MOCS setting. The default should
2190 * usually reference whichever MOCS entry corresponds to uncached
2191 * behavior, although use of a WB cached entry is recommended by the
2192 * spec in certain circumstances on specific platforms.
2193 */
2194 if (GRAPHICS_VER(engine->i915) >= 12) {
2195 mocs_r = engine->gt->mocs.uc_index;
2196 mocs_w = engine->gt->mocs.uc_index;
2197
2198 if (HAS_L3_CCS_READ(engine->i915) &&
2199 engine->class == COMPUTE_CLASS) {
2200 mocs_r = engine->gt->mocs.wb_index;
2201
2202 /*
2203 * Even on the few platforms where MOCS 0 is a
2204 * legitimate table entry, it's never the correct
2205 * setting to use here; we can assume the MOCS init
2206 * just forgot to initialize wb_index.
2207 */
2208 drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2209 }
2210
2211 wa_masked_field_set(wal,
2212 RING_CMD_CCTL(engine->mmio_base),
2213 CMD_CCTL_MOCS_MASK,
2214 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2215 }
2216 }
2217
2218 static void
rcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2219 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2220 {
2221 struct drm_i915_private *i915 = engine->i915;
2222 struct intel_gt *gt = engine->gt;
2223
2224 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2225 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2226 /* Wa_22014600077 */
2227 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2228 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2229 }
2230
2231 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2232 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2233 IS_DG2(i915)) {
2234 /* Wa_1509727124 */
2235 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2236 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2237 }
2238
2239 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2240 IS_DG2(i915)) {
2241 /* Wa_22012856258 */
2242 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2243 GEN12_DISABLE_READ_SUPPRESSION);
2244 }
2245
2246 if (IS_DG2(i915)) {
2247 /*
2248 * Wa_22010960976:dg2
2249 * Wa_14013347512:dg2
2250 */
2251 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2252 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2253 }
2254
2255 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2256 IS_DG2(i915)) {
2257 /* Wa_14015150844 */
2258 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2259 _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2260 0, true);
2261 }
2262
2263 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2264 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2265 /*
2266 * Wa_1606700617:tgl,dg1,adl-p
2267 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2268 * Wa_14010826681:tgl,dg1,rkl,adl-p
2269 * Wa_18019627453:dg2
2270 */
2271 wa_masked_en(wal,
2272 GEN9_CS_DEBUG_MODE1,
2273 FF_DOP_CLOCK_GATE_DISABLE);
2274 }
2275
2276 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2277 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2278 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2279 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2280
2281 /*
2282 * Wa_1407928979:tgl A*
2283 * Wa_18011464164:tgl[B0+],dg1[B0+]
2284 * Wa_22010931296:tgl[B0+],dg1[B0+]
2285 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2286 */
2287 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2288 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2289
2290 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2291 wa_mcr_masked_en(wal,
2292 GEN10_SAMPLER_MODE,
2293 ENABLE_SMALLPL);
2294 }
2295
2296 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2297 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2298 /* Wa_1409804808 */
2299 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2300 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2301
2302 /* Wa_14010229206 */
2303 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2304 }
2305
2306 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2307 /*
2308 * Wa_1607297627
2309 *
2310 * On TGL and RKL there are multiple entries for this WA in the
2311 * BSpec; some indicate this is an A0-only WA, others indicate
2312 * it applies to all steppings so we trust the "all steppings."
2313 */
2314 wa_masked_en(wal,
2315 RING_PSMI_CTL(RENDER_RING_BASE),
2316 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2317 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2318 }
2319
2320 if (GRAPHICS_VER(i915) == 11) {
2321 /* This is not an Wa. Enable for better image quality */
2322 wa_masked_en(wal,
2323 _3D_CHICKEN3,
2324 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2325
2326 /*
2327 * Wa_1405543622:icl
2328 * Formerly known as WaGAPZPriorityScheme
2329 */
2330 wa_write_or(wal,
2331 GEN8_GARBCNTL,
2332 GEN11_ARBITRATION_PRIO_ORDER_MASK);
2333
2334 /*
2335 * Wa_1604223664:icl
2336 * Formerly known as WaL3BankAddressHashing
2337 */
2338 wa_write_clr_set(wal,
2339 GEN8_GARBCNTL,
2340 GEN11_HASH_CTRL_EXCL_MASK,
2341 GEN11_HASH_CTRL_EXCL_BIT0);
2342 wa_write_clr_set(wal,
2343 GEN11_GLBLINVL,
2344 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2345 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2346
2347 /*
2348 * Wa_1405733216:icl
2349 * Formerly known as WaDisableCleanEvicts
2350 */
2351 wa_mcr_write_or(wal,
2352 GEN8_L3SQCREG4,
2353 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2354
2355 /* Wa_1606682166:icl */
2356 wa_write_or(wal,
2357 GEN7_SARCHKMD,
2358 GEN7_DISABLE_SAMPLER_PREFETCH);
2359
2360 /* Wa_1409178092:icl */
2361 wa_mcr_write_clr_set(wal,
2362 GEN11_SCRATCH2,
2363 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2364 0);
2365
2366 /* WaEnable32PlaneMode:icl */
2367 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2368 GEN11_ENABLE_32_PLANE_MODE);
2369
2370 /*
2371 * Wa_1408767742:icl[a2..forever],ehl[all]
2372 * Wa_1605460711:icl[a0..c0]
2373 */
2374 wa_write_or(wal,
2375 GEN7_FF_THREAD_MODE,
2376 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2377
2378 /* Wa_22010271021 */
2379 wa_masked_en(wal,
2380 GEN9_CS_DEBUG_MODE1,
2381 FF_DOP_CLOCK_GATE_DISABLE);
2382 }
2383
2384 /*
2385 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2386 * beyond) allow the kernel-mode driver to choose between two different
2387 * options for controlling preemption granularity and behavior.
2388 *
2389 * Option 1 (hardware default):
2390 * Preemption settings are controlled in a global manner via
2391 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
2392 * and settings chosen by the kernel-mode driver will apply to all
2393 * userspace clients.
2394 *
2395 * Option 2:
2396 * Preemption settings are controlled on a per-context basis via
2397 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
2398 * context switch and is writable by userspace (e.g., via
2399 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2400 * which allows different userspace drivers/clients to select
2401 * different settings, or to change those settings on the fly in
2402 * response to runtime needs. This option was known by name
2403 * "FtrPerCtxtPreemptionGranularityControl" at one time, although
2404 * that name is somewhat misleading as other non-granularity
2405 * preemption settings are also impacted by this decision.
2406 *
2407 * On Linux, our policy has always been to let userspace drivers
2408 * control preemption granularity/settings (Option 2). This was
2409 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2410 * userspace developed before object-level preemption was enabled would
2411 * not behave well if i915 were to go with Option 1 and enable that
2412 * preemption in a global manner). On gen9 each context would have
2413 * object-level preemption disabled by default (see
2414 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2415 * userspace drivers could opt-in to object-level preemption as they
2416 * saw fit. For post-gen9 platforms, we continue to utilize Option 2;
2417 * even though it is no longer necessary for ABI compatibility when
2418 * enabling a new platform, it does ensure that userspace will be able
2419 * to implement any workarounds that show up requiring temporary
2420 * adjustments to preemption behavior at runtime.
2421 *
2422 * Notes/Workarounds:
2423 * - Wa_14015141709: On DG2 and early steppings of MTL,
2424 * CS_CHICKEN1[0] does not disable object-level preemption as
2425 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2426 * using Option 1). Effectively this means userspace is unable
2427 * to disable object-level preemption on these platforms/steppings
2428 * despite the setting here.
2429 *
2430 * - Wa_16013994831: May require that userspace program
2431 * CS_CHICKEN1[10] when certain runtime conditions are true.
2432 * Userspace requires Option 2 to be in effect for their update of
2433 * CS_CHICKEN1[10] to be effective.
2434 *
2435 * Other workarounds may appear in the future that will also require
2436 * Option 2 behavior to allow proper userspace implementation.
2437 */
2438 if (GRAPHICS_VER(i915) >= 9)
2439 wa_masked_en(wal,
2440 GEN7_FF_SLICE_CS_CHICKEN1,
2441 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2442
2443 if (IS_SKYLAKE(i915) ||
2444 IS_KABYLAKE(i915) ||
2445 IS_COFFEELAKE(i915) ||
2446 IS_COMETLAKE(i915)) {
2447 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2448 wa_write_or(wal,
2449 GEN8_GARBCNTL,
2450 GEN9_GAPS_TSV_CREDIT_DISABLE);
2451 }
2452
2453 if (IS_BROXTON(i915)) {
2454 /* WaDisablePooledEuLoadBalancingFix:bxt */
2455 wa_masked_en(wal,
2456 FF_SLICE_CS_CHICKEN2,
2457 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2458 }
2459
2460 if (GRAPHICS_VER(i915) == 9) {
2461 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2462 wa_masked_en(wal,
2463 GEN9_CSFE_CHICKEN1_RCS,
2464 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2465
2466 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2467 wa_mcr_write_or(wal,
2468 BDW_SCRATCH1,
2469 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2470
2471 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2472 if (IS_GEN9_LP(i915))
2473 wa_mcr_write_clr_set(wal,
2474 GEN8_L3SQCREG1,
2475 L3_PRIO_CREDITS_MASK,
2476 L3_GENERAL_PRIO_CREDITS(62) |
2477 L3_HIGH_PRIO_CREDITS(2));
2478
2479 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2480 wa_mcr_write_or(wal,
2481 GEN8_L3SQCREG4,
2482 GEN8_LQSC_FLUSH_COHERENT_LINES);
2483
2484 /* Disable atomics in L3 to prevent unrecoverable hangs */
2485 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2486 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2487 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2488 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2489 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2490 EVICTION_PERF_FIX_ENABLE, 0);
2491 }
2492
2493 if (IS_HASWELL(i915)) {
2494 /* WaSampleCChickenBitEnable:hsw */
2495 wa_masked_en(wal,
2496 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2497
2498 wa_masked_dis(wal,
2499 CACHE_MODE_0_GEN7,
2500 /* enable HiZ Raw Stall Optimization */
2501 HIZ_RAW_STALL_OPT_DISABLE);
2502 }
2503
2504 if (IS_VALLEYVIEW(i915)) {
2505 /* WaDisableEarlyCull:vlv */
2506 wa_masked_en(wal,
2507 _3D_CHICKEN3,
2508 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2509
2510 /*
2511 * WaVSThreadDispatchOverride:ivb,vlv
2512 *
2513 * This actually overrides the dispatch
2514 * mode for all thread types.
2515 */
2516 wa_write_clr_set(wal,
2517 GEN7_FF_THREAD_MODE,
2518 GEN7_FF_SCHED_MASK,
2519 GEN7_FF_TS_SCHED_HW |
2520 GEN7_FF_VS_SCHED_HW |
2521 GEN7_FF_DS_SCHED_HW);
2522
2523 /* WaPsdDispatchEnable:vlv */
2524 /* WaDisablePSDDualDispatchEnable:vlv */
2525 wa_masked_en(wal,
2526 GEN7_HALF_SLICE_CHICKEN1,
2527 GEN7_MAX_PS_THREAD_DEP |
2528 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2529 }
2530
2531 if (IS_IVYBRIDGE(i915)) {
2532 /* WaDisableEarlyCull:ivb */
2533 wa_masked_en(wal,
2534 _3D_CHICKEN3,
2535 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2536
2537 if (0) { /* causes HiZ corruption on ivb:gt1 */
2538 /* enable HiZ Raw Stall Optimization */
2539 wa_masked_dis(wal,
2540 CACHE_MODE_0_GEN7,
2541 HIZ_RAW_STALL_OPT_DISABLE);
2542 }
2543
2544 /*
2545 * WaVSThreadDispatchOverride:ivb,vlv
2546 *
2547 * This actually overrides the dispatch
2548 * mode for all thread types.
2549 */
2550 wa_write_clr_set(wal,
2551 GEN7_FF_THREAD_MODE,
2552 GEN7_FF_SCHED_MASK,
2553 GEN7_FF_TS_SCHED_HW |
2554 GEN7_FF_VS_SCHED_HW |
2555 GEN7_FF_DS_SCHED_HW);
2556
2557 /* WaDisablePSDDualDispatchEnable:ivb */
2558 if (INTEL_INFO(i915)->gt == 1)
2559 wa_masked_en(wal,
2560 GEN7_HALF_SLICE_CHICKEN1,
2561 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2562 }
2563
2564 if (GRAPHICS_VER(i915) == 7) {
2565 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2566 wa_masked_en(wal,
2567 RING_MODE_GEN7(RENDER_RING_BASE),
2568 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2569
2570 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2571 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2572
2573 /*
2574 * BSpec says this must be set, even though
2575 * WaDisable4x2SubspanOptimization:ivb,hsw
2576 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2577 */
2578 wa_masked_en(wal,
2579 CACHE_MODE_1,
2580 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2581
2582 /*
2583 * BSpec recommends 8x4 when MSAA is used,
2584 * however in practice 16x4 seems fastest.
2585 *
2586 * Note that PS/WM thread counts depend on the WIZ hashing
2587 * disable bit, which we don't touch here, but it's good
2588 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2589 */
2590 wa_masked_field_set(wal,
2591 GEN7_GT_MODE,
2592 GEN6_WIZ_HASHING_MASK,
2593 GEN6_WIZ_HASHING_16x4);
2594 }
2595
2596 if (IS_GRAPHICS_VER(i915, 6, 7))
2597 /*
2598 * We need to disable the AsyncFlip performance optimisations in
2599 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2600 * already be programmed to '1' on all products.
2601 *
2602 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2603 */
2604 wa_masked_en(wal,
2605 RING_MI_MODE(RENDER_RING_BASE),
2606 ASYNC_FLIP_PERF_DISABLE);
2607
2608 if (GRAPHICS_VER(i915) == 6) {
2609 /*
2610 * Required for the hardware to program scanline values for
2611 * waiting
2612 * WaEnableFlushTlbInvalidationMode:snb
2613 */
2614 wa_masked_en(wal,
2615 GFX_MODE,
2616 GFX_TLB_INVALIDATE_EXPLICIT);
2617
2618 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2619 wa_masked_en(wal,
2620 _3D_CHICKEN,
2621 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2622
2623 wa_masked_en(wal,
2624 _3D_CHICKEN3,
2625 /* WaStripsFansDisableFastClipPerformanceFix:snb */
2626 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2627 /*
2628 * Bspec says:
2629 * "This bit must be set if 3DSTATE_CLIP clip mode is set
2630 * to normal and 3DSTATE_SF number of SF output attributes
2631 * is more than 16."
2632 */
2633 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2634
2635 /*
2636 * BSpec recommends 8x4 when MSAA is used,
2637 * however in practice 16x4 seems fastest.
2638 *
2639 * Note that PS/WM thread counts depend on the WIZ hashing
2640 * disable bit, which we don't touch here, but it's good
2641 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2642 */
2643 wa_masked_field_set(wal,
2644 GEN6_GT_MODE,
2645 GEN6_WIZ_HASHING_MASK,
2646 GEN6_WIZ_HASHING_16x4);
2647
2648 /* WaDisable_RenderCache_OperationalFlush:snb */
2649 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2650
2651 /*
2652 * From the Sandybridge PRM, volume 1 part 3, page 24:
2653 * "If this bit is set, STCunit will have LRA as replacement
2654 * policy. [...] This bit must be reset. LRA replacement
2655 * policy is not supported."
2656 */
2657 wa_masked_dis(wal,
2658 CACHE_MODE_0,
2659 CM0_STC_EVICT_DISABLE_LRA_SNB);
2660 }
2661
2662 if (IS_GRAPHICS_VER(i915, 4, 6))
2663 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2664 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2665 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2666 /* XXX bit doesn't stick on Broadwater */
2667 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2668
2669 if (GRAPHICS_VER(i915) == 4)
2670 /*
2671 * Disable CONSTANT_BUFFER before it is loaded from the context
2672 * image. For as it is loaded, it is executed and the stored
2673 * address may no longer be valid, leading to a GPU hang.
2674 *
2675 * This imposes the requirement that userspace reload their
2676 * CONSTANT_BUFFER on every batch, fortunately a requirement
2677 * they are already accustomed to from before contexts were
2678 * enabled.
2679 */
2680 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2681 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2682 0 /* XXX bit doesn't stick on Broadwater */,
2683 true);
2684 }
2685
2686 static void
xcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2687 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2688 {
2689 struct drm_i915_private *i915 = engine->i915;
2690
2691 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2692 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2693 wa_write(wal,
2694 RING_SEMA_WAIT_POLL(engine->mmio_base),
2695 1);
2696 }
2697 /* Wa_16018031267, Wa_16018063123 */
2698 if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2699 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2700 XEHP_BLITTER_SCHEDULING_MODE_MASK,
2701 XEHP_BLITTER_ROUND_ROBIN_MODE);
2702 }
2703
2704 static void
ccs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2705 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2706 {
2707 /* boilerplate for any CCS engine workaround */
2708 }
2709
2710 /*
2711 * The bspec performance guide has recommended MMIO tuning settings. These
2712 * aren't truly "workarounds" but we want to program them with the same
2713 * workaround infrastructure to ensure that they're automatically added to
2714 * the GuC save/restore lists, re-applied at the right times, and checked for
2715 * any conflicting programming requested by real workarounds.
2716 *
2717 * Programming settings should be added here only if their registers are not
2718 * part of an engine's register state context. If a register is part of a
2719 * context, then any tuning settings should be programmed in an appropriate
2720 * function invoked by __intel_engine_init_ctx_wa().
2721 */
2722 static void
add_render_compute_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)2723 add_render_compute_tuning_settings(struct intel_gt *gt,
2724 struct i915_wa_list *wal)
2725 {
2726 struct drm_i915_private *i915 = gt->i915;
2727
2728 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2729 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2730
2731 /*
2732 * This tuning setting proves beneficial only on ATS-M designs; the
2733 * default "age based" setting is optimal on regular DG2 and other
2734 * platforms.
2735 */
2736 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2737 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2738 THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2739
2740 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
2741 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2742 }
2743
ccs_engine_wa_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)2744 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2745 {
2746 struct intel_gt *gt = engine->gt;
2747 u32 mode;
2748
2749 if (!IS_DG2(gt->i915))
2750 return;
2751
2752 /*
2753 * Wa_14019159160: This workaround, along with others, leads to
2754 * significant challenges in utilizing load balancing among the
2755 * CCS slices. Consequently, an architectural decision has been
2756 * made to completely disable automatic CCS load balancing.
2757 */
2758 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2759
2760 /*
2761 * After having disabled automatic load balancing we need to
2762 * assign all slices to a single CCS. We will call it CCS mode 1
2763 */
2764 mode = intel_gt_apply_ccs_mode(gt);
2765 wa_masked_en(wal, XEHP_CCS_MODE, mode);
2766 }
2767
2768 /*
2769 * The workarounds in this function apply to shared registers in
2770 * the general render reset domain that aren't tied to a
2771 * specific engine. Since all render+compute engines get reset
2772 * together, and the contents of these registers are lost during
2773 * the shared render domain reset, we'll define such workarounds
2774 * here and then add them to just a single RCS or CCS engine's
2775 * workaround list (whichever engine has the XXXX flag).
2776 */
2777 static void
general_render_compute_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2778 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2779 {
2780 struct drm_i915_private *i915 = engine->i915;
2781 struct intel_gt *gt = engine->gt;
2782
2783 add_render_compute_tuning_settings(gt, wal);
2784
2785 if (GRAPHICS_VER(i915) >= 11) {
2786 /* This is not a Wa (although referred to as
2787 * WaSetInidrectStateOverride in places), this allows
2788 * applications that reference sampler states through
2789 * the BindlessSamplerStateBaseAddress to have their
2790 * border color relative to DynamicStateBaseAddress
2791 * rather than BindlessSamplerStateBaseAddress.
2792 *
2793 * Otherwise SAMPLER_STATE border colors have to be
2794 * copied in multiple heaps (DynamicStateBaseAddress &
2795 * BindlessSamplerStateBaseAddress)
2796 *
2797 * BSpec: 46052
2798 */
2799 wa_mcr_masked_en(wal,
2800 GEN10_SAMPLER_MODE,
2801 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2802 }
2803
2804 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2805 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2806 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2807 /* Wa_14017856879 */
2808 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2809
2810 /* Wa_14020495402 */
2811 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2812 }
2813
2814 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2815 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2816 /*
2817 * Wa_14017066071
2818 * Wa_14017654203
2819 */
2820 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2821 MTL_DISABLE_SAMPLER_SC_OOO);
2822
2823 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2824 /* Wa_22015279794 */
2825 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2826 DISABLE_PREFETCH_INTO_IC);
2827
2828 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2829 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2830 IS_DG2(i915)) {
2831 /* Wa_22013037850 */
2832 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2833 DISABLE_128B_EVICTION_COMMAND_UDW);
2834
2835 /* Wa_18017747507 */
2836 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2837 }
2838
2839 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2840 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2841 IS_DG2(i915)) {
2842 /* Wa_22014226127 */
2843 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2844 }
2845
2846 if (IS_DG2(i915)) {
2847 /* Wa_14015227452:dg2,pvc */
2848 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2849
2850 /*
2851 * Wa_16011620976:dg2_g11
2852 * Wa_22015475538:dg2
2853 */
2854 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2855
2856 /* Wa_18028616096 */
2857 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2858 }
2859
2860 if (IS_DG2_G11(i915)) {
2861 /*
2862 * Wa_22012826095:dg2
2863 * Wa_22013059131:dg2
2864 */
2865 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2866 MAXREQS_PER_BANK,
2867 REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2868
2869 /* Wa_22013059131:dg2 */
2870 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2871 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2872
2873 /*
2874 * Wa_22012654132
2875 *
2876 * Note that register 0xE420 is write-only and cannot be read
2877 * back for verification on DG2 (due to Wa_14012342262), so
2878 * we need to explicitly skip the readback.
2879 */
2880 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2881 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2882 0 /* write-only, so skip validation */,
2883 true);
2884 }
2885 }
2886
2887 static void
engine_init_workarounds(struct intel_engine_cs * engine,struct i915_wa_list * wal)2888 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2889 {
2890 if (GRAPHICS_VER(engine->i915) < 4)
2891 return;
2892
2893 engine_fake_wa_init(engine, wal);
2894
2895 /*
2896 * These are common workarounds that just need to applied
2897 * to a single RCS/CCS engine's workaround list since
2898 * they're reset as part of the general render domain reset.
2899 */
2900 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
2901 general_render_compute_wa_init(engine, wal);
2902 ccs_engine_wa_mode(engine, wal);
2903 }
2904
2905 if (engine->class == COMPUTE_CLASS)
2906 ccs_engine_wa_init(engine, wal);
2907 else if (engine->class == RENDER_CLASS)
2908 rcs_engine_wa_init(engine, wal);
2909 else
2910 xcs_engine_wa_init(engine, wal);
2911 }
2912
intel_engine_init_workarounds(struct intel_engine_cs * engine)2913 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2914 {
2915 struct i915_wa_list *wal = &engine->wa_list;
2916
2917 wa_init_start(wal, engine->gt, "engine", engine->name);
2918 engine_init_workarounds(engine, wal);
2919 wa_init_finish(wal);
2920 }
2921
intel_engine_apply_workarounds(struct intel_engine_cs * engine)2922 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2923 {
2924 wa_list_apply(&engine->wa_list);
2925 }
2926
2927 static const struct i915_range mcr_ranges_gen8[] = {
2928 { .start = 0x5500, .end = 0x55ff },
2929 { .start = 0x7000, .end = 0x7fff },
2930 { .start = 0x9400, .end = 0x97ff },
2931 { .start = 0xb000, .end = 0xb3ff },
2932 { .start = 0xe000, .end = 0xe7ff },
2933 {},
2934 };
2935
2936 static const struct i915_range mcr_ranges_gen12[] = {
2937 { .start = 0x8150, .end = 0x815f },
2938 { .start = 0x9520, .end = 0x955f },
2939 { .start = 0xb100, .end = 0xb3ff },
2940 { .start = 0xde80, .end = 0xe8ff },
2941 { .start = 0x24a00, .end = 0x24a7f },
2942 {},
2943 };
2944
2945 static const struct i915_range mcr_ranges_xehp[] = {
2946 { .start = 0x4000, .end = 0x4aff },
2947 { .start = 0x5200, .end = 0x52ff },
2948 { .start = 0x5400, .end = 0x7fff },
2949 { .start = 0x8140, .end = 0x815f },
2950 { .start = 0x8c80, .end = 0x8dff },
2951 { .start = 0x94d0, .end = 0x955f },
2952 { .start = 0x9680, .end = 0x96ff },
2953 { .start = 0xb000, .end = 0xb3ff },
2954 { .start = 0xc800, .end = 0xcfff },
2955 { .start = 0xd800, .end = 0xd8ff },
2956 { .start = 0xdc00, .end = 0xffff },
2957 { .start = 0x17000, .end = 0x17fff },
2958 { .start = 0x24a00, .end = 0x24a7f },
2959 {},
2960 };
2961
mcr_range(struct drm_i915_private * i915,u32 offset)2962 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2963 {
2964 const struct i915_range *mcr_ranges;
2965 int i;
2966
2967 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
2968 mcr_ranges = mcr_ranges_xehp;
2969 else if (GRAPHICS_VER(i915) >= 12)
2970 mcr_ranges = mcr_ranges_gen12;
2971 else if (GRAPHICS_VER(i915) >= 8)
2972 mcr_ranges = mcr_ranges_gen8;
2973 else
2974 return false;
2975
2976 /*
2977 * Registers in these ranges are affected by the MCR selector
2978 * which only controls CPU initiated MMIO. Routing does not
2979 * work for CS access so we cannot verify them on this path.
2980 */
2981 for (i = 0; mcr_ranges[i].start; i++)
2982 if (offset >= mcr_ranges[i].start &&
2983 offset <= mcr_ranges[i].end)
2984 return true;
2985
2986 return false;
2987 }
2988
2989 static int
wa_list_srm(struct i915_request * rq,const struct i915_wa_list * wal,struct i915_vma * vma)2990 wa_list_srm(struct i915_request *rq,
2991 const struct i915_wa_list *wal,
2992 struct i915_vma *vma)
2993 {
2994 struct drm_i915_private *i915 = rq->i915;
2995 unsigned int i, count = 0;
2996 const struct i915_wa *wa;
2997 u32 srm, *cs;
2998
2999 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3000 if (GRAPHICS_VER(i915) >= 8)
3001 srm++;
3002
3003 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3004 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3005 count++;
3006 }
3007
3008 cs = intel_ring_begin(rq, 4 * count);
3009 if (IS_ERR(cs))
3010 return PTR_ERR(cs);
3011
3012 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3013 u32 offset = i915_mmio_reg_offset(wa->reg);
3014
3015 if (mcr_range(i915, offset))
3016 continue;
3017
3018 *cs++ = srm;
3019 *cs++ = offset;
3020 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3021 *cs++ = 0;
3022 }
3023 intel_ring_advance(rq, cs);
3024
3025 return 0;
3026 }
3027
engine_wa_list_verify(struct intel_context * ce,const struct i915_wa_list * const wal,const char * from)3028 static int engine_wa_list_verify(struct intel_context *ce,
3029 const struct i915_wa_list * const wal,
3030 const char *from)
3031 {
3032 const struct i915_wa *wa;
3033 struct i915_request *rq;
3034 struct i915_vma *vma;
3035 struct i915_gem_ww_ctx ww;
3036 unsigned int i;
3037 u32 *results;
3038 int err;
3039
3040 if (!wal->count)
3041 return 0;
3042
3043 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3044 wal->count * sizeof(u32));
3045 if (IS_ERR(vma))
3046 return PTR_ERR(vma);
3047
3048 intel_engine_pm_get(ce->engine);
3049 i915_gem_ww_ctx_init(&ww, false);
3050 retry:
3051 err = i915_gem_object_lock(vma->obj, &ww);
3052 if (err == 0)
3053 err = intel_context_pin_ww(ce, &ww);
3054 if (err)
3055 goto err_pm;
3056
3057 err = i915_vma_pin_ww(vma, &ww, 0, 0,
3058 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3059 if (err)
3060 goto err_unpin;
3061
3062 rq = i915_request_create(ce);
3063 if (IS_ERR(rq)) {
3064 err = PTR_ERR(rq);
3065 goto err_vma;
3066 }
3067
3068 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3069 if (err == 0)
3070 err = wa_list_srm(rq, wal, vma);
3071
3072 i915_request_get(rq);
3073 if (err)
3074 i915_request_set_error_once(rq, err);
3075 i915_request_add(rq);
3076
3077 if (err)
3078 goto err_rq;
3079
3080 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3081 err = -ETIME;
3082 goto err_rq;
3083 }
3084
3085 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3086 if (IS_ERR(results)) {
3087 err = PTR_ERR(results);
3088 goto err_rq;
3089 }
3090
3091 err = 0;
3092 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3093 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3094 continue;
3095
3096 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3097 err = -ENXIO;
3098 }
3099
3100 i915_gem_object_unpin_map(vma->obj);
3101
3102 err_rq:
3103 i915_request_put(rq);
3104 err_vma:
3105 i915_vma_unpin(vma);
3106 err_unpin:
3107 intel_context_unpin(ce);
3108 err_pm:
3109 if (err == -EDEADLK) {
3110 err = i915_gem_ww_ctx_backoff(&ww);
3111 if (!err)
3112 goto retry;
3113 }
3114 i915_gem_ww_ctx_fini(&ww);
3115 intel_engine_pm_put(ce->engine);
3116 i915_vma_put(vma);
3117 return err;
3118 }
3119
intel_engine_verify_workarounds(struct intel_engine_cs * engine,const char * from)3120 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3121 const char *from)
3122 {
3123 return engine_wa_list_verify(engine->kernel_context,
3124 &engine->wa_list,
3125 from);
3126 }
3127
3128 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3129 #include "selftest_workarounds.c"
3130 #endif
3131