1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
ice_xdp_buf(struct ice_rx_ring * rx_ring,u32 idx)15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 return &rx_ring->xdp_buf[idx];
18 }
19
20 /**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
ice_qp_reset_stats(struct ice_vsi * vsi,u16 q_idx)25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (vsi->xdp_rings)
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46
47 /**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
ice_qp_clean_rings(struct ice_vsi * vsi,u16 q_idx)52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (vsi->xdp_rings)
56 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58 }
59
60 /**
61 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62 * @vsi: VSI that has netdev
63 * @q_vector: q_vector that has NAPI context
64 * @enable: true for enable, false for disable
65 */
66 static void
ice_qvec_toggle_napi(struct ice_vsi * vsi,struct ice_q_vector * q_vector,bool enable)67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 bool enable)
69 {
70 if (!vsi->netdev || !q_vector)
71 return;
72
73 if (enable)
74 napi_enable(&q_vector->napi);
75 else
76 napi_disable(&q_vector->napi);
77 }
78
79 /**
80 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81 * @vsi: the VSI that contains queue vector being un-configured
82 * @rx_ring: Rx ring that will have its IRQ disabled
83 * @q_vector: queue vector
84 */
85 static void
ice_qvec_dis_irq(struct ice_vsi * vsi,struct ice_rx_ring * rx_ring,struct ice_q_vector * q_vector)86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 struct ice_q_vector *q_vector)
88 {
89 struct ice_pf *pf = vsi->back;
90 struct ice_hw *hw = &pf->hw;
91 u16 reg;
92 u32 val;
93
94 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 * here only QINT_RQCTL
96 */
97 reg = rx_ring->reg_idx;
98 val = rd32(hw, QINT_RQCTL(reg));
99 val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 wr32(hw, QINT_RQCTL(reg), val);
101
102 if (q_vector) {
103 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 ice_flush(hw);
105 synchronize_irq(q_vector->irq.virq);
106 }
107 }
108
109 /**
110 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111 * @vsi: the VSI that contains queue vector
112 * @q_vector: queue vector
113 * @qid: queue index
114 */
115 static void
ice_qvec_cfg_msix(struct ice_vsi * vsi,struct ice_q_vector * q_vector,u16 qid)116 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid)
117 {
118 u16 reg_idx = q_vector->reg_idx;
119 struct ice_pf *pf = vsi->back;
120 struct ice_hw *hw = &pf->hw;
121 int q, _qid = qid;
122
123 ice_cfg_itr(hw, q_vector);
124
125 for (q = 0; q < q_vector->num_ring_tx; q++) {
126 ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx);
127 _qid++;
128 }
129
130 _qid = qid;
131
132 for (q = 0; q < q_vector->num_ring_rx; q++) {
133 ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx);
134 _qid++;
135 }
136
137 ice_flush(hw);
138 }
139
140 /**
141 * ice_qvec_ena_irq - Enable IRQ for given queue vector
142 * @vsi: the VSI that contains queue vector
143 * @q_vector: queue vector
144 */
ice_qvec_ena_irq(struct ice_vsi * vsi,struct ice_q_vector * q_vector)145 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
146 {
147 struct ice_pf *pf = vsi->back;
148 struct ice_hw *hw = &pf->hw;
149
150 ice_irq_dynamic_ena(hw, vsi, q_vector);
151
152 ice_flush(hw);
153 }
154
155 /**
156 * ice_qp_dis - Disables a queue pair
157 * @vsi: VSI of interest
158 * @q_idx: ring index in array
159 *
160 * Returns 0 on success, negative on failure.
161 */
ice_qp_dis(struct ice_vsi * vsi,u16 q_idx)162 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
163 {
164 struct ice_txq_meta txq_meta = { };
165 struct ice_q_vector *q_vector;
166 struct ice_tx_ring *tx_ring;
167 struct ice_rx_ring *rx_ring;
168 int fail = 0;
169 int err;
170
171 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
172 return -EINVAL;
173
174 tx_ring = vsi->tx_rings[q_idx];
175 rx_ring = vsi->rx_rings[q_idx];
176 q_vector = rx_ring->q_vector;
177
178 synchronize_net();
179 netif_carrier_off(vsi->netdev);
180 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
181
182 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
183 ice_qvec_toggle_napi(vsi, q_vector, false);
184
185 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
186 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
187 if (!fail)
188 fail = err;
189 if (vsi->xdp_rings) {
190 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
191
192 memset(&txq_meta, 0, sizeof(txq_meta));
193 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
194 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
195 &txq_meta);
196 if (!fail)
197 fail = err;
198 }
199
200 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
201 ice_qp_clean_rings(vsi, q_idx);
202 ice_qp_reset_stats(vsi, q_idx);
203
204 return fail;
205 }
206
207 /**
208 * ice_qp_ena - Enables a queue pair
209 * @vsi: VSI of interest
210 * @q_idx: ring index in array
211 *
212 * Returns 0 on success, negative on failure.
213 */
ice_qp_ena(struct ice_vsi * vsi,u16 q_idx)214 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
215 {
216 struct ice_q_vector *q_vector;
217 int fail = 0;
218 bool link_up;
219 int err;
220
221 err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
222 if (!fail)
223 fail = err;
224
225 if (ice_is_xdp_ena_vsi(vsi)) {
226 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
227
228 err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
229 if (!fail)
230 fail = err;
231 ice_set_ring_xdp(xdp_ring);
232 ice_tx_xsk_pool(vsi, q_idx);
233 }
234
235 err = ice_vsi_cfg_single_rxq(vsi, q_idx);
236 if (!fail)
237 fail = err;
238
239 q_vector = vsi->rx_rings[q_idx]->q_vector;
240 ice_qvec_cfg_msix(vsi, q_vector, q_idx);
241
242 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
243 if (!fail)
244 fail = err;
245
246 ice_qvec_toggle_napi(vsi, q_vector, true);
247 ice_qvec_ena_irq(vsi, q_vector);
248
249 /* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */
250 synchronize_net();
251 ice_get_link_status(vsi->port_info, &link_up);
252 if (link_up) {
253 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
254 netif_carrier_on(vsi->netdev);
255 }
256
257 return fail;
258 }
259
260 /**
261 * ice_xsk_pool_disable - disable a buffer pool region
262 * @vsi: Current VSI
263 * @qid: queue ID
264 *
265 * Returns 0 on success, negative on failure
266 */
ice_xsk_pool_disable(struct ice_vsi * vsi,u16 qid)267 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
268 {
269 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
270
271 if (!pool)
272 return -EINVAL;
273
274 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
275
276 return 0;
277 }
278
279 /**
280 * ice_xsk_pool_enable - enable a buffer pool region
281 * @vsi: Current VSI
282 * @pool: pointer to a requested buffer pool region
283 * @qid: queue ID
284 *
285 * Returns 0 on success, negative on failure
286 */
287 static int
ice_xsk_pool_enable(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)288 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
289 {
290 int err;
291
292 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF)
293 return -EINVAL;
294
295 if (qid >= vsi->netdev->real_num_rx_queues ||
296 qid >= vsi->netdev->real_num_tx_queues)
297 return -EINVAL;
298
299 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
300 ICE_RX_DMA_ATTR);
301 if (err)
302 return err;
303
304 return 0;
305 }
306
307 /**
308 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
309 * @rx_ring: Rx ring
310 * @pool_present: is pool for XSK present
311 *
312 * Try allocating memory and return ENOMEM, if failed to allocate.
313 * If allocation was successful, substitute buffer with allocated one.
314 * Returns 0 on success, negative on failure
315 */
316 static int
ice_realloc_rx_xdp_bufs(struct ice_rx_ring * rx_ring,bool pool_present)317 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
318 {
319 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
320 sizeof(*rx_ring->rx_buf);
321 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
322
323 if (!sw_ring)
324 return -ENOMEM;
325
326 if (pool_present) {
327 kfree(rx_ring->rx_buf);
328 rx_ring->rx_buf = NULL;
329 rx_ring->xdp_buf = sw_ring;
330 } else {
331 kfree(rx_ring->xdp_buf);
332 rx_ring->xdp_buf = NULL;
333 rx_ring->rx_buf = sw_ring;
334 }
335
336 return 0;
337 }
338
339 /**
340 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
341 * @vsi: Current VSI
342 * @zc: is zero copy set
343 *
344 * Reallocate buffer for rx_rings that might be used by XSK.
345 * XDP requires more memory, than rx_buf provides.
346 * Returns 0 on success, negative on failure
347 */
ice_realloc_zc_buf(struct ice_vsi * vsi,bool zc)348 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
349 {
350 struct ice_rx_ring *rx_ring;
351 uint i;
352
353 ice_for_each_rxq(vsi, i) {
354 rx_ring = vsi->rx_rings[i];
355 if (!rx_ring->xsk_pool)
356 continue;
357
358 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
359 return -ENOMEM;
360 }
361
362 return 0;
363 }
364
365 /**
366 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
367 * @vsi: Current VSI
368 * @pool: buffer pool to enable/associate to a ring, NULL to disable
369 * @qid: queue ID
370 *
371 * Returns 0 on success, negative on failure
372 */
ice_xsk_pool_setup(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)373 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
374 {
375 bool if_running, pool_present = !!pool;
376 int ret = 0, pool_failure = 0;
377
378 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
379 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
380 pool_failure = -EINVAL;
381 goto failure;
382 }
383
384 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) &&
385 ice_is_xdp_ena_vsi(vsi);
386
387 if (if_running) {
388 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
389
390 ret = ice_qp_dis(vsi, qid);
391 if (ret) {
392 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
393 goto xsk_pool_if_up;
394 }
395
396 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
397 if (ret)
398 goto xsk_pool_if_up;
399 }
400
401 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
402 ice_xsk_pool_disable(vsi, qid);
403
404 xsk_pool_if_up:
405 if (if_running) {
406 ret = ice_qp_ena(vsi, qid);
407 if (!ret && pool_present)
408 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
409 else if (ret)
410 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
411 }
412
413 failure:
414 if (pool_failure) {
415 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
416 pool_present ? "en" : "dis", pool_failure);
417 return pool_failure;
418 }
419
420 return ret;
421 }
422
423 /**
424 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
425 * @pool: XSK Buffer pool to pull the buffers from
426 * @xdp: SW ring of xdp_buff that will hold the buffers
427 * @rx_desc: Pointer to Rx descriptors that will be filled
428 * @count: The number of buffers to allocate
429 *
430 * This function allocates a number of Rx buffers from the fill ring
431 * or the internal recycle mechanism and places them on the Rx ring.
432 *
433 * Note that ring wrap should be handled by caller of this function.
434 *
435 * Returns the amount of allocated Rx descriptors
436 */
ice_fill_rx_descs(struct xsk_buff_pool * pool,struct xdp_buff ** xdp,union ice_32b_rx_flex_desc * rx_desc,u16 count)437 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
438 union ice_32b_rx_flex_desc *rx_desc, u16 count)
439 {
440 dma_addr_t dma;
441 u16 buffs;
442 int i;
443
444 buffs = xsk_buff_alloc_batch(pool, xdp, count);
445 for (i = 0; i < buffs; i++) {
446 dma = xsk_buff_xdp_get_dma(*xdp);
447 rx_desc->read.pkt_addr = cpu_to_le64(dma);
448 rx_desc->wb.status_error0 = 0;
449
450 /* Put private info that changes on a per-packet basis
451 * into xdp_buff_xsk->cb.
452 */
453 ice_xdp_meta_set_desc(*xdp, rx_desc);
454
455 rx_desc++;
456 xdp++;
457 }
458
459 return buffs;
460 }
461
462 /**
463 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
464 * @rx_ring: Rx ring
465 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
466 * @count: The number of buffers to allocate
467 *
468 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
469 * for case where space from next_to_use up to the end of ring is less
470 * than @count. Finally do a tail bump.
471 *
472 * Returns true if all allocations were successful, false if any fail.
473 */
__ice_alloc_rx_bufs_zc(struct ice_rx_ring * rx_ring,struct xsk_buff_pool * xsk_pool,u16 count)474 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
475 struct xsk_buff_pool *xsk_pool, u16 count)
476 {
477 u32 nb_buffs_extra = 0, nb_buffs = 0;
478 union ice_32b_rx_flex_desc *rx_desc;
479 u16 ntu = rx_ring->next_to_use;
480 u16 total_count = count;
481 struct xdp_buff **xdp;
482
483 rx_desc = ICE_RX_DESC(rx_ring, ntu);
484 xdp = ice_xdp_buf(rx_ring, ntu);
485
486 if (ntu + count >= rx_ring->count) {
487 nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc,
488 rx_ring->count - ntu);
489 if (nb_buffs_extra != rx_ring->count - ntu) {
490 ntu += nb_buffs_extra;
491 goto exit;
492 }
493 rx_desc = ICE_RX_DESC(rx_ring, 0);
494 xdp = ice_xdp_buf(rx_ring, 0);
495 ntu = 0;
496 count -= nb_buffs_extra;
497 ice_release_rx_desc(rx_ring, 0);
498 }
499
500 nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count);
501
502 ntu += nb_buffs;
503 if (ntu == rx_ring->count)
504 ntu = 0;
505
506 exit:
507 if (rx_ring->next_to_use != ntu)
508 ice_release_rx_desc(rx_ring, ntu);
509
510 return total_count == (nb_buffs_extra + nb_buffs);
511 }
512
513 /**
514 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
515 * @rx_ring: Rx ring
516 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
517 * @count: The number of buffers to allocate
518 *
519 * Wrapper for internal allocation routine; figure out how many tail
520 * bumps should take place based on the given threshold
521 *
522 * Returns true if all calls to internal alloc routine succeeded
523 */
ice_alloc_rx_bufs_zc(struct ice_rx_ring * rx_ring,struct xsk_buff_pool * xsk_pool,u16 count)524 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
525 struct xsk_buff_pool *xsk_pool, u16 count)
526 {
527 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
528 u16 leftover, i, tail_bumps;
529
530 tail_bumps = count / rx_thresh;
531 leftover = count - (tail_bumps * rx_thresh);
532
533 for (i = 0; i < tail_bumps; i++)
534 if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh))
535 return false;
536 return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover);
537 }
538
539 /**
540 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
541 * @rx_ring: Rx ring
542 * @xdp: Pointer to XDP buffer
543 *
544 * This function allocates a new skb from a zero-copy Rx buffer.
545 *
546 * Returns the skb on success, NULL on failure.
547 */
548 static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)549 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
550 {
551 unsigned int totalsize = xdp->data_end - xdp->data_meta;
552 unsigned int metasize = xdp->data - xdp->data_meta;
553 struct skb_shared_info *sinfo = NULL;
554 struct sk_buff *skb;
555 u32 nr_frags = 0;
556
557 if (unlikely(xdp_buff_has_frags(xdp))) {
558 sinfo = xdp_get_shared_info_from_buff(xdp);
559 nr_frags = sinfo->nr_frags;
560 }
561 net_prefetch(xdp->data_meta);
562
563 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
564 if (unlikely(!skb))
565 return NULL;
566
567 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
568 ALIGN(totalsize, sizeof(long)));
569
570 if (metasize) {
571 skb_metadata_set(skb, metasize);
572 __skb_pull(skb, metasize);
573 }
574
575 if (likely(!xdp_buff_has_frags(xdp)))
576 goto out;
577
578 for (int i = 0; i < nr_frags; i++) {
579 struct skb_shared_info *skinfo = skb_shinfo(skb);
580 skb_frag_t *frag = &sinfo->frags[i];
581 struct page *page;
582 void *addr;
583
584 page = dev_alloc_page();
585 if (!page) {
586 dev_kfree_skb(skb);
587 return NULL;
588 }
589 addr = page_to_virt(page);
590
591 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
592
593 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
594 addr, 0, skb_frag_size(frag));
595 }
596
597 out:
598 xsk_buff_free(xdp);
599 return skb;
600 }
601
602 /**
603 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
604 * @xdp_ring: XDP Tx ring
605 * @xsk_pool: AF_XDP buffer pool pointer
606 */
ice_clean_xdp_irq_zc(struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool)607 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring,
608 struct xsk_buff_pool *xsk_pool)
609 {
610 u16 ntc = xdp_ring->next_to_clean;
611 struct ice_tx_desc *tx_desc;
612 u16 cnt = xdp_ring->count;
613 struct ice_tx_buf *tx_buf;
614 u16 completed_frames = 0;
615 u16 xsk_frames = 0;
616 u16 last_rs;
617 int i;
618
619 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
620 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
621 if (tx_desc->cmd_type_offset_bsz &
622 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
623 if (last_rs >= ntc)
624 completed_frames = last_rs - ntc + 1;
625 else
626 completed_frames = last_rs + cnt - ntc + 1;
627 }
628
629 if (!completed_frames)
630 return 0;
631
632 if (likely(!xdp_ring->xdp_tx_active)) {
633 xsk_frames = completed_frames;
634 goto skip;
635 }
636
637 ntc = xdp_ring->next_to_clean;
638 for (i = 0; i < completed_frames; i++) {
639 tx_buf = &xdp_ring->tx_buf[ntc];
640
641 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
642 tx_buf->type = ICE_TX_BUF_EMPTY;
643 xsk_buff_free(tx_buf->xdp);
644 xdp_ring->xdp_tx_active--;
645 } else {
646 xsk_frames++;
647 }
648
649 ntc++;
650 if (ntc >= xdp_ring->count)
651 ntc = 0;
652 }
653 skip:
654 tx_desc->cmd_type_offset_bsz = 0;
655 xdp_ring->next_to_clean += completed_frames;
656 if (xdp_ring->next_to_clean >= cnt)
657 xdp_ring->next_to_clean -= cnt;
658 if (xsk_frames)
659 xsk_tx_completed(xsk_pool, xsk_frames);
660
661 return completed_frames;
662 }
663
664 /**
665 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
666 * @xdp: XDP buffer to xmit
667 * @xdp_ring: XDP ring to produce descriptor onto
668 * @xsk_pool: AF_XDP buffer pool pointer
669 *
670 * note that this function works directly on xdp_buff, no need to convert
671 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
672 * side will be able to xsk_buff_free() it.
673 *
674 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
675 * was not enough space on XDP ring
676 */
ice_xmit_xdp_tx_zc(struct xdp_buff * xdp,struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool)677 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
678 struct ice_tx_ring *xdp_ring,
679 struct xsk_buff_pool *xsk_pool)
680 {
681 struct skb_shared_info *sinfo = NULL;
682 u32 size = xdp->data_end - xdp->data;
683 u32 ntu = xdp_ring->next_to_use;
684 struct ice_tx_desc *tx_desc;
685 struct ice_tx_buf *tx_buf;
686 struct xdp_buff *head;
687 u32 nr_frags = 0;
688 u32 free_space;
689 u32 frag = 0;
690
691 free_space = ICE_DESC_UNUSED(xdp_ring);
692 if (free_space < ICE_RING_QUARTER(xdp_ring))
693 free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
694
695 if (unlikely(!free_space))
696 goto busy;
697
698 if (unlikely(xdp_buff_has_frags(xdp))) {
699 sinfo = xdp_get_shared_info_from_buff(xdp);
700 nr_frags = sinfo->nr_frags;
701 if (free_space < nr_frags + 1)
702 goto busy;
703 }
704
705 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
706 tx_buf = &xdp_ring->tx_buf[ntu];
707 head = xdp;
708
709 for (;;) {
710 dma_addr_t dma;
711
712 dma = xsk_buff_xdp_get_dma(xdp);
713 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size);
714
715 tx_buf->xdp = xdp;
716 tx_buf->type = ICE_TX_BUF_XSK_TX;
717 tx_desc->buf_addr = cpu_to_le64(dma);
718 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
719 /* account for each xdp_buff from xsk_buff_pool */
720 xdp_ring->xdp_tx_active++;
721
722 if (++ntu == xdp_ring->count)
723 ntu = 0;
724
725 if (frag == nr_frags)
726 break;
727
728 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
729 tx_buf = &xdp_ring->tx_buf[ntu];
730
731 xdp = xsk_buff_get_frag(head);
732 size = skb_frag_size(&sinfo->frags[frag]);
733 frag++;
734 }
735
736 xdp_ring->next_to_use = ntu;
737 /* update last descriptor from a frame with EOP */
738 tx_desc->cmd_type_offset_bsz |=
739 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
740
741 return ICE_XDP_TX;
742
743 busy:
744 xdp_ring->ring_stats->tx_stats.tx_busy++;
745
746 return ICE_XDP_CONSUMED;
747 }
748
749 /**
750 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
751 * @rx_ring: Rx ring
752 * @xdp: xdp_buff used as input to the XDP program
753 * @xdp_prog: XDP program to run
754 * @xdp_ring: ring to be used for XDP_TX action
755 * @xsk_pool: AF_XDP buffer pool pointer
756 *
757 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
758 */
759 static int
ice_run_xdp_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool)760 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
761 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
762 struct xsk_buff_pool *xsk_pool)
763 {
764 int err, result = ICE_XDP_PASS;
765 u32 act;
766
767 act = bpf_prog_run_xdp(xdp_prog, xdp);
768
769 if (likely(act == XDP_REDIRECT)) {
770 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
771 if (!err)
772 return ICE_XDP_REDIR;
773 if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS)
774 result = ICE_XDP_EXIT;
775 else
776 result = ICE_XDP_CONSUMED;
777 goto out_failure;
778 }
779
780 switch (act) {
781 case XDP_PASS:
782 break;
783 case XDP_TX:
784 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool);
785 if (result == ICE_XDP_CONSUMED)
786 goto out_failure;
787 break;
788 case XDP_DROP:
789 result = ICE_XDP_CONSUMED;
790 break;
791 default:
792 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
793 fallthrough;
794 case XDP_ABORTED:
795 result = ICE_XDP_CONSUMED;
796 out_failure:
797 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
798 break;
799 }
800
801 return result;
802 }
803
804 static int
ice_add_xsk_frag(struct ice_rx_ring * rx_ring,struct xdp_buff * first,struct xdp_buff * xdp,const unsigned int size)805 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
806 struct xdp_buff *xdp, const unsigned int size)
807 {
808 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
809
810 if (!size)
811 return 0;
812
813 if (!xdp_buff_has_frags(first)) {
814 sinfo->nr_frags = 0;
815 sinfo->xdp_frags_size = 0;
816 xdp_buff_set_frags_flag(first);
817 }
818
819 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
820 xsk_buff_free(first);
821 return -ENOMEM;
822 }
823
824 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
825 virt_to_page(xdp->data_hard_start),
826 XDP_PACKET_HEADROOM, size);
827 sinfo->xdp_frags_size += size;
828 xsk_buff_add_frag(xdp);
829
830 return 0;
831 }
832
833 /**
834 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
835 * @rx_ring: AF_XDP Rx ring
836 * @xsk_pool: AF_XDP buffer pool pointer
837 * @budget: NAPI budget
838 *
839 * Returns number of processed packets on success, remaining budget on failure.
840 */
ice_clean_rx_irq_zc(struct ice_rx_ring * rx_ring,struct xsk_buff_pool * xsk_pool,int budget)841 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring,
842 struct xsk_buff_pool *xsk_pool,
843 int budget)
844 {
845 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
846 u32 ntc = rx_ring->next_to_clean;
847 u32 ntu = rx_ring->next_to_use;
848 struct xdp_buff *first = NULL;
849 struct ice_tx_ring *xdp_ring;
850 unsigned int xdp_xmit = 0;
851 struct bpf_prog *xdp_prog;
852 u32 cnt = rx_ring->count;
853 bool failure = false;
854 int entries_to_alloc;
855
856 /* ZC patch is enabled only when XDP program is set,
857 * so here it can not be NULL
858 */
859 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
860 xdp_ring = rx_ring->xdp_ring;
861
862 if (ntc != rx_ring->first_desc)
863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
864
865 while (likely(total_rx_packets < (unsigned int)budget)) {
866 union ice_32b_rx_flex_desc *rx_desc;
867 unsigned int size, xdp_res = 0;
868 struct xdp_buff *xdp;
869 struct sk_buff *skb;
870 u16 stat_err_bits;
871 u16 vlan_tci;
872
873 rx_desc = ICE_RX_DESC(rx_ring, ntc);
874
875 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
876 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
877 break;
878
879 /* This memory barrier is needed to keep us from reading
880 * any other fields out of the rx_desc until we have
881 * verified the descriptor has been written back.
882 */
883 dma_rmb();
884
885 if (unlikely(ntc == ntu))
886 break;
887
888 xdp = *ice_xdp_buf(rx_ring, ntc);
889
890 size = le16_to_cpu(rx_desc->wb.pkt_len) &
891 ICE_RX_FLX_DESC_PKT_LEN_M;
892
893 xsk_buff_set_size(xdp, size);
894 xsk_buff_dma_sync_for_cpu(xdp);
895
896 if (!first) {
897 first = xdp;
898 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
899 break;
900 }
901
902 if (++ntc == cnt)
903 ntc = 0;
904
905 if (ice_is_non_eop(rx_ring, rx_desc))
906 continue;
907
908 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring,
909 xsk_pool);
910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
911 xdp_xmit |= xdp_res;
912 } else if (xdp_res == ICE_XDP_EXIT) {
913 failure = true;
914 first = NULL;
915 rx_ring->first_desc = ntc;
916 break;
917 } else if (xdp_res == ICE_XDP_CONSUMED) {
918 xsk_buff_free(first);
919 } else if (xdp_res == ICE_XDP_PASS) {
920 goto construct_skb;
921 }
922
923 total_rx_bytes += xdp_get_buff_len(first);
924 total_rx_packets++;
925
926 first = NULL;
927 rx_ring->first_desc = ntc;
928 continue;
929
930 construct_skb:
931 /* XDP_PASS path */
932 skb = ice_construct_skb_zc(rx_ring, first);
933 if (!skb) {
934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
935 break;
936 }
937
938 first = NULL;
939 rx_ring->first_desc = ntc;
940
941 if (eth_skb_pad(skb)) {
942 skb = NULL;
943 continue;
944 }
945
946 total_rx_bytes += skb->len;
947 total_rx_packets++;
948
949 vlan_tci = ice_get_vlan_tci(rx_desc);
950
951 ice_process_skb_fields(rx_ring, rx_desc, skb);
952 ice_receive_skb(rx_ring, skb, vlan_tci);
953 }
954
955 rx_ring->next_to_clean = ntc;
956 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
957 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
958 failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool,
959 entries_to_alloc);
960
961 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
962 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
963
964 if (xsk_uses_need_wakeup(xsk_pool)) {
965 /* ntu could have changed when allocating entries above, so
966 * use rx_ring value instead of stack based one
967 */
968 if (failure || ntc == rx_ring->next_to_use)
969 xsk_set_rx_need_wakeup(xsk_pool);
970 else
971 xsk_clear_rx_need_wakeup(xsk_pool);
972
973 return (int)total_rx_packets;
974 }
975
976 return failure ? budget : (int)total_rx_packets;
977 }
978
979 /**
980 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
981 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
982 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
983 * @desc: AF_XDP descriptor to pull the DMA address and length from
984 * @total_bytes: bytes accumulator that will be used for stats update
985 */
ice_xmit_pkt(struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool,struct xdp_desc * desc,unsigned int * total_bytes)986 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring,
987 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc,
988 unsigned int *total_bytes)
989 {
990 struct ice_tx_desc *tx_desc;
991 dma_addr_t dma;
992
993 dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr);
994 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len);
995
996 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
997 tx_desc->buf_addr = cpu_to_le64(dma);
998 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
999 0, desc->len, 0);
1000
1001 *total_bytes += desc->len;
1002 }
1003
1004 /**
1005 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1006 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1007 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1008 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1009 * @total_bytes: bytes accumulator that will be used for stats update
1010 */
ice_xmit_pkt_batch(struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool,struct xdp_desc * descs,unsigned int * total_bytes)1011 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring,
1012 struct xsk_buff_pool *xsk_pool,
1013 struct xdp_desc *descs,
1014 unsigned int *total_bytes)
1015 {
1016 u16 ntu = xdp_ring->next_to_use;
1017 struct ice_tx_desc *tx_desc;
1018 u32 i;
1019
1020 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021 dma_addr_t dma;
1022
1023 dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr);
1024 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len);
1025
1026 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027 tx_desc->buf_addr = cpu_to_le64(dma);
1028 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029 0, descs[i].len, 0);
1030
1031 *total_bytes += descs[i].len;
1032 }
1033
1034 xdp_ring->next_to_use = ntu;
1035 }
1036
1037 /**
1038 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1041 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1042 * @nb_pkts: count of packets to be send
1043 * @total_bytes: bytes accumulator that will be used for stats update
1044 */
ice_fill_tx_hw_ring(struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool,struct xdp_desc * descs,u32 nb_pkts,unsigned int * total_bytes)1045 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring,
1046 struct xsk_buff_pool *xsk_pool,
1047 struct xdp_desc *descs, u32 nb_pkts,
1048 unsigned int *total_bytes)
1049 {
1050 u32 batched, leftover, i;
1051
1052 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1053 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1054 for (i = 0; i < batched; i += PKTS_PER_BATCH)
1055 ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes);
1056 for (; i < batched + leftover; i++)
1057 ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes);
1058 }
1059
1060 /**
1061 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1062 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1063 * @xsk_pool: AF_XDP buffer pool pointer
1064 *
1065 * Returns true if there is no more work that needs to be done, false otherwise
1066 */
ice_xmit_zc(struct ice_tx_ring * xdp_ring,struct xsk_buff_pool * xsk_pool)1067 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool)
1068 {
1069 struct xdp_desc *descs = xsk_pool->tx_descs;
1070 u32 nb_pkts, nb_processed = 0;
1071 unsigned int total_bytes = 0;
1072 int budget;
1073
1074 ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
1075
1076 if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1077 !netif_running(xdp_ring->vsi->netdev))
1078 return true;
1079
1080 budget = ICE_DESC_UNUSED(xdp_ring);
1081 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1082
1083 nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget);
1084 if (!nb_pkts)
1085 return true;
1086
1087 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1088 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1089 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed,
1090 &total_bytes);
1091 xdp_ring->next_to_use = 0;
1092 }
1093
1094 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed],
1095 nb_pkts - nb_processed, &total_bytes);
1096
1097 ice_set_rs_bit(xdp_ring);
1098 ice_xdp_ring_update_tail(xdp_ring);
1099 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1100
1101 if (xsk_uses_need_wakeup(xsk_pool))
1102 xsk_set_tx_need_wakeup(xsk_pool);
1103
1104 return nb_pkts < budget;
1105 }
1106
1107 /**
1108 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1109 * @netdev: net_device
1110 * @queue_id: queue to wake up
1111 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1112 *
1113 * Returns negative on error, zero otherwise.
1114 */
1115 int
ice_xsk_wakeup(struct net_device * netdev,u32 queue_id,u32 __always_unused flags)1116 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1117 u32 __always_unused flags)
1118 {
1119 struct ice_netdev_priv *np = netdev_priv(netdev);
1120 struct ice_q_vector *q_vector;
1121 struct ice_vsi *vsi = np->vsi;
1122 struct ice_tx_ring *ring;
1123
1124 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1125 return -ENETDOWN;
1126
1127 if (!ice_is_xdp_ena_vsi(vsi))
1128 return -EINVAL;
1129
1130 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1131 return -EINVAL;
1132
1133 ring = vsi->rx_rings[queue_id]->xdp_ring;
1134
1135 if (!READ_ONCE(ring->xsk_pool))
1136 return -EINVAL;
1137
1138 /* The idea here is that if NAPI is running, mark a miss, so
1139 * it will run again. If not, trigger an interrupt and
1140 * schedule the NAPI from interrupt context. If NAPI would be
1141 * scheduled here, the interrupt affinity would not be
1142 * honored.
1143 */
1144 q_vector = ring->q_vector;
1145 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1146 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1153 * @vsi: VSI to be checked
1154 *
1155 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1156 */
ice_xsk_any_rx_ring_ena(struct ice_vsi * vsi)1157 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1158 {
1159 int i;
1160
1161 ice_for_each_rxq(vsi, i) {
1162 if (xsk_get_pool_from_qid(vsi->netdev, i))
1163 return true;
1164 }
1165
1166 return false;
1167 }
1168
1169 /**
1170 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1171 * @rx_ring: ring to be cleaned
1172 */
ice_xsk_clean_rx_ring(struct ice_rx_ring * rx_ring)1173 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1174 {
1175 u16 ntc = rx_ring->next_to_clean;
1176 u16 ntu = rx_ring->next_to_use;
1177
1178 while (ntc != ntu) {
1179 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1180
1181 xsk_buff_free(xdp);
1182 ntc++;
1183 if (ntc >= rx_ring->count)
1184 ntc = 0;
1185 }
1186 }
1187
1188 /**
1189 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1190 * @xdp_ring: XDP_Tx ring
1191 */
ice_xsk_clean_xdp_ring(struct ice_tx_ring * xdp_ring)1192 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1193 {
1194 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1195 u32 xsk_frames = 0;
1196
1197 while (ntc != ntu) {
1198 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1199
1200 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1201 tx_buf->type = ICE_TX_BUF_EMPTY;
1202 xsk_buff_free(tx_buf->xdp);
1203 } else {
1204 xsk_frames++;
1205 }
1206
1207 ntc++;
1208 if (ntc >= xdp_ring->count)
1209 ntc = 0;
1210 }
1211
1212 if (xsk_frames)
1213 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1214 }
1215