1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 case IB_RATE_800_GBPS: return 320;
151 case IB_RATE_1600_GBPS: return 640;
152 default: return -1;
153 }
154 }
155 EXPORT_SYMBOL(ib_rate_to_mult);
156
mult_to_ib_rate(int mult)157 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 {
159 switch (mult) {
160 case 1: return IB_RATE_2_5_GBPS;
161 case 2: return IB_RATE_5_GBPS;
162 case 4: return IB_RATE_10_GBPS;
163 case 8: return IB_RATE_20_GBPS;
164 case 12: return IB_RATE_30_GBPS;
165 case 16: return IB_RATE_40_GBPS;
166 case 24: return IB_RATE_60_GBPS;
167 case 32: return IB_RATE_80_GBPS;
168 case 48: return IB_RATE_120_GBPS;
169 case 6: return IB_RATE_14_GBPS;
170 case 22: return IB_RATE_56_GBPS;
171 case 45: return IB_RATE_112_GBPS;
172 case 67: return IB_RATE_168_GBPS;
173 case 10: return IB_RATE_25_GBPS;
174 case 40: return IB_RATE_100_GBPS;
175 case 80: return IB_RATE_200_GBPS;
176 case 120: return IB_RATE_300_GBPS;
177 case 11: return IB_RATE_28_GBPS;
178 case 20: return IB_RATE_50_GBPS;
179 case 160: return IB_RATE_400_GBPS;
180 case 240: return IB_RATE_600_GBPS;
181 case 320: return IB_RATE_800_GBPS;
182 case 640: return IB_RATE_1600_GBPS;
183 default: return IB_RATE_PORT_CURRENT;
184 }
185 }
186 EXPORT_SYMBOL(mult_to_ib_rate);
187
ib_rate_to_mbps(enum ib_rate rate)188 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
189 {
190 switch (rate) {
191 case IB_RATE_2_5_GBPS: return 2500;
192 case IB_RATE_5_GBPS: return 5000;
193 case IB_RATE_10_GBPS: return 10000;
194 case IB_RATE_20_GBPS: return 20000;
195 case IB_RATE_30_GBPS: return 30000;
196 case IB_RATE_40_GBPS: return 40000;
197 case IB_RATE_60_GBPS: return 60000;
198 case IB_RATE_80_GBPS: return 80000;
199 case IB_RATE_120_GBPS: return 120000;
200 case IB_RATE_14_GBPS: return 14062;
201 case IB_RATE_56_GBPS: return 56250;
202 case IB_RATE_112_GBPS: return 112500;
203 case IB_RATE_168_GBPS: return 168750;
204 case IB_RATE_25_GBPS: return 25781;
205 case IB_RATE_100_GBPS: return 103125;
206 case IB_RATE_200_GBPS: return 206250;
207 case IB_RATE_300_GBPS: return 309375;
208 case IB_RATE_28_GBPS: return 28125;
209 case IB_RATE_50_GBPS: return 53125;
210 case IB_RATE_400_GBPS: return 425000;
211 case IB_RATE_600_GBPS: return 637500;
212 case IB_RATE_800_GBPS: return 850000;
213 case IB_RATE_1600_GBPS: return 1700000;
214 default: return -1;
215 }
216 }
217 EXPORT_SYMBOL(ib_rate_to_mbps);
218
219 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)220 rdma_node_get_transport(unsigned int node_type)
221 {
222
223 if (node_type == RDMA_NODE_USNIC)
224 return RDMA_TRANSPORT_USNIC;
225 if (node_type == RDMA_NODE_USNIC_UDP)
226 return RDMA_TRANSPORT_USNIC_UDP;
227 if (node_type == RDMA_NODE_RNIC)
228 return RDMA_TRANSPORT_IWARP;
229 if (node_type == RDMA_NODE_UNSPECIFIED)
230 return RDMA_TRANSPORT_UNSPECIFIED;
231
232 return RDMA_TRANSPORT_IB;
233 }
234 EXPORT_SYMBOL(rdma_node_get_transport);
235
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
237 u32 port_num)
238 {
239 enum rdma_transport_type lt;
240 if (device->ops.get_link_layer)
241 return device->ops.get_link_layer(device, port_num);
242
243 lt = rdma_node_get_transport(device->node_type);
244 if (lt == RDMA_TRANSPORT_IB)
245 return IB_LINK_LAYER_INFINIBAND;
246
247 return IB_LINK_LAYER_ETHERNET;
248 }
249 EXPORT_SYMBOL(rdma_port_get_link_layer);
250
251 /* Protection domains */
252
253 /**
254 * __ib_alloc_pd - Allocates an unused protection domain.
255 * @device: The device on which to allocate the protection domain.
256 * @flags: protection domain flags
257 * @caller: caller's build-time module name
258 *
259 * A protection domain object provides an association between QPs, shared
260 * receive queues, address handles, memory regions, and memory windows.
261 *
262 * Every PD has a local_dma_lkey which can be used as the lkey value for local
263 * memory operations.
264 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)265 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
266 const char *caller)
267 {
268 struct ib_pd *pd;
269 int mr_access_flags = 0;
270 int ret;
271
272 pd = rdma_zalloc_drv_obj(device, ib_pd);
273 if (!pd)
274 return ERR_PTR(-ENOMEM);
275
276 pd->device = device;
277 pd->flags = flags;
278
279 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
280 rdma_restrack_set_name(&pd->res, caller);
281
282 ret = device->ops.alloc_pd(pd, NULL);
283 if (ret) {
284 rdma_restrack_put(&pd->res);
285 kfree(pd);
286 return ERR_PTR(ret);
287 }
288 rdma_restrack_add(&pd->res);
289
290 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
291 pd->local_dma_lkey = device->local_dma_lkey;
292 else
293 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
294
295 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
296 pr_warn("%s: enabling unsafe global rkey\n", caller);
297 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
298 }
299
300 if (mr_access_flags) {
301 struct ib_mr *mr;
302
303 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
304 if (IS_ERR(mr)) {
305 ib_dealloc_pd(pd);
306 return ERR_CAST(mr);
307 }
308
309 mr->device = pd->device;
310 mr->pd = pd;
311 mr->type = IB_MR_TYPE_DMA;
312 mr->uobject = NULL;
313 mr->need_inval = false;
314
315 pd->__internal_mr = mr;
316
317 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
318 pd->local_dma_lkey = pd->__internal_mr->lkey;
319
320 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
321 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
322 }
323
324 return pd;
325 }
326 EXPORT_SYMBOL(__ib_alloc_pd);
327
328 /**
329 * ib_dealloc_pd_user - Deallocates a protection domain.
330 * @pd: The protection domain to deallocate.
331 * @udata: Valid user data or NULL for kernel object
332 *
333 * It is an error to call this function while any resources in the pd still
334 * exist. The caller is responsible to synchronously destroy them and
335 * guarantee no new allocations will happen.
336 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)337 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
338 {
339 int ret;
340
341 if (pd->__internal_mr) {
342 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
343 WARN_ON(ret);
344 pd->__internal_mr = NULL;
345 }
346
347 ret = pd->device->ops.dealloc_pd(pd, udata);
348 if (ret)
349 return ret;
350
351 rdma_restrack_del(&pd->res);
352 kfree(pd);
353 return ret;
354 }
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
356
357 /* Address handles */
358
359 /**
360 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361 * @dest: Pointer to destination ah_attr. Contents of the destination
362 * pointer is assumed to be invalid and attribute are overwritten.
363 * @src: Pointer to source ah_attr.
364 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366 const struct rdma_ah_attr *src)
367 {
368 *dest = *src;
369 if (dest->grh.sgid_attr)
370 rdma_hold_gid_attr(dest->grh.sgid_attr);
371 }
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
373
374 /**
375 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
376 * @old: Pointer to existing ah_attr which needs to be replaced.
377 * old is assumed to be valid or zero'd
378 * @new: Pointer to the new ah_attr.
379 *
380 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381 * old the ah_attr is valid; after that it copies the new attribute and holds
382 * the reference to the replaced ah_attr.
383 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385 const struct rdma_ah_attr *new)
386 {
387 rdma_destroy_ah_attr(old);
388 *old = *new;
389 if (old->grh.sgid_attr)
390 rdma_hold_gid_attr(old->grh.sgid_attr);
391 }
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
393
394 /**
395 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396 * @dest: Pointer to destination ah_attr to copy to.
397 * dest is assumed to be valid or zero'd
398 * @src: Pointer to the new ah_attr.
399 *
400 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401 * if it is valid. This also transfers ownership of internal references from
402 * src to dest, making src invalid in the process. No new reference of the src
403 * ah_attr is taken.
404 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
406 {
407 rdma_destroy_ah_attr(dest);
408 *dest = *src;
409 src->grh.sgid_attr = NULL;
410 }
411 EXPORT_SYMBOL(rdma_move_ah_attr);
412
413 /*
414 * Validate that the rdma_ah_attr is valid for the device before passing it
415 * off to the driver.
416 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)417 static int rdma_check_ah_attr(struct ib_device *device,
418 struct rdma_ah_attr *ah_attr)
419 {
420 if (!rdma_is_port_valid(device, ah_attr->port_num))
421 return -EINVAL;
422
423 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425 !(ah_attr->ah_flags & IB_AH_GRH))
426 return -EINVAL;
427
428 if (ah_attr->grh.sgid_attr) {
429 /*
430 * Make sure the passed sgid_attr is consistent with the
431 * parameters
432 */
433 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435 return -EINVAL;
436 }
437 return 0;
438 }
439
440 /*
441 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442 * On success the caller is responsible to call rdma_unfill_sgid_attr().
443 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)444 static int rdma_fill_sgid_attr(struct ib_device *device,
445 struct rdma_ah_attr *ah_attr,
446 const struct ib_gid_attr **old_sgid_attr)
447 {
448 const struct ib_gid_attr *sgid_attr;
449 struct ib_global_route *grh;
450 int ret;
451
452 *old_sgid_attr = ah_attr->grh.sgid_attr;
453
454 ret = rdma_check_ah_attr(device, ah_attr);
455 if (ret)
456 return ret;
457
458 if (!(ah_attr->ah_flags & IB_AH_GRH))
459 return 0;
460
461 grh = rdma_ah_retrieve_grh(ah_attr);
462 if (grh->sgid_attr)
463 return 0;
464
465 sgid_attr =
466 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467 if (IS_ERR(sgid_attr))
468 return PTR_ERR(sgid_attr);
469
470 /* Move ownerhip of the kref into the ah_attr */
471 grh->sgid_attr = sgid_attr;
472 return 0;
473 }
474
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476 const struct ib_gid_attr *old_sgid_attr)
477 {
478 /*
479 * Fill didn't change anything, the caller retains ownership of
480 * whatever it passed
481 */
482 if (ah_attr->grh.sgid_attr == old_sgid_attr)
483 return;
484
485 /*
486 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487 * doesn't see any change in the rdma_ah_attr. If we get here
488 * old_sgid_attr is NULL.
489 */
490 rdma_destroy_ah_attr(ah_attr);
491 }
492
493 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495 const struct ib_gid_attr *old_attr)
496 {
497 if (old_attr)
498 rdma_put_gid_attr(old_attr);
499 if (ah_attr->ah_flags & IB_AH_GRH) {
500 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501 return ah_attr->grh.sgid_attr;
502 }
503 return NULL;
504 }
505
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507 struct rdma_ah_attr *ah_attr,
508 u32 flags,
509 struct ib_udata *udata,
510 struct net_device *xmit_slave)
511 {
512 struct rdma_ah_init_attr init_attr = {};
513 struct ib_device *device = pd->device;
514 struct ib_ah *ah;
515 int ret;
516
517 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
518
519 if (!udata && !device->ops.create_ah)
520 return ERR_PTR(-EOPNOTSUPP);
521
522 ah = rdma_zalloc_drv_obj_gfp(
523 device, ib_ah,
524 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
525 if (!ah)
526 return ERR_PTR(-ENOMEM);
527
528 ah->device = device;
529 ah->pd = pd;
530 ah->type = ah_attr->type;
531 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532 init_attr.ah_attr = ah_attr;
533 init_attr.flags = flags;
534 init_attr.xmit_slave = xmit_slave;
535
536 if (udata)
537 ret = device->ops.create_user_ah(ah, &init_attr, udata);
538 else
539 ret = device->ops.create_ah(ah, &init_attr, NULL);
540 if (ret) {
541 if (ah->sgid_attr)
542 rdma_put_gid_attr(ah->sgid_attr);
543 kfree(ah);
544 return ERR_PTR(ret);
545 }
546
547 atomic_inc(&pd->usecnt);
548 return ah;
549 }
550
551 /**
552 * rdma_create_ah - Creates an address handle for the
553 * given address vector.
554 * @pd: The protection domain associated with the address handle.
555 * @ah_attr: The attributes of the address vector.
556 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
557 *
558 * It returns 0 on success and returns appropriate error code on error.
559 * The address handle is used to reference a local or global destination
560 * in all UD QP post sends.
561 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563 u32 flags)
564 {
565 const struct ib_gid_attr *old_sgid_attr;
566 struct net_device *slave;
567 struct ib_ah *ah;
568 int ret;
569
570 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571 if (ret)
572 return ERR_PTR(ret);
573 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575 GFP_KERNEL : GFP_ATOMIC);
576 if (IS_ERR(slave)) {
577 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578 return ERR_CAST(slave);
579 }
580 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581 rdma_lag_put_ah_roce_slave(slave);
582 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583 return ah;
584 }
585 EXPORT_SYMBOL(rdma_create_ah);
586
587 /**
588 * rdma_create_user_ah - Creates an address handle for the
589 * given address vector.
590 * It resolves destination mac address for ah attribute of RoCE type.
591 * @pd: The protection domain associated with the address handle.
592 * @ah_attr: The attributes of the address vector.
593 * @udata: pointer to user's input output buffer information need by
594 * provider driver.
595 *
596 * It returns 0 on success and returns appropriate error code on error.
597 * The address handle is used to reference a local or global destination
598 * in all UD QP post sends.
599 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601 struct rdma_ah_attr *ah_attr,
602 struct ib_udata *udata)
603 {
604 const struct ib_gid_attr *old_sgid_attr;
605 struct ib_ah *ah;
606 int err;
607
608 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
609 if (err)
610 return ERR_PTR(err);
611
612 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613 err = ib_resolve_eth_dmac(pd->device, ah_attr);
614 if (err) {
615 ah = ERR_PTR(err);
616 goto out;
617 }
618 }
619
620 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
621 udata, NULL);
622
623 out:
624 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625 return ah;
626 }
627 EXPORT_SYMBOL(rdma_create_user_ah);
628
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
630 {
631 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632 struct iphdr ip4h_checked;
633 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
634
635 /* If it's IPv6, the version must be 6, otherwise, the first
636 * 20 bytes (before the IPv4 header) are garbled.
637 */
638 if (ip6h->version != 6)
639 return (ip4h->version == 4) ? 4 : 0;
640 /* version may be 6 or 4 because the first 20 bytes could be garbled */
641
642 /* RoCE v2 requires no options, thus header length
643 * must be 5 words
644 */
645 if (ip4h->ihl != 5)
646 return 6;
647
648 /* Verify checksum.
649 * We can't write on scattered buffers so we need to copy to
650 * temp buffer.
651 */
652 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653 ip4h_checked.check = 0;
654 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655 /* if IPv4 header checksum is OK, believe it */
656 if (ip4h->check == ip4h_checked.check)
657 return 4;
658 return 6;
659 }
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
661
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
663 u32 port_num,
664 const struct ib_grh *grh)
665 {
666 int grh_version;
667
668 if (rdma_protocol_ib(device, port_num))
669 return RDMA_NETWORK_IB;
670
671 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
672
673 if (grh_version == 4)
674 return RDMA_NETWORK_IPV4;
675
676 if (grh->next_hdr == IPPROTO_UDP)
677 return RDMA_NETWORK_IPV6;
678
679 return RDMA_NETWORK_ROCE_V1;
680 }
681
682 struct find_gid_index_context {
683 u16 vlan_id;
684 enum ib_gid_type gid_type;
685 };
686
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)687 static bool find_gid_index(const union ib_gid *gid,
688 const struct ib_gid_attr *gid_attr,
689 void *context)
690 {
691 struct find_gid_index_context *ctx = context;
692 u16 vlan_id = 0xffff;
693 int ret;
694
695 if (ctx->gid_type != gid_attr->gid_type)
696 return false;
697
698 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
699 if (ret)
700 return false;
701
702 return ctx->vlan_id == vlan_id;
703 }
704
705 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707 u16 vlan_id, const union ib_gid *sgid,
708 enum ib_gid_type gid_type)
709 {
710 struct find_gid_index_context context = {.vlan_id = vlan_id,
711 .gid_type = gid_type};
712
713 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
714 &context);
715 }
716
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718 enum rdma_network_type net_type,
719 union ib_gid *sgid, union ib_gid *dgid)
720 {
721 struct sockaddr_in src_in;
722 struct sockaddr_in dst_in;
723 __be32 src_saddr, dst_saddr;
724
725 if (!sgid || !dgid)
726 return -EINVAL;
727
728 if (net_type == RDMA_NETWORK_IPV4) {
729 memcpy(&src_in.sin_addr.s_addr,
730 &hdr->roce4grh.saddr, 4);
731 memcpy(&dst_in.sin_addr.s_addr,
732 &hdr->roce4grh.daddr, 4);
733 src_saddr = src_in.sin_addr.s_addr;
734 dst_saddr = dst_in.sin_addr.s_addr;
735 ipv6_addr_set_v4mapped(src_saddr,
736 (struct in6_addr *)sgid);
737 ipv6_addr_set_v4mapped(dst_saddr,
738 (struct in6_addr *)dgid);
739 return 0;
740 } else if (net_type == RDMA_NETWORK_IPV6 ||
741 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742 *dgid = hdr->ibgrh.dgid;
743 *sgid = hdr->ibgrh.sgid;
744 return 0;
745 } else {
746 return -EINVAL;
747 }
748 }
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
750
751 /* Resolve destination mac address and hop limit for unicast destination
752 * GID entry, considering the source GID entry as well.
753 * ah_attribute must have valid port_num, sgid_index.
754 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756 struct rdma_ah_attr *ah_attr)
757 {
758 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760 int hop_limit = 0xff;
761 int ret = 0;
762
763 /* If destination is link local and source GID is RoCEv1,
764 * IP stack is not used.
765 */
766 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
769 ah_attr->roce.dmac);
770 return ret;
771 }
772
773 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
774 ah_attr->roce.dmac,
775 sgid_attr, &hop_limit);
776
777 grh->hop_limit = hop_limit;
778 return ret;
779 }
780
781 /*
782 * This function initializes address handle attributes from the incoming packet.
783 * Incoming packet has dgid of the receiver node on which this code is
784 * getting executed and, sgid contains the GID of the sender.
785 *
786 * When resolving mac address of destination, the arrived dgid is used
787 * as sgid and, sgid is used as dgid because sgid contains destinations
788 * GID whom to respond to.
789 *
790 * On success the caller is responsible to call rdma_destroy_ah_attr on the
791 * attr.
792 */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794 const struct ib_wc *wc, const struct ib_grh *grh,
795 struct rdma_ah_attr *ah_attr)
796 {
797 u32 flow_class;
798 int ret;
799 enum rdma_network_type net_type = RDMA_NETWORK_IB;
800 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801 const struct ib_gid_attr *sgid_attr;
802 int hoplimit = 0xff;
803 union ib_gid dgid;
804 union ib_gid sgid;
805
806 might_sleep();
807
808 memset(ah_attr, 0, sizeof *ah_attr);
809 ah_attr->type = rdma_ah_find_type(device, port_num);
810 if (rdma_cap_eth_ah(device, port_num)) {
811 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812 net_type = wc->network_hdr_type;
813 else
814 net_type = ib_get_net_type_by_grh(device, port_num, grh);
815 gid_type = ib_network_to_gid_type(net_type);
816 }
817 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
818 &sgid, &dgid);
819 if (ret)
820 return ret;
821
822 rdma_ah_set_sl(ah_attr, wc->sl);
823 rdma_ah_set_port_num(ah_attr, port_num);
824
825 if (rdma_protocol_roce(device, port_num)) {
826 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827 wc->vlan_id : 0xffff;
828
829 if (!(wc->wc_flags & IB_WC_GRH))
830 return -EPROTOTYPE;
831
832 sgid_attr = get_sgid_attr_from_eth(device, port_num,
833 vlan_id, &dgid,
834 gid_type);
835 if (IS_ERR(sgid_attr))
836 return PTR_ERR(sgid_attr);
837
838 flow_class = be32_to_cpu(grh->version_tclass_flow);
839 rdma_move_grh_sgid_attr(ah_attr,
840 &sgid,
841 flow_class & 0xFFFFF,
842 hoplimit,
843 (flow_class >> 20) & 0xFF,
844 sgid_attr);
845
846 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
847 if (ret)
848 rdma_destroy_ah_attr(ah_attr);
849
850 return ret;
851 } else {
852 rdma_ah_set_dlid(ah_attr, wc->slid);
853 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
854
855 if ((wc->wc_flags & IB_WC_GRH) == 0)
856 return 0;
857
858 if (dgid.global.interface_id !=
859 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860 sgid_attr = rdma_find_gid_by_port(
861 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
862 } else
863 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
864
865 if (IS_ERR(sgid_attr))
866 return PTR_ERR(sgid_attr);
867 flow_class = be32_to_cpu(grh->version_tclass_flow);
868 rdma_move_grh_sgid_attr(ah_attr,
869 &sgid,
870 flow_class & 0xFFFFF,
871 hoplimit,
872 (flow_class >> 20) & 0xFF,
873 sgid_attr);
874
875 return 0;
876 }
877 }
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879
880 /**
881 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882 * of the reference
883 *
884 * @attr: Pointer to AH attribute structure
885 * @dgid: Destination GID
886 * @flow_label: Flow label
887 * @hop_limit: Hop limit
888 * @traffic_class: traffic class
889 * @sgid_attr: Pointer to SGID attribute
890 *
891 * This takes ownership of the sgid_attr reference. The caller must ensure
892 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893 * calling this function.
894 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896 u32 flow_label, u8 hop_limit, u8 traffic_class,
897 const struct ib_gid_attr *sgid_attr)
898 {
899 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
900 traffic_class);
901 attr->grh.sgid_attr = sgid_attr;
902 }
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904
905 /**
906 * rdma_destroy_ah_attr - Release reference to SGID attribute of
907 * ah attribute.
908 * @ah_attr: Pointer to ah attribute
909 *
910 * Release reference to the SGID attribute of the ah attribute if it is
911 * non NULL. It is safe to call this multiple times, and safe to call it on
912 * a zero initialized ah_attr.
913 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
915 {
916 if (ah_attr->grh.sgid_attr) {
917 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918 ah_attr->grh.sgid_attr = NULL;
919 }
920 }
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
922
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924 const struct ib_grh *grh, u32 port_num)
925 {
926 struct rdma_ah_attr ah_attr;
927 struct ib_ah *ah;
928 int ret;
929
930 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
931 if (ret)
932 return ERR_PTR(ret);
933
934 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
935
936 rdma_destroy_ah_attr(&ah_attr);
937 return ah;
938 }
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
940
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
942 {
943 const struct ib_gid_attr *old_sgid_attr;
944 int ret;
945
946 if (ah->type != ah_attr->type)
947 return -EINVAL;
948
949 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
950 if (ret)
951 return ret;
952
953 ret = ah->device->ops.modify_ah ?
954 ah->device->ops.modify_ah(ah, ah_attr) :
955 -EOPNOTSUPP;
956
957 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959 return ret;
960 }
961 EXPORT_SYMBOL(rdma_modify_ah);
962
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
964 {
965 ah_attr->grh.sgid_attr = NULL;
966
967 return ah->device->ops.query_ah ?
968 ah->device->ops.query_ah(ah, ah_attr) :
969 -EOPNOTSUPP;
970 }
971 EXPORT_SYMBOL(rdma_query_ah);
972
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
974 {
975 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
976 struct ib_pd *pd;
977 int ret;
978
979 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
980
981 pd = ah->pd;
982
983 ret = ah->device->ops.destroy_ah(ah, flags);
984 if (ret)
985 return ret;
986
987 atomic_dec(&pd->usecnt);
988 if (sgid_attr)
989 rdma_put_gid_attr(sgid_attr);
990
991 kfree(ah);
992 return ret;
993 }
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
995
996 /* Shared receive queues */
997
998 /**
999 * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000 * domain.
1001 * @pd: The protection domain associated with the SRQ.
1002 * @srq_init_attr: A list of initial attributes required to create the
1003 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1004 * the actual capabilities of the created SRQ.
1005 * @uobject: uobject pointer if this is not a kernel SRQ
1006 * @udata: udata pointer if this is not a kernel SRQ
1007 *
1008 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009 * requested size of the SRQ, and set to the actual values allocated
1010 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1011 * will always be at least as large as the requested values.
1012 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014 struct ib_srq_init_attr *srq_init_attr,
1015 struct ib_usrq_object *uobject,
1016 struct ib_udata *udata)
1017 {
1018 struct ib_srq *srq;
1019 int ret;
1020
1021 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022 if (!srq)
1023 return ERR_PTR(-ENOMEM);
1024
1025 srq->device = pd->device;
1026 srq->pd = pd;
1027 srq->event_handler = srq_init_attr->event_handler;
1028 srq->srq_context = srq_init_attr->srq_context;
1029 srq->srq_type = srq_init_attr->srq_type;
1030 srq->uobject = uobject;
1031
1032 if (ib_srq_has_cq(srq->srq_type)) {
1033 srq->ext.cq = srq_init_attr->ext.cq;
1034 atomic_inc(&srq->ext.cq->usecnt);
1035 }
1036 if (srq->srq_type == IB_SRQT_XRC) {
1037 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038 if (srq->ext.xrc.xrcd)
1039 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1040 }
1041 atomic_inc(&pd->usecnt);
1042
1043 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1044 rdma_restrack_parent_name(&srq->res, &pd->res);
1045
1046 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1047 if (ret) {
1048 rdma_restrack_put(&srq->res);
1049 atomic_dec(&pd->usecnt);
1050 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1051 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1052 if (ib_srq_has_cq(srq->srq_type))
1053 atomic_dec(&srq->ext.cq->usecnt);
1054 kfree(srq);
1055 return ERR_PTR(ret);
1056 }
1057
1058 rdma_restrack_add(&srq->res);
1059
1060 return srq;
1061 }
1062 EXPORT_SYMBOL(ib_create_srq_user);
1063
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1064 int ib_modify_srq(struct ib_srq *srq,
1065 struct ib_srq_attr *srq_attr,
1066 enum ib_srq_attr_mask srq_attr_mask)
1067 {
1068 return srq->device->ops.modify_srq ?
1069 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1070 NULL) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_modify_srq);
1073
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1074 int ib_query_srq(struct ib_srq *srq,
1075 struct ib_srq_attr *srq_attr)
1076 {
1077 return srq->device->ops.query_srq ?
1078 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1079 }
1080 EXPORT_SYMBOL(ib_query_srq);
1081
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1082 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1083 {
1084 int ret;
1085
1086 if (atomic_read(&srq->usecnt))
1087 return -EBUSY;
1088
1089 ret = srq->device->ops.destroy_srq(srq, udata);
1090 if (ret)
1091 return ret;
1092
1093 atomic_dec(&srq->pd->usecnt);
1094 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1095 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1096 if (ib_srq_has_cq(srq->srq_type))
1097 atomic_dec(&srq->ext.cq->usecnt);
1098 rdma_restrack_del(&srq->res);
1099 kfree(srq);
1100
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(ib_destroy_srq_user);
1104
1105 /* Queue pairs */
1106
__ib_qp_event_handler(struct ib_event * event,void * context)1107 static void __ib_qp_event_handler(struct ib_event *event, void *context)
1108 {
1109 struct ib_qp *qp = event->element.qp;
1110
1111 if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1112 complete(&qp->srq_completion);
1113 if (qp->registered_event_handler)
1114 qp->registered_event_handler(event, qp->qp_context);
1115 }
1116
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1117 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1118 {
1119 struct ib_qp *qp = context;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1123 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1124 if (event->element.qp->event_handler)
1125 event->element.qp->event_handler(event, event->element.qp->qp_context);
1126 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1127 }
1128
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1129 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1130 void (*event_handler)(struct ib_event *, void *),
1131 void *qp_context)
1132 {
1133 struct ib_qp *qp;
1134 unsigned long flags;
1135 int err;
1136
1137 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1138 if (!qp)
1139 return ERR_PTR(-ENOMEM);
1140
1141 qp->real_qp = real_qp;
1142 err = ib_open_shared_qp_security(qp, real_qp->device);
1143 if (err) {
1144 kfree(qp);
1145 return ERR_PTR(err);
1146 }
1147
1148 qp->real_qp = real_qp;
1149 atomic_inc(&real_qp->usecnt);
1150 qp->device = real_qp->device;
1151 qp->event_handler = event_handler;
1152 qp->qp_context = qp_context;
1153 qp->qp_num = real_qp->qp_num;
1154 qp->qp_type = real_qp->qp_type;
1155
1156 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1157 list_add(&qp->open_list, &real_qp->open_list);
1158 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1159
1160 return qp;
1161 }
1162
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1163 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1164 struct ib_qp_open_attr *qp_open_attr)
1165 {
1166 struct ib_qp *qp, *real_qp;
1167
1168 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1169 return ERR_PTR(-EINVAL);
1170
1171 down_read(&xrcd->tgt_qps_rwsem);
1172 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1173 if (!real_qp) {
1174 up_read(&xrcd->tgt_qps_rwsem);
1175 return ERR_PTR(-EINVAL);
1176 }
1177 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1178 qp_open_attr->qp_context);
1179 up_read(&xrcd->tgt_qps_rwsem);
1180 return qp;
1181 }
1182 EXPORT_SYMBOL(ib_open_qp);
1183
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1184 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1185 struct ib_qp_init_attr *qp_init_attr)
1186 {
1187 struct ib_qp *real_qp = qp;
1188 int err;
1189
1190 qp->event_handler = __ib_shared_qp_event_handler;
1191 qp->qp_context = qp;
1192 qp->pd = NULL;
1193 qp->send_cq = qp->recv_cq = NULL;
1194 qp->srq = NULL;
1195 qp->xrcd = qp_init_attr->xrcd;
1196 atomic_inc(&qp_init_attr->xrcd->usecnt);
1197 INIT_LIST_HEAD(&qp->open_list);
1198
1199 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1200 qp_init_attr->qp_context);
1201 if (IS_ERR(qp))
1202 return qp;
1203
1204 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1205 real_qp, GFP_KERNEL));
1206 if (err) {
1207 ib_close_qp(qp);
1208 return ERR_PTR(err);
1209 }
1210 return qp;
1211 }
1212
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1213 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1214 struct ib_qp_init_attr *attr,
1215 struct ib_udata *udata,
1216 struct ib_uqp_object *uobj, const char *caller)
1217 {
1218 struct ib_udata dummy = {};
1219 struct ib_qp *qp;
1220 int ret;
1221
1222 if (!dev->ops.create_qp)
1223 return ERR_PTR(-EOPNOTSUPP);
1224
1225 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1226 if (!qp)
1227 return ERR_PTR(-ENOMEM);
1228
1229 qp->device = dev;
1230 qp->pd = pd;
1231 qp->uobject = uobj;
1232 qp->real_qp = qp;
1233
1234 qp->qp_type = attr->qp_type;
1235 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1236 qp->srq = attr->srq;
1237 qp->event_handler = __ib_qp_event_handler;
1238 qp->registered_event_handler = attr->event_handler;
1239 qp->port = attr->port_num;
1240 qp->qp_context = attr->qp_context;
1241
1242 spin_lock_init(&qp->mr_lock);
1243 INIT_LIST_HEAD(&qp->rdma_mrs);
1244 INIT_LIST_HEAD(&qp->sig_mrs);
1245 init_completion(&qp->srq_completion);
1246
1247 qp->send_cq = attr->send_cq;
1248 qp->recv_cq = attr->recv_cq;
1249
1250 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1251 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1252 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1253 ret = dev->ops.create_qp(qp, attr, udata);
1254 if (ret)
1255 goto err_create;
1256
1257 /*
1258 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1259 * Unfortunately, it is not an easy task to fix that driver.
1260 */
1261 qp->send_cq = attr->send_cq;
1262 qp->recv_cq = attr->recv_cq;
1263
1264 ret = ib_create_qp_security(qp, dev);
1265 if (ret)
1266 goto err_security;
1267
1268 rdma_restrack_add(&qp->res);
1269 return qp;
1270
1271 err_security:
1272 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1273 err_create:
1274 rdma_restrack_put(&qp->res);
1275 kfree(qp);
1276 return ERR_PTR(ret);
1277
1278 }
1279
1280 /**
1281 * ib_create_qp_user - Creates a QP associated with the specified protection
1282 * domain.
1283 * @dev: IB device
1284 * @pd: The protection domain associated with the QP.
1285 * @attr: A list of initial attributes required to create the
1286 * QP. If QP creation succeeds, then the attributes are updated to
1287 * the actual capabilities of the created QP.
1288 * @udata: User data
1289 * @uobj: uverbs obect
1290 * @caller: caller's build-time module name
1291 */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1292 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1293 struct ib_qp_init_attr *attr,
1294 struct ib_udata *udata,
1295 struct ib_uqp_object *uobj, const char *caller)
1296 {
1297 struct ib_qp *qp, *xrc_qp;
1298
1299 if (attr->qp_type == IB_QPT_XRC_TGT)
1300 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1301 else
1302 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1303 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1304 return qp;
1305
1306 xrc_qp = create_xrc_qp_user(qp, attr);
1307 if (IS_ERR(xrc_qp)) {
1308 ib_destroy_qp(qp);
1309 return xrc_qp;
1310 }
1311
1312 xrc_qp->uobject = uobj;
1313 return xrc_qp;
1314 }
1315 EXPORT_SYMBOL(ib_create_qp_user);
1316
ib_qp_usecnt_inc(struct ib_qp * qp)1317 void ib_qp_usecnt_inc(struct ib_qp *qp)
1318 {
1319 if (qp->pd)
1320 atomic_inc(&qp->pd->usecnt);
1321 if (qp->send_cq)
1322 atomic_inc(&qp->send_cq->usecnt);
1323 if (qp->recv_cq)
1324 atomic_inc(&qp->recv_cq->usecnt);
1325 if (qp->srq)
1326 atomic_inc(&qp->srq->usecnt);
1327 if (qp->rwq_ind_tbl)
1328 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1329 }
1330 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1331
ib_qp_usecnt_dec(struct ib_qp * qp)1332 void ib_qp_usecnt_dec(struct ib_qp *qp)
1333 {
1334 if (qp->rwq_ind_tbl)
1335 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1336 if (qp->srq)
1337 atomic_dec(&qp->srq->usecnt);
1338 if (qp->recv_cq)
1339 atomic_dec(&qp->recv_cq->usecnt);
1340 if (qp->send_cq)
1341 atomic_dec(&qp->send_cq->usecnt);
1342 if (qp->pd)
1343 atomic_dec(&qp->pd->usecnt);
1344 }
1345 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1346
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1347 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1348 struct ib_qp_init_attr *qp_init_attr,
1349 const char *caller)
1350 {
1351 struct ib_device *device = pd->device;
1352 struct ib_qp *qp;
1353 int ret;
1354
1355 /*
1356 * If the callers is using the RDMA API calculate the resources
1357 * needed for the RDMA READ/WRITE operations.
1358 *
1359 * Note that these callers need to pass in a port number.
1360 */
1361 if (qp_init_attr->cap.max_rdma_ctxs)
1362 rdma_rw_init_qp(device, qp_init_attr);
1363
1364 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1365 if (IS_ERR(qp))
1366 return qp;
1367
1368 ib_qp_usecnt_inc(qp);
1369
1370 if (qp_init_attr->cap.max_rdma_ctxs) {
1371 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1372 if (ret)
1373 goto err;
1374 }
1375
1376 /*
1377 * Note: all hw drivers guarantee that max_send_sge is lower than
1378 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1379 * max_send_sge <= max_sge_rd.
1380 */
1381 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1382 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1383 device->attrs.max_sge_rd);
1384 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1385 qp->integrity_en = true;
1386
1387 return qp;
1388
1389 err:
1390 ib_destroy_qp(qp);
1391 return ERR_PTR(ret);
1392
1393 }
1394 EXPORT_SYMBOL(ib_create_qp_kernel);
1395
1396 static const struct {
1397 int valid;
1398 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1399 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1400 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1401 [IB_QPS_RESET] = {
1402 [IB_QPS_RESET] = { .valid = 1 },
1403 [IB_QPS_INIT] = {
1404 .valid = 1,
1405 .req_param = {
1406 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1407 IB_QP_PORT |
1408 IB_QP_QKEY),
1409 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1410 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1411 IB_QP_PORT |
1412 IB_QP_ACCESS_FLAGS),
1413 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1414 IB_QP_PORT |
1415 IB_QP_ACCESS_FLAGS),
1416 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1417 IB_QP_PORT |
1418 IB_QP_ACCESS_FLAGS),
1419 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1420 IB_QP_PORT |
1421 IB_QP_ACCESS_FLAGS),
1422 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1423 IB_QP_QKEY),
1424 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1425 IB_QP_QKEY),
1426 }
1427 },
1428 },
1429 [IB_QPS_INIT] = {
1430 [IB_QPS_RESET] = { .valid = 1 },
1431 [IB_QPS_ERR] = { .valid = 1 },
1432 [IB_QPS_INIT] = {
1433 .valid = 1,
1434 .opt_param = {
1435 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1436 IB_QP_PORT |
1437 IB_QP_QKEY),
1438 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1439 IB_QP_PORT |
1440 IB_QP_ACCESS_FLAGS),
1441 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1442 IB_QP_PORT |
1443 IB_QP_ACCESS_FLAGS),
1444 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1445 IB_QP_PORT |
1446 IB_QP_ACCESS_FLAGS),
1447 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1448 IB_QP_PORT |
1449 IB_QP_ACCESS_FLAGS),
1450 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1451 IB_QP_QKEY),
1452 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1453 IB_QP_QKEY),
1454 }
1455 },
1456 [IB_QPS_RTR] = {
1457 .valid = 1,
1458 .req_param = {
1459 [IB_QPT_UC] = (IB_QP_AV |
1460 IB_QP_PATH_MTU |
1461 IB_QP_DEST_QPN |
1462 IB_QP_RQ_PSN),
1463 [IB_QPT_RC] = (IB_QP_AV |
1464 IB_QP_PATH_MTU |
1465 IB_QP_DEST_QPN |
1466 IB_QP_RQ_PSN |
1467 IB_QP_MAX_DEST_RD_ATOMIC |
1468 IB_QP_MIN_RNR_TIMER),
1469 [IB_QPT_XRC_INI] = (IB_QP_AV |
1470 IB_QP_PATH_MTU |
1471 IB_QP_DEST_QPN |
1472 IB_QP_RQ_PSN),
1473 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1474 IB_QP_PATH_MTU |
1475 IB_QP_DEST_QPN |
1476 IB_QP_RQ_PSN |
1477 IB_QP_MAX_DEST_RD_ATOMIC |
1478 IB_QP_MIN_RNR_TIMER),
1479 },
1480 .opt_param = {
1481 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1482 IB_QP_QKEY),
1483 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1484 IB_QP_ACCESS_FLAGS |
1485 IB_QP_PKEY_INDEX),
1486 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1487 IB_QP_ACCESS_FLAGS |
1488 IB_QP_PKEY_INDEX),
1489 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1490 IB_QP_ACCESS_FLAGS |
1491 IB_QP_PKEY_INDEX),
1492 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1493 IB_QP_ACCESS_FLAGS |
1494 IB_QP_PKEY_INDEX),
1495 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1496 IB_QP_QKEY),
1497 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1498 IB_QP_QKEY),
1499 },
1500 },
1501 },
1502 [IB_QPS_RTR] = {
1503 [IB_QPS_RESET] = { .valid = 1 },
1504 [IB_QPS_ERR] = { .valid = 1 },
1505 [IB_QPS_RTS] = {
1506 .valid = 1,
1507 .req_param = {
1508 [IB_QPT_UD] = IB_QP_SQ_PSN,
1509 [IB_QPT_UC] = IB_QP_SQ_PSN,
1510 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1511 IB_QP_RETRY_CNT |
1512 IB_QP_RNR_RETRY |
1513 IB_QP_SQ_PSN |
1514 IB_QP_MAX_QP_RD_ATOMIC),
1515 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1516 IB_QP_RETRY_CNT |
1517 IB_QP_RNR_RETRY |
1518 IB_QP_SQ_PSN |
1519 IB_QP_MAX_QP_RD_ATOMIC),
1520 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1521 IB_QP_SQ_PSN),
1522 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1523 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1524 },
1525 .opt_param = {
1526 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1527 IB_QP_QKEY),
1528 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1529 IB_QP_ALT_PATH |
1530 IB_QP_ACCESS_FLAGS |
1531 IB_QP_PATH_MIG_STATE),
1532 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1533 IB_QP_ALT_PATH |
1534 IB_QP_ACCESS_FLAGS |
1535 IB_QP_MIN_RNR_TIMER |
1536 IB_QP_PATH_MIG_STATE),
1537 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1538 IB_QP_ALT_PATH |
1539 IB_QP_ACCESS_FLAGS |
1540 IB_QP_PATH_MIG_STATE),
1541 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1542 IB_QP_ALT_PATH |
1543 IB_QP_ACCESS_FLAGS |
1544 IB_QP_MIN_RNR_TIMER |
1545 IB_QP_PATH_MIG_STATE),
1546 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1547 IB_QP_QKEY),
1548 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1549 IB_QP_QKEY),
1550 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1551 }
1552 }
1553 },
1554 [IB_QPS_RTS] = {
1555 [IB_QPS_RESET] = { .valid = 1 },
1556 [IB_QPS_ERR] = { .valid = 1 },
1557 [IB_QPS_RTS] = {
1558 .valid = 1,
1559 .opt_param = {
1560 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1561 IB_QP_QKEY),
1562 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1563 IB_QP_ACCESS_FLAGS |
1564 IB_QP_ALT_PATH |
1565 IB_QP_PATH_MIG_STATE),
1566 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1567 IB_QP_ACCESS_FLAGS |
1568 IB_QP_ALT_PATH |
1569 IB_QP_PATH_MIG_STATE |
1570 IB_QP_MIN_RNR_TIMER),
1571 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1572 IB_QP_ACCESS_FLAGS |
1573 IB_QP_ALT_PATH |
1574 IB_QP_PATH_MIG_STATE),
1575 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1576 IB_QP_ACCESS_FLAGS |
1577 IB_QP_ALT_PATH |
1578 IB_QP_PATH_MIG_STATE |
1579 IB_QP_MIN_RNR_TIMER),
1580 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1581 IB_QP_QKEY),
1582 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1583 IB_QP_QKEY),
1584 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1585 }
1586 },
1587 [IB_QPS_SQD] = {
1588 .valid = 1,
1589 .opt_param = {
1590 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1591 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1592 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1593 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1594 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1595 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1596 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1597 }
1598 },
1599 },
1600 [IB_QPS_SQD] = {
1601 [IB_QPS_RESET] = { .valid = 1 },
1602 [IB_QPS_ERR] = { .valid = 1 },
1603 [IB_QPS_RTS] = {
1604 .valid = 1,
1605 .opt_param = {
1606 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1607 IB_QP_QKEY),
1608 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1609 IB_QP_ALT_PATH |
1610 IB_QP_ACCESS_FLAGS |
1611 IB_QP_PATH_MIG_STATE),
1612 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1613 IB_QP_ALT_PATH |
1614 IB_QP_ACCESS_FLAGS |
1615 IB_QP_MIN_RNR_TIMER |
1616 IB_QP_PATH_MIG_STATE),
1617 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1618 IB_QP_ALT_PATH |
1619 IB_QP_ACCESS_FLAGS |
1620 IB_QP_PATH_MIG_STATE),
1621 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1622 IB_QP_ALT_PATH |
1623 IB_QP_ACCESS_FLAGS |
1624 IB_QP_MIN_RNR_TIMER |
1625 IB_QP_PATH_MIG_STATE),
1626 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1627 IB_QP_QKEY),
1628 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1629 IB_QP_QKEY),
1630 }
1631 },
1632 [IB_QPS_SQD] = {
1633 .valid = 1,
1634 .opt_param = {
1635 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1636 IB_QP_QKEY),
1637 [IB_QPT_UC] = (IB_QP_AV |
1638 IB_QP_ALT_PATH |
1639 IB_QP_ACCESS_FLAGS |
1640 IB_QP_PKEY_INDEX |
1641 IB_QP_PATH_MIG_STATE),
1642 [IB_QPT_RC] = (IB_QP_PORT |
1643 IB_QP_AV |
1644 IB_QP_TIMEOUT |
1645 IB_QP_RETRY_CNT |
1646 IB_QP_RNR_RETRY |
1647 IB_QP_MAX_QP_RD_ATOMIC |
1648 IB_QP_MAX_DEST_RD_ATOMIC |
1649 IB_QP_ALT_PATH |
1650 IB_QP_ACCESS_FLAGS |
1651 IB_QP_PKEY_INDEX |
1652 IB_QP_MIN_RNR_TIMER |
1653 IB_QP_PATH_MIG_STATE),
1654 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1655 IB_QP_AV |
1656 IB_QP_TIMEOUT |
1657 IB_QP_RETRY_CNT |
1658 IB_QP_RNR_RETRY |
1659 IB_QP_MAX_QP_RD_ATOMIC |
1660 IB_QP_ALT_PATH |
1661 IB_QP_ACCESS_FLAGS |
1662 IB_QP_PKEY_INDEX |
1663 IB_QP_PATH_MIG_STATE),
1664 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1665 IB_QP_AV |
1666 IB_QP_TIMEOUT |
1667 IB_QP_MAX_DEST_RD_ATOMIC |
1668 IB_QP_ALT_PATH |
1669 IB_QP_ACCESS_FLAGS |
1670 IB_QP_PKEY_INDEX |
1671 IB_QP_MIN_RNR_TIMER |
1672 IB_QP_PATH_MIG_STATE),
1673 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1674 IB_QP_QKEY),
1675 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1676 IB_QP_QKEY),
1677 }
1678 }
1679 },
1680 [IB_QPS_SQE] = {
1681 [IB_QPS_RESET] = { .valid = 1 },
1682 [IB_QPS_ERR] = { .valid = 1 },
1683 [IB_QPS_RTS] = {
1684 .valid = 1,
1685 .opt_param = {
1686 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1687 IB_QP_QKEY),
1688 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1689 IB_QP_ACCESS_FLAGS),
1690 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1691 IB_QP_QKEY),
1692 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1693 IB_QP_QKEY),
1694 }
1695 }
1696 },
1697 [IB_QPS_ERR] = {
1698 [IB_QPS_RESET] = { .valid = 1 },
1699 [IB_QPS_ERR] = { .valid = 1 }
1700 }
1701 };
1702
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1703 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1704 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1705 {
1706 enum ib_qp_attr_mask req_param, opt_param;
1707
1708 if (mask & IB_QP_CUR_STATE &&
1709 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1710 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1711 return false;
1712
1713 if (!qp_state_table[cur_state][next_state].valid)
1714 return false;
1715
1716 req_param = qp_state_table[cur_state][next_state].req_param[type];
1717 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1718
1719 if ((mask & req_param) != req_param)
1720 return false;
1721
1722 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1723 return false;
1724
1725 return true;
1726 }
1727 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1728
1729 /**
1730 * ib_resolve_eth_dmac - Resolve destination mac address
1731 * @device: Device to consider
1732 * @ah_attr: address handle attribute which describes the
1733 * source and destination parameters
1734 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1735 * returns 0 on success or appropriate error code. It initializes the
1736 * necessary ah_attr fields when call is successful.
1737 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1738 static int ib_resolve_eth_dmac(struct ib_device *device,
1739 struct rdma_ah_attr *ah_attr)
1740 {
1741 int ret = 0;
1742
1743 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1744 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1745 __be32 addr = 0;
1746
1747 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1748 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1749 } else {
1750 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1751 (char *)ah_attr->roce.dmac);
1752 }
1753 } else {
1754 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1755 }
1756 return ret;
1757 }
1758
is_qp_type_connected(const struct ib_qp * qp)1759 static bool is_qp_type_connected(const struct ib_qp *qp)
1760 {
1761 return (qp->qp_type == IB_QPT_UC ||
1762 qp->qp_type == IB_QPT_RC ||
1763 qp->qp_type == IB_QPT_XRC_INI ||
1764 qp->qp_type == IB_QPT_XRC_TGT);
1765 }
1766
1767 /*
1768 * IB core internal function to perform QP attributes modification.
1769 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1770 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1771 int attr_mask, struct ib_udata *udata)
1772 {
1773 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1774 const struct ib_gid_attr *old_sgid_attr_av;
1775 const struct ib_gid_attr *old_sgid_attr_alt_av;
1776 int ret;
1777
1778 attr->xmit_slave = NULL;
1779 if (attr_mask & IB_QP_AV) {
1780 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1781 &old_sgid_attr_av);
1782 if (ret)
1783 return ret;
1784
1785 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1786 is_qp_type_connected(qp)) {
1787 struct net_device *slave;
1788
1789 /*
1790 * If the user provided the qp_attr then we have to
1791 * resolve it. Kerne users have to provide already
1792 * resolved rdma_ah_attr's.
1793 */
1794 if (udata) {
1795 ret = ib_resolve_eth_dmac(qp->device,
1796 &attr->ah_attr);
1797 if (ret)
1798 goto out_av;
1799 }
1800 slave = rdma_lag_get_ah_roce_slave(qp->device,
1801 &attr->ah_attr,
1802 GFP_KERNEL);
1803 if (IS_ERR(slave)) {
1804 ret = PTR_ERR(slave);
1805 goto out_av;
1806 }
1807 attr->xmit_slave = slave;
1808 }
1809 }
1810 if (attr_mask & IB_QP_ALT_PATH) {
1811 /*
1812 * FIXME: This does not track the migration state, so if the
1813 * user loads a new alternate path after the HW has migrated
1814 * from primary->alternate we will keep the wrong
1815 * references. This is OK for IB because the reference
1816 * counting does not serve any functional purpose.
1817 */
1818 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1819 &old_sgid_attr_alt_av);
1820 if (ret)
1821 goto out_av;
1822
1823 /*
1824 * Today the core code can only handle alternate paths and APM
1825 * for IB. Ban them in roce mode.
1826 */
1827 if (!(rdma_protocol_ib(qp->device,
1828 attr->alt_ah_attr.port_num) &&
1829 rdma_protocol_ib(qp->device, port))) {
1830 ret = -EINVAL;
1831 goto out;
1832 }
1833 }
1834
1835 if (rdma_ib_or_roce(qp->device, port)) {
1836 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1837 dev_warn(&qp->device->dev,
1838 "%s rq_psn overflow, masking to 24 bits\n",
1839 __func__);
1840 attr->rq_psn &= 0xffffff;
1841 }
1842
1843 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1844 dev_warn(&qp->device->dev,
1845 " %s sq_psn overflow, masking to 24 bits\n",
1846 __func__);
1847 attr->sq_psn &= 0xffffff;
1848 }
1849 }
1850
1851 /*
1852 * Bind this qp to a counter automatically based on the rdma counter
1853 * rules. This only set in RST2INIT with port specified
1854 */
1855 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1856 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1857 rdma_counter_bind_qp_auto(qp, attr->port_num);
1858
1859 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1860 if (ret)
1861 goto out;
1862
1863 if (attr_mask & IB_QP_PORT)
1864 qp->port = attr->port_num;
1865 if (attr_mask & IB_QP_AV)
1866 qp->av_sgid_attr =
1867 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1868 if (attr_mask & IB_QP_ALT_PATH)
1869 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1870 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1871
1872 out:
1873 if (attr_mask & IB_QP_ALT_PATH)
1874 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1875 out_av:
1876 if (attr_mask & IB_QP_AV) {
1877 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1878 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1879 }
1880 return ret;
1881 }
1882
1883 /**
1884 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1885 * @ib_qp: The QP to modify.
1886 * @attr: On input, specifies the QP attributes to modify. On output,
1887 * the current values of selected QP attributes are returned.
1888 * @attr_mask: A bit-mask used to specify which attributes of the QP
1889 * are being modified.
1890 * @udata: pointer to user's input output buffer information
1891 * are being modified.
1892 * It returns 0 on success and returns appropriate error code on error.
1893 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1894 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1895 int attr_mask, struct ib_udata *udata)
1896 {
1897 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1898 }
1899 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1900
ib_get_width_and_speed(u32 netdev_speed,u32 lanes,u16 * speed,u8 * width)1901 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1902 u16 *speed, u8 *width)
1903 {
1904 if (!lanes) {
1905 if (netdev_speed <= SPEED_1000) {
1906 *width = IB_WIDTH_1X;
1907 *speed = IB_SPEED_SDR;
1908 } else if (netdev_speed <= SPEED_10000) {
1909 *width = IB_WIDTH_1X;
1910 *speed = IB_SPEED_FDR10;
1911 } else if (netdev_speed <= SPEED_20000) {
1912 *width = IB_WIDTH_4X;
1913 *speed = IB_SPEED_DDR;
1914 } else if (netdev_speed <= SPEED_25000) {
1915 *width = IB_WIDTH_1X;
1916 *speed = IB_SPEED_EDR;
1917 } else if (netdev_speed <= SPEED_40000) {
1918 *width = IB_WIDTH_4X;
1919 *speed = IB_SPEED_FDR10;
1920 } else if (netdev_speed <= SPEED_50000) {
1921 *width = IB_WIDTH_2X;
1922 *speed = IB_SPEED_EDR;
1923 } else if (netdev_speed <= SPEED_100000) {
1924 *width = IB_WIDTH_4X;
1925 *speed = IB_SPEED_EDR;
1926 } else if (netdev_speed <= SPEED_200000) {
1927 *width = IB_WIDTH_4X;
1928 *speed = IB_SPEED_HDR;
1929 } else {
1930 *width = IB_WIDTH_4X;
1931 *speed = IB_SPEED_NDR;
1932 }
1933
1934 return;
1935 }
1936
1937 switch (lanes) {
1938 case 1:
1939 *width = IB_WIDTH_1X;
1940 break;
1941 case 2:
1942 *width = IB_WIDTH_2X;
1943 break;
1944 case 4:
1945 *width = IB_WIDTH_4X;
1946 break;
1947 case 8:
1948 *width = IB_WIDTH_8X;
1949 break;
1950 case 12:
1951 *width = IB_WIDTH_12X;
1952 break;
1953 default:
1954 *width = IB_WIDTH_1X;
1955 }
1956
1957 switch (netdev_speed / lanes) {
1958 case SPEED_2500:
1959 *speed = IB_SPEED_SDR;
1960 break;
1961 case SPEED_5000:
1962 *speed = IB_SPEED_DDR;
1963 break;
1964 case SPEED_10000:
1965 *speed = IB_SPEED_FDR10;
1966 break;
1967 case SPEED_14000:
1968 *speed = IB_SPEED_FDR;
1969 break;
1970 case SPEED_25000:
1971 *speed = IB_SPEED_EDR;
1972 break;
1973 case SPEED_50000:
1974 *speed = IB_SPEED_HDR;
1975 break;
1976 case SPEED_100000:
1977 *speed = IB_SPEED_NDR;
1978 break;
1979 default:
1980 *speed = IB_SPEED_SDR;
1981 }
1982 }
1983
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1984 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1985 {
1986 int rc;
1987 u32 netdev_speed;
1988 struct net_device *netdev;
1989 struct ethtool_link_ksettings lksettings = {};
1990
1991 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1992 return -EINVAL;
1993
1994 netdev = ib_device_get_netdev(dev, port_num);
1995 if (!netdev)
1996 return -ENODEV;
1997
1998 rtnl_lock();
1999 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
2000 rtnl_unlock();
2001
2002 dev_put(netdev);
2003
2004 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2005 netdev_speed = lksettings.base.speed;
2006 } else {
2007 netdev_speed = SPEED_1000;
2008 if (rc)
2009 pr_warn("%s speed is unknown, defaulting to %u\n",
2010 netdev->name, netdev_speed);
2011 }
2012
2013 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2014 speed, width);
2015
2016 return 0;
2017 }
2018 EXPORT_SYMBOL(ib_get_eth_speed);
2019
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)2020 int ib_modify_qp(struct ib_qp *qp,
2021 struct ib_qp_attr *qp_attr,
2022 int qp_attr_mask)
2023 {
2024 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2025 }
2026 EXPORT_SYMBOL(ib_modify_qp);
2027
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)2028 int ib_query_qp(struct ib_qp *qp,
2029 struct ib_qp_attr *qp_attr,
2030 int qp_attr_mask,
2031 struct ib_qp_init_attr *qp_init_attr)
2032 {
2033 qp_attr->ah_attr.grh.sgid_attr = NULL;
2034 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2035
2036 return qp->device->ops.query_qp ?
2037 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2038 qp_init_attr) : -EOPNOTSUPP;
2039 }
2040 EXPORT_SYMBOL(ib_query_qp);
2041
ib_close_qp(struct ib_qp * qp)2042 int ib_close_qp(struct ib_qp *qp)
2043 {
2044 struct ib_qp *real_qp;
2045 unsigned long flags;
2046
2047 real_qp = qp->real_qp;
2048 if (real_qp == qp)
2049 return -EINVAL;
2050
2051 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2052 list_del(&qp->open_list);
2053 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2054
2055 atomic_dec(&real_qp->usecnt);
2056 if (qp->qp_sec)
2057 ib_close_shared_qp_security(qp->qp_sec);
2058 kfree(qp);
2059
2060 return 0;
2061 }
2062 EXPORT_SYMBOL(ib_close_qp);
2063
__ib_destroy_shared_qp(struct ib_qp * qp)2064 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2065 {
2066 struct ib_xrcd *xrcd;
2067 struct ib_qp *real_qp;
2068 int ret;
2069
2070 real_qp = qp->real_qp;
2071 xrcd = real_qp->xrcd;
2072 down_write(&xrcd->tgt_qps_rwsem);
2073 ib_close_qp(qp);
2074 if (atomic_read(&real_qp->usecnt) == 0)
2075 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2076 else
2077 real_qp = NULL;
2078 up_write(&xrcd->tgt_qps_rwsem);
2079
2080 if (real_qp) {
2081 ret = ib_destroy_qp(real_qp);
2082 if (!ret)
2083 atomic_dec(&xrcd->usecnt);
2084 }
2085
2086 return 0;
2087 }
2088
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2089 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2090 {
2091 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2092 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2093 struct ib_qp_security *sec;
2094 int ret;
2095
2096 WARN_ON_ONCE(qp->mrs_used > 0);
2097
2098 if (atomic_read(&qp->usecnt))
2099 return -EBUSY;
2100
2101 if (qp->real_qp != qp)
2102 return __ib_destroy_shared_qp(qp);
2103
2104 sec = qp->qp_sec;
2105 if (sec)
2106 ib_destroy_qp_security_begin(sec);
2107
2108 if (!qp->uobject)
2109 rdma_rw_cleanup_mrs(qp);
2110
2111 rdma_counter_unbind_qp(qp, qp->port, true);
2112 ret = qp->device->ops.destroy_qp(qp, udata);
2113 if (ret) {
2114 if (sec)
2115 ib_destroy_qp_security_abort(sec);
2116 return ret;
2117 }
2118
2119 if (alt_path_sgid_attr)
2120 rdma_put_gid_attr(alt_path_sgid_attr);
2121 if (av_sgid_attr)
2122 rdma_put_gid_attr(av_sgid_attr);
2123
2124 ib_qp_usecnt_dec(qp);
2125 if (sec)
2126 ib_destroy_qp_security_end(sec);
2127
2128 rdma_restrack_del(&qp->res);
2129 kfree(qp);
2130 return ret;
2131 }
2132 EXPORT_SYMBOL(ib_destroy_qp_user);
2133
2134 /* Completion queues */
2135
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2136 struct ib_cq *__ib_create_cq(struct ib_device *device,
2137 ib_comp_handler comp_handler,
2138 void (*event_handler)(struct ib_event *, void *),
2139 void *cq_context,
2140 const struct ib_cq_init_attr *cq_attr,
2141 const char *caller)
2142 {
2143 struct ib_cq *cq;
2144 int ret;
2145
2146 cq = rdma_zalloc_drv_obj(device, ib_cq);
2147 if (!cq)
2148 return ERR_PTR(-ENOMEM);
2149
2150 cq->device = device;
2151 cq->uobject = NULL;
2152 cq->comp_handler = comp_handler;
2153 cq->event_handler = event_handler;
2154 cq->cq_context = cq_context;
2155 atomic_set(&cq->usecnt, 0);
2156
2157 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2158 rdma_restrack_set_name(&cq->res, caller);
2159
2160 ret = device->ops.create_cq(cq, cq_attr, NULL);
2161 if (ret) {
2162 rdma_restrack_put(&cq->res);
2163 kfree(cq);
2164 return ERR_PTR(ret);
2165 }
2166
2167 rdma_restrack_add(&cq->res);
2168 return cq;
2169 }
2170 EXPORT_SYMBOL(__ib_create_cq);
2171
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2172 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2173 {
2174 if (cq->shared)
2175 return -EOPNOTSUPP;
2176
2177 return cq->device->ops.modify_cq ?
2178 cq->device->ops.modify_cq(cq, cq_count,
2179 cq_period) : -EOPNOTSUPP;
2180 }
2181 EXPORT_SYMBOL(rdma_set_cq_moderation);
2182
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2183 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2184 {
2185 int ret;
2186
2187 if (WARN_ON_ONCE(cq->shared))
2188 return -EOPNOTSUPP;
2189
2190 if (atomic_read(&cq->usecnt))
2191 return -EBUSY;
2192
2193 ret = cq->device->ops.destroy_cq(cq, udata);
2194 if (ret)
2195 return ret;
2196
2197 rdma_restrack_del(&cq->res);
2198 kfree(cq);
2199 return ret;
2200 }
2201 EXPORT_SYMBOL(ib_destroy_cq_user);
2202
ib_resize_cq(struct ib_cq * cq,int cqe)2203 int ib_resize_cq(struct ib_cq *cq, int cqe)
2204 {
2205 if (cq->shared)
2206 return -EOPNOTSUPP;
2207
2208 return cq->device->ops.resize_cq ?
2209 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2210 }
2211 EXPORT_SYMBOL(ib_resize_cq);
2212
2213 /* Memory regions */
2214
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2215 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2216 u64 virt_addr, int access_flags)
2217 {
2218 struct ib_mr *mr;
2219
2220 if (access_flags & IB_ACCESS_ON_DEMAND) {
2221 if (!(pd->device->attrs.kernel_cap_flags &
2222 IBK_ON_DEMAND_PAGING)) {
2223 pr_debug("ODP support not available\n");
2224 return ERR_PTR(-EINVAL);
2225 }
2226 }
2227
2228 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2229 access_flags, NULL, NULL);
2230
2231 if (IS_ERR(mr))
2232 return mr;
2233
2234 mr->device = pd->device;
2235 mr->type = IB_MR_TYPE_USER;
2236 mr->pd = pd;
2237 mr->dm = NULL;
2238 atomic_inc(&pd->usecnt);
2239 mr->iova = virt_addr;
2240 mr->length = length;
2241
2242 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2243 rdma_restrack_parent_name(&mr->res, &pd->res);
2244 rdma_restrack_add(&mr->res);
2245
2246 return mr;
2247 }
2248 EXPORT_SYMBOL(ib_reg_user_mr);
2249
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2250 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2251 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2252 {
2253 if (!pd->device->ops.advise_mr)
2254 return -EOPNOTSUPP;
2255
2256 if (!num_sge)
2257 return 0;
2258
2259 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2260 NULL);
2261 }
2262 EXPORT_SYMBOL(ib_advise_mr);
2263
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2264 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2265 {
2266 struct ib_pd *pd = mr->pd;
2267 struct ib_dm *dm = mr->dm;
2268 struct ib_dmah *dmah = mr->dmah;
2269 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2270 int ret;
2271
2272 trace_mr_dereg(mr);
2273 rdma_restrack_del(&mr->res);
2274 ret = mr->device->ops.dereg_mr(mr, udata);
2275 if (!ret) {
2276 atomic_dec(&pd->usecnt);
2277 if (dm)
2278 atomic_dec(&dm->usecnt);
2279 if (dmah)
2280 atomic_dec(&dmah->usecnt);
2281 kfree(sig_attrs);
2282 }
2283
2284 return ret;
2285 }
2286 EXPORT_SYMBOL(ib_dereg_mr_user);
2287
2288 /**
2289 * ib_alloc_mr() - Allocates a memory region
2290 * @pd: protection domain associated with the region
2291 * @mr_type: memory region type
2292 * @max_num_sg: maximum sg entries available for registration.
2293 *
2294 * Notes:
2295 * Memory registeration page/sg lists must not exceed max_num_sg.
2296 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2297 * max_num_sg * used_page_size.
2298 *
2299 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2300 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2301 u32 max_num_sg)
2302 {
2303 struct ib_mr *mr;
2304
2305 if (!pd->device->ops.alloc_mr) {
2306 mr = ERR_PTR(-EOPNOTSUPP);
2307 goto out;
2308 }
2309
2310 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2311 WARN_ON_ONCE(1);
2312 mr = ERR_PTR(-EINVAL);
2313 goto out;
2314 }
2315
2316 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2317 if (IS_ERR(mr))
2318 goto out;
2319
2320 mr->device = pd->device;
2321 mr->pd = pd;
2322 mr->dm = NULL;
2323 mr->uobject = NULL;
2324 atomic_inc(&pd->usecnt);
2325 mr->need_inval = false;
2326 mr->type = mr_type;
2327 mr->sig_attrs = NULL;
2328
2329 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2330 rdma_restrack_parent_name(&mr->res, &pd->res);
2331 rdma_restrack_add(&mr->res);
2332 out:
2333 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2334 return mr;
2335 }
2336 EXPORT_SYMBOL(ib_alloc_mr);
2337
2338 /**
2339 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2340 * @pd: protection domain associated with the region
2341 * @max_num_data_sg: maximum data sg entries available for registration
2342 * @max_num_meta_sg: maximum metadata sg entries available for
2343 * registration
2344 *
2345 * Notes:
2346 * Memory registration page/sg lists must not exceed max_num_sg,
2347 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2348 *
2349 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2350 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2351 u32 max_num_data_sg,
2352 u32 max_num_meta_sg)
2353 {
2354 struct ib_mr *mr;
2355 struct ib_sig_attrs *sig_attrs;
2356
2357 if (!pd->device->ops.alloc_mr_integrity ||
2358 !pd->device->ops.map_mr_sg_pi) {
2359 mr = ERR_PTR(-EOPNOTSUPP);
2360 goto out;
2361 }
2362
2363 if (!max_num_meta_sg) {
2364 mr = ERR_PTR(-EINVAL);
2365 goto out;
2366 }
2367
2368 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2369 if (!sig_attrs) {
2370 mr = ERR_PTR(-ENOMEM);
2371 goto out;
2372 }
2373
2374 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2375 max_num_meta_sg);
2376 if (IS_ERR(mr)) {
2377 kfree(sig_attrs);
2378 goto out;
2379 }
2380
2381 mr->device = pd->device;
2382 mr->pd = pd;
2383 mr->dm = NULL;
2384 mr->uobject = NULL;
2385 atomic_inc(&pd->usecnt);
2386 mr->need_inval = false;
2387 mr->type = IB_MR_TYPE_INTEGRITY;
2388 mr->sig_attrs = sig_attrs;
2389
2390 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2391 rdma_restrack_parent_name(&mr->res, &pd->res);
2392 rdma_restrack_add(&mr->res);
2393 out:
2394 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2395 return mr;
2396 }
2397 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2398
2399 /* Multicast groups */
2400
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2401 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2402 {
2403 struct ib_qp_init_attr init_attr = {};
2404 struct ib_qp_attr attr = {};
2405 int num_eth_ports = 0;
2406 unsigned int port;
2407
2408 /* If QP state >= init, it is assigned to a port and we can check this
2409 * port only.
2410 */
2411 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2412 if (attr.qp_state >= IB_QPS_INIT) {
2413 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2414 IB_LINK_LAYER_INFINIBAND)
2415 return true;
2416 goto lid_check;
2417 }
2418 }
2419
2420 /* Can't get a quick answer, iterate over all ports */
2421 rdma_for_each_port(qp->device, port)
2422 if (rdma_port_get_link_layer(qp->device, port) !=
2423 IB_LINK_LAYER_INFINIBAND)
2424 num_eth_ports++;
2425
2426 /* If we have at lease one Ethernet port, RoCE annex declares that
2427 * multicast LID should be ignored. We can't tell at this step if the
2428 * QP belongs to an IB or Ethernet port.
2429 */
2430 if (num_eth_ports)
2431 return true;
2432
2433 /* If all the ports are IB, we can check according to IB spec. */
2434 lid_check:
2435 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2436 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2437 }
2438
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2439 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440 {
2441 int ret;
2442
2443 if (!qp->device->ops.attach_mcast)
2444 return -EOPNOTSUPP;
2445
2446 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448 return -EINVAL;
2449
2450 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2451 if (!ret)
2452 atomic_inc(&qp->usecnt);
2453 return ret;
2454 }
2455 EXPORT_SYMBOL(ib_attach_mcast);
2456
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2457 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2458 {
2459 int ret;
2460
2461 if (!qp->device->ops.detach_mcast)
2462 return -EOPNOTSUPP;
2463
2464 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2465 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2466 return -EINVAL;
2467
2468 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2469 if (!ret)
2470 atomic_dec(&qp->usecnt);
2471 return ret;
2472 }
2473 EXPORT_SYMBOL(ib_detach_mcast);
2474
2475 /**
2476 * ib_alloc_xrcd_user - Allocates an XRC domain.
2477 * @device: The device on which to allocate the XRC domain.
2478 * @inode: inode to connect XRCD
2479 * @udata: Valid user data or NULL for kernel object
2480 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2481 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2482 struct inode *inode, struct ib_udata *udata)
2483 {
2484 struct ib_xrcd *xrcd;
2485 int ret;
2486
2487 if (!device->ops.alloc_xrcd)
2488 return ERR_PTR(-EOPNOTSUPP);
2489
2490 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2491 if (!xrcd)
2492 return ERR_PTR(-ENOMEM);
2493
2494 xrcd->device = device;
2495 xrcd->inode = inode;
2496 atomic_set(&xrcd->usecnt, 0);
2497 init_rwsem(&xrcd->tgt_qps_rwsem);
2498 xa_init(&xrcd->tgt_qps);
2499
2500 ret = device->ops.alloc_xrcd(xrcd, udata);
2501 if (ret)
2502 goto err;
2503 return xrcd;
2504 err:
2505 kfree(xrcd);
2506 return ERR_PTR(ret);
2507 }
2508 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2509
2510 /**
2511 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2512 * @xrcd: The XRC domain to deallocate.
2513 * @udata: Valid user data or NULL for kernel object
2514 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2515 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2516 {
2517 int ret;
2518
2519 if (atomic_read(&xrcd->usecnt))
2520 return -EBUSY;
2521
2522 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2523 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2524 if (ret)
2525 return ret;
2526 kfree(xrcd);
2527 return ret;
2528 }
2529 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2530
2531 /**
2532 * ib_create_wq - Creates a WQ associated with the specified protection
2533 * domain.
2534 * @pd: The protection domain associated with the WQ.
2535 * @wq_attr: A list of initial attributes required to create the
2536 * WQ. If WQ creation succeeds, then the attributes are updated to
2537 * the actual capabilities of the created WQ.
2538 *
2539 * wq_attr->max_wr and wq_attr->max_sge determine
2540 * the requested size of the WQ, and set to the actual values allocated
2541 * on return.
2542 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2543 * at least as large as the requested values.
2544 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2545 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2546 struct ib_wq_init_attr *wq_attr)
2547 {
2548 struct ib_wq *wq;
2549
2550 if (!pd->device->ops.create_wq)
2551 return ERR_PTR(-EOPNOTSUPP);
2552
2553 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2554 if (!IS_ERR(wq)) {
2555 wq->event_handler = wq_attr->event_handler;
2556 wq->wq_context = wq_attr->wq_context;
2557 wq->wq_type = wq_attr->wq_type;
2558 wq->cq = wq_attr->cq;
2559 wq->device = pd->device;
2560 wq->pd = pd;
2561 wq->uobject = NULL;
2562 atomic_inc(&pd->usecnt);
2563 atomic_inc(&wq_attr->cq->usecnt);
2564 atomic_set(&wq->usecnt, 0);
2565 }
2566 return wq;
2567 }
2568 EXPORT_SYMBOL(ib_create_wq);
2569
2570 /**
2571 * ib_destroy_wq_user - Destroys the specified user WQ.
2572 * @wq: The WQ to destroy.
2573 * @udata: Valid user data
2574 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2575 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2576 {
2577 struct ib_cq *cq = wq->cq;
2578 struct ib_pd *pd = wq->pd;
2579 int ret;
2580
2581 if (atomic_read(&wq->usecnt))
2582 return -EBUSY;
2583
2584 ret = wq->device->ops.destroy_wq(wq, udata);
2585 if (ret)
2586 return ret;
2587
2588 atomic_dec(&pd->usecnt);
2589 atomic_dec(&cq->usecnt);
2590 return ret;
2591 }
2592 EXPORT_SYMBOL(ib_destroy_wq_user);
2593
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2594 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2595 struct ib_mr_status *mr_status)
2596 {
2597 if (!mr->device->ops.check_mr_status)
2598 return -EOPNOTSUPP;
2599
2600 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2601 }
2602 EXPORT_SYMBOL(ib_check_mr_status);
2603
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2604 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2605 int state)
2606 {
2607 if (!device->ops.set_vf_link_state)
2608 return -EOPNOTSUPP;
2609
2610 return device->ops.set_vf_link_state(device, vf, port, state);
2611 }
2612 EXPORT_SYMBOL(ib_set_vf_link_state);
2613
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2614 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2615 struct ifla_vf_info *info)
2616 {
2617 if (!device->ops.get_vf_config)
2618 return -EOPNOTSUPP;
2619
2620 return device->ops.get_vf_config(device, vf, port, info);
2621 }
2622 EXPORT_SYMBOL(ib_get_vf_config);
2623
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2624 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2625 struct ifla_vf_stats *stats)
2626 {
2627 if (!device->ops.get_vf_stats)
2628 return -EOPNOTSUPP;
2629
2630 return device->ops.get_vf_stats(device, vf, port, stats);
2631 }
2632 EXPORT_SYMBOL(ib_get_vf_stats);
2633
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2634 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2635 int type)
2636 {
2637 if (!device->ops.set_vf_guid)
2638 return -EOPNOTSUPP;
2639
2640 return device->ops.set_vf_guid(device, vf, port, guid, type);
2641 }
2642 EXPORT_SYMBOL(ib_set_vf_guid);
2643
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2644 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2645 struct ifla_vf_guid *node_guid,
2646 struct ifla_vf_guid *port_guid)
2647 {
2648 if (!device->ops.get_vf_guid)
2649 return -EOPNOTSUPP;
2650
2651 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2652 }
2653 EXPORT_SYMBOL(ib_get_vf_guid);
2654 /**
2655 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2656 * information) and set an appropriate memory region for registration.
2657 * @mr: memory region
2658 * @data_sg: dma mapped scatterlist for data
2659 * @data_sg_nents: number of entries in data_sg
2660 * @data_sg_offset: offset in bytes into data_sg
2661 * @meta_sg: dma mapped scatterlist for metadata
2662 * @meta_sg_nents: number of entries in meta_sg
2663 * @meta_sg_offset: offset in bytes into meta_sg
2664 * @page_size: page vector desired page size
2665 *
2666 * Constraints:
2667 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2668 *
2669 * Return: 0 on success.
2670 *
2671 * After this completes successfully, the memory region
2672 * is ready for registration.
2673 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2674 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2675 int data_sg_nents, unsigned int *data_sg_offset,
2676 struct scatterlist *meta_sg, int meta_sg_nents,
2677 unsigned int *meta_sg_offset, unsigned int page_size)
2678 {
2679 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2680 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2681 return -EOPNOTSUPP;
2682
2683 mr->page_size = page_size;
2684
2685 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2686 data_sg_offset, meta_sg,
2687 meta_sg_nents, meta_sg_offset);
2688 }
2689 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2690
2691 /**
2692 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2693 * and set it the memory region.
2694 * @mr: memory region
2695 * @sg: dma mapped scatterlist
2696 * @sg_nents: number of entries in sg
2697 * @sg_offset: offset in bytes into sg
2698 * @page_size: page vector desired page size
2699 *
2700 * Constraints:
2701 *
2702 * - The first sg element is allowed to have an offset.
2703 * - Each sg element must either be aligned to page_size or virtually
2704 * contiguous to the previous element. In case an sg element has a
2705 * non-contiguous offset, the mapping prefix will not include it.
2706 * - The last sg element is allowed to have length less than page_size.
2707 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2708 * then only max_num_sg entries will be mapped.
2709 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2710 * constraints holds and the page_size argument is ignored.
2711 *
2712 * Returns the number of sg elements that were mapped to the memory region.
2713 *
2714 * After this completes successfully, the memory region
2715 * is ready for registration.
2716 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2717 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2718 unsigned int *sg_offset, unsigned int page_size)
2719 {
2720 if (unlikely(!mr->device->ops.map_mr_sg))
2721 return -EOPNOTSUPP;
2722
2723 mr->page_size = page_size;
2724
2725 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2726 }
2727 EXPORT_SYMBOL(ib_map_mr_sg);
2728
2729 /**
2730 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2731 * to a page vector
2732 * @mr: memory region
2733 * @sgl: dma mapped scatterlist
2734 * @sg_nents: number of entries in sg
2735 * @sg_offset_p: ==== =======================================================
2736 * IN start offset in bytes into sg
2737 * OUT offset in bytes for element n of the sg of the first
2738 * byte that has not been processed where n is the return
2739 * value of this function.
2740 * ==== =======================================================
2741 * @set_page: driver page assignment function pointer
2742 *
2743 * Core service helper for drivers to convert the largest
2744 * prefix of given sg list to a page vector. The sg list
2745 * prefix converted is the prefix that meet the requirements
2746 * of ib_map_mr_sg.
2747 *
2748 * Returns the number of sg elements that were assigned to
2749 * a page vector.
2750 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2751 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2752 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2753 {
2754 struct scatterlist *sg;
2755 u64 last_end_dma_addr = 0;
2756 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2757 unsigned int last_page_off = 0;
2758 u64 page_mask = ~((u64)mr->page_size - 1);
2759 int i, ret;
2760
2761 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2762 return -EINVAL;
2763
2764 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2765 mr->length = 0;
2766
2767 for_each_sg(sgl, sg, sg_nents, i) {
2768 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2769 u64 prev_addr = dma_addr;
2770 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2771 u64 end_dma_addr = dma_addr + dma_len;
2772 u64 page_addr = dma_addr & page_mask;
2773
2774 /*
2775 * For the second and later elements, check whether either the
2776 * end of element i-1 or the start of element i is not aligned
2777 * on a page boundary.
2778 */
2779 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2780 /* Stop mapping if there is a gap. */
2781 if (last_end_dma_addr != dma_addr)
2782 break;
2783
2784 /*
2785 * Coalesce this element with the last. If it is small
2786 * enough just update mr->length. Otherwise start
2787 * mapping from the next page.
2788 */
2789 goto next_page;
2790 }
2791
2792 do {
2793 ret = set_page(mr, page_addr);
2794 if (unlikely(ret < 0)) {
2795 sg_offset = prev_addr - sg_dma_address(sg);
2796 mr->length += prev_addr - dma_addr;
2797 if (sg_offset_p)
2798 *sg_offset_p = sg_offset;
2799 return i || sg_offset ? i : ret;
2800 }
2801 prev_addr = page_addr;
2802 next_page:
2803 page_addr += mr->page_size;
2804 } while (page_addr < end_dma_addr);
2805
2806 mr->length += dma_len;
2807 last_end_dma_addr = end_dma_addr;
2808 last_page_off = end_dma_addr & ~page_mask;
2809
2810 sg_offset = 0;
2811 }
2812
2813 if (sg_offset_p)
2814 *sg_offset_p = 0;
2815 return i;
2816 }
2817 EXPORT_SYMBOL(ib_sg_to_pages);
2818
2819 struct ib_drain_cqe {
2820 struct ib_cqe cqe;
2821 struct completion done;
2822 };
2823
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2824 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2825 {
2826 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2827 cqe);
2828
2829 complete(&cqe->done);
2830 }
2831
2832 /*
2833 * Post a WR and block until its completion is reaped for the SQ.
2834 */
__ib_drain_sq(struct ib_qp * qp)2835 static void __ib_drain_sq(struct ib_qp *qp)
2836 {
2837 struct ib_cq *cq = qp->send_cq;
2838 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2839 struct ib_drain_cqe sdrain;
2840 struct ib_rdma_wr swr = {
2841 .wr = {
2842 .next = NULL,
2843 { .wr_cqe = &sdrain.cqe, },
2844 .opcode = IB_WR_RDMA_WRITE,
2845 },
2846 };
2847 int ret;
2848
2849 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2850 if (ret) {
2851 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2852 return;
2853 }
2854
2855 sdrain.cqe.done = ib_drain_qp_done;
2856 init_completion(&sdrain.done);
2857
2858 ret = ib_post_send(qp, &swr.wr, NULL);
2859 if (ret) {
2860 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2861 return;
2862 }
2863
2864 if (cq->poll_ctx == IB_POLL_DIRECT)
2865 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2866 ib_process_cq_direct(cq, -1);
2867 else
2868 wait_for_completion(&sdrain.done);
2869 }
2870
2871 /*
2872 * Post a WR and block until its completion is reaped for the RQ.
2873 */
__ib_drain_rq(struct ib_qp * qp)2874 static void __ib_drain_rq(struct ib_qp *qp)
2875 {
2876 struct ib_cq *cq = qp->recv_cq;
2877 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2878 struct ib_drain_cqe rdrain;
2879 struct ib_recv_wr rwr = {};
2880 int ret;
2881
2882 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2883 if (ret) {
2884 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2885 return;
2886 }
2887
2888 rwr.wr_cqe = &rdrain.cqe;
2889 rdrain.cqe.done = ib_drain_qp_done;
2890 init_completion(&rdrain.done);
2891
2892 ret = ib_post_recv(qp, &rwr, NULL);
2893 if (ret) {
2894 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2895 return;
2896 }
2897
2898 if (cq->poll_ctx == IB_POLL_DIRECT)
2899 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2900 ib_process_cq_direct(cq, -1);
2901 else
2902 wait_for_completion(&rdrain.done);
2903 }
2904
2905 /*
2906 * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2907 * expires.
2908 * @qp: queue pair associated with SRQ to drain
2909 *
2910 * Quoting 10.3.1 Queue Pair and EE Context States:
2911 *
2912 * Note, for QPs that are associated with an SRQ, the Consumer should take the
2913 * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2914 * Reset State. The Consumer may invoke the Destroy QP without first performing
2915 * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2916 * Last WQE Reached Event. However, if the Consumer does not wait for the
2917 * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2918 * leakage may occur. Therefore, it is good programming practice to tear down a
2919 * QP that is associated with an SRQ by using the following process:
2920 *
2921 * - Put the QP in the Error State
2922 * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2923 * - either:
2924 * drain the CQ by invoking the Poll CQ verb and either wait for CQ
2925 * to be empty or the number of Poll CQ operations has exceeded
2926 * CQ capacity size;
2927 * - or
2928 * post another WR that completes on the same CQ and wait for this
2929 * WR to return as a WC;
2930 * - and then invoke a Destroy QP or Reset QP.
2931 *
2932 * We use the first option.
2933 */
__ib_drain_srq(struct ib_qp * qp)2934 static void __ib_drain_srq(struct ib_qp *qp)
2935 {
2936 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2937 struct ib_cq *cq;
2938 int n, polled = 0;
2939 int ret;
2940
2941 if (!qp->srq) {
2942 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2943 return;
2944 }
2945
2946 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2947 if (ret) {
2948 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
2949 return;
2950 }
2951
2952 if (ib_srq_has_cq(qp->srq->srq_type)) {
2953 cq = qp->srq->ext.cq;
2954 } else if (qp->recv_cq) {
2955 cq = qp->recv_cq;
2956 } else {
2957 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
2958 return;
2959 }
2960
2961 if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
2962 while (polled != cq->cqe) {
2963 n = ib_process_cq_direct(cq, cq->cqe - polled);
2964 if (!n)
2965 return;
2966 polled += n;
2967 }
2968 }
2969 }
2970
2971 /**
2972 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2973 * application.
2974 * @qp: queue pair to drain
2975 *
2976 * If the device has a provider-specific drain function, then
2977 * call that. Otherwise call the generic drain function
2978 * __ib_drain_sq().
2979 *
2980 * The caller must:
2981 *
2982 * ensure there is room in the CQ and SQ for the drain work request and
2983 * completion.
2984 *
2985 * allocate the CQ using ib_alloc_cq().
2986 *
2987 * ensure that there are no other contexts that are posting WRs concurrently.
2988 * Otherwise the drain is not guaranteed.
2989 */
ib_drain_sq(struct ib_qp * qp)2990 void ib_drain_sq(struct ib_qp *qp)
2991 {
2992 if (qp->device->ops.drain_sq)
2993 qp->device->ops.drain_sq(qp);
2994 else
2995 __ib_drain_sq(qp);
2996 trace_cq_drain_complete(qp->send_cq);
2997 }
2998 EXPORT_SYMBOL(ib_drain_sq);
2999
3000 /**
3001 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
3002 * application.
3003 * @qp: queue pair to drain
3004 *
3005 * If the device has a provider-specific drain function, then
3006 * call that. Otherwise call the generic drain function
3007 * __ib_drain_rq().
3008 *
3009 * The caller must:
3010 *
3011 * ensure there is room in the CQ and RQ for the drain work request and
3012 * completion.
3013 *
3014 * allocate the CQ using ib_alloc_cq().
3015 *
3016 * ensure that there are no other contexts that are posting WRs concurrently.
3017 * Otherwise the drain is not guaranteed.
3018 */
ib_drain_rq(struct ib_qp * qp)3019 void ib_drain_rq(struct ib_qp *qp)
3020 {
3021 if (qp->device->ops.drain_rq)
3022 qp->device->ops.drain_rq(qp);
3023 else
3024 __ib_drain_rq(qp);
3025 trace_cq_drain_complete(qp->recv_cq);
3026 }
3027 EXPORT_SYMBOL(ib_drain_rq);
3028
3029 /**
3030 * ib_drain_qp() - Block until all CQEs have been consumed by the
3031 * application on both the RQ and SQ.
3032 * @qp: queue pair to drain
3033 *
3034 * The caller must:
3035 *
3036 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3037 * and completions.
3038 *
3039 * allocate the CQs using ib_alloc_cq().
3040 *
3041 * ensure that there are no other contexts that are posting WRs concurrently.
3042 * Otherwise the drain is not guaranteed.
3043 */
ib_drain_qp(struct ib_qp * qp)3044 void ib_drain_qp(struct ib_qp *qp)
3045 {
3046 ib_drain_sq(qp);
3047 if (!qp->srq)
3048 ib_drain_rq(qp);
3049 else
3050 __ib_drain_srq(qp);
3051 }
3052 EXPORT_SYMBOL(ib_drain_qp);
3053
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))3054 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3055 enum rdma_netdev_t type, const char *name,
3056 unsigned char name_assign_type,
3057 void (*setup)(struct net_device *))
3058 {
3059 struct rdma_netdev_alloc_params params;
3060 struct net_device *netdev;
3061 int rc;
3062
3063 if (!device->ops.rdma_netdev_get_params)
3064 return ERR_PTR(-EOPNOTSUPP);
3065
3066 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3067 ¶ms);
3068 if (rc)
3069 return ERR_PTR(rc);
3070
3071 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3072 setup, params.txqs, params.rxqs);
3073 if (!netdev)
3074 return ERR_PTR(-ENOMEM);
3075
3076 return netdev;
3077 }
3078 EXPORT_SYMBOL(rdma_alloc_netdev);
3079
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)3080 int rdma_init_netdev(struct ib_device *device, u32 port_num,
3081 enum rdma_netdev_t type, const char *name,
3082 unsigned char name_assign_type,
3083 void (*setup)(struct net_device *),
3084 struct net_device *netdev)
3085 {
3086 struct rdma_netdev_alloc_params params;
3087 int rc;
3088
3089 if (!device->ops.rdma_netdev_get_params)
3090 return -EOPNOTSUPP;
3091
3092 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3093 ¶ms);
3094 if (rc)
3095 return rc;
3096
3097 return params.initialize_rdma_netdev(device, port_num,
3098 netdev, params.param);
3099 }
3100 EXPORT_SYMBOL(rdma_init_netdev);
3101
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)3102 void __rdma_block_iter_start(struct ib_block_iter *biter,
3103 struct scatterlist *sglist, unsigned int nents,
3104 unsigned long pgsz)
3105 {
3106 memset(biter, 0, sizeof(struct ib_block_iter));
3107 biter->__sg = sglist;
3108 biter->__sg_nents = nents;
3109
3110 /* Driver provides best block size to use */
3111 biter->__pg_bit = __fls(pgsz);
3112 }
3113 EXPORT_SYMBOL(__rdma_block_iter_start);
3114
__rdma_block_iter_next(struct ib_block_iter * biter)3115 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3116 {
3117 unsigned int block_offset;
3118 unsigned int delta;
3119
3120 if (!biter->__sg_nents || !biter->__sg)
3121 return false;
3122
3123 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3124 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3125 delta = BIT_ULL(biter->__pg_bit) - block_offset;
3126
3127 while (biter->__sg_nents && biter->__sg &&
3128 sg_dma_len(biter->__sg) - biter->__sg_advance <= delta) {
3129 delta -= sg_dma_len(biter->__sg) - biter->__sg_advance;
3130 biter->__sg_advance = 0;
3131 biter->__sg = sg_next(biter->__sg);
3132 biter->__sg_nents--;
3133 }
3134 biter->__sg_advance += delta;
3135
3136 return true;
3137 }
3138 EXPORT_SYMBOL(__rdma_block_iter_next);
3139
3140 /**
3141 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3142 * for the drivers.
3143 * @descs: array of static descriptors
3144 * @num_counters: number of elements in array
3145 * @lifespan: milliseconds between updates
3146 */
rdma_alloc_hw_stats_struct(const struct rdma_stat_desc * descs,int num_counters,unsigned long lifespan)3147 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3148 const struct rdma_stat_desc *descs, int num_counters,
3149 unsigned long lifespan)
3150 {
3151 struct rdma_hw_stats *stats;
3152
3153 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3154 if (!stats)
3155 return NULL;
3156
3157 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3158 sizeof(*stats->is_disabled), GFP_KERNEL);
3159 if (!stats->is_disabled)
3160 goto err;
3161
3162 stats->descs = descs;
3163 stats->num_counters = num_counters;
3164 stats->lifespan = msecs_to_jiffies(lifespan);
3165 mutex_init(&stats->lock);
3166
3167 return stats;
3168
3169 err:
3170 kfree(stats);
3171 return NULL;
3172 }
3173 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3174
3175 /**
3176 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3177 * @stats: statistics to release
3178 */
rdma_free_hw_stats_struct(struct rdma_hw_stats * stats)3179 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3180 {
3181 if (!stats)
3182 return;
3183
3184 kfree(stats->is_disabled);
3185 kfree(stats);
3186 }
3187 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3188