1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Syncookies implementation for the Linux kernel
4 *
5 * Copyright (C) 1997 Andi Kleen
6 * Based on ideas by D.J.Bernstein and Eric Schenk.
7 */
8
9 #include <linux/tcp.h>
10 #include <linux/siphash.h>
11 #include <linux/kernel.h>
12 #include <linux/export.h>
13 #include <net/secure_seq.h>
14 #include <net/tcp.h>
15 #include <net/route.h>
16
17 static siphash_aligned_key_t syncookie_secret[2];
18
19 #define COOKIEBITS 24 /* Upper bits store count */
20 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
21
22 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
23 * stores TCP options:
24 *
25 * MSB LSB
26 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
27 * | Timestamp | ECN | SACK | WScale |
28 *
29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
30 * any) to figure out which TCP options we should use for the rebuilt
31 * connection.
32 *
33 * A WScale setting of '0xf' (which is an invalid scaling value)
34 * means that original syn did not include the TCP window scaling option.
35 */
36 #define TS_OPT_WSCALE_MASK 0xf
37 #define TS_OPT_SACK BIT(4)
38 #define TS_OPT_ECN BIT(5)
39 /* There is no TS_OPT_TIMESTAMP:
40 * if ACK contains timestamp option, we already know it was
41 * requested/supported by the syn/synack exchange.
42 */
43 #define TSBITS 6
44
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)45 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
46 u32 count, int c)
47 {
48 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
49 return siphash_4u32((__force u32)saddr, (__force u32)daddr,
50 (__force u32)sport << 16 | (__force u32)dport,
51 count, &syncookie_secret[c]);
52 }
53
54 /*
55 * when syncookies are in effect and tcp timestamps are enabled we encode
56 * tcp options in the lower bits of the timestamp value that will be
57 * sent in the syn-ack.
58 * Since subsequent timestamps use the normal tcp_time_stamp value, we
59 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
60 */
cookie_init_timestamp(struct request_sock * req,u64 now)61 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
62 {
63 const struct inet_request_sock *ireq = inet_rsk(req);
64 u64 ts, ts_now = tcp_ns_to_ts(false, now);
65 u32 options = 0;
66
67 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
68 if (ireq->sack_ok)
69 options |= TS_OPT_SACK;
70 if (ireq->ecn_ok)
71 options |= TS_OPT_ECN;
72
73 ts = (ts_now >> TSBITS) << TSBITS;
74 ts |= options;
75 if (ts > ts_now)
76 ts -= (1UL << TSBITS);
77
78 if (tcp_rsk(req)->req_usec_ts)
79 return ts * NSEC_PER_USEC;
80 return ts * NSEC_PER_MSEC;
81 }
82
83
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)84 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
85 __be16 dport, __u32 sseq, __u32 data)
86 {
87 /*
88 * Compute the secure sequence number.
89 * The output should be:
90 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
91 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
92 * Where sseq is their sequence number and count increases every
93 * minute by 1.
94 * As an extra hack, we add a small "data" value that encodes the
95 * MSS into the second hash value.
96 */
97 u32 count = tcp_cookie_time();
98 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
99 sseq + (count << COOKIEBITS) +
100 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
101 & COOKIEMASK));
102 }
103
104 /*
105 * This retrieves the small "data" value from the syncookie.
106 * If the syncookie is bad, the data returned will be out of
107 * range. This must be checked by the caller.
108 *
109 * The count value used to generate the cookie must be less than
110 * MAX_SYNCOOKIE_AGE minutes in the past.
111 * The return value (__u32)-1 if this test fails.
112 */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)113 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
114 __be16 sport, __be16 dport, __u32 sseq)
115 {
116 u32 diff, count = tcp_cookie_time();
117
118 /* Strip away the layers from the cookie */
119 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
120
121 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
122 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
123 if (diff >= MAX_SYNCOOKIE_AGE)
124 return (__u32)-1;
125
126 return (cookie -
127 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
128 & COOKIEMASK; /* Leaving the data behind */
129 }
130
131 /*
132 * MSS Values are chosen based on the 2011 paper
133 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
134 * Values ..
135 * .. lower than 536 are rare (< 0.2%)
136 * .. between 537 and 1299 account for less than < 1.5% of observed values
137 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
138 * .. exceeding 1460 are very rare (< 0.04%)
139 *
140 * 1460 is the single most frequently announced mss value (30 to 46% depending
141 * on monitor location). Table must be sorted.
142 */
143 static __u16 const msstab[] = {
144 536,
145 1300,
146 1440, /* 1440, 1452: PPPoE */
147 1460,
148 };
149
150 /*
151 * Generate a syncookie. mssp points to the mss, which is returned
152 * rounded down to the value encoded in the cookie.
153 */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)154 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
155 u16 *mssp)
156 {
157 int mssind;
158 const __u16 mss = *mssp;
159
160 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
161 if (mss >= msstab[mssind])
162 break;
163 *mssp = msstab[mssind];
164
165 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
166 th->source, th->dest, ntohl(th->seq),
167 mssind);
168 }
169 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
170
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)171 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
172 {
173 const struct iphdr *iph = ip_hdr(skb);
174 const struct tcphdr *th = tcp_hdr(skb);
175
176 return __cookie_v4_init_sequence(iph, th, mssp);
177 }
178
179 /*
180 * Check if a ack sequence number is a valid syncookie.
181 * Return the decoded mss if it is, or 0 if not.
182 */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th)183 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th)
184 {
185 __u32 cookie = ntohl(th->ack_seq) - 1;
186 __u32 seq = ntohl(th->seq) - 1;
187 __u32 mssind;
188
189 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
190 th->source, th->dest, seq);
191
192 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
193 }
194 EXPORT_SYMBOL_GPL(__cookie_v4_check);
195
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst)196 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
197 struct request_sock *req,
198 struct dst_entry *dst)
199 {
200 struct inet_connection_sock *icsk = inet_csk(sk);
201 struct sock *child;
202 bool own_req;
203
204 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
205 NULL, &own_req);
206 if (child) {
207 refcount_set(&req->rsk_refcnt, 1);
208 sock_rps_save_rxhash(child, skb);
209
210 if (rsk_drop_req(req)) {
211 reqsk_put(req);
212 return child;
213 }
214
215 if (inet_csk_reqsk_queue_add(sk, req, child))
216 return child;
217
218 bh_unlock_sock(child);
219 sock_put(child);
220 }
221 __reqsk_free(req);
222
223 return NULL;
224 }
225 EXPORT_IPV6_MOD(tcp_get_cookie_sock);
226
227 /*
228 * when syncookies are in effect and tcp timestamps are enabled we stored
229 * additional tcp options in the timestamp.
230 * This extracts these options from the timestamp echo.
231 *
232 * return false if we decode a tcp option that is disabled
233 * on the host.
234 */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)235 bool cookie_timestamp_decode(const struct net *net,
236 struct tcp_options_received *tcp_opt)
237 {
238 /* echoed timestamp, lowest bits contain options */
239 u32 options = tcp_opt->rcv_tsecr;
240
241 if (!tcp_opt->saw_tstamp) {
242 tcp_clear_options(tcp_opt);
243 return true;
244 }
245
246 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
247 return false;
248
249 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250
251 if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
252 return false;
253
254 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255 return true; /* no window scaling */
256
257 tcp_opt->wscale_ok = 1;
258 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259
260 return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
261 }
262 EXPORT_IPV6_MOD(cookie_timestamp_decode);
263
cookie_tcp_reqsk_init(struct sock * sk,struct sk_buff * skb,struct request_sock * req)264 static int cookie_tcp_reqsk_init(struct sock *sk, struct sk_buff *skb,
265 struct request_sock *req)
266 {
267 struct inet_request_sock *ireq = inet_rsk(req);
268 struct tcp_request_sock *treq = tcp_rsk(req);
269 const struct tcphdr *th = tcp_hdr(skb);
270
271 req->num_retrans = 0;
272
273 ireq->ir_num = ntohs(th->dest);
274 ireq->ir_rmt_port = th->source;
275 ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
276 ireq->ir_mark = inet_request_mark(sk, skb);
277
278 if (IS_ENABLED(CONFIG_SMC))
279 ireq->smc_ok = 0;
280
281 treq->snt_synack = 0;
282 treq->snt_tsval_first = 0;
283 treq->tfo_listener = false;
284 treq->txhash = net_tx_rndhash();
285 treq->rcv_isn = ntohl(th->seq) - 1;
286 treq->snt_isn = ntohl(th->ack_seq) - 1;
287 treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
288 treq->req_usec_ts = false;
289
290 #if IS_ENABLED(CONFIG_MPTCP)
291 treq->is_mptcp = sk_is_mptcp(sk);
292 if (treq->is_mptcp)
293 return mptcp_subflow_init_cookie_req(req, sk, skb);
294 #endif
295
296 return 0;
297 }
298
299 #if IS_ENABLED(CONFIG_BPF)
cookie_bpf_check(struct sock * sk,struct sk_buff * skb)300 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb)
301 {
302 struct request_sock *req = inet_reqsk(skb->sk);
303
304 skb->sk = NULL;
305 skb->destructor = NULL;
306
307 if (cookie_tcp_reqsk_init(sk, skb, req)) {
308 reqsk_free(req);
309 req = NULL;
310 }
311
312 return req;
313 }
314 EXPORT_IPV6_MOD_GPL(cookie_bpf_check);
315 #endif
316
cookie_tcp_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk,struct sk_buff * skb,struct tcp_options_received * tcp_opt,int mss,u32 tsoff)317 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
318 struct sock *sk, struct sk_buff *skb,
319 struct tcp_options_received *tcp_opt,
320 int mss, u32 tsoff)
321 {
322 struct inet_request_sock *ireq;
323 struct tcp_request_sock *treq;
324 struct request_sock *req;
325
326 if (sk_is_mptcp(sk))
327 req = mptcp_subflow_reqsk_alloc(ops, sk, false);
328 else
329 req = inet_reqsk_alloc(ops, sk, false);
330
331 if (!req)
332 return NULL;
333
334 if (cookie_tcp_reqsk_init(sk, skb, req)) {
335 reqsk_free(req);
336 return NULL;
337 }
338
339 ireq = inet_rsk(req);
340 treq = tcp_rsk(req);
341
342 req->mss = mss;
343 req->ts_recent = tcp_opt->saw_tstamp ? tcp_opt->rcv_tsval : 0;
344
345 ireq->snd_wscale = tcp_opt->snd_wscale;
346 ireq->tstamp_ok = tcp_opt->saw_tstamp;
347 ireq->sack_ok = tcp_opt->sack_ok;
348 ireq->wscale_ok = tcp_opt->wscale_ok;
349 ireq->ecn_ok = !!(tcp_opt->rcv_tsecr & TS_OPT_ECN);
350
351 treq->ts_off = tsoff;
352
353 return req;
354 }
355 EXPORT_IPV6_MOD_GPL(cookie_tcp_reqsk_alloc);
356
cookie_tcp_check(struct net * net,struct sock * sk,struct sk_buff * skb)357 static struct request_sock *cookie_tcp_check(struct net *net, struct sock *sk,
358 struct sk_buff *skb)
359 {
360 struct tcp_options_received tcp_opt;
361 u32 tsoff = 0;
362 int mss;
363
364 if (tcp_synq_no_recent_overflow(sk))
365 goto out;
366
367 mss = __cookie_v4_check(ip_hdr(skb), tcp_hdr(skb));
368 if (!mss) {
369 __NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESFAILED);
370 goto out;
371 }
372
373 __NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESRECV);
374
375 /* check for timestamp cookie support */
376 memset(&tcp_opt, 0, sizeof(tcp_opt));
377 tcp_parse_options(net, skb, &tcp_opt, 0, NULL);
378
379 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
380 tsoff = secure_tcp_ts_off(net,
381 ip_hdr(skb)->daddr,
382 ip_hdr(skb)->saddr);
383 tcp_opt.rcv_tsecr -= tsoff;
384 }
385
386 if (!cookie_timestamp_decode(net, &tcp_opt))
387 goto out;
388
389 return cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb,
390 &tcp_opt, mss, tsoff);
391 out:
392 return ERR_PTR(-EINVAL);
393 }
394
395 /* On input, sk is a listener.
396 * Output is listener if incoming packet would not create a child
397 * NULL if memory could not be allocated.
398 */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)399 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
400 {
401 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
402 const struct tcphdr *th = tcp_hdr(skb);
403 struct tcp_sock *tp = tcp_sk(sk);
404 struct inet_request_sock *ireq;
405 struct net *net = sock_net(sk);
406 struct request_sock *req;
407 struct sock *ret = sk;
408 struct flowi4 fl4;
409 struct rtable *rt;
410 __u8 rcv_wscale;
411 int full_space;
412 SKB_DR(reason);
413
414 if (!READ_ONCE(net->ipv4.sysctl_tcp_syncookies) ||
415 !th->ack || th->rst)
416 goto out;
417
418 if (cookie_bpf_ok(skb)) {
419 req = cookie_bpf_check(sk, skb);
420 } else {
421 req = cookie_tcp_check(net, sk, skb);
422 if (IS_ERR(req))
423 goto out;
424 }
425 if (!req) {
426 SKB_DR_SET(reason, NO_SOCKET);
427 goto out_drop;
428 }
429
430 ireq = inet_rsk(req);
431
432 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
433 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
434
435 /* We throwed the options of the initial SYN away, so we hope
436 * the ACK carries the same options again (see RFC1122 4.2.3.8)
437 */
438 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
439
440 if (security_inet_conn_request(sk, skb, req)) {
441 SKB_DR_SET(reason, SECURITY_HOOK);
442 goto out_free;
443 }
444
445 tcp_ao_syncookie(sk, skb, req, AF_INET);
446
447 /*
448 * We need to lookup the route here to get at the correct
449 * window size. We should better make sure that the window size
450 * hasn't changed since we received the original syn, but I see
451 * no easy way to do this.
452 */
453 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
454 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
455 IPPROTO_TCP, inet_sk_flowi_flags(sk),
456 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
457 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
458 security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
459 rt = ip_route_output_key(net, &fl4);
460 if (IS_ERR(rt)) {
461 SKB_DR_SET(reason, IP_OUTNOROUTES);
462 goto out_free;
463 }
464
465 /* Try to redo what tcp_v4_send_synack did. */
466 req->rsk_window_clamp = READ_ONCE(tp->window_clamp) ? :
467 dst_metric(&rt->dst, RTAX_WINDOW);
468 /* limit the window selection if the user enforce a smaller rx buffer */
469 full_space = tcp_full_space(sk);
470 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
471 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
472 req->rsk_window_clamp = full_space;
473
474 tcp_select_initial_window(sk, full_space, req->mss,
475 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
476 ireq->wscale_ok, &rcv_wscale,
477 dst_metric(&rt->dst, RTAX_INITRWND));
478
479 /* req->syncookie is set true only if ACK is validated
480 * by BPF kfunc, then, rcv_wscale is already configured.
481 */
482 if (!req->syncookie)
483 ireq->rcv_wscale = rcv_wscale;
484 ireq->ecn_ok &= cookie_ecn_ok(net, &rt->dst);
485
486 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
487 /* ip_queue_xmit() depends on our flow being setup
488 * Normal sockets get it right from inet_csk_route_child_sock()
489 */
490 if (!ret) {
491 SKB_DR_SET(reason, NO_SOCKET);
492 goto out_drop;
493 }
494 inet_sk(ret)->cork.fl.u.ip4 = fl4;
495 out:
496 return ret;
497 out_free:
498 reqsk_free(req);
499 out_drop:
500 sk_skb_reason_drop(sk, skb, reason);
501 return NULL;
502 }
503