xref: /linux/include/linux/gfp_types.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_GFP_TYPES_H
3 #define __LINUX_GFP_TYPES_H
4 
5 #include <linux/bits.h>
6 
7 /* The typedef is in types.h but we want the documentation here */
8 #if 0
9 /**
10  * typedef gfp_t - Memory allocation flags.
11  *
12  * GFP flags are commonly used throughout Linux to indicate how memory
13  * should be allocated.  The GFP acronym stands for get_free_pages(),
14  * the underlying memory allocation function.  Not every GFP flag is
15  * supported by every function which may allocate memory.  Most users
16  * will want to use a plain ``GFP_KERNEL``.
17  */
18 typedef unsigned int __bitwise gfp_t;
19 #endif
20 
21 /*
22  * In case of changes, please don't forget to update
23  * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
24  */
25 
26 enum {
27 	___GFP_DMA_BIT,
28 	___GFP_HIGHMEM_BIT,
29 	___GFP_DMA32_BIT,
30 	___GFP_MOVABLE_BIT,
31 	___GFP_RECLAIMABLE_BIT,
32 	___GFP_HIGH_BIT,
33 	___GFP_IO_BIT,
34 	___GFP_FS_BIT,
35 	___GFP_ZERO_BIT,
36 	___GFP_UNUSED_BIT,	/* 0x200u unused */
37 	___GFP_DIRECT_RECLAIM_BIT,
38 	___GFP_KSWAPD_RECLAIM_BIT,
39 	___GFP_WRITE_BIT,
40 	___GFP_NOWARN_BIT,
41 	___GFP_RETRY_MAYFAIL_BIT,
42 	___GFP_NOFAIL_BIT,
43 	___GFP_NORETRY_BIT,
44 	___GFP_MEMALLOC_BIT,
45 	___GFP_COMP_BIT,
46 	___GFP_NOMEMALLOC_BIT,
47 	___GFP_HARDWALL_BIT,
48 	___GFP_THISNODE_BIT,
49 	___GFP_ACCOUNT_BIT,
50 	___GFP_ZEROTAGS_BIT,
51 #ifdef CONFIG_KASAN_HW_TAGS
52 	___GFP_SKIP_ZERO_BIT,
53 	___GFP_SKIP_KASAN_BIT,
54 #endif
55 #ifdef CONFIG_LOCKDEP
56 	___GFP_NOLOCKDEP_BIT,
57 #endif
58 #ifdef CONFIG_SLAB_OBJ_EXT
59 	___GFP_NO_OBJ_EXT_BIT,
60 #endif
61 	___GFP_LAST_BIT
62 };
63 
64 /* Plain integer GFP bitmasks. Do not use this directly. */
65 #define ___GFP_DMA		BIT(___GFP_DMA_BIT)
66 #define ___GFP_HIGHMEM		BIT(___GFP_HIGHMEM_BIT)
67 #define ___GFP_DMA32		BIT(___GFP_DMA32_BIT)
68 #define ___GFP_MOVABLE		BIT(___GFP_MOVABLE_BIT)
69 #define ___GFP_RECLAIMABLE	BIT(___GFP_RECLAIMABLE_BIT)
70 #define ___GFP_HIGH		BIT(___GFP_HIGH_BIT)
71 #define ___GFP_IO		BIT(___GFP_IO_BIT)
72 #define ___GFP_FS		BIT(___GFP_FS_BIT)
73 #define ___GFP_ZERO		BIT(___GFP_ZERO_BIT)
74 /* 0x200u unused */
75 #define ___GFP_DIRECT_RECLAIM	BIT(___GFP_DIRECT_RECLAIM_BIT)
76 #define ___GFP_KSWAPD_RECLAIM	BIT(___GFP_KSWAPD_RECLAIM_BIT)
77 #define ___GFP_WRITE		BIT(___GFP_WRITE_BIT)
78 #define ___GFP_NOWARN		BIT(___GFP_NOWARN_BIT)
79 #define ___GFP_RETRY_MAYFAIL	BIT(___GFP_RETRY_MAYFAIL_BIT)
80 #define ___GFP_NOFAIL		BIT(___GFP_NOFAIL_BIT)
81 #define ___GFP_NORETRY		BIT(___GFP_NORETRY_BIT)
82 #define ___GFP_MEMALLOC		BIT(___GFP_MEMALLOC_BIT)
83 #define ___GFP_COMP		BIT(___GFP_COMP_BIT)
84 #define ___GFP_NOMEMALLOC	BIT(___GFP_NOMEMALLOC_BIT)
85 #define ___GFP_HARDWALL		BIT(___GFP_HARDWALL_BIT)
86 #define ___GFP_THISNODE		BIT(___GFP_THISNODE_BIT)
87 #define ___GFP_ACCOUNT		BIT(___GFP_ACCOUNT_BIT)
88 #define ___GFP_ZEROTAGS		BIT(___GFP_ZEROTAGS_BIT)
89 #ifdef CONFIG_KASAN_HW_TAGS
90 #define ___GFP_SKIP_ZERO	BIT(___GFP_SKIP_ZERO_BIT)
91 #define ___GFP_SKIP_KASAN	BIT(___GFP_SKIP_KASAN_BIT)
92 #else
93 #define ___GFP_SKIP_ZERO	0
94 #define ___GFP_SKIP_KASAN	0
95 #endif
96 #ifdef CONFIG_LOCKDEP
97 #define ___GFP_NOLOCKDEP	BIT(___GFP_NOLOCKDEP_BIT)
98 #else
99 #define ___GFP_NOLOCKDEP	0
100 #endif
101 #ifdef CONFIG_SLAB_OBJ_EXT
102 #define ___GFP_NO_OBJ_EXT       BIT(___GFP_NO_OBJ_EXT_BIT)
103 #else
104 #define ___GFP_NO_OBJ_EXT       0
105 #endif
106 
107 /*
108  * Physical address zone modifiers (see linux/mmzone.h - low four bits)
109  *
110  * Do not put any conditional on these. If necessary modify the definitions
111  * without the underscores and use them consistently. The definitions here may
112  * be used in bit comparisons.
113  */
114 #define __GFP_DMA	((__force gfp_t)___GFP_DMA)
115 #define __GFP_HIGHMEM	((__force gfp_t)___GFP_HIGHMEM)
116 #define __GFP_DMA32	((__force gfp_t)___GFP_DMA32)
117 #define __GFP_MOVABLE	((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
118 #define GFP_ZONEMASK	(__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
119 
120 /**
121  * DOC: Page mobility and placement hints
122  *
123  * Page mobility and placement hints
124  * ---------------------------------
125  *
126  * These flags provide hints about how mobile the page is. Pages with similar
127  * mobility are placed within the same pageblocks to minimise problems due
128  * to external fragmentation.
129  *
130  * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
131  * moved by page migration during memory compaction or can be reclaimed.
132  *
133  * %__GFP_RECLAIMABLE is used for slab allocations that specify
134  * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
135  *
136  * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
137  * these pages will be spread between local zones to avoid all the dirty
138  * pages being in one zone (fair zone allocation policy).
139  *
140  * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
141  *
142  * %__GFP_THISNODE forces the allocation to be satisfied from the requested
143  * node with no fallbacks or placement policy enforcements.
144  *
145  * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
146  *
147  * %__GFP_NO_OBJ_EXT causes slab allocation to have no object extension.
148  */
149 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
150 #define __GFP_WRITE	((__force gfp_t)___GFP_WRITE)
151 #define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
152 #define __GFP_THISNODE	((__force gfp_t)___GFP_THISNODE)
153 #define __GFP_ACCOUNT	((__force gfp_t)___GFP_ACCOUNT)
154 #define __GFP_NO_OBJ_EXT   ((__force gfp_t)___GFP_NO_OBJ_EXT)
155 
156 /**
157  * DOC: Watermark modifiers
158  *
159  * Watermark modifiers -- controls access to emergency reserves
160  * ------------------------------------------------------------
161  *
162  * %__GFP_HIGH indicates that the caller is high-priority and that granting
163  * the request is necessary before the system can make forward progress.
164  * For example creating an IO context to clean pages and requests
165  * from atomic context.
166  *
167  * %__GFP_MEMALLOC allows access to all memory. This should only be used when
168  * the caller guarantees the allocation will allow more memory to be freed
169  * very shortly e.g. process exiting or swapping. Users either should
170  * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
171  * Users of this flag have to be extremely careful to not deplete the reserve
172  * completely and implement a throttling mechanism which controls the
173  * consumption of the reserve based on the amount of freed memory.
174  * Usage of a pre-allocated pool (e.g. mempool) should be always considered
175  * before using this flag.
176  *
177  * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
178  * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
179  */
180 #define __GFP_HIGH	((__force gfp_t)___GFP_HIGH)
181 #define __GFP_MEMALLOC	((__force gfp_t)___GFP_MEMALLOC)
182 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
183 
184 /**
185  * DOC: Reclaim modifiers
186  *
187  * Reclaim modifiers
188  * -----------------
189  * Please note that all the following flags are only applicable to sleepable
190  * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
191  *
192  * %__GFP_IO can start physical IO.
193  *
194  * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
195  * allocator recursing into the filesystem which might already be holding
196  * locks.
197  *
198  * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
199  * This flag can be cleared to avoid unnecessary delays when a fallback
200  * option is available.
201  *
202  * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
203  * the low watermark is reached and have it reclaim pages until the high
204  * watermark is reached. A caller may wish to clear this flag when fallback
205  * options are available and the reclaim is likely to disrupt the system. The
206  * canonical example is THP allocation where a fallback is cheap but
207  * reclaim/compaction may cause indirect stalls.
208  *
209  * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
210  *
211  * The default allocator behavior depends on the request size. We have a concept
212  * of so-called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
213  * !costly allocations are too essential to fail so they are implicitly
214  * non-failing by default (with some exceptions like OOM victims might fail so
215  * the caller still has to check for failures) while costly requests try to be
216  * not disruptive and back off even without invoking the OOM killer.
217  * The following three modifiers might be used to override some of these
218  * implicit rules.
219  *
220  * %__GFP_NORETRY: The VM implementation will try only very lightweight
221  * memory direct reclaim to get some memory under memory pressure (thus
222  * it can sleep). It will avoid disruptive actions like OOM killer. The
223  * caller must handle the failure which is quite likely to happen under
224  * heavy memory pressure. The flag is suitable when failure can easily be
225  * handled at small cost, such as reduced throughput.
226  *
227  * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
228  * procedures that have previously failed if there is some indication
229  * that progress has been made elsewhere.  It can wait for other
230  * tasks to attempt high-level approaches to freeing memory such as
231  * compaction (which removes fragmentation) and page-out.
232  * There is still a definite limit to the number of retries, but it is
233  * a larger limit than with %__GFP_NORETRY.
234  * Allocations with this flag may fail, but only when there is
235  * genuinely little unused memory. While these allocations do not
236  * directly trigger the OOM killer, their failure indicates that
237  * the system is likely to need to use the OOM killer soon.  The
238  * caller must handle failure, but can reasonably do so by failing
239  * a higher-level request, or completing it only in a much less
240  * efficient manner.
241  * If the allocation does fail, and the caller is in a position to
242  * free some non-essential memory, doing so could benefit the system
243  * as a whole.
244  *
245  * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
246  * cannot handle allocation failures. The allocation could block
247  * indefinitely but will never return with failure. Testing for
248  * failure is pointless.
249  * New users should be evaluated carefully (and the flag should be
250  * used only when there is no reasonable failure policy) but it is
251  * definitely preferable to use the flag rather than opencode endless
252  * loop around allocator.
253  * Using this flag for costly allocations is _highly_ discouraged.
254  */
255 #define __GFP_IO	((__force gfp_t)___GFP_IO)
256 #define __GFP_FS	((__force gfp_t)___GFP_FS)
257 #define __GFP_DIRECT_RECLAIM	((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
258 #define __GFP_KSWAPD_RECLAIM	((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
259 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
260 #define __GFP_RETRY_MAYFAIL	((__force gfp_t)___GFP_RETRY_MAYFAIL)
261 #define __GFP_NOFAIL	((__force gfp_t)___GFP_NOFAIL)
262 #define __GFP_NORETRY	((__force gfp_t)___GFP_NORETRY)
263 
264 /**
265  * DOC: Action modifiers
266  *
267  * Action modifiers
268  * ----------------
269  *
270  * %__GFP_NOWARN suppresses allocation failure reports.
271  *
272  * %__GFP_COMP address compound page metadata.
273  *
274  * %__GFP_ZERO returns a zeroed page on success.
275  *
276  * %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
277  * is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
278  * __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
279  * memory tags at the same time as zeroing memory has minimal additional
280  * performance impact.
281  *
282  * %__GFP_SKIP_KASAN makes KASAN skip unpoisoning on page allocation.
283  * Used for userspace and vmalloc pages; the latter are unpoisoned by
284  * kasan_unpoison_vmalloc instead. For userspace pages, results in
285  * poisoning being skipped as well, see should_skip_kasan_poison for
286  * details. Only effective in HW_TAGS mode.
287  */
288 #define __GFP_NOWARN	((__force gfp_t)___GFP_NOWARN)
289 #define __GFP_COMP	((__force gfp_t)___GFP_COMP)
290 #define __GFP_ZERO	((__force gfp_t)___GFP_ZERO)
291 #define __GFP_ZEROTAGS	((__force gfp_t)___GFP_ZEROTAGS)
292 #define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
293 #define __GFP_SKIP_KASAN ((__force gfp_t)___GFP_SKIP_KASAN)
294 
295 /* Disable lockdep for GFP context tracking */
296 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
297 
298 /* Room for N __GFP_FOO bits */
299 #define __GFP_BITS_SHIFT ___GFP_LAST_BIT
300 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
301 
302 /**
303  * DOC: Useful GFP flag combinations
304  *
305  * Useful GFP flag combinations
306  * ----------------------------
307  *
308  * Useful GFP flag combinations that are commonly used. It is recommended
309  * that subsystems start with one of these combinations and then set/clear
310  * %__GFP_FOO flags as necessary.
311  *
312  * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
313  * watermark is applied to allow access to "atomic reserves".
314  * The current implementation doesn't support NMI and few other strict
315  * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
316  *
317  * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
318  * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
319  *
320  * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
321  * accounted to kmemcg.
322  *
323  * %GFP_NOWAIT is for kernel allocations that should not stall for direct
324  * reclaim, start physical IO or use any filesystem callback.  It is very
325  * likely to fail to allocate memory, even for very small allocations.
326  *
327  * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
328  * that do not require the starting of any physical IO.
329  * Please try to avoid using this flag directly and instead use
330  * memalloc_noio_{save,restore} to mark the whole scope which cannot
331  * perform any IO with a short explanation why. All allocation requests
332  * will inherit GFP_NOIO implicitly.
333  *
334  * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
335  * Please try to avoid using this flag directly and instead use
336  * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
337  * recurse into the FS layer with a short explanation why. All allocation
338  * requests will inherit GFP_NOFS implicitly.
339  *
340  * %GFP_USER is for userspace allocations that also need to be directly
341  * accessibly by the kernel or hardware. It is typically used by hardware
342  * for buffers that are mapped to userspace (e.g. graphics) that hardware
343  * still must DMA to. cpuset limits are enforced for these allocations.
344  *
345  * %GFP_DMA exists for historical reasons and should be avoided where possible.
346  * The flags indicates that the caller requires that the lowest zone be
347  * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
348  * it would require careful auditing as some users really require it and
349  * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
350  * lowest zone as a type of emergency reserve.
351  *
352  * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
353  * address. Note that kmalloc(..., GFP_DMA32) does not return DMA32 memory
354  * because the DMA32 kmalloc cache array is not implemented.
355  * (Reason: there is no such user in kernel).
356  *
357  * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
358  * do not need to be directly accessible by the kernel but that cannot
359  * move once in use. An example may be a hardware allocation that maps
360  * data directly into userspace but has no addressing limitations.
361  *
362  * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
363  * need direct access to but can use kmap() when access is required. They
364  * are expected to be movable via page reclaim or page migration. Typically,
365  * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
366  *
367  * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
368  * are compound allocations that will generally fail quickly if memory is not
369  * available and will not wake kswapd/kcompactd on failure. The _LIGHT
370  * version does not attempt reclaim/compaction at all and is by default used
371  * in page fault path, while the non-light is used by khugepaged.
372  */
373 #define GFP_ATOMIC	(__GFP_HIGH|__GFP_KSWAPD_RECLAIM)
374 #define GFP_KERNEL	(__GFP_RECLAIM | __GFP_IO | __GFP_FS)
375 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
376 #define GFP_NOWAIT	(__GFP_KSWAPD_RECLAIM | __GFP_NOWARN)
377 #define GFP_NOIO	(__GFP_RECLAIM)
378 #define GFP_NOFS	(__GFP_RECLAIM | __GFP_IO)
379 #define GFP_USER	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
380 #define GFP_DMA		__GFP_DMA
381 #define GFP_DMA32	__GFP_DMA32
382 #define GFP_HIGHUSER	(GFP_USER | __GFP_HIGHMEM)
383 #define GFP_HIGHUSER_MOVABLE	(GFP_HIGHUSER | __GFP_MOVABLE | __GFP_SKIP_KASAN)
384 #define GFP_TRANSHUGE_LIGHT	((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
385 			 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
386 #define GFP_TRANSHUGE	(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
387 
388 #endif /* __LINUX_GFP_TYPES_H */
389