1 /*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "bxt_dpio_phy_regs.h"
25 #include "i915_drv.h"
26 #include "i915_reg.h"
27 #include "intel_ddi.h"
28 #include "intel_ddi_buf_trans.h"
29 #include "intel_de.h"
30 #include "intel_display_power_well.h"
31 #include "intel_display_types.h"
32 #include "intel_dp.h"
33 #include "intel_dpio_phy.h"
34 #include "vlv_dpio_phy_regs.h"
35 #include "vlv_sideband.h"
36
37 /**
38 * DOC: DPIO
39 *
40 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
41 * ports. DPIO is the name given to such a display PHY. These PHYs
42 * don't follow the standard programming model using direct MMIO
43 * registers, and instead their registers must be accessed trough IOSF
44 * sideband. VLV has one such PHY for driving ports B and C, and CHV
45 * adds another PHY for driving port D. Each PHY responds to specific
46 * IOSF-SB port.
47 *
48 * Each display PHY is made up of one or two channels. Each channel
49 * houses a common lane part which contains the PLL and other common
50 * logic. CH0 common lane also contains the IOSF-SB logic for the
51 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
52 * must be running when any DPIO registers are accessed.
53 *
54 * In addition to having their own registers, the PHYs are also
55 * controlled through some dedicated signals from the display
56 * controller. These include PLL reference clock enable, PLL enable,
57 * and CRI clock selection, for example.
58 *
59 * Eeach channel also has two splines (also called data lanes), and
60 * each spline is made up of one Physical Access Coding Sub-Layer
61 * (PCS) block and two TX lanes. So each channel has two PCS blocks
62 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
63 * data/clock pairs depending on the output type.
64 *
65 * Additionally the PHY also contains an AUX lane with AUX blocks
66 * for each channel. This is used for DP AUX communication, but
67 * this fact isn't really relevant for the driver since AUX is
68 * controlled from the display controller side. No DPIO registers
69 * need to be accessed during AUX communication,
70 *
71 * Generally on VLV/CHV the common lane corresponds to the pipe and
72 * the spline (PCS/TX) corresponds to the port.
73 *
74 * For dual channel PHY (VLV/CHV):
75 *
76 * pipe A == CMN/PLL/REF CH0
77 *
78 * pipe B == CMN/PLL/REF CH1
79 *
80 * port B == PCS/TX CH0
81 *
82 * port C == PCS/TX CH1
83 *
84 * This is especially important when we cross the streams
85 * ie. drive port B with pipe B, or port C with pipe A.
86 *
87 * For single channel PHY (CHV):
88 *
89 * pipe C == CMN/PLL/REF CH0
90 *
91 * port D == PCS/TX CH0
92 *
93 * On BXT the entire PHY channel corresponds to the port. That means
94 * the PLL is also now associated with the port rather than the pipe,
95 * and so the clock needs to be routed to the appropriate transcoder.
96 * Port A PLL is directly connected to transcoder EDP and port B/C
97 * PLLs can be routed to any transcoder A/B/C.
98 *
99 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
100 * digital port D (CHV) or port A (BXT). ::
101 *
102 *
103 * Dual channel PHY (VLV/CHV/BXT)
104 * ---------------------------------
105 * | CH0 | CH1 |
106 * | CMN/PLL/REF | CMN/PLL/REF |
107 * |---------------|---------------| Display PHY
108 * | PCS01 | PCS23 | PCS01 | PCS23 |
109 * |-------|-------|-------|-------|
110 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
111 * ---------------------------------
112 * | DDI0 | DDI1 | DP/HDMI ports
113 * ---------------------------------
114 *
115 * Single channel PHY (CHV/BXT)
116 * -----------------
117 * | CH0 |
118 * | CMN/PLL/REF |
119 * |---------------| Display PHY
120 * | PCS01 | PCS23 |
121 * |-------|-------|
122 * |TX0|TX1|TX2|TX3|
123 * -----------------
124 * | DDI2 | DP/HDMI port
125 * -----------------
126 */
127
128 /**
129 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
130 */
131 struct bxt_dpio_phy_info {
132 /**
133 * @dual_channel: true if this phy has a second channel.
134 */
135 bool dual_channel;
136
137 /**
138 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
139 * Otherwise the GRC value will be copied from the phy indicated by
140 * this field.
141 */
142 enum dpio_phy rcomp_phy;
143
144 /**
145 * @reset_delay: delay in us to wait before setting the common reset
146 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
147 */
148 int reset_delay;
149
150 /**
151 * @pwron_mask: Mask with the appropriate bit set that would cause the
152 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
153 */
154 u32 pwron_mask;
155
156 /**
157 * @channel: struct containing per channel information.
158 */
159 struct {
160 /**
161 * @channel.port: which port maps to this channel.
162 */
163 enum port port;
164 } channel[2];
165 };
166
167 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
168 [DPIO_PHY0] = {
169 .dual_channel = true,
170 .rcomp_phy = DPIO_PHY1,
171 .pwron_mask = BIT(0),
172
173 .channel = {
174 [DPIO_CH0] = { .port = PORT_B },
175 [DPIO_CH1] = { .port = PORT_C },
176 }
177 },
178 [DPIO_PHY1] = {
179 .dual_channel = false,
180 .rcomp_phy = -1,
181 .pwron_mask = BIT(1),
182
183 .channel = {
184 [DPIO_CH0] = { .port = PORT_A },
185 }
186 },
187 };
188
189 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
190 [DPIO_PHY0] = {
191 .dual_channel = false,
192 .rcomp_phy = DPIO_PHY1,
193 .pwron_mask = BIT(0),
194 .reset_delay = 20,
195
196 .channel = {
197 [DPIO_CH0] = { .port = PORT_B },
198 }
199 },
200 [DPIO_PHY1] = {
201 .dual_channel = false,
202 .rcomp_phy = -1,
203 .pwron_mask = BIT(3),
204 .reset_delay = 20,
205
206 .channel = {
207 [DPIO_CH0] = { .port = PORT_A },
208 }
209 },
210 [DPIO_PHY2] = {
211 .dual_channel = false,
212 .rcomp_phy = DPIO_PHY1,
213 .pwron_mask = BIT(1),
214 .reset_delay = 20,
215
216 .channel = {
217 [DPIO_CH0] = { .port = PORT_C },
218 }
219 },
220 };
221
222 static const struct bxt_dpio_phy_info *
bxt_get_phy_list(struct intel_display * display,int * count)223 bxt_get_phy_list(struct intel_display *display, int *count)
224 {
225 struct drm_i915_private *dev_priv = to_i915(display->drm);
226
227 if (IS_GEMINILAKE(dev_priv)) {
228 *count = ARRAY_SIZE(glk_dpio_phy_info);
229 return glk_dpio_phy_info;
230 } else {
231 *count = ARRAY_SIZE(bxt_dpio_phy_info);
232 return bxt_dpio_phy_info;
233 }
234 }
235
236 static const struct bxt_dpio_phy_info *
bxt_get_phy_info(struct intel_display * display,enum dpio_phy phy)237 bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
238 {
239 int count;
240 const struct bxt_dpio_phy_info *phy_list =
241 bxt_get_phy_list(display, &count);
242
243 return &phy_list[phy];
244 }
245
bxt_port_to_phy_channel(struct intel_display * display,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)246 void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
247 enum dpio_phy *phy, enum dpio_channel *ch)
248 {
249 const struct bxt_dpio_phy_info *phy_info, *phys;
250 int i, count;
251
252 phys = bxt_get_phy_list(display, &count);
253
254 for (i = 0; i < count; i++) {
255 phy_info = &phys[i];
256
257 if (port == phy_info->channel[DPIO_CH0].port) {
258 *phy = i;
259 *ch = DPIO_CH0;
260 return;
261 }
262
263 if (phy_info->dual_channel &&
264 port == phy_info->channel[DPIO_CH1].port) {
265 *phy = i;
266 *ch = DPIO_CH1;
267 return;
268 }
269 }
270
271 drm_WARN(display->drm, 1, "PHY not found for PORT %c",
272 port_name(port));
273 *phy = DPIO_PHY0;
274 *ch = DPIO_CH0;
275 }
276
277 /*
278 * Like intel_de_rmw() but reads from a single per-lane register and
279 * writes to the group register to write the same value to all the lanes.
280 */
bxt_dpio_phy_rmw_grp(struct intel_display * display,i915_reg_t reg_single,i915_reg_t reg_group,u32 clear,u32 set)281 static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
282 i915_reg_t reg_single,
283 i915_reg_t reg_group,
284 u32 clear, u32 set)
285 {
286 u32 old, val;
287
288 old = intel_de_read(display, reg_single);
289 val = (old & ~clear) | set;
290 intel_de_write(display, reg_group, val);
291
292 return old;
293 }
294
bxt_dpio_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)295 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
296 const struct intel_crtc_state *crtc_state)
297 {
298 struct intel_display *display = to_intel_display(encoder);
299 const struct intel_ddi_buf_trans *trans;
300 enum dpio_channel ch;
301 enum dpio_phy phy;
302 int lane, n_entries;
303
304 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
305 if (drm_WARN_ON_ONCE(display->drm, !trans))
306 return;
307
308 bxt_port_to_phy_channel(display, encoder->port, &phy, &ch);
309
310 /*
311 * While we write to the group register to program all lanes at once we
312 * can read only lane registers and we pick lanes 0/1 for that.
313 */
314 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
315 BXT_PORT_PCS_DW10_GRP(phy, ch),
316 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
317
318 for (lane = 0; lane < crtc_state->lane_count; lane++) {
319 int level = intel_ddi_level(encoder, crtc_state, lane);
320
321 intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
322 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
323 MARGIN_000(trans->entries[level].bxt.margin) |
324 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
325 }
326
327 for (lane = 0; lane < crtc_state->lane_count; lane++) {
328 int level = intel_ddi_level(encoder, crtc_state, lane);
329 u32 val;
330
331 intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
332 SCALE_DCOMP_METHOD,
333 trans->entries[level].bxt.enable ?
334 SCALE_DCOMP_METHOD : 0);
335
336 val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
337 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
338 drm_err(display->drm,
339 "Disabled scaling while ouniqetrangenmethod was set");
340 }
341
342 for (lane = 0; lane < crtc_state->lane_count; lane++) {
343 int level = intel_ddi_level(encoder, crtc_state, lane);
344
345 intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
346 DE_EMPHASIS_MASK,
347 DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
348 }
349
350 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
351 BXT_PORT_PCS_DW10_GRP(phy, ch),
352 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
353 }
354
bxt_dpio_phy_is_enabled(struct intel_display * display,enum dpio_phy phy)355 bool bxt_dpio_phy_is_enabled(struct intel_display *display,
356 enum dpio_phy phy)
357 {
358 const struct bxt_dpio_phy_info *phy_info;
359
360 phy_info = bxt_get_phy_info(display, phy);
361
362 if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
363 return false;
364
365 if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
366 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
367 drm_dbg(display->drm,
368 "DDI PHY %d powered, but power hasn't settled\n", phy);
369
370 return false;
371 }
372
373 if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
374 drm_dbg(display->drm,
375 "DDI PHY %d powered, but still in reset\n", phy);
376
377 return false;
378 }
379
380 return true;
381 }
382
bxt_get_grc(struct intel_display * display,enum dpio_phy phy)383 static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
384 {
385 u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
386
387 return REG_FIELD_GET(GRC_CODE_MASK, val);
388 }
389
bxt_phy_wait_grc_done(struct intel_display * display,enum dpio_phy phy)390 static void bxt_phy_wait_grc_done(struct intel_display *display,
391 enum dpio_phy phy)
392 {
393 if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10))
394 drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
395 }
396
_bxt_dpio_phy_init(struct intel_display * display,enum dpio_phy phy)397 static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
398 {
399 const struct bxt_dpio_phy_info *phy_info;
400 u32 val;
401
402 phy_info = bxt_get_phy_info(display, phy);
403
404 if (bxt_dpio_phy_is_enabled(display, phy)) {
405 /* Still read out the GRC value for state verification */
406 if (phy_info->rcomp_phy != -1)
407 display->state.bxt_phy_grc = bxt_get_grc(display, phy);
408
409 if (bxt_dpio_phy_verify_state(display, phy)) {
410 drm_dbg(display->drm, "DDI PHY %d already enabled, "
411 "won't reprogram it\n", phy);
412 return;
413 }
414
415 drm_dbg(display->drm,
416 "DDI PHY %d enabled with invalid state, "
417 "force reprogramming it\n", phy);
418 }
419
420 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
421
422 /*
423 * The PHY registers start out inaccessible and respond to reads with
424 * all 1s. Eventually they become accessible as they power up, then
425 * the reserved bit will give the default 0. Poll on the reserved bit
426 * becoming 0 to find when the PHY is accessible.
427 * The flag should get set in 100us according to the HW team, but
428 * use 1ms due to occasional timeouts observed with that.
429 */
430 if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
431 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
432 drm_err(display->drm, "timeout during PHY%d power on\n",
433 phy);
434
435 /* Program PLL Rcomp code offset */
436 intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
437 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438
439 intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
440 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441
442 /* Program power gating */
443 intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0,
444 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445
446 if (phy_info->dual_channel)
447 intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0,
448 DW6_OLDO_DYN_PWR_DOWN_EN);
449
450 if (phy_info->rcomp_phy != -1) {
451 u32 grc_code;
452
453 bxt_phy_wait_grc_done(display, phy_info->rcomp_phy);
454
455 /*
456 * PHY0 isn't connected to an RCOMP resistor so copy over
457 * the corresponding calibrated value from PHY1, and disable
458 * the automatic calibration on PHY0.
459 */
460 val = bxt_get_grc(display, phy_info->rcomp_phy);
461 display->state.bxt_phy_grc = val;
462
463 grc_code = GRC_CODE_FAST(val) |
464 GRC_CODE_SLOW(val) |
465 GRC_CODE_NOM(val);
466 intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code);
467 intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
468 0, GRC_DIS | GRC_RDY_OVRD);
469 }
470
471 if (phy_info->reset_delay)
472 udelay(phy_info->reset_delay);
473
474 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
475 }
476
bxt_dpio_phy_uninit(struct intel_display * display,enum dpio_phy phy)477 void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
478 {
479 const struct bxt_dpio_phy_info *phy_info;
480
481 phy_info = bxt_get_phy_info(display, phy);
482
483 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
484
485 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
486 }
487
bxt_dpio_phy_init(struct intel_display * display,enum dpio_phy phy)488 void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
489 {
490 const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
491 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
492 bool was_enabled;
493
494 lockdep_assert_held(&display->power.domains.lock);
495
496 was_enabled = true;
497 if (rcomp_phy != -1)
498 was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy);
499
500 /*
501 * We need to copy the GRC calibration value from rcomp_phy,
502 * so make sure it's powered up.
503 */
504 if (!was_enabled)
505 _bxt_dpio_phy_init(display, rcomp_phy);
506
507 _bxt_dpio_phy_init(display, phy);
508
509 if (!was_enabled)
510 bxt_dpio_phy_uninit(display, rcomp_phy);
511 }
512
513 static bool __printf(6, 7)
__phy_reg_verify_state(struct intel_display * display,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)514 __phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
515 i915_reg_t reg, u32 mask, u32 expected,
516 const char *reg_fmt, ...)
517 {
518 struct va_format vaf;
519 va_list args;
520 u32 val;
521
522 val = intel_de_read(display, reg);
523 if ((val & mask) == expected)
524 return true;
525
526 va_start(args, reg_fmt);
527 vaf.fmt = reg_fmt;
528 vaf.va = &args;
529
530 drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
531 "current %08x, expected %08x (mask %08x)\n",
532 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
533 mask);
534
535 va_end(args);
536
537 return false;
538 }
539
bxt_dpio_phy_verify_state(struct intel_display * display,enum dpio_phy phy)540 bool bxt_dpio_phy_verify_state(struct intel_display *display,
541 enum dpio_phy phy)
542 {
543 const struct bxt_dpio_phy_info *phy_info;
544 u32 mask;
545 bool ok;
546
547 phy_info = bxt_get_phy_info(display, phy);
548
549 #define _CHK(reg, mask, exp, fmt, ...) \
550 __phy_reg_verify_state(display, phy, reg, mask, exp, fmt, \
551 ## __VA_ARGS__)
552
553 if (!bxt_dpio_phy_is_enabled(display, phy))
554 return false;
555
556 ok = true;
557
558 /* PLL Rcomp code offset */
559 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
560 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
561 "BXT_PORT_CL1CM_DW9(%d)", phy);
562 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
563 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
564 "BXT_PORT_CL1CM_DW10(%d)", phy);
565
566 /* Power gating */
567 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
568 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
569 "BXT_PORT_CL1CM_DW28(%d)", phy);
570
571 if (phy_info->dual_channel)
572 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
573 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
574 "BXT_PORT_CL2CM_DW6(%d)", phy);
575
576 if (phy_info->rcomp_phy != -1) {
577 u32 grc_code = display->state.bxt_phy_grc;
578
579 grc_code = GRC_CODE_FAST(grc_code) |
580 GRC_CODE_SLOW(grc_code) |
581 GRC_CODE_NOM(grc_code);
582 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
583 GRC_CODE_NOM_MASK;
584 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
585 "BXT_PORT_REF_DW6(%d)", phy);
586
587 mask = GRC_DIS | GRC_RDY_OVRD;
588 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
589 "BXT_PORT_REF_DW8(%d)", phy);
590 }
591
592 return ok;
593 #undef _CHK
594 }
595
596 u8
bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)597 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
598 {
599 switch (lane_count) {
600 case 1:
601 return 0;
602 case 2:
603 return BIT(2) | BIT(0);
604 case 4:
605 return BIT(3) | BIT(2) | BIT(0);
606 default:
607 MISSING_CASE(lane_count);
608
609 return 0;
610 }
611 }
612
bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)613 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
614 u8 lane_lat_optim_mask)
615 {
616 struct intel_display *display = to_intel_display(encoder);
617 enum port port = encoder->port;
618 enum dpio_phy phy;
619 enum dpio_channel ch;
620 int lane;
621
622 bxt_port_to_phy_channel(display, port, &phy, &ch);
623
624 for (lane = 0; lane < 4; lane++) {
625 /*
626 * Note that on CHV this flag is called UPAR, but has
627 * the same function.
628 */
629 intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
630 LATENCY_OPTIM,
631 lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
632 }
633 }
634
635 u8
bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)636 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
637 {
638 struct intel_display *display = to_intel_display(encoder);
639 enum port port = encoder->port;
640 enum dpio_phy phy;
641 enum dpio_channel ch;
642 int lane;
643 u8 mask;
644
645 bxt_port_to_phy_channel(display, port, &phy, &ch);
646
647 mask = 0;
648 for (lane = 0; lane < 4; lane++) {
649 u32 val = intel_de_read(display,
650 BXT_PORT_TX_DW14_LN(phy, ch, lane));
651
652 if (val & LATENCY_OPTIM)
653 mask |= BIT(lane);
654 }
655
656 return mask;
657 }
658
vlv_dig_port_to_channel(struct intel_digital_port * dig_port)659 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
660 {
661 switch (dig_port->base.port) {
662 default:
663 MISSING_CASE(dig_port->base.port);
664 fallthrough;
665 case PORT_B:
666 case PORT_D:
667 return DPIO_CH0;
668 case PORT_C:
669 return DPIO_CH1;
670 }
671 }
672
vlv_dig_port_to_phy(struct intel_digital_port * dig_port)673 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
674 {
675 switch (dig_port->base.port) {
676 default:
677 MISSING_CASE(dig_port->base.port);
678 fallthrough;
679 case PORT_B:
680 case PORT_C:
681 return DPIO_PHY0;
682 case PORT_D:
683 return DPIO_PHY1;
684 }
685 }
686
vlv_pipe_to_phy(enum pipe pipe)687 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
688 {
689 switch (pipe) {
690 default:
691 MISSING_CASE(pipe);
692 fallthrough;
693 case PIPE_A:
694 case PIPE_B:
695 return DPIO_PHY0;
696 case PIPE_C:
697 return DPIO_PHY1;
698 }
699 }
700
vlv_pipe_to_channel(enum pipe pipe)701 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
702 {
703 switch (pipe) {
704 default:
705 MISSING_CASE(pipe);
706 fallthrough;
707 case PIPE_A:
708 case PIPE_C:
709 return DPIO_CH0;
710 case PIPE_B:
711 return DPIO_CH1;
712 }
713 }
714
chv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)715 void chv_set_phy_signal_level(struct intel_encoder *encoder,
716 const struct intel_crtc_state *crtc_state,
717 u32 deemph_reg_value, u32 margin_reg_value,
718 bool uniq_trans_scale)
719 {
720 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
721 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
722 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
723 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
724 u32 val;
725 int i;
726
727 vlv_dpio_get(dev_priv);
728
729 /* Clear calc init */
730 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
731 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
732 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
733 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
734 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
735
736 if (crtc_state->lane_count > 2) {
737 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
738 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
739 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
740 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
741 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
742 }
743
744 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
745 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
746 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
747 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
748
749 if (crtc_state->lane_count > 2) {
750 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
751 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
752 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
753 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
754 }
755
756 /* Program swing deemph */
757 for (i = 0; i < crtc_state->lane_count; i++) {
758 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
759 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
760 val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
761 vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
762 }
763
764 /* Program swing margin */
765 for (i = 0; i < crtc_state->lane_count; i++) {
766 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
767
768 val &= ~DPIO_SWING_MARGIN000_MASK;
769 val |= DPIO_SWING_MARGIN000(margin_reg_value);
770
771 /*
772 * Supposedly this value shouldn't matter when unique transition
773 * scale is disabled, but in fact it does matter. Let's just
774 * always program the same value and hope it's OK.
775 */
776 val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
777 val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
778
779 vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
780 }
781
782 /*
783 * The document said it needs to set bit 27 for ch0 and bit 26
784 * for ch1. Might be a typo in the doc.
785 * For now, for this unique transition scale selection, set bit
786 * 27 for ch0 and ch1.
787 */
788 for (i = 0; i < crtc_state->lane_count; i++) {
789 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
790 if (uniq_trans_scale)
791 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
792 else
793 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
794 vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
795 }
796
797 /* Start swing calculation */
798 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
799 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
800 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
801
802 if (crtc_state->lane_count > 2) {
803 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
804 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
805 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
806 }
807
808 vlv_dpio_put(dev_priv);
809 }
810
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)811 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
812 const struct intel_crtc_state *crtc_state,
813 bool reset)
814 {
815 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
816 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
817 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
818 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
819 u32 val;
820
821 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
822 if (reset)
823 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
824 else
825 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
826 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
827
828 if (crtc_state->lane_count > 2) {
829 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
830 if (reset)
831 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
832 else
833 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
834 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
835 }
836
837 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
838 val |= CHV_PCS_REQ_SOFTRESET_EN;
839 if (reset)
840 val &= ~DPIO_PCS_CLK_SOFT_RESET;
841 else
842 val |= DPIO_PCS_CLK_SOFT_RESET;
843 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
844
845 if (crtc_state->lane_count > 2) {
846 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
847 val |= CHV_PCS_REQ_SOFTRESET_EN;
848 if (reset)
849 val &= ~DPIO_PCS_CLK_SOFT_RESET;
850 else
851 val |= DPIO_PCS_CLK_SOFT_RESET;
852 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
853 }
854 }
855
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)856 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
857 const struct intel_crtc_state *crtc_state)
858 {
859 struct intel_display *display = to_intel_display(encoder);
860 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
861 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
864 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
865 enum pipe pipe = crtc->pipe;
866 unsigned int lane_mask =
867 intel_dp_unused_lane_mask(crtc_state->lane_count);
868 u32 val;
869
870 /*
871 * Must trick the second common lane into life.
872 * Otherwise we can't even access the PLL.
873 */
874 if (ch == DPIO_CH0 && pipe == PIPE_B)
875 dig_port->release_cl2_override =
876 !chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, true);
877
878 chv_phy_powergate_lanes(encoder, true, lane_mask);
879
880 vlv_dpio_get(dev_priv);
881
882 /* Assert data lane reset */
883 chv_data_lane_soft_reset(encoder, crtc_state, true);
884
885 /* program left/right clock distribution */
886 if (pipe != PIPE_B) {
887 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
888 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
889 if (ch == DPIO_CH0)
890 val |= CHV_BUFLEFTENA1_FORCE;
891 if (ch == DPIO_CH1)
892 val |= CHV_BUFRIGHTENA1_FORCE;
893 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
894 } else {
895 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
896 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
897 if (ch == DPIO_CH0)
898 val |= CHV_BUFLEFTENA2_FORCE;
899 if (ch == DPIO_CH1)
900 val |= CHV_BUFRIGHTENA2_FORCE;
901 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
902 }
903
904 /* program clock channel usage */
905 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
906 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
907 if (pipe == PIPE_B)
908 val |= DPIO_PCS_USEDCLKCHANNEL;
909 else
910 val &= ~DPIO_PCS_USEDCLKCHANNEL;
911 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
912
913 if (crtc_state->lane_count > 2) {
914 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
915 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
916 if (pipe == PIPE_B)
917 val |= DPIO_PCS_USEDCLKCHANNEL;
918 else
919 val &= ~DPIO_PCS_USEDCLKCHANNEL;
920 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
921 }
922
923 /*
924 * This a a bit weird since generally CL
925 * matches the pipe, but here we need to
926 * pick the CL based on the port.
927 */
928 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
929 if (pipe == PIPE_B)
930 val |= CHV_CMN_USEDCLKCHANNEL;
931 else
932 val &= ~CHV_CMN_USEDCLKCHANNEL;
933 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
934
935 vlv_dpio_put(dev_priv);
936 }
937
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
939 const struct intel_crtc_state *crtc_state)
940 {
941 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
942 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
943 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
944 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
945 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
946 int data, i, stagger;
947 u32 val;
948
949 vlv_dpio_get(dev_priv);
950
951 /* allow hardware to manage TX FIFO reset source */
952 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
953 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
954 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
955
956 if (crtc_state->lane_count > 2) {
957 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
958 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
959 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
960 }
961
962 /* Program Tx lane latency optimal setting*/
963 for (i = 0; i < crtc_state->lane_count; i++) {
964 /* Set the upar bit */
965 if (crtc_state->lane_count == 1)
966 data = 0;
967 else
968 data = (i == 1) ? 0 : DPIO_UPAR;
969 vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
970 }
971
972 /* Data lane stagger programming */
973 if (crtc_state->port_clock > 270000)
974 stagger = 0x18;
975 else if (crtc_state->port_clock > 135000)
976 stagger = 0xd;
977 else if (crtc_state->port_clock > 67500)
978 stagger = 0x7;
979 else if (crtc_state->port_clock > 33750)
980 stagger = 0x4;
981 else
982 stagger = 0x2;
983
984 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
985 val |= DPIO_TX2_STAGGER_MASK(0x1f);
986 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
987
988 if (crtc_state->lane_count > 2) {
989 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
990 val |= DPIO_TX2_STAGGER_MASK(0x1f);
991 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
992 }
993
994 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
995 DPIO_LANESTAGGER_STRAP(stagger) |
996 DPIO_LANESTAGGER_STRAP_OVRD |
997 DPIO_TX1_STAGGER_MASK(0x1f) |
998 DPIO_TX1_STAGGER_MULT(6) |
999 DPIO_TX2_STAGGER_MULT(0));
1000
1001 if (crtc_state->lane_count > 2) {
1002 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1003 DPIO_LANESTAGGER_STRAP(stagger) |
1004 DPIO_LANESTAGGER_STRAP_OVRD |
1005 DPIO_TX1_STAGGER_MASK(0x1f) |
1006 DPIO_TX1_STAGGER_MULT(7) |
1007 DPIO_TX2_STAGGER_MULT(5));
1008 }
1009
1010 /* Deassert data lane reset */
1011 chv_data_lane_soft_reset(encoder, crtc_state, false);
1012
1013 vlv_dpio_put(dev_priv);
1014 }
1015
chv_phy_release_cl2_override(struct intel_encoder * encoder)1016 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1017 {
1018 struct intel_display *display = to_intel_display(encoder);
1019 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1020
1021 if (dig_port->release_cl2_override) {
1022 chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, false);
1023 dig_port->release_cl2_override = false;
1024 }
1025 }
1026
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1027 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1028 const struct intel_crtc_state *old_crtc_state)
1029 {
1030 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1031 enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1032 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1033 u32 val;
1034
1035 vlv_dpio_get(dev_priv);
1036
1037 /* disable left/right clock distribution */
1038 if (pipe != PIPE_B) {
1039 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1040 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1041 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1042 } else {
1043 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1044 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1045 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1046 }
1047
1048 vlv_dpio_put(dev_priv);
1049
1050 /*
1051 * Leave the power down bit cleared for at least one
1052 * lane so that chv_powergate_phy_ch() will power
1053 * on something when the channel is otherwise unused.
1054 * When the port is off and the override is removed
1055 * the lanes power down anyway, so otherwise it doesn't
1056 * really matter what the state of power down bits is
1057 * after this.
1058 */
1059 chv_phy_powergate_lanes(encoder, false, 0x0);
1060 }
1061
vlv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)1062 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1063 const struct intel_crtc_state *crtc_state,
1064 u32 demph_reg_value, u32 preemph_reg_value,
1065 u32 uniqtranscale_reg_value, u32 tx3_demph)
1066 {
1067 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1068 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1069 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1070 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1071
1072 vlv_dpio_get(dev_priv);
1073
1074 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1075 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1076 vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1077 uniqtranscale_reg_value);
1078 vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1079
1080 if (tx3_demph)
1081 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1082
1083 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1084 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1085 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1086
1087 vlv_dpio_put(dev_priv);
1088 }
1089
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1090 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1091 const struct intel_crtc_state *crtc_state)
1092 {
1093 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1094 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1095 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1096 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1097
1098 /* Program Tx lane resets to default */
1099 vlv_dpio_get(dev_priv);
1100
1101 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1102 DPIO_PCS_TX_LANE2_RESET |
1103 DPIO_PCS_TX_LANE1_RESET);
1104 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1105 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1106 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1107 DPIO_PCS_CLK_DATAWIDTH_8_10 |
1108 DPIO_PCS_CLK_SOFT_RESET);
1109
1110 /* Fix up inter-pair skew failure */
1111 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1112 vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1113 vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1114
1115 vlv_dpio_put(dev_priv);
1116 }
1117
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1119 const struct intel_crtc_state *crtc_state)
1120 {
1121 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1122 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1123 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1125 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1126 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1127 enum pipe pipe = crtc->pipe;
1128 u32 val;
1129
1130 vlv_dpio_get(dev_priv);
1131
1132 /* Enable clock channels for this port */
1133 val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1134 if (pipe == PIPE_B)
1135 val |= DPIO_PCS_USEDCLKCHANNEL;
1136 val |= 0xc4;
1137 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1138
1139 /* Program lane clock */
1140 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1141 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1142
1143 vlv_dpio_put(dev_priv);
1144 }
1145
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1146 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1147 const struct intel_crtc_state *old_crtc_state)
1148 {
1149 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1150 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1152 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1153
1154 vlv_dpio_get(dev_priv);
1155 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1156 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1157 vlv_dpio_put(dev_priv);
1158 }
1159