xref: /linux/drivers/gpu/drm/i915/display/intel_dpio_phy.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "bxt_dpio_phy_regs.h"
25 #include "i915_drv.h"
26 #include "i915_reg.h"
27 #include "intel_ddi.h"
28 #include "intel_ddi_buf_trans.h"
29 #include "intel_de.h"
30 #include "intel_display_power_well.h"
31 #include "intel_display_types.h"
32 #include "intel_dp.h"
33 #include "intel_dpio_phy.h"
34 #include "vlv_dpio_phy_regs.h"
35 #include "vlv_sideband.h"
36 
37 /**
38  * DOC: DPIO
39  *
40  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
41  * ports. DPIO is the name given to such a display PHY. These PHYs
42  * don't follow the standard programming model using direct MMIO
43  * registers, and instead their registers must be accessed trough IOSF
44  * sideband. VLV has one such PHY for driving ports B and C, and CHV
45  * adds another PHY for driving port D. Each PHY responds to specific
46  * IOSF-SB port.
47  *
48  * Each display PHY is made up of one or two channels. Each channel
49  * houses a common lane part which contains the PLL and other common
50  * logic. CH0 common lane also contains the IOSF-SB logic for the
51  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
52  * must be running when any DPIO registers are accessed.
53  *
54  * In addition to having their own registers, the PHYs are also
55  * controlled through some dedicated signals from the display
56  * controller. These include PLL reference clock enable, PLL enable,
57  * and CRI clock selection, for example.
58  *
59  * Eeach channel also has two splines (also called data lanes), and
60  * each spline is made up of one Physical Access Coding Sub-Layer
61  * (PCS) block and two TX lanes. So each channel has two PCS blocks
62  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
63  * data/clock pairs depending on the output type.
64  *
65  * Additionally the PHY also contains an AUX lane with AUX blocks
66  * for each channel. This is used for DP AUX communication, but
67  * this fact isn't really relevant for the driver since AUX is
68  * controlled from the display controller side. No DPIO registers
69  * need to be accessed during AUX communication,
70  *
71  * Generally on VLV/CHV the common lane corresponds to the pipe and
72  * the spline (PCS/TX) corresponds to the port.
73  *
74  * For dual channel PHY (VLV/CHV):
75  *
76  *  pipe A == CMN/PLL/REF CH0
77  *
78  *  pipe B == CMN/PLL/REF CH1
79  *
80  *  port B == PCS/TX CH0
81  *
82  *  port C == PCS/TX CH1
83  *
84  * This is especially important when we cross the streams
85  * ie. drive port B with pipe B, or port C with pipe A.
86  *
87  * For single channel PHY (CHV):
88  *
89  *  pipe C == CMN/PLL/REF CH0
90  *
91  *  port D == PCS/TX CH0
92  *
93  * On BXT the entire PHY channel corresponds to the port. That means
94  * the PLL is also now associated with the port rather than the pipe,
95  * and so the clock needs to be routed to the appropriate transcoder.
96  * Port A PLL is directly connected to transcoder EDP and port B/C
97  * PLLs can be routed to any transcoder A/B/C.
98  *
99  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
100  * digital port D (CHV) or port A (BXT). ::
101  *
102  *
103  *     Dual channel PHY (VLV/CHV/BXT)
104  *     ---------------------------------
105  *     |      CH0      |      CH1      |
106  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
107  *     |---------------|---------------| Display PHY
108  *     | PCS01 | PCS23 | PCS01 | PCS23 |
109  *     |-------|-------|-------|-------|
110  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
111  *     ---------------------------------
112  *     |     DDI0      |     DDI1      | DP/HDMI ports
113  *     ---------------------------------
114  *
115  *     Single channel PHY (CHV/BXT)
116  *     -----------------
117  *     |      CH0      |
118  *     |  CMN/PLL/REF  |
119  *     |---------------| Display PHY
120  *     | PCS01 | PCS23 |
121  *     |-------|-------|
122  *     |TX0|TX1|TX2|TX3|
123  *     -----------------
124  *     |     DDI2      | DP/HDMI port
125  *     -----------------
126  */
127 
128 /**
129  * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
130  */
131 struct bxt_dpio_phy_info {
132 	/**
133 	 * @dual_channel: true if this phy has a second channel.
134 	 */
135 	bool dual_channel;
136 
137 	/**
138 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
139 	 * Otherwise the GRC value will be copied from the phy indicated by
140 	 * this field.
141 	 */
142 	enum dpio_phy rcomp_phy;
143 
144 	/**
145 	 * @reset_delay: delay in us to wait before setting the common reset
146 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
147 	 */
148 	int reset_delay;
149 
150 	/**
151 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
152 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
153 	 */
154 	u32 pwron_mask;
155 
156 	/**
157 	 * @channel: struct containing per channel information.
158 	 */
159 	struct {
160 		/**
161 		 * @channel.port: which port maps to this channel.
162 		 */
163 		enum port port;
164 	} channel[2];
165 };
166 
167 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
168 	[DPIO_PHY0] = {
169 		.dual_channel = true,
170 		.rcomp_phy = DPIO_PHY1,
171 		.pwron_mask = BIT(0),
172 
173 		.channel = {
174 			[DPIO_CH0] = { .port = PORT_B },
175 			[DPIO_CH1] = { .port = PORT_C },
176 		}
177 	},
178 	[DPIO_PHY1] = {
179 		.dual_channel = false,
180 		.rcomp_phy = -1,
181 		.pwron_mask = BIT(1),
182 
183 		.channel = {
184 			[DPIO_CH0] = { .port = PORT_A },
185 		}
186 	},
187 };
188 
189 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
190 	[DPIO_PHY0] = {
191 		.dual_channel = false,
192 		.rcomp_phy = DPIO_PHY1,
193 		.pwron_mask = BIT(0),
194 		.reset_delay = 20,
195 
196 		.channel = {
197 			[DPIO_CH0] = { .port = PORT_B },
198 		}
199 	},
200 	[DPIO_PHY1] = {
201 		.dual_channel = false,
202 		.rcomp_phy = -1,
203 		.pwron_mask = BIT(3),
204 		.reset_delay = 20,
205 
206 		.channel = {
207 			[DPIO_CH0] = { .port = PORT_A },
208 		}
209 	},
210 	[DPIO_PHY2] = {
211 		.dual_channel = false,
212 		.rcomp_phy = DPIO_PHY1,
213 		.pwron_mask = BIT(1),
214 		.reset_delay = 20,
215 
216 		.channel = {
217 			[DPIO_CH0] = { .port = PORT_C },
218 		}
219 	},
220 };
221 
222 static const struct bxt_dpio_phy_info *
bxt_get_phy_list(struct intel_display * display,int * count)223 bxt_get_phy_list(struct intel_display *display, int *count)
224 {
225 	struct drm_i915_private *dev_priv = to_i915(display->drm);
226 
227 	if (IS_GEMINILAKE(dev_priv)) {
228 		*count =  ARRAY_SIZE(glk_dpio_phy_info);
229 		return glk_dpio_phy_info;
230 	} else {
231 		*count =  ARRAY_SIZE(bxt_dpio_phy_info);
232 		return bxt_dpio_phy_info;
233 	}
234 }
235 
236 static const struct bxt_dpio_phy_info *
bxt_get_phy_info(struct intel_display * display,enum dpio_phy phy)237 bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
238 {
239 	int count;
240 	const struct bxt_dpio_phy_info *phy_list =
241 		bxt_get_phy_list(display, &count);
242 
243 	return &phy_list[phy];
244 }
245 
bxt_port_to_phy_channel(struct intel_display * display,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)246 void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
247 			     enum dpio_phy *phy, enum dpio_channel *ch)
248 {
249 	const struct bxt_dpio_phy_info *phy_info, *phys;
250 	int i, count;
251 
252 	phys = bxt_get_phy_list(display, &count);
253 
254 	for (i = 0; i < count; i++) {
255 		phy_info = &phys[i];
256 
257 		if (port == phy_info->channel[DPIO_CH0].port) {
258 			*phy = i;
259 			*ch = DPIO_CH0;
260 			return;
261 		}
262 
263 		if (phy_info->dual_channel &&
264 		    port == phy_info->channel[DPIO_CH1].port) {
265 			*phy = i;
266 			*ch = DPIO_CH1;
267 			return;
268 		}
269 	}
270 
271 	drm_WARN(display->drm, 1, "PHY not found for PORT %c",
272 		 port_name(port));
273 	*phy = DPIO_PHY0;
274 	*ch = DPIO_CH0;
275 }
276 
277 /*
278  * Like intel_de_rmw() but reads from a single per-lane register and
279  * writes to the group register to write the same value to all the lanes.
280  */
bxt_dpio_phy_rmw_grp(struct intel_display * display,i915_reg_t reg_single,i915_reg_t reg_group,u32 clear,u32 set)281 static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
282 				i915_reg_t reg_single,
283 				i915_reg_t reg_group,
284 				u32 clear, u32 set)
285 {
286 	u32 old, val;
287 
288 	old = intel_de_read(display, reg_single);
289 	val = (old & ~clear) | set;
290 	intel_de_write(display, reg_group, val);
291 
292 	return old;
293 }
294 
bxt_dpio_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)295 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
296 				    const struct intel_crtc_state *crtc_state)
297 {
298 	struct intel_display *display = to_intel_display(encoder);
299 	const struct intel_ddi_buf_trans *trans;
300 	enum dpio_channel ch;
301 	enum dpio_phy phy;
302 	int lane, n_entries;
303 
304 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
305 	if (drm_WARN_ON_ONCE(display->drm, !trans))
306 		return;
307 
308 	bxt_port_to_phy_channel(display, encoder->port, &phy, &ch);
309 
310 	/*
311 	 * While we write to the group register to program all lanes at once we
312 	 * can read only lane registers and we pick lanes 0/1 for that.
313 	 */
314 	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
315 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
316 			     TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
317 
318 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
319 		int level = intel_ddi_level(encoder, crtc_state, lane);
320 
321 		intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
322 			     MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
323 			     MARGIN_000(trans->entries[level].bxt.margin) |
324 			     UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
325 	}
326 
327 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
328 		int level = intel_ddi_level(encoder, crtc_state, lane);
329 		u32 val;
330 
331 		intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
332 			     SCALE_DCOMP_METHOD,
333 			     trans->entries[level].bxt.enable ?
334 			     SCALE_DCOMP_METHOD : 0);
335 
336 		val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
337 		if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
338 			drm_err(display->drm,
339 				"Disabled scaling while ouniqetrangenmethod was set");
340 	}
341 
342 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
343 		int level = intel_ddi_level(encoder, crtc_state, lane);
344 
345 		intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
346 			     DE_EMPHASIS_MASK,
347 			     DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
348 	}
349 
350 	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
351 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
352 			     0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
353 }
354 
bxt_dpio_phy_is_enabled(struct intel_display * display,enum dpio_phy phy)355 bool bxt_dpio_phy_is_enabled(struct intel_display *display,
356 			     enum dpio_phy phy)
357 {
358 	const struct bxt_dpio_phy_info *phy_info;
359 
360 	phy_info = bxt_get_phy_info(display, phy);
361 
362 	if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
363 		return false;
364 
365 	if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
366 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
367 		drm_dbg(display->drm,
368 			"DDI PHY %d powered, but power hasn't settled\n", phy);
369 
370 		return false;
371 	}
372 
373 	if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
374 		drm_dbg(display->drm,
375 			"DDI PHY %d powered, but still in reset\n", phy);
376 
377 		return false;
378 	}
379 
380 	return true;
381 }
382 
bxt_get_grc(struct intel_display * display,enum dpio_phy phy)383 static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
384 {
385 	u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
386 
387 	return REG_FIELD_GET(GRC_CODE_MASK, val);
388 }
389 
bxt_phy_wait_grc_done(struct intel_display * display,enum dpio_phy phy)390 static void bxt_phy_wait_grc_done(struct intel_display *display,
391 				  enum dpio_phy phy)
392 {
393 	if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10))
394 		drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
395 }
396 
_bxt_dpio_phy_init(struct intel_display * display,enum dpio_phy phy)397 static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
398 {
399 	const struct bxt_dpio_phy_info *phy_info;
400 	u32 val;
401 
402 	phy_info = bxt_get_phy_info(display, phy);
403 
404 	if (bxt_dpio_phy_is_enabled(display, phy)) {
405 		/* Still read out the GRC value for state verification */
406 		if (phy_info->rcomp_phy != -1)
407 			display->state.bxt_phy_grc = bxt_get_grc(display, phy);
408 
409 		if (bxt_dpio_phy_verify_state(display, phy)) {
410 			drm_dbg(display->drm, "DDI PHY %d already enabled, "
411 				"won't reprogram it\n", phy);
412 			return;
413 		}
414 
415 		drm_dbg(display->drm,
416 			"DDI PHY %d enabled with invalid state, "
417 			"force reprogramming it\n", phy);
418 	}
419 
420 	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
421 
422 	/*
423 	 * The PHY registers start out inaccessible and respond to reads with
424 	 * all 1s.  Eventually they become accessible as they power up, then
425 	 * the reserved bit will give the default 0.  Poll on the reserved bit
426 	 * becoming 0 to find when the PHY is accessible.
427 	 * The flag should get set in 100us according to the HW team, but
428 	 * use 1ms due to occasional timeouts observed with that.
429 	 */
430 	if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
431 			     PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
432 		drm_err(display->drm, "timeout during PHY%d power on\n",
433 			phy);
434 
435 	/* Program PLL Rcomp code offset */
436 	intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
437 		     IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438 
439 	intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
440 		     IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441 
442 	/* Program power gating */
443 	intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0,
444 		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445 
446 	if (phy_info->dual_channel)
447 		intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0,
448 			     DW6_OLDO_DYN_PWR_DOWN_EN);
449 
450 	if (phy_info->rcomp_phy != -1) {
451 		u32 grc_code;
452 
453 		bxt_phy_wait_grc_done(display, phy_info->rcomp_phy);
454 
455 		/*
456 		 * PHY0 isn't connected to an RCOMP resistor so copy over
457 		 * the corresponding calibrated value from PHY1, and disable
458 		 * the automatic calibration on PHY0.
459 		 */
460 		val = bxt_get_grc(display, phy_info->rcomp_phy);
461 		display->state.bxt_phy_grc = val;
462 
463 		grc_code = GRC_CODE_FAST(val) |
464 			GRC_CODE_SLOW(val) |
465 			GRC_CODE_NOM(val);
466 		intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code);
467 		intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
468 			     0, GRC_DIS | GRC_RDY_OVRD);
469 	}
470 
471 	if (phy_info->reset_delay)
472 		udelay(phy_info->reset_delay);
473 
474 	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
475 }
476 
bxt_dpio_phy_uninit(struct intel_display * display,enum dpio_phy phy)477 void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
478 {
479 	const struct bxt_dpio_phy_info *phy_info;
480 
481 	phy_info = bxt_get_phy_info(display, phy);
482 
483 	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
484 
485 	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
486 }
487 
bxt_dpio_phy_init(struct intel_display * display,enum dpio_phy phy)488 void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
489 {
490 	const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
491 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
492 	bool was_enabled;
493 
494 	lockdep_assert_held(&display->power.domains.lock);
495 
496 	was_enabled = true;
497 	if (rcomp_phy != -1)
498 		was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy);
499 
500 	/*
501 	 * We need to copy the GRC calibration value from rcomp_phy,
502 	 * so make sure it's powered up.
503 	 */
504 	if (!was_enabled)
505 		_bxt_dpio_phy_init(display, rcomp_phy);
506 
507 	_bxt_dpio_phy_init(display, phy);
508 
509 	if (!was_enabled)
510 		bxt_dpio_phy_uninit(display, rcomp_phy);
511 }
512 
513 static bool __printf(6, 7)
__phy_reg_verify_state(struct intel_display * display,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)514 __phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
515 		       i915_reg_t reg, u32 mask, u32 expected,
516 		       const char *reg_fmt, ...)
517 {
518 	struct va_format vaf;
519 	va_list args;
520 	u32 val;
521 
522 	val = intel_de_read(display, reg);
523 	if ((val & mask) == expected)
524 		return true;
525 
526 	va_start(args, reg_fmt);
527 	vaf.fmt = reg_fmt;
528 	vaf.va = &args;
529 
530 	drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
531 			 "current %08x, expected %08x (mask %08x)\n",
532 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
533 			 mask);
534 
535 	va_end(args);
536 
537 	return false;
538 }
539 
bxt_dpio_phy_verify_state(struct intel_display * display,enum dpio_phy phy)540 bool bxt_dpio_phy_verify_state(struct intel_display *display,
541 			       enum dpio_phy phy)
542 {
543 	const struct bxt_dpio_phy_info *phy_info;
544 	u32 mask;
545 	bool ok;
546 
547 	phy_info = bxt_get_phy_info(display, phy);
548 
549 #define _CHK(reg, mask, exp, fmt, ...)					\
550 	__phy_reg_verify_state(display, phy, reg, mask, exp, fmt,	\
551 			       ## __VA_ARGS__)
552 
553 	if (!bxt_dpio_phy_is_enabled(display, phy))
554 		return false;
555 
556 	ok = true;
557 
558 	/* PLL Rcomp code offset */
559 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
560 		   IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
561 		   "BXT_PORT_CL1CM_DW9(%d)", phy);
562 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
563 		   IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
564 		   "BXT_PORT_CL1CM_DW10(%d)", phy);
565 
566 	/* Power gating */
567 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
568 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
569 		   "BXT_PORT_CL1CM_DW28(%d)", phy);
570 
571 	if (phy_info->dual_channel)
572 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
573 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
574 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
575 
576 	if (phy_info->rcomp_phy != -1) {
577 		u32 grc_code = display->state.bxt_phy_grc;
578 
579 		grc_code = GRC_CODE_FAST(grc_code) |
580 			GRC_CODE_SLOW(grc_code) |
581 			GRC_CODE_NOM(grc_code);
582 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
583 		       GRC_CODE_NOM_MASK;
584 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
585 			   "BXT_PORT_REF_DW6(%d)", phy);
586 
587 		mask = GRC_DIS | GRC_RDY_OVRD;
588 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
589 			   "BXT_PORT_REF_DW8(%d)", phy);
590 	}
591 
592 	return ok;
593 #undef _CHK
594 }
595 
596 u8
bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)597 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
598 {
599 	switch (lane_count) {
600 	case 1:
601 		return 0;
602 	case 2:
603 		return BIT(2) | BIT(0);
604 	case 4:
605 		return BIT(3) | BIT(2) | BIT(0);
606 	default:
607 		MISSING_CASE(lane_count);
608 
609 		return 0;
610 	}
611 }
612 
bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)613 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
614 				      u8 lane_lat_optim_mask)
615 {
616 	struct intel_display *display = to_intel_display(encoder);
617 	enum port port = encoder->port;
618 	enum dpio_phy phy;
619 	enum dpio_channel ch;
620 	int lane;
621 
622 	bxt_port_to_phy_channel(display, port, &phy, &ch);
623 
624 	for (lane = 0; lane < 4; lane++) {
625 		/*
626 		 * Note that on CHV this flag is called UPAR, but has
627 		 * the same function.
628 		 */
629 		intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
630 			     LATENCY_OPTIM,
631 			     lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
632 	}
633 }
634 
635 u8
bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)636 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
637 {
638 	struct intel_display *display = to_intel_display(encoder);
639 	enum port port = encoder->port;
640 	enum dpio_phy phy;
641 	enum dpio_channel ch;
642 	int lane;
643 	u8 mask;
644 
645 	bxt_port_to_phy_channel(display, port, &phy, &ch);
646 
647 	mask = 0;
648 	for (lane = 0; lane < 4; lane++) {
649 		u32 val = intel_de_read(display,
650 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
651 
652 		if (val & LATENCY_OPTIM)
653 			mask |= BIT(lane);
654 	}
655 
656 	return mask;
657 }
658 
vlv_dig_port_to_channel(struct intel_digital_port * dig_port)659 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
660 {
661 	switch (dig_port->base.port) {
662 	default:
663 		MISSING_CASE(dig_port->base.port);
664 		fallthrough;
665 	case PORT_B:
666 	case PORT_D:
667 		return DPIO_CH0;
668 	case PORT_C:
669 		return DPIO_CH1;
670 	}
671 }
672 
vlv_dig_port_to_phy(struct intel_digital_port * dig_port)673 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
674 {
675 	switch (dig_port->base.port) {
676 	default:
677 		MISSING_CASE(dig_port->base.port);
678 		fallthrough;
679 	case PORT_B:
680 	case PORT_C:
681 		return DPIO_PHY0;
682 	case PORT_D:
683 		return DPIO_PHY1;
684 	}
685 }
686 
vlv_pipe_to_phy(enum pipe pipe)687 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
688 {
689 	switch (pipe) {
690 	default:
691 		MISSING_CASE(pipe);
692 		fallthrough;
693 	case PIPE_A:
694 	case PIPE_B:
695 		return DPIO_PHY0;
696 	case PIPE_C:
697 		return DPIO_PHY1;
698 	}
699 }
700 
vlv_pipe_to_channel(enum pipe pipe)701 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
702 {
703 	switch (pipe) {
704 	default:
705 		MISSING_CASE(pipe);
706 		fallthrough;
707 	case PIPE_A:
708 	case PIPE_C:
709 		return DPIO_CH0;
710 	case PIPE_B:
711 		return DPIO_CH1;
712 	}
713 }
714 
chv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)715 void chv_set_phy_signal_level(struct intel_encoder *encoder,
716 			      const struct intel_crtc_state *crtc_state,
717 			      u32 deemph_reg_value, u32 margin_reg_value,
718 			      bool uniq_trans_scale)
719 {
720 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
721 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
722 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
723 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
724 	u32 val;
725 	int i;
726 
727 	vlv_dpio_get(dev_priv);
728 
729 	/* Clear calc init */
730 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
731 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
732 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
733 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
734 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
735 
736 	if (crtc_state->lane_count > 2) {
737 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
738 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
739 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
740 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
741 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
742 	}
743 
744 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
745 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
746 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
747 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
748 
749 	if (crtc_state->lane_count > 2) {
750 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
751 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
752 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
753 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
754 	}
755 
756 	/* Program swing deemph */
757 	for (i = 0; i < crtc_state->lane_count; i++) {
758 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
759 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
760 		val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
761 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
762 	}
763 
764 	/* Program swing margin */
765 	for (i = 0; i < crtc_state->lane_count; i++) {
766 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
767 
768 		val &= ~DPIO_SWING_MARGIN000_MASK;
769 		val |= DPIO_SWING_MARGIN000(margin_reg_value);
770 
771 		/*
772 		 * Supposedly this value shouldn't matter when unique transition
773 		 * scale is disabled, but in fact it does matter. Let's just
774 		 * always program the same value and hope it's OK.
775 		 */
776 		val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
777 		val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
778 
779 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
780 	}
781 
782 	/*
783 	 * The document said it needs to set bit 27 for ch0 and bit 26
784 	 * for ch1. Might be a typo in the doc.
785 	 * For now, for this unique transition scale selection, set bit
786 	 * 27 for ch0 and ch1.
787 	 */
788 	for (i = 0; i < crtc_state->lane_count; i++) {
789 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
790 		if (uniq_trans_scale)
791 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
792 		else
793 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
794 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
795 	}
796 
797 	/* Start swing calculation */
798 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
799 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
800 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
801 
802 	if (crtc_state->lane_count > 2) {
803 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
804 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
805 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
806 	}
807 
808 	vlv_dpio_put(dev_priv);
809 }
810 
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)811 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
812 			      const struct intel_crtc_state *crtc_state,
813 			      bool reset)
814 {
815 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
816 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
817 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
818 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
819 	u32 val;
820 
821 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
822 	if (reset)
823 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
824 	else
825 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
826 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
827 
828 	if (crtc_state->lane_count > 2) {
829 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
830 		if (reset)
831 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
832 		else
833 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
834 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
835 	}
836 
837 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
838 	val |= CHV_PCS_REQ_SOFTRESET_EN;
839 	if (reset)
840 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
841 	else
842 		val |= DPIO_PCS_CLK_SOFT_RESET;
843 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
844 
845 	if (crtc_state->lane_count > 2) {
846 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
847 		val |= CHV_PCS_REQ_SOFTRESET_EN;
848 		if (reset)
849 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
850 		else
851 			val |= DPIO_PCS_CLK_SOFT_RESET;
852 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
853 	}
854 }
855 
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)856 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
857 			    const struct intel_crtc_state *crtc_state)
858 {
859 	struct intel_display *display = to_intel_display(encoder);
860 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
861 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
862 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
864 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
865 	enum pipe pipe = crtc->pipe;
866 	unsigned int lane_mask =
867 		intel_dp_unused_lane_mask(crtc_state->lane_count);
868 	u32 val;
869 
870 	/*
871 	 * Must trick the second common lane into life.
872 	 * Otherwise we can't even access the PLL.
873 	 */
874 	if (ch == DPIO_CH0 && pipe == PIPE_B)
875 		dig_port->release_cl2_override =
876 			!chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, true);
877 
878 	chv_phy_powergate_lanes(encoder, true, lane_mask);
879 
880 	vlv_dpio_get(dev_priv);
881 
882 	/* Assert data lane reset */
883 	chv_data_lane_soft_reset(encoder, crtc_state, true);
884 
885 	/* program left/right clock distribution */
886 	if (pipe != PIPE_B) {
887 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
888 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
889 		if (ch == DPIO_CH0)
890 			val |= CHV_BUFLEFTENA1_FORCE;
891 		if (ch == DPIO_CH1)
892 			val |= CHV_BUFRIGHTENA1_FORCE;
893 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
894 	} else {
895 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
896 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
897 		if (ch == DPIO_CH0)
898 			val |= CHV_BUFLEFTENA2_FORCE;
899 		if (ch == DPIO_CH1)
900 			val |= CHV_BUFRIGHTENA2_FORCE;
901 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
902 	}
903 
904 	/* program clock channel usage */
905 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
906 	val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
907 	if (pipe == PIPE_B)
908 		val |= DPIO_PCS_USEDCLKCHANNEL;
909 	else
910 		val &= ~DPIO_PCS_USEDCLKCHANNEL;
911 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
912 
913 	if (crtc_state->lane_count > 2) {
914 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
915 		val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
916 		if (pipe == PIPE_B)
917 			val |= DPIO_PCS_USEDCLKCHANNEL;
918 		else
919 			val &= ~DPIO_PCS_USEDCLKCHANNEL;
920 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
921 	}
922 
923 	/*
924 	 * This a a bit weird since generally CL
925 	 * matches the pipe, but here we need to
926 	 * pick the CL based on the port.
927 	 */
928 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
929 	if (pipe == PIPE_B)
930 		val |= CHV_CMN_USEDCLKCHANNEL;
931 	else
932 		val &= ~CHV_CMN_USEDCLKCHANNEL;
933 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
934 
935 	vlv_dpio_put(dev_priv);
936 }
937 
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
939 				const struct intel_crtc_state *crtc_state)
940 {
941 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
942 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
943 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
944 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
945 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
946 	int data, i, stagger;
947 	u32 val;
948 
949 	vlv_dpio_get(dev_priv);
950 
951 	/* allow hardware to manage TX FIFO reset source */
952 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
953 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
954 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
955 
956 	if (crtc_state->lane_count > 2) {
957 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
958 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
959 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
960 	}
961 
962 	/* Program Tx lane latency optimal setting*/
963 	for (i = 0; i < crtc_state->lane_count; i++) {
964 		/* Set the upar bit */
965 		if (crtc_state->lane_count == 1)
966 			data = 0;
967 		else
968 			data = (i == 1) ? 0 : DPIO_UPAR;
969 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
970 	}
971 
972 	/* Data lane stagger programming */
973 	if (crtc_state->port_clock > 270000)
974 		stagger = 0x18;
975 	else if (crtc_state->port_clock > 135000)
976 		stagger = 0xd;
977 	else if (crtc_state->port_clock > 67500)
978 		stagger = 0x7;
979 	else if (crtc_state->port_clock > 33750)
980 		stagger = 0x4;
981 	else
982 		stagger = 0x2;
983 
984 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
985 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
986 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
987 
988 	if (crtc_state->lane_count > 2) {
989 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
990 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
991 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
992 	}
993 
994 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
995 		       DPIO_LANESTAGGER_STRAP(stagger) |
996 		       DPIO_LANESTAGGER_STRAP_OVRD |
997 		       DPIO_TX1_STAGGER_MASK(0x1f) |
998 		       DPIO_TX1_STAGGER_MULT(6) |
999 		       DPIO_TX2_STAGGER_MULT(0));
1000 
1001 	if (crtc_state->lane_count > 2) {
1002 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1003 			       DPIO_LANESTAGGER_STRAP(stagger) |
1004 			       DPIO_LANESTAGGER_STRAP_OVRD |
1005 			       DPIO_TX1_STAGGER_MASK(0x1f) |
1006 			       DPIO_TX1_STAGGER_MULT(7) |
1007 			       DPIO_TX2_STAGGER_MULT(5));
1008 	}
1009 
1010 	/* Deassert data lane reset */
1011 	chv_data_lane_soft_reset(encoder, crtc_state, false);
1012 
1013 	vlv_dpio_put(dev_priv);
1014 }
1015 
chv_phy_release_cl2_override(struct intel_encoder * encoder)1016 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1017 {
1018 	struct intel_display *display = to_intel_display(encoder);
1019 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1020 
1021 	if (dig_port->release_cl2_override) {
1022 		chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, false);
1023 		dig_port->release_cl2_override = false;
1024 	}
1025 }
1026 
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1027 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1028 			      const struct intel_crtc_state *old_crtc_state)
1029 {
1030 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1031 	enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1032 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1033 	u32 val;
1034 
1035 	vlv_dpio_get(dev_priv);
1036 
1037 	/* disable left/right clock distribution */
1038 	if (pipe != PIPE_B) {
1039 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1040 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1041 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1042 	} else {
1043 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1044 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1045 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1046 	}
1047 
1048 	vlv_dpio_put(dev_priv);
1049 
1050 	/*
1051 	 * Leave the power down bit cleared for at least one
1052 	 * lane so that chv_powergate_phy_ch() will power
1053 	 * on something when the channel is otherwise unused.
1054 	 * When the port is off and the override is removed
1055 	 * the lanes power down anyway, so otherwise it doesn't
1056 	 * really matter what the state of power down bits is
1057 	 * after this.
1058 	 */
1059 	chv_phy_powergate_lanes(encoder, false, 0x0);
1060 }
1061 
vlv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)1062 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1063 			      const struct intel_crtc_state *crtc_state,
1064 			      u32 demph_reg_value, u32 preemph_reg_value,
1065 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1066 {
1067 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1068 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1069 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1070 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1071 
1072 	vlv_dpio_get(dev_priv);
1073 
1074 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1075 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1076 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1077 			 uniqtranscale_reg_value);
1078 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1079 
1080 	if (tx3_demph)
1081 		vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1082 
1083 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1084 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1085 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1086 
1087 	vlv_dpio_put(dev_priv);
1088 }
1089 
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1090 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1091 			    const struct intel_crtc_state *crtc_state)
1092 {
1093 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1094 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1095 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1096 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1097 
1098 	/* Program Tx lane resets to default */
1099 	vlv_dpio_get(dev_priv);
1100 
1101 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1102 		       DPIO_PCS_TX_LANE2_RESET |
1103 		       DPIO_PCS_TX_LANE1_RESET);
1104 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1105 		       DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1106 		       DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1107 		       DPIO_PCS_CLK_DATAWIDTH_8_10 |
1108 		       DPIO_PCS_CLK_SOFT_RESET);
1109 
1110 	/* Fix up inter-pair skew failure */
1111 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1112 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1113 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1114 
1115 	vlv_dpio_put(dev_priv);
1116 }
1117 
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1119 				const struct intel_crtc_state *crtc_state)
1120 {
1121 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1122 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1123 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1124 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1125 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1126 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1127 	enum pipe pipe = crtc->pipe;
1128 	u32 val;
1129 
1130 	vlv_dpio_get(dev_priv);
1131 
1132 	/* Enable clock channels for this port */
1133 	val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1134 	if (pipe == PIPE_B)
1135 		val |= DPIO_PCS_USEDCLKCHANNEL;
1136 	val |= 0xc4;
1137 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1138 
1139 	/* Program lane clock */
1140 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1141 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1142 
1143 	vlv_dpio_put(dev_priv);
1144 }
1145 
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1146 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1147 			 const struct intel_crtc_state *old_crtc_state)
1148 {
1149 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1152 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1153 
1154 	vlv_dpio_get(dev_priv);
1155 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1156 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1157 	vlv_dpio_put(dev_priv);
1158 }
1159