1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #define _WANT_FREEBSD_BITSET
30
31 #include <sys/param.h>
32 #include <sys/counter.h>
33 #include <sys/cpuset.h>
34 #include <sys/sysctl.h>
35
36 #include <vm/uma.h>
37 #include <vm/uma_int.h>
38
39 #include <err.h>
40 #include <errno.h>
41 #include <kvm.h>
42 #include <nlist.h>
43 #include <stddef.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48
49 #include "memstat.h"
50 #include "memstat_internal.h"
51
52 static struct nlist namelist[] = {
53 #define X_UMA_KEGS 0
54 { .n_name = "_uma_kegs" },
55 #define X_MP_MAXID 1
56 { .n_name = "_mp_maxid" },
57 #define X_ALL_CPUS 2
58 { .n_name = "_all_cpus" },
59 #define X_VM_NDOMAINS 3
60 { .n_name = "_vm_ndomains" },
61 { .n_name = "" },
62 };
63
64 /*
65 * Extract uma(9) statistics from the running kernel, and store all memory
66 * type information in the passed list. For each type, check the list for an
67 * existing entry with the right name/allocator -- if present, update that
68 * entry. Otherwise, add a new entry. On error, the entire list will be
69 * cleared, as entries will be in an inconsistent state.
70 *
71 * To reduce the level of work for a list that starts empty, we keep around a
72 * hint as to whether it was empty when we began, so we can avoid searching
73 * the list for entries to update. Updates are O(n^2) due to searching for
74 * each entry before adding it.
75 */
76 int
memstat_sysctl_uma(struct memory_type_list * list,int flags)77 memstat_sysctl_uma(struct memory_type_list *list, int flags)
78 {
79 struct uma_stream_header *ushp;
80 struct uma_type_header *uthp;
81 struct uma_percpu_stat *upsp;
82 struct memory_type *mtp;
83 int count, hint_dontsearch, i, j, maxcpus, maxid;
84 char *buffer, *p;
85 size_t size;
86
87 hint_dontsearch = LIST_EMPTY(&list->mtl_list);
88
89 /*
90 * Query the number of CPUs, number of malloc types so that we can
91 * guess an initial buffer size. We loop until we succeed or really
92 * fail. Note that the value of maxcpus we query using sysctl is not
93 * the version we use when processing the real data -- that is read
94 * from the header.
95 */
96 retry:
97 size = sizeof(maxid);
98 if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) {
99 if (errno == EACCES || errno == EPERM)
100 list->mtl_error = MEMSTAT_ERROR_PERMISSION;
101 else
102 list->mtl_error = MEMSTAT_ERROR_DATAERROR;
103 return (-1);
104 }
105 if (size != sizeof(maxid)) {
106 list->mtl_error = MEMSTAT_ERROR_DATAERROR;
107 return (-1);
108 }
109
110 size = sizeof(count);
111 if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) {
112 if (errno == EACCES || errno == EPERM)
113 list->mtl_error = MEMSTAT_ERROR_PERMISSION;
114 else
115 list->mtl_error = MEMSTAT_ERROR_VERSION;
116 return (-1);
117 }
118 if (size != sizeof(count)) {
119 list->mtl_error = MEMSTAT_ERROR_DATAERROR;
120 return (-1);
121 }
122
123 size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) *
124 (maxid + 1));
125
126 buffer = malloc(size);
127 if (buffer == NULL) {
128 list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
129 return (-1);
130 }
131
132 if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) {
133 /*
134 * XXXRW: ENOMEM is an ambiguous return, we should bound the
135 * number of loops, perhaps.
136 */
137 if (errno == ENOMEM) {
138 free(buffer);
139 goto retry;
140 }
141 if (errno == EACCES || errno == EPERM)
142 list->mtl_error = MEMSTAT_ERROR_PERMISSION;
143 else
144 list->mtl_error = MEMSTAT_ERROR_VERSION;
145 free(buffer);
146 return (-1);
147 }
148
149 if (size == 0) {
150 free(buffer);
151 return (0);
152 }
153
154 if (size < sizeof(*ushp)) {
155 list->mtl_error = MEMSTAT_ERROR_VERSION;
156 free(buffer);
157 return (-1);
158 }
159 p = buffer;
160 ushp = (struct uma_stream_header *)p;
161 p += sizeof(*ushp);
162
163 if (ushp->ush_version != UMA_STREAM_VERSION) {
164 list->mtl_error = MEMSTAT_ERROR_VERSION;
165 free(buffer);
166 return (-1);
167 }
168
169 /*
170 * For the remainder of this function, we are quite trusting about
171 * the layout of structures and sizes, since we've determined we have
172 * a matching version and acceptable CPU count.
173 */
174 maxcpus = ushp->ush_maxcpus;
175 count = ushp->ush_count;
176 for (i = 0; i < count; i++) {
177 uthp = (struct uma_type_header *)p;
178 p += sizeof(*uthp);
179
180 if (hint_dontsearch == 0) {
181 mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
182 uthp->uth_name);
183 } else
184 mtp = NULL;
185 if (mtp == NULL)
186 mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
187 uthp->uth_name, maxid + 1);
188 if (mtp == NULL) {
189 _memstat_mtl_empty(list);
190 free(buffer);
191 list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
192 return (-1);
193 }
194
195 /*
196 * Reset the statistics on a current node.
197 */
198 _memstat_mt_reset_stats(mtp, maxid + 1);
199
200 mtp->mt_numallocs = uthp->uth_allocs;
201 mtp->mt_numfrees = uthp->uth_frees;
202 mtp->mt_failures = uthp->uth_fails;
203 mtp->mt_sleeps = uthp->uth_sleeps;
204 mtp->mt_xdomain = uthp->uth_xdomain;
205
206 for (j = 0; j < maxcpus; j++) {
207 upsp = (struct uma_percpu_stat *)p;
208 p += sizeof(*upsp);
209
210 mtp->mt_percpu_cache[j].mtp_free =
211 upsp->ups_cache_free;
212 mtp->mt_free += upsp->ups_cache_free;
213 mtp->mt_numallocs += upsp->ups_allocs;
214 mtp->mt_numfrees += upsp->ups_frees;
215 }
216
217 /*
218 * Values for uth_allocs and uth_frees frees are snap.
219 * It may happen that kernel reports that number of frees
220 * is greater than number of allocs. See counter(9) for
221 * details.
222 */
223 if (mtp->mt_numallocs < mtp->mt_numfrees)
224 mtp->mt_numallocs = mtp->mt_numfrees;
225
226 mtp->mt_size = uthp->uth_size;
227 mtp->mt_rsize = uthp->uth_rsize;
228 mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size;
229 mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size;
230 mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
231 mtp->mt_countlimit = uthp->uth_limit;
232 mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size;
233
234 mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
235 mtp->mt_zonefree = uthp->uth_zone_free;
236
237 /*
238 * UMA secondary zones share a keg with the primary zone. To
239 * avoid double-reporting of free items, report keg free
240 * items only in the primary zone.
241 */
242 if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) {
243 mtp->mt_kegfree = uthp->uth_keg_free;
244 mtp->mt_free += mtp->mt_kegfree;
245 }
246 mtp->mt_free += mtp->mt_zonefree;
247 }
248
249 free(buffer);
250
251 return (0);
252 }
253
254 static int
kread(kvm_t * kvm,void * kvm_pointer,void * address,size_t size,size_t offset)255 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
256 size_t offset)
257 {
258 ssize_t ret;
259
260 ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
261 size);
262 if (ret < 0)
263 return (MEMSTAT_ERROR_KVM);
264 if ((size_t)ret != size)
265 return (MEMSTAT_ERROR_KVM_SHORTREAD);
266 return (0);
267 }
268
269 static int
kread_string(kvm_t * kvm,const void * kvm_pointer,char * buffer,int buflen)270 kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
271 {
272 ssize_t ret;
273 int i;
274
275 for (i = 0; i < buflen; i++) {
276 ret = kvm_read(kvm, (unsigned long)kvm_pointer + i,
277 &(buffer[i]), sizeof(char));
278 if (ret < 0)
279 return (MEMSTAT_ERROR_KVM);
280 if ((size_t)ret != sizeof(char))
281 return (MEMSTAT_ERROR_KVM_SHORTREAD);
282 if (buffer[i] == '\0')
283 return (0);
284 }
285 /* Truncate. */
286 buffer[i-1] = '\0';
287 return (0);
288 }
289
290 static int
kread_symbol(kvm_t * kvm,int index,void * address,size_t size,size_t offset)291 kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
292 size_t offset)
293 {
294 ssize_t ret;
295
296 ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
297 if (ret < 0)
298 return (MEMSTAT_ERROR_KVM);
299 if ((size_t)ret != size)
300 return (MEMSTAT_ERROR_KVM_SHORTREAD);
301 return (0);
302 }
303
304 /*
305 * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts
306 * UMA(9) statistics from a kernel core/memory file.
307 */
308 int
memstat_kvm_uma(struct memory_type_list * list,void * kvm_handle)309 memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle)
310 {
311 LIST_HEAD(, uma_keg) uma_kegs;
312 struct memory_type *mtp;
313 struct uma_zone_domain uzd;
314 struct uma_domain ukd;
315 struct uma_bucket *ubp, ub;
316 struct uma_cache *ucp, *ucp_array;
317 struct uma_zone *uzp, uz;
318 struct uma_keg *kzp, kz;
319 uint64_t kegfree;
320 int hint_dontsearch, i, mp_maxid, ndomains, ret;
321 char name[MEMTYPE_MAXNAME];
322 cpuset_t all_cpus;
323 long cpusetsize;
324 kvm_t *kvm;
325
326 kvm = (kvm_t *)kvm_handle;
327 hint_dontsearch = LIST_EMPTY(&list->mtl_list);
328 if (kvm_nlist(kvm, namelist) != 0) {
329 list->mtl_error = MEMSTAT_ERROR_KVM;
330 return (-1);
331 }
332 if (namelist[X_UMA_KEGS].n_type == 0 ||
333 namelist[X_UMA_KEGS].n_value == 0) {
334 list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
335 return (-1);
336 }
337 ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0);
338 if (ret != 0) {
339 list->mtl_error = ret;
340 return (-1);
341 }
342 ret = kread_symbol(kvm, X_VM_NDOMAINS, &ndomains,
343 sizeof(ndomains), 0);
344 if (ret != 0) {
345 list->mtl_error = ret;
346 return (-1);
347 }
348 ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0);
349 if (ret != 0) {
350 list->mtl_error = ret;
351 return (-1);
352 }
353 cpusetsize = sysconf(_SC_CPUSET_SIZE);
354 if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) {
355 list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
356 return (-1);
357 }
358 CPU_ZERO(&all_cpus);
359 ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0);
360 if (ret != 0) {
361 list->mtl_error = ret;
362 return (-1);
363 }
364 ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1));
365 if (ucp_array == NULL) {
366 list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
367 return (-1);
368 }
369 for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp =
370 LIST_NEXT(&kz, uk_link)) {
371 ret = kread(kvm, kzp, &kz, sizeof(kz), 0);
372 if (ret != 0) {
373 free(ucp_array);
374 _memstat_mtl_empty(list);
375 list->mtl_error = ret;
376 return (-1);
377 }
378 for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp =
379 LIST_NEXT(&uz, uz_link)) {
380 ret = kread(kvm, uzp, &uz, sizeof(uz), 0);
381 if (ret != 0) {
382 free(ucp_array);
383 _memstat_mtl_empty(list);
384 list->mtl_error = ret;
385 return (-1);
386 }
387 ret = kread(kvm, uzp, ucp_array,
388 sizeof(struct uma_cache) * (mp_maxid + 1),
389 offsetof(struct uma_zone, uz_cpu[0]));
390 if (ret != 0) {
391 free(ucp_array);
392 _memstat_mtl_empty(list);
393 list->mtl_error = ret;
394 return (-1);
395 }
396 ret = kread_string(kvm, uz.uz_name, name,
397 MEMTYPE_MAXNAME);
398 if (ret != 0) {
399 free(ucp_array);
400 _memstat_mtl_empty(list);
401 list->mtl_error = ret;
402 return (-1);
403 }
404 if (hint_dontsearch == 0) {
405 mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
406 name);
407 } else
408 mtp = NULL;
409 if (mtp == NULL)
410 mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
411 name, mp_maxid + 1);
412 if (mtp == NULL) {
413 free(ucp_array);
414 _memstat_mtl_empty(list);
415 list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
416 return (-1);
417 }
418 /*
419 * Reset the statistics on a current node.
420 */
421 _memstat_mt_reset_stats(mtp, mp_maxid + 1);
422 mtp->mt_numallocs = kvm_counter_u64_fetch(kvm,
423 (unsigned long )uz.uz_allocs);
424 mtp->mt_numfrees = kvm_counter_u64_fetch(kvm,
425 (unsigned long )uz.uz_frees);
426 mtp->mt_failures = kvm_counter_u64_fetch(kvm,
427 (unsigned long )uz.uz_fails);
428 mtp->mt_xdomain = kvm_counter_u64_fetch(kvm,
429 (unsigned long )uz.uz_xdomain);
430 mtp->mt_sleeps = uz.uz_sleeps;
431 /* See comment above in memstat_sysctl_uma(). */
432 if (mtp->mt_numallocs < mtp->mt_numfrees)
433 mtp->mt_numallocs = mtp->mt_numfrees;
434
435 if (kz.uk_flags & UMA_ZFLAG_INTERNAL)
436 goto skip_percpu;
437 for (i = 0; i < mp_maxid + 1; i++) {
438 if (!CPU_ISSET(i, &all_cpus))
439 continue;
440 ucp = &ucp_array[i];
441 mtp->mt_numallocs += ucp->uc_allocs;
442 mtp->mt_numfrees += ucp->uc_frees;
443
444 mtp->mt_free += ucp->uc_allocbucket.ucb_cnt;
445 mtp->mt_free += ucp->uc_freebucket.ucb_cnt;
446 mtp->mt_free += ucp->uc_crossbucket.ucb_cnt;
447 }
448 skip_percpu:
449 mtp->mt_size = kz.uk_size;
450 mtp->mt_rsize = kz.uk_rsize;
451 mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size;
452 mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size;
453 mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
454 mtp->mt_countlimit = uz.uz_max_items;
455 mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size;
456 mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
457 for (i = 0; i < ndomains; i++) {
458 ret = kread(kvm, ZDOM_GET(uzp, i), &uzd,
459 sizeof(uzd), 0);
460 if (ret != 0)
461 continue;
462 for (ubp =
463 STAILQ_FIRST(&uzd.uzd_buckets);
464 ubp != NULL;
465 ubp = STAILQ_NEXT(&ub, ub_link)) {
466 ret = kread(kvm, ubp, &ub,
467 sizeof(ub), 0);
468 if (ret != 0)
469 continue;
470 mtp->mt_zonefree += ub.ub_cnt;
471 }
472 }
473 if (!((kz.uk_flags & UMA_ZONE_SECONDARY) &&
474 LIST_FIRST(&kz.uk_zones) != uzp)) {
475 kegfree = 0;
476 for (i = 0; i < ndomains; i++) {
477 ret = kread(kvm, &kzp->uk_domain[i],
478 &ukd, sizeof(ukd), 0);
479 if (ret != 0)
480 kegfree += ukd.ud_free_items;
481 }
482 mtp->mt_kegfree = kegfree;
483 mtp->mt_free += mtp->mt_kegfree;
484 }
485 mtp->mt_free += mtp->mt_zonefree;
486 }
487 }
488 free(ucp_array);
489 return (0);
490 }
491