1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Atmel ADC driver for SAMA5D2 devices and compatible.
4 *
5 * Copyright (C) 2015 Atmel,
6 * 2015 Ludovic Desroches <ludovic.desroches@atmel.com>
7 * 2021 Microchip Technology, Inc. and its subsidiaries
8 * 2021 Eugen Hristev <eugen.hristev@microchip.com>
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/module.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/sched.h>
23 #include <linux/units.h>
24 #include <linux/wait.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/sysfs.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/trigger.h>
29 #include <linux/iio/trigger_consumer.h>
30 #include <linux/iio/triggered_buffer.h>
31 #include <linux/nvmem-consumer.h>
32 #include <linux/pinctrl/consumer.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/regulator/consumer.h>
35
36 #include <dt-bindings/iio/adc/at91-sama5d2_adc.h>
37
38 struct at91_adc_reg_layout {
39 /* Control Register */
40 u16 CR;
41 /* Software Reset */
42 #define AT91_SAMA5D2_CR_SWRST BIT(0)
43 /* Start Conversion */
44 #define AT91_SAMA5D2_CR_START BIT(1)
45 /* Touchscreen Calibration */
46 #define AT91_SAMA5D2_CR_TSCALIB BIT(2)
47 /* Comparison Restart */
48 #define AT91_SAMA5D2_CR_CMPRST BIT(4)
49
50 /* Mode Register */
51 u16 MR;
52 /* Trigger Selection */
53 #define AT91_SAMA5D2_MR_TRGSEL(v) ((v) << 1)
54 /* ADTRG */
55 #define AT91_SAMA5D2_MR_TRGSEL_TRIG0 0
56 /* TIOA0 */
57 #define AT91_SAMA5D2_MR_TRGSEL_TRIG1 1
58 /* TIOA1 */
59 #define AT91_SAMA5D2_MR_TRGSEL_TRIG2 2
60 /* TIOA2 */
61 #define AT91_SAMA5D2_MR_TRGSEL_TRIG3 3
62 /* PWM event line 0 */
63 #define AT91_SAMA5D2_MR_TRGSEL_TRIG4 4
64 /* PWM event line 1 */
65 #define AT91_SAMA5D2_MR_TRGSEL_TRIG5 5
66 /* TIOA3 */
67 #define AT91_SAMA5D2_MR_TRGSEL_TRIG6 6
68 /* RTCOUT0 */
69 #define AT91_SAMA5D2_MR_TRGSEL_TRIG7 7
70 /* Sleep Mode */
71 #define AT91_SAMA5D2_MR_SLEEP BIT(5)
72 /* Fast Wake Up */
73 #define AT91_SAMA5D2_MR_FWUP BIT(6)
74 /* Prescaler Rate Selection */
75 #define AT91_SAMA5D2_MR_PRESCAL(v) ((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET)
76 #define AT91_SAMA5D2_MR_PRESCAL_OFFSET 8
77 #define AT91_SAMA5D2_MR_PRESCAL_MAX 0xff
78 #define AT91_SAMA5D2_MR_PRESCAL_MASK GENMASK(15, 8)
79 /* Startup Time */
80 #define AT91_SAMA5D2_MR_STARTUP(v) ((v) << 16)
81 #define AT91_SAMA5D2_MR_STARTUP_MASK GENMASK(19, 16)
82 /* Minimum startup time for temperature sensor */
83 #define AT91_SAMA5D2_MR_STARTUP_TS_MIN (50)
84 /* Analog Change */
85 #define AT91_SAMA5D2_MR_ANACH BIT(23)
86 /* Tracking Time */
87 #define AT91_SAMA5D2_MR_TRACKTIM(v) ((v) << 24)
88 #define AT91_SAMA5D2_MR_TRACKTIM_TS 6
89 #define AT91_SAMA5D2_MR_TRACKTIM_MAX 0xf
90 /* Transfer Time */
91 #define AT91_SAMA5D2_MR_TRANSFER(v) ((v) << 28)
92 #define AT91_SAMA5D2_MR_TRANSFER_MAX 0x3
93 /* Use Sequence Enable */
94 #define AT91_SAMA5D2_MR_USEQ BIT(31)
95
96 /* Channel Sequence Register 1 */
97 u16 SEQR1;
98 /* Channel Sequence Register 2 */
99 u16 SEQR2;
100 /* Channel Enable Register */
101 u16 CHER;
102 /* Channel Disable Register */
103 u16 CHDR;
104 /* Channel Status Register */
105 u16 CHSR;
106 /* Last Converted Data Register */
107 u16 LCDR;
108 /* Interrupt Enable Register */
109 u16 IER;
110 /* Interrupt Enable Register - TS X measurement ready */
111 #define AT91_SAMA5D2_IER_XRDY BIT(20)
112 /* Interrupt Enable Register - TS Y measurement ready */
113 #define AT91_SAMA5D2_IER_YRDY BIT(21)
114 /* Interrupt Enable Register - TS pressure measurement ready */
115 #define AT91_SAMA5D2_IER_PRDY BIT(22)
116 /* Interrupt Enable Register - Data ready */
117 #define AT91_SAMA5D2_IER_DRDY BIT(24)
118 /* Interrupt Enable Register - general overrun error */
119 #define AT91_SAMA5D2_IER_GOVRE BIT(25)
120 /* Interrupt Enable Register - Pen detect */
121 #define AT91_SAMA5D2_IER_PEN BIT(29)
122 /* Interrupt Enable Register - No pen detect */
123 #define AT91_SAMA5D2_IER_NOPEN BIT(30)
124
125 /* Interrupt Disable Register */
126 u16 IDR;
127 /* Interrupt Mask Register */
128 u16 IMR;
129 /* Interrupt Status Register */
130 u16 ISR;
131 /* End of Conversion Interrupt Enable Register */
132 u16 EOC_IER;
133 /* End of Conversion Interrupt Disable Register */
134 u16 EOC_IDR;
135 /* End of Conversion Interrupt Mask Register */
136 u16 EOC_IMR;
137 /* End of Conversion Interrupt Status Register */
138 u16 EOC_ISR;
139 /* Interrupt Status Register - Pen touching sense status */
140 #define AT91_SAMA5D2_ISR_PENS BIT(31)
141 /* Last Channel Trigger Mode Register */
142 u16 LCTMR;
143 /* Last Channel Compare Window Register */
144 u16 LCCWR;
145 /* Overrun Status Register */
146 u16 OVER;
147 /* Extended Mode Register */
148 u16 EMR;
149 /* Extended Mode Register - Oversampling rate */
150 #define AT91_SAMA5D2_EMR_OSR(V, M) (((V) << 16) & (M))
151 #define AT91_SAMA5D2_EMR_OSR_1SAMPLES 0
152 #define AT91_SAMA5D2_EMR_OSR_4SAMPLES 1
153 #define AT91_SAMA5D2_EMR_OSR_16SAMPLES 2
154 #define AT91_SAMA5D2_EMR_OSR_64SAMPLES 3
155 #define AT91_SAMA5D2_EMR_OSR_256SAMPLES 4
156
157 /* Extended Mode Register - TRACKX */
158 #define AT91_SAMA5D2_TRACKX_MASK GENMASK(23, 22)
159 #define AT91_SAMA5D2_TRACKX(x) (((x) << 22) & \
160 AT91_SAMA5D2_TRACKX_MASK)
161 /* TRACKX for temperature sensor. */
162 #define AT91_SAMA5D2_TRACKX_TS (1)
163
164 /* Extended Mode Register - Averaging on single trigger event */
165 #define AT91_SAMA5D2_EMR_ASTE(V) ((V) << 20)
166
167 /* Compare Window Register */
168 u16 CWR;
169 /* Channel Gain Register */
170 u16 CGR;
171 /* Channel Offset Register */
172 u16 COR;
173 /* Channel Offset Register differential offset - constant, not a register */
174 u16 COR_diff_offset;
175 /* Analog Control Register */
176 u16 ACR;
177 /* Analog Control Register - Pen detect sensitivity mask */
178 #define AT91_SAMA5D2_ACR_PENDETSENS_MASK GENMASK(1, 0)
179 /* Analog Control Register - Source last channel */
180 #define AT91_SAMA5D2_ACR_SRCLCH BIT(16)
181
182 /* Touchscreen Mode Register */
183 u16 TSMR;
184 /* Touchscreen Mode Register - No touch mode */
185 #define AT91_SAMA5D2_TSMR_TSMODE_NONE 0
186 /* Touchscreen Mode Register - 4 wire screen, no pressure measurement */
187 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1
188 /* Touchscreen Mode Register - 4 wire screen, pressure measurement */
189 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS 2
190 /* Touchscreen Mode Register - 5 wire screen */
191 #define AT91_SAMA5D2_TSMR_TSMODE_5WIRE 3
192 /* Touchscreen Mode Register - Average samples mask */
193 #define AT91_SAMA5D2_TSMR_TSAV_MASK GENMASK(5, 4)
194 /* Touchscreen Mode Register - Average samples */
195 #define AT91_SAMA5D2_TSMR_TSAV(x) ((x) << 4)
196 /* Touchscreen Mode Register - Touch/trigger frequency ratio mask */
197 #define AT91_SAMA5D2_TSMR_TSFREQ_MASK GENMASK(11, 8)
198 /* Touchscreen Mode Register - Touch/trigger frequency ratio */
199 #define AT91_SAMA5D2_TSMR_TSFREQ(x) ((x) << 8)
200 /* Touchscreen Mode Register - Pen Debounce Time mask */
201 #define AT91_SAMA5D2_TSMR_PENDBC_MASK GENMASK(31, 28)
202 /* Touchscreen Mode Register - Pen Debounce Time */
203 #define AT91_SAMA5D2_TSMR_PENDBC(x) ((x) << 28)
204 /* Touchscreen Mode Register - No DMA for touch measurements */
205 #define AT91_SAMA5D2_TSMR_NOTSDMA BIT(22)
206 /* Touchscreen Mode Register - Disable pen detection */
207 #define AT91_SAMA5D2_TSMR_PENDET_DIS (0 << 24)
208 /* Touchscreen Mode Register - Enable pen detection */
209 #define AT91_SAMA5D2_TSMR_PENDET_ENA BIT(24)
210
211 /* Touchscreen X Position Register */
212 u16 XPOSR;
213 /* Touchscreen Y Position Register */
214 u16 YPOSR;
215 /* Touchscreen Pressure Register */
216 u16 PRESSR;
217 /* Trigger Register */
218 u16 TRGR;
219 /* Mask for TRGMOD field of TRGR register */
220 #define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0)
221 /* No trigger, only software trigger can start conversions */
222 #define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0
223 /* Trigger Mode external trigger rising edge */
224 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1
225 /* Trigger Mode external trigger falling edge */
226 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2
227 /* Trigger Mode external trigger any edge */
228 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3
229 /* Trigger Mode internal periodic */
230 #define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5
231 /* Trigger Mode - trigger period mask */
232 #define AT91_SAMA5D2_TRGR_TRGPER_MASK GENMASK(31, 16)
233 /* Trigger Mode - trigger period */
234 #define AT91_SAMA5D2_TRGR_TRGPER(x) ((x) << 16)
235
236 /* Correction Select Register */
237 u16 COSR;
238 /* Correction Value Register */
239 u16 CVR;
240 /* Channel Error Correction Register */
241 u16 CECR;
242 /* Write Protection Mode Register */
243 u16 WPMR;
244 /* Write Protection Status Register */
245 u16 WPSR;
246 /* Version Register */
247 u16 VERSION;
248 /* Temperature Sensor Mode Register */
249 u16 TEMPMR;
250 /* Temperature Sensor Mode - Temperature sensor on */
251 #define AT91_SAMA5D2_TEMPMR_TEMPON BIT(0)
252 };
253
254 static const struct at91_adc_reg_layout sama5d2_layout = {
255 .CR = 0x00,
256 .MR = 0x04,
257 .SEQR1 = 0x08,
258 .SEQR2 = 0x0c,
259 .CHER = 0x10,
260 .CHDR = 0x14,
261 .CHSR = 0x18,
262 .LCDR = 0x20,
263 .IER = 0x24,
264 .IDR = 0x28,
265 .IMR = 0x2c,
266 .ISR = 0x30,
267 .LCTMR = 0x34,
268 .LCCWR = 0x38,
269 .OVER = 0x3c,
270 .EMR = 0x40,
271 .CWR = 0x44,
272 .CGR = 0x48,
273 .COR = 0x4c,
274 .COR_diff_offset = 16,
275 .ACR = 0x94,
276 .TSMR = 0xb0,
277 .XPOSR = 0xb4,
278 .YPOSR = 0xb8,
279 .PRESSR = 0xbc,
280 .TRGR = 0xc0,
281 .COSR = 0xd0,
282 .CVR = 0xd4,
283 .CECR = 0xd8,
284 .WPMR = 0xe4,
285 .WPSR = 0xe8,
286 .VERSION = 0xfc,
287 };
288
289 static const struct at91_adc_reg_layout sama7g5_layout = {
290 .CR = 0x00,
291 .MR = 0x04,
292 .SEQR1 = 0x08,
293 .SEQR2 = 0x0c,
294 .CHER = 0x10,
295 .CHDR = 0x14,
296 .CHSR = 0x18,
297 .LCDR = 0x20,
298 .IER = 0x24,
299 .IDR = 0x28,
300 .IMR = 0x2c,
301 .ISR = 0x30,
302 .EOC_IER = 0x34,
303 .EOC_IDR = 0x38,
304 .EOC_IMR = 0x3c,
305 .EOC_ISR = 0x40,
306 .TEMPMR = 0x44,
307 .OVER = 0x4c,
308 .EMR = 0x50,
309 .CWR = 0x54,
310 .COR = 0x5c,
311 .COR_diff_offset = 0,
312 .ACR = 0xe0,
313 .TRGR = 0x100,
314 .COSR = 0x104,
315 .CVR = 0x108,
316 .CECR = 0x10c,
317 .WPMR = 0x118,
318 .WPSR = 0x11c,
319 .VERSION = 0x130,
320 };
321
322 #define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US 2000 /* 2ms */
323 #define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US 200
324
325 #define AT91_SAMA5D2_XYZ_MASK GENMASK(11, 0)
326
327 #define AT91_SAMA5D2_MAX_POS_BITS 12
328
329 #define AT91_HWFIFO_MAX_SIZE_STR "128"
330 #define AT91_HWFIFO_MAX_SIZE 128
331
332 #define AT91_SAMA_CHAN_SINGLE(index, num, addr, rbits) \
333 { \
334 .type = IIO_VOLTAGE, \
335 .channel = num, \
336 .address = addr, \
337 .scan_index = index, \
338 .scan_type = { \
339 .sign = 'u', \
340 .realbits = rbits, \
341 .storagebits = 16, \
342 }, \
343 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
344 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
345 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
346 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
347 .info_mask_shared_by_all_available = \
348 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
349 .datasheet_name = "CH"#num, \
350 .indexed = 1, \
351 }
352
353 #define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr) \
354 AT91_SAMA_CHAN_SINGLE(index, num, addr, 14)
355
356 #define AT91_SAMA7G5_CHAN_SINGLE(index, num, addr) \
357 AT91_SAMA_CHAN_SINGLE(index, num, addr, 16)
358
359 #define AT91_SAMA_CHAN_DIFF(index, num, num2, addr, rbits) \
360 { \
361 .type = IIO_VOLTAGE, \
362 .differential = 1, \
363 .channel = num, \
364 .channel2 = num2, \
365 .address = addr, \
366 .scan_index = index, \
367 .scan_type = { \
368 .sign = 's', \
369 .realbits = rbits, \
370 .storagebits = 16, \
371 }, \
372 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
373 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
374 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
375 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
376 .info_mask_shared_by_all_available = \
377 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
378 .datasheet_name = "CH"#num"-CH"#num2, \
379 .indexed = 1, \
380 }
381
382 #define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr) \
383 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 14)
384
385 #define AT91_SAMA7G5_CHAN_DIFF(index, num, num2, addr) \
386 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 16)
387
388 #define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod) \
389 { \
390 .type = IIO_POSITIONRELATIVE, \
391 .modified = 1, \
392 .channel = num, \
393 .channel2 = mod, \
394 .scan_index = num, \
395 .scan_type = { \
396 .sign = 'u', \
397 .realbits = 12, \
398 .storagebits = 16, \
399 }, \
400 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
401 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
402 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
403 .info_mask_shared_by_all_available = \
404 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
405 .datasheet_name = name, \
406 }
407 #define AT91_SAMA5D2_CHAN_PRESSURE(num, name) \
408 { \
409 .type = IIO_PRESSURE, \
410 .channel = num, \
411 .scan_index = num, \
412 .scan_type = { \
413 .sign = 'u', \
414 .realbits = 12, \
415 .storagebits = 16, \
416 }, \
417 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
418 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
419 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
420 .info_mask_shared_by_all_available = \
421 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
422 .datasheet_name = name, \
423 }
424
425 #define AT91_SAMA5D2_CHAN_TEMP(num, name, addr) \
426 { \
427 .type = IIO_TEMP, \
428 .channel = num, \
429 .address = addr, \
430 .scan_index = num, \
431 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
432 .info_mask_shared_by_all = \
433 BIT(IIO_CHAN_INFO_PROCESSED) | \
434 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
435 .info_mask_shared_by_all_available = \
436 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
437 .datasheet_name = name, \
438 }
439
440 #define at91_adc_readl(st, reg) \
441 readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg)
442 #define at91_adc_read_chan(st, reg) \
443 readl_relaxed((st)->base + reg)
444 #define at91_adc_writel(st, reg, val) \
445 writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg)
446
447 /**
448 * struct at91_adc_platform - at91-sama5d2 platform information struct
449 * @layout: pointer to the reg layout struct
450 * @adc_channels: pointer to an array of channels for registering in
451 * the iio subsystem
452 * @nr_channels: number of physical channels available
453 * @touch_chan_x: index of the touchscreen X channel
454 * @touch_chan_y: index of the touchscreen Y channel
455 * @touch_chan_p: index of the touchscreen P channel
456 * @max_channels: number of total channels
457 * @max_index: highest channel index (highest index may be higher
458 * than the total channel number)
459 * @hw_trig_cnt: number of possible hardware triggers
460 * @osr_mask: oversampling ratio bitmask on EMR register
461 * @oversampling_avail: available oversampling values
462 * @oversampling_avail_no: number of available oversampling values
463 * @chan_realbits: realbits for registered channels
464 * @temp_chan: temperature channel index
465 * @temp_sensor: temperature sensor supported
466 */
467 struct at91_adc_platform {
468 const struct at91_adc_reg_layout *layout;
469 const struct iio_chan_spec (*adc_channels)[];
470 unsigned int nr_channels;
471 unsigned int touch_chan_x;
472 unsigned int touch_chan_y;
473 unsigned int touch_chan_p;
474 unsigned int max_channels;
475 unsigned int max_index;
476 unsigned int hw_trig_cnt;
477 unsigned int osr_mask;
478 unsigned int oversampling_avail[5];
479 unsigned int oversampling_avail_no;
480 unsigned int chan_realbits;
481 unsigned int temp_chan;
482 bool temp_sensor;
483 };
484
485 /**
486 * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor
487 * calibration data structure
488 * @p1: P1 calibration temperature
489 * @p4: P4 calibration voltage
490 * @p6: P6 calibration voltage
491 */
492 struct at91_adc_temp_sensor_clb {
493 u32 p1;
494 u32 p4;
495 u32 p6;
496 };
497
498 /**
499 * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer
500 * @AT91_ADC_TS_CLB_IDX_P1: index for P1
501 * @AT91_ADC_TS_CLB_IDX_P4: index for P4
502 * @AT91_ADC_TS_CLB_IDX_P6: index for P6
503 * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP
504 */
505 enum at91_adc_ts_clb_idx {
506 AT91_ADC_TS_CLB_IDX_P1 = 2,
507 AT91_ADC_TS_CLB_IDX_P4 = 5,
508 AT91_ADC_TS_CLB_IDX_P6 = 7,
509 AT91_ADC_TS_CLB_IDX_MAX = 19,
510 };
511
512 /* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */
513 #define AT91_ADC_TS_VTEMP_DT (2080U)
514
515 /**
516 * struct at91_adc_soc_info - at91-sama5d2 soc information struct
517 * @startup_time: device startup time
518 * @min_sample_rate: minimum sample rate in Hz
519 * @max_sample_rate: maximum sample rate in Hz
520 * @platform: pointer to the platform structure
521 * @temp_sensor_clb: temperature sensor calibration data structure
522 */
523 struct at91_adc_soc_info {
524 unsigned startup_time;
525 unsigned min_sample_rate;
526 unsigned max_sample_rate;
527 const struct at91_adc_platform *platform;
528 struct at91_adc_temp_sensor_clb temp_sensor_clb;
529 };
530
531 struct at91_adc_trigger {
532 char *name;
533 unsigned int trgmod_value;
534 unsigned int edge_type;
535 bool hw_trig;
536 };
537
538 /**
539 * struct at91_adc_dma - at91-sama5d2 dma information struct
540 * @dma_chan: the dma channel acquired
541 * @rx_buf: dma coherent allocated area
542 * @rx_dma_buf: dma handler for the buffer
543 * @phys_addr: physical address of the ADC base register
544 * @buf_idx: index inside the dma buffer where reading was last done
545 * @rx_buf_sz: size of buffer used by DMA operation
546 * @watermark: number of conversions to copy before DMA triggers irq
547 * @dma_ts: hold the start timestamp of dma operation
548 */
549 struct at91_adc_dma {
550 struct dma_chan *dma_chan;
551 u8 *rx_buf;
552 dma_addr_t rx_dma_buf;
553 phys_addr_t phys_addr;
554 int buf_idx;
555 int rx_buf_sz;
556 int watermark;
557 s64 dma_ts;
558 };
559
560 /**
561 * struct at91_adc_touch - at91-sama5d2 touchscreen information struct
562 * @sample_period_val: the value for periodic trigger interval
563 * @touching: is the pen touching the screen or not
564 * @x_pos: temporary placeholder for pressure computation
565 * @channels_bitmask: bitmask with the touchscreen channels enabled
566 * @workq: workqueue for buffer data pushing
567 */
568 struct at91_adc_touch {
569 u16 sample_period_val;
570 bool touching;
571 u16 x_pos;
572 unsigned long channels_bitmask;
573 struct work_struct workq;
574 };
575
576 /**
577 * struct at91_adc_temp - at91-sama5d2 temperature information structure
578 * @sample_period_val: sample period value
579 * @saved_sample_rate: saved sample rate
580 * @saved_oversampling: saved oversampling
581 */
582 struct at91_adc_temp {
583 u16 sample_period_val;
584 u16 saved_sample_rate;
585 u16 saved_oversampling;
586 };
587
588 /*
589 * Buffer size requirements:
590 * No channels * bytes_per_channel(2) + timestamp bytes (8)
591 * Divided by 2 because we need half words.
592 * We assume 32 channels for now, has to be increased if needed.
593 * Nobody minds a buffer being too big.
594 */
595 #define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2)
596
597 struct at91_adc_state {
598 void __iomem *base;
599 int irq;
600 struct clk *per_clk;
601 struct regulator *reg;
602 struct regulator *vref;
603 int vref_uv;
604 unsigned int current_sample_rate;
605 struct iio_trigger *trig;
606 const struct at91_adc_trigger *selected_trig;
607 const struct iio_chan_spec *chan;
608 bool conversion_done;
609 u32 conversion_value;
610 unsigned int oversampling_ratio;
611 struct at91_adc_soc_info soc_info;
612 wait_queue_head_t wq_data_available;
613 struct at91_adc_dma dma_st;
614 struct at91_adc_touch touch_st;
615 struct at91_adc_temp temp_st;
616 struct iio_dev *indio_dev;
617 struct device *dev;
618 /* Ensure naturally aligned timestamp */
619 u16 buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8);
620 /*
621 * lock to prevent concurrent 'single conversion' requests through
622 * sysfs.
623 */
624 struct mutex lock;
625 };
626
627 static const struct at91_adc_trigger at91_adc_trigger_list[] = {
628 {
629 .name = "external_rising",
630 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE,
631 .edge_type = IRQ_TYPE_EDGE_RISING,
632 .hw_trig = true,
633 },
634 {
635 .name = "external_falling",
636 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL,
637 .edge_type = IRQ_TYPE_EDGE_FALLING,
638 .hw_trig = true,
639 },
640 {
641 .name = "external_any",
642 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY,
643 .edge_type = IRQ_TYPE_EDGE_BOTH,
644 .hw_trig = true,
645 },
646 {
647 .name = "software",
648 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER,
649 .edge_type = IRQ_TYPE_NONE,
650 .hw_trig = false,
651 },
652 };
653
654 static const struct iio_chan_spec at91_sama5d2_adc_channels[] = {
655 AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50),
656 AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54),
657 AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58),
658 AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c),
659 AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60),
660 AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64),
661 AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68),
662 AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c),
663 AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70),
664 AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74),
665 AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78),
666 AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c),
667 /* original ABI has the differential channels with a gap in between */
668 AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50),
669 AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58),
670 AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60),
671 AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68),
672 AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70),
673 AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78),
674 IIO_CHAN_SOFT_TIMESTAMP(23),
675 AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X),
676 AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y),
677 AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"),
678 };
679
680 static const struct iio_chan_spec at91_sama7g5_adc_channels[] = {
681 AT91_SAMA7G5_CHAN_SINGLE(0, 0, 0x60),
682 AT91_SAMA7G5_CHAN_SINGLE(1, 1, 0x64),
683 AT91_SAMA7G5_CHAN_SINGLE(2, 2, 0x68),
684 AT91_SAMA7G5_CHAN_SINGLE(3, 3, 0x6c),
685 AT91_SAMA7G5_CHAN_SINGLE(4, 4, 0x70),
686 AT91_SAMA7G5_CHAN_SINGLE(5, 5, 0x74),
687 AT91_SAMA7G5_CHAN_SINGLE(6, 6, 0x78),
688 AT91_SAMA7G5_CHAN_SINGLE(7, 7, 0x7c),
689 AT91_SAMA7G5_CHAN_SINGLE(8, 8, 0x80),
690 AT91_SAMA7G5_CHAN_SINGLE(9, 9, 0x84),
691 AT91_SAMA7G5_CHAN_SINGLE(10, 10, 0x88),
692 AT91_SAMA7G5_CHAN_SINGLE(11, 11, 0x8c),
693 AT91_SAMA7G5_CHAN_SINGLE(12, 12, 0x90),
694 AT91_SAMA7G5_CHAN_SINGLE(13, 13, 0x94),
695 AT91_SAMA7G5_CHAN_SINGLE(14, 14, 0x98),
696 AT91_SAMA7G5_CHAN_SINGLE(15, 15, 0x9c),
697 AT91_SAMA7G5_CHAN_DIFF(16, 0, 1, 0x60),
698 AT91_SAMA7G5_CHAN_DIFF(17, 2, 3, 0x68),
699 AT91_SAMA7G5_CHAN_DIFF(18, 4, 5, 0x70),
700 AT91_SAMA7G5_CHAN_DIFF(19, 6, 7, 0x78),
701 AT91_SAMA7G5_CHAN_DIFF(20, 8, 9, 0x80),
702 AT91_SAMA7G5_CHAN_DIFF(21, 10, 11, 0x88),
703 AT91_SAMA7G5_CHAN_DIFF(22, 12, 13, 0x90),
704 AT91_SAMA7G5_CHAN_DIFF(23, 14, 15, 0x98),
705 IIO_CHAN_SOFT_TIMESTAMP(24),
706 AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc),
707 };
708
709 static const struct at91_adc_platform sama5d2_platform = {
710 .layout = &sama5d2_layout,
711 .adc_channels = &at91_sama5d2_adc_channels,
712 #define AT91_SAMA5D2_SINGLE_CHAN_CNT 12
713 #define AT91_SAMA5D2_DIFF_CHAN_CNT 6
714 .nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT +
715 AT91_SAMA5D2_DIFF_CHAN_CNT,
716 #define AT91_SAMA5D2_TOUCH_X_CHAN_IDX (AT91_SAMA5D2_SINGLE_CHAN_CNT + \
717 AT91_SAMA5D2_DIFF_CHAN_CNT * 2)
718 .touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX,
719 #define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX (AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1)
720 .touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX,
721 #define AT91_SAMA5D2_TOUCH_P_CHAN_IDX (AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1)
722 .touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX,
723 #define AT91_SAMA5D2_MAX_CHAN_IDX AT91_SAMA5D2_TOUCH_P_CHAN_IDX
724 .max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels),
725 .max_index = AT91_SAMA5D2_MAX_CHAN_IDX,
726 #define AT91_SAMA5D2_HW_TRIG_CNT 3
727 .hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT,
728 .osr_mask = GENMASK(17, 16),
729 .oversampling_avail = { 1, 4, 16, },
730 .oversampling_avail_no = 3,
731 .chan_realbits = 14,
732 };
733
734 static const struct at91_adc_platform sama7g5_platform = {
735 .layout = &sama7g5_layout,
736 .adc_channels = &at91_sama7g5_adc_channels,
737 #define AT91_SAMA7G5_SINGLE_CHAN_CNT 16
738 #define AT91_SAMA7G5_DIFF_CHAN_CNT 8
739 #define AT91_SAMA7G5_TEMP_CHAN_CNT 1
740 .nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT +
741 AT91_SAMA7G5_DIFF_CHAN_CNT +
742 AT91_SAMA7G5_TEMP_CHAN_CNT,
743 #define AT91_SAMA7G5_MAX_CHAN_IDX (AT91_SAMA7G5_SINGLE_CHAN_CNT + \
744 AT91_SAMA7G5_DIFF_CHAN_CNT + \
745 AT91_SAMA7G5_TEMP_CHAN_CNT)
746 .max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels),
747 .max_index = AT91_SAMA7G5_MAX_CHAN_IDX,
748 #define AT91_SAMA7G5_HW_TRIG_CNT 3
749 .hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT,
750 .osr_mask = GENMASK(18, 16),
751 .oversampling_avail = { 1, 4, 16, 64, 256, },
752 .oversampling_avail_no = 5,
753 .chan_realbits = 16,
754 .temp_sensor = true,
755 .temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL,
756 };
757
at91_adc_chan_xlate(struct iio_dev * indio_dev,int chan)758 static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan)
759 {
760 int i;
761
762 for (i = 0; i < indio_dev->num_channels; i++) {
763 if (indio_dev->channels[i].scan_index == chan)
764 return i;
765 }
766 return -EINVAL;
767 }
768
769 static inline struct iio_chan_spec const *
at91_adc_chan_get(struct iio_dev * indio_dev,int chan)770 at91_adc_chan_get(struct iio_dev *indio_dev, int chan)
771 {
772 int index = at91_adc_chan_xlate(indio_dev, chan);
773
774 if (index < 0)
775 return NULL;
776 return indio_dev->channels + index;
777 }
778
at91_adc_fwnode_xlate(struct iio_dev * indio_dev,const struct fwnode_reference_args * iiospec)779 static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev,
780 const struct fwnode_reference_args *iiospec)
781 {
782 return at91_adc_chan_xlate(indio_dev, iiospec->args[0]);
783 }
784
at91_adc_active_scan_mask_to_reg(struct iio_dev * indio_dev)785 static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev)
786 {
787 u32 mask = 0;
788 u8 bit;
789 struct at91_adc_state *st = iio_priv(indio_dev);
790
791 for_each_set_bit(bit, indio_dev->active_scan_mask,
792 indio_dev->num_channels) {
793 struct iio_chan_spec const *chan =
794 at91_adc_chan_get(indio_dev, bit);
795 mask |= BIT(chan->channel);
796 }
797
798 return mask & GENMASK(st->soc_info.platform->nr_channels, 0);
799 }
800
at91_adc_cor(struct at91_adc_state * st,struct iio_chan_spec const * chan)801 static void at91_adc_cor(struct at91_adc_state *st,
802 struct iio_chan_spec const *chan)
803 {
804 u32 cor, cur_cor;
805
806 cor = BIT(chan->channel) | BIT(chan->channel2);
807
808 cur_cor = at91_adc_readl(st, COR);
809 cor <<= st->soc_info.platform->layout->COR_diff_offset;
810 if (chan->differential)
811 at91_adc_writel(st, COR, cur_cor | cor);
812 else
813 at91_adc_writel(st, COR, cur_cor & ~cor);
814 }
815
at91_adc_irq_status(struct at91_adc_state * st,u32 * status,u32 * eoc)816 static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status,
817 u32 *eoc)
818 {
819 *status = at91_adc_readl(st, ISR);
820 if (st->soc_info.platform->layout->EOC_ISR)
821 *eoc = at91_adc_readl(st, EOC_ISR);
822 else
823 *eoc = *status;
824 }
825
at91_adc_irq_mask(struct at91_adc_state * st,u32 * status,u32 * eoc)826 static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc)
827 {
828 *status = at91_adc_readl(st, IMR);
829 if (st->soc_info.platform->layout->EOC_IMR)
830 *eoc = at91_adc_readl(st, EOC_IMR);
831 else
832 *eoc = *status;
833 }
834
at91_adc_eoc_dis(struct at91_adc_state * st,unsigned int channel)835 static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel)
836 {
837 /*
838 * On some products having the EOC bits in a separate register,
839 * errata recommends not writing this register (EOC_IDR).
840 * On products having the EOC bits in the IDR register, it's fine to write it.
841 */
842 if (!st->soc_info.platform->layout->EOC_IDR)
843 at91_adc_writel(st, IDR, BIT(channel));
844 }
845
at91_adc_eoc_ena(struct at91_adc_state * st,unsigned int channel)846 static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel)
847 {
848 if (!st->soc_info.platform->layout->EOC_IDR)
849 at91_adc_writel(st, IER, BIT(channel));
850 else
851 at91_adc_writel(st, EOC_IER, BIT(channel));
852 }
853
at91_adc_config_emr(struct at91_adc_state * st,u32 oversampling_ratio,u32 trackx)854 static int at91_adc_config_emr(struct at91_adc_state *st,
855 u32 oversampling_ratio, u32 trackx)
856 {
857 /* configure the extended mode register */
858 unsigned int emr, osr;
859 unsigned int osr_mask = st->soc_info.platform->osr_mask;
860 int i, ret;
861
862 /* Check against supported oversampling values. */
863 for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) {
864 if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i])
865 break;
866 }
867 if (i == st->soc_info.platform->oversampling_avail_no)
868 return -EINVAL;
869
870 /* select oversampling ratio from configuration */
871 switch (oversampling_ratio) {
872 case 1:
873 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES,
874 osr_mask);
875 break;
876 case 4:
877 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES,
878 osr_mask);
879 break;
880 case 16:
881 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES,
882 osr_mask);
883 break;
884 case 64:
885 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES,
886 osr_mask);
887 break;
888 case 256:
889 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES,
890 osr_mask);
891 break;
892 }
893
894 ret = pm_runtime_resume_and_get(st->dev);
895 if (ret < 0)
896 return ret;
897
898 emr = at91_adc_readl(st, EMR);
899 /* select oversampling per single trigger event */
900 emr |= AT91_SAMA5D2_EMR_ASTE(1);
901 /* delete leftover content if it's the case */
902 emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK);
903 /* Update osr and trackx. */
904 emr |= osr | AT91_SAMA5D2_TRACKX(trackx);
905 at91_adc_writel(st, EMR, emr);
906
907 pm_runtime_mark_last_busy(st->dev);
908 pm_runtime_put_autosuspend(st->dev);
909
910 st->oversampling_ratio = oversampling_ratio;
911
912 return 0;
913 }
914
at91_adc_adjust_val_osr(struct at91_adc_state * st,int * val)915 static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val)
916 {
917 int nbits, diff;
918
919 if (st->oversampling_ratio == 1)
920 nbits = 12;
921 else if (st->oversampling_ratio == 4)
922 nbits = 13;
923 else if (st->oversampling_ratio == 16)
924 nbits = 14;
925 else if (st->oversampling_ratio == 64)
926 nbits = 15;
927 else if (st->oversampling_ratio == 256)
928 nbits = 16;
929 else
930 /* Should not happen. */
931 return -EINVAL;
932
933 /*
934 * We have nbits of real data and channel is registered as
935 * st->soc_info.platform->chan_realbits, so shift left diff bits.
936 */
937 diff = st->soc_info.platform->chan_realbits - nbits;
938 *val <<= diff;
939
940 return IIO_VAL_INT;
941 }
942
at91_adc_adjust_val_osr_array(struct at91_adc_state * st,void * buf,int len)943 static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf,
944 int len)
945 {
946 int i = 0, val;
947 u16 *buf_u16 = (u16 *) buf;
948
949 /*
950 * We are converting each two bytes (each sample).
951 * First convert the byte based array to u16, and convert each sample
952 * separately.
953 * Each value is two bytes in an array of chars, so to not shift
954 * more than we need, save the value separately.
955 * len is in bytes, so divide by two to get number of samples.
956 */
957 while (i < len / 2) {
958 val = buf_u16[i];
959 at91_adc_adjust_val_osr(st, &val);
960 buf_u16[i] = val;
961 i++;
962 }
963 }
964
at91_adc_configure_touch(struct at91_adc_state * st,bool state)965 static int at91_adc_configure_touch(struct at91_adc_state *st, bool state)
966 {
967 u32 clk_khz = st->current_sample_rate / 1000;
968 int i = 0, ret;
969 u16 pendbc;
970 u32 tsmr, acr;
971
972 if (state) {
973 ret = pm_runtime_resume_and_get(st->dev);
974 if (ret < 0)
975 return ret;
976 } else {
977 /* disabling touch IRQs and setting mode to no touch enabled */
978 at91_adc_writel(st, IDR,
979 AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN);
980 at91_adc_writel(st, TSMR, 0);
981
982 pm_runtime_mark_last_busy(st->dev);
983 pm_runtime_put_autosuspend(st->dev);
984 return 0;
985 }
986 /*
987 * debounce time is in microseconds, we need it in milliseconds to
988 * multiply with kilohertz, so, divide by 1000, but after the multiply.
989 * round up to make sure pendbc is at least 1
990 */
991 pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US *
992 clk_khz / 1000, 1);
993
994 /* get the required exponent */
995 while (pendbc >> i++)
996 ;
997
998 pendbc = i;
999
1000 tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS;
1001
1002 tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK;
1003 tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) &
1004 AT91_SAMA5D2_TSMR_PENDBC_MASK;
1005 tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA;
1006 tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA;
1007 tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK;
1008
1009 at91_adc_writel(st, TSMR, tsmr);
1010
1011 acr = at91_adc_readl(st, ACR);
1012 acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1013 acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1014 at91_adc_writel(st, ACR, acr);
1015
1016 /* Sample Period Time = (TRGPER + 1) / ADCClock */
1017 st->touch_st.sample_period_val =
1018 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US *
1019 clk_khz / 1000) - 1, 1);
1020 /* enable pen detect IRQ */
1021 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1022
1023 return 0;
1024 }
1025
at91_adc_touch_pos(struct at91_adc_state * st,int reg)1026 static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg)
1027 {
1028 u32 val = 0;
1029 u32 scale, result, pos;
1030
1031 /*
1032 * to obtain the actual position we must divide by scale
1033 * and multiply with max, where
1034 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1
1035 */
1036 /* first half of register is the x or y, second half is the scale */
1037 if (reg == st->soc_info.platform->layout->XPOSR)
1038 val = at91_adc_readl(st, XPOSR);
1039 else if (reg == st->soc_info.platform->layout->YPOSR)
1040 val = at91_adc_readl(st, YPOSR);
1041
1042 if (!val)
1043 dev_dbg(&st->indio_dev->dev, "pos is 0\n");
1044
1045 pos = val & AT91_SAMA5D2_XYZ_MASK;
1046 result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos;
1047 scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1048 if (scale == 0) {
1049 dev_err(&st->indio_dev->dev, "scale is 0\n");
1050 return 0;
1051 }
1052 result /= scale;
1053
1054 return result;
1055 }
1056
at91_adc_touch_x_pos(struct at91_adc_state * st)1057 static u16 at91_adc_touch_x_pos(struct at91_adc_state *st)
1058 {
1059 st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR);
1060 return st->touch_st.x_pos;
1061 }
1062
at91_adc_touch_y_pos(struct at91_adc_state * st)1063 static u16 at91_adc_touch_y_pos(struct at91_adc_state *st)
1064 {
1065 return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR);
1066 }
1067
at91_adc_touch_pressure(struct at91_adc_state * st)1068 static u16 at91_adc_touch_pressure(struct at91_adc_state *st)
1069 {
1070 u32 val;
1071 u32 z1, z2;
1072 u32 pres;
1073 u32 rxp = 1;
1074 u32 factor = 1000;
1075
1076 /* calculate the pressure */
1077 val = at91_adc_readl(st, PRESSR);
1078 z1 = val & AT91_SAMA5D2_XYZ_MASK;
1079 z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1080
1081 if (z1 != 0)
1082 pres = rxp * (st->touch_st.x_pos * factor / 1024) *
1083 (z2 * factor / z1 - factor) /
1084 factor;
1085 else
1086 pres = 0xFFFF; /* no pen contact */
1087
1088 /*
1089 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0.
1090 * We compute it this way, but let's return it in the expected way,
1091 * growing from 0 to 0xFFFF.
1092 */
1093 return 0xFFFF - pres;
1094 }
1095
at91_adc_read_position(struct at91_adc_state * st,int chan,u16 * val)1096 static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val)
1097 {
1098 *val = 0;
1099 if (!st->touch_st.touching)
1100 return -ENODATA;
1101 if (chan == st->soc_info.platform->touch_chan_x)
1102 *val = at91_adc_touch_x_pos(st);
1103 else if (chan == st->soc_info.platform->touch_chan_y)
1104 *val = at91_adc_touch_y_pos(st);
1105 else
1106 return -ENODATA;
1107
1108 return IIO_VAL_INT;
1109 }
1110
at91_adc_read_pressure(struct at91_adc_state * st,int chan,u16 * val)1111 static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val)
1112 {
1113 *val = 0;
1114 if (!st->touch_st.touching)
1115 return -ENODATA;
1116 if (chan == st->soc_info.platform->touch_chan_p)
1117 *val = at91_adc_touch_pressure(st);
1118 else
1119 return -ENODATA;
1120
1121 return IIO_VAL_INT;
1122 }
1123
at91_adc_configure_trigger_registers(struct at91_adc_state * st,bool state)1124 static void at91_adc_configure_trigger_registers(struct at91_adc_state *st,
1125 bool state)
1126 {
1127 u32 status = at91_adc_readl(st, TRGR);
1128
1129 /* clear TRGMOD */
1130 status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK;
1131
1132 if (state)
1133 status |= st->selected_trig->trgmod_value;
1134
1135 /* set/unset hw trigger */
1136 at91_adc_writel(st, TRGR, status);
1137 }
1138
at91_adc_configure_trigger(struct iio_trigger * trig,bool state)1139 static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state)
1140 {
1141 struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1142 struct at91_adc_state *st = iio_priv(indio);
1143 int ret;
1144
1145 if (state) {
1146 ret = pm_runtime_resume_and_get(st->dev);
1147 if (ret < 0)
1148 return ret;
1149 }
1150
1151 at91_adc_configure_trigger_registers(st, state);
1152
1153 if (!state) {
1154 pm_runtime_mark_last_busy(st->dev);
1155 pm_runtime_put_autosuspend(st->dev);
1156 }
1157
1158 return 0;
1159 }
1160
at91_adc_reenable_trigger(struct iio_trigger * trig)1161 static void at91_adc_reenable_trigger(struct iio_trigger *trig)
1162 {
1163 struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1164 struct at91_adc_state *st = iio_priv(indio);
1165
1166 /* if we are using DMA, we must not reenable irq after each trigger */
1167 if (st->dma_st.dma_chan)
1168 return;
1169
1170 enable_irq(st->irq);
1171
1172 /* Needed to ACK the DRDY interruption */
1173 at91_adc_readl(st, LCDR);
1174 }
1175
1176 static const struct iio_trigger_ops at91_adc_trigger_ops = {
1177 .set_trigger_state = &at91_adc_configure_trigger,
1178 .reenable = &at91_adc_reenable_trigger,
1179 .validate_device = iio_trigger_validate_own_device,
1180 };
1181
at91_adc_dma_size_done(struct at91_adc_state * st)1182 static int at91_adc_dma_size_done(struct at91_adc_state *st)
1183 {
1184 struct dma_tx_state state;
1185 enum dma_status status;
1186 int i, size;
1187
1188 status = dmaengine_tx_status(st->dma_st.dma_chan,
1189 st->dma_st.dma_chan->cookie,
1190 &state);
1191 if (status != DMA_IN_PROGRESS)
1192 return 0;
1193
1194 /* Transferred length is size in bytes from end of buffer */
1195 i = st->dma_st.rx_buf_sz - state.residue;
1196
1197 /* Return available bytes */
1198 if (i >= st->dma_st.buf_idx)
1199 size = i - st->dma_st.buf_idx;
1200 else
1201 size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx;
1202 return size;
1203 }
1204
at91_dma_buffer_done(void * data)1205 static void at91_dma_buffer_done(void *data)
1206 {
1207 struct iio_dev *indio_dev = data;
1208
1209 iio_trigger_poll_nested(indio_dev->trig);
1210 }
1211
at91_adc_dma_start(struct iio_dev * indio_dev)1212 static int at91_adc_dma_start(struct iio_dev *indio_dev)
1213 {
1214 struct at91_adc_state *st = iio_priv(indio_dev);
1215 struct dma_async_tx_descriptor *desc;
1216 dma_cookie_t cookie;
1217 int ret;
1218 u8 bit;
1219
1220 if (!st->dma_st.dma_chan)
1221 return 0;
1222
1223 /* we start a new DMA, so set buffer index to start */
1224 st->dma_st.buf_idx = 0;
1225
1226 /*
1227 * compute buffer size w.r.t. watermark and enabled channels.
1228 * scan_bytes is aligned so we need an exact size for DMA
1229 */
1230 st->dma_st.rx_buf_sz = 0;
1231
1232 for_each_set_bit(bit, indio_dev->active_scan_mask,
1233 indio_dev->num_channels) {
1234 struct iio_chan_spec const *chan =
1235 at91_adc_chan_get(indio_dev, bit);
1236
1237 if (!chan)
1238 continue;
1239
1240 st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8;
1241 }
1242 st->dma_st.rx_buf_sz *= st->dma_st.watermark;
1243
1244 /* Prepare a DMA cyclic transaction */
1245 desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan,
1246 st->dma_st.rx_dma_buf,
1247 st->dma_st.rx_buf_sz,
1248 st->dma_st.rx_buf_sz / 2,
1249 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1250
1251 if (!desc) {
1252 dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n");
1253 return -EBUSY;
1254 }
1255
1256 desc->callback = at91_dma_buffer_done;
1257 desc->callback_param = indio_dev;
1258
1259 cookie = dmaengine_submit(desc);
1260 ret = dma_submit_error(cookie);
1261 if (ret) {
1262 dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n");
1263 dmaengine_terminate_async(st->dma_st.dma_chan);
1264 return ret;
1265 }
1266
1267 /* enable general overrun error signaling */
1268 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE);
1269 /* Issue pending DMA requests */
1270 dma_async_issue_pending(st->dma_st.dma_chan);
1271
1272 /* consider current time as DMA start time for timestamps */
1273 st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1274
1275 dev_dbg(&indio_dev->dev, "DMA cyclic started\n");
1276
1277 return 0;
1278 }
1279
at91_adc_buffer_check_use_irq(struct iio_dev * indio,struct at91_adc_state * st)1280 static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio,
1281 struct at91_adc_state *st)
1282 {
1283 /* if using DMA, we do not use our own IRQ (we use DMA-controller) */
1284 if (st->dma_st.dma_chan)
1285 return false;
1286 /* if the trigger is not ours, then it has its own IRQ */
1287 if (iio_trigger_validate_own_device(indio->trig, indio))
1288 return false;
1289 return true;
1290 }
1291
at91_adc_current_chan_is_touch(struct iio_dev * indio_dev)1292 static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev)
1293 {
1294 struct at91_adc_state *st = iio_priv(indio_dev);
1295
1296 return !!bitmap_subset(indio_dev->active_scan_mask,
1297 &st->touch_st.channels_bitmask,
1298 st->soc_info.platform->max_index + 1);
1299 }
1300
at91_adc_buffer_prepare(struct iio_dev * indio_dev)1301 static int at91_adc_buffer_prepare(struct iio_dev *indio_dev)
1302 {
1303 int ret;
1304 u8 bit;
1305 struct at91_adc_state *st = iio_priv(indio_dev);
1306
1307 /* check if we are enabling triggered buffer or the touchscreen */
1308 if (at91_adc_current_chan_is_touch(indio_dev))
1309 return at91_adc_configure_touch(st, true);
1310
1311 /* if we are not in triggered mode, we cannot enable the buffer. */
1312 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1313 return -EINVAL;
1314
1315 ret = pm_runtime_resume_and_get(st->dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 /* we continue with the triggered buffer */
1320 ret = at91_adc_dma_start(indio_dev);
1321 if (ret) {
1322 dev_err(&indio_dev->dev, "buffer prepare failed\n");
1323 goto pm_runtime_put;
1324 }
1325
1326 for_each_set_bit(bit, indio_dev->active_scan_mask,
1327 indio_dev->num_channels) {
1328 struct iio_chan_spec const *chan =
1329 at91_adc_chan_get(indio_dev, bit);
1330 if (!chan)
1331 continue;
1332 /* these channel types cannot be handled by this trigger */
1333 if (chan->type == IIO_POSITIONRELATIVE ||
1334 chan->type == IIO_PRESSURE ||
1335 chan->type == IIO_TEMP)
1336 continue;
1337
1338 at91_adc_cor(st, chan);
1339
1340 at91_adc_writel(st, CHER, BIT(chan->channel));
1341 }
1342
1343 if (at91_adc_buffer_check_use_irq(indio_dev, st))
1344 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY);
1345
1346 pm_runtime_put:
1347 pm_runtime_mark_last_busy(st->dev);
1348 pm_runtime_put_autosuspend(st->dev);
1349 return ret;
1350 }
1351
at91_adc_buffer_postdisable(struct iio_dev * indio_dev)1352 static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev)
1353 {
1354 struct at91_adc_state *st = iio_priv(indio_dev);
1355 int ret;
1356 u8 bit;
1357
1358 /* check if we are disabling triggered buffer or the touchscreen */
1359 if (at91_adc_current_chan_is_touch(indio_dev))
1360 return at91_adc_configure_touch(st, false);
1361
1362 /* if we are not in triggered mode, nothing to do here */
1363 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1364 return -EINVAL;
1365
1366 ret = pm_runtime_resume_and_get(st->dev);
1367 if (ret < 0)
1368 return ret;
1369
1370 /*
1371 * For each enable channel we must disable it in hardware.
1372 * In the case of DMA, we must read the last converted value
1373 * to clear EOC status and not get a possible interrupt later.
1374 * This value is being read by DMA from LCDR anyway, so it's not lost.
1375 */
1376 for_each_set_bit(bit, indio_dev->active_scan_mask,
1377 indio_dev->num_channels) {
1378 struct iio_chan_spec const *chan =
1379 at91_adc_chan_get(indio_dev, bit);
1380
1381 if (!chan)
1382 continue;
1383 /* these channel types are virtual, no need to do anything */
1384 if (chan->type == IIO_POSITIONRELATIVE ||
1385 chan->type == IIO_PRESSURE ||
1386 chan->type == IIO_TEMP)
1387 continue;
1388
1389 at91_adc_writel(st, CHDR, BIT(chan->channel));
1390
1391 if (st->dma_st.dma_chan)
1392 at91_adc_read_chan(st, chan->address);
1393 }
1394
1395 if (at91_adc_buffer_check_use_irq(indio_dev, st))
1396 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY);
1397
1398 /* read overflow register to clear possible overflow status */
1399 at91_adc_readl(st, OVER);
1400
1401 /* if we are using DMA we must clear registers and end DMA */
1402 if (st->dma_st.dma_chan)
1403 dmaengine_terminate_sync(st->dma_st.dma_chan);
1404
1405 pm_runtime_mark_last_busy(st->dev);
1406 pm_runtime_put_autosuspend(st->dev);
1407
1408 return 0;
1409 }
1410
1411 static const struct iio_buffer_setup_ops at91_buffer_setup_ops = {
1412 .postdisable = &at91_adc_buffer_postdisable,
1413 };
1414
at91_adc_allocate_trigger(struct iio_dev * indio,char * trigger_name)1415 static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio,
1416 char *trigger_name)
1417 {
1418 struct iio_trigger *trig;
1419 int ret;
1420
1421 trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name,
1422 iio_device_id(indio), trigger_name);
1423 if (!trig)
1424 return ERR_PTR(-ENOMEM);
1425
1426 trig->dev.parent = indio->dev.parent;
1427 iio_trigger_set_drvdata(trig, indio);
1428 trig->ops = &at91_adc_trigger_ops;
1429
1430 ret = devm_iio_trigger_register(&indio->dev, trig);
1431 if (ret)
1432 return ERR_PTR(ret);
1433
1434 return trig;
1435 }
1436
at91_adc_trigger_handler_nodma(struct iio_dev * indio_dev,struct iio_poll_func * pf)1437 static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev,
1438 struct iio_poll_func *pf)
1439 {
1440 struct at91_adc_state *st = iio_priv(indio_dev);
1441 int i = 0;
1442 int val;
1443 u8 bit;
1444 u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev);
1445 unsigned int timeout = 50;
1446 u32 status, imr, eoc = 0, eoc_imr;
1447
1448 /*
1449 * Check if the conversion is ready. If not, wait a little bit, and
1450 * in case of timeout exit with an error.
1451 */
1452 while (((eoc & mask) != mask) && timeout) {
1453 at91_adc_irq_status(st, &status, &eoc);
1454 at91_adc_irq_mask(st, &imr, &eoc_imr);
1455 usleep_range(50, 100);
1456 timeout--;
1457 }
1458
1459 /* Cannot read data, not ready. Continue without reporting data */
1460 if (!timeout)
1461 return;
1462
1463 for_each_set_bit(bit, indio_dev->active_scan_mask,
1464 indio_dev->num_channels) {
1465 struct iio_chan_spec const *chan =
1466 at91_adc_chan_get(indio_dev, bit);
1467
1468 if (!chan)
1469 continue;
1470 /*
1471 * Our external trigger only supports the voltage channels.
1472 * In case someone requested a different type of channel
1473 * just put zeroes to buffer.
1474 * This should not happen because we check the scan mode
1475 * and scan mask when we enable the buffer, and we don't allow
1476 * the buffer to start with a mixed mask (voltage and something
1477 * else).
1478 * Thus, emit a warning.
1479 */
1480 if (chan->type == IIO_VOLTAGE) {
1481 val = at91_adc_read_chan(st, chan->address);
1482 at91_adc_adjust_val_osr(st, &val);
1483 st->buffer[i] = val;
1484 } else {
1485 st->buffer[i] = 0;
1486 WARN(true, "This trigger cannot handle this type of channel");
1487 }
1488 i++;
1489 }
1490 iio_push_to_buffers_with_timestamp(indio_dev, st->buffer,
1491 pf->timestamp);
1492 }
1493
at91_adc_trigger_handler_dma(struct iio_dev * indio_dev)1494 static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev)
1495 {
1496 struct at91_adc_state *st = iio_priv(indio_dev);
1497 int transferred_len = at91_adc_dma_size_done(st);
1498 s64 ns = iio_get_time_ns(indio_dev);
1499 s64 interval;
1500 int sample_index = 0, sample_count, sample_size;
1501
1502 u32 status = at91_adc_readl(st, ISR);
1503 /* if we reached this point, we cannot sample faster */
1504 if (status & AT91_SAMA5D2_IER_GOVRE)
1505 pr_info_ratelimited("%s: conversion overrun detected\n",
1506 indio_dev->name);
1507
1508 sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark);
1509
1510 sample_count = div_s64(transferred_len, sample_size);
1511
1512 /*
1513 * interval between samples is total time since last transfer handling
1514 * divided by the number of samples (total size divided by sample size)
1515 */
1516 interval = div_s64((ns - st->dma_st.dma_ts), sample_count);
1517
1518 while (transferred_len >= sample_size) {
1519 /*
1520 * for all the values in the current sample,
1521 * adjust the values inside the buffer for oversampling
1522 */
1523 at91_adc_adjust_val_osr_array(st,
1524 &st->dma_st.rx_buf[st->dma_st.buf_idx],
1525 sample_size);
1526
1527 iio_push_to_buffers_with_timestamp(indio_dev,
1528 (st->dma_st.rx_buf + st->dma_st.buf_idx),
1529 (st->dma_st.dma_ts + interval * sample_index));
1530 /* adjust remaining length */
1531 transferred_len -= sample_size;
1532 /* adjust buffer index */
1533 st->dma_st.buf_idx += sample_size;
1534 /* in case of reaching end of buffer, reset index */
1535 if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz)
1536 st->dma_st.buf_idx = 0;
1537 sample_index++;
1538 }
1539 /* adjust saved time for next transfer handling */
1540 st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1541 }
1542
at91_adc_trigger_handler(int irq,void * p)1543 static irqreturn_t at91_adc_trigger_handler(int irq, void *p)
1544 {
1545 struct iio_poll_func *pf = p;
1546 struct iio_dev *indio_dev = pf->indio_dev;
1547 struct at91_adc_state *st = iio_priv(indio_dev);
1548
1549 /*
1550 * If it's not our trigger, start a conversion now, as we are
1551 * actually polling the trigger now.
1552 */
1553 if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
1554 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1555
1556 if (st->dma_st.dma_chan)
1557 at91_adc_trigger_handler_dma(indio_dev);
1558 else
1559 at91_adc_trigger_handler_nodma(indio_dev, pf);
1560
1561 iio_trigger_notify_done(indio_dev->trig);
1562
1563 return IRQ_HANDLED;
1564 }
1565
at91_adc_startup_time(unsigned startup_time_min,unsigned adc_clk_khz)1566 static unsigned at91_adc_startup_time(unsigned startup_time_min,
1567 unsigned adc_clk_khz)
1568 {
1569 static const unsigned int startup_lookup[] = {
1570 0, 8, 16, 24,
1571 64, 80, 96, 112,
1572 512, 576, 640, 704,
1573 768, 832, 896, 960
1574 };
1575 unsigned ticks_min, i;
1576
1577 /*
1578 * Since the adc frequency is checked before, there is no reason
1579 * to not meet the startup time constraint.
1580 */
1581
1582 ticks_min = startup_time_min * adc_clk_khz / 1000;
1583 for (i = 0; i < ARRAY_SIZE(startup_lookup); i++)
1584 if (startup_lookup[i] > ticks_min)
1585 break;
1586
1587 return i;
1588 }
1589
at91_adc_setup_samp_freq(struct iio_dev * indio_dev,unsigned freq,unsigned int startup_time,unsigned int tracktim)1590 static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq,
1591 unsigned int startup_time,
1592 unsigned int tracktim)
1593 {
1594 struct at91_adc_state *st = iio_priv(indio_dev);
1595 unsigned f_per, prescal, startup, mr;
1596 int ret;
1597
1598 f_per = clk_get_rate(st->per_clk);
1599 prescal = (f_per / (2 * freq)) - 1;
1600
1601 startup = at91_adc_startup_time(startup_time, freq / 1000);
1602
1603 ret = pm_runtime_resume_and_get(st->dev);
1604 if (ret < 0)
1605 return;
1606
1607 mr = at91_adc_readl(st, MR);
1608 mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK);
1609 mr |= AT91_SAMA5D2_MR_STARTUP(startup);
1610 mr |= AT91_SAMA5D2_MR_PRESCAL(prescal);
1611 mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim);
1612 at91_adc_writel(st, MR, mr);
1613
1614 pm_runtime_mark_last_busy(st->dev);
1615 pm_runtime_put_autosuspend(st->dev);
1616
1617 dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n",
1618 freq, startup, prescal, tracktim);
1619 st->current_sample_rate = freq;
1620 }
1621
at91_adc_get_sample_freq(struct at91_adc_state * st)1622 static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st)
1623 {
1624 return st->current_sample_rate;
1625 }
1626
at91_adc_touch_data_handler(struct iio_dev * indio_dev)1627 static void at91_adc_touch_data_handler(struct iio_dev *indio_dev)
1628 {
1629 struct at91_adc_state *st = iio_priv(indio_dev);
1630 u8 bit;
1631 u16 val;
1632 int i = 0;
1633
1634 for_each_set_bit(bit, indio_dev->active_scan_mask,
1635 st->soc_info.platform->max_index + 1) {
1636 struct iio_chan_spec const *chan =
1637 at91_adc_chan_get(indio_dev, bit);
1638
1639 if (chan->type == IIO_POSITIONRELATIVE)
1640 at91_adc_read_position(st, chan->channel, &val);
1641 else if (chan->type == IIO_PRESSURE)
1642 at91_adc_read_pressure(st, chan->channel, &val);
1643 else
1644 continue;
1645 st->buffer[i] = val;
1646 i++;
1647 }
1648 /*
1649 * Schedule work to push to buffers.
1650 * This is intended to push to the callback buffer that another driver
1651 * registered. We are still in a handler from our IRQ. If we push
1652 * directly, it means the other driver has it's callback called
1653 * from our IRQ context. Which is something we better avoid.
1654 * Let's schedule it after our IRQ is completed.
1655 */
1656 schedule_work(&st->touch_st.workq);
1657 }
1658
at91_adc_pen_detect_interrupt(struct at91_adc_state * st)1659 static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st)
1660 {
1661 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN);
1662 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN |
1663 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1664 AT91_SAMA5D2_IER_PRDY);
1665 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC |
1666 AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val));
1667 st->touch_st.touching = true;
1668 }
1669
at91_adc_no_pen_detect_interrupt(struct iio_dev * indio_dev)1670 static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev)
1671 {
1672 struct at91_adc_state *st = iio_priv(indio_dev);
1673
1674 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER);
1675 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN |
1676 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1677 AT91_SAMA5D2_IER_PRDY);
1678 st->touch_st.touching = false;
1679
1680 at91_adc_touch_data_handler(indio_dev);
1681
1682 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1683 }
1684
at91_adc_workq_handler(struct work_struct * workq)1685 static void at91_adc_workq_handler(struct work_struct *workq)
1686 {
1687 struct at91_adc_touch *touch_st = container_of(workq,
1688 struct at91_adc_touch, workq);
1689 struct at91_adc_state *st = container_of(touch_st,
1690 struct at91_adc_state, touch_st);
1691 struct iio_dev *indio_dev = st->indio_dev;
1692
1693 iio_push_to_buffers(indio_dev, st->buffer);
1694 }
1695
at91_adc_interrupt(int irq,void * private)1696 static irqreturn_t at91_adc_interrupt(int irq, void *private)
1697 {
1698 struct iio_dev *indio = private;
1699 struct at91_adc_state *st = iio_priv(indio);
1700 u32 status, eoc, imr, eoc_imr;
1701 u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1702 AT91_SAMA5D2_IER_PRDY;
1703
1704 at91_adc_irq_status(st, &status, &eoc);
1705 at91_adc_irq_mask(st, &imr, &eoc_imr);
1706
1707 if (!(status & imr) && !(eoc & eoc_imr))
1708 return IRQ_NONE;
1709 if (status & AT91_SAMA5D2_IER_PEN) {
1710 /* pen detected IRQ */
1711 at91_adc_pen_detect_interrupt(st);
1712 } else if ((status & AT91_SAMA5D2_IER_NOPEN)) {
1713 /* nopen detected IRQ */
1714 at91_adc_no_pen_detect_interrupt(indio);
1715 } else if ((status & AT91_SAMA5D2_ISR_PENS) &&
1716 ((status & rdy_mask) == rdy_mask)) {
1717 /* periodic trigger IRQ - during pen sense */
1718 at91_adc_touch_data_handler(indio);
1719 } else if (status & AT91_SAMA5D2_ISR_PENS) {
1720 /*
1721 * touching, but the measurements are not ready yet.
1722 * read and ignore.
1723 */
1724 status = at91_adc_readl(st, XPOSR);
1725 status = at91_adc_readl(st, YPOSR);
1726 status = at91_adc_readl(st, PRESSR);
1727 } else if (iio_buffer_enabled(indio) &&
1728 (status & AT91_SAMA5D2_IER_DRDY)) {
1729 /* triggered buffer without DMA */
1730 disable_irq_nosync(irq);
1731 iio_trigger_poll(indio->trig);
1732 } else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) {
1733 /* triggered buffer with DMA - should not happen */
1734 disable_irq_nosync(irq);
1735 WARN(true, "Unexpected irq occurred\n");
1736 } else if (!iio_buffer_enabled(indio)) {
1737 /* software requested conversion */
1738 st->conversion_value = at91_adc_read_chan(st, st->chan->address);
1739 st->conversion_done = true;
1740 wake_up_interruptible(&st->wq_data_available);
1741 }
1742 return IRQ_HANDLED;
1743 }
1744
1745 /* This needs to be called with direct mode claimed and st->lock locked. */
at91_adc_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1746 static int at91_adc_read_info_raw(struct iio_dev *indio_dev,
1747 struct iio_chan_spec const *chan, int *val)
1748 {
1749 struct at91_adc_state *st = iio_priv(indio_dev);
1750 u16 tmp_val;
1751 int ret;
1752
1753 ret = pm_runtime_resume_and_get(st->dev);
1754 if (ret < 0)
1755 return ret;
1756
1757 /*
1758 * Keep in mind that we cannot use software trigger or touchscreen
1759 * if external trigger is enabled
1760 */
1761 if (chan->type == IIO_POSITIONRELATIVE) {
1762 ret = at91_adc_read_position(st, chan->channel,
1763 &tmp_val);
1764 *val = tmp_val;
1765 if (ret > 0)
1766 ret = at91_adc_adjust_val_osr(st, val);
1767
1768 goto pm_runtime_put;
1769 }
1770 if (chan->type == IIO_PRESSURE) {
1771 ret = at91_adc_read_pressure(st, chan->channel,
1772 &tmp_val);
1773 *val = tmp_val;
1774 if (ret > 0)
1775 ret = at91_adc_adjust_val_osr(st, val);
1776
1777 goto pm_runtime_put;
1778 }
1779
1780 /* in this case we have a voltage or temperature channel */
1781
1782 st->chan = chan;
1783
1784 at91_adc_cor(st, chan);
1785 at91_adc_writel(st, CHER, BIT(chan->channel));
1786 /*
1787 * TEMPMR.TEMPON needs to update after CHER otherwise if none
1788 * of the channels are enabled and TEMPMR.TEMPON = 1 will
1789 * trigger DRDY interruption while preparing for temperature read.
1790 */
1791 if (chan->type == IIO_TEMP)
1792 at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON);
1793 at91_adc_eoc_ena(st, chan->channel);
1794 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1795
1796 ret = wait_event_interruptible_timeout(st->wq_data_available,
1797 st->conversion_done,
1798 msecs_to_jiffies(1000));
1799 if (ret == 0)
1800 ret = -ETIMEDOUT;
1801
1802 if (ret > 0) {
1803 *val = st->conversion_value;
1804 ret = at91_adc_adjust_val_osr(st, val);
1805 if (chan->scan_type.sign == 's')
1806 *val = sign_extend32(*val,
1807 chan->scan_type.realbits - 1);
1808 st->conversion_done = false;
1809 }
1810
1811 at91_adc_eoc_dis(st, st->chan->channel);
1812 if (chan->type == IIO_TEMP)
1813 at91_adc_writel(st, TEMPMR, 0U);
1814 at91_adc_writel(st, CHDR, BIT(chan->channel));
1815
1816 /* Needed to ACK the DRDY interruption */
1817 at91_adc_readl(st, LCDR);
1818
1819 pm_runtime_put:
1820 pm_runtime_mark_last_busy(st->dev);
1821 pm_runtime_put_autosuspend(st->dev);
1822 return ret;
1823 }
1824
at91_adc_read_info_locked(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1825 static int at91_adc_read_info_locked(struct iio_dev *indio_dev,
1826 struct iio_chan_spec const *chan, int *val)
1827 {
1828 struct at91_adc_state *st = iio_priv(indio_dev);
1829 int ret;
1830
1831 ret = iio_device_claim_direct_mode(indio_dev);
1832 if (ret)
1833 return ret;
1834
1835 mutex_lock(&st->lock);
1836 ret = at91_adc_read_info_raw(indio_dev, chan, val);
1837 mutex_unlock(&st->lock);
1838
1839 iio_device_release_direct_mode(indio_dev);
1840
1841 return ret;
1842 }
1843
at91_adc_temp_sensor_configure(struct at91_adc_state * st,bool start)1844 static void at91_adc_temp_sensor_configure(struct at91_adc_state *st,
1845 bool start)
1846 {
1847 u32 sample_rate, oversampling_ratio;
1848 u32 startup_time, tracktim, trackx;
1849
1850 if (start) {
1851 /*
1852 * Configure the sensor for best accuracy: 10MHz frequency,
1853 * oversampling rate of 256, tracktim=0xf and trackx=1.
1854 */
1855 sample_rate = 10 * MEGA;
1856 oversampling_ratio = 256;
1857 startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN;
1858 tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS;
1859 trackx = AT91_SAMA5D2_TRACKX_TS;
1860
1861 st->temp_st.saved_sample_rate = st->current_sample_rate;
1862 st->temp_st.saved_oversampling = st->oversampling_ratio;
1863 } else {
1864 /* Go back to previous settings. */
1865 sample_rate = st->temp_st.saved_sample_rate;
1866 oversampling_ratio = st->temp_st.saved_oversampling;
1867 startup_time = st->soc_info.startup_time;
1868 tracktim = 0;
1869 trackx = 0;
1870 }
1871
1872 at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time,
1873 tracktim);
1874 at91_adc_config_emr(st, oversampling_ratio, trackx);
1875 }
1876
at91_adc_read_temp(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1877 static int at91_adc_read_temp(struct iio_dev *indio_dev,
1878 struct iio_chan_spec const *chan, int *val)
1879 {
1880 struct at91_adc_state *st = iio_priv(indio_dev);
1881 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
1882 u64 div1, div2;
1883 u32 tmp;
1884 int ret, vbg, vtemp;
1885
1886 ret = iio_device_claim_direct_mode(indio_dev);
1887 if (ret)
1888 return ret;
1889 mutex_lock(&st->lock);
1890
1891 ret = pm_runtime_resume_and_get(st->dev);
1892 if (ret < 0)
1893 goto unlock;
1894
1895 at91_adc_temp_sensor_configure(st, true);
1896
1897 /* Read VBG. */
1898 tmp = at91_adc_readl(st, ACR);
1899 tmp |= AT91_SAMA5D2_ACR_SRCLCH;
1900 at91_adc_writel(st, ACR, tmp);
1901 ret = at91_adc_read_info_raw(indio_dev, chan, &vbg);
1902 if (ret < 0)
1903 goto restore_config;
1904
1905 /* Read VTEMP. */
1906 tmp &= ~AT91_SAMA5D2_ACR_SRCLCH;
1907 at91_adc_writel(st, ACR, tmp);
1908 ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp);
1909
1910 restore_config:
1911 /* Revert previous settings. */
1912 at91_adc_temp_sensor_configure(st, false);
1913 pm_runtime_mark_last_busy(st->dev);
1914 pm_runtime_put_autosuspend(st->dev);
1915 unlock:
1916 mutex_unlock(&st->lock);
1917 iio_device_release_direct_mode(indio_dev);
1918 if (ret < 0)
1919 return ret;
1920
1921 /*
1922 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/
1923 * (vbg * AT91_ADC_TS_VTEMP_DT)
1924 */
1925 div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg);
1926 div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT);
1927 div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT);
1928 div2 *= 1000;
1929 *val = clb->p1 + (int)div1 - (int)div2;
1930
1931 return ret;
1932 }
1933
at91_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1934 static int at91_adc_read_raw(struct iio_dev *indio_dev,
1935 struct iio_chan_spec const *chan,
1936 int *val, int *val2, long mask)
1937 {
1938 struct at91_adc_state *st = iio_priv(indio_dev);
1939
1940 switch (mask) {
1941 case IIO_CHAN_INFO_RAW:
1942 return at91_adc_read_info_locked(indio_dev, chan, val);
1943
1944 case IIO_CHAN_INFO_SCALE:
1945 *val = st->vref_uv / 1000;
1946 if (chan->differential)
1947 *val *= 2;
1948 *val2 = chan->scan_type.realbits;
1949 return IIO_VAL_FRACTIONAL_LOG2;
1950
1951 case IIO_CHAN_INFO_PROCESSED:
1952 if (chan->type != IIO_TEMP)
1953 return -EINVAL;
1954 return at91_adc_read_temp(indio_dev, chan, val);
1955
1956 case IIO_CHAN_INFO_SAMP_FREQ:
1957 *val = at91_adc_get_sample_freq(st);
1958 return IIO_VAL_INT;
1959
1960 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1961 *val = st->oversampling_ratio;
1962 return IIO_VAL_INT;
1963
1964 default:
1965 return -EINVAL;
1966 }
1967 }
1968
at91_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1969 static int at91_adc_write_raw(struct iio_dev *indio_dev,
1970 struct iio_chan_spec const *chan,
1971 int val, int val2, long mask)
1972 {
1973 struct at91_adc_state *st = iio_priv(indio_dev);
1974 int ret;
1975
1976 switch (mask) {
1977 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1978 /* if no change, optimize out */
1979 if (val == st->oversampling_ratio)
1980 return 0;
1981
1982 ret = iio_device_claim_direct_mode(indio_dev);
1983 if (ret)
1984 return ret;
1985 mutex_lock(&st->lock);
1986 /* update ratio */
1987 ret = at91_adc_config_emr(st, val, 0);
1988 mutex_unlock(&st->lock);
1989 iio_device_release_direct_mode(indio_dev);
1990 return ret;
1991 case IIO_CHAN_INFO_SAMP_FREQ:
1992 if (val < st->soc_info.min_sample_rate ||
1993 val > st->soc_info.max_sample_rate)
1994 return -EINVAL;
1995
1996 ret = iio_device_claim_direct_mode(indio_dev);
1997 if (ret)
1998 return ret;
1999 mutex_lock(&st->lock);
2000 at91_adc_setup_samp_freq(indio_dev, val,
2001 st->soc_info.startup_time, 0);
2002 mutex_unlock(&st->lock);
2003 iio_device_release_direct_mode(indio_dev);
2004 return 0;
2005 default:
2006 return -EINVAL;
2007 }
2008 }
2009
at91_adc_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)2010 static int at91_adc_read_avail(struct iio_dev *indio_dev,
2011 struct iio_chan_spec const *chan,
2012 const int **vals, int *type, int *length,
2013 long mask)
2014 {
2015 struct at91_adc_state *st = iio_priv(indio_dev);
2016
2017 switch (mask) {
2018 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
2019 *vals = (int *)st->soc_info.platform->oversampling_avail;
2020 *type = IIO_VAL_INT;
2021 *length = st->soc_info.platform->oversampling_avail_no;
2022 return IIO_AVAIL_LIST;
2023 default:
2024 return -EINVAL;
2025 }
2026 }
2027
at91_adc_dma_init(struct at91_adc_state * st)2028 static void at91_adc_dma_init(struct at91_adc_state *st)
2029 {
2030 struct device *dev = &st->indio_dev->dev;
2031 struct dma_slave_config config = {0};
2032 /* we have 2 bytes for each channel */
2033 unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2034 /*
2035 * We make the buffer double the size of the fifo,
2036 * such that DMA uses one half of the buffer (full fifo size)
2037 * and the software uses the other half to read/write.
2038 */
2039 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2040 sample_size * 2, PAGE_SIZE);
2041
2042 if (st->dma_st.dma_chan)
2043 return;
2044
2045 st->dma_st.dma_chan = dma_request_chan(dev, "rx");
2046 if (IS_ERR(st->dma_st.dma_chan)) {
2047 dev_info(dev, "can't get DMA channel\n");
2048 st->dma_st.dma_chan = NULL;
2049 goto dma_exit;
2050 }
2051
2052 st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev,
2053 pages * PAGE_SIZE,
2054 &st->dma_st.rx_dma_buf,
2055 GFP_KERNEL);
2056 if (!st->dma_st.rx_buf) {
2057 dev_info(dev, "can't allocate coherent DMA area\n");
2058 goto dma_chan_disable;
2059 }
2060
2061 /* Configure DMA channel to read data register */
2062 config.direction = DMA_DEV_TO_MEM;
2063 config.src_addr = (phys_addr_t)(st->dma_st.phys_addr
2064 + st->soc_info.platform->layout->LCDR);
2065 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2066 config.src_maxburst = 1;
2067 config.dst_maxburst = 1;
2068
2069 if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) {
2070 dev_info(dev, "can't configure DMA slave\n");
2071 goto dma_free_area;
2072 }
2073
2074 dev_info(dev, "using %s for rx DMA transfers\n",
2075 dma_chan_name(st->dma_st.dma_chan));
2076
2077 return;
2078
2079 dma_free_area:
2080 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2081 st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2082 dma_chan_disable:
2083 dma_release_channel(st->dma_st.dma_chan);
2084 st->dma_st.dma_chan = NULL;
2085 dma_exit:
2086 dev_info(dev, "continuing without DMA support\n");
2087 }
2088
at91_adc_dma_disable(struct at91_adc_state * st)2089 static void at91_adc_dma_disable(struct at91_adc_state *st)
2090 {
2091 struct device *dev = &st->indio_dev->dev;
2092 /* we have 2 bytes for each channel */
2093 unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2094 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2095 sample_size * 2, PAGE_SIZE);
2096
2097 /* if we are not using DMA, just return */
2098 if (!st->dma_st.dma_chan)
2099 return;
2100
2101 /* wait for all transactions to be terminated first*/
2102 dmaengine_terminate_sync(st->dma_st.dma_chan);
2103
2104 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2105 st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2106 dma_release_channel(st->dma_st.dma_chan);
2107 st->dma_st.dma_chan = NULL;
2108
2109 dev_info(dev, "continuing without DMA support\n");
2110 }
2111
at91_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)2112 static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
2113 {
2114 struct at91_adc_state *st = iio_priv(indio_dev);
2115 int ret;
2116
2117 if (val > AT91_HWFIFO_MAX_SIZE)
2118 val = AT91_HWFIFO_MAX_SIZE;
2119
2120 if (!st->selected_trig->hw_trig) {
2121 dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n");
2122 return 0;
2123 }
2124
2125 dev_dbg(&indio_dev->dev, "new watermark is %u\n", val);
2126 st->dma_st.watermark = val;
2127
2128 /*
2129 * The logic here is: if we have watermark 1, it means we do
2130 * each conversion with it's own IRQ, thus we don't need DMA.
2131 * If the watermark is higher, we do DMA to do all the transfers in bulk
2132 */
2133
2134 if (val == 1)
2135 at91_adc_dma_disable(st);
2136 else if (val > 1)
2137 at91_adc_dma_init(st);
2138
2139 /*
2140 * We can start the DMA only after setting the watermark and
2141 * having the DMA initialization completed
2142 */
2143 ret = at91_adc_buffer_prepare(indio_dev);
2144 if (ret)
2145 at91_adc_dma_disable(st);
2146
2147 return ret;
2148 }
2149
at91_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)2150 static int at91_adc_update_scan_mode(struct iio_dev *indio_dev,
2151 const unsigned long *scan_mask)
2152 {
2153 struct at91_adc_state *st = iio_priv(indio_dev);
2154
2155 if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask,
2156 st->soc_info.platform->max_index + 1))
2157 return 0;
2158 /*
2159 * if the new bitmap is a combination of touchscreen and regular
2160 * channels, then we are not fine
2161 */
2162 if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask,
2163 st->soc_info.platform->max_index + 1))
2164 return -EINVAL;
2165 return 0;
2166 }
2167
at91_adc_hw_init(struct iio_dev * indio_dev)2168 static void at91_adc_hw_init(struct iio_dev *indio_dev)
2169 {
2170 struct at91_adc_state *st = iio_priv(indio_dev);
2171
2172 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2173 if (st->soc_info.platform->layout->EOC_IDR)
2174 at91_adc_writel(st, EOC_IDR, 0xffffffff);
2175 at91_adc_writel(st, IDR, 0xffffffff);
2176 /*
2177 * Transfer field must be set to 2 according to the datasheet and
2178 * allows different analog settings for each channel.
2179 */
2180 at91_adc_writel(st, MR,
2181 AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH);
2182
2183 at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate,
2184 st->soc_info.startup_time, 0);
2185
2186 /* configure extended mode register */
2187 at91_adc_config_emr(st, st->oversampling_ratio, 0);
2188 }
2189
at91_adc_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)2190 static ssize_t at91_adc_get_fifo_state(struct device *dev,
2191 struct device_attribute *attr, char *buf)
2192 {
2193 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2194 struct at91_adc_state *st = iio_priv(indio_dev);
2195
2196 return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan);
2197 }
2198
at91_adc_get_watermark(struct device * dev,struct device_attribute * attr,char * buf)2199 static ssize_t at91_adc_get_watermark(struct device *dev,
2200 struct device_attribute *attr, char *buf)
2201 {
2202 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2203 struct at91_adc_state *st = iio_priv(indio_dev);
2204
2205 return sysfs_emit(buf, "%d\n", st->dma_st.watermark);
2206 }
2207
2208 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
2209 at91_adc_get_fifo_state, NULL, 0);
2210 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
2211 at91_adc_get_watermark, NULL, 0);
2212
2213 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2");
2214 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR);
2215
2216 static const struct iio_dev_attr *at91_adc_fifo_attributes[] = {
2217 &iio_dev_attr_hwfifo_watermark_min,
2218 &iio_dev_attr_hwfifo_watermark_max,
2219 &iio_dev_attr_hwfifo_watermark,
2220 &iio_dev_attr_hwfifo_enabled,
2221 NULL,
2222 };
2223
2224 static const struct iio_info at91_adc_info = {
2225 .read_avail = &at91_adc_read_avail,
2226 .read_raw = &at91_adc_read_raw,
2227 .write_raw = &at91_adc_write_raw,
2228 .update_scan_mode = &at91_adc_update_scan_mode,
2229 .fwnode_xlate = &at91_adc_fwnode_xlate,
2230 .hwfifo_set_watermark = &at91_adc_set_watermark,
2231 };
2232
at91_adc_buffer_and_trigger_init(struct device * dev,struct iio_dev * indio)2233 static int at91_adc_buffer_and_trigger_init(struct device *dev,
2234 struct iio_dev *indio)
2235 {
2236 struct at91_adc_state *st = iio_priv(indio);
2237 const struct iio_dev_attr **fifo_attrs;
2238 int ret;
2239
2240 if (st->selected_trig->hw_trig)
2241 fifo_attrs = at91_adc_fifo_attributes;
2242 else
2243 fifo_attrs = NULL;
2244
2245 ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio,
2246 &iio_pollfunc_store_time, &at91_adc_trigger_handler,
2247 IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs);
2248 if (ret < 0) {
2249 dev_err(dev, "couldn't initialize the buffer.\n");
2250 return ret;
2251 }
2252
2253 if (!st->selected_trig->hw_trig)
2254 return 0;
2255
2256 st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name);
2257 if (IS_ERR(st->trig)) {
2258 dev_err(dev, "could not allocate trigger\n");
2259 return PTR_ERR(st->trig);
2260 }
2261
2262 /*
2263 * Initially the iio buffer has a length of 2 and
2264 * a watermark of 1
2265 */
2266 st->dma_st.watermark = 1;
2267
2268 return 0;
2269 }
2270
at91_adc_temp_sensor_init(struct at91_adc_state * st,struct device * dev)2271 static int at91_adc_temp_sensor_init(struct at91_adc_state *st,
2272 struct device *dev)
2273 {
2274 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
2275 struct nvmem_cell *temp_calib;
2276 u32 *buf;
2277 size_t len;
2278 int ret = 0;
2279
2280 if (!st->soc_info.platform->temp_sensor)
2281 return 0;
2282
2283 /* Get the calibration data from NVMEM. */
2284 temp_calib = devm_nvmem_cell_get(dev, "temperature_calib");
2285 if (IS_ERR(temp_calib)) {
2286 ret = PTR_ERR(temp_calib);
2287 if (ret != -ENOENT)
2288 dev_err(dev, "Failed to get temperature_calib cell!\n");
2289 return ret;
2290 }
2291
2292 buf = nvmem_cell_read(temp_calib, &len);
2293 if (IS_ERR(buf)) {
2294 dev_err(dev, "Failed to read calibration data!\n");
2295 return PTR_ERR(buf);
2296 }
2297 if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) {
2298 dev_err(dev, "Invalid calibration data!\n");
2299 ret = -EINVAL;
2300 goto free_buf;
2301 }
2302
2303 /* Store calibration data for later use. */
2304 clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1];
2305 clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4];
2306 clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6];
2307
2308 /*
2309 * We prepare here the conversion to milli to avoid doing it on hotpath.
2310 */
2311 clb->p1 = clb->p1 * 1000;
2312
2313 free_buf:
2314 kfree(buf);
2315 return ret;
2316 }
2317
at91_adc_probe(struct platform_device * pdev)2318 static int at91_adc_probe(struct platform_device *pdev)
2319 {
2320 struct device *dev = &pdev->dev;
2321 struct iio_dev *indio_dev;
2322 struct at91_adc_state *st;
2323 struct resource *res;
2324 int ret, i, num_channels;
2325 u32 edge_type = IRQ_TYPE_NONE;
2326
2327 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st));
2328 if (!indio_dev)
2329 return -ENOMEM;
2330
2331 st = iio_priv(indio_dev);
2332 st->indio_dev = indio_dev;
2333
2334 st->soc_info.platform = device_get_match_data(dev);
2335
2336 ret = at91_adc_temp_sensor_init(st, &pdev->dev);
2337 /* Don't register temperature channel if initialization failed. */
2338 if (ret)
2339 num_channels = st->soc_info.platform->max_channels - 1;
2340 else
2341 num_channels = st->soc_info.platform->max_channels;
2342
2343 indio_dev->name = dev_name(&pdev->dev);
2344 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
2345 indio_dev->info = &at91_adc_info;
2346 indio_dev->channels = *st->soc_info.platform->adc_channels;
2347 indio_dev->num_channels = num_channels;
2348
2349 bitmap_set(&st->touch_st.channels_bitmask,
2350 st->soc_info.platform->touch_chan_x, 1);
2351 bitmap_set(&st->touch_st.channels_bitmask,
2352 st->soc_info.platform->touch_chan_y, 1);
2353 bitmap_set(&st->touch_st.channels_bitmask,
2354 st->soc_info.platform->touch_chan_p, 1);
2355
2356 st->oversampling_ratio = 1;
2357
2358 ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz",
2359 &st->soc_info.min_sample_rate);
2360 if (ret) {
2361 dev_err(&pdev->dev,
2362 "invalid or missing value for atmel,min-sample-rate-hz\n");
2363 return ret;
2364 }
2365
2366 ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz",
2367 &st->soc_info.max_sample_rate);
2368 if (ret) {
2369 dev_err(&pdev->dev,
2370 "invalid or missing value for atmel,max-sample-rate-hz\n");
2371 return ret;
2372 }
2373
2374 ret = device_property_read_u32(dev, "atmel,startup-time-ms",
2375 &st->soc_info.startup_time);
2376 if (ret) {
2377 dev_err(&pdev->dev,
2378 "invalid or missing value for atmel,startup-time-ms\n");
2379 return ret;
2380 }
2381
2382 ret = device_property_read_u32(dev, "atmel,trigger-edge-type",
2383 &edge_type);
2384 if (ret) {
2385 dev_dbg(&pdev->dev,
2386 "atmel,trigger-edge-type not specified, only software trigger available\n");
2387 }
2388
2389 st->selected_trig = NULL;
2390
2391 /* find the right trigger, or no trigger at all */
2392 for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++)
2393 if (at91_adc_trigger_list[i].edge_type == edge_type) {
2394 st->selected_trig = &at91_adc_trigger_list[i];
2395 break;
2396 }
2397
2398 if (!st->selected_trig) {
2399 dev_err(&pdev->dev, "invalid external trigger edge value\n");
2400 return -EINVAL;
2401 }
2402
2403 init_waitqueue_head(&st->wq_data_available);
2404 mutex_init(&st->lock);
2405 INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler);
2406
2407 st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2408 if (IS_ERR(st->base))
2409 return PTR_ERR(st->base);
2410
2411 /* if we plan to use DMA, we need the physical address of the regs */
2412 st->dma_st.phys_addr = res->start;
2413
2414 st->irq = platform_get_irq(pdev, 0);
2415 if (st->irq < 0)
2416 return st->irq;
2417
2418 st->per_clk = devm_clk_get(&pdev->dev, "adc_clk");
2419 if (IS_ERR(st->per_clk))
2420 return PTR_ERR(st->per_clk);
2421
2422 st->reg = devm_regulator_get(&pdev->dev, "vddana");
2423 if (IS_ERR(st->reg))
2424 return PTR_ERR(st->reg);
2425
2426 st->vref = devm_regulator_get(&pdev->dev, "vref");
2427 if (IS_ERR(st->vref))
2428 return PTR_ERR(st->vref);
2429
2430 ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0,
2431 pdev->dev.driver->name, indio_dev);
2432 if (ret)
2433 return ret;
2434
2435 ret = regulator_enable(st->reg);
2436 if (ret)
2437 return ret;
2438
2439 ret = regulator_enable(st->vref);
2440 if (ret)
2441 goto reg_disable;
2442
2443 st->vref_uv = regulator_get_voltage(st->vref);
2444 if (st->vref_uv <= 0) {
2445 ret = -EINVAL;
2446 goto vref_disable;
2447 }
2448
2449 ret = clk_prepare_enable(st->per_clk);
2450 if (ret)
2451 goto vref_disable;
2452
2453 platform_set_drvdata(pdev, indio_dev);
2454 st->dev = &pdev->dev;
2455 pm_runtime_set_autosuspend_delay(st->dev, 500);
2456 pm_runtime_use_autosuspend(st->dev);
2457 pm_runtime_set_active(st->dev);
2458 pm_runtime_enable(st->dev);
2459 pm_runtime_get_noresume(st->dev);
2460
2461 at91_adc_hw_init(indio_dev);
2462
2463 ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev);
2464 if (ret < 0)
2465 goto err_pm_disable;
2466
2467 if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32)))
2468 dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n");
2469
2470 ret = iio_device_register(indio_dev);
2471 if (ret < 0)
2472 goto dma_disable;
2473
2474 if (st->selected_trig->hw_trig)
2475 dev_info(&pdev->dev, "setting up trigger as %s\n",
2476 st->selected_trig->name);
2477
2478 dev_info(&pdev->dev, "version: %x\n",
2479 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION));
2480
2481 pm_runtime_mark_last_busy(st->dev);
2482 pm_runtime_put_autosuspend(st->dev);
2483
2484 return 0;
2485
2486 dma_disable:
2487 at91_adc_dma_disable(st);
2488 err_pm_disable:
2489 pm_runtime_put_noidle(st->dev);
2490 pm_runtime_disable(st->dev);
2491 pm_runtime_set_suspended(st->dev);
2492 pm_runtime_dont_use_autosuspend(st->dev);
2493 clk_disable_unprepare(st->per_clk);
2494 vref_disable:
2495 regulator_disable(st->vref);
2496 reg_disable:
2497 regulator_disable(st->reg);
2498 return ret;
2499 }
2500
at91_adc_remove(struct platform_device * pdev)2501 static void at91_adc_remove(struct platform_device *pdev)
2502 {
2503 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2504 struct at91_adc_state *st = iio_priv(indio_dev);
2505
2506 iio_device_unregister(indio_dev);
2507
2508 at91_adc_dma_disable(st);
2509
2510 pm_runtime_disable(st->dev);
2511 pm_runtime_set_suspended(st->dev);
2512 clk_disable_unprepare(st->per_clk);
2513
2514 regulator_disable(st->vref);
2515 regulator_disable(st->reg);
2516 }
2517
at91_adc_suspend(struct device * dev)2518 static int at91_adc_suspend(struct device *dev)
2519 {
2520 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2521 struct at91_adc_state *st = iio_priv(indio_dev);
2522 int ret;
2523
2524 ret = pm_runtime_resume_and_get(st->dev);
2525 if (ret < 0)
2526 return ret;
2527
2528 if (iio_buffer_enabled(indio_dev))
2529 at91_adc_buffer_postdisable(indio_dev);
2530
2531 /*
2532 * Do a sofware reset of the ADC before we go to suspend.
2533 * this will ensure that all pins are free from being muxed by the ADC
2534 * and can be used by for other devices.
2535 * Otherwise, ADC will hog them and we can't go to suspend mode.
2536 */
2537 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2538
2539 pm_runtime_mark_last_busy(st->dev);
2540 pm_runtime_put_noidle(st->dev);
2541 clk_disable_unprepare(st->per_clk);
2542 regulator_disable(st->vref);
2543 regulator_disable(st->reg);
2544
2545 return pinctrl_pm_select_sleep_state(dev);
2546 }
2547
at91_adc_resume(struct device * dev)2548 static int at91_adc_resume(struct device *dev)
2549 {
2550 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2551 struct at91_adc_state *st = iio_priv(indio_dev);
2552 int ret;
2553
2554 ret = pinctrl_pm_select_default_state(dev);
2555 if (ret)
2556 goto resume_failed;
2557
2558 ret = regulator_enable(st->reg);
2559 if (ret)
2560 goto resume_failed;
2561
2562 ret = regulator_enable(st->vref);
2563 if (ret)
2564 goto reg_disable_resume;
2565
2566 ret = clk_prepare_enable(st->per_clk);
2567 if (ret)
2568 goto vref_disable_resume;
2569
2570 pm_runtime_get_noresume(st->dev);
2571
2572 at91_adc_hw_init(indio_dev);
2573
2574 /* reconfiguring trigger hardware state */
2575 if (iio_buffer_enabled(indio_dev)) {
2576 ret = at91_adc_buffer_prepare(indio_dev);
2577 if (ret)
2578 goto pm_runtime_put;
2579
2580 at91_adc_configure_trigger_registers(st, true);
2581 }
2582
2583 pm_runtime_mark_last_busy(st->dev);
2584 pm_runtime_put_autosuspend(st->dev);
2585
2586 return 0;
2587
2588 pm_runtime_put:
2589 pm_runtime_mark_last_busy(st->dev);
2590 pm_runtime_put_noidle(st->dev);
2591 clk_disable_unprepare(st->per_clk);
2592 vref_disable_resume:
2593 regulator_disable(st->vref);
2594 reg_disable_resume:
2595 regulator_disable(st->reg);
2596 resume_failed:
2597 dev_err(&indio_dev->dev, "failed to resume\n");
2598 return ret;
2599 }
2600
at91_adc_runtime_suspend(struct device * dev)2601 static int at91_adc_runtime_suspend(struct device *dev)
2602 {
2603 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2604 struct at91_adc_state *st = iio_priv(indio_dev);
2605
2606 clk_disable(st->per_clk);
2607
2608 return 0;
2609 }
2610
at91_adc_runtime_resume(struct device * dev)2611 static int at91_adc_runtime_resume(struct device *dev)
2612 {
2613 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2614 struct at91_adc_state *st = iio_priv(indio_dev);
2615
2616 return clk_enable(st->per_clk);
2617 }
2618
2619 static const struct dev_pm_ops at91_adc_pm_ops = {
2620 SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume)
2621 RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume,
2622 NULL)
2623 };
2624
2625 static const struct of_device_id at91_adc_dt_match[] = {
2626 {
2627 .compatible = "atmel,sama5d2-adc",
2628 .data = (const void *)&sama5d2_platform,
2629 }, {
2630 .compatible = "microchip,sama7g5-adc",
2631 .data = (const void *)&sama7g5_platform,
2632 }, {
2633 /* sentinel */
2634 }
2635 };
2636 MODULE_DEVICE_TABLE(of, at91_adc_dt_match);
2637
2638 static struct platform_driver at91_adc_driver = {
2639 .probe = at91_adc_probe,
2640 .remove = at91_adc_remove,
2641 .driver = {
2642 .name = "at91-sama5d2_adc",
2643 .of_match_table = at91_adc_dt_match,
2644 .pm = pm_ptr(&at91_adc_pm_ops),
2645 },
2646 };
2647 module_platform_driver(at91_adc_driver)
2648
2649 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>");
2650 MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com");
2651 MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC");
2652 MODULE_LICENSE("GPL v2");
2653