1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * External DMA controller driver for UniPhier SoCs
4 * Copyright 2019 Socionext Inc.
5 * Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/bitfield.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_dma.h>
14 #include <linux/platform_device.h>
15 #include <linux/slab.h>
16
17 #include "dmaengine.h"
18 #include "virt-dma.h"
19
20 #define XDMAC_CH_WIDTH 0x100
21
22 #define XDMAC_TFA 0x08
23 #define XDMAC_TFA_MCNT_MASK GENMASK(23, 16)
24 #define XDMAC_TFA_MASK GENMASK(5, 0)
25 #define XDMAC_SADM 0x10
26 #define XDMAC_SADM_STW_MASK GENMASK(25, 24)
27 #define XDMAC_SADM_SAM BIT(4)
28 #define XDMAC_SADM_SAM_FIXED XDMAC_SADM_SAM
29 #define XDMAC_SADM_SAM_INC 0
30 #define XDMAC_DADM 0x14
31 #define XDMAC_DADM_DTW_MASK XDMAC_SADM_STW_MASK
32 #define XDMAC_DADM_DAM XDMAC_SADM_SAM
33 #define XDMAC_DADM_DAM_FIXED XDMAC_SADM_SAM_FIXED
34 #define XDMAC_DADM_DAM_INC XDMAC_SADM_SAM_INC
35 #define XDMAC_EXSAD 0x18
36 #define XDMAC_EXDAD 0x1c
37 #define XDMAC_SAD 0x20
38 #define XDMAC_DAD 0x24
39 #define XDMAC_ITS 0x28
40 #define XDMAC_ITS_MASK GENMASK(25, 0)
41 #define XDMAC_TNUM 0x2c
42 #define XDMAC_TNUM_MASK GENMASK(15, 0)
43 #define XDMAC_TSS 0x30
44 #define XDMAC_TSS_REQ BIT(0)
45 #define XDMAC_IEN 0x34
46 #define XDMAC_IEN_ERRIEN BIT(1)
47 #define XDMAC_IEN_ENDIEN BIT(0)
48 #define XDMAC_STAT 0x40
49 #define XDMAC_STAT_TENF BIT(0)
50 #define XDMAC_IR 0x44
51 #define XDMAC_IR_ERRF BIT(1)
52 #define XDMAC_IR_ENDF BIT(0)
53 #define XDMAC_ID 0x48
54 #define XDMAC_ID_ERRIDF BIT(1)
55 #define XDMAC_ID_ENDIDF BIT(0)
56
57 #define XDMAC_MAX_CHANS 16
58 #define XDMAC_INTERVAL_CLKS 20
59 #define XDMAC_MAX_WORDS XDMAC_TNUM_MASK
60
61 /* cut lower bit for maintain alignment of maximum transfer size */
62 #define XDMAC_MAX_WORD_SIZE (XDMAC_ITS_MASK & ~GENMASK(3, 0))
63
64 #define UNIPHIER_XDMAC_BUSWIDTHS \
65 (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
66 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
67 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
68 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
69
70 struct uniphier_xdmac_desc_node {
71 dma_addr_t src;
72 dma_addr_t dst;
73 u32 burst_size;
74 u32 nr_burst;
75 };
76
77 struct uniphier_xdmac_desc {
78 struct virt_dma_desc vd;
79
80 unsigned int nr_node;
81 unsigned int cur_node;
82 enum dma_transfer_direction dir;
83 struct uniphier_xdmac_desc_node nodes[] __counted_by(nr_node);
84 };
85
86 struct uniphier_xdmac_chan {
87 struct virt_dma_chan vc;
88 struct uniphier_xdmac_device *xdev;
89 struct uniphier_xdmac_desc *xd;
90 void __iomem *reg_ch_base;
91 struct dma_slave_config sconfig;
92 int id;
93 unsigned int req_factor;
94 };
95
96 struct uniphier_xdmac_device {
97 struct dma_device ddev;
98 void __iomem *reg_base;
99 int nr_chans;
100 struct uniphier_xdmac_chan channels[] __counted_by(nr_chans);
101 };
102
103 static struct uniphier_xdmac_chan *
to_uniphier_xdmac_chan(struct virt_dma_chan * vc)104 to_uniphier_xdmac_chan(struct virt_dma_chan *vc)
105 {
106 return container_of(vc, struct uniphier_xdmac_chan, vc);
107 }
108
109 static struct uniphier_xdmac_desc *
to_uniphier_xdmac_desc(struct virt_dma_desc * vd)110 to_uniphier_xdmac_desc(struct virt_dma_desc *vd)
111 {
112 return container_of(vd, struct uniphier_xdmac_desc, vd);
113 }
114
115 /* xc->vc.lock must be held by caller */
116 static struct uniphier_xdmac_desc *
uniphier_xdmac_next_desc(struct uniphier_xdmac_chan * xc)117 uniphier_xdmac_next_desc(struct uniphier_xdmac_chan *xc)
118 {
119 struct virt_dma_desc *vd;
120
121 vd = vchan_next_desc(&xc->vc);
122 if (!vd)
123 return NULL;
124
125 list_del(&vd->node);
126
127 return to_uniphier_xdmac_desc(vd);
128 }
129
130 /* xc->vc.lock must be held by caller */
uniphier_xdmac_chan_start(struct uniphier_xdmac_chan * xc,struct uniphier_xdmac_desc * xd)131 static void uniphier_xdmac_chan_start(struct uniphier_xdmac_chan *xc,
132 struct uniphier_xdmac_desc *xd)
133 {
134 u32 src_mode, src_width;
135 u32 dst_mode, dst_width;
136 dma_addr_t src_addr, dst_addr;
137 u32 val, its, tnum;
138 enum dma_slave_buswidth buswidth;
139
140 src_addr = xd->nodes[xd->cur_node].src;
141 dst_addr = xd->nodes[xd->cur_node].dst;
142 its = xd->nodes[xd->cur_node].burst_size;
143 tnum = xd->nodes[xd->cur_node].nr_burst;
144
145 /*
146 * The width of MEM side must be 4 or 8 bytes, that does not
147 * affect that of DEV side and transfer size.
148 */
149 if (xd->dir == DMA_DEV_TO_MEM) {
150 src_mode = XDMAC_SADM_SAM_FIXED;
151 buswidth = xc->sconfig.src_addr_width;
152 } else {
153 src_mode = XDMAC_SADM_SAM_INC;
154 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
155 }
156 src_width = FIELD_PREP(XDMAC_SADM_STW_MASK, __ffs(buswidth));
157
158 if (xd->dir == DMA_MEM_TO_DEV) {
159 dst_mode = XDMAC_DADM_DAM_FIXED;
160 buswidth = xc->sconfig.dst_addr_width;
161 } else {
162 dst_mode = XDMAC_DADM_DAM_INC;
163 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
164 }
165 dst_width = FIELD_PREP(XDMAC_DADM_DTW_MASK, __ffs(buswidth));
166
167 /* setup transfer factor */
168 val = FIELD_PREP(XDMAC_TFA_MCNT_MASK, XDMAC_INTERVAL_CLKS);
169 val |= FIELD_PREP(XDMAC_TFA_MASK, xc->req_factor);
170 writel(val, xc->reg_ch_base + XDMAC_TFA);
171
172 /* setup the channel */
173 writel(lower_32_bits(src_addr), xc->reg_ch_base + XDMAC_SAD);
174 writel(upper_32_bits(src_addr), xc->reg_ch_base + XDMAC_EXSAD);
175
176 writel(lower_32_bits(dst_addr), xc->reg_ch_base + XDMAC_DAD);
177 writel(upper_32_bits(dst_addr), xc->reg_ch_base + XDMAC_EXDAD);
178
179 src_mode |= src_width;
180 dst_mode |= dst_width;
181 writel(src_mode, xc->reg_ch_base + XDMAC_SADM);
182 writel(dst_mode, xc->reg_ch_base + XDMAC_DADM);
183
184 writel(its, xc->reg_ch_base + XDMAC_ITS);
185 writel(tnum, xc->reg_ch_base + XDMAC_TNUM);
186
187 /* enable interrupt */
188 writel(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN,
189 xc->reg_ch_base + XDMAC_IEN);
190
191 /* start XDMAC */
192 val = readl(xc->reg_ch_base + XDMAC_TSS);
193 val |= XDMAC_TSS_REQ;
194 writel(val, xc->reg_ch_base + XDMAC_TSS);
195 }
196
197 /* xc->vc.lock must be held by caller */
uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan * xc)198 static int uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan *xc)
199 {
200 u32 val;
201
202 /* disable interrupt */
203 val = readl(xc->reg_ch_base + XDMAC_IEN);
204 val &= ~(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN);
205 writel(val, xc->reg_ch_base + XDMAC_IEN);
206
207 /* stop XDMAC */
208 val = readl(xc->reg_ch_base + XDMAC_TSS);
209 val &= ~XDMAC_TSS_REQ;
210 writel(0, xc->reg_ch_base + XDMAC_TSS);
211
212 /* wait until transfer is stopped */
213 return readl_poll_timeout_atomic(xc->reg_ch_base + XDMAC_STAT, val,
214 !(val & XDMAC_STAT_TENF), 100, 1000);
215 }
216
217 /* xc->vc.lock must be held by caller */
uniphier_xdmac_start(struct uniphier_xdmac_chan * xc)218 static void uniphier_xdmac_start(struct uniphier_xdmac_chan *xc)
219 {
220 struct uniphier_xdmac_desc *xd;
221
222 xd = uniphier_xdmac_next_desc(xc);
223 if (xd)
224 uniphier_xdmac_chan_start(xc, xd);
225
226 /* set desc to chan regardless of xd is null */
227 xc->xd = xd;
228 }
229
uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan * xc)230 static void uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan *xc)
231 {
232 u32 stat;
233 int ret;
234
235 spin_lock(&xc->vc.lock);
236
237 stat = readl(xc->reg_ch_base + XDMAC_ID);
238
239 if (stat & XDMAC_ID_ERRIDF) {
240 ret = uniphier_xdmac_chan_stop(xc);
241 if (ret)
242 dev_err(xc->xdev->ddev.dev,
243 "DMA transfer error with aborting issue\n");
244 else
245 dev_err(xc->xdev->ddev.dev,
246 "DMA transfer error\n");
247
248 } else if ((stat & XDMAC_ID_ENDIDF) && xc->xd) {
249 xc->xd->cur_node++;
250 if (xc->xd->cur_node >= xc->xd->nr_node) {
251 vchan_cookie_complete(&xc->xd->vd);
252 uniphier_xdmac_start(xc);
253 } else {
254 uniphier_xdmac_chan_start(xc, xc->xd);
255 }
256 }
257
258 /* write bits to clear */
259 writel(stat, xc->reg_ch_base + XDMAC_IR);
260
261 spin_unlock(&xc->vc.lock);
262 }
263
uniphier_xdmac_irq_handler(int irq,void * dev_id)264 static irqreturn_t uniphier_xdmac_irq_handler(int irq, void *dev_id)
265 {
266 struct uniphier_xdmac_device *xdev = dev_id;
267 int i;
268
269 for (i = 0; i < xdev->nr_chans; i++)
270 uniphier_xdmac_chan_irq(&xdev->channels[i]);
271
272 return IRQ_HANDLED;
273 }
274
uniphier_xdmac_free_chan_resources(struct dma_chan * chan)275 static void uniphier_xdmac_free_chan_resources(struct dma_chan *chan)
276 {
277 vchan_free_chan_resources(to_virt_chan(chan));
278 }
279
280 static struct dma_async_tx_descriptor *
uniphier_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t len,unsigned long flags)281 uniphier_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
282 dma_addr_t src, size_t len, unsigned long flags)
283 {
284 struct virt_dma_chan *vc = to_virt_chan(chan);
285 struct uniphier_xdmac_desc *xd;
286 unsigned int nr;
287 size_t burst_size, tlen;
288 int i;
289
290 if (len > XDMAC_MAX_WORD_SIZE * XDMAC_MAX_WORDS)
291 return NULL;
292
293 nr = 1 + len / XDMAC_MAX_WORD_SIZE;
294
295 xd = kzalloc(struct_size(xd, nodes, nr), GFP_NOWAIT);
296 if (!xd)
297 return NULL;
298 xd->nr_node = nr;
299
300 for (i = 0; i < nr; i++) {
301 burst_size = min_t(size_t, len, XDMAC_MAX_WORD_SIZE);
302 xd->nodes[i].src = src;
303 xd->nodes[i].dst = dst;
304 xd->nodes[i].burst_size = burst_size;
305 xd->nodes[i].nr_burst = len / burst_size;
306 tlen = rounddown(len, burst_size);
307 src += tlen;
308 dst += tlen;
309 len -= tlen;
310 }
311
312 xd->dir = DMA_MEM_TO_MEM;
313 xd->cur_node = 0;
314
315 return vchan_tx_prep(vc, &xd->vd, flags);
316 }
317
318 static struct dma_async_tx_descriptor *
uniphier_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)319 uniphier_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
320 unsigned int sg_len,
321 enum dma_transfer_direction direction,
322 unsigned long flags, void *context)
323 {
324 struct virt_dma_chan *vc = to_virt_chan(chan);
325 struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
326 struct uniphier_xdmac_desc *xd;
327 struct scatterlist *sg;
328 enum dma_slave_buswidth buswidth;
329 u32 maxburst;
330 int i;
331
332 if (!is_slave_direction(direction))
333 return NULL;
334
335 if (direction == DMA_DEV_TO_MEM) {
336 buswidth = xc->sconfig.src_addr_width;
337 maxburst = xc->sconfig.src_maxburst;
338 } else {
339 buswidth = xc->sconfig.dst_addr_width;
340 maxburst = xc->sconfig.dst_maxburst;
341 }
342
343 if (!maxburst)
344 maxburst = 1;
345 if (maxburst > xc->xdev->ddev.max_burst) {
346 dev_err(xc->xdev->ddev.dev,
347 "Exceed maximum number of burst words\n");
348 return NULL;
349 }
350
351 xd = kzalloc(struct_size(xd, nodes, sg_len), GFP_NOWAIT);
352 if (!xd)
353 return NULL;
354 xd->nr_node = sg_len;
355
356 for_each_sg(sgl, sg, sg_len, i) {
357 xd->nodes[i].src = (direction == DMA_DEV_TO_MEM)
358 ? xc->sconfig.src_addr : sg_dma_address(sg);
359 xd->nodes[i].dst = (direction == DMA_MEM_TO_DEV)
360 ? xc->sconfig.dst_addr : sg_dma_address(sg);
361 xd->nodes[i].burst_size = maxburst * buswidth;
362 xd->nodes[i].nr_burst =
363 sg_dma_len(sg) / xd->nodes[i].burst_size;
364
365 /*
366 * Currently transfer that size doesn't align the unit size
367 * (the number of burst words * bus-width) is not allowed,
368 * because the driver does not support the way to transfer
369 * residue size. As a matter of fact, in order to transfer
370 * arbitrary size, 'src_maxburst' or 'dst_maxburst' of
371 * dma_slave_config must be 1.
372 */
373 if (sg_dma_len(sg) % xd->nodes[i].burst_size) {
374 dev_err(xc->xdev->ddev.dev,
375 "Unaligned transfer size: %d", sg_dma_len(sg));
376 kfree(xd);
377 return NULL;
378 }
379
380 if (xd->nodes[i].nr_burst > XDMAC_MAX_WORDS) {
381 dev_err(xc->xdev->ddev.dev,
382 "Exceed maximum transfer size");
383 kfree(xd);
384 return NULL;
385 }
386 }
387
388 xd->dir = direction;
389 xd->cur_node = 0;
390
391 return vchan_tx_prep(vc, &xd->vd, flags);
392 }
393
uniphier_xdmac_slave_config(struct dma_chan * chan,struct dma_slave_config * config)394 static int uniphier_xdmac_slave_config(struct dma_chan *chan,
395 struct dma_slave_config *config)
396 {
397 struct virt_dma_chan *vc = to_virt_chan(chan);
398 struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
399
400 memcpy(&xc->sconfig, config, sizeof(*config));
401
402 return 0;
403 }
404
uniphier_xdmac_terminate_all(struct dma_chan * chan)405 static int uniphier_xdmac_terminate_all(struct dma_chan *chan)
406 {
407 struct virt_dma_chan *vc = to_virt_chan(chan);
408 struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
409 unsigned long flags;
410 int ret = 0;
411 LIST_HEAD(head);
412
413 spin_lock_irqsave(&vc->lock, flags);
414
415 if (xc->xd) {
416 vchan_terminate_vdesc(&xc->xd->vd);
417 xc->xd = NULL;
418 ret = uniphier_xdmac_chan_stop(xc);
419 }
420
421 vchan_get_all_descriptors(vc, &head);
422
423 spin_unlock_irqrestore(&vc->lock, flags);
424
425 vchan_dma_desc_free_list(vc, &head);
426
427 return ret;
428 }
429
uniphier_xdmac_synchronize(struct dma_chan * chan)430 static void uniphier_xdmac_synchronize(struct dma_chan *chan)
431 {
432 vchan_synchronize(to_virt_chan(chan));
433 }
434
uniphier_xdmac_issue_pending(struct dma_chan * chan)435 static void uniphier_xdmac_issue_pending(struct dma_chan *chan)
436 {
437 struct virt_dma_chan *vc = to_virt_chan(chan);
438 struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
439 unsigned long flags;
440
441 spin_lock_irqsave(&vc->lock, flags);
442
443 if (vchan_issue_pending(vc) && !xc->xd)
444 uniphier_xdmac_start(xc);
445
446 spin_unlock_irqrestore(&vc->lock, flags);
447 }
448
uniphier_xdmac_desc_free(struct virt_dma_desc * vd)449 static void uniphier_xdmac_desc_free(struct virt_dma_desc *vd)
450 {
451 kfree(to_uniphier_xdmac_desc(vd));
452 }
453
uniphier_xdmac_chan_init(struct uniphier_xdmac_device * xdev,int ch)454 static void uniphier_xdmac_chan_init(struct uniphier_xdmac_device *xdev,
455 int ch)
456 {
457 struct uniphier_xdmac_chan *xc = &xdev->channels[ch];
458
459 xc->xdev = xdev;
460 xc->reg_ch_base = xdev->reg_base + XDMAC_CH_WIDTH * ch;
461 xc->vc.desc_free = uniphier_xdmac_desc_free;
462
463 vchan_init(&xc->vc, &xdev->ddev);
464 }
465
of_dma_uniphier_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)466 static struct dma_chan *of_dma_uniphier_xlate(struct of_phandle_args *dma_spec,
467 struct of_dma *ofdma)
468 {
469 struct uniphier_xdmac_device *xdev = ofdma->of_dma_data;
470 int chan_id = dma_spec->args[0];
471
472 if (chan_id >= xdev->nr_chans)
473 return NULL;
474
475 xdev->channels[chan_id].id = chan_id;
476 xdev->channels[chan_id].req_factor = dma_spec->args[1];
477
478 return dma_get_slave_channel(&xdev->channels[chan_id].vc.chan);
479 }
480
uniphier_xdmac_probe(struct platform_device * pdev)481 static int uniphier_xdmac_probe(struct platform_device *pdev)
482 {
483 struct uniphier_xdmac_device *xdev;
484 struct device *dev = &pdev->dev;
485 struct dma_device *ddev;
486 int irq;
487 int nr_chans;
488 int i, ret;
489
490 if (of_property_read_u32(dev->of_node, "dma-channels", &nr_chans))
491 return -EINVAL;
492 if (nr_chans > XDMAC_MAX_CHANS)
493 nr_chans = XDMAC_MAX_CHANS;
494
495 xdev = devm_kzalloc(dev, struct_size(xdev, channels, nr_chans),
496 GFP_KERNEL);
497 if (!xdev)
498 return -ENOMEM;
499
500 xdev->nr_chans = nr_chans;
501 xdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
502 if (IS_ERR(xdev->reg_base))
503 return PTR_ERR(xdev->reg_base);
504
505 ddev = &xdev->ddev;
506 ddev->dev = dev;
507 dma_cap_zero(ddev->cap_mask);
508 dma_cap_set(DMA_MEMCPY, ddev->cap_mask);
509 dma_cap_set(DMA_SLAVE, ddev->cap_mask);
510 ddev->src_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
511 ddev->dst_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
512 ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
513 BIT(DMA_MEM_TO_MEM);
514 ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
515 ddev->max_burst = XDMAC_MAX_WORDS;
516 ddev->device_free_chan_resources = uniphier_xdmac_free_chan_resources;
517 ddev->device_prep_dma_memcpy = uniphier_xdmac_prep_dma_memcpy;
518 ddev->device_prep_slave_sg = uniphier_xdmac_prep_slave_sg;
519 ddev->device_config = uniphier_xdmac_slave_config;
520 ddev->device_terminate_all = uniphier_xdmac_terminate_all;
521 ddev->device_synchronize = uniphier_xdmac_synchronize;
522 ddev->device_tx_status = dma_cookie_status;
523 ddev->device_issue_pending = uniphier_xdmac_issue_pending;
524 INIT_LIST_HEAD(&ddev->channels);
525
526 for (i = 0; i < nr_chans; i++)
527 uniphier_xdmac_chan_init(xdev, i);
528
529 irq = platform_get_irq(pdev, 0);
530 if (irq < 0)
531 return irq;
532
533 ret = devm_request_irq(dev, irq, uniphier_xdmac_irq_handler,
534 IRQF_SHARED, "xdmac", xdev);
535 if (ret) {
536 dev_err(dev, "Failed to request IRQ\n");
537 return ret;
538 }
539
540 ret = dma_async_device_register(ddev);
541 if (ret) {
542 dev_err(dev, "Failed to register XDMA device\n");
543 return ret;
544 }
545
546 ret = of_dma_controller_register(dev->of_node,
547 of_dma_uniphier_xlate, xdev);
548 if (ret) {
549 dev_err(dev, "Failed to register XDMA controller\n");
550 goto out_unregister_dmac;
551 }
552
553 platform_set_drvdata(pdev, xdev);
554
555 dev_info(&pdev->dev, "UniPhier XDMAC driver (%d channels)\n",
556 nr_chans);
557
558 return 0;
559
560 out_unregister_dmac:
561 dma_async_device_unregister(ddev);
562
563 return ret;
564 }
565
uniphier_xdmac_remove(struct platform_device * pdev)566 static void uniphier_xdmac_remove(struct platform_device *pdev)
567 {
568 struct uniphier_xdmac_device *xdev = platform_get_drvdata(pdev);
569 struct dma_device *ddev = &xdev->ddev;
570 struct dma_chan *chan;
571 int ret;
572
573 /*
574 * Before reaching here, almost all descriptors have been freed by the
575 * ->device_free_chan_resources() hook. However, each channel might
576 * be still holding one descriptor that was on-flight at that moment.
577 * Terminate it to make sure this hardware is no longer running. Then,
578 * free the channel resources once again to avoid memory leak.
579 */
580 list_for_each_entry(chan, &ddev->channels, device_node) {
581 ret = dmaengine_terminate_sync(chan);
582 if (ret) {
583 /*
584 * This results in resource leakage and maybe also
585 * use-after-free errors as e.g. *xdev is kfreed.
586 */
587 dev_alert(&pdev->dev, "Failed to terminate channel %d (%pe)\n",
588 chan->chan_id, ERR_PTR(ret));
589 return;
590 }
591 uniphier_xdmac_free_chan_resources(chan);
592 }
593
594 of_dma_controller_free(pdev->dev.of_node);
595 dma_async_device_unregister(ddev);
596 }
597
598 static const struct of_device_id uniphier_xdmac_match[] = {
599 { .compatible = "socionext,uniphier-xdmac" },
600 { /* sentinel */ }
601 };
602 MODULE_DEVICE_TABLE(of, uniphier_xdmac_match);
603
604 static struct platform_driver uniphier_xdmac_driver = {
605 .probe = uniphier_xdmac_probe,
606 .remove_new = uniphier_xdmac_remove,
607 .driver = {
608 .name = "uniphier-xdmac",
609 .of_match_table = uniphier_xdmac_match,
610 },
611 };
612 module_platform_driver(uniphier_xdmac_driver);
613
614 MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
615 MODULE_DESCRIPTION("UniPhier external DMA controller driver");
616 MODULE_LICENSE("GPL v2");
617