1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <io/xdf_shell.h>
27 #include <sys/dkio.h>
28 #include <sys/scsi/scsi_types.h>
29
30 /*
31 * General Notes
32 *
33 * We don't support disks with bad block mappins. We have this
34 * limitation because the underlying xdf driver doesn't support
35 * bad block remapping. If there is a need to support this feature
36 * it should be added directly to the xdf driver and we should just
37 * pass requests strait on through and let it handle the remapping.
38 * Also, it's probably worth pointing out that most modern disks do bad
39 * block remapping internally in the hardware so there's actually less
40 * of a chance of us ever discovering bad blocks. Also, in most cases
41 * this driver (and the xdf driver) will only be used with virtualized
42 * devices, so one might wonder why a virtual device would ever actually
43 * experience bad blocks. To wrap this up, you might be wondering how
44 * these bad block mappings get created and how they are managed. Well,
45 * there are two tools for managing bad block mappings, format(1M) and
46 * addbadsec(1M). Format(1M) can be used to do a surface scan of a disk
47 * to attempt to find bad block and create mappings for them. Format(1M)
48 * and addbadsec(1M) can also be used to edit existing mappings that may
49 * be saved on the disk.
50 *
51 * The underlying PV driver that this driver passes on requests to is the
52 * xdf driver. Since in most cases the xdf driver doesn't deal with
53 * physical disks it has it's own algorithm for assigning a physical
54 * geometry to a virtual disk (ie, cylinder count, head count, etc.)
55 * The default values chosen by the xdf driver may not match those
56 * assigned to a disk by a hardware disk emulator in an HVM environment.
57 * This is a problem since these physical geometry attributes affect
58 * things like the partition table, backup label location, etc. So
59 * to emulate disk devices correctly we need to know the physical geometry
60 * that was assigned to a disk at the time of it's initalization.
61 * Normally in an HVM environment this information will passed to
62 * the BIOS and operating system from the hardware emulator that is
63 * emulating the disk devices. In the case of a solaris dom0+xvm
64 * this would be qemu. So to work around this issue, this driver will
65 * query the emulated hardware to get the assigned physical geometry
66 * and then pass this geometry onto the xdf driver so that it can use it.
67 * But really, this information is essentially metadata about the disk
68 * that should be kept with the disk image itself. (Assuming or course
69 * that a disk image is the actual backingstore for this emulated device.)
70 * This metadata should also be made available to PV drivers via a common
71 * mechanism, probably the xenstore. The fact that this metadata isn't
72 * available outside of HVM domains means that it's difficult to move
73 * disks between HVM and PV domains, since a fully PV domain will have no
74 * way of knowing what the correct geometry of the target device is.
75 * (Short of reading the disk, looking for things like partition tables
76 * and labels, and taking a best guess at what the geometry was when
77 * the disk was initialized. Unsuprisingly, qemu actually does this.)
78 *
79 * This driver has to map xdf shell device instances into their corresponding
80 * xdf device instances. We have to do this to ensure that when a user
81 * accesses a emulated xdf shell device we map those accesses to the proper
82 * paravirtualized device. Basically what we need to know is how multiple
83 * 'disk' entries in a domU configuration file get mapped to emulated
84 * xdf shell devices and to xdf devices. The 'disk' entry to xdf instance
85 * mappings we know because those are done within the Solaris xvdi code
86 * and the xpvd nexus driver. But the config to emulated devices mappings
87 * are handled entirely within the xen management tool chain and the
88 * hardware emulator. Since all the tools that establish these mappings
89 * live in dom0, dom0 should really supply us with this information,
90 * probably via the xenstore. Unfortunatly it doesn't so, since there's
91 * no good way to determine this mapping dynamically, this driver uses
92 * a hard coded set of static mappings. These mappings are hardware
93 * emulator specific because each different hardware emulator could have
94 * a different device tree with different xdf shell device paths. This
95 * means that if we want to continue to use this static mapping approach
96 * to allow Solaris to run on different hardware emulators we'll have
97 * to analyze each of those emulators to determine what paths they
98 * use and hard code those paths into this driver. yech. This metadata
99 * really needs to be supplied to us by dom0.
100 *
101 * This driver access underlying xdf nodes. Unfortunatly, devices
102 * must create minor nodes during attach, and for disk devices to create
103 * minor nodes, they have to look at the label on the disk, so this means
104 * that disk drivers must be able to access a disk contents during
105 * attach. That means that this disk driver must be able to access
106 * underlying xdf nodes during attach. Unfortunatly, due to device tree
107 * locking restrictions, we cannot have an attach operation occuring on
108 * this device and then attempt to access another device which may
109 * cause another attach to occur in a different device tree branch
110 * since this could result in deadlock. Hence, this driver can only
111 * access xdf device nodes that we know are attached, and it can't use
112 * any ddi interfaces to access those nodes if those interfaces could
113 * trigger an attach of the xdf device. So this driver works around
114 * these restrictions by talking directly to xdf devices via
115 * xdf_hvm_hold(). This interface takes a pathname to an xdf device,
116 * and if that device is already attached then it returns the a held dip
117 * pointer for that device node. This prevents us from getting into
118 * deadlock situations, but now we need a mechanism to ensure that all
119 * the xdf device nodes this driver might access are attached before
120 * this driver tries to access them. This is accomplished via the
121 * hvmboot_rootconf() callback which is invoked just before root is
122 * mounted. hvmboot_rootconf() will attach xpvd and tell it to configure
123 * all xdf device visible to the system. All these xdf device nodes
124 * will also be marked with the "ddi-no-autodetach" property so that
125 * once they are configured, the will not be automatically unconfigured.
126 * The only way that they could be unconfigured is if the administrator
127 * explicitly attempts to unload required modules via rem_drv(1M)
128 * or modunload(1M).
129 */
130
131 /*
132 * 16 paritions + fdisk (see xdf.h)
133 */
134 #define XDFS_DEV2UNIT(dev) XDF_INST((getminor((dev))))
135 #define XDFS_DEV2PART(dev) XDF_PART((getminor((dev))))
136
137 #define OTYP_VALID(otyp) ((otyp == OTYP_BLK) || \
138 (otyp == OTYP_CHR) || \
139 (otyp == OTYP_LYR))
140
141 #define XDFS_NODES 4
142
143 #define XDFS_HVM_MODE(sp) (XDFS_HVM_STATE(sp)->xdfs_hs_mode)
144 #define XDFS_HVM_DIP(sp) (XDFS_HVM_STATE(sp)->xdfs_hs_dip)
145 #define XDFS_HVM_PATH(sp) (XDFS_HVM_STATE(sp)->xdfs_hs_path)
146 #define XDFS_HVM_STATE(sp) \
147 ((xdfs_hvm_state_t *)(&((char *)(sp))[XDFS_HVM_STATE_OFFSET]))
148 #define XDFS_HVM_STATE_OFFSET (xdfs_ss_size - sizeof (xdfs_hvm_state_t))
149 #define XDFS_HVM_SANE(sp) \
150 ASSERT(XDFS_HVM_MODE(sp)); \
151 ASSERT(XDFS_HVM_DIP(sp) != NULL); \
152 ASSERT(XDFS_HVM_PATH(sp) != NULL);
153
154
155 typedef struct xdfs_hvm_state {
156 boolean_t xdfs_hs_mode;
157 dev_info_t *xdfs_hs_dip;
158 char *xdfs_hs_path;
159 } xdfs_hvm_state_t;
160
161 /* local function and structure prototypes */
162 static int xdfs_iodone(struct buf *);
163 static boolean_t xdfs_isopen_part(xdfs_state_t *, int);
164 static boolean_t xdfs_isopen(xdfs_state_t *);
165 static cmlb_tg_ops_t xdfs_lb_ops;
166
167 /*
168 * Globals
169 */
170 major_t xdfs_major;
171 #define xdfs_hvm_dev_ops (xdfs_c_hvm_dev_ops)
172 #define xdfs_hvm_cb_ops (xdfs_hvm_dev_ops->devo_cb_ops)
173
174 /*
175 * Private globals
176 */
177 volatile boolean_t xdfs_pv_disable = B_FALSE;
178 static void *xdfs_ssp;
179 static size_t xdfs_ss_size;
180
181 /*
182 * Private helper functions
183 */
184 static boolean_t
xdfs_tgt_hold(xdfs_state_t * xsp)185 xdfs_tgt_hold(xdfs_state_t *xsp)
186 {
187 mutex_enter(&xsp->xdfss_mutex);
188 ASSERT(xsp->xdfss_tgt_holds >= 0);
189 if (!xsp->xdfss_tgt_attached) {
190 mutex_exit(&xsp->xdfss_mutex);
191 return (B_FALSE);
192 }
193 xsp->xdfss_tgt_holds++;
194 mutex_exit(&xsp->xdfss_mutex);
195 return (B_TRUE);
196 }
197
198 static void
xdfs_tgt_release(xdfs_state_t * xsp)199 xdfs_tgt_release(xdfs_state_t *xsp)
200 {
201 mutex_enter(&xsp->xdfss_mutex);
202 ASSERT(xsp->xdfss_tgt_attached);
203 ASSERT(xsp->xdfss_tgt_holds > 0);
204 if (--xsp->xdfss_tgt_holds == 0)
205 cv_broadcast(&xsp->xdfss_cv);
206 mutex_exit(&xsp->xdfss_mutex);
207 }
208
209 /*ARGSUSED*/
210 static int
xdfs_lb_getinfo(dev_info_t * dip,int cmd,void * arg,void * tg_cookie)211 xdfs_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
212 {
213 int instance = ddi_get_instance(dip);
214 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
215 int rv;
216
217 if (xsp == NULL)
218 return (ENXIO);
219
220 if (!xdfs_tgt_hold(xsp))
221 return (ENXIO);
222
223 if (cmd == TG_GETVIRTGEOM) {
224 cmlb_geom_t pgeom, *vgeomp;
225 diskaddr_t capacity;
226
227 /*
228 * The native xdf driver doesn't support this ioctl.
229 * Intead of passing it on, emulate it here so that the
230 * results look the same as what we get for a real xdf
231 * shell device.
232 *
233 * Get the real size of the device
234 */
235 if ((rv = xdf_lb_getinfo(xsp->xdfss_tgt_dip,
236 TG_GETPHYGEOM, &pgeom, tg_cookie)) != 0)
237 goto out;
238 capacity = pgeom.g_capacity;
239
240 /*
241 * If the controller returned us something that doesn't
242 * really fit into an Int 13/function 8 geometry
243 * result, just fail the ioctl. See PSARC 1998/313.
244 */
245 if (capacity >= (63 * 254 * 1024)) {
246 rv = EINVAL;
247 goto out;
248 }
249
250 vgeomp = (cmlb_geom_t *)arg;
251 vgeomp->g_capacity = capacity;
252 vgeomp->g_nsect = 63;
253 vgeomp->g_nhead = 254;
254 vgeomp->g_ncyl = capacity / (63 * 254);
255 vgeomp->g_acyl = 0;
256 vgeomp->g_secsize = 512;
257 vgeomp->g_intrlv = 1;
258 vgeomp->g_rpm = 3600;
259 rv = 0;
260 goto out;
261 }
262
263 rv = xdf_lb_getinfo(xsp->xdfss_tgt_dip, cmd, arg, tg_cookie);
264
265 out:
266 xdfs_tgt_release(xsp);
267 return (rv);
268 }
269
270 static boolean_t
xdfs_isopen_part(xdfs_state_t * xsp,int part)271 xdfs_isopen_part(xdfs_state_t *xsp, int part)
272 {
273 int otyp;
274
275 ASSERT(MUTEX_HELD(&xsp->xdfss_mutex));
276 for (otyp = 0; (otyp < OTYPCNT); otyp++) {
277 if (xsp->xdfss_otyp_count[otyp][part] != 0) {
278 ASSERT(xsp->xdfss_tgt_attached);
279 ASSERT(xsp->xdfss_tgt_holds >= 0);
280 return (B_TRUE);
281 }
282 }
283 return (B_FALSE);
284 }
285
286 static boolean_t
xdfs_isopen(xdfs_state_t * xsp)287 xdfs_isopen(xdfs_state_t *xsp)
288 {
289 int part;
290
291 ASSERT(MUTEX_HELD(&xsp->xdfss_mutex));
292 for (part = 0; part < XDF_PEXT; part++) {
293 if (xdfs_isopen_part(xsp, part))
294 return (B_TRUE);
295 }
296 return (B_FALSE);
297 }
298
299 static int
xdfs_iodone(struct buf * bp)300 xdfs_iodone(struct buf *bp)
301 {
302 struct buf *bp_orig = bp->b_chain;
303
304 /* Propegate back the io results */
305 bp_orig->b_resid = bp->b_resid;
306 bioerror(bp_orig, geterror(bp));
307 biodone(bp_orig);
308
309 freerbuf(bp);
310 return (0);
311 }
312
313 static int
xdfs_cmlb_attach(xdfs_state_t * xsp)314 xdfs_cmlb_attach(xdfs_state_t *xsp)
315 {
316 return (cmlb_attach(xsp->xdfss_dip, &xdfs_lb_ops,
317 xsp->xdfss_tgt_is_cd ? DTYPE_RODIRECT : DTYPE_DIRECT,
318 xdf_is_rm(xsp->xdfss_tgt_dip),
319 B_TRUE,
320 xdfs_c_cmlb_node_type(xsp),
321 xdfs_c_cmlb_alter_behavior(xsp),
322 xsp->xdfss_cmlbhandle, 0));
323 }
324
325 static boolean_t
xdfs_tgt_probe(xdfs_state_t * xsp,dev_info_t * tgt_dip)326 xdfs_tgt_probe(xdfs_state_t *xsp, dev_info_t *tgt_dip)
327 {
328 cmlb_geom_t pgeom;
329 int tgt_instance = ddi_get_instance(tgt_dip);
330
331 ASSERT(MUTEX_HELD(&xsp->xdfss_mutex));
332 ASSERT(!xdfs_isopen(xsp));
333 ASSERT(!xsp->xdfss_tgt_attached);
334
335 xsp->xdfss_tgt_dip = tgt_dip;
336 xsp->xdfss_tgt_holds = 0;
337 xsp->xdfss_tgt_dev = makedevice(ddi_driver_major(tgt_dip),
338 XDF_MINOR(tgt_instance, 0));
339 ASSERT((xsp->xdfss_tgt_dev & XDF_PMASK) == 0);
340 xsp->xdfss_tgt_is_cd = xdf_is_cd(tgt_dip);
341
342 /*
343 * GROSS HACK ALERT! GROSS HACK ALERT!
344 *
345 * Before we can initialize the cmlb layer, we have to tell the
346 * underlying xdf device what it's physical geometry should be.
347 * See the block comments at the top of this file for more info.
348 */
349 if (!xsp->xdfss_tgt_is_cd &&
350 ((xdfs_c_getpgeom(xsp->xdfss_dip, &pgeom) != 0) ||
351 (xdf_hvm_setpgeom(xsp->xdfss_tgt_dip, &pgeom) != 0)))
352 return (B_FALSE);
353
354 /*
355 * Force the xdf front end driver to connect to the backend. From
356 * the solaris device tree perspective, the xdf driver devinfo node
357 * is already in the ATTACHED state. (Otherwise xdf_hvm_hold()
358 * would not have returned a dip.) But this doesn't mean that the
359 * xdf device has actually established a connection to it's back
360 * end driver. For us to be able to access the xdf device it needs
361 * to be connected.
362 */
363 if (!xdf_hvm_connect(xsp->xdfss_tgt_dip)) {
364 cmn_err(CE_WARN, "pv driver failed to connect: %s",
365 xsp->xdfss_pv);
366 return (B_FALSE);
367 }
368
369 if (xsp->xdfss_tgt_is_cd && !xdf_media_req_supported(tgt_dip)) {
370 /*
371 * Unfortunatly, the dom0 backend driver doesn't support
372 * important media request operations like eject, so fail
373 * the probe (this should cause us to fall back to emulated
374 * hvm device access, which does support things like eject).
375 */
376 return (B_FALSE);
377 }
378
379 /* create kstat for iostat(1M) */
380 if (xdf_kstat_create(xsp->xdfss_tgt_dip, (char *)xdfs_c_name,
381 tgt_instance) != 0)
382 return (B_FALSE);
383
384 /*
385 * Now we need to mark ourselves as attached and drop xdfss_mutex.
386 * We do this because the final steps in the attach process will
387 * need to access the underlying disk to read the label and
388 * possibly the devid.
389 */
390 xsp->xdfss_tgt_attached = B_TRUE;
391 mutex_exit(&xsp->xdfss_mutex);
392
393 if (!xsp->xdfss_tgt_is_cd && xdfs_c_bb_check(xsp)) {
394 cmn_err(CE_WARN, "pv disks with bad blocks are unsupported: %s",
395 xsp->xdfss_hvm);
396 mutex_enter(&xsp->xdfss_mutex);
397 xdf_kstat_delete(xsp->xdfss_tgt_dip);
398 xsp->xdfss_tgt_attached = B_FALSE;
399 return (B_FALSE);
400 }
401
402 /*
403 * Initalize cmlb. Note that for partition information cmlb
404 * will access the underly xdf disk device directly via
405 * xdfs_lb_rdwr() and xdfs_lb_getinfo(). There are no
406 * layered driver handles associated with this access because
407 * it is a direct disk access that doesn't go through
408 * any of the device nodes exported by the xdf device (since
409 * all exported device nodes only reflect the portion of
410 * the device visible via the partition/slice that the node
411 * is associated with.) So while not observable via the LDI,
412 * this direct disk access is ok since we're actually holding
413 * the target device.
414 */
415 if (xdfs_cmlb_attach(xsp) != 0) {
416 mutex_enter(&xsp->xdfss_mutex);
417 xdf_kstat_delete(xsp->xdfss_tgt_dip);
418 xsp->xdfss_tgt_attached = B_FALSE;
419 return (B_FALSE);
420 }
421
422 /* setup devid string */
423 xsp->xdfss_tgt_devid = NULL;
424 if (!xsp->xdfss_tgt_is_cd)
425 xdfs_c_devid_setup(xsp);
426
427 (void) cmlb_validate(xsp->xdfss_cmlbhandle, 0, 0);
428
429 /* Have the system report any newly created device nodes */
430 ddi_report_dev(xsp->xdfss_dip);
431
432 mutex_enter(&xsp->xdfss_mutex);
433 return (B_TRUE);
434 }
435
436 static boolean_t
xdfs_tgt_detach(xdfs_state_t * xsp)437 xdfs_tgt_detach(xdfs_state_t *xsp)
438 {
439 ASSERT(MUTEX_HELD(&xsp->xdfss_mutex));
440 ASSERT(xsp->xdfss_tgt_attached);
441 ASSERT(xsp->xdfss_tgt_holds >= 0);
442
443 if ((xdfs_isopen(xsp)) || (xsp->xdfss_tgt_holds != 0))
444 return (B_FALSE);
445
446 ddi_devid_unregister(xsp->xdfss_dip);
447 if (xsp->xdfss_tgt_devid != NULL)
448 ddi_devid_free(xsp->xdfss_tgt_devid);
449
450 xdf_kstat_delete(xsp->xdfss_tgt_dip);
451 xsp->xdfss_tgt_attached = B_FALSE;
452 return (B_TRUE);
453 }
454
455 /*
456 * Xdf_shell interfaces that may be called from outside this file.
457 */
458 void
xdfs_minphys(struct buf * bp)459 xdfs_minphys(struct buf *bp)
460 {
461 xdfmin(bp);
462 }
463
464 /*
465 * Cmlb ops vector, allows the cmlb module to directly access the entire
466 * xdf disk device without going through any partitioning layers.
467 */
468 int
xdfs_lb_rdwr(dev_info_t * dip,uchar_t cmd,void * bufaddr,diskaddr_t start,size_t count,void * tg_cookie)469 xdfs_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
470 diskaddr_t start, size_t count, void *tg_cookie)
471 {
472 int instance = ddi_get_instance(dip);
473 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
474 int rv;
475
476 if (xsp == NULL)
477 return (ENXIO);
478
479 if (!xdfs_tgt_hold(xsp))
480 return (ENXIO);
481
482 rv = xdf_lb_rdwr(xsp->xdfss_tgt_dip,
483 cmd, bufaddr, start, count, tg_cookie);
484
485 xdfs_tgt_release(xsp);
486 return (rv);
487 }
488
489 /*
490 * Driver PV and HVM cb_ops entry points
491 */
492 /*ARGSUSED*/
493 static int
xdfs_open(dev_t * dev_p,int flag,int otyp,cred_t * credp)494 xdfs_open(dev_t *dev_p, int flag, int otyp, cred_t *credp)
495 {
496 ldi_ident_t li;
497 dev_t dev = *dev_p;
498 int instance = XDFS_DEV2UNIT(dev);
499 int part = XDFS_DEV2PART(dev);
500 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
501 dev_t tgt_devt = xsp->xdfss_tgt_dev | part;
502 int err = 0;
503
504 if ((otyp < 0) || (otyp >= OTYPCNT))
505 return (EINVAL);
506
507 if (XDFS_HVM_MODE(xsp)) {
508 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
509 return (ENOTSUP);
510 return (xdfs_hvm_cb_ops->cb_open(dev_p, flag, otyp, credp));
511 }
512
513 /* allocate an ldi handle */
514 VERIFY(ldi_ident_from_dev(*dev_p, &li) == 0);
515
516 mutex_enter(&xsp->xdfss_mutex);
517
518 /*
519 * We translate all device opens (chr, blk, and lyr) into
520 * block device opens. Why? Because for all the opens that
521 * come through this driver, we only keep around one LDI handle.
522 * So that handle can only be of one open type. The reason
523 * that we choose the block interface for this is that to use
524 * the block interfaces for a device the system needs to allocate
525 * buf_ts, which are associated with system memory which can act
526 * as a cache for device data. So normally when a block device
527 * is closed the system will ensure that all these pages get
528 * flushed out of memory. But if we were to open the device
529 * as a character device, then when we went to close the underlying
530 * device (even if we had invoked the block interfaces) any data
531 * remaining in memory wouldn't necessairly be flushed out
532 * before the device was closed.
533 */
534 if (xsp->xdfss_tgt_lh[part] == NULL) {
535 ASSERT(!xdfs_isopen_part(xsp, part));
536
537 err = ldi_open_by_dev(&tgt_devt, OTYP_BLK, flag, credp,
538 &xsp->xdfss_tgt_lh[part], li);
539
540 if (err != 0) {
541 mutex_exit(&xsp->xdfss_mutex);
542 ldi_ident_release(li);
543 return (err);
544 }
545
546 /* Disk devices really shouldn't clone */
547 ASSERT(tgt_devt == (xsp->xdfss_tgt_dev | part));
548 } else {
549 ldi_handle_t lh_tmp;
550
551 ASSERT(xdfs_isopen_part(xsp, part));
552
553 /* do ldi open/close to get flags and cred check */
554 err = ldi_open_by_dev(&tgt_devt, OTYP_BLK, flag, credp,
555 &lh_tmp, li);
556 if (err != 0) {
557 mutex_exit(&xsp->xdfss_mutex);
558 ldi_ident_release(li);
559 return (err);
560 }
561
562 /* Disk devices really shouldn't clone */
563 ASSERT(tgt_devt == (xsp->xdfss_tgt_dev | part));
564 (void) ldi_close(lh_tmp, flag, credp);
565 }
566 ldi_ident_release(li);
567
568 xsp->xdfss_otyp_count[otyp][part]++;
569
570 mutex_exit(&xsp->xdfss_mutex);
571 return (0);
572 }
573
574 /*ARGSUSED*/
575 static int
xdfs_close(dev_t dev,int flag,int otyp,cred_t * credp)576 xdfs_close(dev_t dev, int flag, int otyp, cred_t *credp)
577 {
578 int instance = XDFS_DEV2UNIT(dev);
579 int part = XDFS_DEV2PART(dev);
580 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
581 int err = 0;
582
583 ASSERT((otyp >= 0) && otyp < OTYPCNT);
584
585 /* Sanity check the dev_t associated with this request. */
586 ASSERT(getmajor(dev) == xdfs_major);
587 if (getmajor(dev) != xdfs_major)
588 return (ENXIO);
589
590 if (XDFS_HVM_MODE(xsp)) {
591 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
592 return (ENOTSUP);
593 return (xdfs_hvm_cb_ops->cb_close(dev, flag, otyp, credp));
594 }
595
596 /*
597 * Sanity check that that the device is actually open. On debug
598 * kernels we'll panic and on non-debug kernels we'll return failure.
599 */
600 mutex_enter(&xsp->xdfss_mutex);
601 ASSERT(xdfs_isopen_part(xsp, part));
602 if (!xdfs_isopen_part(xsp, part)) {
603 mutex_exit(&xsp->xdfss_mutex);
604 return (ENXIO);
605 }
606
607 ASSERT(xsp->xdfss_tgt_lh[part] != NULL);
608 ASSERT(xsp->xdfss_otyp_count[otyp][part] > 0);
609 if (otyp == OTYP_LYR) {
610 xsp->xdfss_otyp_count[otyp][part]--;
611 } else {
612 xsp->xdfss_otyp_count[otyp][part] = 0;
613 }
614
615 if (!xdfs_isopen_part(xsp, part)) {
616 err = ldi_close(xsp->xdfss_tgt_lh[part], flag, credp);
617 xsp->xdfss_tgt_lh[part] = NULL;
618 }
619
620 mutex_exit(&xsp->xdfss_mutex);
621
622 return (err);
623 }
624
625 int
xdfs_strategy(struct buf * bp)626 xdfs_strategy(struct buf *bp)
627 {
628 dev_t dev = bp->b_edev;
629 int instance = XDFS_DEV2UNIT(dev);
630 int part = XDFS_DEV2PART(dev);
631 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
632 dev_t tgt_devt;
633 struct buf *bp_clone;
634
635 /* Sanity check the dev_t associated with this request. */
636 ASSERT(getmajor(dev) == xdfs_major);
637 if (getmajor(dev) != xdfs_major)
638 goto err;
639
640 if (XDFS_HVM_MODE(xsp)) {
641 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
642 return (ENOTSUP);
643 return (xdfs_hvm_cb_ops->cb_strategy(bp));
644 }
645
646 /*
647 * Sanity checks that the dev_t associated with the buf we were
648 * passed corresponds to an open partition. On debug kernels we'll
649 * panic and on non-debug kernels we'll return failure.
650 */
651 mutex_enter(&xsp->xdfss_mutex);
652 ASSERT(xdfs_isopen_part(xsp, part));
653 if (!xdfs_isopen_part(xsp, part)) {
654 mutex_exit(&xsp->xdfss_mutex);
655 goto err;
656 }
657 mutex_exit(&xsp->xdfss_mutex);
658
659 /* clone this buffer */
660 tgt_devt = xsp->xdfss_tgt_dev | part;
661 bp_clone = bioclone(bp, 0, bp->b_bcount, tgt_devt, bp->b_blkno,
662 xdfs_iodone, NULL, KM_SLEEP);
663 bp_clone->b_chain = bp;
664
665 /*
666 * If we're being invoked on behalf of the physio() call in
667 * xdfs_dioctl_rwcmd() then b_private will be set to
668 * XB_SLICE_NONE and we need to propegate this flag into the
669 * cloned buffer so that the xdf driver will see it.
670 */
671 if (bp->b_private == (void *)XB_SLICE_NONE)
672 bp_clone->b_private = (void *)XB_SLICE_NONE;
673
674 /*
675 * Pass on the cloned buffer. Note that we don't bother to check
676 * for failure because the xdf strategy routine will have to
677 * invoke biodone() if it wants to return an error, which means
678 * that the xdfs_iodone() callback will get invoked and it
679 * will propegate the error back up the stack and free the cloned
680 * buffer.
681 */
682 ASSERT(xsp->xdfss_tgt_lh[part] != NULL);
683 return (ldi_strategy(xsp->xdfss_tgt_lh[part], bp_clone));
684
685 err:
686 bioerror(bp, ENXIO);
687 bp->b_resid = bp->b_bcount;
688 biodone(bp);
689 return (0);
690 }
691
692 static int
xdfs_dump(dev_t dev,caddr_t addr,daddr_t blkno,int nblk)693 xdfs_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
694 {
695 int instance = XDFS_DEV2UNIT(dev);
696 int part = XDFS_DEV2PART(dev);
697 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
698
699 if (!XDFS_HVM_MODE(xsp))
700 return (ldi_dump(xsp->xdfss_tgt_lh[part], addr, blkno, nblk));
701
702 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
703 return (ENOTSUP);
704 return (xdfs_hvm_cb_ops->cb_dump(dev, addr, blkno, nblk));
705 }
706
707 /*ARGSUSED*/
708 static int
xdfs_read(dev_t dev,struct uio * uio,cred_t * credp)709 xdfs_read(dev_t dev, struct uio *uio, cred_t *credp)
710 {
711 int instance = XDFS_DEV2UNIT(dev);
712 int part = XDFS_DEV2PART(dev);
713 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
714
715 if (!XDFS_HVM_MODE(xsp))
716 return (ldi_read(xsp->xdfss_tgt_lh[part], uio, credp));
717
718 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
719 return (ENOTSUP);
720 return (xdfs_hvm_cb_ops->cb_read(dev, uio, credp));
721 }
722
723 /*ARGSUSED*/
724 static int
xdfs_write(dev_t dev,struct uio * uio,cred_t * credp)725 xdfs_write(dev_t dev, struct uio *uio, cred_t *credp)
726 {
727 int instance = XDFS_DEV2UNIT(dev);
728 int part = XDFS_DEV2PART(dev);
729 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
730
731 if (!XDFS_HVM_MODE(xsp))
732 return (ldi_write(xsp->xdfss_tgt_lh[part], uio, credp));
733
734 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
735 return (ENOTSUP);
736 return (xdfs_hvm_cb_ops->cb_write(dev, uio, credp));
737 }
738
739 /*ARGSUSED*/
740 static int
xdfs_aread(dev_t dev,struct aio_req * aio,cred_t * credp)741 xdfs_aread(dev_t dev, struct aio_req *aio, cred_t *credp)
742 {
743 int instance = XDFS_DEV2UNIT(dev);
744 int part = XDFS_DEV2PART(dev);
745 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
746
747 if (!XDFS_HVM_MODE(xsp))
748 return (ldi_aread(xsp->xdfss_tgt_lh[part], aio, credp));
749
750 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL) ||
751 (xdfs_hvm_cb_ops->cb_strategy == NULL) ||
752 (xdfs_hvm_cb_ops->cb_strategy == nodev) ||
753 (xdfs_hvm_cb_ops->cb_aread == NULL))
754 return (ENOTSUP);
755 return (xdfs_hvm_cb_ops->cb_aread(dev, aio, credp));
756 }
757
758 /*ARGSUSED*/
759 static int
xdfs_awrite(dev_t dev,struct aio_req * aio,cred_t * credp)760 xdfs_awrite(dev_t dev, struct aio_req *aio, cred_t *credp)
761 {
762 int instance = XDFS_DEV2UNIT(dev);
763 int part = XDFS_DEV2PART(dev);
764 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
765
766 if (!XDFS_HVM_MODE(xsp))
767 return (ldi_awrite(xsp->xdfss_tgt_lh[part], aio, credp));
768
769 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL) ||
770 (xdfs_hvm_cb_ops->cb_strategy == NULL) ||
771 (xdfs_hvm_cb_ops->cb_strategy == nodev) ||
772 (xdfs_hvm_cb_ops->cb_awrite == NULL))
773 return (ENOTSUP);
774 return (xdfs_hvm_cb_ops->cb_awrite(dev, aio, credp));
775 }
776
777 static int
xdfs_ioctl(dev_t dev,int cmd,intptr_t arg,int flag,cred_t * credp,int * rvalp)778 xdfs_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
779 int *rvalp)
780 {
781 int instance = XDFS_DEV2UNIT(dev);
782 int part = XDFS_DEV2PART(dev);
783 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
784 int rv;
785 boolean_t done;
786
787 if (XDFS_HVM_MODE(xsp)) {
788 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL))
789 return (ENOTSUP);
790 return (xdfs_hvm_cb_ops->cb_ioctl(
791 dev, cmd, arg, flag, credp, rvalp));
792 }
793
794 rv = xdfs_c_ioctl(xsp, dev, part, cmd, arg, flag, credp, rvalp, &done);
795 if (done)
796 return (rv);
797 rv = ldi_ioctl(xsp->xdfss_tgt_lh[part], cmd, arg, flag, credp, rvalp);
798 if (rv == 0) {
799 /* Force Geometry Validation */
800 (void) cmlb_invalidate(xsp->xdfss_cmlbhandle, 0);
801 (void) cmlb_validate(xsp->xdfss_cmlbhandle, 0, 0);
802 }
803 return (rv);
804 }
805
806 static int
xdfs_hvm_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int flags,char * name,caddr_t valuep,int * lengthp)807 xdfs_hvm_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
808 int flags, char *name, caddr_t valuep, int *lengthp)
809 {
810 int instance = ddi_get_instance(dip);
811 void *xsp = ddi_get_soft_state(xdfs_ssp, instance);
812
813 ASSERT(XDFS_HVM_MODE(xsp));
814
815 if ((xdfs_hvm_dev_ops == NULL) || (xdfs_hvm_cb_ops == NULL) ||
816 (xdfs_hvm_cb_ops->cb_prop_op == NULL) ||
817 (xdfs_hvm_cb_ops->cb_prop_op == nodev) ||
818 (xdfs_hvm_cb_ops->cb_prop_op == nulldev))
819 return (DDI_PROP_NOT_FOUND);
820
821 return (xdfs_hvm_cb_ops->cb_prop_op(dev, dip, prop_op,
822 flags, name, valuep, lengthp));
823 }
824
825 static int
xdfs_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int flags,char * name,caddr_t valuep,int * lengthp)826 xdfs_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
827 int flags, char *name, caddr_t valuep, int *lengthp)
828 {
829 int instance = ddi_get_instance(dip);
830 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
831 int rv;
832 dev_info_t *tgt_dip;
833 dev_t tgt_devt;
834
835 /*
836 * Sanity check that if a dev_t or dip were specified that they
837 * correspond to this device driver. On debug kernels we'll
838 * panic and on non-debug kernels we'll return failure.
839 */
840 ASSERT(ddi_driver_major(dip) == xdfs_major);
841 ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == xdfs_major));
842 if ((ddi_driver_major(dip) != xdfs_major) ||
843 ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != xdfs_major)))
844 return (DDI_PROP_NOT_FOUND);
845
846 /*
847 * This property lookup might be associated with a device node
848 * that is not yet attached, if so pass it onto ddi_prop_op().
849 */
850 if (xsp == NULL)
851 return (ddi_prop_op(dev, dip, prop_op, flags,
852 name, valuep, lengthp));
853
854 /* If we're accessing the device in hvm mode, pass this request on */
855 if (XDFS_HVM_MODE(xsp))
856 return (xdfs_hvm_prop_op(dev, dip, prop_op,
857 flags, name, valuep, lengthp));
858
859 /*
860 * Make sure we only lookup static properties.
861 *
862 * If there are static properties of the underlying xdf driver
863 * that we want to mirror, then we'll have to explicity look them
864 * up and define them during attach. There are a few reasons
865 * for this. Most importantly, most static properties are typed
866 * and all dynamic properties are untyped, ie, for dynamic
867 * properties the caller must know the type of the property and
868 * how to interpret the value of the property. the prop_op drivedr
869 * entry point is only designed for returning dynamic/untyped
870 * properties, so if we were to attempt to lookup and pass back
871 * static properties of the underlying device here then we would
872 * be losing the type information for those properties. Another
873 * reason we don't want to pass on static property requests is that
874 * static properties are enumerable in the device tree, where as
875 * dynamic ones are not.
876 */
877 flags |= DDI_PROP_DYNAMIC;
878
879 /*
880 * We can't use the ldi here to access the underlying device because
881 * the ldi actually opens the device, and that open might fail if the
882 * device has already been opened with the FEXCL flag. If we used
883 * the ldi here, it would also be possible for some other caller to
884 * try open the device with the FEXCL flag and get a failure back
885 * because we have it open to do a property query. Instad we'll
886 * grab a hold on the target dip.
887 */
888 if (!xdfs_tgt_hold(xsp))
889 return (DDI_PROP_NOT_FOUND);
890
891 /* figure out dip the dev_t we're going to pass on down */
892 tgt_dip = xsp->xdfss_tgt_dip;
893 if (dev == DDI_DEV_T_ANY) {
894 tgt_devt = DDI_DEV_T_ANY;
895 } else {
896 tgt_devt = xsp->xdfss_tgt_dev | XDFS_DEV2PART(dev);
897 }
898
899 /*
900 * Cdev_prop_op() is not a public interface, and normally the caller
901 * is required to make sure that the target driver actually implements
902 * this interface before trying to invoke it. In this case we know
903 * that we're always accessing the xdf driver and it does have this
904 * interface defined, so we can skip the check.
905 */
906 rv = cdev_prop_op(tgt_devt, tgt_dip,
907 prop_op, flags, name, valuep, lengthp);
908
909 xdfs_tgt_release(xsp);
910 return (rv);
911 }
912
913 /*
914 * Driver PV and HVM dev_ops entry points
915 */
916 /*ARGSUSED*/
917 static int
xdfs_getinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)918 xdfs_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
919 void **result)
920 {
921 dev_t dev = (dev_t)arg;
922 int instance = XDFS_DEV2UNIT(dev);
923 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
924
925 switch (infocmd) {
926 case DDI_INFO_DEVT2DEVINFO:
927 if (xsp == NULL)
928 return (DDI_FAILURE);
929 if (XDFS_HVM_MODE(xsp))
930 *result = XDFS_HVM_DIP(xsp);
931 else
932 *result = (void *)xsp->xdfss_dip;
933 break;
934 case DDI_INFO_DEVT2INSTANCE:
935 *result = (void *)(intptr_t)instance;
936 break;
937 default:
938 return (DDI_FAILURE);
939 }
940 return (DDI_SUCCESS);
941 }
942
943 static int
xdfs_hvm_probe(dev_info_t * dip,char * path)944 xdfs_hvm_probe(dev_info_t *dip, char *path)
945 {
946 int instance = ddi_get_instance(dip);
947 int rv = DDI_PROBE_SUCCESS;
948 void *xsp;
949
950 ASSERT(path != NULL);
951 cmn_err(CE_WARN, "PV access to device disabled: %s", path);
952
953 (void) ddi_soft_state_zalloc(xdfs_ssp, instance);
954 VERIFY((xsp = ddi_get_soft_state(xdfs_ssp, instance)) != NULL);
955
956 if ((xdfs_hvm_dev_ops == NULL) ||
957 (xdfs_hvm_dev_ops->devo_probe == NULL) ||
958 ((rv = xdfs_hvm_dev_ops->devo_probe(dip)) == DDI_PROBE_FAILURE)) {
959 ddi_soft_state_free(xdfs_ssp, instance);
960 cmn_err(CE_WARN, "HVM probe of device failed: %s", path);
961 kmem_free(path, MAXPATHLEN);
962 return (DDI_PROBE_FAILURE);
963 }
964
965 XDFS_HVM_MODE(xsp) = B_TRUE;
966 XDFS_HVM_DIP(xsp) = dip;
967 XDFS_HVM_PATH(xsp) = path;
968
969 return (rv);
970 }
971
972 static int
xdfs_probe(dev_info_t * dip)973 xdfs_probe(dev_info_t *dip)
974 {
975 int instance = ddi_get_instance(dip);
976 xdfs_state_t *xsp;
977 dev_info_t *tgt_dip;
978 char *path;
979 int i, pv_disable;
980
981 /* if we've already probed the device then there's nothing todo */
982 if (ddi_get_soft_state(xdfs_ssp, instance))
983 return (DDI_PROBE_PARTIAL);
984
985 /* Figure out our pathname */
986 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
987 (void) ddi_pathname(dip, path);
988
989 /* see if we should disable pv access mode */
990 pv_disable = ddi_prop_get_int(DDI_DEV_T_ANY,
991 dip, DDI_PROP_NOTPROM, "pv_disable", 0);
992
993 if (xdfs_pv_disable || pv_disable)
994 return (xdfs_hvm_probe(dip, path));
995
996 /*
997 * This xdf shell device layers on top of an xdf device. So the first
998 * thing we need to do is determine which xdf device instance this
999 * xdf shell instance should be layered on top of.
1000 */
1001 for (i = 0; xdfs_c_h2p_map[i].xdfs_h2p_hvm != NULL; i++) {
1002 if (strcmp(xdfs_c_h2p_map[i].xdfs_h2p_hvm, path) == 0)
1003 break;
1004 }
1005
1006 if ((xdfs_c_h2p_map[i].xdfs_h2p_hvm == NULL) ||
1007 ((tgt_dip = xdf_hvm_hold(xdfs_c_h2p_map[i].xdfs_h2p_pv)) == NULL)) {
1008 /*
1009 * UhOh. We either don't know what xdf instance this xdf
1010 * shell device should be mapped to or the xdf node assocaited
1011 * with this instance isnt' attached. in either case fall
1012 * back to hvm access.
1013 */
1014 return (xdfs_hvm_probe(dip, path));
1015 }
1016
1017 /* allocate and initialize our state structure */
1018 (void) ddi_soft_state_zalloc(xdfs_ssp, instance);
1019 xsp = ddi_get_soft_state(xdfs_ssp, instance);
1020 mutex_init(&xsp->xdfss_mutex, NULL, MUTEX_DRIVER, NULL);
1021 cv_init(&xsp->xdfss_cv, NULL, CV_DEFAULT, NULL);
1022 mutex_enter(&xsp->xdfss_mutex);
1023
1024 xsp->xdfss_dip = dip;
1025 xsp->xdfss_pv = xdfs_c_h2p_map[i].xdfs_h2p_pv;
1026 xsp->xdfss_hvm = xdfs_c_h2p_map[i].xdfs_h2p_hvm;
1027 xsp->xdfss_tgt_attached = B_FALSE;
1028 cmlb_alloc_handle((cmlb_handle_t *)&xsp->xdfss_cmlbhandle);
1029
1030 if (!xdfs_tgt_probe(xsp, tgt_dip)) {
1031 mutex_exit(&xsp->xdfss_mutex);
1032 cmlb_free_handle(&xsp->xdfss_cmlbhandle);
1033 ddi_soft_state_free(xdfs_ssp, instance);
1034 ddi_release_devi(tgt_dip);
1035 return (xdfs_hvm_probe(dip, path));
1036 }
1037 mutex_exit(&xsp->xdfss_mutex);
1038
1039 /*
1040 * Add a zero-length attribute to tell the world we support
1041 * kernel ioctls (for layered drivers).
1042 */
1043 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1044 DDI_KERNEL_IOCTL, NULL, 0);
1045
1046 kmem_free(path, MAXPATHLEN);
1047 return (DDI_PROBE_SUCCESS);
1048 }
1049
1050 static int
xdfs_hvm_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)1051 xdfs_hvm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1052 {
1053 int instance = ddi_get_instance(dip);
1054 void *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1055 int rv = DDI_FAILURE;
1056
1057 XDFS_HVM_SANE(xsp);
1058
1059 if ((xdfs_hvm_dev_ops == NULL) ||
1060 (xdfs_hvm_dev_ops->devo_attach == NULL) ||
1061 ((rv = xdfs_hvm_dev_ops->devo_attach(dip, cmd)) != DDI_SUCCESS)) {
1062 cmn_err(CE_WARN, "HVM attach of device failed: %s",
1063 XDFS_HVM_PATH(xsp));
1064 kmem_free(XDFS_HVM_PATH(xsp), MAXPATHLEN);
1065 ddi_soft_state_free(xdfs_ssp, instance);
1066 return (rv);
1067 }
1068
1069 return (DDI_SUCCESS);
1070 }
1071
1072 /*
1073 * Autoconfiguration Routines
1074 */
1075 static int
xdfs_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)1076 xdfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1077 {
1078 int instance = ddi_get_instance(dip);
1079 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1080
1081 if (xsp == NULL)
1082 return (DDI_FAILURE);
1083 if (XDFS_HVM_MODE(xsp))
1084 return (xdfs_hvm_attach(dip, cmd));
1085 if (cmd != DDI_ATTACH)
1086 return (DDI_FAILURE);
1087
1088 xdfs_c_attach(xsp);
1089 return (DDI_SUCCESS);
1090 }
1091
1092 static int
xdfs_hvm_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)1093 xdfs_hvm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1094 {
1095 int instance = ddi_get_instance(dip);
1096 void *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1097 int rv;
1098
1099 XDFS_HVM_SANE(xsp);
1100
1101 if ((xdfs_hvm_dev_ops == NULL) ||
1102 (xdfs_hvm_dev_ops->devo_detach == NULL))
1103 return (DDI_FAILURE);
1104
1105 if ((rv = xdfs_hvm_dev_ops->devo_detach(dip, cmd)) != DDI_SUCCESS)
1106 return (rv);
1107
1108 kmem_free(XDFS_HVM_PATH(xsp), MAXPATHLEN);
1109 ddi_soft_state_free(xdfs_ssp, instance);
1110 return (DDI_SUCCESS);
1111 }
1112
1113 static int
xdfs_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)1114 xdfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1115 {
1116 int instance = ddi_get_instance(dip);
1117 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1118
1119 if (XDFS_HVM_MODE(xsp))
1120 return (xdfs_hvm_detach(dip, cmd));
1121 if (cmd != DDI_DETACH)
1122 return (DDI_FAILURE);
1123
1124 mutex_enter(&xsp->xdfss_mutex);
1125 if (!xdfs_tgt_detach(xsp)) {
1126 mutex_exit(&xsp->xdfss_mutex);
1127 return (DDI_FAILURE);
1128 }
1129 mutex_exit(&xsp->xdfss_mutex);
1130
1131 cmlb_detach(xsp->xdfss_cmlbhandle, 0);
1132 cmlb_free_handle(&xsp->xdfss_cmlbhandle);
1133 ddi_release_devi(xsp->xdfss_tgt_dip);
1134 ddi_soft_state_free(xdfs_ssp, instance);
1135 ddi_prop_remove_all(dip);
1136 return (DDI_SUCCESS);
1137 }
1138
1139 static int
xdfs_hvm_power(dev_info_t * dip,int component,int level)1140 xdfs_hvm_power(dev_info_t *dip, int component, int level)
1141 {
1142 int instance = ddi_get_instance(dip);
1143 void *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1144
1145 XDFS_HVM_SANE(xsp);
1146
1147 if ((xdfs_hvm_dev_ops == NULL) ||
1148 (xdfs_hvm_dev_ops->devo_power == NULL))
1149 return (DDI_FAILURE);
1150 return (xdfs_hvm_dev_ops->devo_power(dip, component, level));
1151 }
1152
1153 static int
xdfs_power(dev_info_t * dip,int component,int level)1154 xdfs_power(dev_info_t *dip, int component, int level)
1155 {
1156 int instance = ddi_get_instance(dip);
1157 xdfs_state_t *xsp = ddi_get_soft_state(xdfs_ssp, instance);
1158
1159 if (XDFS_HVM_MODE(xsp))
1160 return (xdfs_hvm_power(dip, component, level));
1161 return (nodev());
1162 }
1163
1164 /*
1165 * Cmlb ops vector
1166 */
1167 static cmlb_tg_ops_t xdfs_lb_ops = {
1168 TG_DK_OPS_VERSION_1,
1169 xdfs_lb_rdwr,
1170 xdfs_lb_getinfo
1171 };
1172
1173 /*
1174 * Device driver ops vector
1175 */
1176 static struct cb_ops xdfs_cb_ops = {
1177 xdfs_open, /* open */
1178 xdfs_close, /* close */
1179 xdfs_strategy, /* strategy */
1180 nodev, /* print */
1181 xdfs_dump, /* dump */
1182 xdfs_read, /* read */
1183 xdfs_write, /* write */
1184 xdfs_ioctl, /* ioctl */
1185 nodev, /* devmap */
1186 nodev, /* mmap */
1187 nodev, /* segmap */
1188 nochpoll, /* poll */
1189 xdfs_prop_op, /* cb_prop_op */
1190 0, /* streamtab */
1191 D_64BIT | D_MP | D_NEW, /* Driver comaptibility flag */
1192 CB_REV, /* cb_rev */
1193 xdfs_aread, /* async read */
1194 xdfs_awrite /* async write */
1195 };
1196
1197 struct dev_ops xdfs_ops = {
1198 DEVO_REV, /* devo_rev, */
1199 0, /* refcnt */
1200 xdfs_getinfo, /* info */
1201 nulldev, /* identify */
1202 xdfs_probe, /* probe */
1203 xdfs_attach, /* attach */
1204 xdfs_detach, /* detach */
1205 nodev, /* reset */
1206 &xdfs_cb_ops, /* driver operations */
1207 NULL, /* bus operations */
1208 xdfs_power, /* power */
1209 ddi_quiesce_not_supported, /* devo_quiesce */
1210 };
1211
1212 /*
1213 * Module linkage information for the kernel.
1214 */
1215 static struct modldrv modldrv = {
1216 &mod_driverops, /* Type of module. This one is a driver. */
1217 NULL, /* Module description. Set by _init() */
1218 &xdfs_ops, /* Driver ops. */
1219 };
1220
1221 static struct modlinkage modlinkage = {
1222 MODREV_1, (void *)&modldrv, NULL
1223 };
1224
1225 int
_init(void)1226 _init(void)
1227 {
1228 int rval;
1229
1230 xdfs_major = ddi_name_to_major((char *)xdfs_c_name);
1231 if (xdfs_major == (major_t)-1)
1232 return (EINVAL);
1233
1234 /*
1235 * Determine the size of our soft state structure. The base
1236 * size of the structure is the larger of the hvm clients state
1237 * structure, or our shell state structure. Then we'll align
1238 * the end of the structure to a pointer boundry and append
1239 * a xdfs_hvm_state_t structure. This way the xdfs_hvm_state_t
1240 * structure is always present and we can use it to determine the
1241 * current device access mode (hvm or shell).
1242 */
1243 xdfs_ss_size = MAX(xdfs_c_hvm_ss_size, sizeof (xdfs_state_t));
1244 xdfs_ss_size = P2ROUNDUP(xdfs_ss_size, sizeof (uintptr_t));
1245 xdfs_ss_size += sizeof (xdfs_hvm_state_t);
1246
1247 /*
1248 * In general ide usually supports 4 disk devices, this same
1249 * limitation also applies to software emulating ide devices.
1250 * so by default we pre-allocate 4 xdf shell soft state structures.
1251 */
1252 if ((rval = ddi_soft_state_init(&xdfs_ssp,
1253 xdfs_ss_size, XDFS_NODES)) != 0)
1254 return (rval);
1255 *xdfs_c_hvm_ss = xdfs_ssp;
1256
1257 /* Install our module */
1258 if (modldrv.drv_linkinfo == NULL)
1259 modldrv.drv_linkinfo = (char *)xdfs_c_linkinfo;
1260 if ((rval = mod_install(&modlinkage)) != 0) {
1261 ddi_soft_state_fini(&xdfs_ssp);
1262 return (rval);
1263 }
1264
1265 return (0);
1266 }
1267
1268 int
_info(struct modinfo * modinfop)1269 _info(struct modinfo *modinfop)
1270 {
1271 if (modldrv.drv_linkinfo == NULL)
1272 modldrv.drv_linkinfo = (char *)xdfs_c_linkinfo;
1273 return (mod_info(&modlinkage, modinfop));
1274 }
1275
1276 int
_fini(void)1277 _fini(void)
1278 {
1279 int rval;
1280 if ((rval = mod_remove(&modlinkage)) != 0)
1281 return (rval);
1282 ddi_soft_state_fini(&xdfs_ssp);
1283 return (0);
1284 }
1285