xref: /linux/arch/x86/kvm/reverse_cpuid.h (revision 3efc57369a0ce8f76bf0804f7e673982384e4ac9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	CPUID_8000_0022_EAX,
19 	CPUID_7_2_EDX,
20 	CPUID_24_0_EBX,
21 	NR_KVM_CPU_CAPS,
22 
23 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
24 };
25 
26 /*
27  * Define a KVM-only feature flag.
28  *
29  * For features that are scattered by cpufeatures.h, __feature_translate() also
30  * needs to be updated to translate the kernel-defined feature into the
31  * KVM-defined feature.
32  *
33  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
34  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
35  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
36  * needed in this case.
37  */
38 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
39 
40 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
41 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
42 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
43 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
44 
45 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
46 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
47 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
48 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
49 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
50 #define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
51 
52 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
53 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
54 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
55 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
56 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
57 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
58 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
59 
60 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
61 #define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
62 #define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
63 #define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
64 
65 /* CPUID level 0x80000007 (EDX). */
66 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
67 
68 /* CPUID level 0x80000022 (EAX) */
69 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
70 
71 struct cpuid_reg {
72 	u32 function;
73 	u32 index;
74 	int reg;
75 };
76 
77 static const struct cpuid_reg reverse_cpuid[] = {
78 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
79 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
80 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
81 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
82 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
83 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
84 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
85 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
86 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
87 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
88 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
89 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
90 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
91 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
92 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
93 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
94 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
95 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
96 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
97 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
98 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
99 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
100 	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
101 };
102 
103 /*
104  * Reverse CPUID and its derivatives can only be used for hardware-defined
105  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
106  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
107  * is nonsensical as the bit number/mask is an arbitrary software-defined value
108  * and can't be used by KVM to query/control guest capabilities.  And obviously
109  * the leaf being queried must have an entry in the lookup table.
110  */
reverse_cpuid_check(unsigned int x86_leaf)111 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
112 {
113 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
114 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
115 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
116 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
117 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
118 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
119 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
120 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
121 }
122 
123 /*
124  * Translate feature bits that are scattered in the kernel's cpufeatures word
125  * into KVM feature words that align with hardware's definitions.
126  */
__feature_translate(int x86_feature)127 static __always_inline u32 __feature_translate(int x86_feature)
128 {
129 #define KVM_X86_TRANSLATE_FEATURE(f)	\
130 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
131 
132 	switch (x86_feature) {
133 	KVM_X86_TRANSLATE_FEATURE(SGX1);
134 	KVM_X86_TRANSLATE_FEATURE(SGX2);
135 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
136 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
137 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
138 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
139 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
140 	default:
141 		return x86_feature;
142 	}
143 }
144 
__feature_leaf(int x86_feature)145 static __always_inline u32 __feature_leaf(int x86_feature)
146 {
147 	return __feature_translate(x86_feature) / 32;
148 }
149 
150 /*
151  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
152  * the hardware defined bit number (stored in bits 4:0) and a software defined
153  * "word" (stored in bits 31:5).  The word is used to index into arrays of
154  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
155  */
__feature_bit(int x86_feature)156 static __always_inline u32 __feature_bit(int x86_feature)
157 {
158 	x86_feature = __feature_translate(x86_feature);
159 
160 	reverse_cpuid_check(x86_feature / 32);
161 	return 1 << (x86_feature & 31);
162 }
163 
164 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
165 
x86_feature_cpuid(unsigned int x86_feature)166 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
167 {
168 	unsigned int x86_leaf = __feature_leaf(x86_feature);
169 
170 	reverse_cpuid_check(x86_leaf);
171 	return reverse_cpuid[x86_leaf];
172 }
173 
__cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,u32 reg)174 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
175 						  u32 reg)
176 {
177 	switch (reg) {
178 	case CPUID_EAX:
179 		return &entry->eax;
180 	case CPUID_EBX:
181 		return &entry->ebx;
182 	case CPUID_ECX:
183 		return &entry->ecx;
184 	case CPUID_EDX:
185 		return &entry->edx;
186 	default:
187 		BUILD_BUG();
188 		return NULL;
189 	}
190 }
191 
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)192 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
193 						unsigned int x86_feature)
194 {
195 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
196 
197 	return __cpuid_entry_get_reg(entry, cpuid.reg);
198 }
199 
cpuid_entry_get(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)200 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
201 					   unsigned int x86_feature)
202 {
203 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
204 
205 	return *reg & __feature_bit(x86_feature);
206 }
207 
cpuid_entry_has(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)208 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
209 					    unsigned int x86_feature)
210 {
211 	return cpuid_entry_get(entry, x86_feature);
212 }
213 
cpuid_entry_clear(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)214 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
215 					      unsigned int x86_feature)
216 {
217 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
218 
219 	*reg &= ~__feature_bit(x86_feature);
220 }
221 
cpuid_entry_set(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)222 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
223 					    unsigned int x86_feature)
224 {
225 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
226 
227 	*reg |= __feature_bit(x86_feature);
228 }
229 
cpuid_entry_change(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool set)230 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
231 					       unsigned int x86_feature,
232 					       bool set)
233 {
234 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
235 
236 	/*
237 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
238 	 * compiler into using CMOV instead of Jcc when possible.
239 	 */
240 	if (set)
241 		*reg |= __feature_bit(x86_feature);
242 	else
243 		*reg &= ~__feature_bit(x86_feature);
244 }
245 
246 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
247