1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xilinx 'Clocking Wizard' driver
4 *
5 * Copyright (C) 2013 - 2021 Xilinx
6 *
7 * Sören Brinkmann <soren.brinkmann@xilinx.com>
8 *
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/overflow.h>
21 #include <linux/err.h>
22 #include <linux/iopoll.h>
23
24 #define WZRD_NUM_OUTPUTS 7
25 #define WZRD_ACLK_MAX_FREQ 250000000UL
26
27 #define WZRD_CLK_CFG_REG(v, n) (0x200 + 0x130 * (v) + 4 * (n))
28
29 #define WZRD_CLKOUT0_FRAC_EN BIT(18)
30 #define WZRD_CLKFBOUT_1 0
31 #define WZRD_CLKFBOUT_2 1
32 #define WZRD_CLKOUT0_1 2
33 #define WZRD_CLKOUT0_2 3
34 #define WZRD_DESKEW_2 20
35 #define WZRD_DIVCLK 21
36 #define WZRD_CLKFBOUT_4 51
37 #define WZRD_CLKFBOUT_3 48
38 #define WZRD_DUTY_CYCLE 2
39 #define WZRD_O_DIV 4
40
41 #define WZRD_CLKFBOUT_FRAC_EN BIT(1)
42 #define WZRD_CLKFBOUT_PREDIV2 (BIT(11) | BIT(12) | BIT(9))
43 #define WZRD_MULT_PREDIV2 (BIT(10) | BIT(9) | BIT(12))
44 #define WZRD_CLKFBOUT_EDGE BIT(8)
45 #define WZRD_P5EN BIT(13)
46 #define WZRD_P5EN_SHIFT 13
47 #define WZRD_P5FEDGE BIT(15)
48 #define WZRD_DIVCLK_EDGE BIT(10)
49 #define WZRD_P5FEDGE_SHIFT 15
50 #define WZRD_CLKOUT0_PREDIV2 BIT(11)
51 #define WZRD_EDGE_SHIFT 8
52
53 #define WZRD_CLKFBOUT_MULT_SHIFT 8
54 #define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT)
55 #define WZRD_CLKFBOUT_L_SHIFT 0
56 #define WZRD_CLKFBOUT_H_SHIFT 8
57 #define WZRD_CLKFBOUT_L_MASK GENMASK(7, 0)
58 #define WZRD_CLKFBOUT_H_MASK GENMASK(15, 8)
59 #define WZRD_CLKFBOUT_FRAC_SHIFT 16
60 #define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
61 #define WZRD_VERSAL_FRAC_MASK GENMASK(5, 0)
62 #define WZRD_DIVCLK_DIVIDE_SHIFT 0
63 #define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
64 #define WZRD_CLKOUT_DIVIDE_SHIFT 0
65 #define WZRD_CLKOUT_DIVIDE_WIDTH 8
66 #define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
67 #define WZRD_CLKOUT_FRAC_SHIFT 8
68 #define WZRD_CLKOUT_FRAC_MASK 0x3ff
69 #define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8)
70
71 #define WZRD_DR_MAX_INT_DIV_VALUE 255
72 #define WZRD_DR_STATUS_REG_OFFSET 0x04
73 #define WZRD_DR_LOCK_BIT_MASK 0x00000001
74 #define WZRD_DR_INIT_REG_OFFSET 0x25C
75 #define WZRD_DR_INIT_VERSAL_OFFSET 0x14
76 #define WZRD_DR_DIV_TO_PHASE_OFFSET 4
77 #define WZRD_DR_BEGIN_DYNA_RECONF 0x03
78 #define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07
79 #define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02
80
81 #define WZRD_USEC_POLL 10
82 #define WZRD_TIMEOUT_POLL 1000
83 #define WZRD_FRAC_GRADIENT 64
84 #define PREDIV2_MULT 2
85
86 /* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
87 #define DIV_O 0x01
88 #define DIV_ALL 0x03
89
90 #define WZRD_M_MIN 2
91 #define WZRD_M_MAX 128
92 #define WZRD_D_MIN 1
93 #define WZRD_D_MAX 106
94 #define WZRD_VCO_MIN 800000000
95 #define WZRD_VCO_MAX 1600000000
96 #define WZRD_O_MIN 1
97 #define WZRD_O_MAX 128
98 #define VER_WZRD_M_MIN 4
99 #define VER_WZRD_M_MAX 432
100 #define VER_WZRD_D_MIN 1
101 #define VER_WZRD_D_MAX 123
102 #define VER_WZRD_VCO_MIN 2160000000ULL
103 #define VER_WZRD_VCO_MAX 4320000000ULL
104 #define VER_WZRD_O_MIN 2
105 #define VER_WZRD_O_MAX 511
106 #define WZRD_MIN_ERR 20000
107 #define WZRD_FRAC_POINTS 1000
108
109 /* Get the mask from width */
110 #define div_mask(width) ((1 << (width)) - 1)
111
112 /* Extract divider instance from clock hardware instance */
113 #define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)
114
115 enum clk_wzrd_int_clks {
116 wzrd_clk_mul,
117 wzrd_clk_mul_div,
118 wzrd_clk_mul_frac,
119 wzrd_clk_int_max
120 };
121
122 /**
123 * struct clk_wzrd - Clock wizard private data structure
124 *
125 * @nb: Notifier block
126 * @base: Memory base
127 * @clk_in1: Handle to input clock 'clk_in1'
128 * @axi_clk: Handle to input clock 's_axi_aclk'
129 * @clks_internal: Internal clocks
130 * @speed_grade: Speed grade of the device
131 * @suspended: Flag indicating power state of the device
132 * @clk_data: Output clock data
133 */
134 struct clk_wzrd {
135 struct notifier_block nb;
136 void __iomem *base;
137 struct clk *clk_in1;
138 struct clk *axi_clk;
139 struct clk_hw *clks_internal[wzrd_clk_int_max];
140 unsigned int speed_grade;
141 bool suspended;
142 struct clk_hw_onecell_data clk_data;
143 };
144
145 /**
146 * struct clk_wzrd_divider - clock divider specific to clk_wzrd
147 *
148 * @hw: handle between common and hardware-specific interfaces
149 * @base: base address of register containing the divider
150 * @offset: offset address of register containing the divider
151 * @shift: shift to the divider bit field
152 * @width: width of the divider bit field
153 * @flags: clk_wzrd divider flags
154 * @table: array of value/divider pairs, last entry should have div = 0
155 * @m: value of the multiplier
156 * @d: value of the common divider
157 * @o: value of the leaf divider
158 * @lock: register lock
159 */
160 struct clk_wzrd_divider {
161 struct clk_hw hw;
162 void __iomem *base;
163 u16 offset;
164 u8 shift;
165 u8 width;
166 u8 flags;
167 const struct clk_div_table *table;
168 u32 m;
169 u32 d;
170 u32 o;
171 spinlock_t *lock; /* divider lock */
172 };
173
174 struct versal_clk_data {
175 bool is_versal;
176 };
177
178 #define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)
179
180 /* maximum frequencies for input/output clocks per speed grade */
181 static const unsigned long clk_wzrd_max_freq[] = {
182 800000000UL,
183 933000000UL,
184 1066000000UL
185 };
186
187 /* spin lock variable for clk_wzrd */
188 static DEFINE_SPINLOCK(clkwzrd_lock);
189
clk_wzrd_recalc_rate_ver(struct clk_hw * hw,unsigned long parent_rate)190 static unsigned long clk_wzrd_recalc_rate_ver(struct clk_hw *hw,
191 unsigned long parent_rate)
192 {
193 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
194 void __iomem *div_addr = divider->base + divider->offset;
195 u32 div, p5en, edge, prediv2, all;
196 unsigned int vall, valh;
197
198 edge = !!(readl(div_addr) & WZRD_CLKFBOUT_EDGE);
199 p5en = !!(readl(div_addr) & WZRD_P5EN);
200 prediv2 = !!(readl(div_addr) & WZRD_CLKOUT0_PREDIV2);
201 vall = readl(div_addr + 4) & WZRD_CLKFBOUT_L_MASK;
202 valh = readl(div_addr + 4) >> WZRD_CLKFBOUT_H_SHIFT;
203 all = valh + vall + edge;
204 if (!all)
205 all = 1;
206
207 if (prediv2)
208 div = 2 * all + prediv2 * p5en;
209 else
210 div = all;
211
212 return DIV_ROUND_UP_ULL((u64)parent_rate, div);
213 }
214
clk_wzrd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)215 static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
216 unsigned long parent_rate)
217 {
218 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
219 void __iomem *div_addr = divider->base + divider->offset;
220 unsigned int val;
221
222 val = readl(div_addr) >> divider->shift;
223 val &= div_mask(divider->width);
224
225 return divider_recalc_rate(hw, parent_rate, val, divider->table,
226 divider->flags, divider->width);
227 }
228
clk_wzrd_ver_dynamic_reconfig(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)229 static int clk_wzrd_ver_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
230 unsigned long parent_rate)
231 {
232 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
233 void __iomem *div_addr = divider->base + divider->offset;
234 u32 value, regh, edged, p5en, p5fedge, regval, regval1;
235 unsigned long flags;
236 int err;
237
238 spin_lock_irqsave(divider->lock, flags);
239
240 value = DIV_ROUND_CLOSEST(parent_rate, rate);
241
242 regh = (value / 4);
243 regval1 = readl(div_addr);
244 regval1 |= WZRD_CLKFBOUT_PREDIV2;
245 regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
246 if (value % 4 > 1) {
247 edged = 1;
248 regval1 |= (edged << WZRD_EDGE_SHIFT);
249 }
250 p5fedge = value % 2;
251 p5en = value % 2;
252 regval1 = regval1 | p5en << WZRD_P5EN_SHIFT | p5fedge << WZRD_P5FEDGE_SHIFT;
253 writel(regval1, div_addr);
254
255 regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
256 writel(regval, div_addr + 4);
257 /* Check status register */
258 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
259 value, value & WZRD_DR_LOCK_BIT_MASK,
260 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
261 if (err)
262 goto err_reconfig;
263
264 /* Initiate reconfiguration */
265 writel(WZRD_DR_BEGIN_DYNA_RECONF,
266 divider->base + WZRD_DR_INIT_VERSAL_OFFSET);
267
268 /* Check status register */
269 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
270 value, value & WZRD_DR_LOCK_BIT_MASK,
271 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
272 err_reconfig:
273 spin_unlock_irqrestore(divider->lock, flags);
274 return err;
275 }
276
clk_wzrd_dynamic_reconfig(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)277 static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
278 unsigned long parent_rate)
279 {
280 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
281 void __iomem *div_addr = divider->base + divider->offset;
282 unsigned long flags;
283 u32 value;
284 int err;
285
286 spin_lock_irqsave(divider->lock, flags);
287
288 value = DIV_ROUND_CLOSEST(parent_rate, rate);
289
290 /* Cap the value to max */
291 min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);
292
293 /* Set divisor and clear phase offset */
294 writel(value, div_addr);
295 writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
296
297 /* Check status register */
298 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
299 value, value & WZRD_DR_LOCK_BIT_MASK,
300 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
301 if (err)
302 goto err_reconfig;
303
304 /* Initiate reconfiguration */
305 writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
306 divider->base + WZRD_DR_INIT_REG_OFFSET);
307 writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
308 divider->base + WZRD_DR_INIT_REG_OFFSET);
309
310 /* Check status register */
311 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
312 value, value & WZRD_DR_LOCK_BIT_MASK,
313 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
314 err_reconfig:
315 spin_unlock_irqrestore(divider->lock, flags);
316 return err;
317 }
318
clk_wzrd_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)319 static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
320 unsigned long *prate)
321 {
322 u8 div;
323
324 /*
325 * since we don't change parent rate we just round rate to closest
326 * achievable
327 */
328 div = DIV_ROUND_CLOSEST(*prate, rate);
329
330 return *prate / div;
331 }
332
clk_wzrd_get_divisors_ver(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)333 static int clk_wzrd_get_divisors_ver(struct clk_hw *hw, unsigned long rate,
334 unsigned long parent_rate)
335 {
336 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
337 u64 vco_freq, freq, diff, vcomin, vcomax;
338 u32 m, d, o;
339 u32 mmin, mmax, dmin, dmax, omin, omax;
340
341 mmin = VER_WZRD_M_MIN;
342 mmax = VER_WZRD_M_MAX;
343 dmin = VER_WZRD_D_MIN;
344 dmax = VER_WZRD_D_MAX;
345 omin = VER_WZRD_O_MIN;
346 omax = VER_WZRD_O_MAX;
347 vcomin = VER_WZRD_VCO_MIN;
348 vcomax = VER_WZRD_VCO_MAX;
349
350 for (m = mmin; m <= mmax; m++) {
351 for (d = dmin; d <= dmax; d++) {
352 vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
353 if (vco_freq >= vcomin && vco_freq <= vcomax) {
354 for (o = omin; o <= omax; o++) {
355 freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
356 diff = abs(freq - rate);
357
358 if (diff < WZRD_MIN_ERR) {
359 divider->m = m;
360 divider->d = d;
361 divider->o = o;
362 return 0;
363 }
364 }
365 }
366 }
367 }
368 return -EBUSY;
369 }
370
clk_wzrd_get_divisors(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)371 static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
372 unsigned long parent_rate)
373 {
374 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
375 u64 vco_freq, freq, diff, vcomin, vcomax;
376 u32 m, d, o;
377 u32 mmin, mmax, dmin, dmax, omin, omax;
378
379 mmin = WZRD_M_MIN;
380 mmax = WZRD_M_MAX;
381 dmin = WZRD_D_MIN;
382 dmax = WZRD_D_MAX;
383 omin = WZRD_O_MIN;
384 omax = WZRD_O_MAX;
385 vcomin = WZRD_VCO_MIN;
386 vcomax = WZRD_VCO_MAX;
387
388 for (m = mmin; m <= mmax; m++) {
389 for (d = dmin; d <= dmax; d++) {
390 vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
391 if (vco_freq >= vcomin && vco_freq <= vcomax) {
392 for (o = omin; o <= omax; o++) {
393 freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
394 diff = abs(freq - rate);
395
396 if (diff < WZRD_MIN_ERR) {
397 divider->m = m;
398 divider->d = d;
399 divider->o = o;
400 return 0;
401 }
402 }
403 }
404 }
405 }
406 return -EBUSY;
407 }
408
clk_wzrd_reconfig(struct clk_wzrd_divider * divider,void __iomem * div_addr)409 static int clk_wzrd_reconfig(struct clk_wzrd_divider *divider, void __iomem *div_addr)
410 {
411 u32 value;
412 int err;
413
414 /* Check status register */
415 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
416 value & WZRD_DR_LOCK_BIT_MASK,
417 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
418 if (err)
419 return -ETIMEDOUT;
420
421 /* Initiate reconfiguration */
422 writel(WZRD_DR_BEGIN_DYNA_RECONF, div_addr);
423 /* Check status register */
424 return readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
425 value & WZRD_DR_LOCK_BIT_MASK,
426 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
427 }
428
clk_wzrd_dynamic_ver_all_nolock(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)429 static int clk_wzrd_dynamic_ver_all_nolock(struct clk_hw *hw, unsigned long rate,
430 unsigned long parent_rate)
431 {
432 u32 regh, edged, p5en, p5fedge, value2, m, regval, regval1, value;
433 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
434 void __iomem *div_addr;
435 int err;
436
437 err = clk_wzrd_get_divisors_ver(hw, rate, parent_rate);
438 if (err)
439 return err;
440
441 writel(0, divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4));
442
443 m = divider->m;
444 edged = m % WZRD_DUTY_CYCLE;
445 regh = m / WZRD_DUTY_CYCLE;
446 regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
447 WZRD_CLKFBOUT_1));
448 regval1 |= WZRD_MULT_PREDIV2;
449 if (edged)
450 regval1 = regval1 | WZRD_CLKFBOUT_EDGE;
451 else
452 regval1 = regval1 & ~WZRD_CLKFBOUT_EDGE;
453
454 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
455 WZRD_CLKFBOUT_1));
456 regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
457 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
458 WZRD_CLKFBOUT_2));
459
460 value2 = divider->d;
461 edged = value2 % WZRD_DUTY_CYCLE;
462 regh = (value2 / WZRD_DUTY_CYCLE);
463 regval1 = FIELD_PREP(WZRD_DIVCLK_EDGE, edged);
464 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
465 WZRD_DESKEW_2));
466 regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
467 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
468
469 value = divider->o;
470 regh = value / WZRD_O_DIV;
471 regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
472 WZRD_CLKOUT0_1));
473 regval1 |= WZRD_CLKFBOUT_PREDIV2;
474 regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
475
476 if (value % WZRD_O_DIV > 1) {
477 edged = 1;
478 regval1 |= edged << WZRD_CLKFBOUT_H_SHIFT;
479 }
480
481 p5fedge = value % WZRD_DUTY_CYCLE;
482 p5en = value % WZRD_DUTY_CYCLE;
483
484 regval1 = regval1 | FIELD_PREP(WZRD_P5EN, p5en) | FIELD_PREP(WZRD_P5FEDGE, p5fedge);
485 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
486 WZRD_CLKOUT0_1));
487 regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
488 writel(regval, divider->base + WZRD_CLK_CFG_REG(1,
489 WZRD_CLKOUT0_2));
490 div_addr = divider->base + WZRD_DR_INIT_VERSAL_OFFSET;
491
492 return clk_wzrd_reconfig(divider, div_addr);
493 }
494
clk_wzrd_dynamic_all_nolock(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)495 static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
496 unsigned long parent_rate)
497 {
498 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
499 unsigned long vco_freq, rate_div, clockout0_div;
500 void __iomem *div_addr;
501 u32 reg, pre, f;
502 int err;
503
504 err = clk_wzrd_get_divisors(hw, rate, parent_rate);
505 if (err)
506 return err;
507
508 vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
509 rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);
510
511 clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS);
512
513 pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
514 f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
515 f &= WZRD_CLKOUT_FRAC_MASK;
516
517 reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
518 FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);
519
520 writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 2));
521 /* Set divisor and clear phase offset */
522 reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
523 FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
524 writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 0));
525 writel(divider->o, divider->base + WZRD_CLK_CFG_REG(0, 2));
526 writel(0, divider->base + WZRD_CLK_CFG_REG(0, 3));
527 div_addr = divider->base + WZRD_DR_INIT_REG_OFFSET;
528 return clk_wzrd_reconfig(divider, div_addr);
529 }
530
clk_wzrd_dynamic_all(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)531 static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
532 unsigned long parent_rate)
533 {
534 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
535 unsigned long flags;
536 int ret;
537
538 spin_lock_irqsave(divider->lock, flags);
539
540 ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);
541
542 spin_unlock_irqrestore(divider->lock, flags);
543
544 return ret;
545 }
546
clk_wzrd_dynamic_all_ver(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)547 static int clk_wzrd_dynamic_all_ver(struct clk_hw *hw, unsigned long rate,
548 unsigned long parent_rate)
549 {
550 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
551 unsigned long flags;
552 int ret;
553
554 spin_lock_irqsave(divider->lock, flags);
555
556 ret = clk_wzrd_dynamic_ver_all_nolock(hw, rate, parent_rate);
557
558 spin_unlock_irqrestore(divider->lock, flags);
559
560 return ret;
561 }
562
clk_wzrd_recalc_rate_all(struct clk_hw * hw,unsigned long parent_rate)563 static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
564 unsigned long parent_rate)
565 {
566 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
567 u32 m, d, o, div, reg, f;
568
569 reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 0));
570 d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
571 m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
572 reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 2));
573 o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
574 f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);
575
576 div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
577 return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
578 divider->flags, divider->width);
579 }
580
clk_wzrd_recalc_rate_all_ver(struct clk_hw * hw,unsigned long parent_rate)581 static unsigned long clk_wzrd_recalc_rate_all_ver(struct clk_hw *hw,
582 unsigned long parent_rate)
583 {
584 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
585 u32 edged, div2, p5en, edge, prediv2, all, regl, regh, mult;
586 u32 div, reg;
587
588 edge = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_1)) &
589 WZRD_CLKFBOUT_EDGE);
590
591 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_2));
592 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
593 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
594
595 mult = regl + regh + edge;
596 if (!mult)
597 mult = 1;
598
599 regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4)) &
600 WZRD_CLKFBOUT_FRAC_EN;
601 if (regl) {
602 regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_3))
603 & WZRD_VERSAL_FRAC_MASK;
604 mult = mult * WZRD_FRAC_GRADIENT + regl;
605 parent_rate = DIV_ROUND_CLOSEST((parent_rate * mult), WZRD_FRAC_GRADIENT);
606 } else {
607 parent_rate = parent_rate * mult;
608 }
609
610 /* O Calculation */
611 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_1));
612 edged = FIELD_GET(WZRD_CLKFBOUT_EDGE, reg);
613 p5en = FIELD_GET(WZRD_P5EN, reg);
614 prediv2 = FIELD_GET(WZRD_CLKOUT0_PREDIV2, reg);
615
616 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_2));
617 /* Low time */
618 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
619 /* High time */
620 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
621 all = regh + regl + edged;
622 if (!all)
623 all = 1;
624
625 if (prediv2)
626 div2 = PREDIV2_MULT * all + p5en;
627 else
628 div2 = all;
629
630 /* D calculation */
631 edged = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DESKEW_2)) &
632 WZRD_DIVCLK_EDGE);
633 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
634 /* Low time */
635 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
636 /* High time */
637 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
638 div = regl + regh + edged;
639 if (!div)
640 div = 1;
641
642 div = div * div2;
643 return divider_recalc_rate(hw, parent_rate, div, divider->table,
644 divider->flags, divider->width);
645 }
646
clk_wzrd_round_rate_all(struct clk_hw * hw,unsigned long rate,unsigned long * prate)647 static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
648 unsigned long *prate)
649 {
650 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
651 unsigned long int_freq;
652 u32 m, d, o, div, f;
653 int err;
654
655 err = clk_wzrd_get_divisors(hw, rate, *prate);
656 if (err)
657 return err;
658
659 m = divider->m;
660 d = divider->d;
661 o = divider->o;
662
663 div = d * o;
664 int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table,
665 divider->flags, divider->width);
666
667 if (rate > int_freq) {
668 f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
669 rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
670 }
671 return rate;
672 }
673
674 static const struct clk_ops clk_wzrd_ver_divider_ops = {
675 .round_rate = clk_wzrd_round_rate,
676 .set_rate = clk_wzrd_ver_dynamic_reconfig,
677 .recalc_rate = clk_wzrd_recalc_rate_ver,
678 };
679
680 static const struct clk_ops clk_wzrd_ver_div_all_ops = {
681 .round_rate = clk_wzrd_round_rate_all,
682 .set_rate = clk_wzrd_dynamic_all_ver,
683 .recalc_rate = clk_wzrd_recalc_rate_all_ver,
684 };
685
686 static const struct clk_ops clk_wzrd_clk_divider_ops = {
687 .round_rate = clk_wzrd_round_rate,
688 .set_rate = clk_wzrd_dynamic_reconfig,
689 .recalc_rate = clk_wzrd_recalc_rate,
690 };
691
692 static const struct clk_ops clk_wzrd_clk_div_all_ops = {
693 .round_rate = clk_wzrd_round_rate_all,
694 .set_rate = clk_wzrd_dynamic_all,
695 .recalc_rate = clk_wzrd_recalc_rate_all,
696 };
697
clk_wzrd_recalc_ratef(struct clk_hw * hw,unsigned long parent_rate)698 static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
699 unsigned long parent_rate)
700 {
701 unsigned int val;
702 u32 div, frac;
703 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
704 void __iomem *div_addr = divider->base + divider->offset;
705
706 val = readl(div_addr);
707 div = val & div_mask(divider->width);
708 frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;
709
710 return mult_frac(parent_rate, 1000, (div * 1000) + frac);
711 }
712
clk_wzrd_dynamic_reconfig_f(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)713 static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
714 unsigned long parent_rate)
715 {
716 int err;
717 u32 value, pre;
718 unsigned long rate_div, f, clockout0_div;
719 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
720 void __iomem *div_addr = divider->base + divider->offset;
721
722 rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
723 clockout0_div = rate_div / 1000;
724
725 pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
726 f = (u32)(pre - (clockout0_div * 1000));
727 f = f & WZRD_CLKOUT_FRAC_MASK;
728 f = f << WZRD_CLKOUT_DIVIDE_WIDTH;
729
730 value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));
731
732 /* Set divisor and clear phase offset */
733 writel(value, div_addr);
734 writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
735
736 /* Check status register */
737 err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
738 value & WZRD_DR_LOCK_BIT_MASK,
739 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
740 if (err)
741 return err;
742
743 /* Initiate reconfiguration */
744 writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
745 divider->base + WZRD_DR_INIT_REG_OFFSET);
746 writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
747 divider->base + WZRD_DR_INIT_REG_OFFSET);
748
749 /* Check status register */
750 return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
751 value & WZRD_DR_LOCK_BIT_MASK,
752 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
753 }
754
clk_wzrd_round_rate_f(struct clk_hw * hw,unsigned long rate,unsigned long * prate)755 static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
756 unsigned long *prate)
757 {
758 return rate;
759 }
760
761 static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
762 .round_rate = clk_wzrd_round_rate_f,
763 .set_rate = clk_wzrd_dynamic_reconfig_f,
764 .recalc_rate = clk_wzrd_recalc_ratef,
765 };
766
clk_wzrd_register_divf(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * base,u16 offset,u8 shift,u8 width,u8 clk_divider_flags,u32 div_type,spinlock_t * lock)767 static struct clk_hw *clk_wzrd_register_divf(struct device *dev,
768 const char *name,
769 const char *parent_name,
770 unsigned long flags,
771 void __iomem *base, u16 offset,
772 u8 shift, u8 width,
773 u8 clk_divider_flags,
774 u32 div_type,
775 spinlock_t *lock)
776 {
777 struct clk_wzrd_divider *div;
778 struct clk_hw *hw;
779 struct clk_init_data init;
780 int ret;
781
782 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
783 if (!div)
784 return ERR_PTR(-ENOMEM);
785
786 init.name = name;
787
788 init.ops = &clk_wzrd_clk_divider_ops_f;
789
790 init.flags = flags;
791 init.parent_names = &parent_name;
792 init.num_parents = 1;
793
794 div->base = base;
795 div->offset = offset;
796 div->shift = shift;
797 div->width = width;
798 div->flags = clk_divider_flags;
799 div->lock = lock;
800 div->hw.init = &init;
801
802 hw = &div->hw;
803 ret = devm_clk_hw_register(dev, hw);
804 if (ret)
805 return ERR_PTR(ret);
806
807 return hw;
808 }
809
clk_wzrd_ver_register_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * base,u16 offset,u8 shift,u8 width,u8 clk_divider_flags,u32 div_type,spinlock_t * lock)810 static struct clk_hw *clk_wzrd_ver_register_divider(struct device *dev,
811 const char *name,
812 const char *parent_name,
813 unsigned long flags,
814 void __iomem *base,
815 u16 offset,
816 u8 shift, u8 width,
817 u8 clk_divider_flags,
818 u32 div_type,
819 spinlock_t *lock)
820 {
821 struct clk_wzrd_divider *div;
822 struct clk_hw *hw;
823 struct clk_init_data init;
824 int ret;
825
826 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
827 if (!div)
828 return ERR_PTR(-ENOMEM);
829
830 init.name = name;
831 if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
832 init.ops = &clk_divider_ro_ops;
833 else if (div_type == DIV_O)
834 init.ops = &clk_wzrd_ver_divider_ops;
835 else
836 init.ops = &clk_wzrd_ver_div_all_ops;
837 init.flags = flags;
838 init.parent_names = &parent_name;
839 init.num_parents = 1;
840
841 div->base = base;
842 div->offset = offset;
843 div->shift = shift;
844 div->width = width;
845 div->flags = clk_divider_flags;
846 div->lock = lock;
847 div->hw.init = &init;
848
849 hw = &div->hw;
850 ret = devm_clk_hw_register(dev, hw);
851 if (ret)
852 return ERR_PTR(ret);
853
854 return hw;
855 }
856
clk_wzrd_register_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * base,u16 offset,u8 shift,u8 width,u8 clk_divider_flags,u32 div_type,spinlock_t * lock)857 static struct clk_hw *clk_wzrd_register_divider(struct device *dev,
858 const char *name,
859 const char *parent_name,
860 unsigned long flags,
861 void __iomem *base, u16 offset,
862 u8 shift, u8 width,
863 u8 clk_divider_flags,
864 u32 div_type,
865 spinlock_t *lock)
866 {
867 struct clk_wzrd_divider *div;
868 struct clk_hw *hw;
869 struct clk_init_data init;
870 int ret;
871
872 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
873 if (!div)
874 return ERR_PTR(-ENOMEM);
875
876 init.name = name;
877 if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
878 init.ops = &clk_divider_ro_ops;
879 else if (div_type == DIV_O)
880 init.ops = &clk_wzrd_clk_divider_ops;
881 else
882 init.ops = &clk_wzrd_clk_div_all_ops;
883 init.flags = flags;
884 init.parent_names = &parent_name;
885 init.num_parents = 1;
886
887 div->base = base;
888 div->offset = offset;
889 div->shift = shift;
890 div->width = width;
891 div->flags = clk_divider_flags;
892 div->lock = lock;
893 div->hw.init = &init;
894
895 hw = &div->hw;
896 ret = devm_clk_hw_register(dev, hw);
897 if (ret)
898 return ERR_PTR(ret);
899
900 return hw;
901 }
902
clk_wzrd_clk_notifier(struct notifier_block * nb,unsigned long event,void * data)903 static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
904 void *data)
905 {
906 unsigned long max;
907 struct clk_notifier_data *ndata = data;
908 struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);
909
910 if (clk_wzrd->suspended)
911 return NOTIFY_OK;
912
913 if (ndata->clk == clk_wzrd->clk_in1)
914 max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
915 else if (ndata->clk == clk_wzrd->axi_clk)
916 max = WZRD_ACLK_MAX_FREQ;
917 else
918 return NOTIFY_DONE; /* should never happen */
919
920 switch (event) {
921 case PRE_RATE_CHANGE:
922 if (ndata->new_rate > max)
923 return NOTIFY_BAD;
924 return NOTIFY_OK;
925 case POST_RATE_CHANGE:
926 case ABORT_RATE_CHANGE:
927 default:
928 return NOTIFY_DONE;
929 }
930 }
931
clk_wzrd_suspend(struct device * dev)932 static int __maybe_unused clk_wzrd_suspend(struct device *dev)
933 {
934 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
935
936 clk_disable_unprepare(clk_wzrd->axi_clk);
937 clk_wzrd->suspended = true;
938
939 return 0;
940 }
941
clk_wzrd_resume(struct device * dev)942 static int __maybe_unused clk_wzrd_resume(struct device *dev)
943 {
944 int ret;
945 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
946
947 ret = clk_prepare_enable(clk_wzrd->axi_clk);
948 if (ret) {
949 dev_err(dev, "unable to enable s_axi_aclk\n");
950 return ret;
951 }
952
953 clk_wzrd->suspended = false;
954
955 return 0;
956 }
957
958 static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
959 clk_wzrd_resume);
960
961 static const struct versal_clk_data versal_data = {
962 .is_versal = true,
963 };
964
clk_wzrd_register_output_clocks(struct device * dev,int nr_outputs)965 static int clk_wzrd_register_output_clocks(struct device *dev, int nr_outputs)
966 {
967 const char *clkout_name, *clk_name, *clk_mul_name;
968 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
969 u32 regl, regh, edge, regld, reghd, edged, div;
970 const struct versal_clk_data *data;
971 unsigned long flags = 0;
972 bool is_versal = false;
973 void __iomem *ctrl_reg;
974 u32 reg, reg_f, mult;
975 int i;
976
977 data = device_get_match_data(dev);
978 if (data)
979 is_versal = data->is_versal;
980
981 clkout_name = devm_kasprintf(dev, GFP_KERNEL, "%s_out0", dev_name(dev));
982 if (!clkout_name)
983 return -ENOMEM;
984
985 if (is_versal) {
986 if (nr_outputs == 1) {
987 clk_wzrd->clk_data.hws[0] = clk_wzrd_ver_register_divider
988 (dev, clkout_name,
989 __clk_get_name(clk_wzrd->clk_in1), 0,
990 clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
991 WZRD_CLKOUT_DIVIDE_SHIFT,
992 WZRD_CLKOUT_DIVIDE_WIDTH,
993 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
994 DIV_ALL, &clkwzrd_lock);
995
996 return 0;
997 }
998 /* register multiplier */
999 edge = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0)) &
1000 BIT(8));
1001 regl = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
1002 WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
1003 regh = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
1004 WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
1005 mult = regl + regh + edge;
1006 if (!mult)
1007 mult = 1;
1008 mult = mult * WZRD_FRAC_GRADIENT;
1009
1010 regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 51)) &
1011 WZRD_CLKFBOUT_FRAC_EN;
1012 if (regl) {
1013 regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 48)) &
1014 WZRD_VERSAL_FRAC_MASK;
1015 mult = mult + regl;
1016 }
1017 div = 64;
1018 } else {
1019 if (nr_outputs == 1) {
1020 clk_wzrd->clk_data.hws[0] = clk_wzrd_register_divider
1021 (dev, clkout_name,
1022 __clk_get_name(clk_wzrd->clk_in1), 0,
1023 clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
1024 WZRD_CLKOUT_DIVIDE_SHIFT,
1025 WZRD_CLKOUT_DIVIDE_WIDTH,
1026 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1027 DIV_ALL, &clkwzrd_lock);
1028
1029 return 0;
1030 }
1031 reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0));
1032 reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
1033 reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;
1034
1035 reg = reg & WZRD_CLKFBOUT_MULT_MASK;
1036 reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT;
1037 mult = (reg * 1000) + reg_f;
1038 div = 1000;
1039 }
1040 clk_name = devm_kasprintf(dev, GFP_KERNEL, "%s_mul", dev_name(dev));
1041 if (!clk_name)
1042 return -ENOMEM;
1043 clk_wzrd->clks_internal[wzrd_clk_mul] = devm_clk_hw_register_fixed_factor
1044 (dev, clk_name,
1045 __clk_get_name(clk_wzrd->clk_in1),
1046 0, mult, div);
1047 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
1048 dev_err(dev, "unable to register fixed-factor clock\n");
1049 return PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
1050 }
1051
1052 clk_name = devm_kasprintf(dev, GFP_KERNEL, "%s_mul_div", dev_name(dev));
1053 if (!clk_name)
1054 return -ENOMEM;
1055
1056 if (is_versal) {
1057 edged = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 20)) &
1058 BIT(10));
1059 regld = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
1060 WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
1061 reghd = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
1062 WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
1063 div = (regld + reghd + edged);
1064 if (!div)
1065 div = 1;
1066
1067 clk_mul_name = clk_hw_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]);
1068 clk_wzrd->clks_internal[wzrd_clk_mul_div] =
1069 devm_clk_hw_register_fixed_factor(dev, clk_name, clk_mul_name, 0, 1, div);
1070 } else {
1071 ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0);
1072 clk_wzrd->clks_internal[wzrd_clk_mul_div] = devm_clk_hw_register_divider
1073 (dev, clk_name,
1074 clk_hw_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
1075 flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
1076 CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
1077 }
1078 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
1079 dev_err(dev, "unable to register divider clock\n");
1080 return PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
1081 }
1082
1083 /* register div per output */
1084 for (i = nr_outputs - 1; i >= 0 ; i--) {
1085 clkout_name = devm_kasprintf(dev, GFP_KERNEL, "%s_out%d", dev_name(dev), i);
1086 if (!clkout_name)
1087 return -ENOMEM;
1088
1089 if (is_versal) {
1090 clk_wzrd->clk_data.hws[i] = clk_wzrd_ver_register_divider
1091 (dev,
1092 clkout_name, clk_name, 0,
1093 clk_wzrd->base,
1094 (WZRD_CLK_CFG_REG(is_versal, 3) + i * 8),
1095 WZRD_CLKOUT_DIVIDE_SHIFT,
1096 WZRD_CLKOUT_DIVIDE_WIDTH,
1097 CLK_DIVIDER_ONE_BASED |
1098 CLK_DIVIDER_ALLOW_ZERO,
1099 DIV_O, &clkwzrd_lock);
1100 } else {
1101 if (!i)
1102 clk_wzrd->clk_data.hws[i] = clk_wzrd_register_divf
1103 (dev, clkout_name, clk_name, flags, clk_wzrd->base,
1104 (WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
1105 WZRD_CLKOUT_DIVIDE_SHIFT,
1106 WZRD_CLKOUT_DIVIDE_WIDTH,
1107 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1108 DIV_O, &clkwzrd_lock);
1109 else
1110 clk_wzrd->clk_data.hws[i] = clk_wzrd_register_divider
1111 (dev, clkout_name, clk_name, 0, clk_wzrd->base,
1112 (WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
1113 WZRD_CLKOUT_DIVIDE_SHIFT,
1114 WZRD_CLKOUT_DIVIDE_WIDTH,
1115 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1116 DIV_O, &clkwzrd_lock);
1117 }
1118 if (IS_ERR(clk_wzrd->clk_data.hws[i])) {
1119 dev_err(dev, "unable to register divider clock\n");
1120 return PTR_ERR(clk_wzrd->clk_data.hws[i]);
1121 }
1122 }
1123
1124 return 0;
1125 }
1126
clk_wzrd_probe(struct platform_device * pdev)1127 static int clk_wzrd_probe(struct platform_device *pdev)
1128 {
1129 struct device_node *np = pdev->dev.of_node;
1130 struct clk_wzrd *clk_wzrd;
1131 unsigned long rate;
1132 int nr_outputs;
1133 int ret;
1134
1135 ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
1136 if (ret || nr_outputs > WZRD_NUM_OUTPUTS)
1137 return -EINVAL;
1138
1139 clk_wzrd = devm_kzalloc(&pdev->dev, struct_size(clk_wzrd, clk_data.hws, nr_outputs),
1140 GFP_KERNEL);
1141 if (!clk_wzrd)
1142 return -ENOMEM;
1143 platform_set_drvdata(pdev, clk_wzrd);
1144
1145 clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
1146 if (IS_ERR(clk_wzrd->base))
1147 return PTR_ERR(clk_wzrd->base);
1148
1149 clk_wzrd->axi_clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
1150 if (IS_ERR(clk_wzrd->axi_clk))
1151 return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
1152 "s_axi_aclk not found\n");
1153 rate = clk_get_rate(clk_wzrd->axi_clk);
1154 if (rate > WZRD_ACLK_MAX_FREQ) {
1155 dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n", rate);
1156 return -EINVAL;
1157 }
1158
1159 if (!of_property_present(np, "xlnx,static-config")) {
1160 ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
1161 if (!ret) {
1162 if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
1163 dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
1164 clk_wzrd->speed_grade);
1165 clk_wzrd->speed_grade = 0;
1166 }
1167 }
1168
1169 clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
1170 if (IS_ERR(clk_wzrd->clk_in1))
1171 return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
1172 "clk_in1 not found\n");
1173
1174 ret = clk_wzrd_register_output_clocks(&pdev->dev, nr_outputs);
1175 if (ret)
1176 return ret;
1177
1178 clk_wzrd->clk_data.num = nr_outputs;
1179 ret = devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get,
1180 &clk_wzrd->clk_data);
1181 if (ret) {
1182 dev_err(&pdev->dev, "unable to register clock provider\n");
1183 return ret;
1184 }
1185
1186 if (clk_wzrd->speed_grade) {
1187 clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;
1188
1189 ret = devm_clk_notifier_register(&pdev->dev, clk_wzrd->clk_in1,
1190 &clk_wzrd->nb);
1191 if (ret)
1192 dev_warn(&pdev->dev,
1193 "unable to register clock notifier\n");
1194
1195 ret = devm_clk_notifier_register(&pdev->dev, clk_wzrd->axi_clk,
1196 &clk_wzrd->nb);
1197 if (ret)
1198 dev_warn(&pdev->dev,
1199 "unable to register clock notifier\n");
1200 }
1201 }
1202
1203 return 0;
1204 }
1205
1206 static const struct of_device_id clk_wzrd_ids[] = {
1207 { .compatible = "xlnx,versal-clk-wizard", .data = &versal_data },
1208 { .compatible = "xlnx,clocking-wizard" },
1209 { .compatible = "xlnx,clocking-wizard-v5.2" },
1210 { .compatible = "xlnx,clocking-wizard-v6.0" },
1211 { },
1212 };
1213 MODULE_DEVICE_TABLE(of, clk_wzrd_ids);
1214
1215 static struct platform_driver clk_wzrd_driver = {
1216 .driver = {
1217 .name = "clk-wizard",
1218 .of_match_table = clk_wzrd_ids,
1219 .pm = &clk_wzrd_dev_pm_ops,
1220 },
1221 .probe = clk_wzrd_probe,
1222 };
1223 module_platform_driver(clk_wzrd_driver);
1224
1225 MODULE_LICENSE("GPL");
1226 MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com");
1227 MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");
1228