1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2020 Tintri by DDN, Inc. All rights reserved.
25 * Copyright 2019-2023 RackTop Systems, Inc.
26 */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vnode.h>
36 #include <sys/sid.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/cmn_err.h>
41 #include <sys/errno.h>
42 #include <sys/unistd.h>
43 #include <sys/sdt.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/mode.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include <sys/zfs_fuid.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_vfsops.h>
52 #include <sys/dmu.h>
53 #include <sys/dnode.h>
54 #include <sys/zap.h>
55 #include <sys/sa.h>
56 #include "fs/fs_subr.h"
57 #include <acl/acl_common.h>
58
59 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
60 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
61 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
62 #define MIN_ACE_TYPE ALLOW
63
64 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
65 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
66 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
67 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
68 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
69 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
70 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
71
72 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
73 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
74 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
75 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
76
77 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
78 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
79 ACE_DELETE|ACE_DELETE_CHILD)
80 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
81
82 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
83 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
84
85 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
86 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
87
88 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
89 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
90
91 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
92
93 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
94 ZFS_ACL_PROTECTED)
95
96 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
97 ZFS_ACL_OBJ_ACE)
98
99 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
100
101 typedef struct zfs_acl_iter {
102 zfs_acl_t *zai_aclp; /* The ACL we're iterating */
103 zfs_acl_node_t *zai_curr_node; /* current node iterator is in */
104 void *zai_next_ace; /* pointer to next ACE */
105 int zai_ace_idx; /* ace iterator positioned on */
106 } zfs_acl_iter_t;
107
108 static uint16_t
zfs_ace_v0_get_type(void * acep)109 zfs_ace_v0_get_type(void *acep)
110 {
111 return (((zfs_oldace_t *)acep)->z_type);
112 }
113
114 static uint16_t
zfs_ace_v0_get_flags(void * acep)115 zfs_ace_v0_get_flags(void *acep)
116 {
117 return (((zfs_oldace_t *)acep)->z_flags);
118 }
119
120 static uint32_t
zfs_ace_v0_get_mask(void * acep)121 zfs_ace_v0_get_mask(void *acep)
122 {
123 return (((zfs_oldace_t *)acep)->z_access_mask);
124 }
125
126 static uint64_t
zfs_ace_v0_get_who(void * acep)127 zfs_ace_v0_get_who(void *acep)
128 {
129 return (((zfs_oldace_t *)acep)->z_fuid);
130 }
131
132 static void
zfs_ace_v0_set_type(void * acep,uint16_t type)133 zfs_ace_v0_set_type(void *acep, uint16_t type)
134 {
135 ((zfs_oldace_t *)acep)->z_type = type;
136 }
137
138 static void
zfs_ace_v0_set_flags(void * acep,uint16_t flags)139 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
140 {
141 ((zfs_oldace_t *)acep)->z_flags = flags;
142 }
143
144 static void
zfs_ace_v0_set_mask(void * acep,uint32_t mask)145 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
146 {
147 ((zfs_oldace_t *)acep)->z_access_mask = mask;
148 }
149
150 static void
zfs_ace_v0_set_who(void * acep,uint64_t who)151 zfs_ace_v0_set_who(void *acep, uint64_t who)
152 {
153 ((zfs_oldace_t *)acep)->z_fuid = who;
154 }
155
156 /*ARGSUSED*/
157 static size_t
zfs_ace_v0_size(void * acep)158 zfs_ace_v0_size(void *acep)
159 {
160 return (sizeof (zfs_oldace_t));
161 }
162
163 static size_t
zfs_ace_v0_abstract_size(void)164 zfs_ace_v0_abstract_size(void)
165 {
166 return (sizeof (zfs_oldace_t));
167 }
168
169 static int
zfs_ace_v0_mask_off(void)170 zfs_ace_v0_mask_off(void)
171 {
172 return (offsetof(zfs_oldace_t, z_access_mask));
173 }
174
175 /*ARGSUSED*/
176 static int
zfs_ace_v0_data(void * acep,void ** datap)177 zfs_ace_v0_data(void *acep, void **datap)
178 {
179 *datap = NULL;
180 return (0);
181 }
182
183 static acl_ops_t zfs_acl_v0_ops = {
184 zfs_ace_v0_get_mask,
185 zfs_ace_v0_set_mask,
186 zfs_ace_v0_get_flags,
187 zfs_ace_v0_set_flags,
188 zfs_ace_v0_get_type,
189 zfs_ace_v0_set_type,
190 zfs_ace_v0_get_who,
191 zfs_ace_v0_set_who,
192 zfs_ace_v0_size,
193 zfs_ace_v0_abstract_size,
194 zfs_ace_v0_mask_off,
195 zfs_ace_v0_data
196 };
197
198 static uint16_t
zfs_ace_fuid_get_type(void * acep)199 zfs_ace_fuid_get_type(void *acep)
200 {
201 return (((zfs_ace_hdr_t *)acep)->z_type);
202 }
203
204 static uint16_t
zfs_ace_fuid_get_flags(void * acep)205 zfs_ace_fuid_get_flags(void *acep)
206 {
207 return (((zfs_ace_hdr_t *)acep)->z_flags);
208 }
209
210 static uint32_t
zfs_ace_fuid_get_mask(void * acep)211 zfs_ace_fuid_get_mask(void *acep)
212 {
213 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
214 }
215
216 static uint64_t
zfs_ace_fuid_get_who(void * args)217 zfs_ace_fuid_get_who(void *args)
218 {
219 uint16_t entry_type;
220 zfs_ace_t *acep = args;
221
222 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
223
224 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
225 entry_type == ACE_EVERYONE)
226 return (-1);
227 return (((zfs_ace_t *)acep)->z_fuid);
228 }
229
230 static void
zfs_ace_fuid_set_type(void * acep,uint16_t type)231 zfs_ace_fuid_set_type(void *acep, uint16_t type)
232 {
233 ((zfs_ace_hdr_t *)acep)->z_type = type;
234 }
235
236 static void
zfs_ace_fuid_set_flags(void * acep,uint16_t flags)237 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
238 {
239 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
240 }
241
242 static void
zfs_ace_fuid_set_mask(void * acep,uint32_t mask)243 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
244 {
245 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
246 }
247
248 static void
zfs_ace_fuid_set_who(void * arg,uint64_t who)249 zfs_ace_fuid_set_who(void *arg, uint64_t who)
250 {
251 zfs_ace_t *acep = arg;
252
253 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
254
255 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
256 entry_type == ACE_EVERYONE)
257 return;
258 acep->z_fuid = who;
259 }
260
261 static size_t
zfs_ace_fuid_size(void * acep)262 zfs_ace_fuid_size(void *acep)
263 {
264 zfs_ace_hdr_t *zacep = acep;
265 uint16_t entry_type;
266
267 switch (zacep->z_type) {
268 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
269 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
270 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
271 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
272 return (sizeof (zfs_object_ace_t));
273 case ALLOW:
274 case DENY:
275 entry_type =
276 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
277 if (entry_type == ACE_OWNER ||
278 entry_type == OWNING_GROUP ||
279 entry_type == ACE_EVERYONE)
280 return (sizeof (zfs_ace_hdr_t));
281 /*FALLTHROUGH*/
282 default:
283 return (sizeof (zfs_ace_t));
284 }
285 }
286
287 static size_t
zfs_ace_fuid_abstract_size(void)288 zfs_ace_fuid_abstract_size(void)
289 {
290 return (sizeof (zfs_ace_hdr_t));
291 }
292
293 static int
zfs_ace_fuid_mask_off(void)294 zfs_ace_fuid_mask_off(void)
295 {
296 return (offsetof(zfs_ace_hdr_t, z_access_mask));
297 }
298
299 static int
zfs_ace_fuid_data(void * acep,void ** datap)300 zfs_ace_fuid_data(void *acep, void **datap)
301 {
302 zfs_ace_t *zacep = acep;
303 zfs_object_ace_t *zobjp;
304
305 switch (zacep->z_hdr.z_type) {
306 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
307 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
308 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
309 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
310 zobjp = acep;
311 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
312 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
313 default:
314 *datap = NULL;
315 return (0);
316 }
317 }
318
319 static acl_ops_t zfs_acl_fuid_ops = {
320 zfs_ace_fuid_get_mask,
321 zfs_ace_fuid_set_mask,
322 zfs_ace_fuid_get_flags,
323 zfs_ace_fuid_set_flags,
324 zfs_ace_fuid_get_type,
325 zfs_ace_fuid_set_type,
326 zfs_ace_fuid_get_who,
327 zfs_ace_fuid_set_who,
328 zfs_ace_fuid_size,
329 zfs_ace_fuid_abstract_size,
330 zfs_ace_fuid_mask_off,
331 zfs_ace_fuid_data
332 };
333
334 /*
335 * The following three functions are provided for compatibility with
336 * older ZPL version in order to determine if the file use to have
337 * an external ACL and what version of ACL previously existed on the
338 * file. Would really be nice to not need this, sigh.
339 */
340 uint64_t
zfs_external_acl(znode_t * zp)341 zfs_external_acl(znode_t *zp)
342 {
343 zfs_acl_phys_t acl_phys;
344 int error;
345
346 if (zp->z_is_sa)
347 return (0);
348
349 /*
350 * Need to deal with a potential
351 * race where zfs_sa_upgrade could cause
352 * z_isa_sa to change.
353 *
354 * If the lookup fails then the state of z_is_sa should have
355 * changed.
356 */
357
358 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
359 &acl_phys, sizeof (acl_phys))) == 0)
360 return (acl_phys.z_acl_extern_obj);
361 else {
362 /*
363 * after upgrade the SA_ZPL_ZNODE_ACL should have been
364 * removed
365 */
366 VERIFY(zp->z_is_sa && error == ENOENT);
367 return (0);
368 }
369 }
370
371 /*
372 * Determine size of ACL in bytes
373 *
374 * This is more complicated than it should be since we have to deal
375 * with old external ACLs.
376 */
377 static int
zfs_acl_znode_info(znode_t * zp,int * aclsize,int * aclcount,zfs_acl_phys_t * aclphys)378 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
379 zfs_acl_phys_t *aclphys)
380 {
381 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
382 uint64_t acl_count;
383 int size;
384 int error;
385
386 ASSERT(RW_ISWRITER(&zp->z_acl_lock));
387 if (zp->z_is_sa) {
388 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
389 &size)) != 0)
390 return (error);
391 *aclsize = size;
392 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
393 &acl_count, sizeof (acl_count))) != 0)
394 return (error);
395 *aclcount = acl_count;
396 } else {
397 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
398 aclphys, sizeof (*aclphys))) != 0)
399 return (error);
400
401 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
402 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
403 *aclcount = aclphys->z_acl_size;
404 } else {
405 *aclsize = aclphys->z_acl_size;
406 *aclcount = aclphys->z_acl_count;
407 }
408 }
409 return (0);
410 }
411
412 int
zfs_znode_acl_version(znode_t * zp)413 zfs_znode_acl_version(znode_t *zp)
414 {
415 zfs_acl_phys_t acl_phys;
416
417 if (zp->z_is_sa)
418 return (ZFS_ACL_VERSION_FUID);
419 else {
420 int error;
421
422 /*
423 * Need to deal with a potential
424 * race where zfs_sa_upgrade could cause
425 * z_isa_sa to change.
426 *
427 * If the lookup fails then the state of z_is_sa should have
428 * changed.
429 */
430 if ((error = sa_lookup(zp->z_sa_hdl,
431 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
432 &acl_phys, sizeof (acl_phys))) == 0)
433 return (acl_phys.z_acl_version);
434 else {
435 /*
436 * After upgrade SA_ZPL_ZNODE_ACL should have
437 * been removed.
438 */
439 VERIFY(zp->z_is_sa && error == ENOENT);
440 return (ZFS_ACL_VERSION_FUID);
441 }
442 }
443 }
444
445 static int
zfs_acl_version(int version)446 zfs_acl_version(int version)
447 {
448 if (version < ZPL_VERSION_FUID)
449 return (ZFS_ACL_VERSION_INITIAL);
450 else
451 return (ZFS_ACL_VERSION_FUID);
452 }
453
454 static int
zfs_acl_version_zp(znode_t * zp)455 zfs_acl_version_zp(znode_t *zp)
456 {
457 return (zfs_acl_version(zp->z_zfsvfs->z_version));
458 }
459
460 zfs_acl_t *
zfs_acl_alloc(int vers)461 zfs_acl_alloc(int vers)
462 {
463 zfs_acl_t *aclp;
464
465 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
466 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
467 offsetof(zfs_acl_node_t, z_next));
468 aclp->z_version = vers;
469 if (vers == ZFS_ACL_VERSION_FUID)
470 aclp->z_ops = zfs_acl_fuid_ops;
471 else
472 aclp->z_ops = zfs_acl_v0_ops;
473 return (aclp);
474 }
475
476 zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)477 zfs_acl_node_alloc(size_t bytes)
478 {
479 zfs_acl_node_t *aclnode;
480
481 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
482 if (bytes) {
483 aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
484 aclnode->z_allocdata = aclnode->z_acldata;
485 aclnode->z_allocsize = bytes;
486 aclnode->z_size = bytes;
487 }
488
489 return (aclnode);
490 }
491
492 static void
zfs_acl_node_free(zfs_acl_node_t * aclnode)493 zfs_acl_node_free(zfs_acl_node_t *aclnode)
494 {
495 if (aclnode->z_allocsize)
496 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
497 kmem_free(aclnode, sizeof (zfs_acl_node_t));
498 }
499
500 static void
zfs_acl_release_nodes(zfs_acl_t * aclp)501 zfs_acl_release_nodes(zfs_acl_t *aclp)
502 {
503 zfs_acl_node_t *aclnode;
504
505 while (aclnode = list_head(&aclp->z_acl)) {
506 list_remove(&aclp->z_acl, aclnode);
507 zfs_acl_node_free(aclnode);
508 }
509 aclp->z_acl_count = 0;
510 aclp->z_acl_bytes = 0;
511 }
512
513 void
zfs_acl_free(zfs_acl_t * aclp)514 zfs_acl_free(zfs_acl_t *aclp)
515 {
516 zfs_acl_release_nodes(aclp);
517 list_destroy(&aclp->z_acl);
518 kmem_free(aclp, sizeof (zfs_acl_t));
519 }
520
521 static boolean_t
zfs_acl_valid_ace_type(uint_t type,uint_t flags)522 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
523 {
524 uint16_t entry_type;
525
526 switch (type) {
527 case ALLOW:
528 case DENY:
529 case ACE_SYSTEM_AUDIT_ACE_TYPE:
530 case ACE_SYSTEM_ALARM_ACE_TYPE:
531 entry_type = flags & ACE_TYPE_FLAGS;
532 return (entry_type == ACE_OWNER ||
533 entry_type == OWNING_GROUP ||
534 entry_type == ACE_EVERYONE || entry_type == 0 ||
535 entry_type == ACE_IDENTIFIER_GROUP);
536 default:
537 if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
538 return (B_TRUE);
539 }
540 return (B_FALSE);
541 }
542
543 static boolean_t
zfs_ace_valid(vtype_t obj_type,zfs_acl_t * aclp,uint16_t type,uint16_t iflags)544 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
545 {
546 /*
547 * first check type of entry
548 */
549
550 if (!zfs_acl_valid_ace_type(type, iflags))
551 return (B_FALSE);
552
553 switch (type) {
554 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
555 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
556 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
557 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
558 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
559 return (B_FALSE);
560 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
561 }
562
563 /*
564 * next check inheritance level flags
565 */
566
567 if (obj_type == VDIR &&
568 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
569 aclp->z_hints |= ZFS_INHERIT_ACE;
570
571 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
572 if ((iflags & (ACE_FILE_INHERIT_ACE|
573 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
574 return (B_FALSE);
575 }
576 }
577
578 return (B_TRUE);
579 }
580
581 /*
582 * We want this iterator to be usable by multiple threads in parallel.
583 * Caller now passes iterator state as 1st arg.
584 */
585 static void *
zfs_acl_next_ace(zfs_acl_iter_t * zaip,void * start,uint64_t * who,uint32_t * access_mask,uint16_t * iflags,uint16_t * type)586 zfs_acl_next_ace(zfs_acl_iter_t *zaip, void *start, uint64_t *who,
587 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
588 {
589 zfs_acl_t *aclp = zaip->zai_aclp;
590 zfs_acl_node_t *aclnode;
591
592 ASSERT(aclp);
593
594 if (start == NULL) {
595 aclnode = list_head(&aclp->z_acl);
596 if (aclnode == NULL)
597 return (NULL);
598
599 zaip->zai_curr_node = aclnode;
600 zaip->zai_next_ace = aclnode->z_acldata;
601 zaip->zai_ace_idx = 0;
602 }
603
604 aclnode = zaip->zai_curr_node;
605
606 if (aclnode == NULL)
607 return (NULL);
608
609 if (zaip->zai_ace_idx >= aclnode->z_ace_count) {
610 next_node:
611 aclnode = list_next(&aclp->z_acl, aclnode);
612 if (aclnode == NULL)
613 return (NULL);
614 zaip->zai_curr_node = aclnode;
615 zaip->zai_ace_idx = 0;
616 zaip->zai_next_ace = aclnode->z_acldata;
617 }
618
619 if (zaip->zai_ace_idx < aclnode->z_ace_count) {
620 void *acep = zaip->zai_next_ace;
621 size_t ace_size;
622
623 /*
624 * Make sure we don't overstep our bounds
625 */
626 ace_size = aclp->z_ops.ace_size(acep);
627
628 if (((caddr_t)acep + ace_size) >
629 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
630 DTRACE_PROBE3(acl__size__error, zfs_acl_t *, aclp,
631 zfs_acl_node_t *, aclnode, zfs_ace_hdr_t *, acep);
632 goto next_node;
633 }
634
635 *iflags = aclp->z_ops.ace_flags_get(acep);
636 *type = aclp->z_ops.ace_type_get(acep);
637 *access_mask = aclp->z_ops.ace_mask_get(acep);
638 *who = aclp->z_ops.ace_who_get(acep);
639
640 zaip->zai_next_ace = (caddr_t)acep + ace_size;
641 zaip->zai_ace_idx++;
642
643 return ((void *)acep);
644 }
645 return (NULL);
646 }
647
648 /*ARGSUSED*/
649 static uint64_t
zfs_ace_walk(void * datap,uint64_t cookie,int aclcnt,uint16_t * flags,uint16_t * type,uint32_t * mask)650 zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
651 uint16_t *flags, uint16_t *type, uint32_t *mask)
652 {
653 zfs_acl_iter_t *zaip = datap;
654 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
655 uint64_t who;
656
657 acep = zfs_acl_next_ace(zaip, acep, &who, mask,
658 flags, type);
659 return ((uint64_t)(uintptr_t)acep);
660 }
661
662 /*
663 * Copy ACE to internal ZFS format.
664 * While processing the ACL each ACE will be validated for correctness.
665 * ACE FUIDs will be created later.
666 */
667 int
zfs_copy_ace_2_fuid(zfsvfs_t * zfsvfs,vtype_t obj_type,zfs_acl_t * aclp,void * datap,zfs_ace_t * z_acl,uint64_t aclcnt,size_t * size,zfs_fuid_info_t ** fuidp,cred_t * cr)668 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
669 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
670 zfs_fuid_info_t **fuidp, cred_t *cr)
671 {
672 int i;
673 uint16_t entry_type;
674 zfs_ace_t *aceptr = z_acl;
675 ace_t *acep = datap;
676 zfs_object_ace_t *zobjacep;
677 ace_object_t *aceobjp;
678
679 for (i = 0; i != aclcnt; i++) {
680 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
681 aceptr->z_hdr.z_flags = acep->a_flags;
682 aceptr->z_hdr.z_type = acep->a_type;
683 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
684 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
685 entry_type != ACE_EVERYONE) {
686 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
687 cr, (entry_type == 0) ?
688 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
689 }
690
691 /*
692 * Make sure ACE is valid
693 */
694 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
695 aceptr->z_hdr.z_flags) != B_TRUE)
696 return (SET_ERROR(EINVAL));
697
698 switch (acep->a_type) {
699 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
700 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
701 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
702 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
703 zobjacep = (zfs_object_ace_t *)aceptr;
704 aceobjp = (ace_object_t *)acep;
705
706 bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
707 sizeof (aceobjp->a_obj_type));
708 bcopy(aceobjp->a_inherit_obj_type,
709 zobjacep->z_inherit_type,
710 sizeof (aceobjp->a_inherit_obj_type));
711 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
712 break;
713 default:
714 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
715 }
716
717 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
718 aclp->z_ops.ace_size(aceptr));
719 }
720
721 *size = (caddr_t)aceptr - (caddr_t)z_acl;
722
723 return (0);
724 }
725
726 /*
727 * Copy ZFS ACEs to fixed size ace_t layout
728 */
729 static void
zfs_copy_fuid_2_ace(zfsvfs_t * zfsvfs,zfs_acl_t * aclp,cred_t * cr,void * datap,int filter)730 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
731 void *datap, int filter)
732 {
733 uint64_t who;
734 uint32_t access_mask;
735 uint16_t iflags, type;
736 zfs_ace_hdr_t *zacep = NULL;
737 ace_t *acep = datap;
738 ace_object_t *objacep;
739 zfs_object_ace_t *zobjacep;
740 size_t ace_size;
741 uint16_t entry_type;
742 zfs_acl_iter_t zai = {0};
743
744 zai.zai_aclp = aclp;
745 while (zacep = zfs_acl_next_ace(&zai, zacep,
746 &who, &access_mask, &iflags, &type)) {
747
748 switch (type) {
749 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
750 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
751 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
752 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
753 if (filter) {
754 continue;
755 }
756 zobjacep = (zfs_object_ace_t *)zacep;
757 objacep = (ace_object_t *)acep;
758 bcopy(zobjacep->z_object_type,
759 objacep->a_obj_type,
760 sizeof (zobjacep->z_object_type));
761 bcopy(zobjacep->z_inherit_type,
762 objacep->a_inherit_obj_type,
763 sizeof (zobjacep->z_inherit_type));
764 ace_size = sizeof (ace_object_t);
765 break;
766 default:
767 ace_size = sizeof (ace_t);
768 break;
769 }
770
771 entry_type = (iflags & ACE_TYPE_FLAGS);
772 if ((entry_type != ACE_OWNER &&
773 entry_type != OWNING_GROUP &&
774 entry_type != ACE_EVERYONE)) {
775 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
776 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
777 ZFS_ACE_GROUP : ZFS_ACE_USER);
778 } else {
779 acep->a_who = (uid_t)(int64_t)who;
780 }
781 acep->a_access_mask = access_mask;
782 acep->a_flags = iflags;
783 acep->a_type = type;
784 acep = (ace_t *)((caddr_t)acep + ace_size);
785 }
786 }
787
788 static int
zfs_copy_ace_2_oldace(vtype_t obj_type,zfs_acl_t * aclp,ace_t * acep,zfs_oldace_t * z_acl,int aclcnt,size_t * size)789 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
790 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
791 {
792 int i;
793 zfs_oldace_t *aceptr = z_acl;
794
795 for (i = 0; i != aclcnt; i++, aceptr++) {
796 aceptr->z_access_mask = acep[i].a_access_mask;
797 aceptr->z_type = acep[i].a_type;
798 aceptr->z_flags = acep[i].a_flags;
799 aceptr->z_fuid = acep[i].a_who;
800 /*
801 * Make sure ACE is valid
802 */
803 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
804 aceptr->z_flags) != B_TRUE)
805 return (SET_ERROR(EINVAL));
806 }
807 *size = (caddr_t)aceptr - (caddr_t)z_acl;
808 return (0);
809 }
810
811 /*
812 * convert old ACL format to new
813 */
814 void
zfs_acl_xform(znode_t * zp,zfs_acl_t * aclp,cred_t * cr)815 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
816 {
817 zfs_oldace_t *oldaclp;
818 int i;
819 uint16_t type, iflags;
820 uint32_t access_mask;
821 uint64_t who;
822 void *cookie = NULL;
823 zfs_acl_node_t *newaclnode;
824 zfs_acl_iter_t zai = {0};
825
826 ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
827 /*
828 * First create the ACE in a contiguous piece of memory
829 * for zfs_copy_ace_2_fuid().
830 *
831 * We only convert an ACL once, so this won't happen
832 * everytime.
833 */
834 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
835 KM_SLEEP);
836 i = 0;
837
838 zai.zai_aclp = aclp;
839 while (cookie = zfs_acl_next_ace(&zai, cookie, &who,
840 &access_mask, &iflags, &type)) {
841 oldaclp[i].z_flags = iflags;
842 oldaclp[i].z_type = type;
843 oldaclp[i].z_fuid = who;
844 oldaclp[i++].z_access_mask = access_mask;
845 }
846
847 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
848 sizeof (zfs_object_ace_t));
849 aclp->z_ops = zfs_acl_fuid_ops;
850 VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
851 oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
852 &newaclnode->z_size, NULL, cr) == 0);
853 newaclnode->z_ace_count = aclp->z_acl_count;
854 aclp->z_version = ZFS_ACL_VERSION;
855 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
856
857 /*
858 * Release all previous ACL nodes
859 */
860
861 zfs_acl_release_nodes(aclp);
862
863 list_insert_head(&aclp->z_acl, newaclnode);
864
865 aclp->z_acl_bytes = newaclnode->z_size;
866 aclp->z_acl_count = newaclnode->z_ace_count;
867
868 }
869
870 /*
871 * Convert unix access mask to v4 access mask
872 */
873 static uint32_t
zfs_unix_to_v4(uint32_t access_mask)874 zfs_unix_to_v4(uint32_t access_mask)
875 {
876 uint32_t new_mask = 0;
877
878 if (access_mask & S_IXOTH)
879 new_mask |= ACE_EXECUTE;
880 if (access_mask & S_IWOTH)
881 new_mask |= ACE_WRITE_DATA;
882 if (access_mask & S_IROTH)
883 new_mask |= ACE_READ_DATA;
884 return (new_mask);
885 }
886
887 static void
zfs_set_ace(zfs_acl_t * aclp,void * acep,uint32_t access_mask,uint16_t access_type,uint64_t fuid,uint16_t entry_type)888 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
889 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
890 {
891 uint16_t type = entry_type & ACE_TYPE_FLAGS;
892
893 aclp->z_ops.ace_mask_set(acep, access_mask);
894 aclp->z_ops.ace_type_set(acep, access_type);
895 aclp->z_ops.ace_flags_set(acep, entry_type);
896 if ((type != ACE_OWNER && type != OWNING_GROUP &&
897 type != ACE_EVERYONE))
898 aclp->z_ops.ace_who_set(acep, fuid);
899 }
900
901 /*
902 * Determine mode of file based on ACL.
903 */
904 uint64_t
zfs_mode_compute(uint64_t fmode,zfs_acl_t * aclp,uint64_t * pflags,uint64_t fuid,uint64_t fgid)905 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
906 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
907 {
908 int entry_type;
909 mode_t mode;
910 mode_t seen = 0;
911 zfs_ace_hdr_t *acep = NULL;
912 uint64_t who;
913 uint16_t iflags, type;
914 uint32_t access_mask;
915 boolean_t an_exec_denied = B_FALSE;
916 zfs_acl_iter_t zai = {0};
917
918 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
919
920 zai.zai_aclp = aclp;
921 while (acep = zfs_acl_next_ace(&zai, acep, &who,
922 &access_mask, &iflags, &type)) {
923
924 if (!zfs_acl_valid_ace_type(type, iflags))
925 continue;
926
927 entry_type = (iflags & ACE_TYPE_FLAGS);
928
929 /*
930 * Skip over any inherit_only ACEs
931 */
932 if (iflags & ACE_INHERIT_ONLY_ACE)
933 continue;
934
935 if (entry_type == ACE_OWNER || (entry_type == 0 &&
936 who == fuid)) {
937 if ((access_mask & ACE_READ_DATA) &&
938 (!(seen & S_IRUSR))) {
939 seen |= S_IRUSR;
940 if (type == ALLOW) {
941 mode |= S_IRUSR;
942 }
943 }
944 if ((access_mask & ACE_WRITE_DATA) &&
945 (!(seen & S_IWUSR))) {
946 seen |= S_IWUSR;
947 if (type == ALLOW) {
948 mode |= S_IWUSR;
949 }
950 }
951 if ((access_mask & ACE_EXECUTE) &&
952 (!(seen & S_IXUSR))) {
953 seen |= S_IXUSR;
954 if (type == ALLOW) {
955 mode |= S_IXUSR;
956 }
957 }
958 } else if (entry_type == OWNING_GROUP ||
959 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
960 if ((access_mask & ACE_READ_DATA) &&
961 (!(seen & S_IRGRP))) {
962 seen |= S_IRGRP;
963 if (type == ALLOW) {
964 mode |= S_IRGRP;
965 }
966 }
967 if ((access_mask & ACE_WRITE_DATA) &&
968 (!(seen & S_IWGRP))) {
969 seen |= S_IWGRP;
970 if (type == ALLOW) {
971 mode |= S_IWGRP;
972 }
973 }
974 if ((access_mask & ACE_EXECUTE) &&
975 (!(seen & S_IXGRP))) {
976 seen |= S_IXGRP;
977 if (type == ALLOW) {
978 mode |= S_IXGRP;
979 }
980 }
981 } else if (entry_type == ACE_EVERYONE) {
982 if ((access_mask & ACE_READ_DATA)) {
983 if (!(seen & S_IRUSR)) {
984 seen |= S_IRUSR;
985 if (type == ALLOW) {
986 mode |= S_IRUSR;
987 }
988 }
989 if (!(seen & S_IRGRP)) {
990 seen |= S_IRGRP;
991 if (type == ALLOW) {
992 mode |= S_IRGRP;
993 }
994 }
995 if (!(seen & S_IROTH)) {
996 seen |= S_IROTH;
997 if (type == ALLOW) {
998 mode |= S_IROTH;
999 }
1000 }
1001 }
1002 if ((access_mask & ACE_WRITE_DATA)) {
1003 if (!(seen & S_IWUSR)) {
1004 seen |= S_IWUSR;
1005 if (type == ALLOW) {
1006 mode |= S_IWUSR;
1007 }
1008 }
1009 if (!(seen & S_IWGRP)) {
1010 seen |= S_IWGRP;
1011 if (type == ALLOW) {
1012 mode |= S_IWGRP;
1013 }
1014 }
1015 if (!(seen & S_IWOTH)) {
1016 seen |= S_IWOTH;
1017 if (type == ALLOW) {
1018 mode |= S_IWOTH;
1019 }
1020 }
1021 }
1022 if ((access_mask & ACE_EXECUTE)) {
1023 if (!(seen & S_IXUSR)) {
1024 seen |= S_IXUSR;
1025 if (type == ALLOW) {
1026 mode |= S_IXUSR;
1027 }
1028 }
1029 if (!(seen & S_IXGRP)) {
1030 seen |= S_IXGRP;
1031 if (type == ALLOW) {
1032 mode |= S_IXGRP;
1033 }
1034 }
1035 if (!(seen & S_IXOTH)) {
1036 seen |= S_IXOTH;
1037 if (type == ALLOW) {
1038 mode |= S_IXOTH;
1039 }
1040 }
1041 }
1042 } else {
1043 /*
1044 * Only care if this IDENTIFIER_GROUP or
1045 * USER ACE denies execute access to someone,
1046 * mode is not affected
1047 */
1048 if ((access_mask & ACE_EXECUTE) && type == DENY)
1049 an_exec_denied = B_TRUE;
1050 }
1051 }
1052
1053 /*
1054 * Failure to allow is effectively a deny, so execute permission
1055 * is denied if it was never mentioned or if we explicitly
1056 * weren't allowed it.
1057 */
1058 if (!an_exec_denied &&
1059 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1060 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1061 an_exec_denied = B_TRUE;
1062
1063 if (an_exec_denied)
1064 *pflags &= ~ZFS_NO_EXECS_DENIED;
1065 else
1066 *pflags |= ZFS_NO_EXECS_DENIED;
1067
1068 return (mode);
1069 }
1070
1071 /*
1072 * Read an external acl object. If the intent is to modify, always
1073 * create a new acl and leave any cached acl in place.
1074 */
1075 int
zfs_acl_node_read(struct znode * zp,boolean_t have_lock,zfs_acl_t ** aclpp,boolean_t will_modify)1076 zfs_acl_node_read(struct znode *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1077 boolean_t will_modify)
1078 {
1079 zfs_acl_t *aclp;
1080 int aclsize;
1081 int acl_count;
1082 zfs_acl_node_t *aclnode;
1083 zfs_acl_phys_t znode_acl;
1084 int version;
1085 int error;
1086 boolean_t drop_lock = B_FALSE;
1087
1088 ASSERT(RW_ISWRITER(&zp->z_acl_lock));
1089
1090 if (zp->z_acl_cached && !will_modify) {
1091 *aclpp = zp->z_acl_cached;
1092 return (0);
1093 }
1094
1095 /*
1096 * close race where znode could be upgrade while trying to
1097 * read the znode attributes.
1098 *
1099 * But this could only happen if the file isn't already an SA
1100 * znode
1101 */
1102 if (!zp->z_is_sa && !have_lock) {
1103 mutex_enter(&zp->z_lock);
1104 drop_lock = B_TRUE;
1105 }
1106 version = zfs_znode_acl_version(zp);
1107
1108 if ((error = zfs_acl_znode_info(zp, &aclsize,
1109 &acl_count, &znode_acl)) != 0) {
1110 goto done;
1111 }
1112
1113 aclp = zfs_acl_alloc(version);
1114
1115 aclp->z_acl_count = acl_count;
1116 aclp->z_acl_bytes = aclsize;
1117
1118 aclnode = zfs_acl_node_alloc(aclsize);
1119 aclnode->z_ace_count = aclp->z_acl_count;
1120 aclnode->z_size = aclsize;
1121
1122 if (!zp->z_is_sa) {
1123 if (znode_acl.z_acl_extern_obj) {
1124 error = dmu_read(zp->z_zfsvfs->z_os,
1125 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1126 aclnode->z_acldata, DMU_READ_PREFETCH);
1127 } else {
1128 bcopy(znode_acl.z_ace_data, aclnode->z_acldata,
1129 aclnode->z_size);
1130 }
1131 } else {
1132 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1133 aclnode->z_acldata, aclnode->z_size);
1134 }
1135
1136 if (error != 0) {
1137 zfs_acl_free(aclp);
1138 zfs_acl_node_free(aclnode);
1139 /* convert checksum errors into IO errors */
1140 if (error == ECKSUM)
1141 error = SET_ERROR(EIO);
1142 goto done;
1143 }
1144
1145 list_insert_head(&aclp->z_acl, aclnode);
1146
1147 *aclpp = aclp;
1148 if (!will_modify)
1149 zp->z_acl_cached = aclp;
1150 done:
1151 if (drop_lock)
1152 mutex_exit(&zp->z_lock);
1153 return (error);
1154 }
1155
1156 /*ARGSUSED*/
1157 void
zfs_acl_data_locator(void ** dataptr,uint32_t * length,uint32_t buflen,boolean_t start,void * userdata)1158 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1159 boolean_t start, void *userdata)
1160 {
1161 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1162
1163 if (start) {
1164 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1165 } else {
1166 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1167 cb->cb_acl_node);
1168 }
1169 *dataptr = cb->cb_acl_node->z_acldata;
1170 *length = cb->cb_acl_node->z_size;
1171 }
1172
1173 int
zfs_acl_chown_setattr(znode_t * zp)1174 zfs_acl_chown_setattr(znode_t *zp)
1175 {
1176 int error;
1177 zfs_acl_t *aclp;
1178
1179 ASSERT(MUTEX_HELD(&zp->z_lock));
1180 ASSERT(RW_ISWRITER(&zp->z_acl_lock));
1181
1182 if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
1183 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1184 &zp->z_pflags, zp->z_uid, zp->z_gid);
1185 return (error);
1186 }
1187
1188 /*
1189 * common code for setting ACLs.
1190 *
1191 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1192 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1193 * already checked the acl and knows whether to inherit.
1194 */
1195 int
zfs_aclset_common(znode_t * zp,zfs_acl_t * aclp,cred_t * cr,dmu_tx_t * tx)1196 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1197 {
1198 int error;
1199 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1200 dmu_object_type_t otype;
1201 zfs_acl_locator_cb_t locate = { 0 };
1202 uint64_t mode;
1203 sa_bulk_attr_t bulk[5];
1204 uint64_t ctime[2];
1205 int count = 0;
1206 zfs_acl_phys_t acl_phys;
1207 zfs_acl_iter_t zai = {0};
1208
1209 /*
1210 * One might be tempted to add here:
1211 * ASSERT(RW_ISWRITER(&zp->z_acl_lock));
1212 * and most callers have that lock, but zfs_mknode
1213 * calls without the lock when making a new node,
1214 * which is OK because it's not visible yet.
1215 */
1216
1217 mode = zp->z_mode;
1218
1219 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1220 zp->z_uid, zp->z_gid);
1221
1222 zp->z_mode = mode;
1223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1224 &mode, sizeof (mode));
1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1226 &zp->z_pflags, sizeof (zp->z_pflags));
1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1228 &ctime, sizeof (ctime));
1229
1230 if (zp->z_acl_cached) {
1231 zfs_acl_free(zp->z_acl_cached);
1232 zp->z_acl_cached = NULL;
1233 }
1234
1235 /*
1236 * Upgrade needed?
1237 */
1238 if (!zfsvfs->z_use_fuids) {
1239 otype = DMU_OT_OLDACL;
1240 } else {
1241 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1242 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1243 zfs_acl_xform(zp, aclp, cr);
1244 ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
1245 otype = DMU_OT_ACL;
1246 }
1247
1248 /*
1249 * Arrgh, we have to handle old on disk format
1250 * as well as newer (preferred) SA format.
1251 */
1252
1253 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1254 locate.cb_aclp = aclp;
1255 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1256 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1257 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1258 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1259 } else { /* Painful legacy way */
1260 zfs_acl_node_t *aclnode;
1261 uint64_t off = 0;
1262 uint64_t aoid;
1263
1264 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1265 &acl_phys, sizeof (acl_phys))) != 0)
1266 return (error);
1267
1268 aoid = acl_phys.z_acl_extern_obj;
1269
1270 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1271 /*
1272 * If ACL was previously external and we are now
1273 * converting to new ACL format then release old
1274 * ACL object and create a new one.
1275 */
1276 if (aoid &&
1277 aclp->z_version != acl_phys.z_acl_version) {
1278 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1279 if (error)
1280 return (error);
1281 aoid = 0;
1282 }
1283 if (aoid == 0) {
1284 aoid = dmu_object_alloc(zfsvfs->z_os,
1285 otype, aclp->z_acl_bytes,
1286 otype == DMU_OT_ACL ?
1287 DMU_OT_SYSACL : DMU_OT_NONE,
1288 otype == DMU_OT_ACL ?
1289 DN_OLD_MAX_BONUSLEN : 0, tx);
1290 } else {
1291 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1292 aoid, aclp->z_acl_bytes, 0, tx);
1293 }
1294 acl_phys.z_acl_extern_obj = aoid;
1295 for (aclnode = list_head(&aclp->z_acl); aclnode;
1296 aclnode = list_next(&aclp->z_acl, aclnode)) {
1297 if (aclnode->z_ace_count == 0)
1298 continue;
1299 dmu_write(zfsvfs->z_os, aoid, off,
1300 aclnode->z_size, aclnode->z_acldata, tx);
1301 off += aclnode->z_size;
1302 }
1303 } else {
1304 void *start = acl_phys.z_ace_data;
1305 /*
1306 * Migrating back embedded?
1307 */
1308 if (acl_phys.z_acl_extern_obj) {
1309 error = dmu_object_free(zfsvfs->z_os,
1310 acl_phys.z_acl_extern_obj, tx);
1311 if (error)
1312 return (error);
1313 acl_phys.z_acl_extern_obj = 0;
1314 }
1315
1316 for (aclnode = list_head(&aclp->z_acl); aclnode;
1317 aclnode = list_next(&aclp->z_acl, aclnode)) {
1318 if (aclnode->z_ace_count == 0)
1319 continue;
1320 bcopy(aclnode->z_acldata, start,
1321 aclnode->z_size);
1322 start = (caddr_t)start + aclnode->z_size;
1323 }
1324 }
1325 /*
1326 * If Old version then swap count/bytes to match old
1327 * layout of znode_acl_phys_t.
1328 */
1329 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1330 acl_phys.z_acl_size = aclp->z_acl_count;
1331 acl_phys.z_acl_count = aclp->z_acl_bytes;
1332 } else {
1333 acl_phys.z_acl_size = aclp->z_acl_bytes;
1334 acl_phys.z_acl_count = aclp->z_acl_count;
1335 }
1336 acl_phys.z_acl_version = aclp->z_version;
1337
1338 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1339 &acl_phys, sizeof (acl_phys));
1340 }
1341
1342 /*
1343 * Replace ACL wide bits, but first clear them.
1344 */
1345 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1346
1347 zp->z_pflags |= aclp->z_hints;
1348
1349 zai.zai_aclp = aclp;
1350 if (ace_trivial_common(&zai, 0, zfs_ace_walk) == 0)
1351 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1352
1353 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE);
1354 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1355 }
1356
1357 static void
zfs_acl_chmod(vtype_t vtype,uint64_t mode,boolean_t split,boolean_t trim,zfs_acl_t * aclp)1358 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1359 zfs_acl_t *aclp)
1360 {
1361 void *acep = NULL;
1362 uint64_t who;
1363 int new_count, new_bytes;
1364 int ace_size;
1365 int entry_type;
1366 uint16_t iflags, type;
1367 uint32_t access_mask;
1368 zfs_acl_node_t *newnode;
1369 size_t abstract_size = aclp->z_ops.ace_abstract_size();
1370 void *zacep;
1371 boolean_t isdir;
1372 trivial_acl_t masks;
1373 zfs_acl_iter_t zai = {0};
1374
1375 new_count = new_bytes = 0;
1376
1377 isdir = (vtype == VDIR);
1378
1379 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1380
1381 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1382
1383 zacep = newnode->z_acldata;
1384 if (masks.allow0) {
1385 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1386 zacep = (void *)((uintptr_t)zacep + abstract_size);
1387 new_count++;
1388 new_bytes += abstract_size;
1389 }
1390 if (masks.deny1) {
1391 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1392 zacep = (void *)((uintptr_t)zacep + abstract_size);
1393 new_count++;
1394 new_bytes += abstract_size;
1395 }
1396 if (masks.deny2) {
1397 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1398 zacep = (void *)((uintptr_t)zacep + abstract_size);
1399 new_count++;
1400 new_bytes += abstract_size;
1401 }
1402
1403 zai.zai_aclp = aclp;
1404 while (acep = zfs_acl_next_ace(&zai, acep, &who, &access_mask,
1405 &iflags, &type)) {
1406 entry_type = (iflags & ACE_TYPE_FLAGS);
1407 /*
1408 * ACEs used to represent the file mode may be divided
1409 * into an equivalent pair of inherit-only and regular
1410 * ACEs, if they are inheritable.
1411 * Skip regular ACEs, which are replaced by the new mode.
1412 */
1413 if (split && (entry_type == ACE_OWNER ||
1414 entry_type == OWNING_GROUP ||
1415 entry_type == ACE_EVERYONE)) {
1416 if (!isdir || !(iflags &
1417 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1418 continue;
1419 /*
1420 * We preserve owner@, group@, or @everyone
1421 * permissions, if they are inheritable, by
1422 * copying them to inherit_only ACEs. This
1423 * prevents inheritable permissions from being
1424 * altered along with the file mode.
1425 */
1426 iflags |= ACE_INHERIT_ONLY_ACE;
1427 }
1428
1429 /*
1430 * If this ACL has any inheritable ACEs, mark that in
1431 * the hints (which are later masked into the pflags)
1432 * so create knows to do inheritance.
1433 */
1434 if (isdir && (iflags &
1435 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1436 aclp->z_hints |= ZFS_INHERIT_ACE;
1437
1438 if ((type != ALLOW && type != DENY) ||
1439 (iflags & ACE_INHERIT_ONLY_ACE)) {
1440 switch (type) {
1441 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1442 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1443 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1444 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1445 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1446 break;
1447 }
1448 } else {
1449 /*
1450 * Limit permissions granted by ACEs to be no greater
1451 * than permissions of the requested group mode.
1452 * Applies when the "aclmode" property is set to
1453 * "groupmask".
1454 */
1455 if ((type == ALLOW) && trim)
1456 access_mask &= masks.group;
1457 }
1458 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1459 ace_size = aclp->z_ops.ace_size(acep);
1460 zacep = (void *)((uintptr_t)zacep + ace_size);
1461 new_count++;
1462 new_bytes += ace_size;
1463 }
1464 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1465 zacep = (void *)((uintptr_t)zacep + abstract_size);
1466 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1467 zacep = (void *)((uintptr_t)zacep + abstract_size);
1468 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1469
1470 new_count += 3;
1471 new_bytes += abstract_size * 3;
1472 zfs_acl_release_nodes(aclp);
1473 aclp->z_acl_count = new_count;
1474 aclp->z_acl_bytes = new_bytes;
1475 newnode->z_ace_count = new_count;
1476 newnode->z_size = new_bytes;
1477 list_insert_tail(&aclp->z_acl, newnode);
1478 }
1479
1480 int
zfs_acl_chmod_setattr(znode_t * zp,zfs_acl_t ** aclp,uint64_t mode)1481 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1482 {
1483 int error = 0;
1484
1485 rw_enter(&zp->z_acl_lock, RW_WRITER);
1486 mutex_enter(&zp->z_lock);
1487 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1488 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1489 else
1490 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1491
1492 if (error == 0) {
1493 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1494 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1495 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1496 }
1497 mutex_exit(&zp->z_lock);
1498 rw_exit(&zp->z_acl_lock);
1499
1500 return (error);
1501 }
1502
1503 /*
1504 * Should ACE be inherited?
1505 */
1506 static int
zfs_ace_can_use(vtype_t vtype,uint16_t acep_flags)1507 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1508 {
1509 int iflags = (acep_flags & 0xf);
1510
1511 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1512 return (1);
1513 else if (iflags & ACE_FILE_INHERIT_ACE)
1514 return (!((vtype == VDIR) &&
1515 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1516 return (0);
1517 }
1518
1519 /*
1520 * inherit inheritable ACEs from parent
1521 */
1522 static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t * zfsvfs,vtype_t vtype,zfs_acl_t * paclp,uint64_t mode,boolean_t * need_chmod)1523 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1524 uint64_t mode, boolean_t *need_chmod)
1525 {
1526 void *pacep = NULL;
1527 void *acep;
1528 zfs_acl_node_t *aclnode;
1529 zfs_acl_t *aclp = NULL;
1530 uint64_t who;
1531 uint32_t access_mask;
1532 uint16_t iflags, newflags, type;
1533 size_t ace_size;
1534 void *data1, *data2;
1535 size_t data1sz, data2sz;
1536 uint_t aclinherit;
1537 boolean_t isdir = (vtype == VDIR);
1538 boolean_t isreg = (vtype == VREG);
1539 zfs_acl_iter_t zai = {0};
1540
1541 *need_chmod = B_TRUE;
1542
1543 aclp = zfs_acl_alloc(paclp->z_version);
1544 aclinherit = zfsvfs->z_acl_inherit;
1545 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1546 return (aclp);
1547
1548 zai.zai_aclp = paclp;
1549 while (pacep = zfs_acl_next_ace(&zai, pacep, &who,
1550 &access_mask, &iflags, &type)) {
1551
1552 /*
1553 * don't inherit bogus ACEs
1554 */
1555 if (!zfs_acl_valid_ace_type(type, iflags))
1556 continue;
1557
1558 /*
1559 * Check if ACE is inheritable by this vnode
1560 */
1561 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1562 !zfs_ace_can_use(vtype, iflags))
1563 continue;
1564
1565 /*
1566 * If owner@, group@, or everyone@ inheritable
1567 * then zfs_acl_chmod() isn't needed.
1568 */
1569 if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
1570 aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
1571 ((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
1572 ((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
1573 (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
1574 *need_chmod = B_FALSE;
1575
1576 /*
1577 * Strip inherited execute permission from file if
1578 * not in mode
1579 */
1580 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1581 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1582 access_mask &= ~ACE_EXECUTE;
1583 }
1584
1585 /*
1586 * Strip write_acl and write_owner from permissions
1587 * when inheriting an ACE
1588 */
1589 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1590 access_mask &= ~RESTRICTED_CLEAR;
1591 }
1592
1593 ace_size = aclp->z_ops.ace_size(pacep);
1594 aclnode = zfs_acl_node_alloc(ace_size);
1595 list_insert_tail(&aclp->z_acl, aclnode);
1596 acep = aclnode->z_acldata;
1597
1598 zfs_set_ace(aclp, acep, access_mask, type,
1599 who, iflags|ACE_INHERITED_ACE);
1600
1601 /*
1602 * Copy special opaque data if any
1603 */
1604 if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
1605 VERIFY((data2sz = aclp->z_ops.ace_data(acep,
1606 &data2)) == data1sz);
1607 bcopy(data1, data2, data2sz);
1608 }
1609
1610 aclp->z_acl_count++;
1611 aclnode->z_ace_count++;
1612 aclp->z_acl_bytes += aclnode->z_size;
1613 newflags = aclp->z_ops.ace_flags_get(acep);
1614
1615 /*
1616 * If ACE is not to be inherited further, or if the vnode is
1617 * not a directory, remove all inheritance flags
1618 */
1619 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1620 newflags &= ~ALL_INHERIT;
1621 aclp->z_ops.ace_flags_set(acep,
1622 newflags|ACE_INHERITED_ACE);
1623 continue;
1624 }
1625
1626 /*
1627 * This directory has an inheritable ACE
1628 */
1629 aclp->z_hints |= ZFS_INHERIT_ACE;
1630
1631 /*
1632 * If only FILE_INHERIT is set then turn on
1633 * inherit_only
1634 */
1635 if ((iflags & (ACE_FILE_INHERIT_ACE |
1636 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1637 newflags |= ACE_INHERIT_ONLY_ACE;
1638 aclp->z_ops.ace_flags_set(acep,
1639 newflags|ACE_INHERITED_ACE);
1640 } else {
1641 newflags &= ~ACE_INHERIT_ONLY_ACE;
1642 aclp->z_ops.ace_flags_set(acep,
1643 newflags|ACE_INHERITED_ACE);
1644 }
1645 }
1646
1647 return (aclp);
1648 }
1649
1650 /*
1651 * Create file system object initial permissions
1652 * including inheritable ACEs.
1653 * Also, create FUIDs for owner and group.
1654 */
1655 int
zfs_acl_ids_create(znode_t * dzp,int flag,vattr_t * vap,cred_t * cr,vsecattr_t * vsecp,zfs_acl_ids_t * acl_ids)1656 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1657 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
1658 {
1659 int error;
1660 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1661 zfs_acl_t *paclp;
1662 gid_t gid;
1663 boolean_t need_chmod = B_TRUE;
1664 boolean_t trim = B_FALSE;
1665 boolean_t inherited = B_FALSE;
1666
1667 bzero(acl_ids, sizeof (zfs_acl_ids_t));
1668 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1669
1670 if (vsecp)
1671 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1672 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1673 return (error);
1674 /*
1675 * Determine uid and gid.
1676 */
1677 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1678 ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1679 acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1680 (uint64_t)vap->va_uid, cr,
1681 ZFS_OWNER, &acl_ids->z_fuidp);
1682 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1683 (uint64_t)vap->va_gid, cr,
1684 ZFS_GROUP, &acl_ids->z_fuidp);
1685 gid = vap->va_gid;
1686 } else {
1687 acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
1688 cr, &acl_ids->z_fuidp);
1689 acl_ids->z_fgid = 0;
1690 if (vap->va_mask & AT_GID) {
1691 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1692 (uint64_t)vap->va_gid,
1693 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1694 gid = vap->va_gid;
1695 if (acl_ids->z_fgid != dzp->z_gid &&
1696 !groupmember(vap->va_gid, cr) &&
1697 secpolicy_vnode_create_gid(cr) != 0)
1698 acl_ids->z_fgid = 0;
1699 }
1700 if (acl_ids->z_fgid == 0) {
1701 if (dzp->z_mode & S_ISGID) {
1702 char *domain;
1703 uint32_t rid;
1704
1705 acl_ids->z_fgid = dzp->z_gid;
1706 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1707 cr, ZFS_GROUP);
1708
1709 if (zfsvfs->z_use_fuids &&
1710 IS_EPHEMERAL(acl_ids->z_fgid)) {
1711 domain = zfs_fuid_idx_domain(
1712 &zfsvfs->z_fuid_idx,
1713 FUID_INDEX(acl_ids->z_fgid));
1714 rid = FUID_RID(acl_ids->z_fgid);
1715 zfs_fuid_node_add(&acl_ids->z_fuidp,
1716 domain, rid,
1717 FUID_INDEX(acl_ids->z_fgid),
1718 acl_ids->z_fgid, ZFS_GROUP);
1719 }
1720 } else {
1721 acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
1722 ZFS_GROUP, cr, &acl_ids->z_fuidp);
1723 gid = crgetgid(cr);
1724 }
1725 }
1726 }
1727
1728 /*
1729 * If we're creating a directory, and the parent directory has the
1730 * set-GID bit set, set in on the new directory.
1731 * Otherwise, if the user is neither privileged nor a member of the
1732 * file's new group, clear the file's set-GID bit.
1733 */
1734
1735 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1736 (vap->va_type == VDIR)) {
1737 acl_ids->z_mode |= S_ISGID;
1738 } else {
1739 if ((acl_ids->z_mode & S_ISGID) &&
1740 secpolicy_vnode_setids_setgids(cr, gid) != 0)
1741 acl_ids->z_mode &= ~S_ISGID;
1742 }
1743
1744 if (acl_ids->z_aclp == NULL) {
1745 rw_enter(&dzp->z_acl_lock, RW_WRITER);
1746 mutex_enter(&dzp->z_lock);
1747 if (!(flag & IS_ROOT_NODE) &&
1748 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1749 !(dzp->z_pflags & ZFS_XATTR)) {
1750 VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
1751 &paclp, B_FALSE));
1752 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1753 vap->va_type, paclp, acl_ids->z_mode, &need_chmod);
1754 inherited = B_TRUE;
1755 } else {
1756 acl_ids->z_aclp =
1757 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1758 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1759 }
1760 mutex_exit(&dzp->z_lock);
1761 rw_exit(&dzp->z_acl_lock);
1762
1763 if (need_chmod) {
1764 if (vap->va_type == VDIR)
1765 acl_ids->z_aclp->z_hints |=
1766 ZFS_ACL_AUTO_INHERIT;
1767
1768 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1769 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1770 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1771 trim = B_TRUE;
1772 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE,
1773 trim, acl_ids->z_aclp);
1774 }
1775 }
1776
1777 if (inherited || vsecp) {
1778 zfs_acl_iter_t zai = {0};
1779
1780 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1781 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1782 acl_ids->z_fuid, acl_ids->z_fgid);
1783
1784 zai.zai_aclp = acl_ids->z_aclp;
1785 if (ace_trivial_common(&zai, 0, zfs_ace_walk) == 0)
1786 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1787 }
1788
1789 return (0);
1790 }
1791
1792 /*
1793 * Free ACL and fuid_infop, but not the acl_ids structure
1794 */
1795 void
zfs_acl_ids_free(zfs_acl_ids_t * acl_ids)1796 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1797 {
1798 if (acl_ids->z_aclp)
1799 zfs_acl_free(acl_ids->z_aclp);
1800 if (acl_ids->z_fuidp)
1801 zfs_fuid_info_free(acl_ids->z_fuidp);
1802 acl_ids->z_aclp = NULL;
1803 acl_ids->z_fuidp = NULL;
1804 }
1805
1806 boolean_t
zfs_acl_ids_overquota(zfsvfs_t * zv,zfs_acl_ids_t * acl_ids,uint64_t projid)1807 zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
1808 {
1809 return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
1810 zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
1811 (projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
1812 zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
1813 }
1814
1815 /*
1816 * Retrieve a file's ACL
1817 */
1818 int
zfs_getacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1819 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1820 {
1821 zfs_acl_t *aclp;
1822 ulong_t mask;
1823 int error;
1824 int count = 0;
1825 int largeace = 0;
1826
1827 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1828 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1829
1830 if (mask == 0)
1831 return (SET_ERROR(ENOSYS));
1832
1833 if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
1834 return (error);
1835
1836 /*
1837 * This may be frequently called, so when possible
1838 * try to avoid entering z_acl_lock as writer.
1839 */
1840 rw_enter(&zp->z_acl_lock, RW_READER);
1841 aclp = zp->z_acl_cached;
1842 if (aclp == NULL) {
1843 /*
1844 * OK, need WRITER to load the ACL. Note:
1845 * zfs_acl_node_read() re-checks zp->z_acl_cached
1846 * and just returns if it's set.
1847 */
1848 rw_exit(&zp->z_acl_lock);
1849 rw_enter(&zp->z_acl_lock, RW_WRITER);
1850
1851 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
1852 if (error != 0) {
1853 rw_exit(&zp->z_acl_lock);
1854 return (error);
1855 }
1856 rw_downgrade(&zp->z_acl_lock); /* now RW_READER */
1857 ASSERT(zp->z_acl_cached);
1858 }
1859
1860 /*
1861 * Scan ACL to determine number of ACEs
1862 */
1863 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1864 void *zacep = NULL;
1865 uint64_t who;
1866 uint32_t access_mask;
1867 uint16_t type, iflags;
1868 zfs_acl_iter_t zai = {0};
1869
1870 zai.zai_aclp = aclp;
1871 while (zacep = zfs_acl_next_ace(&zai, zacep,
1872 &who, &access_mask, &iflags, &type)) {
1873 switch (type) {
1874 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1875 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1876 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1877 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1878 largeace++;
1879 continue;
1880 default:
1881 count++;
1882 }
1883 }
1884 vsecp->vsa_aclcnt = count;
1885 } else
1886 count = (int)aclp->z_acl_count;
1887
1888 if (mask & VSA_ACECNT) {
1889 vsecp->vsa_aclcnt = count;
1890 }
1891
1892 if (mask & VSA_ACE) {
1893 size_t aclsz;
1894
1895 aclsz = count * sizeof (ace_t) +
1896 sizeof (ace_object_t) * largeace;
1897
1898 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1899 vsecp->vsa_aclentsz = aclsz;
1900
1901 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1902 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1903 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1904 else {
1905 zfs_acl_node_t *aclnode;
1906 void *start = vsecp->vsa_aclentp;
1907
1908 for (aclnode = list_head(&aclp->z_acl); aclnode;
1909 aclnode = list_next(&aclp->z_acl, aclnode)) {
1910 bcopy(aclnode->z_acldata, start,
1911 aclnode->z_size);
1912 start = (caddr_t)start + aclnode->z_size;
1913 }
1914 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
1915 aclp->z_acl_bytes);
1916 }
1917 }
1918 if (mask & VSA_ACE_ACLFLAGS) {
1919 vsecp->vsa_aclflags = 0;
1920 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1921 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1922 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1923 vsecp->vsa_aclflags |= ACL_PROTECTED;
1924 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1925 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1926 }
1927
1928 rw_exit(&zp->z_acl_lock);
1929
1930 return (0);
1931 }
1932
1933 int
zfs_vsec_2_aclp(zfsvfs_t * zfsvfs,vtype_t obj_type,vsecattr_t * vsecp,cred_t * cr,zfs_fuid_info_t ** fuidp,zfs_acl_t ** zaclp)1934 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
1935 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1936 {
1937 zfs_acl_t *aclp;
1938 zfs_acl_node_t *aclnode;
1939 int aclcnt = vsecp->vsa_aclcnt;
1940 int error;
1941
1942 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1943 return (SET_ERROR(EINVAL));
1944
1945 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1946
1947 aclp->z_hints = 0;
1948 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1949 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1950 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1951 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1952 aclcnt, &aclnode->z_size)) != 0) {
1953 zfs_acl_free(aclp);
1954 zfs_acl_node_free(aclnode);
1955 return (error);
1956 }
1957 } else {
1958 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1959 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1960 &aclnode->z_size, fuidp, cr)) != 0) {
1961 zfs_acl_free(aclp);
1962 zfs_acl_node_free(aclnode);
1963 return (error);
1964 }
1965 }
1966 aclp->z_acl_bytes = aclnode->z_size;
1967 aclnode->z_ace_count = aclcnt;
1968 aclp->z_acl_count = aclcnt;
1969 list_insert_head(&aclp->z_acl, aclnode);
1970
1971 /*
1972 * If flags are being set then add them to z_hints
1973 */
1974 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1975 if (vsecp->vsa_aclflags & ACL_PROTECTED)
1976 aclp->z_hints |= ZFS_ACL_PROTECTED;
1977 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1978 aclp->z_hints |= ZFS_ACL_DEFAULTED;
1979 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1980 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1981 }
1982
1983 *zaclp = aclp;
1984
1985 return (0);
1986 }
1987
1988 /*
1989 * Set a file's ACL
1990 */
1991 int
zfs_setacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1992 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1993 {
1994 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1995 zilog_t *zilog = zfsvfs->z_log;
1996 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1997 dmu_tx_t *tx;
1998 int error;
1999 zfs_acl_t *aclp;
2000 zfs_fuid_info_t *fuidp = NULL;
2001 boolean_t fuid_dirtied;
2002 uint64_t acl_obj;
2003
2004 if (mask == 0)
2005 return (SET_ERROR(ENOSYS));
2006
2007 if (zp->z_pflags & ZFS_IMMUTABLE)
2008 return (SET_ERROR(EPERM));
2009
2010 if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
2011 return (error);
2012
2013 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
2014 &aclp);
2015 if (error)
2016 return (error);
2017
2018 /*
2019 * If ACL wide flags aren't being set then preserve any
2020 * existing flags.
2021 */
2022 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
2023 aclp->z_hints |=
2024 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
2025 }
2026 top:
2027 rw_enter(&zp->z_acl_lock, RW_WRITER);
2028 mutex_enter(&zp->z_lock);
2029
2030 tx = dmu_tx_create(zfsvfs->z_os);
2031
2032 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2033
2034 fuid_dirtied = zfsvfs->z_fuid_dirty;
2035 if (fuid_dirtied)
2036 zfs_fuid_txhold(zfsvfs, tx);
2037
2038 /*
2039 * If old version and ACL won't fit in bonus and we aren't
2040 * upgrading then take out necessary DMU holds
2041 */
2042
2043 if ((acl_obj = zfs_external_acl(zp)) != 0) {
2044 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2045 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
2046 dmu_tx_hold_free(tx, acl_obj, 0,
2047 DMU_OBJECT_END);
2048 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2049 aclp->z_acl_bytes);
2050 } else {
2051 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
2052 }
2053 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2054 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
2055 }
2056
2057 zfs_sa_upgrade_txholds(tx, zp);
2058 error = dmu_tx_assign(tx, TXG_NOWAIT);
2059 if (error) {
2060 rw_exit(&zp->z_acl_lock);
2061 mutex_exit(&zp->z_lock);
2062
2063 if (error == ERESTART) {
2064 dmu_tx_wait(tx);
2065 dmu_tx_abort(tx);
2066 goto top;
2067 }
2068 dmu_tx_abort(tx);
2069 zfs_acl_free(aclp);
2070 return (error);
2071 }
2072
2073 error = zfs_aclset_common(zp, aclp, cr, tx);
2074 ASSERT(error == 0);
2075 ASSERT(zp->z_acl_cached == NULL);
2076 zp->z_acl_cached = aclp;
2077
2078 if (fuid_dirtied)
2079 zfs_fuid_sync(zfsvfs, tx);
2080
2081 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2082
2083 if (fuidp)
2084 zfs_fuid_info_free(fuidp);
2085 dmu_tx_commit(tx);
2086 done:
2087 mutex_exit(&zp->z_lock);
2088 rw_exit(&zp->z_acl_lock);
2089
2090 return (error);
2091 }
2092
2093 /*
2094 * Check accesses of interest (AoI) against attributes of the dataset
2095 * such as read-only. Returns zero if no AoI conflict with dataset
2096 * attributes, otherwise an appropriate errno is returned.
2097 */
2098 static int
zfs_zaccess_dataset_check(znode_t * zp,uint32_t v4_mode)2099 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2100 {
2101 if ((v4_mode & WRITE_MASK) &&
2102 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2103 (!IS_DEVVP(ZTOV(zp)) ||
2104 (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
2105 return (SET_ERROR(EROFS));
2106 }
2107
2108 /*
2109 * Intentionally allow ZFS_READONLY through here.
2110 * See zfs_zaccess_common().
2111 */
2112 if ((v4_mode & WRITE_MASK_DATA) &&
2113 (zp->z_pflags & ZFS_IMMUTABLE)) {
2114 return (SET_ERROR(EPERM));
2115 }
2116
2117 if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
2118 (zp->z_pflags & ZFS_NOUNLINK)) {
2119 return (SET_ERROR(EPERM));
2120 }
2121
2122 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2123 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2124 return (SET_ERROR(EACCES));
2125 }
2126
2127 return (0);
2128 }
2129
2130 /*
2131 * The primary usage of this function is to loop through all of the
2132 * ACEs in the znode, determining what accesses of interest (AoI) to
2133 * the caller are allowed or denied. The AoI are expressed as bits in
2134 * the working_mode parameter. As each ACE is processed, bits covered
2135 * by that ACE are removed from the working_mode. This removal
2136 * facilitates two things. The first is that when the working mode is
2137 * empty (= 0), we know we've looked at all the AoI. The second is
2138 * that the ACE interpretation rules don't allow a later ACE to undo
2139 * something granted or denied by an earlier ACE. Removing the
2140 * discovered access or denial enforces this rule. At the end of
2141 * processing the ACEs, all AoI that were found to be denied are
2142 * placed into the working_mode, giving the caller a mask of denied
2143 * accesses. Returns:
2144 * 0 if all AoI granted
2145 * EACCES if the denied mask is non-zero
2146 * other error if abnormal failure (e.g., IO error)
2147 *
2148 * A secondary usage of the function is to determine if any of the
2149 * AoI are granted. If an ACE grants any access in
2150 * the working_mode, we immediately short circuit out of the function.
2151 * This mode is chosen by setting anyaccess to B_TRUE. The
2152 * working_mode is not a denied access mask upon exit if the function
2153 * is used in this manner.
2154 */
2155 static int
zfs_zaccess_aces_check(znode_t * zp,uint32_t * working_mode,boolean_t anyaccess,cred_t * cr)2156 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2157 boolean_t anyaccess, cred_t *cr)
2158 {
2159 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2160 zfs_acl_t *aclp;
2161 int error;
2162 uint64_t who; /* FUID from the ACE */
2163 uint16_t type, iflags;
2164 uint16_t entry_type;
2165 uint32_t access_mask;
2166 uint32_t deny_mask = 0;
2167 zfs_ace_hdr_t *acep = NULL;
2168 boolean_t checkit; /* ACE ID matches */
2169 zfs_acl_iter_t zai = {0};
2170
2171 /*
2172 * This can be a HOT code path, so when possible
2173 * try to avoid entering z_acl_lock as writer.
2174 */
2175 rw_enter(&zp->z_acl_lock, RW_READER);
2176 aclp = zp->z_acl_cached;
2177 if (aclp == NULL) {
2178 /*
2179 * OK, need WRITER to load the ACL. Note:
2180 * zfs_acl_node_read() re-checks zp->z_acl_cached
2181 * and just returns if it's set.
2182 */
2183 rw_exit(&zp->z_acl_lock);
2184 rw_enter(&zp->z_acl_lock, RW_WRITER);
2185
2186 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2187 if (error != 0) {
2188 rw_exit(&zp->z_acl_lock);
2189 return (error);
2190 }
2191 rw_downgrade(&zp->z_acl_lock); /* now RW_READER */
2192 ASSERT(zp->z_acl_cached);
2193 }
2194
2195 zai.zai_aclp = aclp;
2196 while (acep = zfs_acl_next_ace(&zai, acep, &who, &access_mask,
2197 &iflags, &type)) {
2198 uint32_t mask_matched;
2199
2200 if (!zfs_acl_valid_ace_type(type, iflags))
2201 continue;
2202
2203 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2204 continue;
2205
2206 /* Skip ACE if it does not affect any AoI */
2207 mask_matched = (access_mask & *working_mode);
2208 if (!mask_matched)
2209 continue;
2210
2211 entry_type = (iflags & ACE_TYPE_FLAGS);
2212
2213 checkit = B_FALSE;
2214
2215 switch (entry_type) {
2216 case ACE_OWNER:
2217 who = zp->z_uid;
2218 /*FALLTHROUGH*/
2219 case 0: /* USER Entry */
2220 checkit = zfs_user_in_cred(zfsvfs, who, cr);
2221 break;
2222 case OWNING_GROUP:
2223 who = zp->z_gid;
2224 /*FALLTHROUGH*/
2225 case ACE_IDENTIFIER_GROUP:
2226 checkit = zfs_groupmember(zfsvfs, who, cr);
2227 break;
2228 case ACE_EVERYONE:
2229 checkit = B_TRUE;
2230 break;
2231
2232 default:
2233 /*
2234 * The zfs_acl_valid_ace_type check above
2235 * should make this case impossible.
2236 */
2237 rw_exit(&zp->z_acl_lock);
2238 return (SET_ERROR(EIO));
2239 }
2240
2241 if (checkit) {
2242 if (type == DENY) {
2243 DTRACE_PROBE3(zfs__ace__denies,
2244 znode_t *, zp,
2245 zfs_ace_hdr_t *, acep,
2246 uint32_t, mask_matched);
2247 deny_mask |= mask_matched;
2248 } else {
2249 DTRACE_PROBE3(zfs__ace__allows,
2250 znode_t *, zp,
2251 zfs_ace_hdr_t *, acep,
2252 uint32_t, mask_matched);
2253 if (anyaccess) {
2254 rw_exit(&zp->z_acl_lock);
2255 return (0);
2256 }
2257 }
2258 *working_mode &= ~mask_matched;
2259 }
2260
2261 /* Are we done? */
2262 if (*working_mode == 0)
2263 break;
2264 }
2265
2266 rw_exit(&zp->z_acl_lock);
2267
2268 /* Put the found 'denies' back on the working mode */
2269 if (deny_mask) {
2270 *working_mode |= deny_mask;
2271 return (SET_ERROR(EACCES));
2272 } else if (*working_mode) {
2273 return (-1);
2274 }
2275
2276 return (0);
2277 }
2278
2279 /*
2280 * Return true if any access whatsoever granted, we don't actually
2281 * care what access is granted.
2282 */
2283 boolean_t
zfs_has_access(znode_t * zp,cred_t * cr)2284 zfs_has_access(znode_t *zp, cred_t *cr)
2285 {
2286 uint32_t have = ACE_ALL_PERMS;
2287
2288 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2289 uid_t owner;
2290
2291 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2292 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2293 }
2294 return (B_TRUE);
2295 }
2296
2297 static int
zfs_zaccess_common(znode_t * zp,uint32_t v4_mode,uint32_t * working_mode,boolean_t * check_privs,boolean_t skipaclchk,cred_t * cr)2298 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2299 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2300 {
2301 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2302 int err;
2303
2304 *working_mode = v4_mode;
2305 *check_privs = B_TRUE;
2306
2307 /*
2308 * Short circuit empty requests
2309 */
2310 if (v4_mode == 0 || zfsvfs->z_replay) {
2311 *working_mode = 0;
2312 return (0);
2313 }
2314
2315 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2316 *check_privs = B_FALSE;
2317 return (err);
2318 }
2319
2320 /*
2321 * The caller requested that the ACL check be skipped. This
2322 * would only happen if the caller checked VOP_ACCESS() with a
2323 * 32 bit ACE mask and already had the appropriate permissions.
2324 */
2325 if (skipaclchk) {
2326 *working_mode = 0;
2327 return (0);
2328 }
2329
2330 /*
2331 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2332 * When that flag is set, we should behave as if write access
2333 * were not granted by anything in the ACL. In particular:
2334 * We _must_ allow writes after opening the file r/w, then
2335 * setting the DOS R/O attribute, and writing some more.
2336 * (Similar to how you can write after fchmod(fd, 0444).)
2337 *
2338 * Therefore ZFS_READONLY is ignored in the dataset check
2339 * above, and checked here as if part of the ACL check.
2340 * Also note: DOS R/O is ignored for directories.
2341 */
2342 if ((v4_mode & WRITE_MASK_DATA) &&
2343 (ZTOV(zp)->v_type != VDIR) &&
2344 (zp->z_pflags & ZFS_READONLY)) {
2345 return (SET_ERROR(EPERM));
2346 }
2347
2348 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2349 }
2350
2351 static int
zfs_zaccess_append(znode_t * zp,uint32_t * working_mode,boolean_t * check_privs,cred_t * cr)2352 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2353 cred_t *cr)
2354 {
2355 if (*working_mode != ACE_WRITE_DATA)
2356 return (SET_ERROR(EACCES));
2357
2358 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2359 check_privs, B_FALSE, cr));
2360 }
2361
2362 int
zfs_fastaccesschk_execute(znode_t * zdp,cred_t * cr,boolean_t skipaclchk)2363 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr, boolean_t skipaclchk)
2364 {
2365 boolean_t owner = B_FALSE;
2366 boolean_t groupmbr = B_FALSE;
2367 boolean_t is_attr;
2368 uid_t uid = crgetuid(cr);
2369 int error;
2370
2371 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2372 return (SET_ERROR(EACCES));
2373
2374 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2375 (ZTOV(zdp)->v_type == VDIR));
2376 if (is_attr)
2377 goto slow;
2378
2379
2380 rw_enter(&zdp->z_acl_lock, RW_READER);
2381
2382 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2383 rw_exit(&zdp->z_acl_lock);
2384 return (0);
2385 }
2386
2387 if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) {
2388 rw_exit(&zdp->z_acl_lock);
2389 goto slow;
2390 }
2391
2392 if (uid == zdp->z_uid) {
2393 owner = B_TRUE;
2394 if (zdp->z_mode & S_IXUSR) {
2395 rw_exit(&zdp->z_acl_lock);
2396 return (0);
2397 } else {
2398 rw_exit(&zdp->z_acl_lock);
2399 goto slow;
2400 }
2401 }
2402 if (groupmember(zdp->z_gid, cr)) {
2403 groupmbr = B_TRUE;
2404 if (zdp->z_mode & S_IXGRP) {
2405 rw_exit(&zdp->z_acl_lock);
2406 return (0);
2407 } else {
2408 rw_exit(&zdp->z_acl_lock);
2409 goto slow;
2410 }
2411 }
2412 if (!owner && !groupmbr) {
2413 if (zdp->z_mode & S_IXOTH) {
2414 rw_exit(&zdp->z_acl_lock);
2415 return (0);
2416 }
2417 }
2418
2419 rw_exit(&zdp->z_acl_lock);
2420
2421 slow:
2422 DTRACE_PROBE(zfs__fastpath__execute__access__miss);
2423 ZFS_ENTER(zdp->z_zfsvfs);
2424 error = zfs_zaccess(zdp, ACE_EXECUTE, 0, skipaclchk, cr);
2425 ZFS_EXIT(zdp->z_zfsvfs);
2426 return (error);
2427 }
2428
2429 /*
2430 * Determine whether Access should be granted/denied.
2431 *
2432 * The least priv subsystem is always consulted as a basic privilege
2433 * can define any form of access.
2434 */
2435 int
zfs_zaccess(znode_t * zp,int mode,int flags,boolean_t skipaclchk,cred_t * cr)2436 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
2437 {
2438 uint32_t working_mode;
2439 int error;
2440 int is_attr;
2441 boolean_t check_privs;
2442 znode_t *xzp;
2443 znode_t *check_zp = zp;
2444 mode_t needed_bits;
2445 uid_t owner;
2446
2447 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2448
2449 /*
2450 * If attribute then validate against base file
2451 */
2452 if (is_attr) {
2453 uint64_t parent;
2454
2455 if ((error = sa_lookup(zp->z_sa_hdl,
2456 SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
2457 sizeof (parent))) != 0)
2458 return (error);
2459
2460 if ((error = zfs_zget(zp->z_zfsvfs,
2461 parent, &xzp)) != 0) {
2462 return (error);
2463 }
2464
2465 check_zp = xzp;
2466
2467 /*
2468 * fixup mode to map to xattr perms
2469 */
2470
2471 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2472 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2473 mode |= ACE_WRITE_NAMED_ATTRS;
2474 }
2475
2476 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2477 mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2478 mode |= ACE_READ_NAMED_ATTRS;
2479 }
2480 }
2481
2482 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2483 /*
2484 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2485 * in needed_bits. Map the bits mapped by working_mode (currently
2486 * missing) in missing_bits.
2487 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2488 * needed_bits.
2489 */
2490 needed_bits = 0;
2491
2492 working_mode = mode;
2493
2494 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2495 owner == crgetuid(cr))
2496 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2497
2498 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2499 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2500 needed_bits |= VREAD;
2501 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2502 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2503 needed_bits |= VWRITE;
2504 if (working_mode & ACE_EXECUTE)
2505 needed_bits |= VEXEC;
2506
2507 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2508 &check_privs, skipaclchk, cr)) == 0) {
2509 if (is_attr)
2510 VN_RELE(ZTOV(xzp));
2511 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2512 needed_bits, needed_bits));
2513 }
2514
2515 if (error && !check_privs) {
2516 if (is_attr)
2517 VN_RELE(ZTOV(xzp));
2518 return (error);
2519 }
2520
2521 if (error && (flags & V_APPEND)) {
2522 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2523 }
2524
2525 if (error && check_privs) {
2526 mode_t checkmode = 0;
2527
2528 /*
2529 * First check for implicit owner permission on
2530 * read_acl/read_attributes
2531 */
2532
2533 error = 0;
2534 ASSERT(working_mode != 0);
2535
2536 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2537 owner == crgetuid(cr)))
2538 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2539
2540 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2541 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2542 checkmode |= VREAD;
2543 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2544 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2545 checkmode |= VWRITE;
2546 if (working_mode & ACE_EXECUTE)
2547 checkmode |= VEXEC;
2548
2549 error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
2550 needed_bits & ~checkmode, needed_bits);
2551
2552 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2553 error = secpolicy_vnode_chown(cr, owner);
2554 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2555 error = secpolicy_vnode_setdac3(cr, owner,
2556 zp->z_zfsvfs->z_acl_implicit);
2557
2558 if (error == 0 && (working_mode &
2559 (ACE_DELETE|ACE_DELETE_CHILD)))
2560 error = secpolicy_vnode_remove(cr);
2561
2562 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2563 error = secpolicy_vnode_chown(cr, owner);
2564 }
2565 if (error == 0) {
2566 /*
2567 * See if any bits other than those already checked
2568 * for are still present. If so then return EACCES
2569 */
2570 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2571 error = SET_ERROR(EACCES);
2572 }
2573 }
2574 } else if (error == 0) {
2575 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2576 needed_bits, needed_bits);
2577 }
2578
2579
2580 if (is_attr)
2581 VN_RELE(ZTOV(xzp));
2582
2583 return (error);
2584 }
2585
2586 /*
2587 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2588 * native ACL format and call zfs_zaccess()
2589 */
2590 int
zfs_zaccess_rwx(znode_t * zp,mode_t mode,int flags,cred_t * cr)2591 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
2592 {
2593 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
2594 }
2595
2596 /*
2597 * Access function for secpolicy_vnode_setattr
2598 */
2599 int
zfs_zaccess_unix(znode_t * zp,mode_t mode,cred_t * cr)2600 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2601 {
2602 int v4_mode = zfs_unix_to_v4(mode >> 6);
2603
2604 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
2605 }
2606
2607 /* See zfs_zaccess_delete() */
2608 int zfs_write_implies_delete_child = 1;
2609
2610 /*
2611 * Determine whether delete access should be granted.
2612 *
2613 * The following chart outlines how we handle delete permissions which is
2614 * how recent versions of windows (Windows 2008) handles it. The efficiency
2615 * comes from not having to check the parent ACL where the object itself grants
2616 * delete:
2617 *
2618 * -------------------------------------------------------
2619 * | Parent Dir | Target Object Permissions |
2620 * | permissions | |
2621 * -------------------------------------------------------
2622 * | | ACL Allows | ACL Denies| Delete |
2623 * | | Delete | Delete | unspecified|
2624 * -------------------------------------------------------
2625 * | ACL Allows | Permit | Deny * | Permit |
2626 * | DELETE_CHILD | | | |
2627 * -------------------------------------------------------
2628 * | ACL Denies | Permit | Deny | Deny |
2629 * | DELETE_CHILD | | | |
2630 * -------------------------------------------------------
2631 * | ACL specifies | | | |
2632 * | only allow | Permit | Deny * | Permit |
2633 * | write and | | | |
2634 * | execute | | | |
2635 * -------------------------------------------------------
2636 * | ACL denies | | | |
2637 * | write and | Permit | Deny | Deny |
2638 * | execute | | | |
2639 * -------------------------------------------------------
2640 * ^
2641 * |
2642 * Re. execute permission on the directory: if that's missing,
2643 * the vnode lookup of the target will fail before we get here.
2644 *
2645 * Re [*] in the table above: NFSv4 would normally Permit delete for
2646 * these two cells of the matrix.
2647 * See acl.h for notes on which ACE_... flags should be checked for which
2648 * operations. Specifically, the NFSv4 committee recommendation is in
2649 * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
2650 * should take precedence ahead of ALLOW ACEs.
2651 *
2652 * This implementation always consults the target object's ACL first.
2653 * If a DENY ACE is present on the target object that specifies ACE_DELETE,
2654 * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
2655 * the target object, access is allowed. If and only if no entries with
2656 * ACE_DELETE are present in the object's ACL, check the container's ACL
2657 * for entries with ACE_DELETE_CHILD.
2658 *
2659 * A summary of the logic implemented from the table above is as follows:
2660 *
2661 * First check for DENY ACEs that apply.
2662 * If either target or container has a deny, EACCES.
2663 *
2664 * Delete access can then be summarized as follows:
2665 * 1: The object to be deleted grants ACE_DELETE, or
2666 * 2: The containing directory grants ACE_DELETE_CHILD.
2667 * In a Windows system, that would be the end of the story.
2668 * In this system, (2) has some complications...
2669 * 2a: "sticky" bit on a directory adds restrictions, and
2670 * 2b: existing ACEs from previous versions of ZFS may
2671 * not carry ACE_DELETE_CHILD where they should, so we
2672 * also allow delete when ACE_WRITE_DATA is granted.
2673 *
2674 * Note: 2b is technically a work-around for a prior bug,
2675 * which hopefully can go away some day. For those who
2676 * no longer need the work around, and for testing, this
2677 * work-around is made conditional via the tunable:
2678 * zfs_write_implies_delete_child
2679 */
2680 int
zfs_zaccess_delete(znode_t * dzp,znode_t * zp,cred_t * cr)2681 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
2682 {
2683 uint32_t wanted_dirperms;
2684 uint32_t dzp_working_mode = 0;
2685 uint32_t zp_working_mode = 0;
2686 int dzp_error, zp_error;
2687 boolean_t dzpcheck_privs;
2688 boolean_t zpcheck_privs;
2689
2690 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2691 return (SET_ERROR(EPERM));
2692
2693 /*
2694 * Case 1:
2695 * If target object grants ACE_DELETE then we are done. This is
2696 * indicated by a return value of 0. For this case we don't worry
2697 * about the sticky bit because sticky only applies to the parent
2698 * directory and this is the child access result.
2699 *
2700 * If we encounter a DENY ACE here, we're also done (EACCES).
2701 * Note that if we hit a DENY ACE here (on the target) it should
2702 * take precedence over a DENY ACE on the container, so that when
2703 * we have more complete auditing support we will be able to
2704 * report an access failure against the specific target.
2705 * (This is part of why we're checking the target first.)
2706 */
2707 zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2708 &zpcheck_privs, B_FALSE, cr);
2709 if (zp_error == EACCES) {
2710 /* We hit a DENY ACE. */
2711 if (!zpcheck_privs)
2712 return (SET_ERROR(zp_error));
2713 return (secpolicy_vnode_remove(cr));
2714
2715 }
2716 if (zp_error == 0)
2717 return (0);
2718
2719 /*
2720 * Case 2:
2721 * If the containing directory grants ACE_DELETE_CHILD,
2722 * or we're in backward compatibility mode and the
2723 * containing directory has ACE_WRITE_DATA, allow.
2724 * Case 2b is handled with wanted_dirperms.
2725 */
2726 wanted_dirperms = ACE_DELETE_CHILD;
2727 if (zfs_write_implies_delete_child)
2728 wanted_dirperms |= ACE_WRITE_DATA;
2729 dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
2730 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2731 if (dzp_error == EACCES) {
2732 /* We hit a DENY ACE. */
2733 if (!dzpcheck_privs)
2734 return (SET_ERROR(dzp_error));
2735 return (secpolicy_vnode_remove(cr));
2736 }
2737
2738 /*
2739 * Cases 2a, 2b (continued)
2740 *
2741 * Note: dzp_working_mode now contains any permissions
2742 * that were NOT granted. Therefore, if any of the
2743 * wanted_dirperms WERE granted, we will have:
2744 * dzp_working_mode != wanted_dirperms
2745 * We're really asking if ANY of those permissions
2746 * were granted, and if so, grant delete access.
2747 */
2748 if (dzp_working_mode != wanted_dirperms)
2749 dzp_error = 0;
2750
2751 /*
2752 * dzp_error is 0 if the container granted us permissions to "modify".
2753 * If we do not have permission via one or more ACEs, our current
2754 * privileges may still permit us to modify the container.
2755 *
2756 * dzpcheck_privs is false when i.e. the FS is read-only.
2757 * Otherwise, do privilege checks for the container.
2758 */
2759 if (dzp_error != 0 && dzpcheck_privs) {
2760 uid_t owner;
2761
2762 /*
2763 * The secpolicy call needs the requested access and
2764 * the current access mode of the container, but it
2765 * only knows about Unix-style modes (VEXEC, VWRITE),
2766 * so this must condense the fine-grained ACE bits into
2767 * Unix modes.
2768 *
2769 * The VEXEC flag is easy, because we know that has
2770 * always been checked before we get here (during the
2771 * lookup of the target vnode). The container has not
2772 * granted us permissions to "modify", so we do not set
2773 * the VWRITE flag in the current access mode.
2774 */
2775 owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr,
2776 ZFS_OWNER);
2777 dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2778 owner, VEXEC, VWRITE|VEXEC);
2779 }
2780 if (dzp_error != 0) {
2781 /*
2782 * Note: We may have dzp_error = -1 here (from
2783 * zfs_zacess_common). Don't return that.
2784 */
2785 return (SET_ERROR(EACCES));
2786 }
2787
2788 /*
2789 * At this point, we know that the directory permissions allow
2790 * us to modify, but we still need to check for the additional
2791 * restrictions that apply when the "sticky bit" is set.
2792 *
2793 * Yes, zfs_sticky_remove_access() also checks this bit, but
2794 * checking it here and skipping the call below is nice when
2795 * you're watching all of this with dtrace.
2796 */
2797 if ((dzp->z_mode & S_ISVTX) == 0)
2798 return (0);
2799
2800 /*
2801 * zfs_sticky_remove_access will succeed if:
2802 * 1. The sticky bit is absent.
2803 * 2. We pass the sticky bit restrictions.
2804 * 3. We have privileges that always allow file removal.
2805 */
2806 return (zfs_sticky_remove_access(dzp, zp, cr));
2807 }
2808
2809 int
zfs_zaccess_rename(znode_t * sdzp,znode_t * szp,znode_t * tdzp,znode_t * tzp,cred_t * cr)2810 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2811 znode_t *tzp, cred_t *cr)
2812 {
2813 int add_perm;
2814 int error;
2815
2816 if (szp->z_pflags & ZFS_AV_QUARANTINED)
2817 return (SET_ERROR(EACCES));
2818
2819 add_perm = (ZTOV(szp)->v_type == VDIR) ?
2820 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2821
2822 /*
2823 * Rename permissions are combination of delete permission +
2824 * add file/subdir permission.
2825 */
2826
2827 /*
2828 * first make sure we do the delete portion.
2829 *
2830 * If that succeeds then check for add_file/add_subdir permissions
2831 */
2832
2833 if (error = zfs_zaccess_delete(sdzp, szp, cr))
2834 return (error);
2835
2836 /*
2837 * If we have a tzp, see if we can delete it?
2838 */
2839 if (tzp) {
2840 if (error = zfs_zaccess_delete(tdzp, tzp, cr))
2841 return (error);
2842 }
2843
2844 /*
2845 * Now check for add permissions
2846 */
2847 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
2848
2849 return (error);
2850 }
2851