1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2025 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114 #define IEEE80211_S1G_BCN_CSSID 0x200
115 #define IEEE80211_S1G_BCN_ANO 0x400
116
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
122
123 #define IEEE80211_NDP_FTYPE_CTS 0
124 #define IEEE80211_NDP_FTYPE_CF_END 0
125 #define IEEE80211_NDP_FTYPE_PS_POLL 1
126 #define IEEE80211_NDP_FTYPE_ACK 2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
128 #define IEEE80211_NDP_FTYPE_BA 4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
130 #define IEEE80211_NDP_FTYPE_PAGING 6
131 #define IEEE80211_NDP_FTYPE_PREQ 7
132
133 #define SM64(f, v) ((((u64)v) << f##_S) & f)
134
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE 0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
138
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
155
156 #define IEEE80211_ANO_NETTYPE_WILD 15
157
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL 0x2000
160 #define IEEE80211_CTL_EXT_SPR 0x3000
161 #define IEEE80211_CTL_EXT_GRANT 0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
164 #define IEEE80211_CTL_EXT_SSW 0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
167
168
169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
172
173
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS 0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
180 #define IEEE80211_PV1_FCTL_PM 0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
183 #define IEEE80211_PV1_FCTL_END_SP 0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
187
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 return ieee80211_sn_add(sn, 1);
206 }
207
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212
213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
215
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
218 #define IEEE80211_MAX_RTS_THRESHOLD 2353
219 #define IEEE80211_MAX_AID 2007
220 #define IEEE80211_MAX_AID_S1G 8191
221 #define IEEE80211_MAX_TIM_LEN 251
222 #define IEEE80211_MAX_MESH_PEERINGS 63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224 6.2.1.1.2.
225
226 802.11e clarifies the figure in section 7.1.2. The frame body is
227 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN 2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230 * to 7920 bytes, see 8.2.3 General frame format
231 */
232 #define IEEE80211_MAX_DATA_LEN_DMG 7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN 2352
235
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
238
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
242
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
246
247 #define IEEE80211_MAX_SSID_LEN 32
248
249 #define IEEE80211_MAX_MESH_ID_LEN 32
250
251 #define IEEE80211_FIRST_TSPEC_TSID 8
252 #define IEEE80211_NUM_TIDS 16
253
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS 8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS 4
258
259 #define IEEE80211_QOS_CTL_LEN 2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP 0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
276
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI 0x0400
281
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
285
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
292
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
300
301 #define IEEE80211_HT_CTL_LEN 4
302
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
313
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3
320
321 struct ieee80211_hdr {
322 __le16 frame_control;
323 __le16 duration_id;
324 struct_group(addrs,
325 u8 addr1[ETH_ALEN];
326 u8 addr2[ETH_ALEN];
327 u8 addr3[ETH_ALEN];
328 );
329 __le16 seq_ctrl;
330 u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332
333 struct ieee80211_hdr_3addr {
334 __le16 frame_control;
335 __le16 duration_id;
336 u8 addr1[ETH_ALEN];
337 u8 addr2[ETH_ALEN];
338 u8 addr3[ETH_ALEN];
339 __le16 seq_ctrl;
340 } __packed __aligned(2);
341
342 struct ieee80211_qos_hdr {
343 __le16 frame_control;
344 __le16 duration_id;
345 u8 addr1[ETH_ALEN];
346 u8 addr2[ETH_ALEN];
347 u8 addr3[ETH_ALEN];
348 __le16 seq_ctrl;
349 __le16 qos_ctrl;
350 } __packed __aligned(2);
351
352 struct ieee80211_qos_hdr_4addr {
353 __le16 frame_control;
354 __le16 duration_id;
355 u8 addr1[ETH_ALEN];
356 u8 addr2[ETH_ALEN];
357 u8 addr3[ETH_ALEN];
358 __le16 seq_ctrl;
359 u8 addr4[ETH_ALEN];
360 __le16 qos_ctrl;
361 } __packed __aligned(2);
362
363 struct ieee80211_trigger {
364 __le16 frame_control;
365 __le16 duration;
366 u8 ra[ETH_ALEN];
367 u8 ta[ETH_ALEN];
368 __le64 common_info;
369 u8 variable[];
370 } __packed __aligned(2);
371
372 /**
373 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374 * @fc: frame control bytes in little-endian byteorder
375 * Return: whether or not the frame has to-DS set
376 */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381
382 /**
383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384 * @fc: frame control bytes in little-endian byteorder
385 * Return: whether or not the frame has from-DS set
386 */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391
392 /**
393 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394 * @fc: frame control bytes in little-endian byteorder
395 * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396 */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 return (fc & tmp) == tmp;
401 }
402
403 /**
404 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405 * @fc: frame control bytes in little-endian byteorder
406 * Return: whether or not the frame has more fragments (more frags bit set)
407 */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412
413 /**
414 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415 * @fc: frame control bytes in little-endian byteorder
416 * Return: whether or not the retry flag is set
417 */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422
423 /**
424 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425 * @fc: frame control bytes in little-endian byteorder
426 * Return: whether or not the power management flag is set
427 */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432
433 /**
434 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435 * @fc: frame control bytes in little-endian byteorder
436 * Return: whether or not the more data flag is set
437 */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442
443 /**
444 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445 * @fc: frame control bytes in little-endian byteorder
446 * Return: whether or not the protected flag is set
447 */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452
453 /**
454 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455 * @fc: frame control bytes in little-endian byteorder
456 * Return: whether or not the order flag is set
457 */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462
463 /**
464 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465 * @fc: frame control bytes in little-endian byteorder
466 * Return: whether or not the frame type is management
467 */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473
474 /**
475 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476 * @fc: frame control bytes in little-endian byteorder
477 * Return: whether or not the frame type is control
478 */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484
485 /**
486 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487 * @fc: frame control bytes in little-endian byteorder
488 * Return: whether or not the frame is a data frame
489 */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495
496 /**
497 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498 * @fc: frame control bytes in little-endian byteorder
499 * Return: whether or not the frame type is extended
500 */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506
507
508 /**
509 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510 * @fc: frame control bytes in little-endian byteorder
511 * Return: whether or not the frame is a QoS data frame
512 */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 /*
516 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 * to check the one bit
518 */
519 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522
523 /**
524 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525 * @fc: frame control bytes in little-endian byteorder
526 * Return: whether or not the frame is a QoS data frame that has data
527 * (i.e. is not null data)
528 */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 /*
532 * mask with 0x40 and test that that bit is clear to only return true
533 * for the data-containing substypes.
534 */
535 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538
539 /**
540 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541 * @fc: frame control bytes in little-endian byteorder
542 * Return: whether or not the frame is an association request
543 */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549
550 /**
551 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552 * @fc: frame control bytes in little-endian byteorder
553 * Return: whether or not the frame is an association response
554 */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560
561 /**
562 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563 * @fc: frame control bytes in little-endian byteorder
564 * Return: whether or not the frame is a reassociation request
565 */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571
572 /**
573 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574 * @fc: frame control bytes in little-endian byteorder
575 * Return: whether or not the frame is a reassociation response
576 */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582
583 /**
584 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585 * @fc: frame control bytes in little-endian byteorder
586 * Return: whether or not the frame is a probe request
587 */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593
594 /**
595 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596 * @fc: frame control bytes in little-endian byteorder
597 * Return: whether or not the frame is a probe response
598 */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604
605 /**
606 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607 * @fc: frame control bytes in little-endian byteorder
608 * Return: whether or not the frame is a (regular, not S1G) beacon
609 */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615
616 /**
617 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618 * IEEE80211_STYPE_S1G_BEACON
619 * @fc: frame control bytes in little-endian byteorder
620 * Return: whether or not the frame is an S1G beacon
621 */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 IEEE80211_FCTL_STYPE)) ==
626 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628
629 /**
630 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631 * @fc: frame control bytes in little-endian byteorder
632 * Return: whether or not the frame contains the variable-length
633 * next TBTT field
634 */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 return ieee80211_is_s1g_beacon(fc) &&
638 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640
641 /**
642 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643 * @fc: frame control bytes in little-endian byteorder
644 * Return: whether or not the frame contains the variable-length
645 * ANO field
646 */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 return ieee80211_is_s1g_beacon(fc) &&
650 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652
653 /**
654 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655 * @fc: frame control bytes in little-endian byteorder
656 * Return: whether or not the frame contains the variable-length
657 * compressed SSID field
658 */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 return ieee80211_is_s1g_beacon(fc) &&
662 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664
665 /**
666 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
667 * @fc: frame control bytes in little-endian byteorder
668 * Return: whether or not the frame is an ATIM frame
669 */
ieee80211_is_atim(__le16 fc)670 static inline bool ieee80211_is_atim(__le16 fc)
671 {
672 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
674 }
675
676 /**
677 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
678 * @fc: frame control bytes in little-endian byteorder
679 * Return: whether or not the frame is a disassociation frame
680 */
ieee80211_is_disassoc(__le16 fc)681 static inline bool ieee80211_is_disassoc(__le16 fc)
682 {
683 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
684 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
685 }
686
687 /**
688 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
689 * @fc: frame control bytes in little-endian byteorder
690 * Return: whether or not the frame is an authentication frame
691 */
ieee80211_is_auth(__le16 fc)692 static inline bool ieee80211_is_auth(__le16 fc)
693 {
694 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
695 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
696 }
697
698 /**
699 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
700 * @fc: frame control bytes in little-endian byteorder
701 * Return: whether or not the frame is a deauthentication frame
702 */
ieee80211_is_deauth(__le16 fc)703 static inline bool ieee80211_is_deauth(__le16 fc)
704 {
705 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
706 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
707 }
708
709 /**
710 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
711 * @fc: frame control bytes in little-endian byteorder
712 * Return: whether or not the frame is an action frame
713 */
ieee80211_is_action(__le16 fc)714 static inline bool ieee80211_is_action(__le16 fc)
715 {
716 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
717 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
718 }
719
720 /**
721 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
722 * @fc: frame control bytes in little-endian byteorder
723 * Return: whether or not the frame is a block-ACK request frame
724 */
ieee80211_is_back_req(__le16 fc)725 static inline bool ieee80211_is_back_req(__le16 fc)
726 {
727 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
728 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
729 }
730
731 /**
732 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
733 * @fc: frame control bytes in little-endian byteorder
734 * Return: whether or not the frame is a block-ACK frame
735 */
ieee80211_is_back(__le16 fc)736 static inline bool ieee80211_is_back(__le16 fc)
737 {
738 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
739 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
740 }
741
742 /**
743 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
744 * @fc: frame control bytes in little-endian byteorder
745 * Return: whether or not the frame is a PS-poll frame
746 */
ieee80211_is_pspoll(__le16 fc)747 static inline bool ieee80211_is_pspoll(__le16 fc)
748 {
749 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
750 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
751 }
752
753 /**
754 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
755 * @fc: frame control bytes in little-endian byteorder
756 * Return: whether or not the frame is an RTS frame
757 */
ieee80211_is_rts(__le16 fc)758 static inline bool ieee80211_is_rts(__le16 fc)
759 {
760 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
761 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
762 }
763
764 /**
765 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
766 * @fc: frame control bytes in little-endian byteorder
767 * Return: whether or not the frame is a CTS frame
768 */
ieee80211_is_cts(__le16 fc)769 static inline bool ieee80211_is_cts(__le16 fc)
770 {
771 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
772 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
773 }
774
775 /**
776 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
777 * @fc: frame control bytes in little-endian byteorder
778 * Return: whether or not the frame is an ACK frame
779 */
ieee80211_is_ack(__le16 fc)780 static inline bool ieee80211_is_ack(__le16 fc)
781 {
782 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
783 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
784 }
785
786 /**
787 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
788 * @fc: frame control bytes in little-endian byteorder
789 * Return: whether or not the frame is a CF-end frame
790 */
ieee80211_is_cfend(__le16 fc)791 static inline bool ieee80211_is_cfend(__le16 fc)
792 {
793 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
794 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
795 }
796
797 /**
798 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
799 * @fc: frame control bytes in little-endian byteorder
800 * Return: whether or not the frame is a CF-end-ack frame
801 */
ieee80211_is_cfendack(__le16 fc)802 static inline bool ieee80211_is_cfendack(__le16 fc)
803 {
804 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
805 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
806 }
807
808 /**
809 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
810 * @fc: frame control bytes in little-endian byteorder
811 * Return: whether or not the frame is a nullfunc frame
812 */
ieee80211_is_nullfunc(__le16 fc)813 static inline bool ieee80211_is_nullfunc(__le16 fc)
814 {
815 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
816 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
817 }
818
819 /**
820 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
821 * @fc: frame control bytes in little-endian byteorder
822 * Return: whether or not the frame is a QoS nullfunc frame
823 */
ieee80211_is_qos_nullfunc(__le16 fc)824 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
825 {
826 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
827 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
828 }
829
830 /**
831 * ieee80211_is_trigger - check if frame is trigger frame
832 * @fc: frame control field in little-endian byteorder
833 * Return: whether or not the frame is a trigger frame
834 */
ieee80211_is_trigger(__le16 fc)835 static inline bool ieee80211_is_trigger(__le16 fc)
836 {
837 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
838 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
839 }
840
841 /**
842 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
843 * @fc: frame control bytes in little-endian byteorder
844 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
845 */
ieee80211_is_any_nullfunc(__le16 fc)846 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
847 {
848 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
849 }
850
851 /**
852 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
853 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
854 * Return: whether or not the frame is the first fragment (also true if
855 * it's not fragmented at all)
856 */
ieee80211_is_first_frag(__le16 seq_ctrl)857 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
858 {
859 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
860 }
861
862 /**
863 * ieee80211_is_frag - check if a frame is a fragment
864 * @hdr: 802.11 header of the frame
865 * Return: whether or not the frame is a fragment
866 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)867 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
868 {
869 return ieee80211_has_morefrags(hdr->frame_control) ||
870 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
871 }
872
ieee80211_get_sn(struct ieee80211_hdr * hdr)873 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
874 {
875 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
876 }
877
878 struct ieee80211s_hdr {
879 u8 flags;
880 u8 ttl;
881 __le32 seqnum;
882 u8 eaddr1[ETH_ALEN];
883 u8 eaddr2[ETH_ALEN];
884 } __packed __aligned(2);
885
886 /* Mesh flags */
887 #define MESH_FLAGS_AE_A4 0x1
888 #define MESH_FLAGS_AE_A5_A6 0x2
889 #define MESH_FLAGS_AE 0x3
890 #define MESH_FLAGS_PS_DEEP 0x4
891
892 /**
893 * enum ieee80211_preq_flags - mesh PREQ element flags
894 *
895 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
896 */
897 enum ieee80211_preq_flags {
898 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
899 };
900
901 /**
902 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
903 *
904 * @IEEE80211_PREQ_TO_FLAG: target only subfield
905 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
906 */
907 enum ieee80211_preq_target_flags {
908 IEEE80211_PREQ_TO_FLAG = 1<<0,
909 IEEE80211_PREQ_USN_FLAG = 1<<2,
910 };
911
912 /**
913 * struct ieee80211_quiet_ie - Quiet element
914 * @count: Quiet Count
915 * @period: Quiet Period
916 * @duration: Quiet Duration
917 * @offset: Quiet Offset
918 *
919 * This structure represents the payload of the "Quiet element" as
920 * described in IEEE Std 802.11-2020 section 9.4.2.22.
921 */
922 struct ieee80211_quiet_ie {
923 u8 count;
924 u8 period;
925 __le16 duration;
926 __le16 offset;
927 } __packed;
928
929 /**
930 * struct ieee80211_msrment_ie - Measurement element
931 * @token: Measurement Token
932 * @mode: Measurement Report Mode
933 * @type: Measurement Type
934 * @request: Measurement Request or Measurement Report
935 *
936 * This structure represents the payload of both the "Measurement
937 * Request element" and the "Measurement Report element" as described
938 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
939 */
940 struct ieee80211_msrment_ie {
941 u8 token;
942 u8 mode;
943 u8 type;
944 u8 request[];
945 } __packed;
946
947 /**
948 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
949 * @mode: Channel Switch Mode
950 * @new_ch_num: New Channel Number
951 * @count: Channel Switch Count
952 *
953 * This structure represents the payload of the "Channel Switch
954 * Announcement element" as described in IEEE Std 802.11-2020 section
955 * 9.4.2.18.
956 */
957 struct ieee80211_channel_sw_ie {
958 u8 mode;
959 u8 new_ch_num;
960 u8 count;
961 } __packed;
962
963 /**
964 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
965 * @mode: Channel Switch Mode
966 * @new_operating_class: New Operating Class
967 * @new_ch_num: New Channel Number
968 * @count: Channel Switch Count
969 *
970 * This structure represents the "Extended Channel Switch Announcement
971 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
972 */
973 struct ieee80211_ext_chansw_ie {
974 u8 mode;
975 u8 new_operating_class;
976 u8 new_ch_num;
977 u8 count;
978 } __packed;
979
980 /**
981 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
982 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
983 * values here
984 * This structure represents the "Secondary Channel Offset element"
985 */
986 struct ieee80211_sec_chan_offs_ie {
987 u8 sec_chan_offs;
988 } __packed;
989
990 /**
991 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
992 * @mesh_ttl: Time To Live
993 * @mesh_flags: Flags
994 * @mesh_reason: Reason Code
995 * @mesh_pre_value: Precedence Value
996 *
997 * This structure represents the payload of the "Mesh Channel Switch
998 * Parameters element" as described in IEEE Std 802.11-2020 section
999 * 9.4.2.102.
1000 */
1001 struct ieee80211_mesh_chansw_params_ie {
1002 u8 mesh_ttl;
1003 u8 mesh_flags;
1004 __le16 mesh_reason;
1005 __le16 mesh_pre_value;
1006 } __packed;
1007
1008 /**
1009 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1010 * @new_channel_width: New Channel Width
1011 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1012 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1013 *
1014 * This structure represents the payload of the "Wide Bandwidth
1015 * Channel Switch element" as described in IEEE Std 802.11-2020
1016 * section 9.4.2.160.
1017 */
1018 struct ieee80211_wide_bw_chansw_ie {
1019 u8 new_channel_width;
1020 u8 new_center_freq_seg0, new_center_freq_seg1;
1021 } __packed;
1022
1023 /**
1024 * struct ieee80211_tim_ie - Traffic Indication Map information element
1025 * @dtim_count: DTIM Count
1026 * @dtim_period: DTIM Period
1027 * @bitmap_ctrl: Bitmap Control
1028 * @required_octet: "Syntatic sugar" to force the struct size to the
1029 * minimum valid size when carried in a non-S1G PPDU
1030 * @virtual_map: Partial Virtual Bitmap
1031 *
1032 * This structure represents the payload of the "TIM element" as
1033 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1034 * definition is only applicable when the element is carried in a
1035 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1036 * Control and Partial Virtual Bitmap may not be present.
1037 */
1038 struct ieee80211_tim_ie {
1039 u8 dtim_count;
1040 u8 dtim_period;
1041 u8 bitmap_ctrl;
1042 union {
1043 u8 required_octet;
1044 DECLARE_FLEX_ARRAY(u8, virtual_map);
1045 };
1046 } __packed;
1047
1048 /**
1049 * struct ieee80211_meshconf_ie - Mesh Configuration element
1050 * @meshconf_psel: Active Path Selection Protocol Identifier
1051 * @meshconf_pmetric: Active Path Selection Metric Identifier
1052 * @meshconf_congest: Congestion Control Mode Identifier
1053 * @meshconf_synch: Synchronization Method Identifier
1054 * @meshconf_auth: Authentication Protocol Identifier
1055 * @meshconf_form: Mesh Formation Info
1056 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1057 *
1058 * This structure represents the payload of the "Mesh Configuration
1059 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1060 */
1061 struct ieee80211_meshconf_ie {
1062 u8 meshconf_psel;
1063 u8 meshconf_pmetric;
1064 u8 meshconf_congest;
1065 u8 meshconf_synch;
1066 u8 meshconf_auth;
1067 u8 meshconf_form;
1068 u8 meshconf_cap;
1069 } __packed;
1070
1071 /**
1072 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1073 *
1074 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1075 * additional mesh peerings with other mesh STAs
1076 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1077 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1078 * is ongoing
1079 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1080 * neighbors in deep sleep mode
1081 *
1082 * Enumerates the "Mesh Capability" as described in IEEE Std
1083 * 802.11-2020 section 9.4.2.97.7.
1084 */
1085 enum mesh_config_capab_flags {
1086 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1087 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1088 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1089 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1090 };
1091
1092 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1093
1094 /*
1095 * mesh channel switch parameters element's flag indicator
1096 *
1097 */
1098 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1099 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1100 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1101
1102 /**
1103 * struct ieee80211_rann_ie - RANN (root announcement) element
1104 * @rann_flags: Flags
1105 * @rann_hopcount: Hop Count
1106 * @rann_ttl: Element TTL
1107 * @rann_addr: Root Mesh STA Address
1108 * @rann_seq: HWMP Sequence Number
1109 * @rann_interval: Interval
1110 * @rann_metric: Metric
1111 *
1112 * This structure represents the payload of the "RANN element" as
1113 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1114 */
1115 struct ieee80211_rann_ie {
1116 u8 rann_flags;
1117 u8 rann_hopcount;
1118 u8 rann_ttl;
1119 u8 rann_addr[ETH_ALEN];
1120 __le32 rann_seq;
1121 __le32 rann_interval;
1122 __le32 rann_metric;
1123 } __packed;
1124
1125 enum ieee80211_rann_flags {
1126 RANN_FLAG_IS_GATE = 1 << 0,
1127 };
1128
1129 enum ieee80211_ht_chanwidth_values {
1130 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1131 IEEE80211_HT_CHANWIDTH_ANY = 1,
1132 };
1133
1134 /**
1135 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1136 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1137 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1138 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1139 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1140 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1141 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1142 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1143 * (the NSS value is the value of this field + 1)
1144 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1145 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1146 * using a beamforming steering matrix
1147 */
1148 enum ieee80211_vht_opmode_bits {
1149 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1150 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1151 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1152 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1153 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1154 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1155 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1156 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1157 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1158 };
1159
1160 /**
1161 * enum ieee80211_s1g_chanwidth - S1G channel widths
1162 * These are defined in IEEE802.11-2016ah Table 10-20
1163 * as BSS Channel Width
1164 *
1165 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1166 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1167 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1168 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1169 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1170 */
1171 enum ieee80211_s1g_chanwidth {
1172 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1173 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1174 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1175 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1176 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1177 };
1178
1179 #define WLAN_SA_QUERY_TR_ID_LEN 2
1180 #define WLAN_MEMBERSHIP_LEN 8
1181 #define WLAN_USER_POSITION_LEN 16
1182
1183 /**
1184 * struct ieee80211_tpc_report_ie - TPC Report element
1185 * @tx_power: Transmit Power
1186 * @link_margin: Link Margin
1187 *
1188 * This structure represents the payload of the "TPC Report element" as
1189 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1190 */
1191 struct ieee80211_tpc_report_ie {
1192 u8 tx_power;
1193 u8 link_margin;
1194 } __packed;
1195
1196 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1197 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1198 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1199 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1200 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1201
1202 struct ieee80211_addba_ext_ie {
1203 u8 data;
1204 } __packed;
1205
1206 /**
1207 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1208 * @compat_info: Compatibility Information
1209 * @beacon_int: Beacon Interval
1210 * @tsf_completion: TSF Completion
1211 *
1212 * This structure represents the payload of the "S1G Beacon
1213 * Compatibility element" as described in IEEE Std 802.11-2020 section
1214 * 9.4.2.196.
1215 */
1216 struct ieee80211_s1g_bcn_compat_ie {
1217 __le16 compat_info;
1218 __le16 beacon_int;
1219 __le32 tsf_completion;
1220 } __packed;
1221
1222 /**
1223 * struct ieee80211_s1g_oper_ie - S1G Operation element
1224 * @ch_width: S1G Operation Information Channel Width
1225 * @oper_class: S1G Operation Information Operating Class
1226 * @primary_ch: S1G Operation Information Primary Channel Number
1227 * @oper_ch: S1G Operation Information Channel Center Frequency
1228 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1229 *
1230 * This structure represents the payload of the "S1G Operation
1231 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1232 */
1233 struct ieee80211_s1g_oper_ie {
1234 u8 ch_width;
1235 u8 oper_class;
1236 u8 primary_ch;
1237 u8 oper_ch;
1238 __le16 basic_mcs_nss;
1239 } __packed;
1240
1241 /**
1242 * struct ieee80211_aid_response_ie - AID Response element
1243 * @aid: AID/Group AID
1244 * @switch_count: AID Switch Count
1245 * @response_int: AID Response Interval
1246 *
1247 * This structure represents the payload of the "AID Response element"
1248 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1249 */
1250 struct ieee80211_aid_response_ie {
1251 __le16 aid;
1252 u8 switch_count;
1253 __le16 response_int;
1254 } __packed;
1255
1256 struct ieee80211_s1g_cap {
1257 u8 capab_info[10];
1258 u8 supp_mcs_nss[5];
1259 } __packed;
1260
1261 struct ieee80211_ext {
1262 __le16 frame_control;
1263 __le16 duration;
1264 union {
1265 struct {
1266 u8 sa[ETH_ALEN];
1267 __le32 timestamp;
1268 u8 change_seq;
1269 u8 variable[];
1270 } __packed s1g_beacon;
1271 } u;
1272 } __packed __aligned(2);
1273
1274 /**
1275 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1276 * @fc: frame control bytes in little-endian byteorder
1277 * Return: total length in bytes of the optional fixed-length fields
1278 *
1279 * S1G beacons may contain up to three optional fixed-length fields that
1280 * precede the variable-length elements. Whether these fields are present
1281 * is indicated by flags in the frame control field.
1282 *
1283 * From IEEE 802.11-2024 section 9.3.4.3:
1284 * - Next TBTT field may be 0 or 3 bytes
1285 * - Short SSID field may be 0 or 4 bytes
1286 * - Access Network Options (ANO) field may be 0 or 1 byte
1287 */
1288 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1289 ieee80211_s1g_optional_len(__le16 fc)
1290 {
1291 size_t len = 0;
1292
1293 if (ieee80211_s1g_has_next_tbtt(fc))
1294 len += 3;
1295
1296 if (ieee80211_s1g_has_cssid(fc))
1297 len += 4;
1298
1299 if (ieee80211_s1g_has_ano(fc))
1300 len += 1;
1301
1302 return len;
1303 }
1304
1305 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1306 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1307 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1308 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1309 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1310
1311 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1312 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1313 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1314 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1315 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1316 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1317 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1318 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1319
1320 enum ieee80211_twt_setup_cmd {
1321 TWT_SETUP_CMD_REQUEST,
1322 TWT_SETUP_CMD_SUGGEST,
1323 TWT_SETUP_CMD_DEMAND,
1324 TWT_SETUP_CMD_GROUPING,
1325 TWT_SETUP_CMD_ACCEPT,
1326 TWT_SETUP_CMD_ALTERNATE,
1327 TWT_SETUP_CMD_DICTATE,
1328 TWT_SETUP_CMD_REJECT,
1329 };
1330
1331 struct ieee80211_twt_params {
1332 __le16 req_type;
1333 __le64 twt;
1334 u8 min_twt_dur;
1335 __le16 mantissa;
1336 u8 channel;
1337 } __packed;
1338
1339 struct ieee80211_twt_setup {
1340 u8 dialog_token;
1341 u8 element_id;
1342 u8 length;
1343 u8 control;
1344 u8 params[];
1345 } __packed;
1346
1347 #define IEEE80211_TTLM_MAX_CNT 2
1348 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03
1349 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04
1350 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08
1351 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10
1352 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20
1353
1354 #define IEEE80211_TTLM_DIRECTION_DOWN 0
1355 #define IEEE80211_TTLM_DIRECTION_UP 1
1356 #define IEEE80211_TTLM_DIRECTION_BOTH 2
1357
1358 /**
1359 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1360 *
1361 * Defined in section 9.4.2.314 in P802.11be_D4
1362 *
1363 * @control: the first part of control field
1364 * @optional: the second part of control field
1365 */
1366 struct ieee80211_ttlm_elem {
1367 u8 control;
1368 u8 optional[];
1369 } __packed;
1370
1371 /**
1372 * struct ieee80211_bss_load_elem - BSS Load elemen
1373 *
1374 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1375 *
1376 * @sta_count: total number of STAs currently associated with the AP.
1377 * @channel_util: Percentage of time that the access point sensed the channel
1378 * was busy. This value is in range [0, 255], the highest value means
1379 * 100% busy.
1380 * @avail_admission_capa: remaining amount of medium time used for admission
1381 * control.
1382 */
1383 struct ieee80211_bss_load_elem {
1384 __le16 sta_count;
1385 u8 channel_util;
1386 __le16 avail_admission_capa;
1387 } __packed;
1388
1389 struct ieee80211_mgmt {
1390 __le16 frame_control;
1391 __le16 duration;
1392 u8 da[ETH_ALEN];
1393 u8 sa[ETH_ALEN];
1394 u8 bssid[ETH_ALEN];
1395 __le16 seq_ctrl;
1396 union {
1397 struct {
1398 __le16 auth_alg;
1399 __le16 auth_transaction;
1400 __le16 status_code;
1401 /* possibly followed by Challenge text */
1402 u8 variable[];
1403 } __packed auth;
1404 struct {
1405 __le16 reason_code;
1406 } __packed deauth;
1407 struct {
1408 __le16 capab_info;
1409 __le16 listen_interval;
1410 /* followed by SSID and Supported rates */
1411 u8 variable[];
1412 } __packed assoc_req;
1413 struct {
1414 __le16 capab_info;
1415 __le16 status_code;
1416 __le16 aid;
1417 /* followed by Supported rates */
1418 u8 variable[];
1419 } __packed assoc_resp, reassoc_resp;
1420 struct {
1421 __le16 capab_info;
1422 __le16 status_code;
1423 u8 variable[];
1424 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1425 struct {
1426 __le16 capab_info;
1427 __le16 listen_interval;
1428 u8 current_ap[ETH_ALEN];
1429 /* followed by SSID and Supported rates */
1430 u8 variable[];
1431 } __packed reassoc_req;
1432 struct {
1433 __le16 reason_code;
1434 } __packed disassoc;
1435 struct {
1436 __le64 timestamp;
1437 __le16 beacon_int;
1438 __le16 capab_info;
1439 /* followed by some of SSID, Supported rates,
1440 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1441 u8 variable[];
1442 } __packed beacon;
1443 struct {
1444 /* only variable items: SSID, Supported rates */
1445 DECLARE_FLEX_ARRAY(u8, variable);
1446 } __packed probe_req;
1447 struct {
1448 __le64 timestamp;
1449 __le16 beacon_int;
1450 __le16 capab_info;
1451 /* followed by some of SSID, Supported rates,
1452 * FH Params, DS Params, CF Params, IBSS Params */
1453 u8 variable[];
1454 } __packed probe_resp;
1455 struct {
1456 u8 category;
1457 union {
1458 struct {
1459 u8 action_code;
1460 u8 dialog_token;
1461 u8 status_code;
1462 u8 variable[];
1463 } __packed wme_action;
1464 struct{
1465 u8 action_code;
1466 u8 variable[];
1467 } __packed chan_switch;
1468 struct{
1469 u8 action_code;
1470 struct ieee80211_ext_chansw_ie data;
1471 u8 variable[];
1472 } __packed ext_chan_switch;
1473 struct{
1474 u8 action_code;
1475 u8 dialog_token;
1476 u8 element_id;
1477 u8 length;
1478 struct ieee80211_msrment_ie msr_elem;
1479 } __packed measurement;
1480 struct{
1481 u8 action_code;
1482 u8 dialog_token;
1483 __le16 capab;
1484 __le16 timeout;
1485 __le16 start_seq_num;
1486 /* followed by BA Extension */
1487 u8 variable[];
1488 } __packed addba_req;
1489 struct{
1490 u8 action_code;
1491 u8 dialog_token;
1492 __le16 status;
1493 __le16 capab;
1494 __le16 timeout;
1495 /* followed by BA Extension */
1496 u8 variable[];
1497 } __packed addba_resp;
1498 struct{
1499 u8 action_code;
1500 __le16 params;
1501 __le16 reason_code;
1502 } __packed delba;
1503 struct {
1504 u8 action_code;
1505 u8 variable[];
1506 } __packed self_prot;
1507 struct{
1508 u8 action_code;
1509 u8 variable[];
1510 } __packed mesh_action;
1511 struct {
1512 u8 action;
1513 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1514 } __packed sa_query;
1515 struct {
1516 u8 action;
1517 u8 smps_control;
1518 } __packed ht_smps;
1519 struct {
1520 u8 action_code;
1521 u8 chanwidth;
1522 } __packed ht_notify_cw;
1523 struct {
1524 u8 action_code;
1525 u8 dialog_token;
1526 __le16 capability;
1527 u8 variable[];
1528 } __packed tdls_discover_resp;
1529 struct {
1530 u8 action_code;
1531 u8 operating_mode;
1532 } __packed vht_opmode_notif;
1533 struct {
1534 u8 action_code;
1535 u8 membership[WLAN_MEMBERSHIP_LEN];
1536 u8 position[WLAN_USER_POSITION_LEN];
1537 } __packed vht_group_notif;
1538 struct {
1539 u8 action_code;
1540 u8 dialog_token;
1541 u8 tpc_elem_id;
1542 u8 tpc_elem_length;
1543 struct ieee80211_tpc_report_ie tpc;
1544 } __packed tpc_report;
1545 struct {
1546 u8 action_code;
1547 u8 dialog_token;
1548 u8 follow_up;
1549 u8 tod[6];
1550 u8 toa[6];
1551 __le16 tod_error;
1552 __le16 toa_error;
1553 u8 variable[];
1554 } __packed ftm;
1555 struct {
1556 u8 action_code;
1557 u8 variable[];
1558 } __packed s1g;
1559 struct {
1560 u8 action_code;
1561 u8 dialog_token;
1562 u8 follow_up;
1563 u32 tod;
1564 u32 toa;
1565 u8 max_tod_error;
1566 u8 max_toa_error;
1567 } __packed wnm_timing_msr;
1568 struct {
1569 u8 action_code;
1570 u8 dialog_token;
1571 u8 variable[];
1572 } __packed ttlm_req;
1573 struct {
1574 u8 action_code;
1575 u8 dialog_token;
1576 __le16 status_code;
1577 u8 variable[];
1578 } __packed ttlm_res;
1579 struct {
1580 u8 action_code;
1581 } __packed ttlm_tear_down;
1582 struct {
1583 u8 action_code;
1584 u8 dialog_token;
1585 u8 variable[];
1586 } __packed ml_reconf_req;
1587 struct {
1588 u8 action_code;
1589 u8 dialog_token;
1590 u8 count;
1591 u8 variable[];
1592 } __packed ml_reconf_resp;
1593 struct {
1594 u8 action_code;
1595 u8 variable[];
1596 } __packed epcs;
1597 } u;
1598 } __packed action;
1599 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1600 } u;
1601 } __packed __aligned(2);
1602
1603 /* Supported rates membership selectors */
1604 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1605 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1606 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1607 #define BSS_MEMBERSHIP_SELECTOR_EPD 124
1608 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1609 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1610 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1611
1612 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1613
1614 /* mgmt header + 1 byte category code */
1615 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1616
1617
1618 /* Management MIC information element (IEEE 802.11w) */
1619 struct ieee80211_mmie {
1620 u8 element_id;
1621 u8 length;
1622 __le16 key_id;
1623 u8 sequence_number[6];
1624 u8 mic[8];
1625 } __packed;
1626
1627 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1628 struct ieee80211_mmie_16 {
1629 u8 element_id;
1630 u8 length;
1631 __le16 key_id;
1632 u8 sequence_number[6];
1633 u8 mic[16];
1634 } __packed;
1635
1636 struct ieee80211_vendor_ie {
1637 u8 element_id;
1638 u8 len;
1639 u8 oui[3];
1640 u8 oui_type;
1641 } __packed;
1642
1643 struct ieee80211_wmm_ac_param {
1644 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1645 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1646 __le16 txop_limit;
1647 } __packed;
1648
1649 struct ieee80211_wmm_param_ie {
1650 u8 element_id; /* Element ID: 221 (0xdd); */
1651 u8 len; /* Length: 24 */
1652 /* required fields for WMM version 1 */
1653 u8 oui[3]; /* 00:50:f2 */
1654 u8 oui_type; /* 2 */
1655 u8 oui_subtype; /* 1 */
1656 u8 version; /* 1 for WMM version 1.0 */
1657 u8 qos_info; /* AP/STA specific QoS info */
1658 u8 reserved; /* 0 */
1659 /* AC_BE, AC_BK, AC_VI, AC_VO */
1660 struct ieee80211_wmm_ac_param ac[4];
1661 } __packed;
1662
1663 /* Control frames */
1664 struct ieee80211_rts {
1665 __le16 frame_control;
1666 __le16 duration;
1667 u8 ra[ETH_ALEN];
1668 u8 ta[ETH_ALEN];
1669 } __packed __aligned(2);
1670
1671 struct ieee80211_cts {
1672 __le16 frame_control;
1673 __le16 duration;
1674 u8 ra[ETH_ALEN];
1675 } __packed __aligned(2);
1676
1677 struct ieee80211_pspoll {
1678 __le16 frame_control;
1679 __le16 aid;
1680 u8 bssid[ETH_ALEN];
1681 u8 ta[ETH_ALEN];
1682 } __packed __aligned(2);
1683
1684 /* TDLS */
1685
1686 /* Channel switch timing */
1687 struct ieee80211_ch_switch_timing {
1688 __le16 switch_time;
1689 __le16 switch_timeout;
1690 } __packed;
1691
1692 /* Link-id information element */
1693 struct ieee80211_tdls_lnkie {
1694 u8 ie_type; /* Link Identifier IE */
1695 u8 ie_len;
1696 u8 bssid[ETH_ALEN];
1697 u8 init_sta[ETH_ALEN];
1698 u8 resp_sta[ETH_ALEN];
1699 } __packed;
1700
1701 struct ieee80211_tdls_data {
1702 u8 da[ETH_ALEN];
1703 u8 sa[ETH_ALEN];
1704 __be16 ether_type;
1705 u8 payload_type;
1706 u8 category;
1707 u8 action_code;
1708 union {
1709 struct {
1710 u8 dialog_token;
1711 __le16 capability;
1712 u8 variable[];
1713 } __packed setup_req;
1714 struct {
1715 __le16 status_code;
1716 u8 dialog_token;
1717 __le16 capability;
1718 u8 variable[];
1719 } __packed setup_resp;
1720 struct {
1721 __le16 status_code;
1722 u8 dialog_token;
1723 u8 variable[];
1724 } __packed setup_cfm;
1725 struct {
1726 __le16 reason_code;
1727 u8 variable[];
1728 } __packed teardown;
1729 struct {
1730 u8 dialog_token;
1731 u8 variable[];
1732 } __packed discover_req;
1733 struct {
1734 u8 target_channel;
1735 u8 oper_class;
1736 u8 variable[];
1737 } __packed chan_switch_req;
1738 struct {
1739 __le16 status_code;
1740 u8 variable[];
1741 } __packed chan_switch_resp;
1742 } u;
1743 } __packed;
1744
1745 /*
1746 * Peer-to-Peer IE attribute related definitions.
1747 */
1748 /*
1749 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1750 */
1751 enum ieee80211_p2p_attr_id {
1752 IEEE80211_P2P_ATTR_STATUS = 0,
1753 IEEE80211_P2P_ATTR_MINOR_REASON,
1754 IEEE80211_P2P_ATTR_CAPABILITY,
1755 IEEE80211_P2P_ATTR_DEVICE_ID,
1756 IEEE80211_P2P_ATTR_GO_INTENT,
1757 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1758 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1759 IEEE80211_P2P_ATTR_GROUP_BSSID,
1760 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1761 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1762 IEEE80211_P2P_ATTR_MANAGABILITY,
1763 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1764 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1765 IEEE80211_P2P_ATTR_DEVICE_INFO,
1766 IEEE80211_P2P_ATTR_GROUP_INFO,
1767 IEEE80211_P2P_ATTR_GROUP_ID,
1768 IEEE80211_P2P_ATTR_INTERFACE,
1769 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1770 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1771 /* 19 - 220: Reserved */
1772 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1773
1774 IEEE80211_P2P_ATTR_MAX
1775 };
1776
1777 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1778 /* Typical max value used here */
1779 #define IEEE80211_P2P_NOA_DESC_MAX 4
1780
1781 struct ieee80211_p2p_noa_desc {
1782 u8 count;
1783 __le32 duration;
1784 __le32 interval;
1785 __le32 start_time;
1786 } __packed;
1787
1788 struct ieee80211_p2p_noa_attr {
1789 u8 index;
1790 u8 oppps_ctwindow;
1791 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1792 } __packed;
1793
1794 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1795 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1796
1797 /**
1798 * struct ieee80211_bar - Block Ack Request frame format
1799 * @frame_control: Frame Control
1800 * @duration: Duration
1801 * @ra: RA
1802 * @ta: TA
1803 * @control: BAR Control
1804 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1805 *
1806 * This structure represents the "BlockAckReq frame format"
1807 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1808 */
1809 struct ieee80211_bar {
1810 __le16 frame_control;
1811 __le16 duration;
1812 __u8 ra[ETH_ALEN];
1813 __u8 ta[ETH_ALEN];
1814 __le16 control;
1815 __le16 start_seq_num;
1816 } __packed;
1817
1818 /* 802.11 BAR control masks */
1819 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1820 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1821 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1822 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1823 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1824
1825 #define IEEE80211_HT_MCS_MASK_LEN 10
1826
1827 /**
1828 * struct ieee80211_mcs_info - Supported MCS Set field
1829 * @rx_mask: RX mask
1830 * @rx_highest: highest supported RX rate. If set represents
1831 * the highest supported RX data rate in units of 1 Mbps.
1832 * If this field is 0 this value should not be used to
1833 * consider the highest RX data rate supported.
1834 * @tx_params: TX parameters
1835 * @reserved: Reserved bits
1836 *
1837 * This structure represents the "Supported MCS Set field" as
1838 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1839 */
1840 struct ieee80211_mcs_info {
1841 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1842 __le16 rx_highest;
1843 u8 tx_params;
1844 u8 reserved[3];
1845 } __packed;
1846
1847 /* 802.11n HT capability MSC set */
1848 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1849 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1850 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1851 /* value 0 == 1 stream etc */
1852 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1853 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1854 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1855 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1856
1857 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1858
1859 /*
1860 * 802.11n D5.0 20.3.5 / 20.6 says:
1861 * - indices 0 to 7 and 32 are single spatial stream
1862 * - 8 to 31 are multiple spatial streams using equal modulation
1863 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1864 * - remainder are multiple spatial streams using unequal modulation
1865 */
1866 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1867 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1868 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1869
1870 /**
1871 * struct ieee80211_ht_cap - HT capabilities element
1872 * @cap_info: HT Capability Information
1873 * @ampdu_params_info: A-MPDU Parameters
1874 * @mcs: Supported MCS Set
1875 * @extended_ht_cap_info: HT Extended Capabilities
1876 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1877 * @antenna_selection_info: ASEL Capability
1878 *
1879 * This structure represents the payload of the "HT Capabilities
1880 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1881 */
1882 struct ieee80211_ht_cap {
1883 __le16 cap_info;
1884 u8 ampdu_params_info;
1885
1886 /* 16 bytes MCS information */
1887 struct ieee80211_mcs_info mcs;
1888
1889 __le16 extended_ht_cap_info;
1890 __le32 tx_BF_cap_info;
1891 u8 antenna_selection_info;
1892 } __packed;
1893
1894 /* 802.11n HT capabilities masks (for cap_info) */
1895 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1896 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1897 #define IEEE80211_HT_CAP_SM_PS 0x000C
1898 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1899 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1900 #define IEEE80211_HT_CAP_SGI_20 0x0020
1901 #define IEEE80211_HT_CAP_SGI_40 0x0040
1902 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1903 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1904 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1905 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1906 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1907 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1908 #define IEEE80211_HT_CAP_RESERVED 0x2000
1909 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1910 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1911
1912 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1913 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1914 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1915 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1916 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1917 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1918 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1919 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1920
1921 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1922 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1923 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1924 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1925
1926 /*
1927 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1928 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1929 */
1930 enum ieee80211_max_ampdu_length_exp {
1931 IEEE80211_HT_MAX_AMPDU_8K = 0,
1932 IEEE80211_HT_MAX_AMPDU_16K = 1,
1933 IEEE80211_HT_MAX_AMPDU_32K = 2,
1934 IEEE80211_HT_MAX_AMPDU_64K = 3
1935 };
1936
1937 /*
1938 * Maximum length of AMPDU that the STA can receive in VHT.
1939 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1940 */
1941 enum ieee80211_vht_max_ampdu_length_exp {
1942 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1943 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1944 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1945 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1946 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1947 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1948 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1949 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1950 };
1951
1952 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1953
1954 /* Minimum MPDU start spacing */
1955 enum ieee80211_min_mpdu_spacing {
1956 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1957 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1958 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1959 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1960 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1961 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1962 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1963 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1964 };
1965
1966 /**
1967 * struct ieee80211_ht_operation - HT operation IE
1968 * @primary_chan: Primary Channel
1969 * @ht_param: HT Operation Information parameters
1970 * @operation_mode: HT Operation Information operation mode
1971 * @stbc_param: HT Operation Information STBC params
1972 * @basic_set: Basic HT-MCS Set
1973 *
1974 * This structure represents the payload of the "HT Operation
1975 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1976 */
1977 struct ieee80211_ht_operation {
1978 u8 primary_chan;
1979 u8 ht_param;
1980 __le16 operation_mode;
1981 __le16 stbc_param;
1982 u8 basic_set[16];
1983 } __packed;
1984
1985 /* for ht_param */
1986 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1987 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
1988 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
1989 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
1990 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
1991 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
1992
1993 /* for operation_mode */
1994 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
1995 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
1996 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
1997 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
1998 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
1999 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
2000 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
2001 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
2002 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
2003
2004 /* for stbc_param */
2005 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
2006 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
2007 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
2008 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
2009 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
2010 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
2011
2012
2013 /* block-ack parameters */
2014 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
2015 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
2016 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
2017 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
2018 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2019 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2020
2021 /*
2022 * A-MPDU buffer sizes
2023 * According to HT size varies from 8 to 64 frames
2024 * HE adds the ability to have up to 256 frames.
2025 * EHT adds the ability to have up to 1K frames.
2026 */
2027 #define IEEE80211_MIN_AMPDU_BUF 0x8
2028 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
2029 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
2030 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
2031
2032
2033 /* Spatial Multiplexing Power Save Modes (for capability) */
2034 #define WLAN_HT_CAP_SM_PS_STATIC 0
2035 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
2036 #define WLAN_HT_CAP_SM_PS_INVALID 2
2037 #define WLAN_HT_CAP_SM_PS_DISABLED 3
2038
2039 /* for SM power control field lower two bits */
2040 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
2041 #define WLAN_HT_SMPS_CONTROL_STATIC 1
2042 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
2043
2044 /**
2045 * struct ieee80211_vht_mcs_info - VHT MCS information
2046 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2047 * @rx_highest: Indicates highest long GI VHT PPDU data rate
2048 * STA can receive. Rate expressed in units of 1 Mbps.
2049 * If this field is 0 this value should not be used to
2050 * consider the highest RX data rate supported.
2051 * The top 3 bits of this field indicate the Maximum NSTS,total
2052 * (a beamformee capability.)
2053 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2054 * @tx_highest: Indicates highest long GI VHT PPDU data rate
2055 * STA can transmit. Rate expressed in units of 1 Mbps.
2056 * If this field is 0 this value should not be used to
2057 * consider the highest TX data rate supported.
2058 * The top 2 bits of this field are reserved, the
2059 * 3rd bit from the top indiciates VHT Extended NSS BW
2060 * Capability.
2061 */
2062 struct ieee80211_vht_mcs_info {
2063 __le16 rx_mcs_map;
2064 __le16 rx_highest;
2065 __le16 tx_mcs_map;
2066 __le16 tx_highest;
2067 } __packed;
2068
2069 /* for rx_highest */
2070 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
2071 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2072
2073 /* for tx_highest */
2074 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
2075
2076 /**
2077 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2078 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2079 * number of streams
2080 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2081 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2082 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2083 *
2084 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2085 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2086 * both split into 8 subfields by number of streams. These values indicate
2087 * which MCSes are supported for the number of streams the value appears
2088 * for.
2089 */
2090 enum ieee80211_vht_mcs_support {
2091 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
2092 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
2093 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
2094 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
2095 };
2096
2097 /**
2098 * struct ieee80211_vht_cap - VHT capabilities
2099 *
2100 * This structure is the "VHT capabilities element" as
2101 * described in 802.11ac D3.0 8.4.2.160
2102 * @vht_cap_info: VHT capability info
2103 * @supp_mcs: VHT MCS supported rates
2104 */
2105 struct ieee80211_vht_cap {
2106 __le32 vht_cap_info;
2107 struct ieee80211_vht_mcs_info supp_mcs;
2108 } __packed;
2109
2110 /**
2111 * enum ieee80211_vht_chanwidth - VHT channel width
2112 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2113 * determine the channel width (20 or 40 MHz)
2114 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2115 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2116 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2117 */
2118 enum ieee80211_vht_chanwidth {
2119 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
2120 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
2121 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
2122 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
2123 };
2124
2125 /**
2126 * struct ieee80211_vht_operation - VHT operation IE
2127 *
2128 * This structure is the "VHT operation element" as
2129 * described in 802.11ac D3.0 8.4.2.161
2130 * @chan_width: Operating channel width
2131 * @center_freq_seg0_idx: center freq segment 0 index
2132 * @center_freq_seg1_idx: center freq segment 1 index
2133 * @basic_mcs_set: VHT Basic MCS rate set
2134 */
2135 struct ieee80211_vht_operation {
2136 u8 chan_width;
2137 u8 center_freq_seg0_idx;
2138 u8 center_freq_seg1_idx;
2139 __le16 basic_mcs_set;
2140 } __packed;
2141
2142 /**
2143 * struct ieee80211_he_cap_elem - HE capabilities element
2144 * @mac_cap_info: HE MAC Capabilities Information
2145 * @phy_cap_info: HE PHY Capabilities Information
2146 *
2147 * This structure represents the fixed fields of the payload of the
2148 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2149 * sections 9.4.2.248.2 and 9.4.2.248.3.
2150 */
2151 struct ieee80211_he_cap_elem {
2152 u8 mac_cap_info[6];
2153 u8 phy_cap_info[11];
2154 } __packed;
2155
2156 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
2157
2158 /**
2159 * enum ieee80211_he_mcs_support - HE MCS support definitions
2160 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2161 * number of streams
2162 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2163 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2164 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2165 *
2166 * These definitions are used in each 2-bit subfield of the rx_mcs_*
2167 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2168 * both split into 8 subfields by number of streams. These values indicate
2169 * which MCSes are supported for the number of streams the value appears
2170 * for.
2171 */
2172 enum ieee80211_he_mcs_support {
2173 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
2174 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2175 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2176 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2177 };
2178
2179 /**
2180 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2181 *
2182 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2183 * described in P802.11ax_D2.0 section 9.4.2.237.4
2184 *
2185 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2186 * widths less than 80MHz.
2187 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2188 * widths less than 80MHz.
2189 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2190 * width 160MHz.
2191 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2192 * width 160MHz.
2193 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2194 * channel width 80p80MHz.
2195 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2196 * channel width 80p80MHz.
2197 */
2198 struct ieee80211_he_mcs_nss_supp {
2199 __le16 rx_mcs_80;
2200 __le16 tx_mcs_80;
2201 __le16 rx_mcs_160;
2202 __le16 tx_mcs_160;
2203 __le16 rx_mcs_80p80;
2204 __le16 tx_mcs_80p80;
2205 } __packed;
2206
2207 /**
2208 * struct ieee80211_he_operation - HE Operation element
2209 * @he_oper_params: HE Operation Parameters + BSS Color Information
2210 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2211 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2212 * BSSID Indicator, and 6 GHz Operation Information
2213 *
2214 * This structure represents the payload of the "HE Operation
2215 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2216 */
2217 struct ieee80211_he_operation {
2218 __le32 he_oper_params;
2219 __le16 he_mcs_nss_set;
2220 u8 optional[];
2221 } __packed;
2222
2223 /**
2224 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2225 * @he_sr_control: SR Control
2226 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2227 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2228 * Bitmap, and SRG Partial BSSID Bitmap
2229 *
2230 * This structure represents the payload of the "Spatial Reuse
2231 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2232 * section 9.4.2.252.
2233 */
2234 struct ieee80211_he_spr {
2235 u8 he_sr_control;
2236 u8 optional[];
2237 } __packed;
2238
2239 /**
2240 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2241 * @aifsn: ACI/AIFSN
2242 * @ecw_min_max: ECWmin/ECWmax
2243 * @mu_edca_timer: MU EDCA Timer
2244 *
2245 * This structure represents the "MU AC Parameter Record" as described
2246 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2247 */
2248 struct ieee80211_he_mu_edca_param_ac_rec {
2249 u8 aifsn;
2250 u8 ecw_min_max;
2251 u8 mu_edca_timer;
2252 } __packed;
2253
2254 /**
2255 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2256 * @mu_qos_info: QoS Info
2257 * @ac_be: MU AC_BE Parameter Record
2258 * @ac_bk: MU AC_BK Parameter Record
2259 * @ac_vi: MU AC_VI Parameter Record
2260 * @ac_vo: MU AC_VO Parameter Record
2261 *
2262 * This structure represents the payload of the "MU EDCA Parameter Set
2263 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2264 */
2265 struct ieee80211_mu_edca_param_set {
2266 u8 mu_qos_info;
2267 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2268 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2269 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2270 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2271 } __packed;
2272
2273 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2274 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2275
2276 /**
2277 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2278 * supported NSS for per MCS.
2279 *
2280 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2281 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2282 * for Tx.
2283 *
2284 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2285 * supported for reception and the maximum number of spatial streams
2286 * supported for transmission for MCS 0 - 7.
2287 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2288 * supported for reception and the maximum number of spatial streams
2289 * supported for transmission for MCS 8 - 9.
2290 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2291 * supported for reception and the maximum number of spatial streams
2292 * supported for transmission for MCS 10 - 11.
2293 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2294 * supported for reception and the maximum number of spatial streams
2295 * supported for transmission for MCS 12 - 13.
2296 * @rx_tx_max_nss: array of the previous fields for easier loop access
2297 */
2298 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2299 union {
2300 struct {
2301 u8 rx_tx_mcs7_max_nss;
2302 u8 rx_tx_mcs9_max_nss;
2303 u8 rx_tx_mcs11_max_nss;
2304 u8 rx_tx_mcs13_max_nss;
2305 };
2306 u8 rx_tx_max_nss[4];
2307 };
2308 };
2309
2310 /**
2311 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2312 * 20MHz only stations).
2313 *
2314 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2315 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2316 * for Tx.
2317 *
2318 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2319 * supported for reception and the maximum number of spatial streams
2320 * supported for transmission for MCS 0 - 9.
2321 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2322 * supported for reception and the maximum number of spatial streams
2323 * supported for transmission for MCS 10 - 11.
2324 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2325 * supported for reception and the maximum number of spatial streams
2326 * supported for transmission for MCS 12 - 13.
2327 * @rx_tx_max_nss: array of the previous fields for easier loop access
2328 */
2329 struct ieee80211_eht_mcs_nss_supp_bw {
2330 union {
2331 struct {
2332 u8 rx_tx_mcs9_max_nss;
2333 u8 rx_tx_mcs11_max_nss;
2334 u8 rx_tx_mcs13_max_nss;
2335 };
2336 u8 rx_tx_max_nss[3];
2337 };
2338 };
2339
2340 /**
2341 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2342 *
2343 * This structure is the "EHT Capabilities element" fixed fields as
2344 * described in P802.11be_D2.0 section 9.4.2.313.
2345 *
2346 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2347 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2348 */
2349 struct ieee80211_eht_cap_elem_fixed {
2350 u8 mac_cap_info[2];
2351 u8 phy_cap_info[9];
2352 } __packed;
2353
2354 /**
2355 * struct ieee80211_eht_cap_elem - EHT capabilities element
2356 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2357 * @optional: optional parts
2358 */
2359 struct ieee80211_eht_cap_elem {
2360 struct ieee80211_eht_cap_elem_fixed fixed;
2361
2362 /*
2363 * Followed by:
2364 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2365 * EHT PPE Thresholds field: variable length.
2366 */
2367 u8 optional[];
2368 } __packed;
2369
2370 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2371 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2372 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2373 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2374 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2375 #define IEEE80211_EHT_OPER_MCS15_DISABLE 0x40
2376
2377 /**
2378 * struct ieee80211_eht_operation - eht operation element
2379 *
2380 * This structure is the "EHT Operation Element" fields as
2381 * described in P802.11be_D2.0 section 9.4.2.311
2382 *
2383 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2384 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2385 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2386 * receive.
2387 * @optional: optional parts
2388 */
2389 struct ieee80211_eht_operation {
2390 u8 params;
2391 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2392 u8 optional[];
2393 } __packed;
2394
2395 /**
2396 * struct ieee80211_eht_operation_info - eht operation information
2397 *
2398 * @control: EHT operation information control.
2399 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2400 * EHT BSS.
2401 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2402 * @optional: optional parts
2403 */
2404 struct ieee80211_eht_operation_info {
2405 u8 control;
2406 u8 ccfs0;
2407 u8 ccfs1;
2408 u8 optional[];
2409 } __packed;
2410
2411 /* 802.11ac VHT Capabilities */
2412 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2413 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2414 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2415 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2416 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2417 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2418 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2419 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2420 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2421 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2422 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2423 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2424 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2425 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2426 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2427 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2428 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2429 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2430 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2431 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2432 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2433 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2434 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2435 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2436 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2437 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2438 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2439 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2440 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2441 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2442 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2443 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2444 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2445 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2446 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2447 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2448 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2449 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2450 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2451
2452 /**
2453 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2454 * @cap: VHT capabilities of the peer
2455 * @bw: bandwidth to use
2456 * @mcs: MCS index to use
2457 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2458 * (rate scaling algorithm) can deal with the new logic
2459 * (dot11VHTExtendedNSSBWCapable)
2460 * @max_vht_nss: current maximum NSS as advertised by the STA in
2461 * operating mode notification, can be 0 in which case the
2462 * capability data will be used to derive this (from MCS support)
2463 * Return: The maximum NSS that can be used for the given bandwidth/MCS
2464 * combination
2465 *
2466 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2467 * vary for a given BW/MCS. This function parses the data.
2468 *
2469 * Note: This function is exported by cfg80211.
2470 */
2471 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2472 enum ieee80211_vht_chanwidth bw,
2473 int mcs, bool ext_nss_bw_capable,
2474 unsigned int max_vht_nss);
2475
2476 /* 802.11ax HE MAC capabilities */
2477 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2478 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2479 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2480 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2481 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2482 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2483 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2484 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2485 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2486 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2487 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2488 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2489 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2490 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2491 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2492 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2493 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2494
2495 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2496 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2497 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2498 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2499 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2500 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2501 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2502 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2503 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2504 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2505 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2506 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2507 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2508 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2509 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2510 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2511 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2512 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2513
2514 /* Link adaptation is split between byte HE_MAC_CAP1 and
2515 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2516 * in which case the following values apply:
2517 * 0 = No feedback.
2518 * 1 = reserved.
2519 * 2 = Unsolicited feedback.
2520 * 3 = both
2521 */
2522 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2523
2524 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2525 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2526 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2527 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2528 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2529 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2530 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2531 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2532
2533 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2534 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2535
2536 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2537 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2538 * same field in the HE capabilities.
2539 */
2540 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2541 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2542 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2543 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2544 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2545 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2546 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2547 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2548
2549 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2550 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2551 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2552 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2553 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2554 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2555 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2556 /* Multi TID agg TX is split between byte #4 and #5
2557 * The value is a combination of B39,B40,B41
2558 */
2559 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2560
2561 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2562 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2563 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2564 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2565 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2566 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2567 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2568 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2569
2570 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2571 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2572 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2573
2574 /* 802.11ax HE PHY capabilities */
2575 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2576 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2577 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2578 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2579 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2580
2581 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2582 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2583 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2584
2585 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2586 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2587 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2588 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2589 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2590 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2591 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2592 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2593 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2594 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2595
2596 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2597 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2598 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2599 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2600 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2601 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2602
2603 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2604 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2605 * case it indicates support for Tx.
2606 */
2607 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2608 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2609
2610 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2611 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2612 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2613 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2614 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2615 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2616 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2617 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2618 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2619 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2620 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2621 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2622 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2623 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2624 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2625 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2626
2627 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2628 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2629
2630 /* Minimal allowed value of Max STS under 80MHz is 3 */
2631 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2632 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2633 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2634 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2635 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2636 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2637
2638 /* Minimal allowed value of Max STS above 80MHz is 3 */
2639 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2640 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2641 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2642 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2643 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2644 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2645
2646 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2647 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2648 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2649 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2650 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2651 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2652 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2653 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2654 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2655
2656 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2657 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2658 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2659 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2660 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2661 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2662 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2663 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2665
2666 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2667 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2668
2669 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2670 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2671 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2672 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2673 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2674 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2675 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2676 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2677
2678 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2679 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2680 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2681 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2682 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2683 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2684 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2685 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2686 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2687 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2688 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2689 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2690 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2691
2692 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2693 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2694 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2695 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2696 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2697 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2698 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2699 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2700 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2701 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2702 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2703
2704 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2705 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2706 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2707 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2708 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2709 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2710 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2711 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2712 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2713 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2714 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2715 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2716
2717 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2718
2719 /* 802.11ax HE TX/RX MCS NSS Support */
2720 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2721 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2722 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2723 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2724 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2725
2726 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2727 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2728 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2729 HIGHEST_MCS_SUPPORTED_MCS8,
2730 HIGHEST_MCS_SUPPORTED_MCS9,
2731 HIGHEST_MCS_SUPPORTED_MCS10,
2732 HIGHEST_MCS_SUPPORTED_MCS11,
2733 };
2734
2735 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2736 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2737 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2738 {
2739 u8 count = 4;
2740
2741 if (he_cap->phy_cap_info[0] &
2742 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2743 count += 4;
2744
2745 if (he_cap->phy_cap_info[0] &
2746 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2747 count += 4;
2748
2749 return count;
2750 }
2751
2752 /* 802.11ax HE PPE Thresholds */
2753 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2754 #define IEEE80211_PPE_THRES_NSS_POS (0)
2755 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2756 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2757 (BIT(5) | BIT(6))
2758 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2759 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2760 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2761 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2762
2763 /*
2764 * Calculate 802.11ax HE capabilities IE PPE field size
2765 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2766 */
2767 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2768 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2769 {
2770 u8 n;
2771
2772 if ((phy_cap_info[6] &
2773 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2774 return 0;
2775
2776 n = hweight8(ppe_thres_hdr &
2777 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2778 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2779 IEEE80211_PPE_THRES_NSS_POS));
2780
2781 /*
2782 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2783 * total size.
2784 */
2785 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2786 n = DIV_ROUND_UP(n, 8);
2787
2788 return n;
2789 }
2790
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2791 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2792 {
2793 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2794 u8 needed = sizeof(*he_cap_ie_elem);
2795
2796 if (len < needed)
2797 return false;
2798
2799 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2800 if (len < needed)
2801 return false;
2802
2803 if (he_cap_ie_elem->phy_cap_info[6] &
2804 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2805 if (len < needed + 1)
2806 return false;
2807 needed += ieee80211_he_ppe_size(data[needed],
2808 he_cap_ie_elem->phy_cap_info);
2809 }
2810
2811 return len >= needed;
2812 }
2813
2814 /* HE Operation defines */
2815 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2816 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2817 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2818 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2819 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2820 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2821 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2822 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2823 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2824 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2825 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2826 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2827
2828 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2829 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2830 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2
2831 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3
2832 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD 4
2833 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 8
2834
2835 /**
2836 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2837 * @primary: primary channel
2838 * @control: control flags
2839 * @ccfs0: channel center frequency segment 0
2840 * @ccfs1: channel center frequency segment 1
2841 * @minrate: minimum rate (in 1 Mbps units)
2842 */
2843 struct ieee80211_he_6ghz_oper {
2844 u8 primary;
2845 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2846 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2847 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2848 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2849 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2850 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2851 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x78
2852 u8 control;
2853 u8 ccfs0;
2854 u8 ccfs1;
2855 u8 minrate;
2856 } __packed;
2857
2858 /**
2859 * enum ieee80211_reg_conn_bits - represents Regulatory connectivity field bits.
2860 *
2861 * This enumeration defines bit flags used to represent regulatory connectivity
2862 * field bits.
2863 *
2864 * @IEEE80211_REG_CONN_LPI_VALID: Indicates whether the LPI bit is valid.
2865 * @IEEE80211_REG_CONN_LPI_VALUE: Represents the value of the LPI bit.
2866 * @IEEE80211_REG_CONN_SP_VALID: Indicates whether the SP bit is valid.
2867 * @IEEE80211_REG_CONN_SP_VALUE: Represents the value of the SP bit.
2868 */
2869 enum ieee80211_reg_conn_bits {
2870 IEEE80211_REG_CONN_LPI_VALID = BIT(0),
2871 IEEE80211_REG_CONN_LPI_VALUE = BIT(1),
2872 IEEE80211_REG_CONN_SP_VALID = BIT(2),
2873 IEEE80211_REG_CONN_SP_VALUE = BIT(3),
2874 };
2875
2876 /* transmit power interpretation type of transmit power envelope element */
2877 enum ieee80211_tx_power_intrpt_type {
2878 IEEE80211_TPE_LOCAL_EIRP,
2879 IEEE80211_TPE_LOCAL_EIRP_PSD,
2880 IEEE80211_TPE_REG_CLIENT_EIRP,
2881 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2882 };
2883
2884 /* category type of transmit power envelope element */
2885 enum ieee80211_tx_power_category_6ghz {
2886 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2887 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2888 };
2889
2890 /*
2891 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2892 * setting to 63.5 dBm means no constraint.
2893 */
2894 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127
2895
2896 /*
2897 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2898 * setting to 127 indicates no PSD limit for the 20 MHz channel.
2899 */
2900 #define IEEE80211_TPE_PSD_NO_LIMIT 127
2901
2902 /**
2903 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2904 * @info: Transmit Power Information field
2905 * @variable: Maximum Transmit Power field
2906 *
2907 * This structure represents the payload of the "Transmit Power
2908 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2909 * 9.4.2.161
2910 */
2911 struct ieee80211_tx_pwr_env {
2912 u8 info;
2913 u8 variable[];
2914 } __packed;
2915
2916 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2917 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2918 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2919
2920 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF
2921
ieee80211_valid_tpe_element(const u8 * data,u8 len)2922 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2923 {
2924 const struct ieee80211_tx_pwr_env *env = (const void *)data;
2925 u8 count, interpret, category;
2926 u8 needed = sizeof(*env);
2927 u8 N; /* also called N in the spec */
2928
2929 if (len < needed)
2930 return false;
2931
2932 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2933 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2934 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2935
2936 switch (category) {
2937 case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2938 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2939 break;
2940 default:
2941 return false;
2942 }
2943
2944 switch (interpret) {
2945 case IEEE80211_TPE_LOCAL_EIRP:
2946 case IEEE80211_TPE_REG_CLIENT_EIRP:
2947 if (count > 3)
2948 return false;
2949
2950 /* count == 0 encodes 1 value for 20 MHz, etc. */
2951 needed += count + 1;
2952
2953 if (len < needed)
2954 return false;
2955
2956 /* there can be extension fields not accounted for in 'count' */
2957
2958 return true;
2959 case IEEE80211_TPE_LOCAL_EIRP_PSD:
2960 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2961 if (count > 4)
2962 return false;
2963
2964 N = count ? 1 << (count - 1) : 1;
2965 needed += N;
2966
2967 if (len < needed)
2968 return false;
2969
2970 if (len > needed) {
2971 u8 K = u8_get_bits(env->variable[N],
2972 IEEE80211_TX_PWR_ENV_EXT_COUNT);
2973
2974 needed += 1 + K;
2975 if (len < needed)
2976 return false;
2977 }
2978
2979 return true;
2980 }
2981
2982 return false;
2983 }
2984
2985 /*
2986 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2987 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2988 * after the ext ID byte. It is assumed that he_oper_ie has at least
2989 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2990 * validated this.
2991 * @return the actual size of the IE data (not including header), or 0 on error
2992 */
2993 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2994 ieee80211_he_oper_size(const u8 *he_oper_ie)
2995 {
2996 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2997 u8 oper_len = sizeof(struct ieee80211_he_operation);
2998 u32 he_oper_params;
2999
3000 /* Make sure the input is not NULL */
3001 if (!he_oper_ie)
3002 return 0;
3003
3004 /* Calc required length */
3005 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3006 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3007 oper_len += 3;
3008 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3009 oper_len++;
3010 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
3011 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
3012
3013 /* Add the first byte (extension ID) to the total length */
3014 oper_len++;
3015
3016 return oper_len;
3017 }
3018
3019 /**
3020 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
3021 * @he_oper: HE operation element (must be pre-validated for size)
3022 * but may be %NULL
3023 *
3024 * Return: a pointer to the 6 GHz operation field, or %NULL
3025 */
3026 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)3027 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
3028 {
3029 const u8 *ret;
3030 u32 he_oper_params;
3031
3032 if (!he_oper)
3033 return NULL;
3034
3035 ret = (const void *)&he_oper->optional;
3036
3037 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3038
3039 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3040 return NULL;
3041 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3042 ret += 3;
3043 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3044 ret++;
3045
3046 return (const void *)ret;
3047 }
3048
3049 /* HE Spatial Reuse defines */
3050 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
3051 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
3052 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
3053 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
3054 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
3055
3056 /*
3057 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3058 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3059 * after the ext ID byte. It is assumed that he_spr_ie has at least
3060 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3061 * this
3062 * @return the actual size of the IE data (not including header), or 0 on error
3063 */
3064 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3065 ieee80211_he_spr_size(const u8 *he_spr_ie)
3066 {
3067 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3068 u8 spr_len = sizeof(struct ieee80211_he_spr);
3069 u8 he_spr_params;
3070
3071 /* Make sure the input is not NULL */
3072 if (!he_spr_ie)
3073 return 0;
3074
3075 /* Calc required length */
3076 he_spr_params = he_spr->he_sr_control;
3077 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3078 spr_len++;
3079 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3080 spr_len += 18;
3081
3082 /* Add the first byte (extension ID) to the total length */
3083 spr_len++;
3084
3085 return spr_len;
3086 }
3087
3088 /* S1G Capabilities Information field */
3089 #define IEEE80211_S1G_CAPABILITY_LEN 15
3090
3091 #define S1G_CAP0_S1G_LONG BIT(0)
3092 #define S1G_CAP0_SGI_1MHZ BIT(1)
3093 #define S1G_CAP0_SGI_2MHZ BIT(2)
3094 #define S1G_CAP0_SGI_4MHZ BIT(3)
3095 #define S1G_CAP0_SGI_8MHZ BIT(4)
3096 #define S1G_CAP0_SGI_16MHZ BIT(5)
3097 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
3098
3099 #define S1G_SUPP_CH_WIDTH_2 0
3100 #define S1G_SUPP_CH_WIDTH_4 1
3101 #define S1G_SUPP_CH_WIDTH_8 2
3102 #define S1G_SUPP_CH_WIDTH_16 3
3103 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3104 cap[0])) << 1)
3105
3106 #define S1G_CAP1_RX_LDPC BIT(0)
3107 #define S1G_CAP1_TX_STBC BIT(1)
3108 #define S1G_CAP1_RX_STBC BIT(2)
3109 #define S1G_CAP1_SU_BFER BIT(3)
3110 #define S1G_CAP1_SU_BFEE BIT(4)
3111 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
3112
3113 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
3114 #define S1G_CAP2_MU_BFER BIT(3)
3115 #define S1G_CAP2_MU_BFEE BIT(4)
3116 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
3117 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
3118
3119 #define S1G_CAP3_RD_RESPONDER BIT(0)
3120 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
3121 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
3122 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
3123 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
3124
3125 #define S1G_CAP4_UPLINK_SYNC BIT(0)
3126 #define S1G_CAP4_DYNAMIC_AID BIT(1)
3127 #define S1G_CAP4_BAT BIT(2)
3128 #define S1G_CAP4_TIME_ADE BIT(3)
3129 #define S1G_CAP4_NON_TIM BIT(4)
3130 #define S1G_CAP4_GROUP_AID BIT(5)
3131 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
3132
3133 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
3134 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
3135 #define S1G_CAP5_AMSDU BIT(2)
3136 #define S1G_CAP5_AMPDU BIT(3)
3137 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
3138 #define S1G_CAP5_FLOW_CONTROL BIT(5)
3139 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
3140
3141 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
3142 #define S1G_CAP6_FRAGMENT_BA BIT(1)
3143 #define S1G_CAP6_NDP_PS_POLL BIT(2)
3144 #define S1G_CAP6_RAW_OPERATION BIT(3)
3145 #define S1G_CAP6_PAGE_SLICING BIT(4)
3146 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
3147 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
3148
3149 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
3150 #define S1G_CAP7_DUP_1MHZ BIT(1)
3151 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
3152 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
3153 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
3154 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
3155 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
3156 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
3157
3158 #define S1G_CAP8_TWT_GROUPING BIT(0)
3159 #define S1G_CAP8_BDT BIT(1)
3160 #define S1G_CAP8_COLOR GENMASK(4, 2)
3161 #define S1G_CAP8_TWT_REQUEST BIT(5)
3162 #define S1G_CAP8_TWT_RESPOND BIT(6)
3163 #define S1G_CAP8_PV1_FRAME BIT(7)
3164
3165 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3166
3167 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
3168 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
3169
3170 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3171 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
3172 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
3173 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
3174 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
3175 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
3176 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
3177 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
3178 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
3179 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
3180 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
3181
3182 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
3183 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02
3184 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04
3185 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08
3186 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30
3187 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40
3188
3189 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3190 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
3191 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
3192 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
3193 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
3194 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
3195 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
3196
3197 /* EHT beamformee number of spatial streams <= 80MHz is split */
3198 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
3199 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
3200
3201 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
3202 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
3203
3204 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
3205 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
3206
3207 /* EHT number of sounding dimensions for 320MHz is split */
3208 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
3209 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
3210 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
3211 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
3212 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
3213 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
3214 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
3215 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
3216 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
3217
3218 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
3219 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
3220 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
3221 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
3222 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
3223
3224 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
3225 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
3226 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
3227 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
3228 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
3229 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
3230 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
3231 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
3232 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
3233
3234 /* Maximum number of supported EHT LTF is split */
3235 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3236 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3237 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3238
3239 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08
3240 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30
3241 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40
3242 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3243 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3244
3245 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3246 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3247 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3248 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3249 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3250 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3251 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3252 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3253
3254 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3255 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3256
3257 /*
3258 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3259 */
3260 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3261 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3262 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3263 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3264 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3265 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3266
3267 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3268 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3269 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3270 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3271 bool from_ap)
3272 {
3273 u8 count = 0;
3274
3275 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3276 if (he_cap->phy_cap_info[0] &
3277 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3278 return 3;
3279
3280 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3281 if (he_cap->phy_cap_info[0] &
3282 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3283 count += 3;
3284
3285 if (he_cap->phy_cap_info[0] &
3286 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3287 count += 3;
3288
3289 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3290 count += 3;
3291
3292 if (count)
3293 return count;
3294
3295 return from_ap ? 3 : 4;
3296 }
3297
3298 /* 802.11be EHT PPE Thresholds */
3299 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3300 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3301 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3302 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3303 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3304
3305 /*
3306 * Calculate 802.11be EHT capabilities IE EHT field size
3307 */
3308 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3309 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3310 {
3311 u32 n;
3312
3313 if (!(phy_cap_info[5] &
3314 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3315 return 0;
3316
3317 n = hweight16(ppe_thres_hdr &
3318 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3319 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3320
3321 /*
3322 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3323 * total size.
3324 */
3325 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3326 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3327 return DIV_ROUND_UP(n, 8);
3328 }
3329
3330 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3331 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3332 bool from_ap)
3333 {
3334 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3335 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3336
3337 if (len < needed || !he_capa)
3338 return false;
3339
3340 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3341 (const void *)data,
3342 from_ap);
3343 if (len < needed)
3344 return false;
3345
3346 if (elem->phy_cap_info[5] &
3347 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3348 u16 ppe_thres_hdr;
3349
3350 if (len < needed + sizeof(ppe_thres_hdr))
3351 return false;
3352
3353 ppe_thres_hdr = get_unaligned_le16(data + needed);
3354 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3355 elem->phy_cap_info);
3356 }
3357
3358 return len >= needed;
3359 }
3360
3361 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3362 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3363 {
3364 const struct ieee80211_eht_operation *elem = (const void *)data;
3365 u8 needed = sizeof(*elem);
3366
3367 if (len < needed)
3368 return false;
3369
3370 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3371 needed += 3;
3372
3373 if (elem->params &
3374 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3375 needed += 2;
3376 }
3377
3378 return len >= needed;
3379 }
3380
3381 /* must validate ieee80211_eht_oper_size_ok() first */
3382 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3383 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3384 {
3385 const struct ieee80211_eht_operation_info *info =
3386 (const void *)eht_oper->optional;
3387
3388 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3389 return 0;
3390
3391 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3392 return 0;
3393
3394 return get_unaligned_le16(info->optional);
3395 }
3396
3397 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1)
3398
3399 struct ieee80211_bandwidth_indication {
3400 u8 params;
3401 struct ieee80211_eht_operation_info info;
3402 } __packed;
3403
3404 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3405 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3406 {
3407 const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3408
3409 if (len < sizeof(*bwi))
3410 return false;
3411
3412 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3413 len < sizeof(*bwi) + 2)
3414 return false;
3415
3416 return true;
3417 }
3418
3419 #define LISTEN_INT_USF GENMASK(15, 14)
3420 #define LISTEN_INT_UI GENMASK(13, 0)
3421
3422 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3423 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3424
3425 /* Authentication algorithms */
3426 #define WLAN_AUTH_OPEN 0
3427 #define WLAN_AUTH_SHARED_KEY 1
3428 #define WLAN_AUTH_FT 2
3429 #define WLAN_AUTH_SAE 3
3430 #define WLAN_AUTH_FILS_SK 4
3431 #define WLAN_AUTH_FILS_SK_PFS 5
3432 #define WLAN_AUTH_FILS_PK 6
3433 #define WLAN_AUTH_LEAP 128
3434
3435 #define WLAN_AUTH_CHALLENGE_LEN 128
3436
3437 #define WLAN_CAPABILITY_ESS (1<<0)
3438 #define WLAN_CAPABILITY_IBSS (1<<1)
3439
3440 /*
3441 * A mesh STA sets the ESS and IBSS capability bits to zero.
3442 * however, this holds true for p2p probe responses (in the p2p_find
3443 * phase) as well.
3444 */
3445 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3446 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3447
3448 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3449 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3450 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3451 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3452 #define WLAN_CAPABILITY_PBCC (1<<6)
3453 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3454
3455 /* 802.11h */
3456 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3457 #define WLAN_CAPABILITY_QOS (1<<9)
3458 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3459 #define WLAN_CAPABILITY_APSD (1<<11)
3460 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3461 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3462 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3463 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3464
3465 /* DMG (60gHz) 802.11ad */
3466 /* type - bits 0..1 */
3467 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3468 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3469 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3470 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3471
3472 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3473 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3474 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3475 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3476
3477 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3478 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3479
3480 /* measurement */
3481 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3482 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3483 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3484
3485 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3486 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3487 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3488 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3489 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3490
3491 /* 802.11g ERP information element */
3492 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3493 #define WLAN_ERP_USE_PROTECTION (1<<1)
3494 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3495
3496 /* WLAN_ERP_BARKER_PREAMBLE values */
3497 enum {
3498 WLAN_ERP_PREAMBLE_SHORT = 0,
3499 WLAN_ERP_PREAMBLE_LONG = 1,
3500 };
3501
3502 /* Band ID, 802.11ad #8.4.1.45 */
3503 enum {
3504 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3505 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3506 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3507 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3508 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3509 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3510 };
3511
3512 /* Status codes */
3513 enum ieee80211_statuscode {
3514 WLAN_STATUS_SUCCESS = 0,
3515 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3516 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3517 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3518 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3519 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3520 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3521 WLAN_STATUS_CHALLENGE_FAIL = 15,
3522 WLAN_STATUS_AUTH_TIMEOUT = 16,
3523 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3524 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3525 /* 802.11b */
3526 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3527 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3528 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3529 /* 802.11h */
3530 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3531 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3532 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3533 /* 802.11g */
3534 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3535 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3536 /* 802.11w */
3537 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3538 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3539 /* 802.11i */
3540 WLAN_STATUS_INVALID_IE = 40,
3541 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3542 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3543 WLAN_STATUS_INVALID_AKMP = 43,
3544 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3545 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3546 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3547 /* 802.11e */
3548 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3549 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3550 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3551 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3552 WLAN_STATUS_REQUEST_DECLINED = 37,
3553 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3554 WLAN_STATUS_CHANGE_TSPEC = 39,
3555 WLAN_STATUS_WAIT_TS_DELAY = 47,
3556 WLAN_STATUS_NO_DIRECT_LINK = 48,
3557 WLAN_STATUS_STA_NOT_PRESENT = 49,
3558 WLAN_STATUS_STA_NOT_QSTA = 50,
3559 /* 802.11s */
3560 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3561 WLAN_STATUS_FCG_NOT_SUPP = 78,
3562 WLAN_STATUS_STA_NO_TBTT = 78,
3563 /* 802.11ad */
3564 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3565 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3566 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3567 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3568 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3569 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3570 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3571 WLAN_STATUS_REJECT_DSE_BAND = 96,
3572 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3573 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3574 /* 802.11ai */
3575 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3576 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3577 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3578 WLAN_STATUS_SAE_PK = 127,
3579 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3580 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3581 };
3582
3583
3584 /* Reason codes */
3585 enum ieee80211_reasoncode {
3586 WLAN_REASON_UNSPECIFIED = 1,
3587 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3588 WLAN_REASON_DEAUTH_LEAVING = 3,
3589 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3590 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3591 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3592 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3593 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3594 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3595 /* 802.11h */
3596 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3597 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3598 /* 802.11i */
3599 WLAN_REASON_INVALID_IE = 13,
3600 WLAN_REASON_MIC_FAILURE = 14,
3601 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3602 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3603 WLAN_REASON_IE_DIFFERENT = 17,
3604 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3605 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3606 WLAN_REASON_INVALID_AKMP = 20,
3607 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3608 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3609 WLAN_REASON_IEEE8021X_FAILED = 23,
3610 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3611 /* TDLS (802.11z) */
3612 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3613 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3614 /* 802.11e */
3615 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3616 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3617 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3618 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3619 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3620 WLAN_REASON_QSTA_NOT_USE = 37,
3621 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3622 WLAN_REASON_QSTA_TIMEOUT = 39,
3623 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3624 /* 802.11s */
3625 WLAN_REASON_MESH_PEER_CANCELED = 52,
3626 WLAN_REASON_MESH_MAX_PEERS = 53,
3627 WLAN_REASON_MESH_CONFIG = 54,
3628 WLAN_REASON_MESH_CLOSE = 55,
3629 WLAN_REASON_MESH_MAX_RETRIES = 56,
3630 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3631 WLAN_REASON_MESH_INVALID_GTK = 58,
3632 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3633 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3634 WLAN_REASON_MESH_PATH_ERROR = 61,
3635 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3636 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3637 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3638 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3639 WLAN_REASON_MESH_CHAN = 66,
3640 };
3641
3642
3643 /* Information Element IDs */
3644 enum ieee80211_eid {
3645 WLAN_EID_SSID = 0,
3646 WLAN_EID_SUPP_RATES = 1,
3647 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3648 WLAN_EID_DS_PARAMS = 3,
3649 WLAN_EID_CF_PARAMS = 4,
3650 WLAN_EID_TIM = 5,
3651 WLAN_EID_IBSS_PARAMS = 6,
3652 WLAN_EID_COUNTRY = 7,
3653 /* 8, 9 reserved */
3654 WLAN_EID_REQUEST = 10,
3655 WLAN_EID_QBSS_LOAD = 11,
3656 WLAN_EID_EDCA_PARAM_SET = 12,
3657 WLAN_EID_TSPEC = 13,
3658 WLAN_EID_TCLAS = 14,
3659 WLAN_EID_SCHEDULE = 15,
3660 WLAN_EID_CHALLENGE = 16,
3661 /* 17-31 reserved for challenge text extension */
3662 WLAN_EID_PWR_CONSTRAINT = 32,
3663 WLAN_EID_PWR_CAPABILITY = 33,
3664 WLAN_EID_TPC_REQUEST = 34,
3665 WLAN_EID_TPC_REPORT = 35,
3666 WLAN_EID_SUPPORTED_CHANNELS = 36,
3667 WLAN_EID_CHANNEL_SWITCH = 37,
3668 WLAN_EID_MEASURE_REQUEST = 38,
3669 WLAN_EID_MEASURE_REPORT = 39,
3670 WLAN_EID_QUIET = 40,
3671 WLAN_EID_IBSS_DFS = 41,
3672 WLAN_EID_ERP_INFO = 42,
3673 WLAN_EID_TS_DELAY = 43,
3674 WLAN_EID_TCLAS_PROCESSING = 44,
3675 WLAN_EID_HT_CAPABILITY = 45,
3676 WLAN_EID_QOS_CAPA = 46,
3677 /* 47 reserved for Broadcom */
3678 WLAN_EID_RSN = 48,
3679 WLAN_EID_802_15_COEX = 49,
3680 WLAN_EID_EXT_SUPP_RATES = 50,
3681 WLAN_EID_AP_CHAN_REPORT = 51,
3682 WLAN_EID_NEIGHBOR_REPORT = 52,
3683 WLAN_EID_RCPI = 53,
3684 WLAN_EID_MOBILITY_DOMAIN = 54,
3685 WLAN_EID_FAST_BSS_TRANSITION = 55,
3686 WLAN_EID_TIMEOUT_INTERVAL = 56,
3687 WLAN_EID_RIC_DATA = 57,
3688 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3689 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3690 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3691 WLAN_EID_HT_OPERATION = 61,
3692 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3693 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3694 WLAN_EID_ANTENNA_INFO = 64,
3695 WLAN_EID_RSNI = 65,
3696 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3697 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3698 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3699 WLAN_EID_TIME_ADVERTISEMENT = 69,
3700 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3701 WLAN_EID_MULTIPLE_BSSID = 71,
3702 WLAN_EID_BSS_COEX_2040 = 72,
3703 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3704 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3705 WLAN_EID_RIC_DESCRIPTOR = 75,
3706 WLAN_EID_MMIE = 76,
3707 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3708 WLAN_EID_EVENT_REQUEST = 78,
3709 WLAN_EID_EVENT_REPORT = 79,
3710 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3711 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3712 WLAN_EID_LOCATION_PARAMS = 82,
3713 WLAN_EID_NON_TX_BSSID_CAP = 83,
3714 WLAN_EID_SSID_LIST = 84,
3715 WLAN_EID_MULTI_BSSID_IDX = 85,
3716 WLAN_EID_FMS_DESCRIPTOR = 86,
3717 WLAN_EID_FMS_REQUEST = 87,
3718 WLAN_EID_FMS_RESPONSE = 88,
3719 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3720 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3721 WLAN_EID_TSF_REQUEST = 91,
3722 WLAN_EID_TSF_RESPOSNE = 92,
3723 WLAN_EID_WNM_SLEEP_MODE = 93,
3724 WLAN_EID_TIM_BCAST_REQ = 94,
3725 WLAN_EID_TIM_BCAST_RESP = 95,
3726 WLAN_EID_COLL_IF_REPORT = 96,
3727 WLAN_EID_CHANNEL_USAGE = 97,
3728 WLAN_EID_TIME_ZONE = 98,
3729 WLAN_EID_DMS_REQUEST = 99,
3730 WLAN_EID_DMS_RESPONSE = 100,
3731 WLAN_EID_LINK_ID = 101,
3732 WLAN_EID_WAKEUP_SCHEDUL = 102,
3733 /* 103 reserved */
3734 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3735 WLAN_EID_PTI_CONTROL = 105,
3736 WLAN_EID_PU_BUFFER_STATUS = 106,
3737 WLAN_EID_INTERWORKING = 107,
3738 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3739 WLAN_EID_EXPEDITED_BW_REQ = 109,
3740 WLAN_EID_QOS_MAP_SET = 110,
3741 WLAN_EID_ROAMING_CONSORTIUM = 111,
3742 WLAN_EID_EMERGENCY_ALERT = 112,
3743 WLAN_EID_MESH_CONFIG = 113,
3744 WLAN_EID_MESH_ID = 114,
3745 WLAN_EID_LINK_METRIC_REPORT = 115,
3746 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3747 WLAN_EID_PEER_MGMT = 117,
3748 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3749 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3750 WLAN_EID_BEACON_TIMING = 120,
3751 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3752 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3753 WLAN_EID_MCCAOP_ADVERT = 123,
3754 WLAN_EID_MCCAOP_TEARDOWN = 124,
3755 WLAN_EID_GANN = 125,
3756 WLAN_EID_RANN = 126,
3757 WLAN_EID_EXT_CAPABILITY = 127,
3758 /* 128, 129 reserved for Agere */
3759 WLAN_EID_PREQ = 130,
3760 WLAN_EID_PREP = 131,
3761 WLAN_EID_PERR = 132,
3762 /* 133-136 reserved for Cisco */
3763 WLAN_EID_PXU = 137,
3764 WLAN_EID_PXUC = 138,
3765 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3766 WLAN_EID_MIC = 140,
3767 WLAN_EID_DESTINATION_URI = 141,
3768 WLAN_EID_UAPSD_COEX = 142,
3769 WLAN_EID_WAKEUP_SCHEDULE = 143,
3770 WLAN_EID_EXT_SCHEDULE = 144,
3771 WLAN_EID_STA_AVAILABILITY = 145,
3772 WLAN_EID_DMG_TSPEC = 146,
3773 WLAN_EID_DMG_AT = 147,
3774 WLAN_EID_DMG_CAP = 148,
3775 /* 149 reserved for Cisco */
3776 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3777 WLAN_EID_DMG_OPERATION = 151,
3778 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3779 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3780 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3781 /* 155-156 reserved for Cisco */
3782 WLAN_EID_AWAKE_WINDOW = 157,
3783 WLAN_EID_MULTI_BAND = 158,
3784 WLAN_EID_ADDBA_EXT = 159,
3785 WLAN_EID_NEXT_PCP_LIST = 160,
3786 WLAN_EID_PCP_HANDOVER = 161,
3787 WLAN_EID_DMG_LINK_MARGIN = 162,
3788 WLAN_EID_SWITCHING_STREAM = 163,
3789 WLAN_EID_SESSION_TRANSITION = 164,
3790 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3791 WLAN_EID_CLUSTER_REPORT = 166,
3792 WLAN_EID_RELAY_CAP = 167,
3793 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3794 WLAN_EID_BEAM_LINK_MAINT = 169,
3795 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3796 WLAN_EID_U_PID = 171,
3797 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3798 /* 173 reserved for Symbol */
3799 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3800 WLAN_EID_QUIET_PERIOD_REQ = 175,
3801 /* 176 reserved for Symbol */
3802 WLAN_EID_QUIET_PERIOD_RESP = 177,
3803 /* 178-179 reserved for Symbol */
3804 /* 180 reserved for ISO/IEC 20011 */
3805 WLAN_EID_EPAC_POLICY = 182,
3806 WLAN_EID_CLISTER_TIME_OFF = 183,
3807 WLAN_EID_INTER_AC_PRIO = 184,
3808 WLAN_EID_SCS_DESCRIPTOR = 185,
3809 WLAN_EID_QLOAD_REPORT = 186,
3810 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3811 WLAN_EID_HL_STREAM_ID = 188,
3812 WLAN_EID_GCR_GROUP_ADDR = 189,
3813 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3814 WLAN_EID_VHT_CAPABILITY = 191,
3815 WLAN_EID_VHT_OPERATION = 192,
3816 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3817 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3818 WLAN_EID_TX_POWER_ENVELOPE = 195,
3819 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3820 WLAN_EID_AID = 197,
3821 WLAN_EID_QUIET_CHANNEL = 198,
3822 WLAN_EID_OPMODE_NOTIF = 199,
3823
3824 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3825
3826 WLAN_EID_AID_REQUEST = 210,
3827 WLAN_EID_AID_RESPONSE = 211,
3828 WLAN_EID_S1G_BCN_COMPAT = 213,
3829 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3830 WLAN_EID_S1G_TWT = 216,
3831 WLAN_EID_S1G_CAPABILITIES = 217,
3832 WLAN_EID_VENDOR_SPECIFIC = 221,
3833 WLAN_EID_QOS_PARAMETER = 222,
3834 WLAN_EID_S1G_OPERATION = 232,
3835 WLAN_EID_CAG_NUMBER = 237,
3836 WLAN_EID_AP_CSN = 239,
3837 WLAN_EID_FILS_INDICATION = 240,
3838 WLAN_EID_DILS = 241,
3839 WLAN_EID_FRAGMENT = 242,
3840 WLAN_EID_RSNX = 244,
3841 WLAN_EID_EXTENSION = 255
3842 };
3843
3844 /* Element ID Extensions for Element ID 255 */
3845 enum ieee80211_eid_ext {
3846 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3847 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3848 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3849 WLAN_EID_EXT_FILS_SESSION = 4,
3850 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3851 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3852 WLAN_EID_EXT_KEY_DELIVERY = 7,
3853 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3854 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3855 WLAN_EID_EXT_FILS_NONCE = 13,
3856 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3857 WLAN_EID_EXT_DH_PARAMETER = 32,
3858 WLAN_EID_EXT_HE_CAPABILITY = 35,
3859 WLAN_EID_EXT_HE_OPERATION = 36,
3860 WLAN_EID_EXT_UORA = 37,
3861 WLAN_EID_EXT_HE_MU_EDCA = 38,
3862 WLAN_EID_EXT_HE_SPR = 39,
3863 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3864 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3865 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3866 WLAN_EID_EXT_ESS_REPORT = 45,
3867 WLAN_EID_EXT_OPS = 46,
3868 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3869 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3870 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3871 WLAN_EID_EXT_NON_INHERITANCE = 56,
3872 WLAN_EID_EXT_KNOWN_BSSID = 57,
3873 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3874 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3875 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3876 WLAN_EID_EXT_EHT_OPERATION = 106,
3877 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3878 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3879 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3880 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3881 WLAN_EID_EXT_KNOWN_STA_IDENTIFCATION = 136,
3882 WLAN_EID_EXT_NON_AP_STA_REG_CON = 137,
3883 };
3884
3885 /* Action category code */
3886 enum ieee80211_category {
3887 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3888 WLAN_CATEGORY_QOS = 1,
3889 WLAN_CATEGORY_DLS = 2,
3890 WLAN_CATEGORY_BACK = 3,
3891 WLAN_CATEGORY_PUBLIC = 4,
3892 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3893 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3894 WLAN_CATEGORY_HT = 7,
3895 WLAN_CATEGORY_SA_QUERY = 8,
3896 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3897 WLAN_CATEGORY_WNM = 10,
3898 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3899 WLAN_CATEGORY_TDLS = 12,
3900 WLAN_CATEGORY_MESH_ACTION = 13,
3901 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3902 WLAN_CATEGORY_SELF_PROTECTED = 15,
3903 WLAN_CATEGORY_DMG = 16,
3904 WLAN_CATEGORY_WMM = 17,
3905 WLAN_CATEGORY_FST = 18,
3906 WLAN_CATEGORY_UNPROT_DMG = 20,
3907 WLAN_CATEGORY_VHT = 21,
3908 WLAN_CATEGORY_S1G = 22,
3909 WLAN_CATEGORY_PROTECTED_EHT = 37,
3910 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3911 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3912 };
3913
3914 /* SPECTRUM_MGMT action code */
3915 enum ieee80211_spectrum_mgmt_actioncode {
3916 WLAN_ACTION_SPCT_MSR_REQ = 0,
3917 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3918 WLAN_ACTION_SPCT_TPC_REQ = 2,
3919 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3920 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3921 };
3922
3923 /* HT action codes */
3924 enum ieee80211_ht_actioncode {
3925 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3926 WLAN_HT_ACTION_SMPS = 1,
3927 WLAN_HT_ACTION_PSMP = 2,
3928 WLAN_HT_ACTION_PCO_PHASE = 3,
3929 WLAN_HT_ACTION_CSI = 4,
3930 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3931 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3932 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3933 };
3934
3935 /* VHT action codes */
3936 enum ieee80211_vht_actioncode {
3937 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3938 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3939 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3940 };
3941
3942 /* Self Protected Action codes */
3943 enum ieee80211_self_protected_actioncode {
3944 WLAN_SP_RESERVED = 0,
3945 WLAN_SP_MESH_PEERING_OPEN = 1,
3946 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3947 WLAN_SP_MESH_PEERING_CLOSE = 3,
3948 WLAN_SP_MGK_INFORM = 4,
3949 WLAN_SP_MGK_ACK = 5,
3950 };
3951
3952 /* Mesh action codes */
3953 enum ieee80211_mesh_actioncode {
3954 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3955 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3956 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3957 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3958 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3959 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3960 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3961 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3962 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3963 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3964 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3965 };
3966
3967 /* Unprotected WNM action codes */
3968 enum ieee80211_unprotected_wnm_actioncode {
3969 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3970 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3971 };
3972
3973 /* Protected EHT action codes */
3974 enum ieee80211_protected_eht_actioncode {
3975 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3976 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3977 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3978 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
3979 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
3980 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
3981 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
3982 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
3983 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
3984 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
3985 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
3986 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
3987 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
3988 };
3989
3990 /* Security key length */
3991 enum ieee80211_key_len {
3992 WLAN_KEY_LEN_WEP40 = 5,
3993 WLAN_KEY_LEN_WEP104 = 13,
3994 WLAN_KEY_LEN_CCMP = 16,
3995 WLAN_KEY_LEN_CCMP_256 = 32,
3996 WLAN_KEY_LEN_TKIP = 32,
3997 WLAN_KEY_LEN_AES_CMAC = 16,
3998 WLAN_KEY_LEN_SMS4 = 32,
3999 WLAN_KEY_LEN_GCMP = 16,
4000 WLAN_KEY_LEN_GCMP_256 = 32,
4001 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
4002 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
4003 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
4004 };
4005
4006 enum ieee80211_s1g_actioncode {
4007 WLAN_S1G_AID_SWITCH_REQUEST,
4008 WLAN_S1G_AID_SWITCH_RESPONSE,
4009 WLAN_S1G_SYNC_CONTROL,
4010 WLAN_S1G_STA_INFO_ANNOUNCE,
4011 WLAN_S1G_EDCA_PARAM_SET,
4012 WLAN_S1G_EL_OPERATION,
4013 WLAN_S1G_TWT_SETUP,
4014 WLAN_S1G_TWT_TEARDOWN,
4015 WLAN_S1G_SECT_GROUP_ID_LIST,
4016 WLAN_S1G_SECT_ID_FEEDBACK,
4017 WLAN_S1G_TWT_INFORMATION = 11,
4018 };
4019
4020 /* Radio measurement action codes as defined in IEEE 802.11-2024 - Table 9-470 */
4021 enum ieee80211_radio_measurement_actioncode {
4022 WLAN_RM_ACTION_RADIO_MEASUREMENT_REQUEST = 0,
4023 WLAN_RM_ACTION_RADIO_MEASUREMENT_REPORT = 1,
4024 WLAN_RM_ACTION_LINK_MEASUREMENT_REQUEST = 2,
4025 WLAN_RM_ACTION_LINK_MEASUREMENT_REPORT = 3,
4026 WLAN_RM_ACTION_NEIGHBOR_REPORT_REQUEST = 4,
4027 WLAN_RM_ACTION_NEIGHBOR_REPORT_RESPONSE = 5,
4028 };
4029
4030 #define IEEE80211_WEP_IV_LEN 4
4031 #define IEEE80211_WEP_ICV_LEN 4
4032 #define IEEE80211_CCMP_HDR_LEN 8
4033 #define IEEE80211_CCMP_MIC_LEN 8
4034 #define IEEE80211_CCMP_PN_LEN 6
4035 #define IEEE80211_CCMP_256_HDR_LEN 8
4036 #define IEEE80211_CCMP_256_MIC_LEN 16
4037 #define IEEE80211_CCMP_256_PN_LEN 6
4038 #define IEEE80211_TKIP_IV_LEN 8
4039 #define IEEE80211_TKIP_ICV_LEN 4
4040 #define IEEE80211_CMAC_PN_LEN 6
4041 #define IEEE80211_GMAC_PN_LEN 6
4042 #define IEEE80211_GCMP_HDR_LEN 8
4043 #define IEEE80211_GCMP_MIC_LEN 16
4044 #define IEEE80211_GCMP_PN_LEN 6
4045
4046 #define FILS_NONCE_LEN 16
4047 #define FILS_MAX_KEK_LEN 64
4048
4049 #define FILS_ERP_MAX_USERNAME_LEN 16
4050 #define FILS_ERP_MAX_REALM_LEN 253
4051 #define FILS_ERP_MAX_RRK_LEN 64
4052
4053 #define PMK_MAX_LEN 64
4054 #define SAE_PASSWORD_MAX_LEN 128
4055
4056 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
4057 enum ieee80211_pub_actioncode {
4058 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
4059 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
4060 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
4061 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
4062 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
4063 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
4064 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
4065 WLAN_PUB_ACTION_MSMT_PILOT = 7,
4066 WLAN_PUB_ACTION_DSE_PC = 8,
4067 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4068 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4069 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4070 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4071 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4072 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4073 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4074 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4075 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4076 WLAN_PUB_ACTION_QMF_POLICY = 18,
4077 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4078 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4079 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4080 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4081 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4082 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4083 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4084 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4085 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4086 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4087 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4088 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4089 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4090 WLAN_PUB_ACTION_FTM_REQUEST = 32,
4091 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4092 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4093 };
4094
4095 /* TDLS action codes */
4096 enum ieee80211_tdls_actioncode {
4097 WLAN_TDLS_SETUP_REQUEST = 0,
4098 WLAN_TDLS_SETUP_RESPONSE = 1,
4099 WLAN_TDLS_SETUP_CONFIRM = 2,
4100 WLAN_TDLS_TEARDOWN = 3,
4101 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4102 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4103 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4104 WLAN_TDLS_PEER_PSM_REQUEST = 7,
4105 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4106 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4107 WLAN_TDLS_DISCOVERY_REQUEST = 10,
4108 };
4109
4110 /* Extended Channel Switching capability to be set in the 1st byte of
4111 * the @WLAN_EID_EXT_CAPABILITY information element
4112 */
4113 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
4114
4115 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4116 * @WLAN_EID_EXT_CAPABILITY information element
4117 */
4118 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
4119
4120 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4121 * of the @WLAN_EID_EXT_CAPABILITY information element
4122 */
4123 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
4124
4125 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4126 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
4127 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
4128 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
4129
4130 /* Interworking capabilities are set in 7th bit of 4th byte of the
4131 * @WLAN_EID_EXT_CAPABILITY information element
4132 */
4133 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
4134
4135 /*
4136 * TDLS capabililites to be enabled in the 5th byte of the
4137 * @WLAN_EID_EXT_CAPABILITY information element
4138 */
4139 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
4140 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
4141 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
4142
4143 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
4144 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
4145
4146 /* Defines the maximal number of MSDUs in an A-MSDU. */
4147 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
4148 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
4149
4150 /*
4151 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4152 * information element
4153 */
4154 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
4155
4156 /* Defines support for TWT Requester and TWT Responder */
4157 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
4158 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
4159
4160 /*
4161 * When set, indicates that the AP is able to tolerate 26-tone RU UL
4162 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4163 * 26-tone RU UL OFDMA transmissions as radar pulses).
4164 */
4165 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4166
4167 /* Defines support for enhanced multi-bssid advertisement*/
4168 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
4169
4170 /* Enable Beacon Protection */
4171 #define WLAN_EXT_CAPA11_BCN_PROTECT BIT(4)
4172
4173 /* TDLS specific payload type in the LLC/SNAP header */
4174 #define WLAN_TDLS_SNAP_RFTYPE 0x2
4175
4176 /* BSS Coex IE information field bits */
4177 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
4178
4179 /**
4180 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4181 *
4182 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4183 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4184 * that will be specified in a vendor specific information element
4185 */
4186 enum ieee80211_mesh_sync_method {
4187 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4188 IEEE80211_SYNC_METHOD_VENDOR = 255,
4189 };
4190
4191 /**
4192 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4193 *
4194 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4195 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4196 * be specified in a vendor specific information element
4197 */
4198 enum ieee80211_mesh_path_protocol {
4199 IEEE80211_PATH_PROTOCOL_HWMP = 1,
4200 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4201 };
4202
4203 /**
4204 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4205 *
4206 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4207 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4208 * specified in a vendor specific information element
4209 */
4210 enum ieee80211_mesh_path_metric {
4211 IEEE80211_PATH_METRIC_AIRTIME = 1,
4212 IEEE80211_PATH_METRIC_VENDOR = 255,
4213 };
4214
4215 /**
4216 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4217 *
4218 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4219 *
4220 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4221 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4222 * this value
4223 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4224 * the proactive PREQ with proactive PREP subfield set to 0
4225 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4226 * supports the proactive PREQ with proactive PREP subfield set to 1
4227 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4228 * the proactive RANN
4229 */
4230 enum ieee80211_root_mode_identifier {
4231 IEEE80211_ROOTMODE_NO_ROOT = 0,
4232 IEEE80211_ROOTMODE_ROOT = 1,
4233 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4234 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4235 IEEE80211_PROACTIVE_RANN = 4,
4236 };
4237
4238 /*
4239 * IEEE 802.11-2007 7.3.2.9 Country information element
4240 *
4241 * Minimum length is 8 octets, ie len must be evenly
4242 * divisible by 2
4243 */
4244
4245 /* Although the spec says 8 I'm seeing 6 in practice */
4246 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
4247
4248 /* The Country String field of the element shall be 3 octets in length */
4249 #define IEEE80211_COUNTRY_STRING_LEN 3
4250
4251 /*
4252 * For regulatory extension stuff see IEEE 802.11-2007
4253 * Annex I (page 1141) and Annex J (page 1147). Also
4254 * review 7.3.2.9.
4255 *
4256 * When dot11RegulatoryClassesRequired is true and the
4257 * first_channel/reg_extension_id is >= 201 then the IE
4258 * compromises of the 'ext' struct represented below:
4259 *
4260 * - Regulatory extension ID - when generating IE this just needs
4261 * to be monotonically increasing for each triplet passed in
4262 * the IE
4263 * - Regulatory class - index into set of rules
4264 * - Coverage class - index into air propagation time (Table 7-27),
4265 * in microseconds, you can compute the air propagation time from
4266 * the index by multiplying by 3, so index 10 yields a propagation
4267 * of 10 us. Valid values are 0-31, values 32-255 are not defined
4268 * yet. A value of 0 inicates air propagation of <= 1 us.
4269 *
4270 * See also Table I.2 for Emission limit sets and table
4271 * I.3 for Behavior limit sets. Table J.1 indicates how to map
4272 * a reg_class to an emission limit set and behavior limit set.
4273 */
4274 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4275
4276 /*
4277 * Channels numbers in the IE must be monotonically increasing
4278 * if dot11RegulatoryClassesRequired is not true.
4279 *
4280 * If dot11RegulatoryClassesRequired is true consecutive
4281 * subband triplets following a regulatory triplet shall
4282 * have monotonically increasing first_channel number fields.
4283 *
4284 * Channel numbers shall not overlap.
4285 *
4286 * Note that max_power is signed.
4287 */
4288 struct ieee80211_country_ie_triplet {
4289 union {
4290 struct {
4291 u8 first_channel;
4292 u8 num_channels;
4293 s8 max_power;
4294 } __packed chans;
4295 struct {
4296 u8 reg_extension_id;
4297 u8 reg_class;
4298 u8 coverage_class;
4299 } __packed ext;
4300 };
4301 } __packed;
4302
4303 enum ieee80211_timeout_interval_type {
4304 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4305 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4306 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4307 };
4308
4309 /**
4310 * struct ieee80211_timeout_interval_ie - Timeout Interval element
4311 * @type: type, see &enum ieee80211_timeout_interval_type
4312 * @value: timeout interval value
4313 */
4314 struct ieee80211_timeout_interval_ie {
4315 u8 type;
4316 __le32 value;
4317 } __packed;
4318
4319 /**
4320 * enum ieee80211_idle_options - BSS idle options
4321 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4322 * protected frame to the AP to reset the idle timer at the AP for
4323 * the station.
4324 */
4325 enum ieee80211_idle_options {
4326 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4327 };
4328
4329 /**
4330 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4331 *
4332 * This structure refers to "BSS Max idle period element"
4333 *
4334 * @max_idle_period: indicates the time period during which a station can
4335 * refrain from transmitting frames to its associated AP without being
4336 * disassociated. In units of 1000 TUs.
4337 * @idle_options: indicates the options associated with the BSS idle capability
4338 * as specified in &enum ieee80211_idle_options.
4339 */
4340 struct ieee80211_bss_max_idle_period_ie {
4341 __le16 max_idle_period;
4342 u8 idle_options;
4343 } __packed;
4344
4345 /* BACK action code */
4346 enum ieee80211_back_actioncode {
4347 WLAN_ACTION_ADDBA_REQ = 0,
4348 WLAN_ACTION_ADDBA_RESP = 1,
4349 WLAN_ACTION_DELBA = 2,
4350 };
4351
4352 /* BACK (block-ack) parties */
4353 enum ieee80211_back_parties {
4354 WLAN_BACK_RECIPIENT = 0,
4355 WLAN_BACK_INITIATOR = 1,
4356 };
4357
4358 /* SA Query action */
4359 enum ieee80211_sa_query_action {
4360 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4361 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4362 };
4363
4364 /**
4365 * struct ieee80211_bssid_index - multiple BSSID index element structure
4366 *
4367 * This structure refers to "Multiple BSSID-index element"
4368 *
4369 * @bssid_index: BSSID index
4370 * @dtim_period: optional, overrides transmitted BSS dtim period
4371 * @dtim_count: optional, overrides transmitted BSS dtim count
4372 */
4373 struct ieee80211_bssid_index {
4374 u8 bssid_index;
4375 u8 dtim_period;
4376 u8 dtim_count;
4377 };
4378
4379 /**
4380 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4381 * element structure
4382 *
4383 * This structure refers to "Multiple BSSID Configuration element"
4384 *
4385 * @bssid_count: total number of active BSSIDs in the set
4386 * @profile_periodicity: the least number of beacon frames need to be received
4387 * in order to discover all the nontransmitted BSSIDs in the set.
4388 */
4389 struct ieee80211_multiple_bssid_configuration {
4390 u8 bssid_count;
4391 u8 profile_periodicity;
4392 };
4393
4394 #define SUITE(oui, id) (((oui) << 8) | (id))
4395
4396 /* cipher suite selectors */
4397 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4398 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4399 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4400 /* reserved: SUITE(0x000FAC, 3) */
4401 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4402 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4403 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4404 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4405 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4406 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4407 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4408 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4409 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4410
4411 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4412
4413 /* AKM suite selectors */
4414 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4415 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4416 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4417 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4418 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4419 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4420 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4421 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4422 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4423 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4424 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4425 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4426 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4427 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4428 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4429 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4430 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4431 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4432 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4433 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4434
4435 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4436
4437 #define WLAN_MAX_KEY_LEN 32
4438
4439 #define WLAN_PMK_NAME_LEN 16
4440 #define WLAN_PMKID_LEN 16
4441 #define WLAN_PMK_LEN_EAP_LEAP 16
4442 #define WLAN_PMK_LEN 32
4443 #define WLAN_PMK_LEN_SUITE_B_192 48
4444
4445 #define WLAN_OUI_WFA 0x506f9a
4446 #define WLAN_OUI_TYPE_WFA_P2P 9
4447 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4448 #define WLAN_OUI_MICROSOFT 0x0050f2
4449 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4450 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4451 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4452 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4453
4454 /*
4455 * WMM/802.11e Tspec Element
4456 */
4457 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4458 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4459
4460 enum ieee80211_tspec_status_code {
4461 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4462 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4463 };
4464
4465 struct ieee80211_tspec_ie {
4466 u8 element_id;
4467 u8 len;
4468 u8 oui[3];
4469 u8 oui_type;
4470 u8 oui_subtype;
4471 u8 version;
4472 __le16 tsinfo;
4473 u8 tsinfo_resvd;
4474 __le16 nominal_msdu;
4475 __le16 max_msdu;
4476 __le32 min_service_int;
4477 __le32 max_service_int;
4478 __le32 inactivity_int;
4479 __le32 suspension_int;
4480 __le32 service_start_time;
4481 __le32 min_data_rate;
4482 __le32 mean_data_rate;
4483 __le32 peak_data_rate;
4484 __le32 max_burst_size;
4485 __le32 delay_bound;
4486 __le32 min_phy_rate;
4487 __le16 sba;
4488 __le16 medium_time;
4489 } __packed;
4490
4491 struct ieee80211_he_6ghz_capa {
4492 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4493 __le16 capa;
4494 } __packed;
4495
4496 /* HE 6 GHz band capabilities */
4497 /* uses enum ieee80211_min_mpdu_spacing values */
4498 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4499 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4500 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4501 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4502 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4503 /* WLAN_HT_CAP_SM_PS_* values */
4504 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4505 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4506 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4507 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4508
4509 /**
4510 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4511 * @hdr: the frame
4512 * Return: a pointer to the QoS control field in the frame header
4513 *
4514 * The qos ctrl bytes come after the frame_control, duration, seq_num
4515 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4516 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4517 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4518 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4519 {
4520 union {
4521 struct ieee80211_qos_hdr addr3;
4522 struct ieee80211_qos_hdr_4addr addr4;
4523 } *qos;
4524
4525 qos = (void *)hdr;
4526 if (ieee80211_has_a4(qos->addr3.frame_control))
4527 return (u8 *)&qos->addr4.qos_ctrl;
4528 else
4529 return (u8 *)&qos->addr3.qos_ctrl;
4530 }
4531
4532 /**
4533 * ieee80211_get_tid - get qos TID
4534 * @hdr: the frame
4535 * Return: the TID from the QoS control field
4536 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4537 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4538 {
4539 u8 *qc = ieee80211_get_qos_ctl(hdr);
4540
4541 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4542 }
4543
4544 /**
4545 * ieee80211_get_SA - get pointer to SA
4546 * @hdr: the frame
4547 * Return: a pointer to the source address (SA)
4548 *
4549 * Given an 802.11 frame, this function returns the offset
4550 * to the source address (SA). It does not verify that the
4551 * header is long enough to contain the address, and the
4552 * header must be long enough to contain the frame control
4553 * field.
4554 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4555 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4556 {
4557 if (ieee80211_has_a4(hdr->frame_control))
4558 return hdr->addr4;
4559 if (ieee80211_has_fromds(hdr->frame_control))
4560 return hdr->addr3;
4561 return hdr->addr2;
4562 }
4563
4564 /**
4565 * ieee80211_get_DA - get pointer to DA
4566 * @hdr: the frame
4567 * Return: a pointer to the destination address (DA)
4568 *
4569 * Given an 802.11 frame, this function returns the offset
4570 * to the destination address (DA). It does not verify that
4571 * the header is long enough to contain the address, and the
4572 * header must be long enough to contain the frame control
4573 * field.
4574 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4575 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4576 {
4577 if (ieee80211_has_tods(hdr->frame_control))
4578 return hdr->addr3;
4579 else
4580 return hdr->addr1;
4581 }
4582
4583 /**
4584 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4585 * @skb: the skb to check, starting with the 802.11 header
4586 * Return: whether or not the MMPDU is bufferable
4587 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4588 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4589 {
4590 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4591 __le16 fc = mgmt->frame_control;
4592
4593 /*
4594 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4595 * note that this ignores the IBSS special case.
4596 */
4597 if (!ieee80211_is_mgmt(fc))
4598 return false;
4599
4600 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4601 return true;
4602
4603 if (!ieee80211_is_action(fc))
4604 return false;
4605
4606 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4607 return true;
4608
4609 /* action frame - additionally check for non-bufferable FTM */
4610
4611 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4612 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4613 return true;
4614
4615 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4616 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4617 return false;
4618
4619 return true;
4620 }
4621
4622 /**
4623 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4624 * @hdr: the frame (buffer must include at least the first octet of payload)
4625 * Return: whether or not the frame is a robust management frame
4626 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4627 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4628 {
4629 if (ieee80211_is_disassoc(hdr->frame_control) ||
4630 ieee80211_is_deauth(hdr->frame_control))
4631 return true;
4632
4633 if (ieee80211_is_action(hdr->frame_control)) {
4634 u8 *category;
4635
4636 /*
4637 * Action frames, excluding Public Action frames, are Robust
4638 * Management Frames. However, if we are looking at a Protected
4639 * frame, skip the check since the data may be encrypted and
4640 * the frame has already been found to be a Robust Management
4641 * Frame (by the other end).
4642 */
4643 if (ieee80211_has_protected(hdr->frame_control))
4644 return true;
4645 category = ((u8 *) hdr) + 24;
4646 return *category != WLAN_CATEGORY_PUBLIC &&
4647 *category != WLAN_CATEGORY_HT &&
4648 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4649 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4650 *category != WLAN_CATEGORY_UNPROT_DMG &&
4651 *category != WLAN_CATEGORY_VHT &&
4652 *category != WLAN_CATEGORY_S1G &&
4653 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4654 }
4655
4656 return false;
4657 }
4658
4659 /**
4660 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4661 * @skb: the skb containing the frame, length will be checked
4662 * Return: whether or not the frame is a robust management frame
4663 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4664 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4665 {
4666 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4667 return false;
4668 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4669 }
4670
4671 /**
4672 * ieee80211_is_public_action - check if frame is a public action frame
4673 * @hdr: the frame
4674 * @len: length of the frame
4675 * Return: whether or not the frame is a public action frame
4676 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4677 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4678 size_t len)
4679 {
4680 struct ieee80211_mgmt *mgmt = (void *)hdr;
4681
4682 if (len < IEEE80211_MIN_ACTION_SIZE)
4683 return false;
4684 if (!ieee80211_is_action(hdr->frame_control))
4685 return false;
4686 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4687 }
4688
4689 /**
4690 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4691 * protected dual of public action management frame
4692 * @skb: the skb containing the frame, length will be checked
4693 *
4694 * Return: true if the skb contains a protected dual of public action
4695 * management frame, false otherwise.
4696 */
4697 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4698 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4699 {
4700 u8 action;
4701
4702 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4703 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4704 return false;
4705
4706 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4707
4708 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4709 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4710 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4711 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4712 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4713 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4714 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4715 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4716 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4717 }
4718
4719 /**
4720 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4721 * privacy action frame
4722 * @hdr: the frame
4723 * Return: whether or not the frame is a group addressed privacy action frame
4724 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4725 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4726 {
4727 struct ieee80211_mgmt *mgmt = (void *)hdr;
4728
4729 if (!ieee80211_is_action(hdr->frame_control) ||
4730 !is_multicast_ether_addr(hdr->addr1))
4731 return false;
4732
4733 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4734 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4735 }
4736
4737 /**
4738 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4739 * privacy action frame
4740 * @skb: the skb containing the frame, length will be checked
4741 * Return: whether or not the frame is a group addressed privacy action frame
4742 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4743 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4744 {
4745 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4746 return false;
4747 return _ieee80211_is_group_privacy_action((void *)skb->data);
4748 }
4749
4750 /**
4751 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4752 * @tu: the TUs
4753 * Return: the time value converted to microseconds
4754 */
ieee80211_tu_to_usec(unsigned long tu)4755 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4756 {
4757 return 1024 * tu;
4758 }
4759
4760 /**
4761 * ieee80211_check_tim - check if AID bit is set in TIM
4762 * @tim: the TIM IE
4763 * @tim_len: length of the TIM IE
4764 * @aid: the AID to look for
4765 * Return: whether or not traffic is indicated in the TIM for the given AID
4766 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4767 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4768 u8 tim_len, u16 aid)
4769 {
4770 u8 mask;
4771 u8 index, indexn1, indexn2;
4772
4773 if (unlikely(!tim || tim_len < sizeof(*tim)))
4774 return false;
4775
4776 aid &= 0x3fff;
4777 index = aid / 8;
4778 mask = 1 << (aid & 7);
4779
4780 indexn1 = tim->bitmap_ctrl & 0xfe;
4781 indexn2 = tim_len + indexn1 - 4;
4782
4783 if (index < indexn1 || index > indexn2)
4784 return false;
4785
4786 index -= indexn1;
4787
4788 return !!(tim->virtual_map[index] & mask);
4789 }
4790
4791 /**
4792 * ieee80211_get_tdls_action - get TDLS action code
4793 * @skb: the skb containing the frame, length will not be checked
4794 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4795 * frame
4796 *
4797 * This function assumes the frame is a data frame, and that the network header
4798 * is in the correct place.
4799 */
ieee80211_get_tdls_action(struct sk_buff * skb)4800 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4801 {
4802 if (!skb_is_nonlinear(skb) &&
4803 skb->len > (skb_network_offset(skb) + 2)) {
4804 /* Point to where the indication of TDLS should start */
4805 const u8 *tdls_data = skb_network_header(skb) - 2;
4806
4807 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4808 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4809 tdls_data[3] == WLAN_CATEGORY_TDLS)
4810 return tdls_data[4];
4811 }
4812
4813 return -1;
4814 }
4815
4816 /* convert time units */
4817 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4818 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4819
4820 /* convert frequencies */
4821 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4822 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4823 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4824 #define KHZ_F "%d.%03d"
4825
4826 /* convert powers */
4827 #define DBI_TO_MBI(gain) ((gain) * 100)
4828 #define MBI_TO_DBI(gain) ((gain) / 100)
4829 #define DBM_TO_MBM(gain) ((gain) * 100)
4830 #define MBM_TO_DBM(gain) ((gain) / 100)
4831
4832 /**
4833 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4834 * @skb: the skb containing the frame, length will be checked
4835 * Return: %true if the frame contains a TPC element, %false otherwise
4836 *
4837 * This function checks if it's either TPC report action frame or Link
4838 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4839 * and 8.5.7.5 accordingly.
4840 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4841 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4842 {
4843 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4844
4845 if (!ieee80211_is_action(mgmt->frame_control))
4846 return false;
4847
4848 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4849 sizeof(mgmt->u.action.u.tpc_report))
4850 return false;
4851
4852 /*
4853 * TPC report - check that:
4854 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4855 * spectrum management action = 3 (TPC/Link Measurement report)
4856 * TPC report EID = 35
4857 * TPC report element length = 2
4858 *
4859 * The spectrum management's tpc_report struct is used here both for
4860 * parsing tpc_report and radio measurement's link measurement report
4861 * frame, since the relevant part is identical in both frames.
4862 */
4863 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4864 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4865 return false;
4866
4867 /* both spectrum mgmt and link measurement have same action code */
4868 if (mgmt->u.action.u.tpc_report.action_code !=
4869 WLAN_ACTION_SPCT_TPC_RPRT)
4870 return false;
4871
4872 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4873 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4874 sizeof(struct ieee80211_tpc_report_ie))
4875 return false;
4876
4877 return true;
4878 }
4879
4880 /**
4881 * ieee80211_is_timing_measurement - check if frame is timing measurement response
4882 * @skb: the SKB to check
4883 * Return: whether or not the frame is a valid timing measurement response
4884 */
ieee80211_is_timing_measurement(struct sk_buff * skb)4885 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4886 {
4887 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4888
4889 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4890 return false;
4891
4892 if (!ieee80211_is_action(mgmt->frame_control))
4893 return false;
4894
4895 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4896 mgmt->u.action.u.wnm_timing_msr.action_code ==
4897 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4898 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4899 return true;
4900
4901 return false;
4902 }
4903
4904 /**
4905 * ieee80211_is_ftm - check if frame is FTM response
4906 * @skb: the SKB to check
4907 * Return: whether or not the frame is a valid FTM response action frame
4908 */
ieee80211_is_ftm(struct sk_buff * skb)4909 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4910 {
4911 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4912
4913 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4914 return false;
4915
4916 if (mgmt->u.action.u.ftm.action_code ==
4917 WLAN_PUB_ACTION_FTM_RESPONSE &&
4918 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4919 return true;
4920
4921 return false;
4922 }
4923
4924 /**
4925 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
4926 * @fc: frame control bytes in little-endian byteorder
4927 * @variable: pointer to the beacon frame elements
4928 * @variable_len: length of the frame elements
4929 * Return: whether or not the frame is an S1G short beacon. As per
4930 * IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall
4931 * always be present as the first element in beacon frames generated at a
4932 * TBTT (Target Beacon Transmission Time), so any frame not containing
4933 * this element must have been generated at a TSBTT (Target Short Beacon
4934 * Transmission Time) that is not a TBTT. Additionally, short beacons are
4935 * prohibited from containing the S1G beacon compatibility element as per
4936 * IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with
4937 * either no elements or the first element is not the beacon compatibility
4938 * element, we have a short beacon.
4939 */
ieee80211_is_s1g_short_beacon(__le16 fc,const u8 * variable,size_t variable_len)4940 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable,
4941 size_t variable_len)
4942 {
4943 if (!ieee80211_is_s1g_beacon(fc))
4944 return false;
4945
4946 /*
4947 * If the frame does not contain at least 1 element (this is perfectly
4948 * valid in a short beacon) and is an S1G beacon, we have a short
4949 * beacon.
4950 */
4951 if (variable_len < 2)
4952 return true;
4953
4954 return variable[0] != WLAN_EID_S1G_BCN_COMPAT;
4955 }
4956
4957 struct element {
4958 u8 id;
4959 u8 datalen;
4960 u8 data[];
4961 } __packed;
4962
4963 /* element iteration helpers */
4964 #define for_each_element(_elem, _data, _datalen) \
4965 for (_elem = (const struct element *)(_data); \
4966 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4967 (int)sizeof(*_elem) && \
4968 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4969 (int)sizeof(*_elem) + _elem->datalen; \
4970 _elem = (const struct element *)(_elem->data + _elem->datalen))
4971
4972 #define for_each_element_id(element, _id, data, datalen) \
4973 for_each_element(element, data, datalen) \
4974 if (element->id == (_id))
4975
4976 #define for_each_element_extid(element, extid, _data, _datalen) \
4977 for_each_element(element, _data, _datalen) \
4978 if (element->id == WLAN_EID_EXTENSION && \
4979 element->datalen > 0 && \
4980 element->data[0] == (extid))
4981
4982 #define for_each_subelement(sub, element) \
4983 for_each_element(sub, (element)->data, (element)->datalen)
4984
4985 #define for_each_subelement_id(sub, id, element) \
4986 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4987
4988 #define for_each_subelement_extid(sub, extid, element) \
4989 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4990
4991 /**
4992 * for_each_element_completed - determine if element parsing consumed all data
4993 * @element: element pointer after for_each_element() or friends
4994 * @data: same data pointer as passed to for_each_element() or friends
4995 * @datalen: same data length as passed to for_each_element() or friends
4996 * Return: %true if all elements were iterated, %false otherwise; see notes
4997 *
4998 * This function returns %true if all the data was parsed or considered
4999 * while walking the elements. Only use this if your for_each_element()
5000 * loop cannot be broken out of, otherwise it always returns %false.
5001 *
5002 * If some data was malformed, this returns %false since the last parsed
5003 * element will not fill the whole remaining data.
5004 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)5005 static inline bool for_each_element_completed(const struct element *element,
5006 const void *data, size_t datalen)
5007 {
5008 return (const u8 *)element == (const u8 *)data + datalen;
5009 }
5010
5011 /*
5012 * RSNX Capabilities:
5013 * bits 0-3: Field length (n-1)
5014 */
5015 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
5016 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
5017
5018 /*
5019 * reduced neighbor report, based on Draft P802.11ax_D6.1,
5020 * section 9.4.2.170 and accepted contributions.
5021 */
5022 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
5023 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
5024 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
5025 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
5026 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
5027 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
5028
5029 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
5030 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
5031 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
5032 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
5033 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
5034 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
5035 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
5036
5037 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
5038 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
5039
5040 struct ieee80211_neighbor_ap_info {
5041 u8 tbtt_info_hdr;
5042 u8 tbtt_info_len;
5043 u8 op_class;
5044 u8 channel;
5045 } __packed;
5046
5047 enum ieee80211_range_params_max_total_ltf {
5048 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
5049 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
5050 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
5051 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
5052 };
5053
5054 /*
5055 * reduced neighbor report, based on Draft P802.11be_D3.0,
5056 * section 9.4.2.170.2.
5057 */
5058 struct ieee80211_rnr_mld_params {
5059 u8 mld_id;
5060 __le16 params;
5061 } __packed;
5062
5063 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
5064 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
5065 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
5066 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
5067
5068 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
5069 struct ieee80211_tbtt_info_7_8_9 {
5070 u8 tbtt_offset;
5071 u8 bssid[ETH_ALEN];
5072
5073 /* The following element is optional, structure may not grow */
5074 u8 bss_params;
5075 s8 psd_20;
5076 } __packed;
5077
5078 /* Format of the TBTT information element if it has >= 11 bytes */
5079 struct ieee80211_tbtt_info_ge_11 {
5080 u8 tbtt_offset;
5081 u8 bssid[ETH_ALEN];
5082 __le32 short_ssid;
5083
5084 /* The following elements are optional, structure may grow */
5085 u8 bss_params;
5086 s8 psd_20;
5087 struct ieee80211_rnr_mld_params mld_params;
5088 } __packed;
5089
5090 /* multi-link device */
5091 #define IEEE80211_MLD_MAX_NUM_LINKS 15
5092
5093 #define IEEE80211_ML_CONTROL_TYPE 0x0007
5094 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
5095 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
5096 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
5097 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
5098 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
5099 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
5100
5101 struct ieee80211_multi_link_elem {
5102 __le16 control;
5103 u8 variable[];
5104 } __packed;
5105
5106 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
5107 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
5108 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
5109 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
5110 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
5111 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
5112 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400
5113
5114 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
5115 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
5116 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
5117
5118 /*
5119 * Described in P802.11be_D3.0
5120 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5121 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5122 * dot11MSDTXOPMAX defaults to 1
5123 */
5124 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
5125
5126 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
5127 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
5128 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
5129 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
5130 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
5131 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
5132 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
5133 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
5134 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
5135 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
5136 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
5137 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
5138 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
5139 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
5140 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
5141 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
5142 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
5143 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
5144 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
5145 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
5146 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
5147 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
5148 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
5149 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
5150 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
5151 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
5152 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
5153 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
5154 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
5155 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
5156 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
5157 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
5158 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
5159 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
5160
5161 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
5162 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
5163 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
5164 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0
5165 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1
5166 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2
5167 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3
5168 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
5169 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
5170 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000
5171 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000
5172
5173 struct ieee80211_mle_basic_common_info {
5174 u8 len;
5175 u8 mld_mac_addr[ETH_ALEN];
5176 u8 variable[];
5177 } __packed;
5178
5179 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
5180
5181 struct ieee80211_mle_preq_common_info {
5182 u8 len;
5183 u8 variable[];
5184 } __packed;
5185
5186 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
5187 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020
5188 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040
5189 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080
5190
5191 /* no fixed fields in RECONF */
5192
5193 struct ieee80211_mle_tdls_common_info {
5194 u8 len;
5195 u8 ap_mld_mac_addr[ETH_ALEN];
5196 } __packed;
5197
5198 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
5199
5200 /* no fixed fields in PRIO_ACCESS */
5201
5202 /**
5203 * ieee80211_mle_common_size - check multi-link element common size
5204 * @data: multi-link element, must already be checked for size using
5205 * ieee80211_mle_size_ok()
5206 * Return: the size of the multi-link element's "common" subfield
5207 */
ieee80211_mle_common_size(const u8 * data)5208 static inline u8 ieee80211_mle_common_size(const u8 *data)
5209 {
5210 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5211 u16 control = le16_to_cpu(mle->control);
5212
5213 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5214 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5215 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5216 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5217 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5218 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5219 /*
5220 * The length is the first octet pointed by mle->variable so no
5221 * need to add anything
5222 */
5223 break;
5224 default:
5225 WARN_ON(1);
5226 return 0;
5227 }
5228
5229 return sizeof(*mle) + mle->variable[0];
5230 }
5231
5232 /**
5233 * ieee80211_mle_get_link_id - returns the link ID
5234 * @data: the basic multi link element
5235 * Return: the link ID, or -1 if not present
5236 *
5237 * The element is assumed to be of the correct type (BASIC) and big enough,
5238 * this must be checked using ieee80211_mle_type_ok().
5239 */
ieee80211_mle_get_link_id(const u8 * data)5240 static inline int ieee80211_mle_get_link_id(const u8 *data)
5241 {
5242 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5243 u16 control = le16_to_cpu(mle->control);
5244 const u8 *common = mle->variable;
5245
5246 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5247 common += sizeof(struct ieee80211_mle_basic_common_info);
5248
5249 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5250 return -1;
5251
5252 return *common;
5253 }
5254
5255 /**
5256 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5257 * @data: pointer to the basic multi link element
5258 * Return: the BSS Parameter Change Count field value, or -1 if not present
5259 *
5260 * The element is assumed to be of the correct type (BASIC) and big enough,
5261 * this must be checked using ieee80211_mle_type_ok().
5262 */
5263 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5264 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5265 {
5266 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5267 u16 control = le16_to_cpu(mle->control);
5268 const u8 *common = mle->variable;
5269
5270 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5271 common += sizeof(struct ieee80211_mle_basic_common_info);
5272
5273 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5274 return -1;
5275
5276 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5277 common += 1;
5278
5279 return *common;
5280 }
5281
5282 /**
5283 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5284 * @data: pointer to the multi-link element
5285 * Return: the medium synchronization delay field value from the multi-link
5286 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5287 * if not present
5288 *
5289 * The element is assumed to be of the correct type (BASIC) and big enough,
5290 * this must be checked using ieee80211_mle_type_ok().
5291 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5292 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5293 {
5294 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5295 u16 control = le16_to_cpu(mle->control);
5296 const u8 *common = mle->variable;
5297
5298 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5299 common += sizeof(struct ieee80211_mle_basic_common_info);
5300
5301 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5302 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5303
5304 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5305 common += 1;
5306 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5307 common += 1;
5308
5309 return get_unaligned_le16(common);
5310 }
5311
5312 /**
5313 * ieee80211_mle_get_eml_cap - returns the EML capability
5314 * @data: pointer to the multi-link element
5315 * Return: the EML capability field value from the multi-link element,
5316 * or 0 if not present
5317 *
5318 * The element is assumed to be of the correct type (BASIC) and big enough,
5319 * this must be checked using ieee80211_mle_type_ok().
5320 */
ieee80211_mle_get_eml_cap(const u8 * data)5321 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5322 {
5323 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5324 u16 control = le16_to_cpu(mle->control);
5325 const u8 *common = mle->variable;
5326
5327 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5328 common += sizeof(struct ieee80211_mle_basic_common_info);
5329
5330 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5331 return 0;
5332
5333 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5334 common += 1;
5335 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5336 common += 1;
5337 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5338 common += 2;
5339
5340 return get_unaligned_le16(common);
5341 }
5342
5343 /**
5344 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5345 * @data: pointer to the multi-link element
5346 * Return: the MLD capabilities and operations field value from the multi-link
5347 * element, or 0 if not present
5348 *
5349 * The element is assumed to be of the correct type (BASIC) and big enough,
5350 * this must be checked using ieee80211_mle_type_ok().
5351 */
ieee80211_mle_get_mld_capa_op(const u8 * data)5352 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5353 {
5354 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5355 u16 control = le16_to_cpu(mle->control);
5356 const u8 *common = mle->variable;
5357
5358 /*
5359 * common points now at the beginning of
5360 * ieee80211_mle_basic_common_info
5361 */
5362 common += sizeof(struct ieee80211_mle_basic_common_info);
5363
5364 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5365 return 0;
5366
5367 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5368 common += 1;
5369 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5370 common += 1;
5371 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5372 common += 2;
5373 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5374 common += 2;
5375
5376 return get_unaligned_le16(common);
5377 }
5378
5379 /* Defined in Figure 9-1074t in P802.11be_D7.0 */
5380 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_PARAM_UPDATE 0x0001
5381 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_RECO_MAX_LINKS_MASK 0x001e
5382 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_NSTR_UPDATE 0x0020
5383 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_EMLSR_ENA_ON_ONE_LINK 0x0040
5384 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_BTM_MLD_RECO_MULTI_AP 0x0080
5385
5386 /**
5387 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5388 * and operations.
5389 * @data: pointer to the multi-link element
5390 * Return: the extended MLD capabilities and operations field value from
5391 * the multi-link element, or 0 if not present
5392 *
5393 * The element is assumed to be of the correct type (BASIC) and big enough,
5394 * this must be checked using ieee80211_mle_type_ok().
5395 */
ieee80211_mle_get_ext_mld_capa_op(const u8 * data)5396 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5397 {
5398 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5399 u16 control = le16_to_cpu(mle->control);
5400 const u8 *common = mle->variable;
5401
5402 /*
5403 * common points now at the beginning of
5404 * ieee80211_mle_basic_common_info
5405 */
5406 common += sizeof(struct ieee80211_mle_basic_common_info);
5407
5408 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5409 return 0;
5410
5411 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5412 common += 1;
5413 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5414 common += 1;
5415 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5416 common += 2;
5417 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5418 common += 2;
5419 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5420 common += 2;
5421 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5422 common += 1;
5423
5424 return get_unaligned_le16(common);
5425 }
5426
5427 /**
5428 * ieee80211_mle_get_mld_id - returns the MLD ID
5429 * @data: pointer to the multi-link element
5430 * Return: The MLD ID in the given multi-link element, or 0 if not present
5431 *
5432 * The element is assumed to be of the correct type (BASIC) and big enough,
5433 * this must be checked using ieee80211_mle_type_ok().
5434 */
ieee80211_mle_get_mld_id(const u8 * data)5435 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5436 {
5437 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5438 u16 control = le16_to_cpu(mle->control);
5439 const u8 *common = mle->variable;
5440
5441 /*
5442 * common points now at the beginning of
5443 * ieee80211_mle_basic_common_info
5444 */
5445 common += sizeof(struct ieee80211_mle_basic_common_info);
5446
5447 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5448 return 0;
5449
5450 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5451 common += 1;
5452 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5453 common += 1;
5454 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5455 common += 2;
5456 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5457 common += 2;
5458 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5459 common += 2;
5460
5461 return *common;
5462 }
5463
5464 /**
5465 * ieee80211_mle_size_ok - validate multi-link element size
5466 * @data: pointer to the element data
5467 * @len: length of the containing element
5468 * Return: whether or not the multi-link element size is OK
5469 */
ieee80211_mle_size_ok(const u8 * data,size_t len)5470 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5471 {
5472 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5473 u8 fixed = sizeof(*mle);
5474 u8 common = 0;
5475 bool check_common_len = false;
5476 u16 control;
5477
5478 if (!data || len < fixed)
5479 return false;
5480
5481 control = le16_to_cpu(mle->control);
5482
5483 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5484 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5485 common += sizeof(struct ieee80211_mle_basic_common_info);
5486 check_common_len = true;
5487 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5488 common += 1;
5489 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5490 common += 1;
5491 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5492 common += 2;
5493 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5494 common += 2;
5495 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5496 common += 2;
5497 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5498 common += 1;
5499 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5500 common += 2;
5501 break;
5502 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5503 common += sizeof(struct ieee80211_mle_preq_common_info);
5504 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5505 common += 1;
5506 check_common_len = true;
5507 break;
5508 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5509 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5510 common += ETH_ALEN;
5511 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5512 common += 2;
5513 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5514 common += 2;
5515 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5516 common += 2;
5517 break;
5518 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5519 common += sizeof(struct ieee80211_mle_tdls_common_info);
5520 check_common_len = true;
5521 break;
5522 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5523 common = ETH_ALEN + 1;
5524 break;
5525 default:
5526 /* we don't know this type */
5527 return true;
5528 }
5529
5530 if (len < fixed + common)
5531 return false;
5532
5533 if (!check_common_len)
5534 return true;
5535
5536 /* if present, common length is the first octet there */
5537 return mle->variable[0] >= common;
5538 }
5539
5540 /**
5541 * ieee80211_mle_type_ok - validate multi-link element type and size
5542 * @data: pointer to the element data
5543 * @type: expected type of the element
5544 * @len: length of the containing element
5545 * Return: whether or not the multi-link element type matches and size is OK
5546 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5547 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5548 {
5549 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5550 u16 control;
5551
5552 if (!ieee80211_mle_size_ok(data, len))
5553 return false;
5554
5555 control = le16_to_cpu(mle->control);
5556
5557 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5558 return true;
5559
5560 return false;
5561 }
5562
5563 enum ieee80211_mle_subelems {
5564 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5565 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5566 };
5567
5568 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5569 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5570 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5571 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5572 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5573 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5574 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5575 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5576 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5577
5578 struct ieee80211_mle_per_sta_profile {
5579 __le16 control;
5580 u8 sta_info_len;
5581 u8 variable[];
5582 } __packed;
5583
5584 /**
5585 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5586 * profile size
5587 * @data: pointer to the sub element data
5588 * @len: length of the containing sub element
5589 * Return: %true if the STA profile is large enough, %false otherwise
5590 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5591 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5592 size_t len)
5593 {
5594 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5595 u16 control;
5596 u8 fixed = sizeof(*prof);
5597 u8 info_len = 1;
5598
5599 if (len < fixed)
5600 return false;
5601
5602 control = le16_to_cpu(prof->control);
5603
5604 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5605 info_len += 6;
5606 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5607 info_len += 2;
5608 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5609 info_len += 8;
5610 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5611 info_len += 2;
5612 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5613 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5614 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5615 info_len += 2;
5616 else
5617 info_len += 1;
5618 }
5619 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5620 info_len += 1;
5621
5622 return prof->sta_info_len >= info_len &&
5623 fixed + prof->sta_info_len - 1 <= len;
5624 }
5625
5626 /**
5627 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5628 * parameter change count
5629 * @prof: the per-STA profile, having been checked with
5630 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5631 *
5632 * Return: The BSS parameter change count value if present, 0 otherwise.
5633 */
5634 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5635 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5636 {
5637 u16 control = le16_to_cpu(prof->control);
5638 const u8 *pos = prof->variable;
5639
5640 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5641 return 0;
5642
5643 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5644 pos += 6;
5645 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5646 pos += 2;
5647 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5648 pos += 8;
5649 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5650 pos += 2;
5651 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5652 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5653 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5654 pos += 2;
5655 else
5656 pos += 1;
5657 }
5658
5659 return *pos;
5660 }
5661
5662 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5663 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5664 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5665 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5666 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780
5667 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0
5668 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5669 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2
5670 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3
5671 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4
5672 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5673
5674 /**
5675 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5676 * element sta profile size.
5677 * @data: pointer to the sub element data
5678 * @len: length of the containing sub element
5679 * Return: %true if the STA profile is large enough, %false otherwise
5680 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5681 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5682 size_t len)
5683 {
5684 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5685 u16 control;
5686 u8 fixed = sizeof(*prof);
5687 u8 info_len = 1;
5688
5689 if (len < fixed)
5690 return false;
5691
5692 control = le16_to_cpu(prof->control);
5693
5694 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5695 info_len += ETH_ALEN;
5696 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5697 info_len += 2;
5698 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5699 info_len += 2;
5700
5701 return prof->sta_info_len >= info_len &&
5702 fixed + prof->sta_info_len - 1 <= len;
5703 }
5704
5705 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f
5706 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3
5707
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5708 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5709 {
5710 const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5711 u8 control, fixed = sizeof(*t2l), elem_len = 0;
5712
5713 if (len < fixed)
5714 return false;
5715
5716 control = t2l->control;
5717
5718 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5719 elem_len += 2;
5720 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5721 elem_len += 3;
5722
5723 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5724 u8 bm_size;
5725
5726 elem_len += 1;
5727 if (len < fixed + elem_len)
5728 return false;
5729
5730 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5731 bm_size = 1;
5732 else
5733 bm_size = 2;
5734
5735 elem_len += hweight8(t2l->optional[0]) * bm_size;
5736 }
5737
5738 return len >= fixed + elem_len;
5739 }
5740
5741 /**
5742 * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay
5743 * in microseconds
5744 * @eml_cap: EML capabilities field value from common info field of
5745 * the Multi-link element
5746 * Return: the EMLSR Padding delay (in microseconds) encoded in the
5747 * EML Capabilities field
5748 */
5749
ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)5750 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)
5751 {
5752 /* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR
5753 * Padding Delay subfield.
5754 */
5755 u32 pad_delay = u16_get_bits(eml_cap,
5756 IEEE80211_EML_CAP_EMLSR_PADDING_DELAY);
5757
5758 if (!pad_delay ||
5759 pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US)
5760 return 0;
5761
5762 return 32 * (1 << (pad_delay - 1));
5763 }
5764
5765 /**
5766 * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition
5767 * delay in microseconds
5768 * @eml_cap: EML capabilities field value from common info field of
5769 * the Multi-link element
5770 * Return: the EMLSR Transition delay (in microseconds) encoded in the
5771 * EML Capabilities field
5772 */
5773
ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)5774 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)
5775 {
5776 /* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR
5777 * Transition Delay subfield.
5778 */
5779 u32 trans_delay =
5780 u16_get_bits(eml_cap,
5781 IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY);
5782
5783 /* invalid values also just use 0 */
5784 if (!trans_delay ||
5785 trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US)
5786 return 0;
5787
5788 return 16 * (1 << (trans_delay - 1));
5789 }
5790
5791 /**
5792 * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition
5793 * timeout value in microseconds
5794 * @eml_cap: EML capabilities field value from common info field of
5795 * the Multi-link element
5796 * Return: the EMLSR Transition timeout (in microseconds) encoded in
5797 * the EML Capabilities field
5798 */
5799
ieee80211_eml_trans_timeout_in_us(u16 eml_cap)5800 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap)
5801 {
5802 /* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the
5803 * Transition Timeout subfield.
5804 */
5805 u8 timeout = u16_get_bits(eml_cap,
5806 IEEE80211_EML_CAP_TRANSITION_TIMEOUT);
5807
5808 /* invalid values also just use 0 */
5809 if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU)
5810 return 0;
5811
5812 return 128 * (1 << (timeout - 1));
5813 }
5814
5815 #define for_each_mle_subelement(_elem, _data, _len) \
5816 if (ieee80211_mle_size_ok(_data, _len)) \
5817 for_each_element(_elem, \
5818 _data + ieee80211_mle_common_size(_data),\
5819 _len - ieee80211_mle_common_size(_data))
5820
5821 #endif /* LINUX_IEEE80211_H */
5822