1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file exposes an interface to building/using memory SSA to 11 /// walk memory instructions using a use/def graph. 12 /// 13 /// Memory SSA class builds an SSA form that links together memory access 14 /// instructions such as loads, stores, atomics, and calls. Additionally, it 15 /// does a trivial form of "heap versioning" Every time the memory state changes 16 /// in the program, we generate a new heap version. It generates 17 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions. 18 /// 19 /// As a trivial example, 20 /// define i32 @main() #0 { 21 /// entry: 22 /// %call = call noalias i8* @_Znwm(i64 4) #2 23 /// %0 = bitcast i8* %call to i32* 24 /// %call1 = call noalias i8* @_Znwm(i64 4) #2 25 /// %1 = bitcast i8* %call1 to i32* 26 /// store i32 5, i32* %0, align 4 27 /// store i32 7, i32* %1, align 4 28 /// %2 = load i32* %0, align 4 29 /// %3 = load i32* %1, align 4 30 /// %add = add nsw i32 %2, %3 31 /// ret i32 %add 32 /// } 33 /// 34 /// Will become 35 /// define i32 @main() #0 { 36 /// entry: 37 /// ; 1 = MemoryDef(0) 38 /// %call = call noalias i8* @_Znwm(i64 4) #3 39 /// %2 = bitcast i8* %call to i32* 40 /// ; 2 = MemoryDef(1) 41 /// %call1 = call noalias i8* @_Znwm(i64 4) #3 42 /// %4 = bitcast i8* %call1 to i32* 43 /// ; 3 = MemoryDef(2) 44 /// store i32 5, i32* %2, align 4 45 /// ; 4 = MemoryDef(3) 46 /// store i32 7, i32* %4, align 4 47 /// ; MemoryUse(3) 48 /// %7 = load i32* %2, align 4 49 /// ; MemoryUse(4) 50 /// %8 = load i32* %4, align 4 51 /// %add = add nsw i32 %7, %8 52 /// ret i32 %add 53 /// } 54 /// 55 /// Given this form, all the stores that could ever effect the load at %8 can be 56 /// gotten by using the MemoryUse associated with it, and walking from use to 57 /// def until you hit the top of the function. 58 /// 59 /// Each def also has a list of users associated with it, so you can walk from 60 /// both def to users, and users to defs. Note that we disambiguate MemoryUses, 61 /// but not the RHS of MemoryDefs. You can see this above at %7, which would 62 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given 63 /// store, all the MemoryUses on its use lists are may-aliases of that store 64 /// (but the MemoryDefs on its use list may not be). 65 /// 66 /// MemoryDefs are not disambiguated because it would require multiple reaching 67 /// definitions, which would require multiple phis, and multiple memoryaccesses 68 /// per instruction. 69 /// 70 /// In addition to the def/use graph described above, MemoryDefs also contain 71 /// an "optimized" definition use. The "optimized" use points to some def 72 /// reachable through the memory def chain. The optimized def *may* (but is 73 /// not required to) alias the original MemoryDef, but no def *closer* to the 74 /// source def may alias it. As the name implies, the purpose of the optimized 75 /// use is to allow caching of clobber searches for memory defs. The optimized 76 /// def may be nullptr, in which case clients must walk the defining access 77 /// chain. 78 /// 79 /// When iterating the uses of a MemoryDef, both defining uses and optimized 80 /// uses will be encountered. If only one type is needed, the client must 81 /// filter the use walk. 82 // 83 //===----------------------------------------------------------------------===// 84 85 #ifndef LLVM_ANALYSIS_MEMORYSSA_H 86 #define LLVM_ANALYSIS_MEMORYSSA_H 87 88 #include "llvm/ADT/DenseMap.h" 89 #include "llvm/ADT/SmallPtrSet.h" 90 #include "llvm/ADT/SmallVector.h" 91 #include "llvm/ADT/ilist_node.h" 92 #include "llvm/ADT/iterator_range.h" 93 #include "llvm/Analysis/AliasAnalysis.h" 94 #include "llvm/Analysis/MemoryLocation.h" 95 #include "llvm/Analysis/PHITransAddr.h" 96 #include "llvm/IR/DerivedUser.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/User.h" 100 #include "llvm/Pass.h" 101 #include <algorithm> 102 #include <cassert> 103 #include <cstddef> 104 #include <iterator> 105 #include <memory> 106 #include <utility> 107 108 namespace llvm { 109 110 template <class GraphType> struct GraphTraits; 111 class BasicBlock; 112 class Function; 113 class Loop; 114 class Instruction; 115 class LLVMContext; 116 class MemoryAccess; 117 class MemorySSAWalker; 118 class Module; 119 class Use; 120 class Value; 121 class raw_ostream; 122 123 namespace MSSAHelpers { 124 125 struct AllAccessTag {}; 126 struct DefsOnlyTag {}; 127 128 } // end namespace MSSAHelpers 129 130 enum : unsigned { 131 // Used to signify what the default invalid ID is for MemoryAccess's 132 // getID() 133 INVALID_MEMORYACCESS_ID = -1U 134 }; 135 136 template <class T> class memoryaccess_def_iterator_base; 137 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>; 138 using const_memoryaccess_def_iterator = 139 memoryaccess_def_iterator_base<const MemoryAccess>; 140 141 // The base for all memory accesses. All memory accesses in a block are 142 // linked together using an intrusive list. 143 class MemoryAccess 144 : public DerivedUser, 145 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>, 146 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> { 147 public: 148 using AllAccessType = 149 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; 150 using DefsOnlyType = 151 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; 152 153 MemoryAccess(const MemoryAccess &) = delete; 154 MemoryAccess &operator=(const MemoryAccess &) = delete; 155 156 void *operator new(size_t) = delete; 157 158 // Methods for support type inquiry through isa, cast, and 159 // dyn_cast classof(const Value * V)160 static bool classof(const Value *V) { 161 unsigned ID = V->getValueID(); 162 return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; 163 } 164 getBlock()165 BasicBlock *getBlock() const { return Block; } 166 167 void print(raw_ostream &OS) const; 168 void dump() const; 169 170 /// The user iterators for a memory access 171 using iterator = user_iterator; 172 using const_iterator = const_user_iterator; 173 174 /// This iterator walks over all of the defs in a given 175 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For 176 /// MemoryUse/MemoryDef, this walks the defining access. 177 memoryaccess_def_iterator defs_begin(); 178 const_memoryaccess_def_iterator defs_begin() const; 179 memoryaccess_def_iterator defs_end(); 180 const_memoryaccess_def_iterator defs_end() const; 181 182 /// Get the iterators for the all access list and the defs only list 183 /// We default to the all access list. getIterator()184 AllAccessType::self_iterator getIterator() { 185 return this->AllAccessType::getIterator(); 186 } getIterator()187 AllAccessType::const_self_iterator getIterator() const { 188 return this->AllAccessType::getIterator(); 189 } getReverseIterator()190 AllAccessType::reverse_self_iterator getReverseIterator() { 191 return this->AllAccessType::getReverseIterator(); 192 } getReverseIterator()193 AllAccessType::const_reverse_self_iterator getReverseIterator() const { 194 return this->AllAccessType::getReverseIterator(); 195 } getDefsIterator()196 DefsOnlyType::self_iterator getDefsIterator() { 197 return this->DefsOnlyType::getIterator(); 198 } getDefsIterator()199 DefsOnlyType::const_self_iterator getDefsIterator() const { 200 return this->DefsOnlyType::getIterator(); 201 } getReverseDefsIterator()202 DefsOnlyType::reverse_self_iterator getReverseDefsIterator() { 203 return this->DefsOnlyType::getReverseIterator(); 204 } getReverseDefsIterator()205 DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const { 206 return this->DefsOnlyType::getReverseIterator(); 207 } 208 209 protected: 210 friend class MemoryDef; 211 friend class MemoryPhi; 212 friend class MemorySSA; 213 friend class MemoryUse; 214 friend class MemoryUseOrDef; 215 216 /// Used by MemorySSA to change the block of a MemoryAccess when it is 217 /// moved. setBlock(BasicBlock * BB)218 void setBlock(BasicBlock *BB) { Block = BB; } 219 220 /// Used for debugging and tracking things about MemoryAccesses. 221 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise. 222 inline unsigned getID() const; 223 MemoryAccess(LLVMContext & C,unsigned Vty,DeleteValueTy DeleteValue,BasicBlock * BB,unsigned NumOperands)224 MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue, 225 BasicBlock *BB, unsigned NumOperands) 226 : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue), 227 Block(BB) {} 228 229 // Use deleteValue() to delete a generic MemoryAccess. 230 ~MemoryAccess() = default; 231 232 private: 233 BasicBlock *Block; 234 }; 235 236 template <> 237 struct ilist_alloc_traits<MemoryAccess> { 238 static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); } 239 }; 240 241 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { 242 MA.print(OS); 243 return OS; 244 } 245 246 /// Class that has the common methods + fields of memory uses/defs. It's 247 /// a little awkward to have, but there are many cases where we want either a 248 /// use or def, and there are many cases where uses are needed (defs aren't 249 /// acceptable), and vice-versa. 250 /// 251 /// This class should never be instantiated directly; make a MemoryUse or 252 /// MemoryDef instead. 253 class MemoryUseOrDef : public MemoryAccess { 254 public: 255 void *operator new(size_t) = delete; 256 257 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 258 259 /// Get the instruction that this MemoryUse represents. 260 Instruction *getMemoryInst() const { return MemoryInstruction; } 261 262 /// Get the access that produces the memory state used by this Use. 263 MemoryAccess *getDefiningAccess() const { return getOperand(0); } 264 265 static bool classof(const Value *MA) { 266 return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; 267 } 268 269 /// Do we have an optimized use? 270 inline bool isOptimized() const; 271 /// Return the MemoryAccess associated with the optimized use, or nullptr. 272 inline MemoryAccess *getOptimized() const; 273 /// Sets the optimized use for a MemoryDef. 274 inline void setOptimized(MemoryAccess *); 275 276 /// Reset the ID of what this MemoryUse was optimized to, causing it to 277 /// be rewalked by the walker if necessary. 278 /// This really should only be called by tests. 279 inline void resetOptimized(); 280 281 protected: 282 friend class MemorySSA; 283 friend class MemorySSAUpdater; 284 285 MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, 286 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB, 287 unsigned NumOperands) 288 : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands), 289 MemoryInstruction(MI) { 290 setDefiningAccess(DMA); 291 } 292 293 // Use deleteValue() to delete a generic MemoryUseOrDef. 294 ~MemoryUseOrDef() = default; 295 296 void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) { 297 if (!Optimized) { 298 setOperand(0, DMA); 299 return; 300 } 301 setOptimized(DMA); 302 } 303 304 private: 305 Instruction *MemoryInstruction; 306 }; 307 308 /// Represents read-only accesses to memory 309 /// 310 /// In particular, the set of Instructions that will be represented by 311 /// MemoryUse's is exactly the set of Instructions for which 312 /// AliasAnalysis::getModRefInfo returns "Ref". 313 class MemoryUse final : public MemoryUseOrDef { 314 public: 315 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 316 317 MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) 318 : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB, 319 /*NumOperands=*/1) {} 320 321 // allocate space for exactly one operand 322 void *operator new(size_t S) { return User::operator new(S, 1); } 323 void operator delete(void *Ptr) { User::operator delete(Ptr); } 324 325 static bool classof(const Value *MA) { 326 return MA->getValueID() == MemoryUseVal; 327 } 328 329 void print(raw_ostream &OS) const; 330 331 void setOptimized(MemoryAccess *DMA) { 332 OptimizedID = DMA->getID(); 333 setOperand(0, DMA); 334 } 335 336 /// Whether the MemoryUse is optimized. If ensureOptimizedUses() was called, 337 /// uses will usually be optimized, but this is not guaranteed (e.g. due to 338 /// invalidation and optimization limits.) 339 bool isOptimized() const { 340 return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); 341 } 342 343 MemoryAccess *getOptimized() const { 344 return getDefiningAccess(); 345 } 346 347 void resetOptimized() { 348 OptimizedID = INVALID_MEMORYACCESS_ID; 349 } 350 351 protected: 352 friend class MemorySSA; 353 354 private: 355 static void deleteMe(DerivedUser *Self); 356 357 unsigned OptimizedID = INVALID_MEMORYACCESS_ID; 358 }; 359 360 template <> 361 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {}; 362 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) 363 364 /// Represents a read-write access to memory, whether it is a must-alias, 365 /// or a may-alias. 366 /// 367 /// In particular, the set of Instructions that will be represented by 368 /// MemoryDef's is exactly the set of Instructions for which 369 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". 370 /// Note that, in order to provide def-def chains, all defs also have a use 371 /// associated with them. This use points to the nearest reaching 372 /// MemoryDef/MemoryPhi. 373 class MemoryDef final : public MemoryUseOrDef { 374 public: 375 friend class MemorySSA; 376 377 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 378 379 MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, 380 unsigned Ver) 381 : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB, 382 /*NumOperands=*/2), 383 ID(Ver) {} 384 385 // allocate space for exactly two operands 386 void *operator new(size_t S) { return User::operator new(S, 2); } 387 void operator delete(void *Ptr) { User::operator delete(Ptr); } 388 389 static bool classof(const Value *MA) { 390 return MA->getValueID() == MemoryDefVal; 391 } 392 393 void setOptimized(MemoryAccess *MA) { 394 setOperand(1, MA); 395 OptimizedID = MA->getID(); 396 } 397 398 MemoryAccess *getOptimized() const { 399 return cast_or_null<MemoryAccess>(getOperand(1)); 400 } 401 402 bool isOptimized() const { 403 return getOptimized() && OptimizedID == getOptimized()->getID(); 404 } 405 406 void resetOptimized() { 407 OptimizedID = INVALID_MEMORYACCESS_ID; 408 setOperand(1, nullptr); 409 } 410 411 void print(raw_ostream &OS) const; 412 413 unsigned getID() const { return ID; } 414 415 private: 416 static void deleteMe(DerivedUser *Self); 417 418 const unsigned ID; 419 unsigned OptimizedID = INVALID_MEMORYACCESS_ID; 420 }; 421 422 template <> 423 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {}; 424 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) 425 426 template <> 427 struct OperandTraits<MemoryUseOrDef> { 428 static Use *op_begin(MemoryUseOrDef *MUD) { 429 if (auto *MU = dyn_cast<MemoryUse>(MUD)) 430 return OperandTraits<MemoryUse>::op_begin(MU); 431 return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD)); 432 } 433 434 static Use *op_end(MemoryUseOrDef *MUD) { 435 if (auto *MU = dyn_cast<MemoryUse>(MUD)) 436 return OperandTraits<MemoryUse>::op_end(MU); 437 return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD)); 438 } 439 440 static unsigned operands(const MemoryUseOrDef *MUD) { 441 if (const auto *MU = dyn_cast<MemoryUse>(MUD)) 442 return OperandTraits<MemoryUse>::operands(MU); 443 return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD)); 444 } 445 }; 446 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) 447 448 /// Represents phi nodes for memory accesses. 449 /// 450 /// These have the same semantic as regular phi nodes, with the exception that 451 /// only one phi will ever exist in a given basic block. 452 /// Guaranteeing one phi per block means guaranteeing there is only ever one 453 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. 454 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or 455 /// a MemoryPhi's operands. 456 /// That is, given 457 /// if (a) { 458 /// store %a 459 /// store %b 460 /// } 461 /// it *must* be transformed into 462 /// if (a) { 463 /// 1 = MemoryDef(liveOnEntry) 464 /// store %a 465 /// 2 = MemoryDef(1) 466 /// store %b 467 /// } 468 /// and *not* 469 /// if (a) { 470 /// 1 = MemoryDef(liveOnEntry) 471 /// store %a 472 /// 2 = MemoryDef(liveOnEntry) 473 /// store %b 474 /// } 475 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the 476 /// end of the branch, and if there are not two phi nodes, one will be 477 /// disconnected completely from the SSA graph below that point. 478 /// Because MemoryUse's do not generate new definitions, they do not have this 479 /// issue. 480 class MemoryPhi final : public MemoryAccess { 481 // allocate space for exactly zero operands 482 void *operator new(size_t S) { return User::operator new(S); } 483 484 public: 485 void operator delete(void *Ptr) { User::operator delete(Ptr); } 486 487 /// Provide fast operand accessors 488 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 489 490 MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) 491 : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver), 492 ReservedSpace(NumPreds) { 493 allocHungoffUses(ReservedSpace); 494 } 495 496 // Block iterator interface. This provides access to the list of incoming 497 // basic blocks, which parallels the list of incoming values. 498 using block_iterator = BasicBlock **; 499 using const_block_iterator = BasicBlock *const *; 500 501 block_iterator block_begin() { 502 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); 503 } 504 505 const_block_iterator block_begin() const { 506 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); 507 } 508 509 block_iterator block_end() { return block_begin() + getNumOperands(); } 510 511 const_block_iterator block_end() const { 512 return block_begin() + getNumOperands(); 513 } 514 515 iterator_range<block_iterator> blocks() { 516 return make_range(block_begin(), block_end()); 517 } 518 519 iterator_range<const_block_iterator> blocks() const { 520 return make_range(block_begin(), block_end()); 521 } 522 523 op_range incoming_values() { return operands(); } 524 525 const_op_range incoming_values() const { return operands(); } 526 527 /// Return the number of incoming edges 528 unsigned getNumIncomingValues() const { return getNumOperands(); } 529 530 /// Return incoming value number x 531 MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } 532 void setIncomingValue(unsigned I, MemoryAccess *V) { 533 assert(V && "PHI node got a null value!"); 534 setOperand(I, V); 535 } 536 537 static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } 538 static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } 539 540 /// Return incoming basic block number @p i. 541 BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } 542 543 /// Return incoming basic block corresponding 544 /// to an operand of the PHI. 545 BasicBlock *getIncomingBlock(const Use &U) const { 546 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); 547 return getIncomingBlock(unsigned(&U - op_begin())); 548 } 549 550 /// Return incoming basic block corresponding 551 /// to value use iterator. 552 BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { 553 return getIncomingBlock(I.getUse()); 554 } 555 556 void setIncomingBlock(unsigned I, BasicBlock *BB) { 557 assert(BB && "PHI node got a null basic block!"); 558 block_begin()[I] = BB; 559 } 560 561 /// Add an incoming value to the end of the PHI list 562 void addIncoming(MemoryAccess *V, BasicBlock *BB) { 563 if (getNumOperands() == ReservedSpace) 564 growOperands(); // Get more space! 565 // Initialize some new operands. 566 setNumHungOffUseOperands(getNumOperands() + 1); 567 setIncomingValue(getNumOperands() - 1, V); 568 setIncomingBlock(getNumOperands() - 1, BB); 569 } 570 571 /// Return the first index of the specified basic 572 /// block in the value list for this PHI. Returns -1 if no instance. 573 int getBasicBlockIndex(const BasicBlock *BB) const { 574 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 575 if (block_begin()[I] == BB) 576 return I; 577 return -1; 578 } 579 580 MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const { 581 int Idx = getBasicBlockIndex(BB); 582 assert(Idx >= 0 && "Invalid basic block argument!"); 583 return getIncomingValue(Idx); 584 } 585 586 // After deleting incoming position I, the order of incoming may be changed. 587 void unorderedDeleteIncoming(unsigned I) { 588 unsigned E = getNumOperands(); 589 assert(I < E && "Cannot remove out of bounds Phi entry."); 590 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi 591 // itself should be deleted. 592 assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with " 593 "at least 2 values."); 594 setIncomingValue(I, getIncomingValue(E - 1)); 595 setIncomingBlock(I, block_begin()[E - 1]); 596 setOperand(E - 1, nullptr); 597 block_begin()[E - 1] = nullptr; 598 setNumHungOffUseOperands(getNumOperands() - 1); 599 } 600 601 // After deleting entries that satisfy Pred, remaining entries may have 602 // changed order. 603 template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) { 604 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 605 if (Pred(getIncomingValue(I), getIncomingBlock(I))) { 606 unorderedDeleteIncoming(I); 607 E = getNumOperands(); 608 --I; 609 } 610 assert(getNumOperands() >= 1 && 611 "Cannot remove all incoming blocks in a MemoryPhi."); 612 } 613 614 // After deleting incoming block BB, the incoming blocks order may be changed. 615 void unorderedDeleteIncomingBlock(const BasicBlock *BB) { 616 unorderedDeleteIncomingIf( 617 [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; }); 618 } 619 620 // After deleting incoming memory access MA, the incoming accesses order may 621 // be changed. 622 void unorderedDeleteIncomingValue(const MemoryAccess *MA) { 623 unorderedDeleteIncomingIf( 624 [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; }); 625 } 626 627 static bool classof(const Value *V) { 628 return V->getValueID() == MemoryPhiVal; 629 } 630 631 void print(raw_ostream &OS) const; 632 633 unsigned getID() const { return ID; } 634 635 protected: 636 friend class MemorySSA; 637 638 /// this is more complicated than the generic 639 /// User::allocHungoffUses, because we have to allocate Uses for the incoming 640 /// values and pointers to the incoming blocks, all in one allocation. 641 void allocHungoffUses(unsigned N) { 642 User::allocHungoffUses(N, /* IsPhi */ true); 643 } 644 645 private: 646 // For debugging only 647 const unsigned ID; 648 unsigned ReservedSpace; 649 650 /// This grows the operand list in response to a push_back style of 651 /// operation. This grows the number of ops by 1.5 times. 652 void growOperands() { 653 unsigned E = getNumOperands(); 654 // 2 op PHI nodes are VERY common, so reserve at least enough for that. 655 ReservedSpace = std::max(E + E / 2, 2u); 656 growHungoffUses(ReservedSpace, /* IsPhi */ true); 657 } 658 659 static void deleteMe(DerivedUser *Self); 660 }; 661 662 inline unsigned MemoryAccess::getID() const { 663 assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) && 664 "only memory defs and phis have ids"); 665 if (const auto *MD = dyn_cast<MemoryDef>(this)) 666 return MD->getID(); 667 return cast<MemoryPhi>(this)->getID(); 668 } 669 670 inline bool MemoryUseOrDef::isOptimized() const { 671 if (const auto *MD = dyn_cast<MemoryDef>(this)) 672 return MD->isOptimized(); 673 return cast<MemoryUse>(this)->isOptimized(); 674 } 675 676 inline MemoryAccess *MemoryUseOrDef::getOptimized() const { 677 if (const auto *MD = dyn_cast<MemoryDef>(this)) 678 return MD->getOptimized(); 679 return cast<MemoryUse>(this)->getOptimized(); 680 } 681 682 inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) { 683 if (auto *MD = dyn_cast<MemoryDef>(this)) 684 MD->setOptimized(MA); 685 else 686 cast<MemoryUse>(this)->setOptimized(MA); 687 } 688 689 inline void MemoryUseOrDef::resetOptimized() { 690 if (auto *MD = dyn_cast<MemoryDef>(this)) 691 MD->resetOptimized(); 692 else 693 cast<MemoryUse>(this)->resetOptimized(); 694 } 695 696 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {}; 697 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) 698 699 /// Encapsulates MemorySSA, including all data associated with memory 700 /// accesses. 701 class MemorySSA { 702 public: 703 MemorySSA(Function &, AliasAnalysis *, DominatorTree *); 704 MemorySSA(Loop &, AliasAnalysis *, DominatorTree *); 705 706 // MemorySSA must remain where it's constructed; Walkers it creates store 707 // pointers to it. 708 MemorySSA(MemorySSA &&) = delete; 709 710 ~MemorySSA(); 711 712 MemorySSAWalker *getWalker(); 713 MemorySSAWalker *getSkipSelfWalker(); 714 715 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA 716 /// access associated with it. If passed a basic block gets the memory phi 717 /// node that exists for that block, if there is one. Otherwise, this will get 718 /// a MemoryUseOrDef. 719 MemoryUseOrDef *getMemoryAccess(const Instruction *I) const { 720 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 721 } 722 723 MemoryPhi *getMemoryAccess(const BasicBlock *BB) const { 724 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 725 } 726 727 DominatorTree &getDomTree() const { return *DT; } 728 729 void dump() const; 730 void print(raw_ostream &) const; 731 732 /// Return true if \p MA represents the live on entry value 733 /// 734 /// Loads and stores from pointer arguments and other global values may be 735 /// defined by memory operations that do not occur in the current function, so 736 /// they may be live on entry to the function. MemorySSA represents such 737 /// memory state by the live on entry definition, which is guaranteed to occur 738 /// before any other memory access in the function. 739 inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { 740 return MA == LiveOnEntryDef.get(); 741 } 742 743 inline MemoryAccess *getLiveOnEntryDef() const { 744 return LiveOnEntryDef.get(); 745 } 746 747 // Sadly, iplists, by default, owns and deletes pointers added to the 748 // list. It's not currently possible to have two iplists for the same type, 749 // where one owns the pointers, and one does not. This is because the traits 750 // are per-type, not per-tag. If this ever changes, we should make the 751 // DefList an iplist. 752 using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; 753 using DefsList = 754 simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; 755 756 /// Return the list of MemoryAccess's for a given basic block. 757 /// 758 /// This list is not modifiable by the user. 759 const AccessList *getBlockAccesses(const BasicBlock *BB) const { 760 return getWritableBlockAccesses(BB); 761 } 762 763 /// Return the list of MemoryDef's and MemoryPhi's for a given basic 764 /// block. 765 /// 766 /// This list is not modifiable by the user. 767 const DefsList *getBlockDefs(const BasicBlock *BB) const { 768 return getWritableBlockDefs(BB); 769 } 770 771 /// Given two memory accesses in the same basic block, determine 772 /// whether MemoryAccess \p A dominates MemoryAccess \p B. 773 bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; 774 775 /// Given two memory accesses in potentially different blocks, 776 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B. 777 bool dominates(const MemoryAccess *A, const MemoryAccess *B) const; 778 779 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A 780 /// dominates Use \p B. 781 bool dominates(const MemoryAccess *A, const Use &B) const; 782 783 enum class VerificationLevel { Fast, Full }; 784 /// Verify that MemorySSA is self consistent (IE definitions dominate 785 /// all uses, uses appear in the right places). This is used by unit tests. 786 void verifyMemorySSA(VerificationLevel = VerificationLevel::Fast) const; 787 788 /// Used in various insertion functions to specify whether we are talking 789 /// about the beginning or end of a block. 790 enum InsertionPlace { Beginning, End, BeforeTerminator }; 791 792 /// By default, uses are *not* optimized during MemorySSA construction. 793 /// Calling this method will attempt to optimize all MemoryUses, if this has 794 /// not happened yet for this MemorySSA instance. This should be done if you 795 /// plan to query the clobbering access for most uses, or if you walk the 796 /// def-use chain of uses. 797 void ensureOptimizedUses(); 798 799 AliasAnalysis &getAA() { return *AA; } 800 801 protected: 802 // Used by Memory SSA dumpers and wrapper pass 803 friend class MemorySSAUpdater; 804 805 template <typename IterT> 806 void verifyOrderingDominationAndDefUses( 807 IterT Blocks, VerificationLevel = VerificationLevel::Fast) const; 808 template <typename IterT> void verifyDominationNumbers(IterT Blocks) const; 809 template <typename IterT> void verifyPrevDefInPhis(IterT Blocks) const; 810 811 // This is used by the use optimizer and updater. 812 AccessList *getWritableBlockAccesses(const BasicBlock *BB) const { 813 auto It = PerBlockAccesses.find(BB); 814 return It == PerBlockAccesses.end() ? nullptr : It->second.get(); 815 } 816 817 // This is used by the use optimizer and updater. 818 DefsList *getWritableBlockDefs(const BasicBlock *BB) const { 819 auto It = PerBlockDefs.find(BB); 820 return It == PerBlockDefs.end() ? nullptr : It->second.get(); 821 } 822 823 // These is used by the updater to perform various internal MemorySSA 824 // machinsations. They do not always leave the IR in a correct state, and 825 // relies on the updater to fixup what it breaks, so it is not public. 826 827 void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where); 828 void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point); 829 830 // Rename the dominator tree branch rooted at BB. 831 void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, 832 SmallPtrSetImpl<BasicBlock *> &Visited) { 833 renamePass(DT->getNode(BB), IncomingVal, Visited, true, true); 834 } 835 836 void removeFromLookups(MemoryAccess *); 837 void removeFromLists(MemoryAccess *, bool ShouldDelete = true); 838 void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, 839 InsertionPlace); 840 void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, 841 AccessList::iterator); 842 MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *, 843 const MemoryUseOrDef *Template = nullptr, 844 bool CreationMustSucceed = true); 845 846 private: 847 class ClobberWalkerBase; 848 class CachingWalker; 849 class SkipSelfWalker; 850 class OptimizeUses; 851 852 CachingWalker *getWalkerImpl(); 853 template <typename IterT> 854 void buildMemorySSA(BatchAAResults &BAA, IterT Blocks); 855 856 void prepareForMoveTo(MemoryAccess *, BasicBlock *); 857 void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; 858 859 using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>; 860 using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>; 861 862 void markUnreachableAsLiveOnEntry(BasicBlock *BB); 863 MemoryPhi *createMemoryPhi(BasicBlock *BB); 864 template <typename AliasAnalysisType> 865 MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *, 866 const MemoryUseOrDef *Template = nullptr); 867 void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &); 868 MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool); 869 void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool); 870 void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, 871 SmallPtrSetImpl<BasicBlock *> &Visited, 872 bool SkipVisited = false, bool RenameAllUses = false); 873 AccessList *getOrCreateAccessList(const BasicBlock *); 874 DefsList *getOrCreateDefsList(const BasicBlock *); 875 void renumberBlock(const BasicBlock *) const; 876 AliasAnalysis *AA = nullptr; 877 DominatorTree *DT; 878 Function *F = nullptr; 879 Loop *L = nullptr; 880 881 // Memory SSA mappings 882 DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess; 883 884 // These two mappings contain the main block to access/def mappings for 885 // MemorySSA. The list contained in PerBlockAccesses really owns all the 886 // MemoryAccesses. 887 // Both maps maintain the invariant that if a block is found in them, the 888 // corresponding list is not empty, and if a block is not found in them, the 889 // corresponding list is empty. 890 AccessMap PerBlockAccesses; 891 DefsMap PerBlockDefs; 892 std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef; 893 894 // Domination mappings 895 // Note that the numbering is local to a block, even though the map is 896 // global. 897 mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid; 898 mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering; 899 900 // Memory SSA building info 901 std::unique_ptr<ClobberWalkerBase> WalkerBase; 902 std::unique_ptr<CachingWalker> Walker; 903 std::unique_ptr<SkipSelfWalker> SkipWalker; 904 unsigned NextID = 0; 905 bool IsOptimized = false; 906 }; 907 908 /// Enables verification of MemorySSA. 909 /// 910 /// The checks which this flag enables is exensive and disabled by default 911 /// unless `EXPENSIVE_CHECKS` is defined. The flag `-verify-memoryssa` can be 912 /// used to selectively enable the verification without re-compilation. 913 extern bool VerifyMemorySSA; 914 915 // Internal MemorySSA utils, for use by MemorySSA classes and walkers 916 class MemorySSAUtil { 917 protected: 918 friend class GVNHoist; 919 friend class MemorySSAWalker; 920 921 // This function should not be used by new passes. 922 static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 923 AliasAnalysis &AA); 924 }; 925 926 /// An analysis that produces \c MemorySSA for a function. 927 /// 928 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> { 929 friend AnalysisInfoMixin<MemorySSAAnalysis>; 930 931 static AnalysisKey Key; 932 933 public: 934 // Wrap MemorySSA result to ensure address stability of internal MemorySSA 935 // pointers after construction. Use a wrapper class instead of plain 936 // unique_ptr<MemorySSA> to avoid build breakage on MSVC. 937 struct Result { 938 Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {} 939 940 MemorySSA &getMSSA() { return *MSSA; } 941 942 std::unique_ptr<MemorySSA> MSSA; 943 944 bool invalidate(Function &F, const PreservedAnalyses &PA, 945 FunctionAnalysisManager::Invalidator &Inv); 946 }; 947 948 Result run(Function &F, FunctionAnalysisManager &AM); 949 }; 950 951 /// Printer pass for \c MemorySSA. 952 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> { 953 raw_ostream &OS; 954 bool EnsureOptimizedUses; 955 956 public: 957 explicit MemorySSAPrinterPass(raw_ostream &OS, bool EnsureOptimizedUses) 958 : OS(OS), EnsureOptimizedUses(EnsureOptimizedUses) {} 959 960 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 961 962 static bool isRequired() { return true; } 963 }; 964 965 /// Printer pass for \c MemorySSA via the walker. 966 class MemorySSAWalkerPrinterPass 967 : public PassInfoMixin<MemorySSAWalkerPrinterPass> { 968 raw_ostream &OS; 969 970 public: 971 explicit MemorySSAWalkerPrinterPass(raw_ostream &OS) : OS(OS) {} 972 973 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 974 975 static bool isRequired() { return true; } 976 }; 977 978 /// Verifier pass for \c MemorySSA. 979 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> { 980 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 981 static bool isRequired() { return true; } 982 }; 983 984 /// Legacy analysis pass which computes \c MemorySSA. 985 class MemorySSAWrapperPass : public FunctionPass { 986 public: 987 MemorySSAWrapperPass(); 988 989 static char ID; 990 991 bool runOnFunction(Function &) override; 992 void releaseMemory() override; 993 MemorySSA &getMSSA() { return *MSSA; } 994 const MemorySSA &getMSSA() const { return *MSSA; } 995 996 void getAnalysisUsage(AnalysisUsage &AU) const override; 997 998 void verifyAnalysis() const override; 999 void print(raw_ostream &OS, const Module *M = nullptr) const override; 1000 1001 private: 1002 std::unique_ptr<MemorySSA> MSSA; 1003 }; 1004 1005 /// This is the generic walker interface for walkers of MemorySSA. 1006 /// Walkers are used to be able to further disambiguate the def-use chains 1007 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives 1008 /// you. 1009 /// In particular, while the def-use chains provide basic information, and are 1010 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a 1011 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other 1012 /// information. In particular, they may want to use SCEV info to further 1013 /// disambiguate memory accesses, or they may want the nearest dominating 1014 /// may-aliasing MemoryDef for a call or a store. This API enables a 1015 /// standardized interface to getting and using that info. 1016 class MemorySSAWalker { 1017 public: 1018 MemorySSAWalker(MemorySSA *); 1019 virtual ~MemorySSAWalker() = default; 1020 1021 using MemoryAccessSet = SmallVector<MemoryAccess *, 8>; 1022 1023 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this 1024 /// will give you the nearest dominating MemoryAccess that Mod's the location 1025 /// the instruction accesses (by skipping any def which AA can prove does not 1026 /// alias the location(s) accessed by the instruction given). 1027 /// 1028 /// Note that this will return a single access, and it must dominate the 1029 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, 1030 /// this will return the MemoryPhi, not the operand. This means that 1031 /// given: 1032 /// if (a) { 1033 /// 1 = MemoryDef(liveOnEntry) 1034 /// store %a 1035 /// } else { 1036 /// 2 = MemoryDef(liveOnEntry) 1037 /// store %b 1038 /// } 1039 /// 3 = MemoryPhi(2, 1) 1040 /// MemoryUse(3) 1041 /// load %a 1042 /// 1043 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef 1044 /// in the if (a) branch. 1045 MemoryAccess *getClobberingMemoryAccess(const Instruction *I, 1046 BatchAAResults &AA) { 1047 MemoryAccess *MA = MSSA->getMemoryAccess(I); 1048 assert(MA && "Handed an instruction that MemorySSA doesn't recognize?"); 1049 return getClobberingMemoryAccess(MA, AA); 1050 } 1051 1052 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I), 1053 /// but takes a MemoryAccess instead of an Instruction. 1054 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1055 BatchAAResults &AA) = 0; 1056 1057 /// Given a potentially clobbering memory access and a new location, 1058 /// calling this will give you the nearest dominating clobbering MemoryAccess 1059 /// (by skipping non-aliasing def links). 1060 /// 1061 /// This version of the function is mainly used to disambiguate phi translated 1062 /// pointers, where the value of a pointer may have changed from the initial 1063 /// memory access. Note that this expects to be handed either a MemoryUse, 1064 /// or an already potentially clobbering access. Unlike the above API, if 1065 /// given a MemoryDef that clobbers the pointer as the starting access, it 1066 /// will return that MemoryDef, whereas the above would return the clobber 1067 /// starting from the use side of the memory def. 1068 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1069 const MemoryLocation &, 1070 BatchAAResults &AA) = 0; 1071 1072 MemoryAccess *getClobberingMemoryAccess(const Instruction *I) { 1073 BatchAAResults BAA(MSSA->getAA()); 1074 return getClobberingMemoryAccess(I, BAA); 1075 } 1076 1077 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) { 1078 BatchAAResults BAA(MSSA->getAA()); 1079 return getClobberingMemoryAccess(MA, BAA); 1080 } 1081 1082 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1083 const MemoryLocation &Loc) { 1084 BatchAAResults BAA(MSSA->getAA()); 1085 return getClobberingMemoryAccess(MA, Loc, BAA); 1086 } 1087 1088 /// Given a memory access, invalidate anything this walker knows about 1089 /// that access. 1090 /// This API is used by walkers that store information to perform basic cache 1091 /// invalidation. This will be called by MemorySSA at appropriate times for 1092 /// the walker it uses or returns. 1093 virtual void invalidateInfo(MemoryAccess *) {} 1094 1095 protected: 1096 friend class MemorySSA; // For updating MSSA pointer in MemorySSA move 1097 // constructor. 1098 MemorySSA *MSSA; 1099 }; 1100 1101 /// A MemorySSAWalker that does no alias queries, or anything else. It 1102 /// simply returns the links as they were constructed by the builder. 1103 class DoNothingMemorySSAWalker final : public MemorySSAWalker { 1104 public: 1105 // Keep the overrides below from hiding the Instruction overload of 1106 // getClobberingMemoryAccess. 1107 using MemorySSAWalker::getClobberingMemoryAccess; 1108 1109 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1110 BatchAAResults &) override; 1111 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1112 const MemoryLocation &, 1113 BatchAAResults &) override; 1114 }; 1115 1116 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>; 1117 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>; 1118 1119 /// Iterator base class used to implement const and non-const iterators 1120 /// over the defining accesses of a MemoryAccess. 1121 template <class T> 1122 class memoryaccess_def_iterator_base 1123 : public iterator_facade_base<memoryaccess_def_iterator_base<T>, 1124 std::forward_iterator_tag, T, ptrdiff_t, T *, 1125 T *> { 1126 using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; 1127 1128 public: 1129 memoryaccess_def_iterator_base(T *Start) : Access(Start) {} 1130 memoryaccess_def_iterator_base() = default; 1131 1132 bool operator==(const memoryaccess_def_iterator_base &Other) const { 1133 return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); 1134 } 1135 1136 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the 1137 // block from the operand in constant time (In a PHINode, the uselist has 1138 // both, so it's just subtraction). We provide it as part of the 1139 // iterator to avoid callers having to linear walk to get the block. 1140 // If the operation becomes constant time on MemoryPHI's, this bit of 1141 // abstraction breaking should be removed. 1142 BasicBlock *getPhiArgBlock() const { 1143 MemoryPhi *MP = dyn_cast<MemoryPhi>(Access); 1144 assert(MP && "Tried to get phi arg block when not iterating over a PHI"); 1145 return MP->getIncomingBlock(ArgNo); 1146 } 1147 1148 typename std::iterator_traits<BaseT>::pointer operator*() const { 1149 assert(Access && "Tried to access past the end of our iterator"); 1150 // Go to the first argument for phis, and the defining access for everything 1151 // else. 1152 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) 1153 return MP->getIncomingValue(ArgNo); 1154 return cast<MemoryUseOrDef>(Access)->getDefiningAccess(); 1155 } 1156 1157 using BaseT::operator++; 1158 memoryaccess_def_iterator_base &operator++() { 1159 assert(Access && "Hit end of iterator"); 1160 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) { 1161 if (++ArgNo >= MP->getNumIncomingValues()) { 1162 ArgNo = 0; 1163 Access = nullptr; 1164 } 1165 } else { 1166 Access = nullptr; 1167 } 1168 return *this; 1169 } 1170 1171 private: 1172 T *Access = nullptr; 1173 unsigned ArgNo = 0; 1174 }; 1175 1176 inline memoryaccess_def_iterator MemoryAccess::defs_begin() { 1177 return memoryaccess_def_iterator(this); 1178 } 1179 1180 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { 1181 return const_memoryaccess_def_iterator(this); 1182 } 1183 1184 inline memoryaccess_def_iterator MemoryAccess::defs_end() { 1185 return memoryaccess_def_iterator(); 1186 } 1187 1188 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { 1189 return const_memoryaccess_def_iterator(); 1190 } 1191 1192 /// GraphTraits for a MemoryAccess, which walks defs in the normal case, 1193 /// and uses in the inverse case. 1194 template <> struct GraphTraits<MemoryAccess *> { 1195 using NodeRef = MemoryAccess *; 1196 using ChildIteratorType = memoryaccess_def_iterator; 1197 1198 static NodeRef getEntryNode(NodeRef N) { return N; } 1199 static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); } 1200 static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); } 1201 }; 1202 1203 template <> struct GraphTraits<Inverse<MemoryAccess *>> { 1204 using NodeRef = MemoryAccess *; 1205 using ChildIteratorType = MemoryAccess::iterator; 1206 1207 static NodeRef getEntryNode(NodeRef N) { return N; } 1208 static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); } 1209 static ChildIteratorType child_end(NodeRef N) { return N->user_end(); } 1210 }; 1211 1212 /// Provide an iterator that walks defs, giving both the memory access, 1213 /// and the current pointer location, updating the pointer location as it 1214 /// changes due to phi node translation. 1215 /// 1216 /// This iterator, while somewhat specialized, is what most clients actually 1217 /// want when walking upwards through MemorySSA def chains. It takes a pair of 1218 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the 1219 /// memory location through phi nodes for the user. 1220 class upward_defs_iterator 1221 : public iterator_facade_base<upward_defs_iterator, 1222 std::forward_iterator_tag, 1223 const MemoryAccessPair> { 1224 using BaseT = upward_defs_iterator::iterator_facade_base; 1225 1226 public: 1227 upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT) 1228 : DefIterator(Info.first), Location(Info.second), 1229 OriginalAccess(Info.first), DT(DT) { 1230 CurrentPair.first = nullptr; 1231 1232 WalkingPhi = Info.first && isa<MemoryPhi>(Info.first); 1233 fillInCurrentPair(); 1234 } 1235 1236 upward_defs_iterator() { CurrentPair.first = nullptr; } 1237 1238 bool operator==(const upward_defs_iterator &Other) const { 1239 return DefIterator == Other.DefIterator; 1240 } 1241 1242 typename std::iterator_traits<BaseT>::reference operator*() const { 1243 assert(DefIterator != OriginalAccess->defs_end() && 1244 "Tried to access past the end of our iterator"); 1245 return CurrentPair; 1246 } 1247 1248 using BaseT::operator++; 1249 upward_defs_iterator &operator++() { 1250 assert(DefIterator != OriginalAccess->defs_end() && 1251 "Tried to access past the end of the iterator"); 1252 ++DefIterator; 1253 if (DefIterator != OriginalAccess->defs_end()) 1254 fillInCurrentPair(); 1255 return *this; 1256 } 1257 1258 BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } 1259 1260 private: 1261 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1262 /// loop. In particular, this guarantees that it only references a single 1263 /// MemoryLocation during execution of the containing function. 1264 bool IsGuaranteedLoopInvariant(const Value *Ptr) const; 1265 1266 void fillInCurrentPair() { 1267 CurrentPair.first = *DefIterator; 1268 CurrentPair.second = Location; 1269 if (WalkingPhi && Location.Ptr) { 1270 PHITransAddr Translator( 1271 const_cast<Value *>(Location.Ptr), 1272 OriginalAccess->getBlock()->getDataLayout(), nullptr); 1273 1274 if (Value *Addr = 1275 Translator.translateValue(OriginalAccess->getBlock(), 1276 DefIterator.getPhiArgBlock(), DT, true)) 1277 if (Addr != CurrentPair.second.Ptr) 1278 CurrentPair.second = CurrentPair.second.getWithNewPtr(Addr); 1279 1280 // Mark size as unknown, if the location is not guaranteed to be 1281 // loop-invariant for any possible loop in the function. Setting the size 1282 // to unknown guarantees that any memory accesses that access locations 1283 // after the pointer are considered as clobbers, which is important to 1284 // catch loop carried dependences. 1285 if (!IsGuaranteedLoopInvariant(CurrentPair.second.Ptr)) 1286 CurrentPair.second = CurrentPair.second.getWithNewSize( 1287 LocationSize::beforeOrAfterPointer()); 1288 } 1289 } 1290 1291 MemoryAccessPair CurrentPair; 1292 memoryaccess_def_iterator DefIterator; 1293 MemoryLocation Location; 1294 MemoryAccess *OriginalAccess = nullptr; 1295 DominatorTree *DT = nullptr; 1296 bool WalkingPhi = false; 1297 }; 1298 1299 inline upward_defs_iterator 1300 upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT) { 1301 return upward_defs_iterator(Pair, &DT); 1302 } 1303 1304 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } 1305 1306 inline iterator_range<upward_defs_iterator> 1307 upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) { 1308 return make_range(upward_defs_begin(Pair, DT), upward_defs_end()); 1309 } 1310 1311 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that 1312 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when 1313 /// comparing against a null def_chain_iterator, this will compare equal only 1314 /// after walking said Phi/liveOnEntry. 1315 /// 1316 /// The UseOptimizedChain flag specifies whether to walk the clobbering 1317 /// access chain, or all the accesses. 1318 /// 1319 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on 1320 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits 1321 /// a phi node. The optimized chain walks the clobbering access of a store. 1322 /// So if you are just trying to find, given a store, what the next 1323 /// thing that would clobber the same memory is, you want the optimized chain. 1324 template <class T, bool UseOptimizedChain = false> 1325 struct def_chain_iterator 1326 : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>, 1327 std::forward_iterator_tag, MemoryAccess *> { 1328 def_chain_iterator() : MA(nullptr) {} 1329 def_chain_iterator(T MA) : MA(MA) {} 1330 1331 T operator*() const { return MA; } 1332 1333 def_chain_iterator &operator++() { 1334 // N.B. liveOnEntry has a null defining access. 1335 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1336 if (UseOptimizedChain && MUD->isOptimized()) 1337 MA = MUD->getOptimized(); 1338 else 1339 MA = MUD->getDefiningAccess(); 1340 } else { 1341 MA = nullptr; 1342 } 1343 1344 return *this; 1345 } 1346 1347 bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } 1348 1349 private: 1350 T MA; 1351 }; 1352 1353 template <class T> 1354 inline iterator_range<def_chain_iterator<T>> 1355 def_chain(T MA, MemoryAccess *UpTo = nullptr) { 1356 #ifdef EXPENSIVE_CHECKS 1357 assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) && 1358 "UpTo isn't in the def chain!"); 1359 #endif 1360 return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo)); 1361 } 1362 1363 template <class T> 1364 inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) { 1365 return make_range(def_chain_iterator<T, true>(MA), 1366 def_chain_iterator<T, true>(nullptr)); 1367 } 1368 1369 } // end namespace llvm 1370 1371 #endif // LLVM_ANALYSIS_MEMORYSSA_H 1372