1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
22 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <numeric>
40 #include <optional>
41
42 #define DEBUG_TYPE "legalizer"
43
44 using namespace llvm;
45 using namespace LegalizeActions;
46 using namespace MIPatternMatch;
47
48 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
49 ///
50 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
51 /// with any leftover piece as type \p LeftoverTy
52 ///
53 /// Returns -1 in the first element of the pair if the breakdown is not
54 /// satisfiable.
55 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)56 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
57 assert(!LeftoverTy.isValid() && "this is an out argument");
58
59 unsigned Size = OrigTy.getSizeInBits();
60 unsigned NarrowSize = NarrowTy.getSizeInBits();
61 unsigned NumParts = Size / NarrowSize;
62 unsigned LeftoverSize = Size - NumParts * NarrowSize;
63 assert(Size > NarrowSize);
64
65 if (LeftoverSize == 0)
66 return {NumParts, 0};
67
68 if (NarrowTy.isVector()) {
69 unsigned EltSize = OrigTy.getScalarSizeInBits();
70 if (LeftoverSize % EltSize != 0)
71 return {-1, -1};
72 LeftoverTy =
73 LLT::scalarOrVector(ElementCount::getFixed(LeftoverSize / EltSize),
74 OrigTy.getElementType());
75 } else {
76 LeftoverTy = LLT::scalar(LeftoverSize);
77 }
78
79 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
80 return std::make_pair(NumParts, NumLeftover);
81 }
82
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)83 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
84
85 if (!Ty.isScalar())
86 return nullptr;
87
88 switch (Ty.getSizeInBits()) {
89 case 16:
90 return Type::getHalfTy(Ctx);
91 case 32:
92 return Type::getFloatTy(Ctx);
93 case 64:
94 return Type::getDoubleTy(Ctx);
95 case 80:
96 return Type::getX86_FP80Ty(Ctx);
97 case 128:
98 return Type::getFP128Ty(Ctx);
99 default:
100 return nullptr;
101 }
102 }
103
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)104 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
105 GISelChangeObserver &Observer,
106 MachineIRBuilder &Builder)
107 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
108 LI(*MF.getSubtarget().getLegalizerInfo()),
109 TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {}
110
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B,GISelKnownBits * KB)111 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
112 GISelChangeObserver &Observer,
113 MachineIRBuilder &B, GISelKnownBits *KB)
114 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
115 TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {}
116
117 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI,LostDebugLocObserver & LocObserver)118 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
119 LostDebugLocObserver &LocObserver) {
120 LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
121
122 MIRBuilder.setInstrAndDebugLoc(MI);
123
124 if (isa<GIntrinsic>(MI))
125 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
126 auto Step = LI.getAction(MI, MRI);
127 switch (Step.Action) {
128 case Legal:
129 LLVM_DEBUG(dbgs() << ".. Already legal\n");
130 return AlreadyLegal;
131 case Libcall:
132 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
133 return libcall(MI, LocObserver);
134 case NarrowScalar:
135 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
136 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
137 case WidenScalar:
138 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
139 return widenScalar(MI, Step.TypeIdx, Step.NewType);
140 case Bitcast:
141 LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
142 return bitcast(MI, Step.TypeIdx, Step.NewType);
143 case Lower:
144 LLVM_DEBUG(dbgs() << ".. Lower\n");
145 return lower(MI, Step.TypeIdx, Step.NewType);
146 case FewerElements:
147 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
148 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
149 case MoreElements:
150 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
151 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
152 case Custom:
153 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
154 return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized
155 : UnableToLegalize;
156 default:
157 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
158 return UnableToLegalize;
159 }
160 }
161
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)162 void LegalizerHelper::insertParts(Register DstReg,
163 LLT ResultTy, LLT PartTy,
164 ArrayRef<Register> PartRegs,
165 LLT LeftoverTy,
166 ArrayRef<Register> LeftoverRegs) {
167 if (!LeftoverTy.isValid()) {
168 assert(LeftoverRegs.empty());
169
170 if (!ResultTy.isVector()) {
171 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs);
172 return;
173 }
174
175 if (PartTy.isVector())
176 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
177 else
178 MIRBuilder.buildBuildVector(DstReg, PartRegs);
179 return;
180 }
181
182 // Merge sub-vectors with different number of elements and insert into DstReg.
183 if (ResultTy.isVector()) {
184 assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
185 SmallVector<Register, 8> AllRegs;
186 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
187 AllRegs.push_back(Reg);
188 return mergeMixedSubvectors(DstReg, AllRegs);
189 }
190
191 SmallVector<Register> GCDRegs;
192 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
193 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
194 extractGCDType(GCDRegs, GCDTy, PartReg);
195 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
196 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
197 }
198
appendVectorElts(SmallVectorImpl<Register> & Elts,Register Reg)199 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
200 Register Reg) {
201 LLT Ty = MRI.getType(Reg);
202 SmallVector<Register, 8> RegElts;
203 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts,
204 MIRBuilder, MRI);
205 Elts.append(RegElts);
206 }
207
208 /// Merge \p PartRegs with different types into \p DstReg.
mergeMixedSubvectors(Register DstReg,ArrayRef<Register> PartRegs)209 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
210 ArrayRef<Register> PartRegs) {
211 SmallVector<Register, 8> AllElts;
212 for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
213 appendVectorElts(AllElts, PartRegs[i]);
214
215 Register Leftover = PartRegs[PartRegs.size() - 1];
216 if (!MRI.getType(Leftover).isVector())
217 AllElts.push_back(Leftover);
218 else
219 appendVectorElts(AllElts, Leftover);
220
221 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts);
222 }
223
224 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)225 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
226 const MachineInstr &MI) {
227 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
228
229 const int StartIdx = Regs.size();
230 const int NumResults = MI.getNumOperands() - 1;
231 Regs.resize(Regs.size() + NumResults);
232 for (int I = 0; I != NumResults; ++I)
233 Regs[StartIdx + I] = MI.getOperand(I).getReg();
234 }
235
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)236 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
237 LLT GCDTy, Register SrcReg) {
238 LLT SrcTy = MRI.getType(SrcReg);
239 if (SrcTy == GCDTy) {
240 // If the source already evenly divides the result type, we don't need to do
241 // anything.
242 Parts.push_back(SrcReg);
243 } else {
244 // Need to split into common type sized pieces.
245 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
246 getUnmergeResults(Parts, *Unmerge);
247 }
248 }
249
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
251 LLT NarrowTy, Register SrcReg) {
252 LLT SrcTy = MRI.getType(SrcReg);
253 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
254 extractGCDType(Parts, GCDTy, SrcReg);
255 return GCDTy;
256 }
257
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)258 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
259 SmallVectorImpl<Register> &VRegs,
260 unsigned PadStrategy) {
261 LLT LCMTy = getLCMType(DstTy, NarrowTy);
262
263 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
264 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
265 int NumOrigSrc = VRegs.size();
266
267 Register PadReg;
268
269 // Get a value we can use to pad the source value if the sources won't evenly
270 // cover the result type.
271 if (NumOrigSrc < NumParts * NumSubParts) {
272 if (PadStrategy == TargetOpcode::G_ZEXT)
273 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
274 else if (PadStrategy == TargetOpcode::G_ANYEXT)
275 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
276 else {
277 assert(PadStrategy == TargetOpcode::G_SEXT);
278
279 // Shift the sign bit of the low register through the high register.
280 auto ShiftAmt =
281 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
282 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
283 }
284 }
285
286 // Registers for the final merge to be produced.
287 SmallVector<Register, 4> Remerge(NumParts);
288
289 // Registers needed for intermediate merges, which will be merged into a
290 // source for Remerge.
291 SmallVector<Register, 4> SubMerge(NumSubParts);
292
293 // Once we've fully read off the end of the original source bits, we can reuse
294 // the same high bits for remaining padding elements.
295 Register AllPadReg;
296
297 // Build merges to the LCM type to cover the original result type.
298 for (int I = 0; I != NumParts; ++I) {
299 bool AllMergePartsArePadding = true;
300
301 // Build the requested merges to the requested type.
302 for (int J = 0; J != NumSubParts; ++J) {
303 int Idx = I * NumSubParts + J;
304 if (Idx >= NumOrigSrc) {
305 SubMerge[J] = PadReg;
306 continue;
307 }
308
309 SubMerge[J] = VRegs[Idx];
310
311 // There are meaningful bits here we can't reuse later.
312 AllMergePartsArePadding = false;
313 }
314
315 // If we've filled up a complete piece with padding bits, we can directly
316 // emit the natural sized constant if applicable, rather than a merge of
317 // smaller constants.
318 if (AllMergePartsArePadding && !AllPadReg) {
319 if (PadStrategy == TargetOpcode::G_ANYEXT)
320 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
321 else if (PadStrategy == TargetOpcode::G_ZEXT)
322 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
323
324 // If this is a sign extension, we can't materialize a trivial constant
325 // with the right type and have to produce a merge.
326 }
327
328 if (AllPadReg) {
329 // Avoid creating additional instructions if we're just adding additional
330 // copies of padding bits.
331 Remerge[I] = AllPadReg;
332 continue;
333 }
334
335 if (NumSubParts == 1)
336 Remerge[I] = SubMerge[0];
337 else
338 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0);
339
340 // In the sign extend padding case, re-use the first all-signbit merge.
341 if (AllMergePartsArePadding && !AllPadReg)
342 AllPadReg = Remerge[I];
343 }
344
345 VRegs = std::move(Remerge);
346 return LCMTy;
347 }
348
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)349 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
350 ArrayRef<Register> RemergeRegs) {
351 LLT DstTy = MRI.getType(DstReg);
352
353 // Create the merge to the widened source, and extract the relevant bits into
354 // the result.
355
356 if (DstTy == LCMTy) {
357 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs);
358 return;
359 }
360
361 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs);
362 if (DstTy.isScalar() && LCMTy.isScalar()) {
363 MIRBuilder.buildTrunc(DstReg, Remerge);
364 return;
365 }
366
367 if (LCMTy.isVector()) {
368 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
369 SmallVector<Register, 8> UnmergeDefs(NumDefs);
370 UnmergeDefs[0] = DstReg;
371 for (unsigned I = 1; I != NumDefs; ++I)
372 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
373
374 MIRBuilder.buildUnmerge(UnmergeDefs,
375 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs));
376 return;
377 }
378
379 llvm_unreachable("unhandled case");
380 }
381
getRTLibDesc(unsigned Opcode,unsigned Size)382 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
383 #define RTLIBCASE_INT(LibcallPrefix) \
384 do { \
385 switch (Size) { \
386 case 32: \
387 return RTLIB::LibcallPrefix##32; \
388 case 64: \
389 return RTLIB::LibcallPrefix##64; \
390 case 128: \
391 return RTLIB::LibcallPrefix##128; \
392 default: \
393 llvm_unreachable("unexpected size"); \
394 } \
395 } while (0)
396
397 #define RTLIBCASE(LibcallPrefix) \
398 do { \
399 switch (Size) { \
400 case 32: \
401 return RTLIB::LibcallPrefix##32; \
402 case 64: \
403 return RTLIB::LibcallPrefix##64; \
404 case 80: \
405 return RTLIB::LibcallPrefix##80; \
406 case 128: \
407 return RTLIB::LibcallPrefix##128; \
408 default: \
409 llvm_unreachable("unexpected size"); \
410 } \
411 } while (0)
412
413 switch (Opcode) {
414 case TargetOpcode::G_MUL:
415 RTLIBCASE_INT(MUL_I);
416 case TargetOpcode::G_SDIV:
417 RTLIBCASE_INT(SDIV_I);
418 case TargetOpcode::G_UDIV:
419 RTLIBCASE_INT(UDIV_I);
420 case TargetOpcode::G_SREM:
421 RTLIBCASE_INT(SREM_I);
422 case TargetOpcode::G_UREM:
423 RTLIBCASE_INT(UREM_I);
424 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
425 RTLIBCASE_INT(CTLZ_I);
426 case TargetOpcode::G_FADD:
427 RTLIBCASE(ADD_F);
428 case TargetOpcode::G_FSUB:
429 RTLIBCASE(SUB_F);
430 case TargetOpcode::G_FMUL:
431 RTLIBCASE(MUL_F);
432 case TargetOpcode::G_FDIV:
433 RTLIBCASE(DIV_F);
434 case TargetOpcode::G_FEXP:
435 RTLIBCASE(EXP_F);
436 case TargetOpcode::G_FEXP2:
437 RTLIBCASE(EXP2_F);
438 case TargetOpcode::G_FEXP10:
439 RTLIBCASE(EXP10_F);
440 case TargetOpcode::G_FREM:
441 RTLIBCASE(REM_F);
442 case TargetOpcode::G_FPOW:
443 RTLIBCASE(POW_F);
444 case TargetOpcode::G_FPOWI:
445 RTLIBCASE(POWI_F);
446 case TargetOpcode::G_FMA:
447 RTLIBCASE(FMA_F);
448 case TargetOpcode::G_FSIN:
449 RTLIBCASE(SIN_F);
450 case TargetOpcode::G_FCOS:
451 RTLIBCASE(COS_F);
452 case TargetOpcode::G_FTAN:
453 RTLIBCASE(TAN_F);
454 case TargetOpcode::G_FASIN:
455 RTLIBCASE(ASIN_F);
456 case TargetOpcode::G_FACOS:
457 RTLIBCASE(ACOS_F);
458 case TargetOpcode::G_FATAN:
459 RTLIBCASE(ATAN_F);
460 case TargetOpcode::G_FSINH:
461 RTLIBCASE(SINH_F);
462 case TargetOpcode::G_FCOSH:
463 RTLIBCASE(COSH_F);
464 case TargetOpcode::G_FTANH:
465 RTLIBCASE(TANH_F);
466 case TargetOpcode::G_FLOG10:
467 RTLIBCASE(LOG10_F);
468 case TargetOpcode::G_FLOG:
469 RTLIBCASE(LOG_F);
470 case TargetOpcode::G_FLOG2:
471 RTLIBCASE(LOG2_F);
472 case TargetOpcode::G_FLDEXP:
473 RTLIBCASE(LDEXP_F);
474 case TargetOpcode::G_FCEIL:
475 RTLIBCASE(CEIL_F);
476 case TargetOpcode::G_FFLOOR:
477 RTLIBCASE(FLOOR_F);
478 case TargetOpcode::G_FMINNUM:
479 RTLIBCASE(FMIN_F);
480 case TargetOpcode::G_FMAXNUM:
481 RTLIBCASE(FMAX_F);
482 case TargetOpcode::G_FSQRT:
483 RTLIBCASE(SQRT_F);
484 case TargetOpcode::G_FRINT:
485 RTLIBCASE(RINT_F);
486 case TargetOpcode::G_FNEARBYINT:
487 RTLIBCASE(NEARBYINT_F);
488 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
489 RTLIBCASE(ROUNDEVEN_F);
490 case TargetOpcode::G_INTRINSIC_LRINT:
491 RTLIBCASE(LRINT_F);
492 case TargetOpcode::G_INTRINSIC_LLRINT:
493 RTLIBCASE(LLRINT_F);
494 }
495 llvm_unreachable("Unknown libcall function");
496 }
497
498 /// True if an instruction is in tail position in its caller. Intended for
499 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(const CallLowering::ArgInfo & Result,MachineInstr & MI,const TargetInstrInfo & TII,MachineRegisterInfo & MRI)500 static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result,
501 MachineInstr &MI,
502 const TargetInstrInfo &TII,
503 MachineRegisterInfo &MRI) {
504 MachineBasicBlock &MBB = *MI.getParent();
505 const Function &F = MBB.getParent()->getFunction();
506
507 // Conservatively require the attributes of the call to match those of
508 // the return. Ignore NoAlias and NonNull because they don't affect the
509 // call sequence.
510 AttributeList CallerAttrs = F.getAttributes();
511 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
512 .removeAttribute(Attribute::NoAlias)
513 .removeAttribute(Attribute::NonNull)
514 .hasAttributes())
515 return false;
516
517 // It's not safe to eliminate the sign / zero extension of the return value.
518 if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
519 CallerAttrs.hasRetAttr(Attribute::SExt))
520 return false;
521
522 // Only tail call if the following instruction is a standard return or if we
523 // have a `thisreturn` callee, and a sequence like:
524 //
525 // G_MEMCPY %0, %1, %2
526 // $x0 = COPY %0
527 // RET_ReallyLR implicit $x0
528 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
529 if (Next != MBB.instr_end() && Next->isCopy()) {
530 if (MI.getOpcode() == TargetOpcode::G_BZERO)
531 return false;
532
533 // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the
534 // mempy/etc routines return the same parameter. For other it will be the
535 // returned value.
536 Register VReg = MI.getOperand(0).getReg();
537 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
538 return false;
539
540 Register PReg = Next->getOperand(0).getReg();
541 if (!PReg.isPhysical())
542 return false;
543
544 auto Ret = next_nodbg(Next, MBB.instr_end());
545 if (Ret == MBB.instr_end() || !Ret->isReturn())
546 return false;
547
548 if (Ret->getNumImplicitOperands() != 1)
549 return false;
550
551 if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg())
552 return false;
553
554 // Skip over the COPY that we just validated.
555 Next = Ret;
556 }
557
558 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
559 return false;
560
561 return true;
562 }
563
564 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC,LostDebugLocObserver & LocObserver,MachineInstr * MI)565 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
566 const CallLowering::ArgInfo &Result,
567 ArrayRef<CallLowering::ArgInfo> Args,
568 const CallingConv::ID CC, LostDebugLocObserver &LocObserver,
569 MachineInstr *MI) {
570 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
571
572 CallLowering::CallLoweringInfo Info;
573 Info.CallConv = CC;
574 Info.Callee = MachineOperand::CreateES(Name);
575 Info.OrigRet = Result;
576 if (MI)
577 Info.IsTailCall =
578 (Result.Ty->isVoidTy() ||
579 Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) &&
580 isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(),
581 *MIRBuilder.getMRI());
582
583 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
584 if (!CLI.lowerCall(MIRBuilder, Info))
585 return LegalizerHelper::UnableToLegalize;
586
587 if (MI && Info.LoweredTailCall) {
588 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
589
590 // Check debug locations before removing the return.
591 LocObserver.checkpoint(true);
592
593 // We must have a return following the call (or debug insts) to get past
594 // isLibCallInTailPosition.
595 do {
596 MachineInstr *Next = MI->getNextNode();
597 assert(Next &&
598 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
599 "Expected instr following MI to be return or debug inst?");
600 // We lowered a tail call, so the call is now the return from the block.
601 // Delete the old return.
602 Next->eraseFromParent();
603 } while (MI->getNextNode());
604
605 // We expect to lose the debug location from the return.
606 LocObserver.checkpoint(false);
607 }
608 return LegalizerHelper::Legalized;
609 }
610
611 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,LostDebugLocObserver & LocObserver,MachineInstr * MI)612 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
613 const CallLowering::ArgInfo &Result,
614 ArrayRef<CallLowering::ArgInfo> Args,
615 LostDebugLocObserver &LocObserver, MachineInstr *MI) {
616 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
617 const char *Name = TLI.getLibcallName(Libcall);
618 if (!Name)
619 return LegalizerHelper::UnableToLegalize;
620 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
621 return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI);
622 }
623
624 // Useful for libcalls where all operands have the same type.
625 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType,LostDebugLocObserver & LocObserver)626 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
627 Type *OpType, LostDebugLocObserver &LocObserver) {
628 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
629
630 // FIXME: What does the original arg index mean here?
631 SmallVector<CallLowering::ArgInfo, 3> Args;
632 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
633 Args.push_back({MO.getReg(), OpType, 0});
634 return createLibcall(MIRBuilder, Libcall,
635 {MI.getOperand(0).getReg(), OpType, 0}, Args,
636 LocObserver, &MI);
637 }
638
639 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI,LostDebugLocObserver & LocObserver)640 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
641 MachineInstr &MI, LostDebugLocObserver &LocObserver) {
642 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
643
644 SmallVector<CallLowering::ArgInfo, 3> Args;
645 // Add all the args, except for the last which is an imm denoting 'tail'.
646 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
647 Register Reg = MI.getOperand(i).getReg();
648
649 // Need derive an IR type for call lowering.
650 LLT OpLLT = MRI.getType(Reg);
651 Type *OpTy = nullptr;
652 if (OpLLT.isPointer())
653 OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace());
654 else
655 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
656 Args.push_back({Reg, OpTy, 0});
657 }
658
659 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
660 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
661 RTLIB::Libcall RTLibcall;
662 unsigned Opc = MI.getOpcode();
663 switch (Opc) {
664 case TargetOpcode::G_BZERO:
665 RTLibcall = RTLIB::BZERO;
666 break;
667 case TargetOpcode::G_MEMCPY:
668 RTLibcall = RTLIB::MEMCPY;
669 Args[0].Flags[0].setReturned();
670 break;
671 case TargetOpcode::G_MEMMOVE:
672 RTLibcall = RTLIB::MEMMOVE;
673 Args[0].Flags[0].setReturned();
674 break;
675 case TargetOpcode::G_MEMSET:
676 RTLibcall = RTLIB::MEMSET;
677 Args[0].Flags[0].setReturned();
678 break;
679 default:
680 llvm_unreachable("unsupported opcode");
681 }
682 const char *Name = TLI.getLibcallName(RTLibcall);
683
684 // Unsupported libcall on the target.
685 if (!Name) {
686 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
687 << MIRBuilder.getTII().getName(Opc) << "\n");
688 return LegalizerHelper::UnableToLegalize;
689 }
690
691 CallLowering::CallLoweringInfo Info;
692 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
693 Info.Callee = MachineOperand::CreateES(Name);
694 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
695 Info.IsTailCall =
696 MI.getOperand(MI.getNumOperands() - 1).getImm() &&
697 isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI);
698
699 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
700 if (!CLI.lowerCall(MIRBuilder, Info))
701 return LegalizerHelper::UnableToLegalize;
702
703 if (Info.LoweredTailCall) {
704 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
705
706 // Check debug locations before removing the return.
707 LocObserver.checkpoint(true);
708
709 // We must have a return following the call (or debug insts) to get past
710 // isLibCallInTailPosition.
711 do {
712 MachineInstr *Next = MI.getNextNode();
713 assert(Next &&
714 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
715 "Expected instr following MI to be return or debug inst?");
716 // We lowered a tail call, so the call is now the return from the block.
717 // Delete the old return.
718 Next->eraseFromParent();
719 } while (MI.getNextNode());
720
721 // We expect to lose the debug location from the return.
722 LocObserver.checkpoint(false);
723 }
724
725 return LegalizerHelper::Legalized;
726 }
727
getOutlineAtomicLibcall(MachineInstr & MI)728 static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) {
729 unsigned Opc = MI.getOpcode();
730 auto &AtomicMI = cast<GMemOperation>(MI);
731 auto &MMO = AtomicMI.getMMO();
732 auto Ordering = MMO.getMergedOrdering();
733 LLT MemType = MMO.getMemoryType();
734 uint64_t MemSize = MemType.getSizeInBytes();
735 if (MemType.isVector())
736 return RTLIB::UNKNOWN_LIBCALL;
737
738 #define LCALLS(A, B) \
739 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
740 #define LCALL5(A) \
741 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
742 switch (Opc) {
743 case TargetOpcode::G_ATOMIC_CMPXCHG:
744 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
745 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)};
746 return getOutlineAtomicHelper(LC, Ordering, MemSize);
747 }
748 case TargetOpcode::G_ATOMICRMW_XCHG: {
749 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)};
750 return getOutlineAtomicHelper(LC, Ordering, MemSize);
751 }
752 case TargetOpcode::G_ATOMICRMW_ADD:
753 case TargetOpcode::G_ATOMICRMW_SUB: {
754 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)};
755 return getOutlineAtomicHelper(LC, Ordering, MemSize);
756 }
757 case TargetOpcode::G_ATOMICRMW_AND: {
758 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)};
759 return getOutlineAtomicHelper(LC, Ordering, MemSize);
760 }
761 case TargetOpcode::G_ATOMICRMW_OR: {
762 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)};
763 return getOutlineAtomicHelper(LC, Ordering, MemSize);
764 }
765 case TargetOpcode::G_ATOMICRMW_XOR: {
766 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)};
767 return getOutlineAtomicHelper(LC, Ordering, MemSize);
768 }
769 default:
770 return RTLIB::UNKNOWN_LIBCALL;
771 }
772 #undef LCALLS
773 #undef LCALL5
774 }
775
776 static LegalizerHelper::LegalizeResult
createAtomicLibcall(MachineIRBuilder & MIRBuilder,MachineInstr & MI)777 createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) {
778 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
779
780 Type *RetTy;
781 SmallVector<Register> RetRegs;
782 SmallVector<CallLowering::ArgInfo, 3> Args;
783 unsigned Opc = MI.getOpcode();
784 switch (Opc) {
785 case TargetOpcode::G_ATOMIC_CMPXCHG:
786 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
787 Register Success;
788 LLT SuccessLLT;
789 auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] =
790 MI.getFirst4RegLLTs();
791 RetRegs.push_back(Ret);
792 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits());
793 if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) {
794 std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New,
795 NewLLT) = MI.getFirst5RegLLTs();
796 RetRegs.push_back(Success);
797 RetTy = StructType::get(
798 Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())});
799 }
800 Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0});
801 Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0});
802 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0});
803 break;
804 }
805 case TargetOpcode::G_ATOMICRMW_XCHG:
806 case TargetOpcode::G_ATOMICRMW_ADD:
807 case TargetOpcode::G_ATOMICRMW_SUB:
808 case TargetOpcode::G_ATOMICRMW_AND:
809 case TargetOpcode::G_ATOMICRMW_OR:
810 case TargetOpcode::G_ATOMICRMW_XOR: {
811 auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs();
812 RetRegs.push_back(Ret);
813 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits());
814 if (Opc == TargetOpcode::G_ATOMICRMW_AND)
815 Val =
816 MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val)
817 .getReg(0);
818 else if (Opc == TargetOpcode::G_ATOMICRMW_SUB)
819 Val =
820 MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val)
821 .getReg(0);
822 Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0});
823 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0});
824 break;
825 }
826 default:
827 llvm_unreachable("unsupported opcode");
828 }
829
830 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
831 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
832 RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI);
833 const char *Name = TLI.getLibcallName(RTLibcall);
834
835 // Unsupported libcall on the target.
836 if (!Name) {
837 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
838 << MIRBuilder.getTII().getName(Opc) << "\n");
839 return LegalizerHelper::UnableToLegalize;
840 }
841
842 CallLowering::CallLoweringInfo Info;
843 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
844 Info.Callee = MachineOperand::CreateES(Name);
845 Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0);
846
847 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
848 if (!CLI.lowerCall(MIRBuilder, Info))
849 return LegalizerHelper::UnableToLegalize;
850
851 return LegalizerHelper::Legalized;
852 }
853
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)854 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
855 Type *FromType) {
856 auto ToMVT = MVT::getVT(ToType);
857 auto FromMVT = MVT::getVT(FromType);
858
859 switch (Opcode) {
860 case TargetOpcode::G_FPEXT:
861 return RTLIB::getFPEXT(FromMVT, ToMVT);
862 case TargetOpcode::G_FPTRUNC:
863 return RTLIB::getFPROUND(FromMVT, ToMVT);
864 case TargetOpcode::G_FPTOSI:
865 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
866 case TargetOpcode::G_FPTOUI:
867 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
868 case TargetOpcode::G_SITOFP:
869 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
870 case TargetOpcode::G_UITOFP:
871 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
872 }
873 llvm_unreachable("Unsupported libcall function");
874 }
875
876 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType,LostDebugLocObserver & LocObserver)877 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
878 Type *FromType, LostDebugLocObserver &LocObserver) {
879 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
880 return createLibcall(
881 MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0},
882 {{MI.getOperand(1).getReg(), FromType, 0}}, LocObserver, &MI);
883 }
884
885 static RTLIB::Libcall
getStateLibraryFunctionFor(MachineInstr & MI,const TargetLowering & TLI)886 getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) {
887 RTLIB::Libcall RTLibcall;
888 switch (MI.getOpcode()) {
889 case TargetOpcode::G_GET_FPENV:
890 RTLibcall = RTLIB::FEGETENV;
891 break;
892 case TargetOpcode::G_SET_FPENV:
893 case TargetOpcode::G_RESET_FPENV:
894 RTLibcall = RTLIB::FESETENV;
895 break;
896 case TargetOpcode::G_GET_FPMODE:
897 RTLibcall = RTLIB::FEGETMODE;
898 break;
899 case TargetOpcode::G_SET_FPMODE:
900 case TargetOpcode::G_RESET_FPMODE:
901 RTLibcall = RTLIB::FESETMODE;
902 break;
903 default:
904 llvm_unreachable("Unexpected opcode");
905 }
906 return RTLibcall;
907 }
908
909 // Some library functions that read FP state (fegetmode, fegetenv) write the
910 // state into a region in memory. IR intrinsics that do the same operations
911 // (get_fpmode, get_fpenv) return the state as integer value. To implement these
912 // intrinsics via the library functions, we need to use temporary variable,
913 // for example:
914 //
915 // %0:_(s32) = G_GET_FPMODE
916 //
917 // is transformed to:
918 //
919 // %1:_(p0) = G_FRAME_INDEX %stack.0
920 // BL &fegetmode
921 // %0:_(s32) = G_LOAD % 1
922 //
923 LegalizerHelper::LegalizeResult
createGetStateLibcall(MachineIRBuilder & MIRBuilder,MachineInstr & MI,LostDebugLocObserver & LocObserver)924 LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder,
925 MachineInstr &MI,
926 LostDebugLocObserver &LocObserver) {
927 const DataLayout &DL = MIRBuilder.getDataLayout();
928 auto &MF = MIRBuilder.getMF();
929 auto &MRI = *MIRBuilder.getMRI();
930 auto &Ctx = MF.getFunction().getContext();
931
932 // Create temporary, where library function will put the read state.
933 Register Dst = MI.getOperand(0).getReg();
934 LLT StateTy = MRI.getType(Dst);
935 TypeSize StateSize = StateTy.getSizeInBytes();
936 Align TempAlign = getStackTemporaryAlignment(StateTy);
937 MachinePointerInfo TempPtrInfo;
938 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo);
939
940 // Create a call to library function, with the temporary as an argument.
941 unsigned TempAddrSpace = DL.getAllocaAddrSpace();
942 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace);
943 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
944 auto Res =
945 createLibcall(MIRBuilder, RTLibcall,
946 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
947 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}),
948 LocObserver, nullptr);
949 if (Res != LegalizerHelper::Legalized)
950 return Res;
951
952 // Create a load from the temporary.
953 MachineMemOperand *MMO = MF.getMachineMemOperand(
954 TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign);
955 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO);
956
957 return LegalizerHelper::Legalized;
958 }
959
960 // Similar to `createGetStateLibcall` the function calls a library function
961 // using transient space in stack. In this case the library function reads
962 // content of memory region.
963 LegalizerHelper::LegalizeResult
createSetStateLibcall(MachineIRBuilder & MIRBuilder,MachineInstr & MI,LostDebugLocObserver & LocObserver)964 LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder,
965 MachineInstr &MI,
966 LostDebugLocObserver &LocObserver) {
967 const DataLayout &DL = MIRBuilder.getDataLayout();
968 auto &MF = MIRBuilder.getMF();
969 auto &MRI = *MIRBuilder.getMRI();
970 auto &Ctx = MF.getFunction().getContext();
971
972 // Create temporary, where library function will get the new state.
973 Register Src = MI.getOperand(0).getReg();
974 LLT StateTy = MRI.getType(Src);
975 TypeSize StateSize = StateTy.getSizeInBytes();
976 Align TempAlign = getStackTemporaryAlignment(StateTy);
977 MachinePointerInfo TempPtrInfo;
978 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo);
979
980 // Put the new state into the temporary.
981 MachineMemOperand *MMO = MF.getMachineMemOperand(
982 TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign);
983 MIRBuilder.buildStore(Src, Temp, *MMO);
984
985 // Create a call to library function, with the temporary as an argument.
986 unsigned TempAddrSpace = DL.getAllocaAddrSpace();
987 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace);
988 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
989 return createLibcall(MIRBuilder, RTLibcall,
990 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
991 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}),
992 LocObserver, nullptr);
993 }
994
995 // The function is used to legalize operations that set default environment
996 // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that.
997 // On most targets supported in glibc FE_DFL_MODE is defined as
998 // `((const femode_t *) -1)`. Such assumption is used here. If for some target
999 // it is not true, the target must provide custom lowering.
1000 LegalizerHelper::LegalizeResult
createResetStateLibcall(MachineIRBuilder & MIRBuilder,MachineInstr & MI,LostDebugLocObserver & LocObserver)1001 LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder,
1002 MachineInstr &MI,
1003 LostDebugLocObserver &LocObserver) {
1004 const DataLayout &DL = MIRBuilder.getDataLayout();
1005 auto &MF = MIRBuilder.getMF();
1006 auto &Ctx = MF.getFunction().getContext();
1007
1008 // Create an argument for the library function.
1009 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
1010 Type *StatePtrTy = PointerType::get(Ctx, AddrSpace);
1011 unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace);
1012 LLT MemTy = LLT::pointer(AddrSpace, PtrSize);
1013 auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL);
1014 DstOp Dest(MRI.createGenericVirtualRegister(MemTy));
1015 MIRBuilder.buildIntToPtr(Dest, DefValue);
1016
1017 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
1018 return createLibcall(MIRBuilder, RTLibcall,
1019 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
1020 CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}),
1021 LocObserver, &MI);
1022 }
1023
1024 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI,LostDebugLocObserver & LocObserver)1025 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
1026 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
1027
1028 switch (MI.getOpcode()) {
1029 default:
1030 return UnableToLegalize;
1031 case TargetOpcode::G_MUL:
1032 case TargetOpcode::G_SDIV:
1033 case TargetOpcode::G_UDIV:
1034 case TargetOpcode::G_SREM:
1035 case TargetOpcode::G_UREM:
1036 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
1037 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1038 unsigned Size = LLTy.getSizeInBits();
1039 Type *HLTy = IntegerType::get(Ctx, Size);
1040 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver);
1041 if (Status != Legalized)
1042 return Status;
1043 break;
1044 }
1045 case TargetOpcode::G_FADD:
1046 case TargetOpcode::G_FSUB:
1047 case TargetOpcode::G_FMUL:
1048 case TargetOpcode::G_FDIV:
1049 case TargetOpcode::G_FMA:
1050 case TargetOpcode::G_FPOW:
1051 case TargetOpcode::G_FREM:
1052 case TargetOpcode::G_FCOS:
1053 case TargetOpcode::G_FSIN:
1054 case TargetOpcode::G_FTAN:
1055 case TargetOpcode::G_FACOS:
1056 case TargetOpcode::G_FASIN:
1057 case TargetOpcode::G_FATAN:
1058 case TargetOpcode::G_FCOSH:
1059 case TargetOpcode::G_FSINH:
1060 case TargetOpcode::G_FTANH:
1061 case TargetOpcode::G_FLOG10:
1062 case TargetOpcode::G_FLOG:
1063 case TargetOpcode::G_FLOG2:
1064 case TargetOpcode::G_FLDEXP:
1065 case TargetOpcode::G_FEXP:
1066 case TargetOpcode::G_FEXP2:
1067 case TargetOpcode::G_FEXP10:
1068 case TargetOpcode::G_FCEIL:
1069 case TargetOpcode::G_FFLOOR:
1070 case TargetOpcode::G_FMINNUM:
1071 case TargetOpcode::G_FMAXNUM:
1072 case TargetOpcode::G_FSQRT:
1073 case TargetOpcode::G_FRINT:
1074 case TargetOpcode::G_FNEARBYINT:
1075 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
1076 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1077 unsigned Size = LLTy.getSizeInBits();
1078 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
1079 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
1080 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
1081 return UnableToLegalize;
1082 }
1083 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver);
1084 if (Status != Legalized)
1085 return Status;
1086 break;
1087 }
1088 case TargetOpcode::G_INTRINSIC_LRINT:
1089 case TargetOpcode::G_INTRINSIC_LLRINT: {
1090 LLT LLTy = MRI.getType(MI.getOperand(1).getReg());
1091 unsigned Size = LLTy.getSizeInBits();
1092 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
1093 Type *ITy = IntegerType::get(
1094 Ctx, MRI.getType(MI.getOperand(0).getReg()).getSizeInBits());
1095 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
1096 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
1097 return UnableToLegalize;
1098 }
1099 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
1100 LegalizeResult Status =
1101 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ITy, 0},
1102 {{MI.getOperand(1).getReg(), HLTy, 0}}, LocObserver, &MI);
1103 if (Status != Legalized)
1104 return Status;
1105 MI.eraseFromParent();
1106 return Legalized;
1107 }
1108 case TargetOpcode::G_FPOWI: {
1109 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1110 unsigned Size = LLTy.getSizeInBits();
1111 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
1112 Type *ITy = IntegerType::get(
1113 Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits());
1114 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
1115 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
1116 return UnableToLegalize;
1117 }
1118 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
1119 std::initializer_list<CallLowering::ArgInfo> Args = {
1120 {MI.getOperand(1).getReg(), HLTy, 0},
1121 {MI.getOperand(2).getReg(), ITy, 1}};
1122 LegalizeResult Status =
1123 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0},
1124 Args, LocObserver, &MI);
1125 if (Status != Legalized)
1126 return Status;
1127 break;
1128 }
1129 case TargetOpcode::G_FPEXT:
1130 case TargetOpcode::G_FPTRUNC: {
1131 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
1132 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
1133 if (!FromTy || !ToTy)
1134 return UnableToLegalize;
1135 LegalizeResult Status =
1136 conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver);
1137 if (Status != Legalized)
1138 return Status;
1139 break;
1140 }
1141 case TargetOpcode::G_FPTOSI:
1142 case TargetOpcode::G_FPTOUI: {
1143 // FIXME: Support other types
1144 Type *FromTy =
1145 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
1146 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
1147 if ((ToSize != 32 && ToSize != 64 && ToSize != 128) || !FromTy)
1148 return UnableToLegalize;
1149 LegalizeResult Status = conversionLibcall(
1150 MI, MIRBuilder, Type::getIntNTy(Ctx, ToSize), FromTy, LocObserver);
1151 if (Status != Legalized)
1152 return Status;
1153 break;
1154 }
1155 case TargetOpcode::G_SITOFP:
1156 case TargetOpcode::G_UITOFP: {
1157 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
1158 Type *ToTy =
1159 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
1160 if ((FromSize != 32 && FromSize != 64 && FromSize != 128) || !ToTy)
1161 return UnableToLegalize;
1162 LegalizeResult Status = conversionLibcall(
1163 MI, MIRBuilder, ToTy, Type::getIntNTy(Ctx, FromSize), LocObserver);
1164 if (Status != Legalized)
1165 return Status;
1166 break;
1167 }
1168 case TargetOpcode::G_ATOMICRMW_XCHG:
1169 case TargetOpcode::G_ATOMICRMW_ADD:
1170 case TargetOpcode::G_ATOMICRMW_SUB:
1171 case TargetOpcode::G_ATOMICRMW_AND:
1172 case TargetOpcode::G_ATOMICRMW_OR:
1173 case TargetOpcode::G_ATOMICRMW_XOR:
1174 case TargetOpcode::G_ATOMIC_CMPXCHG:
1175 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1176 auto Status = createAtomicLibcall(MIRBuilder, MI);
1177 if (Status != Legalized)
1178 return Status;
1179 break;
1180 }
1181 case TargetOpcode::G_BZERO:
1182 case TargetOpcode::G_MEMCPY:
1183 case TargetOpcode::G_MEMMOVE:
1184 case TargetOpcode::G_MEMSET: {
1185 LegalizeResult Result =
1186 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
1187 if (Result != Legalized)
1188 return Result;
1189 MI.eraseFromParent();
1190 return Result;
1191 }
1192 case TargetOpcode::G_GET_FPENV:
1193 case TargetOpcode::G_GET_FPMODE: {
1194 LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver);
1195 if (Result != Legalized)
1196 return Result;
1197 break;
1198 }
1199 case TargetOpcode::G_SET_FPENV:
1200 case TargetOpcode::G_SET_FPMODE: {
1201 LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver);
1202 if (Result != Legalized)
1203 return Result;
1204 break;
1205 }
1206 case TargetOpcode::G_RESET_FPENV:
1207 case TargetOpcode::G_RESET_FPMODE: {
1208 LegalizeResult Result =
1209 createResetStateLibcall(MIRBuilder, MI, LocObserver);
1210 if (Result != Legalized)
1211 return Result;
1212 break;
1213 }
1214 }
1215
1216 MI.eraseFromParent();
1217 return Legalized;
1218 }
1219
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)1220 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
1221 unsigned TypeIdx,
1222 LLT NarrowTy) {
1223 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
1224 uint64_t NarrowSize = NarrowTy.getSizeInBits();
1225
1226 switch (MI.getOpcode()) {
1227 default:
1228 return UnableToLegalize;
1229 case TargetOpcode::G_IMPLICIT_DEF: {
1230 Register DstReg = MI.getOperand(0).getReg();
1231 LLT DstTy = MRI.getType(DstReg);
1232
1233 // If SizeOp0 is not an exact multiple of NarrowSize, emit
1234 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
1235 // FIXME: Although this would also be legal for the general case, it causes
1236 // a lot of regressions in the emitted code (superfluous COPYs, artifact
1237 // combines not being hit). This seems to be a problem related to the
1238 // artifact combiner.
1239 if (SizeOp0 % NarrowSize != 0) {
1240 LLT ImplicitTy = NarrowTy;
1241 if (DstTy.isVector())
1242 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
1243
1244 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
1245 MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
1246
1247 MI.eraseFromParent();
1248 return Legalized;
1249 }
1250
1251 int NumParts = SizeOp0 / NarrowSize;
1252
1253 SmallVector<Register, 2> DstRegs;
1254 for (int i = 0; i < NumParts; ++i)
1255 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
1256
1257 if (DstTy.isVector())
1258 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1259 else
1260 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
1261 MI.eraseFromParent();
1262 return Legalized;
1263 }
1264 case TargetOpcode::G_CONSTANT: {
1265 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1266 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
1267 unsigned TotalSize = Ty.getSizeInBits();
1268 unsigned NarrowSize = NarrowTy.getSizeInBits();
1269 int NumParts = TotalSize / NarrowSize;
1270
1271 SmallVector<Register, 4> PartRegs;
1272 for (int I = 0; I != NumParts; ++I) {
1273 unsigned Offset = I * NarrowSize;
1274 auto K = MIRBuilder.buildConstant(NarrowTy,
1275 Val.lshr(Offset).trunc(NarrowSize));
1276 PartRegs.push_back(K.getReg(0));
1277 }
1278
1279 LLT LeftoverTy;
1280 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
1281 SmallVector<Register, 1> LeftoverRegs;
1282 if (LeftoverBits != 0) {
1283 LeftoverTy = LLT::scalar(LeftoverBits);
1284 auto K = MIRBuilder.buildConstant(
1285 LeftoverTy,
1286 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
1287 LeftoverRegs.push_back(K.getReg(0));
1288 }
1289
1290 insertParts(MI.getOperand(0).getReg(),
1291 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
1292
1293 MI.eraseFromParent();
1294 return Legalized;
1295 }
1296 case TargetOpcode::G_SEXT:
1297 case TargetOpcode::G_ZEXT:
1298 case TargetOpcode::G_ANYEXT:
1299 return narrowScalarExt(MI, TypeIdx, NarrowTy);
1300 case TargetOpcode::G_TRUNC: {
1301 if (TypeIdx != 1)
1302 return UnableToLegalize;
1303
1304 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
1305 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
1306 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
1307 return UnableToLegalize;
1308 }
1309
1310 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
1311 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
1312 MI.eraseFromParent();
1313 return Legalized;
1314 }
1315 case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
1316 case TargetOpcode::G_FREEZE: {
1317 if (TypeIdx != 0)
1318 return UnableToLegalize;
1319
1320 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1321 // Should widen scalar first
1322 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1323 return UnableToLegalize;
1324
1325 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1326 SmallVector<Register, 8> Parts;
1327 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1328 Parts.push_back(
1329 MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {Unmerge.getReg(i)})
1330 .getReg(0));
1331 }
1332
1333 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts);
1334 MI.eraseFromParent();
1335 return Legalized;
1336 }
1337 case TargetOpcode::G_ADD:
1338 case TargetOpcode::G_SUB:
1339 case TargetOpcode::G_SADDO:
1340 case TargetOpcode::G_SSUBO:
1341 case TargetOpcode::G_SADDE:
1342 case TargetOpcode::G_SSUBE:
1343 case TargetOpcode::G_UADDO:
1344 case TargetOpcode::G_USUBO:
1345 case TargetOpcode::G_UADDE:
1346 case TargetOpcode::G_USUBE:
1347 return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1348 case TargetOpcode::G_MUL:
1349 case TargetOpcode::G_UMULH:
1350 return narrowScalarMul(MI, NarrowTy);
1351 case TargetOpcode::G_EXTRACT:
1352 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1353 case TargetOpcode::G_INSERT:
1354 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1355 case TargetOpcode::G_LOAD: {
1356 auto &LoadMI = cast<GLoad>(MI);
1357 Register DstReg = LoadMI.getDstReg();
1358 LLT DstTy = MRI.getType(DstReg);
1359 if (DstTy.isVector())
1360 return UnableToLegalize;
1361
1362 if (8 * LoadMI.getMemSize().getValue() != DstTy.getSizeInBits()) {
1363 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1364 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1365 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1366 LoadMI.eraseFromParent();
1367 return Legalized;
1368 }
1369
1370 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1371 }
1372 case TargetOpcode::G_ZEXTLOAD:
1373 case TargetOpcode::G_SEXTLOAD: {
1374 auto &LoadMI = cast<GExtLoad>(MI);
1375 Register DstReg = LoadMI.getDstReg();
1376 Register PtrReg = LoadMI.getPointerReg();
1377
1378 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1379 auto &MMO = LoadMI.getMMO();
1380 unsigned MemSize = MMO.getSizeInBits().getValue();
1381
1382 if (MemSize == NarrowSize) {
1383 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1384 } else if (MemSize < NarrowSize) {
1385 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1386 } else if (MemSize > NarrowSize) {
1387 // FIXME: Need to split the load.
1388 return UnableToLegalize;
1389 }
1390
1391 if (isa<GZExtLoad>(LoadMI))
1392 MIRBuilder.buildZExt(DstReg, TmpReg);
1393 else
1394 MIRBuilder.buildSExt(DstReg, TmpReg);
1395
1396 LoadMI.eraseFromParent();
1397 return Legalized;
1398 }
1399 case TargetOpcode::G_STORE: {
1400 auto &StoreMI = cast<GStore>(MI);
1401
1402 Register SrcReg = StoreMI.getValueReg();
1403 LLT SrcTy = MRI.getType(SrcReg);
1404 if (SrcTy.isVector())
1405 return UnableToLegalize;
1406
1407 int NumParts = SizeOp0 / NarrowSize;
1408 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1409 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1410 if (SrcTy.isVector() && LeftoverBits != 0)
1411 return UnableToLegalize;
1412
1413 if (8 * StoreMI.getMemSize().getValue() != SrcTy.getSizeInBits()) {
1414 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1415 MIRBuilder.buildTrunc(TmpReg, SrcReg);
1416 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1417 StoreMI.eraseFromParent();
1418 return Legalized;
1419 }
1420
1421 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1422 }
1423 case TargetOpcode::G_SELECT:
1424 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1425 case TargetOpcode::G_AND:
1426 case TargetOpcode::G_OR:
1427 case TargetOpcode::G_XOR: {
1428 // Legalize bitwise operation:
1429 // A = BinOp<Ty> B, C
1430 // into:
1431 // B1, ..., BN = G_UNMERGE_VALUES B
1432 // C1, ..., CN = G_UNMERGE_VALUES C
1433 // A1 = BinOp<Ty/N> B1, C2
1434 // ...
1435 // AN = BinOp<Ty/N> BN, CN
1436 // A = G_MERGE_VALUES A1, ..., AN
1437 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1438 }
1439 case TargetOpcode::G_SHL:
1440 case TargetOpcode::G_LSHR:
1441 case TargetOpcode::G_ASHR:
1442 return narrowScalarShift(MI, TypeIdx, NarrowTy);
1443 case TargetOpcode::G_CTLZ:
1444 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1445 case TargetOpcode::G_CTTZ:
1446 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1447 case TargetOpcode::G_CTPOP:
1448 if (TypeIdx == 1)
1449 switch (MI.getOpcode()) {
1450 case TargetOpcode::G_CTLZ:
1451 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1452 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1453 case TargetOpcode::G_CTTZ:
1454 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1455 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1456 case TargetOpcode::G_CTPOP:
1457 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1458 default:
1459 return UnableToLegalize;
1460 }
1461
1462 Observer.changingInstr(MI);
1463 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1464 Observer.changedInstr(MI);
1465 return Legalized;
1466 case TargetOpcode::G_INTTOPTR:
1467 if (TypeIdx != 1)
1468 return UnableToLegalize;
1469
1470 Observer.changingInstr(MI);
1471 narrowScalarSrc(MI, NarrowTy, 1);
1472 Observer.changedInstr(MI);
1473 return Legalized;
1474 case TargetOpcode::G_PTRTOINT:
1475 if (TypeIdx != 0)
1476 return UnableToLegalize;
1477
1478 Observer.changingInstr(MI);
1479 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1480 Observer.changedInstr(MI);
1481 return Legalized;
1482 case TargetOpcode::G_PHI: {
1483 // FIXME: add support for when SizeOp0 isn't an exact multiple of
1484 // NarrowSize.
1485 if (SizeOp0 % NarrowSize != 0)
1486 return UnableToLegalize;
1487
1488 unsigned NumParts = SizeOp0 / NarrowSize;
1489 SmallVector<Register, 2> DstRegs(NumParts);
1490 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1491 Observer.changingInstr(MI);
1492 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1493 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1494 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
1495 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1496 SrcRegs[i / 2], MIRBuilder, MRI);
1497 }
1498 MachineBasicBlock &MBB = *MI.getParent();
1499 MIRBuilder.setInsertPt(MBB, MI);
1500 for (unsigned i = 0; i < NumParts; ++i) {
1501 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1502 MachineInstrBuilder MIB =
1503 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1504 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1505 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1506 }
1507 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1508 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1509 Observer.changedInstr(MI);
1510 MI.eraseFromParent();
1511 return Legalized;
1512 }
1513 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1514 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1515 if (TypeIdx != 2)
1516 return UnableToLegalize;
1517
1518 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1519 Observer.changingInstr(MI);
1520 narrowScalarSrc(MI, NarrowTy, OpIdx);
1521 Observer.changedInstr(MI);
1522 return Legalized;
1523 }
1524 case TargetOpcode::G_ICMP: {
1525 Register LHS = MI.getOperand(2).getReg();
1526 LLT SrcTy = MRI.getType(LHS);
1527 uint64_t SrcSize = SrcTy.getSizeInBits();
1528 CmpInst::Predicate Pred =
1529 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1530
1531 // TODO: Handle the non-equality case for weird sizes.
1532 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1533 return UnableToLegalize;
1534
1535 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1536 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1537 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1538 LHSLeftoverRegs, MIRBuilder, MRI))
1539 return UnableToLegalize;
1540
1541 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1542 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1543 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1544 RHSPartRegs, RHSLeftoverRegs, MIRBuilder, MRI))
1545 return UnableToLegalize;
1546
1547 // We now have the LHS and RHS of the compare split into narrow-type
1548 // registers, plus potentially some leftover type.
1549 Register Dst = MI.getOperand(0).getReg();
1550 LLT ResTy = MRI.getType(Dst);
1551 if (ICmpInst::isEquality(Pred)) {
1552 // For each part on the LHS and RHS, keep track of the result of XOR-ing
1553 // them together. For each equal part, the result should be all 0s. For
1554 // each non-equal part, we'll get at least one 1.
1555 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1556 SmallVector<Register, 4> Xors;
1557 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1558 auto LHS = std::get<0>(LHSAndRHS);
1559 auto RHS = std::get<1>(LHSAndRHS);
1560 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1561 Xors.push_back(Xor);
1562 }
1563
1564 // Build a G_XOR for each leftover register. Each G_XOR must be widened
1565 // to the desired narrow type so that we can OR them together later.
1566 SmallVector<Register, 4> WidenedXors;
1567 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1568 auto LHS = std::get<0>(LHSAndRHS);
1569 auto RHS = std::get<1>(LHSAndRHS);
1570 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1571 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1572 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1573 /* PadStrategy = */ TargetOpcode::G_ZEXT);
1574 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1575 }
1576
1577 // Now, for each part we broke up, we know if they are equal/not equal
1578 // based off the G_XOR. We can OR these all together and compare against
1579 // 0 to get the result.
1580 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1581 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1582 for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1583 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1584 MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1585 } else {
1586 // TODO: Handle non-power-of-two types.
1587 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1588 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1589 Register LHSL = LHSPartRegs[0];
1590 Register LHSH = LHSPartRegs[1];
1591 Register RHSL = RHSPartRegs[0];
1592 Register RHSH = RHSPartRegs[1];
1593 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1594 MachineInstrBuilder CmpHEQ =
1595 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1596 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1597 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1598 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1599 }
1600 MI.eraseFromParent();
1601 return Legalized;
1602 }
1603 case TargetOpcode::G_FCMP:
1604 if (TypeIdx != 0)
1605 return UnableToLegalize;
1606
1607 Observer.changingInstr(MI);
1608 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1609 Observer.changedInstr(MI);
1610 return Legalized;
1611
1612 case TargetOpcode::G_SEXT_INREG: {
1613 if (TypeIdx != 0)
1614 return UnableToLegalize;
1615
1616 int64_t SizeInBits = MI.getOperand(2).getImm();
1617
1618 // So long as the new type has more bits than the bits we're extending we
1619 // don't need to break it apart.
1620 if (NarrowTy.getScalarSizeInBits() > SizeInBits) {
1621 Observer.changingInstr(MI);
1622 // We don't lose any non-extension bits by truncating the src and
1623 // sign-extending the dst.
1624 MachineOperand &MO1 = MI.getOperand(1);
1625 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1626 MO1.setReg(TruncMIB.getReg(0));
1627
1628 MachineOperand &MO2 = MI.getOperand(0);
1629 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1630 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1631 MIRBuilder.buildSExt(MO2, DstExt);
1632 MO2.setReg(DstExt);
1633 Observer.changedInstr(MI);
1634 return Legalized;
1635 }
1636
1637 // Break it apart. Components below the extension point are unmodified. The
1638 // component containing the extension point becomes a narrower SEXT_INREG.
1639 // Components above it are ashr'd from the component containing the
1640 // extension point.
1641 if (SizeOp0 % NarrowSize != 0)
1642 return UnableToLegalize;
1643 int NumParts = SizeOp0 / NarrowSize;
1644
1645 // List the registers where the destination will be scattered.
1646 SmallVector<Register, 2> DstRegs;
1647 // List the registers where the source will be split.
1648 SmallVector<Register, 2> SrcRegs;
1649
1650 // Create all the temporary registers.
1651 for (int i = 0; i < NumParts; ++i) {
1652 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1653
1654 SrcRegs.push_back(SrcReg);
1655 }
1656
1657 // Explode the big arguments into smaller chunks.
1658 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1659
1660 Register AshrCstReg =
1661 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1662 .getReg(0);
1663 Register FullExtensionReg;
1664 Register PartialExtensionReg;
1665
1666 // Do the operation on each small part.
1667 for (int i = 0; i < NumParts; ++i) {
1668 if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) {
1669 DstRegs.push_back(SrcRegs[i]);
1670 PartialExtensionReg = DstRegs.back();
1671 } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1672 assert(PartialExtensionReg &&
1673 "Expected to visit partial extension before full");
1674 if (FullExtensionReg) {
1675 DstRegs.push_back(FullExtensionReg);
1676 continue;
1677 }
1678 DstRegs.push_back(
1679 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1680 .getReg(0));
1681 FullExtensionReg = DstRegs.back();
1682 } else {
1683 DstRegs.push_back(
1684 MIRBuilder
1685 .buildInstr(
1686 TargetOpcode::G_SEXT_INREG, {NarrowTy},
1687 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1688 .getReg(0));
1689 PartialExtensionReg = DstRegs.back();
1690 }
1691 }
1692
1693 // Gather the destination registers into the final destination.
1694 Register DstReg = MI.getOperand(0).getReg();
1695 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
1696 MI.eraseFromParent();
1697 return Legalized;
1698 }
1699 case TargetOpcode::G_BSWAP:
1700 case TargetOpcode::G_BITREVERSE: {
1701 if (SizeOp0 % NarrowSize != 0)
1702 return UnableToLegalize;
1703
1704 Observer.changingInstr(MI);
1705 SmallVector<Register, 2> SrcRegs, DstRegs;
1706 unsigned NumParts = SizeOp0 / NarrowSize;
1707 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs,
1708 MIRBuilder, MRI);
1709
1710 for (unsigned i = 0; i < NumParts; ++i) {
1711 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1712 {SrcRegs[NumParts - 1 - i]});
1713 DstRegs.push_back(DstPart.getReg(0));
1714 }
1715
1716 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1717
1718 Observer.changedInstr(MI);
1719 MI.eraseFromParent();
1720 return Legalized;
1721 }
1722 case TargetOpcode::G_PTR_ADD:
1723 case TargetOpcode::G_PTRMASK: {
1724 if (TypeIdx != 1)
1725 return UnableToLegalize;
1726 Observer.changingInstr(MI);
1727 narrowScalarSrc(MI, NarrowTy, 2);
1728 Observer.changedInstr(MI);
1729 return Legalized;
1730 }
1731 case TargetOpcode::G_FPTOUI:
1732 case TargetOpcode::G_FPTOSI:
1733 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1734 case TargetOpcode::G_FPEXT:
1735 if (TypeIdx != 0)
1736 return UnableToLegalize;
1737 Observer.changingInstr(MI);
1738 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1739 Observer.changedInstr(MI);
1740 return Legalized;
1741 case TargetOpcode::G_FLDEXP:
1742 case TargetOpcode::G_STRICT_FLDEXP:
1743 return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy);
1744 case TargetOpcode::G_VSCALE: {
1745 Register Dst = MI.getOperand(0).getReg();
1746 LLT Ty = MRI.getType(Dst);
1747
1748 // Assume VSCALE(1) fits into a legal integer
1749 const APInt One(NarrowTy.getSizeInBits(), 1);
1750 auto VScaleBase = MIRBuilder.buildVScale(NarrowTy, One);
1751 auto ZExt = MIRBuilder.buildZExt(Ty, VScaleBase);
1752 auto C = MIRBuilder.buildConstant(Ty, *MI.getOperand(1).getCImm());
1753 MIRBuilder.buildMul(Dst, ZExt, C);
1754
1755 MI.eraseFromParent();
1756 return Legalized;
1757 }
1758 }
1759 }
1760
coerceToScalar(Register Val)1761 Register LegalizerHelper::coerceToScalar(Register Val) {
1762 LLT Ty = MRI.getType(Val);
1763 if (Ty.isScalar())
1764 return Val;
1765
1766 const DataLayout &DL = MIRBuilder.getDataLayout();
1767 LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1768 if (Ty.isPointer()) {
1769 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1770 return Register();
1771 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1772 }
1773
1774 Register NewVal = Val;
1775
1776 assert(Ty.isVector());
1777 if (Ty.isPointerVector())
1778 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1779 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1780 }
1781
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1782 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1783 unsigned OpIdx, unsigned ExtOpcode) {
1784 MachineOperand &MO = MI.getOperand(OpIdx);
1785 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1786 MO.setReg(ExtB.getReg(0));
1787 }
1788
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1789 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1790 unsigned OpIdx) {
1791 MachineOperand &MO = MI.getOperand(OpIdx);
1792 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1793 MO.setReg(ExtB.getReg(0));
1794 }
1795
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1796 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1797 unsigned OpIdx, unsigned TruncOpcode) {
1798 MachineOperand &MO = MI.getOperand(OpIdx);
1799 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1800 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1801 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1802 MO.setReg(DstExt);
1803 }
1804
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1805 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1806 unsigned OpIdx, unsigned ExtOpcode) {
1807 MachineOperand &MO = MI.getOperand(OpIdx);
1808 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1809 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1810 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1811 MO.setReg(DstTrunc);
1812 }
1813
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1814 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1815 unsigned OpIdx) {
1816 MachineOperand &MO = MI.getOperand(OpIdx);
1817 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1818 Register Dst = MO.getReg();
1819 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1820 MO.setReg(DstExt);
1821 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1822 }
1823
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1824 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1825 unsigned OpIdx) {
1826 MachineOperand &MO = MI.getOperand(OpIdx);
1827 SmallVector<Register, 8> Regs;
1828 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1829 }
1830
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1831 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1832 MachineOperand &Op = MI.getOperand(OpIdx);
1833 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1834 }
1835
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1836 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1837 MachineOperand &MO = MI.getOperand(OpIdx);
1838 Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1839 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1840 MIRBuilder.buildBitcast(MO, CastDst);
1841 MO.setReg(CastDst);
1842 }
1843
1844 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1845 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1846 LLT WideTy) {
1847 if (TypeIdx != 1)
1848 return UnableToLegalize;
1849
1850 auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs();
1851 if (DstTy.isVector())
1852 return UnableToLegalize;
1853
1854 LLT SrcTy = MRI.getType(Src1Reg);
1855 const int DstSize = DstTy.getSizeInBits();
1856 const int SrcSize = SrcTy.getSizeInBits();
1857 const int WideSize = WideTy.getSizeInBits();
1858 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1859
1860 unsigned NumOps = MI.getNumOperands();
1861 unsigned NumSrc = MI.getNumOperands() - 1;
1862 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1863
1864 if (WideSize >= DstSize) {
1865 // Directly pack the bits in the target type.
1866 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0);
1867
1868 for (unsigned I = 2; I != NumOps; ++I) {
1869 const unsigned Offset = (I - 1) * PartSize;
1870
1871 Register SrcReg = MI.getOperand(I).getReg();
1872 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1873
1874 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1875
1876 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1877 MRI.createGenericVirtualRegister(WideTy);
1878
1879 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1880 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1881 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1882 ResultReg = NextResult;
1883 }
1884
1885 if (WideSize > DstSize)
1886 MIRBuilder.buildTrunc(DstReg, ResultReg);
1887 else if (DstTy.isPointer())
1888 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1889
1890 MI.eraseFromParent();
1891 return Legalized;
1892 }
1893
1894 // Unmerge the original values to the GCD type, and recombine to the next
1895 // multiple greater than the original type.
1896 //
1897 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1898 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1899 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1900 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1901 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1902 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1903 // %12:_(s12) = G_MERGE_VALUES %10, %11
1904 //
1905 // Padding with undef if necessary:
1906 //
1907 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1908 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1909 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1910 // %7:_(s2) = G_IMPLICIT_DEF
1911 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1912 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1913 // %10:_(s12) = G_MERGE_VALUES %8, %9
1914
1915 const int GCD = std::gcd(SrcSize, WideSize);
1916 LLT GCDTy = LLT::scalar(GCD);
1917
1918 SmallVector<Register, 8> Parts;
1919 SmallVector<Register, 8> NewMergeRegs;
1920 SmallVector<Register, 8> Unmerges;
1921 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1922
1923 // Decompose the original operands if they don't evenly divide.
1924 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1925 Register SrcReg = MO.getReg();
1926 if (GCD == SrcSize) {
1927 Unmerges.push_back(SrcReg);
1928 } else {
1929 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1930 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1931 Unmerges.push_back(Unmerge.getReg(J));
1932 }
1933 }
1934
1935 // Pad with undef to the next size that is a multiple of the requested size.
1936 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1937 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1938 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1939 Unmerges.push_back(UndefReg);
1940 }
1941
1942 const int PartsPerGCD = WideSize / GCD;
1943
1944 // Build merges of each piece.
1945 ArrayRef<Register> Slicer(Unmerges);
1946 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1947 auto Merge =
1948 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD));
1949 NewMergeRegs.push_back(Merge.getReg(0));
1950 }
1951
1952 // A truncate may be necessary if the requested type doesn't evenly divide the
1953 // original result type.
1954 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1955 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs);
1956 } else {
1957 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs);
1958 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1959 }
1960
1961 MI.eraseFromParent();
1962 return Legalized;
1963 }
1964
1965 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1966 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1967 LLT WideTy) {
1968 if (TypeIdx != 0)
1969 return UnableToLegalize;
1970
1971 int NumDst = MI.getNumOperands() - 1;
1972 Register SrcReg = MI.getOperand(NumDst).getReg();
1973 LLT SrcTy = MRI.getType(SrcReg);
1974 if (SrcTy.isVector())
1975 return UnableToLegalize;
1976
1977 Register Dst0Reg = MI.getOperand(0).getReg();
1978 LLT DstTy = MRI.getType(Dst0Reg);
1979 if (!DstTy.isScalar())
1980 return UnableToLegalize;
1981
1982 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1983 if (SrcTy.isPointer()) {
1984 const DataLayout &DL = MIRBuilder.getDataLayout();
1985 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1986 LLVM_DEBUG(
1987 dbgs() << "Not casting non-integral address space integer\n");
1988 return UnableToLegalize;
1989 }
1990
1991 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1992 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1993 }
1994
1995 // Widen SrcTy to WideTy. This does not affect the result, but since the
1996 // user requested this size, it is probably better handled than SrcTy and
1997 // should reduce the total number of legalization artifacts.
1998 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1999 SrcTy = WideTy;
2000 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
2001 }
2002
2003 // Theres no unmerge type to target. Directly extract the bits from the
2004 // source type
2005 unsigned DstSize = DstTy.getSizeInBits();
2006
2007 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
2008 for (int I = 1; I != NumDst; ++I) {
2009 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
2010 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
2011 MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
2012 }
2013
2014 MI.eraseFromParent();
2015 return Legalized;
2016 }
2017
2018 // Extend the source to a wider type.
2019 LLT LCMTy = getLCMType(SrcTy, WideTy);
2020
2021 Register WideSrc = SrcReg;
2022 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
2023 // TODO: If this is an integral address space, cast to integer and anyext.
2024 if (SrcTy.isPointer()) {
2025 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
2026 return UnableToLegalize;
2027 }
2028
2029 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
2030 }
2031
2032 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
2033
2034 // Create a sequence of unmerges and merges to the original results. Since we
2035 // may have widened the source, we will need to pad the results with dead defs
2036 // to cover the source register.
2037 // e.g. widen s48 to s64:
2038 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
2039 //
2040 // =>
2041 // %4:_(s192) = G_ANYEXT %0:_(s96)
2042 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
2043 // ; unpack to GCD type, with extra dead defs
2044 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
2045 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
2046 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
2047 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
2048 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
2049 const LLT GCDTy = getGCDType(WideTy, DstTy);
2050 const int NumUnmerge = Unmerge->getNumOperands() - 1;
2051 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
2052
2053 // Directly unmerge to the destination without going through a GCD type
2054 // if possible
2055 if (PartsPerRemerge == 1) {
2056 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
2057
2058 for (int I = 0; I != NumUnmerge; ++I) {
2059 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2060
2061 for (int J = 0; J != PartsPerUnmerge; ++J) {
2062 int Idx = I * PartsPerUnmerge + J;
2063 if (Idx < NumDst)
2064 MIB.addDef(MI.getOperand(Idx).getReg());
2065 else {
2066 // Create dead def for excess components.
2067 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
2068 }
2069 }
2070
2071 MIB.addUse(Unmerge.getReg(I));
2072 }
2073 } else {
2074 SmallVector<Register, 16> Parts;
2075 for (int J = 0; J != NumUnmerge; ++J)
2076 extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
2077
2078 SmallVector<Register, 8> RemergeParts;
2079 for (int I = 0; I != NumDst; ++I) {
2080 for (int J = 0; J < PartsPerRemerge; ++J) {
2081 const int Idx = I * PartsPerRemerge + J;
2082 RemergeParts.emplace_back(Parts[Idx]);
2083 }
2084
2085 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts);
2086 RemergeParts.clear();
2087 }
2088 }
2089
2090 MI.eraseFromParent();
2091 return Legalized;
2092 }
2093
2094 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2095 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
2096 LLT WideTy) {
2097 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
2098 unsigned Offset = MI.getOperand(2).getImm();
2099
2100 if (TypeIdx == 0) {
2101 if (SrcTy.isVector() || DstTy.isVector())
2102 return UnableToLegalize;
2103
2104 SrcOp Src(SrcReg);
2105 if (SrcTy.isPointer()) {
2106 // Extracts from pointers can be handled only if they are really just
2107 // simple integers.
2108 const DataLayout &DL = MIRBuilder.getDataLayout();
2109 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
2110 return UnableToLegalize;
2111
2112 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
2113 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
2114 SrcTy = SrcAsIntTy;
2115 }
2116
2117 if (DstTy.isPointer())
2118 return UnableToLegalize;
2119
2120 if (Offset == 0) {
2121 // Avoid a shift in the degenerate case.
2122 MIRBuilder.buildTrunc(DstReg,
2123 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
2124 MI.eraseFromParent();
2125 return Legalized;
2126 }
2127
2128 // Do a shift in the source type.
2129 LLT ShiftTy = SrcTy;
2130 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
2131 Src = MIRBuilder.buildAnyExt(WideTy, Src);
2132 ShiftTy = WideTy;
2133 }
2134
2135 auto LShr = MIRBuilder.buildLShr(
2136 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
2137 MIRBuilder.buildTrunc(DstReg, LShr);
2138 MI.eraseFromParent();
2139 return Legalized;
2140 }
2141
2142 if (SrcTy.isScalar()) {
2143 Observer.changingInstr(MI);
2144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2145 Observer.changedInstr(MI);
2146 return Legalized;
2147 }
2148
2149 if (!SrcTy.isVector())
2150 return UnableToLegalize;
2151
2152 if (DstTy != SrcTy.getElementType())
2153 return UnableToLegalize;
2154
2155 if (Offset % SrcTy.getScalarSizeInBits() != 0)
2156 return UnableToLegalize;
2157
2158 Observer.changingInstr(MI);
2159 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2160
2161 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
2162 Offset);
2163 widenScalarDst(MI, WideTy.getScalarType(), 0);
2164 Observer.changedInstr(MI);
2165 return Legalized;
2166 }
2167
2168 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2169 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
2170 LLT WideTy) {
2171 if (TypeIdx != 0 || WideTy.isVector())
2172 return UnableToLegalize;
2173 Observer.changingInstr(MI);
2174 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2175 widenScalarDst(MI, WideTy);
2176 Observer.changedInstr(MI);
2177 return Legalized;
2178 }
2179
2180 LegalizerHelper::LegalizeResult
widenScalarAddSubOverflow(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2181 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
2182 LLT WideTy) {
2183 unsigned Opcode;
2184 unsigned ExtOpcode;
2185 std::optional<Register> CarryIn;
2186 switch (MI.getOpcode()) {
2187 default:
2188 llvm_unreachable("Unexpected opcode!");
2189 case TargetOpcode::G_SADDO:
2190 Opcode = TargetOpcode::G_ADD;
2191 ExtOpcode = TargetOpcode::G_SEXT;
2192 break;
2193 case TargetOpcode::G_SSUBO:
2194 Opcode = TargetOpcode::G_SUB;
2195 ExtOpcode = TargetOpcode::G_SEXT;
2196 break;
2197 case TargetOpcode::G_UADDO:
2198 Opcode = TargetOpcode::G_ADD;
2199 ExtOpcode = TargetOpcode::G_ZEXT;
2200 break;
2201 case TargetOpcode::G_USUBO:
2202 Opcode = TargetOpcode::G_SUB;
2203 ExtOpcode = TargetOpcode::G_ZEXT;
2204 break;
2205 case TargetOpcode::G_SADDE:
2206 Opcode = TargetOpcode::G_UADDE;
2207 ExtOpcode = TargetOpcode::G_SEXT;
2208 CarryIn = MI.getOperand(4).getReg();
2209 break;
2210 case TargetOpcode::G_SSUBE:
2211 Opcode = TargetOpcode::G_USUBE;
2212 ExtOpcode = TargetOpcode::G_SEXT;
2213 CarryIn = MI.getOperand(4).getReg();
2214 break;
2215 case TargetOpcode::G_UADDE:
2216 Opcode = TargetOpcode::G_UADDE;
2217 ExtOpcode = TargetOpcode::G_ZEXT;
2218 CarryIn = MI.getOperand(4).getReg();
2219 break;
2220 case TargetOpcode::G_USUBE:
2221 Opcode = TargetOpcode::G_USUBE;
2222 ExtOpcode = TargetOpcode::G_ZEXT;
2223 CarryIn = MI.getOperand(4).getReg();
2224 break;
2225 }
2226
2227 if (TypeIdx == 1) {
2228 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
2229
2230 Observer.changingInstr(MI);
2231 if (CarryIn)
2232 widenScalarSrc(MI, WideTy, 4, BoolExtOp);
2233 widenScalarDst(MI, WideTy, 1);
2234
2235 Observer.changedInstr(MI);
2236 return Legalized;
2237 }
2238
2239 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
2240 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
2241 // Do the arithmetic in the larger type.
2242 Register NewOp;
2243 if (CarryIn) {
2244 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
2245 NewOp = MIRBuilder
2246 .buildInstr(Opcode, {WideTy, CarryOutTy},
2247 {LHSExt, RHSExt, *CarryIn})
2248 .getReg(0);
2249 } else {
2250 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
2251 }
2252 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
2253 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
2254 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
2255 // There is no overflow if the ExtOp is the same as NewOp.
2256 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
2257 // Now trunc the NewOp to the original result.
2258 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
2259 MI.eraseFromParent();
2260 return Legalized;
2261 }
2262
2263 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2264 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
2265 LLT WideTy) {
2266 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
2267 MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
2268 MI.getOpcode() == TargetOpcode::G_SSHLSAT;
2269 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
2270 MI.getOpcode() == TargetOpcode::G_USHLSAT;
2271 // We can convert this to:
2272 // 1. Any extend iN to iM
2273 // 2. SHL by M-N
2274 // 3. [US][ADD|SUB|SHL]SAT
2275 // 4. L/ASHR by M-N
2276 //
2277 // It may be more efficient to lower this to a min and a max operation in
2278 // the higher precision arithmetic if the promoted operation isn't legal,
2279 // but this decision is up to the target's lowering request.
2280 Register DstReg = MI.getOperand(0).getReg();
2281
2282 unsigned NewBits = WideTy.getScalarSizeInBits();
2283 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
2284
2285 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
2286 // must not left shift the RHS to preserve the shift amount.
2287 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
2288 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
2289 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
2290 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
2291 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
2292 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
2293
2294 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
2295 {ShiftL, ShiftR}, MI.getFlags());
2296
2297 // Use a shift that will preserve the number of sign bits when the trunc is
2298 // folded away.
2299 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
2300 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
2301
2302 MIRBuilder.buildTrunc(DstReg, Result);
2303 MI.eraseFromParent();
2304 return Legalized;
2305 }
2306
2307 LegalizerHelper::LegalizeResult
widenScalarMulo(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2308 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
2309 LLT WideTy) {
2310 if (TypeIdx == 1) {
2311 Observer.changingInstr(MI);
2312 widenScalarDst(MI, WideTy, 1);
2313 Observer.changedInstr(MI);
2314 return Legalized;
2315 }
2316
2317 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
2318 auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs();
2319 LLT SrcTy = MRI.getType(LHS);
2320 LLT OverflowTy = MRI.getType(OriginalOverflow);
2321 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2322
2323 // To determine if the result overflowed in the larger type, we extend the
2324 // input to the larger type, do the multiply (checking if it overflows),
2325 // then also check the high bits of the result to see if overflow happened
2326 // there.
2327 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2328 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2329 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2330
2331 // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2332 // so we don't need to check the overflow result of larger type Mulo.
2333 bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth;
2334
2335 unsigned MulOpc =
2336 WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL;
2337
2338 MachineInstrBuilder Mulo;
2339 if (WideMulCanOverflow)
2340 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy},
2341 {LeftOperand, RightOperand});
2342 else
2343 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand});
2344
2345 auto Mul = Mulo->getOperand(0);
2346 MIRBuilder.buildTrunc(Result, Mul);
2347
2348 MachineInstrBuilder ExtResult;
2349 // Overflow occurred if it occurred in the larger type, or if the high part
2350 // of the result does not zero/sign-extend the low part. Check this second
2351 // possibility first.
2352 if (IsSigned) {
2353 // For signed, overflow occurred when the high part does not sign-extend
2354 // the low part.
2355 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2356 } else {
2357 // Unsigned overflow occurred when the high part does not zero-extend the
2358 // low part.
2359 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2360 }
2361
2362 if (WideMulCanOverflow) {
2363 auto Overflow =
2364 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2365 // Finally check if the multiplication in the larger type itself overflowed.
2366 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2367 } else {
2368 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2369 }
2370 MI.eraseFromParent();
2371 return Legalized;
2372 }
2373
2374 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2375 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2376 switch (MI.getOpcode()) {
2377 default:
2378 return UnableToLegalize;
2379 case TargetOpcode::G_ATOMICRMW_XCHG:
2380 case TargetOpcode::G_ATOMICRMW_ADD:
2381 case TargetOpcode::G_ATOMICRMW_SUB:
2382 case TargetOpcode::G_ATOMICRMW_AND:
2383 case TargetOpcode::G_ATOMICRMW_OR:
2384 case TargetOpcode::G_ATOMICRMW_XOR:
2385 case TargetOpcode::G_ATOMICRMW_MIN:
2386 case TargetOpcode::G_ATOMICRMW_MAX:
2387 case TargetOpcode::G_ATOMICRMW_UMIN:
2388 case TargetOpcode::G_ATOMICRMW_UMAX:
2389 assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2390 Observer.changingInstr(MI);
2391 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2392 widenScalarDst(MI, WideTy, 0);
2393 Observer.changedInstr(MI);
2394 return Legalized;
2395 case TargetOpcode::G_ATOMIC_CMPXCHG:
2396 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2397 Observer.changingInstr(MI);
2398 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2399 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2400 widenScalarDst(MI, WideTy, 0);
2401 Observer.changedInstr(MI);
2402 return Legalized;
2403 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2404 if (TypeIdx == 0) {
2405 Observer.changingInstr(MI);
2406 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2407 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2408 widenScalarDst(MI, WideTy, 0);
2409 Observer.changedInstr(MI);
2410 return Legalized;
2411 }
2412 assert(TypeIdx == 1 &&
2413 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2414 Observer.changingInstr(MI);
2415 widenScalarDst(MI, WideTy, 1);
2416 Observer.changedInstr(MI);
2417 return Legalized;
2418 case TargetOpcode::G_EXTRACT:
2419 return widenScalarExtract(MI, TypeIdx, WideTy);
2420 case TargetOpcode::G_INSERT:
2421 return widenScalarInsert(MI, TypeIdx, WideTy);
2422 case TargetOpcode::G_MERGE_VALUES:
2423 return widenScalarMergeValues(MI, TypeIdx, WideTy);
2424 case TargetOpcode::G_UNMERGE_VALUES:
2425 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2426 case TargetOpcode::G_SADDO:
2427 case TargetOpcode::G_SSUBO:
2428 case TargetOpcode::G_UADDO:
2429 case TargetOpcode::G_USUBO:
2430 case TargetOpcode::G_SADDE:
2431 case TargetOpcode::G_SSUBE:
2432 case TargetOpcode::G_UADDE:
2433 case TargetOpcode::G_USUBE:
2434 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2435 case TargetOpcode::G_UMULO:
2436 case TargetOpcode::G_SMULO:
2437 return widenScalarMulo(MI, TypeIdx, WideTy);
2438 case TargetOpcode::G_SADDSAT:
2439 case TargetOpcode::G_SSUBSAT:
2440 case TargetOpcode::G_SSHLSAT:
2441 case TargetOpcode::G_UADDSAT:
2442 case TargetOpcode::G_USUBSAT:
2443 case TargetOpcode::G_USHLSAT:
2444 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2445 case TargetOpcode::G_CTTZ:
2446 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2447 case TargetOpcode::G_CTLZ:
2448 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2449 case TargetOpcode::G_CTPOP: {
2450 if (TypeIdx == 0) {
2451 Observer.changingInstr(MI);
2452 widenScalarDst(MI, WideTy, 0);
2453 Observer.changedInstr(MI);
2454 return Legalized;
2455 }
2456
2457 Register SrcReg = MI.getOperand(1).getReg();
2458
2459 // First extend the input.
2460 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2461 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2462 ? TargetOpcode::G_ANYEXT
2463 : TargetOpcode::G_ZEXT;
2464 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2465 LLT CurTy = MRI.getType(SrcReg);
2466 unsigned NewOpc = MI.getOpcode();
2467 if (NewOpc == TargetOpcode::G_CTTZ) {
2468 // The count is the same in the larger type except if the original
2469 // value was zero. This can be handled by setting the bit just off
2470 // the top of the original type.
2471 auto TopBit =
2472 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2473 MIBSrc = MIRBuilder.buildOr(
2474 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2475 // Now we know the operand is non-zero, use the more relaxed opcode.
2476 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2477 }
2478
2479 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2480
2481 if (MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2482 // An optimization where the result is the CTLZ after the left shift by
2483 // (Difference in widety and current ty), that is,
2484 // MIBSrc = MIBSrc << (sizeinbits(WideTy) - sizeinbits(CurTy))
2485 // Result = ctlz MIBSrc
2486 MIBSrc = MIRBuilder.buildShl(WideTy, MIBSrc,
2487 MIRBuilder.buildConstant(WideTy, SizeDiff));
2488 }
2489
2490 // Perform the operation at the larger size.
2491 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2492 // This is already the correct result for CTPOP and CTTZs
2493 if (MI.getOpcode() == TargetOpcode::G_CTLZ) {
2494 // The correct result is NewOp - (Difference in widety and current ty).
2495 MIBNewOp = MIRBuilder.buildSub(
2496 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2497 }
2498
2499 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2500 MI.eraseFromParent();
2501 return Legalized;
2502 }
2503 case TargetOpcode::G_BSWAP: {
2504 Observer.changingInstr(MI);
2505 Register DstReg = MI.getOperand(0).getReg();
2506
2507 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2508 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2509 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2510 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2511
2512 MI.getOperand(0).setReg(DstExt);
2513
2514 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2515
2516 LLT Ty = MRI.getType(DstReg);
2517 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2518 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2519 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2520
2521 MIRBuilder.buildTrunc(DstReg, ShrReg);
2522 Observer.changedInstr(MI);
2523 return Legalized;
2524 }
2525 case TargetOpcode::G_BITREVERSE: {
2526 Observer.changingInstr(MI);
2527
2528 Register DstReg = MI.getOperand(0).getReg();
2529 LLT Ty = MRI.getType(DstReg);
2530 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2531
2532 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2533 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2534 MI.getOperand(0).setReg(DstExt);
2535 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2536
2537 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2538 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2539 MIRBuilder.buildTrunc(DstReg, Shift);
2540 Observer.changedInstr(MI);
2541 return Legalized;
2542 }
2543 case TargetOpcode::G_FREEZE:
2544 case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
2545 Observer.changingInstr(MI);
2546 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2547 widenScalarDst(MI, WideTy);
2548 Observer.changedInstr(MI);
2549 return Legalized;
2550
2551 case TargetOpcode::G_ABS:
2552 Observer.changingInstr(MI);
2553 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2554 widenScalarDst(MI, WideTy);
2555 Observer.changedInstr(MI);
2556 return Legalized;
2557
2558 case TargetOpcode::G_ADD:
2559 case TargetOpcode::G_AND:
2560 case TargetOpcode::G_MUL:
2561 case TargetOpcode::G_OR:
2562 case TargetOpcode::G_XOR:
2563 case TargetOpcode::G_SUB:
2564 case TargetOpcode::G_SHUFFLE_VECTOR:
2565 // Perform operation at larger width (any extension is fines here, high bits
2566 // don't affect the result) and then truncate the result back to the
2567 // original type.
2568 Observer.changingInstr(MI);
2569 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2570 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2571 widenScalarDst(MI, WideTy);
2572 Observer.changedInstr(MI);
2573 return Legalized;
2574
2575 case TargetOpcode::G_SBFX:
2576 case TargetOpcode::G_UBFX:
2577 Observer.changingInstr(MI);
2578
2579 if (TypeIdx == 0) {
2580 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2581 widenScalarDst(MI, WideTy);
2582 } else {
2583 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2584 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2585 }
2586
2587 Observer.changedInstr(MI);
2588 return Legalized;
2589
2590 case TargetOpcode::G_SHL:
2591 Observer.changingInstr(MI);
2592
2593 if (TypeIdx == 0) {
2594 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2595 widenScalarDst(MI, WideTy);
2596 } else {
2597 assert(TypeIdx == 1);
2598 // The "number of bits to shift" operand must preserve its value as an
2599 // unsigned integer:
2600 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2601 }
2602
2603 Observer.changedInstr(MI);
2604 return Legalized;
2605
2606 case TargetOpcode::G_ROTR:
2607 case TargetOpcode::G_ROTL:
2608 if (TypeIdx != 1)
2609 return UnableToLegalize;
2610
2611 Observer.changingInstr(MI);
2612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2613 Observer.changedInstr(MI);
2614 return Legalized;
2615
2616 case TargetOpcode::G_SDIV:
2617 case TargetOpcode::G_SREM:
2618 case TargetOpcode::G_SMIN:
2619 case TargetOpcode::G_SMAX:
2620 Observer.changingInstr(MI);
2621 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2622 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2623 widenScalarDst(MI, WideTy);
2624 Observer.changedInstr(MI);
2625 return Legalized;
2626
2627 case TargetOpcode::G_SDIVREM:
2628 Observer.changingInstr(MI);
2629 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2630 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2631 widenScalarDst(MI, WideTy);
2632 widenScalarDst(MI, WideTy, 1);
2633 Observer.changedInstr(MI);
2634 return Legalized;
2635
2636 case TargetOpcode::G_ASHR:
2637 case TargetOpcode::G_LSHR:
2638 Observer.changingInstr(MI);
2639
2640 if (TypeIdx == 0) {
2641 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2642 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2643
2644 widenScalarSrc(MI, WideTy, 1, CvtOp);
2645 widenScalarDst(MI, WideTy);
2646 } else {
2647 assert(TypeIdx == 1);
2648 // The "number of bits to shift" operand must preserve its value as an
2649 // unsigned integer:
2650 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2651 }
2652
2653 Observer.changedInstr(MI);
2654 return Legalized;
2655 case TargetOpcode::G_UDIV:
2656 case TargetOpcode::G_UREM:
2657 case TargetOpcode::G_UMIN:
2658 case TargetOpcode::G_UMAX:
2659 Observer.changingInstr(MI);
2660 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2661 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2662 widenScalarDst(MI, WideTy);
2663 Observer.changedInstr(MI);
2664 return Legalized;
2665
2666 case TargetOpcode::G_UDIVREM:
2667 Observer.changingInstr(MI);
2668 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2669 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2670 widenScalarDst(MI, WideTy);
2671 widenScalarDst(MI, WideTy, 1);
2672 Observer.changedInstr(MI);
2673 return Legalized;
2674
2675 case TargetOpcode::G_SELECT:
2676 Observer.changingInstr(MI);
2677 if (TypeIdx == 0) {
2678 // Perform operation at larger width (any extension is fine here, high
2679 // bits don't affect the result) and then truncate the result back to the
2680 // original type.
2681 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2682 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2683 widenScalarDst(MI, WideTy);
2684 } else {
2685 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2686 // Explicit extension is required here since high bits affect the result.
2687 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2688 }
2689 Observer.changedInstr(MI);
2690 return Legalized;
2691
2692 case TargetOpcode::G_FPTOSI:
2693 case TargetOpcode::G_FPTOUI:
2694 case TargetOpcode::G_INTRINSIC_LRINT:
2695 case TargetOpcode::G_INTRINSIC_LLRINT:
2696 case TargetOpcode::G_IS_FPCLASS:
2697 Observer.changingInstr(MI);
2698
2699 if (TypeIdx == 0)
2700 widenScalarDst(MI, WideTy);
2701 else
2702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2703
2704 Observer.changedInstr(MI);
2705 return Legalized;
2706 case TargetOpcode::G_SITOFP:
2707 Observer.changingInstr(MI);
2708
2709 if (TypeIdx == 0)
2710 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2711 else
2712 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2713
2714 Observer.changedInstr(MI);
2715 return Legalized;
2716 case TargetOpcode::G_UITOFP:
2717 Observer.changingInstr(MI);
2718
2719 if (TypeIdx == 0)
2720 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2721 else
2722 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2723
2724 Observer.changedInstr(MI);
2725 return Legalized;
2726 case TargetOpcode::G_LOAD:
2727 case TargetOpcode::G_SEXTLOAD:
2728 case TargetOpcode::G_ZEXTLOAD:
2729 Observer.changingInstr(MI);
2730 widenScalarDst(MI, WideTy);
2731 Observer.changedInstr(MI);
2732 return Legalized;
2733
2734 case TargetOpcode::G_STORE: {
2735 if (TypeIdx != 0)
2736 return UnableToLegalize;
2737
2738 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2739 if (!Ty.isScalar())
2740 return UnableToLegalize;
2741
2742 Observer.changingInstr(MI);
2743
2744 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2745 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2746 widenScalarSrc(MI, WideTy, 0, ExtType);
2747
2748 Observer.changedInstr(MI);
2749 return Legalized;
2750 }
2751 case TargetOpcode::G_CONSTANT: {
2752 MachineOperand &SrcMO = MI.getOperand(1);
2753 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2754 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2755 MRI.getType(MI.getOperand(0).getReg()));
2756 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2757 ExtOpc == TargetOpcode::G_ANYEXT) &&
2758 "Illegal Extend");
2759 const APInt &SrcVal = SrcMO.getCImm()->getValue();
2760 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2761 ? SrcVal.sext(WideTy.getSizeInBits())
2762 : SrcVal.zext(WideTy.getSizeInBits());
2763 Observer.changingInstr(MI);
2764 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2765
2766 widenScalarDst(MI, WideTy);
2767 Observer.changedInstr(MI);
2768 return Legalized;
2769 }
2770 case TargetOpcode::G_FCONSTANT: {
2771 // To avoid changing the bits of the constant due to extension to a larger
2772 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT.
2773 MachineOperand &SrcMO = MI.getOperand(1);
2774 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt();
2775 MIRBuilder.setInstrAndDebugLoc(MI);
2776 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val);
2777 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC);
2778 MI.eraseFromParent();
2779 return Legalized;
2780 }
2781 case TargetOpcode::G_IMPLICIT_DEF: {
2782 Observer.changingInstr(MI);
2783 widenScalarDst(MI, WideTy);
2784 Observer.changedInstr(MI);
2785 return Legalized;
2786 }
2787 case TargetOpcode::G_BRCOND:
2788 Observer.changingInstr(MI);
2789 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2790 Observer.changedInstr(MI);
2791 return Legalized;
2792
2793 case TargetOpcode::G_FCMP:
2794 Observer.changingInstr(MI);
2795 if (TypeIdx == 0)
2796 widenScalarDst(MI, WideTy);
2797 else {
2798 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2799 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2800 }
2801 Observer.changedInstr(MI);
2802 return Legalized;
2803
2804 case TargetOpcode::G_ICMP:
2805 Observer.changingInstr(MI);
2806 if (TypeIdx == 0)
2807 widenScalarDst(MI, WideTy);
2808 else {
2809 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2810 MI.getOperand(1).getPredicate()))
2811 ? TargetOpcode::G_SEXT
2812 : TargetOpcode::G_ZEXT;
2813 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2814 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2815 }
2816 Observer.changedInstr(MI);
2817 return Legalized;
2818
2819 case TargetOpcode::G_PTR_ADD:
2820 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2821 Observer.changingInstr(MI);
2822 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2823 Observer.changedInstr(MI);
2824 return Legalized;
2825
2826 case TargetOpcode::G_PHI: {
2827 assert(TypeIdx == 0 && "Expecting only Idx 0");
2828
2829 Observer.changingInstr(MI);
2830 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2831 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2832 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
2833 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2834 }
2835
2836 MachineBasicBlock &MBB = *MI.getParent();
2837 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2838 widenScalarDst(MI, WideTy);
2839 Observer.changedInstr(MI);
2840 return Legalized;
2841 }
2842 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2843 if (TypeIdx == 0) {
2844 Register VecReg = MI.getOperand(1).getReg();
2845 LLT VecTy = MRI.getType(VecReg);
2846 Observer.changingInstr(MI);
2847
2848 widenScalarSrc(
2849 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2850 TargetOpcode::G_ANYEXT);
2851
2852 widenScalarDst(MI, WideTy, 0);
2853 Observer.changedInstr(MI);
2854 return Legalized;
2855 }
2856
2857 if (TypeIdx != 2)
2858 return UnableToLegalize;
2859 Observer.changingInstr(MI);
2860 // TODO: Probably should be zext
2861 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2862 Observer.changedInstr(MI);
2863 return Legalized;
2864 }
2865 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2866 if (TypeIdx == 0) {
2867 Observer.changingInstr(MI);
2868 const LLT WideEltTy = WideTy.getElementType();
2869
2870 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2871 widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT);
2872 widenScalarDst(MI, WideTy, 0);
2873 Observer.changedInstr(MI);
2874 return Legalized;
2875 }
2876
2877 if (TypeIdx == 1) {
2878 Observer.changingInstr(MI);
2879
2880 Register VecReg = MI.getOperand(1).getReg();
2881 LLT VecTy = MRI.getType(VecReg);
2882 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2883
2884 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2885 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2886 widenScalarDst(MI, WideVecTy, 0);
2887 Observer.changedInstr(MI);
2888 return Legalized;
2889 }
2890
2891 if (TypeIdx == 2) {
2892 Observer.changingInstr(MI);
2893 // TODO: Probably should be zext
2894 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2895 Observer.changedInstr(MI);
2896 return Legalized;
2897 }
2898
2899 return UnableToLegalize;
2900 }
2901 case TargetOpcode::G_FADD:
2902 case TargetOpcode::G_FMUL:
2903 case TargetOpcode::G_FSUB:
2904 case TargetOpcode::G_FMA:
2905 case TargetOpcode::G_FMAD:
2906 case TargetOpcode::G_FNEG:
2907 case TargetOpcode::G_FABS:
2908 case TargetOpcode::G_FCANONICALIZE:
2909 case TargetOpcode::G_FMINNUM:
2910 case TargetOpcode::G_FMAXNUM:
2911 case TargetOpcode::G_FMINNUM_IEEE:
2912 case TargetOpcode::G_FMAXNUM_IEEE:
2913 case TargetOpcode::G_FMINIMUM:
2914 case TargetOpcode::G_FMAXIMUM:
2915 case TargetOpcode::G_FDIV:
2916 case TargetOpcode::G_FREM:
2917 case TargetOpcode::G_FCEIL:
2918 case TargetOpcode::G_FFLOOR:
2919 case TargetOpcode::G_FCOS:
2920 case TargetOpcode::G_FSIN:
2921 case TargetOpcode::G_FTAN:
2922 case TargetOpcode::G_FACOS:
2923 case TargetOpcode::G_FASIN:
2924 case TargetOpcode::G_FATAN:
2925 case TargetOpcode::G_FCOSH:
2926 case TargetOpcode::G_FSINH:
2927 case TargetOpcode::G_FTANH:
2928 case TargetOpcode::G_FLOG10:
2929 case TargetOpcode::G_FLOG:
2930 case TargetOpcode::G_FLOG2:
2931 case TargetOpcode::G_FRINT:
2932 case TargetOpcode::G_FNEARBYINT:
2933 case TargetOpcode::G_FSQRT:
2934 case TargetOpcode::G_FEXP:
2935 case TargetOpcode::G_FEXP2:
2936 case TargetOpcode::G_FEXP10:
2937 case TargetOpcode::G_FPOW:
2938 case TargetOpcode::G_INTRINSIC_TRUNC:
2939 case TargetOpcode::G_INTRINSIC_ROUND:
2940 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2941 assert(TypeIdx == 0);
2942 Observer.changingInstr(MI);
2943
2944 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2945 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2946
2947 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2948 Observer.changedInstr(MI);
2949 return Legalized;
2950 case TargetOpcode::G_FPOWI:
2951 case TargetOpcode::G_FLDEXP:
2952 case TargetOpcode::G_STRICT_FLDEXP: {
2953 if (TypeIdx == 0) {
2954 if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP)
2955 return UnableToLegalize;
2956
2957 Observer.changingInstr(MI);
2958 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2959 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2960 Observer.changedInstr(MI);
2961 return Legalized;
2962 }
2963
2964 if (TypeIdx == 1) {
2965 // For some reason SelectionDAG tries to promote to a libcall without
2966 // actually changing the integer type for promotion.
2967 Observer.changingInstr(MI);
2968 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2969 Observer.changedInstr(MI);
2970 return Legalized;
2971 }
2972
2973 return UnableToLegalize;
2974 }
2975 case TargetOpcode::G_FFREXP: {
2976 Observer.changingInstr(MI);
2977
2978 if (TypeIdx == 0) {
2979 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2980 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2981 } else {
2982 widenScalarDst(MI, WideTy, 1);
2983 }
2984
2985 Observer.changedInstr(MI);
2986 return Legalized;
2987 }
2988 case TargetOpcode::G_INTTOPTR:
2989 if (TypeIdx != 1)
2990 return UnableToLegalize;
2991
2992 Observer.changingInstr(MI);
2993 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2994 Observer.changedInstr(MI);
2995 return Legalized;
2996 case TargetOpcode::G_PTRTOINT:
2997 if (TypeIdx != 0)
2998 return UnableToLegalize;
2999
3000 Observer.changingInstr(MI);
3001 widenScalarDst(MI, WideTy, 0);
3002 Observer.changedInstr(MI);
3003 return Legalized;
3004 case TargetOpcode::G_BUILD_VECTOR: {
3005 Observer.changingInstr(MI);
3006
3007 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
3008 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
3009 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
3010
3011 // Avoid changing the result vector type if the source element type was
3012 // requested.
3013 if (TypeIdx == 1) {
3014 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
3015 } else {
3016 widenScalarDst(MI, WideTy, 0);
3017 }
3018
3019 Observer.changedInstr(MI);
3020 return Legalized;
3021 }
3022 case TargetOpcode::G_SEXT_INREG:
3023 if (TypeIdx != 0)
3024 return UnableToLegalize;
3025
3026 Observer.changingInstr(MI);
3027 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
3028 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
3029 Observer.changedInstr(MI);
3030 return Legalized;
3031 case TargetOpcode::G_PTRMASK: {
3032 if (TypeIdx != 1)
3033 return UnableToLegalize;
3034 Observer.changingInstr(MI);
3035 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
3036 Observer.changedInstr(MI);
3037 return Legalized;
3038 }
3039 case TargetOpcode::G_VECREDUCE_FADD:
3040 case TargetOpcode::G_VECREDUCE_FMUL:
3041 case TargetOpcode::G_VECREDUCE_FMIN:
3042 case TargetOpcode::G_VECREDUCE_FMAX:
3043 case TargetOpcode::G_VECREDUCE_FMINIMUM:
3044 case TargetOpcode::G_VECREDUCE_FMAXIMUM: {
3045 if (TypeIdx != 0)
3046 return UnableToLegalize;
3047 Observer.changingInstr(MI);
3048 Register VecReg = MI.getOperand(1).getReg();
3049 LLT VecTy = MRI.getType(VecReg);
3050 LLT WideVecTy = VecTy.isVector()
3051 ? LLT::vector(VecTy.getElementCount(), WideTy)
3052 : WideTy;
3053 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT);
3054 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
3055 Observer.changedInstr(MI);
3056 return Legalized;
3057 }
3058 case TargetOpcode::G_VSCALE: {
3059 MachineOperand &SrcMO = MI.getOperand(1);
3060 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
3061 const APInt &SrcVal = SrcMO.getCImm()->getValue();
3062 // The CImm is always a signed value
3063 const APInt Val = SrcVal.sext(WideTy.getSizeInBits());
3064 Observer.changingInstr(MI);
3065 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
3066 widenScalarDst(MI, WideTy);
3067 Observer.changedInstr(MI);
3068 return Legalized;
3069 }
3070 case TargetOpcode::G_SPLAT_VECTOR: {
3071 if (TypeIdx != 1)
3072 return UnableToLegalize;
3073
3074 Observer.changingInstr(MI);
3075 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
3076 Observer.changedInstr(MI);
3077 return Legalized;
3078 }
3079 }
3080 }
3081
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)3082 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
3083 MachineIRBuilder &B, Register Src, LLT Ty) {
3084 auto Unmerge = B.buildUnmerge(Ty, Src);
3085 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3086 Pieces.push_back(Unmerge.getReg(I));
3087 }
3088
emitLoadFromConstantPool(Register DstReg,const Constant * ConstVal,MachineIRBuilder & MIRBuilder)3089 static void emitLoadFromConstantPool(Register DstReg, const Constant *ConstVal,
3090 MachineIRBuilder &MIRBuilder) {
3091 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3092 MachineFunction &MF = MIRBuilder.getMF();
3093 const DataLayout &DL = MIRBuilder.getDataLayout();
3094 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
3095 LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3096 LLT DstLLT = MRI.getType(DstReg);
3097
3098 Align Alignment(DL.getABITypeAlign(ConstVal->getType()));
3099
3100 auto Addr = MIRBuilder.buildConstantPool(
3101 AddrPtrTy,
3102 MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment));
3103
3104 MachineMemOperand *MMO =
3105 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
3106 MachineMemOperand::MOLoad, DstLLT, Alignment);
3107
3108 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, DstReg, Addr, *MMO);
3109 }
3110
3111 LegalizerHelper::LegalizeResult
lowerConstant(MachineInstr & MI)3112 LegalizerHelper::lowerConstant(MachineInstr &MI) {
3113 const MachineOperand &ConstOperand = MI.getOperand(1);
3114 const Constant *ConstantVal = ConstOperand.getCImm();
3115
3116 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder);
3117 MI.eraseFromParent();
3118
3119 return Legalized;
3120 }
3121
3122 LegalizerHelper::LegalizeResult
lowerFConstant(MachineInstr & MI)3123 LegalizerHelper::lowerFConstant(MachineInstr &MI) {
3124 const MachineOperand &ConstOperand = MI.getOperand(1);
3125 const Constant *ConstantVal = ConstOperand.getFPImm();
3126
3127 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder);
3128 MI.eraseFromParent();
3129
3130 return Legalized;
3131 }
3132
3133 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)3134 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
3135 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
3136 if (SrcTy.isVector()) {
3137 LLT SrcEltTy = SrcTy.getElementType();
3138 SmallVector<Register, 8> SrcRegs;
3139
3140 if (DstTy.isVector()) {
3141 int NumDstElt = DstTy.getNumElements();
3142 int NumSrcElt = SrcTy.getNumElements();
3143
3144 LLT DstEltTy = DstTy.getElementType();
3145 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
3146 LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
3147
3148 // If there's an element size mismatch, insert intermediate casts to match
3149 // the result element type.
3150 if (NumSrcElt < NumDstElt) { // Source element type is larger.
3151 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
3152 //
3153 // =>
3154 //
3155 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
3156 // %3:_(<2 x s8>) = G_BITCAST %2
3157 // %4:_(<2 x s8>) = G_BITCAST %3
3158 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
3159 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
3160 SrcPartTy = SrcEltTy;
3161 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
3162 //
3163 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
3164 //
3165 // =>
3166 //
3167 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
3168 // %3:_(s16) = G_BITCAST %2
3169 // %4:_(s16) = G_BITCAST %3
3170 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
3171 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
3172 DstCastTy = DstEltTy;
3173 }
3174
3175 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
3176 for (Register &SrcReg : SrcRegs)
3177 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
3178 } else
3179 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
3180
3181 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
3182 MI.eraseFromParent();
3183 return Legalized;
3184 }
3185
3186 if (DstTy.isVector()) {
3187 SmallVector<Register, 8> SrcRegs;
3188 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
3189 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
3190 MI.eraseFromParent();
3191 return Legalized;
3192 }
3193
3194 return UnableToLegalize;
3195 }
3196
3197 /// Figure out the bit offset into a register when coercing a vector index for
3198 /// the wide element type. This is only for the case when promoting vector to
3199 /// one with larger elements.
3200 //
3201 ///
3202 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
3203 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)3204 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
3205 Register Idx,
3206 unsigned NewEltSize,
3207 unsigned OldEltSize) {
3208 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3209 LLT IdxTy = B.getMRI()->getType(Idx);
3210
3211 // Now figure out the amount we need to shift to get the target bits.
3212 auto OffsetMask = B.buildConstant(
3213 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
3214 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
3215 return B.buildShl(IdxTy, OffsetIdx,
3216 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
3217 }
3218
3219 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
3220 /// is casting to a vector with a smaller element size, perform multiple element
3221 /// extracts and merge the results. If this is coercing to a vector with larger
3222 /// elements, index the bitcasted vector and extract the target element with bit
3223 /// operations. This is intended to force the indexing in the native register
3224 /// size for architectures that can dynamically index the register file.
3225 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3226 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
3227 LLT CastTy) {
3228 if (TypeIdx != 1)
3229 return UnableToLegalize;
3230
3231 auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs();
3232
3233 LLT SrcEltTy = SrcVecTy.getElementType();
3234 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
3235 unsigned OldNumElts = SrcVecTy.getNumElements();
3236
3237 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
3238 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
3239
3240 const unsigned NewEltSize = NewEltTy.getSizeInBits();
3241 const unsigned OldEltSize = SrcEltTy.getSizeInBits();
3242 if (NewNumElts > OldNumElts) {
3243 // Decreasing the vector element size
3244 //
3245 // e.g. i64 = extract_vector_elt x:v2i64, y:i32
3246 // =>
3247 // v4i32:castx = bitcast x:v2i64
3248 //
3249 // i64 = bitcast
3250 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
3251 // (i32 (extract_vector_elt castx, (2 * y + 1)))
3252 //
3253 if (NewNumElts % OldNumElts != 0)
3254 return UnableToLegalize;
3255
3256 // Type of the intermediate result vector.
3257 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
3258 LLT MidTy =
3259 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
3260
3261 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
3262
3263 SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
3264 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
3265
3266 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
3267 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
3268 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
3269 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
3270 NewOps[I] = Elt.getReg(0);
3271 }
3272
3273 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
3274 MIRBuilder.buildBitcast(Dst, NewVec);
3275 MI.eraseFromParent();
3276 return Legalized;
3277 }
3278
3279 if (NewNumElts < OldNumElts) {
3280 if (NewEltSize % OldEltSize != 0)
3281 return UnableToLegalize;
3282
3283 // This only depends on powers of 2 because we use bit tricks to figure out
3284 // the bit offset we need to shift to get the target element. A general
3285 // expansion could emit division/multiply.
3286 if (!isPowerOf2_32(NewEltSize / OldEltSize))
3287 return UnableToLegalize;
3288
3289 // Increasing the vector element size.
3290 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
3291 //
3292 // =>
3293 //
3294 // %cast = G_BITCAST %vec
3295 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
3296 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
3297 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
3298 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
3299 // %elt_bits = G_LSHR %wide_elt, %offset_bits
3300 // %elt = G_TRUNC %elt_bits
3301
3302 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3303 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
3304
3305 // Divide to get the index in the wider element type.
3306 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
3307
3308 Register WideElt = CastVec;
3309 if (CastTy.isVector()) {
3310 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
3311 ScaledIdx).getReg(0);
3312 }
3313
3314 // Compute the bit offset into the register of the target element.
3315 Register OffsetBits = getBitcastWiderVectorElementOffset(
3316 MIRBuilder, Idx, NewEltSize, OldEltSize);
3317
3318 // Shift the wide element to get the target element.
3319 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
3320 MIRBuilder.buildTrunc(Dst, ExtractedBits);
3321 MI.eraseFromParent();
3322 return Legalized;
3323 }
3324
3325 return UnableToLegalize;
3326 }
3327
3328 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
3329 /// TargetReg, while preserving other bits in \p TargetReg.
3330 ///
3331 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)3332 static Register buildBitFieldInsert(MachineIRBuilder &B,
3333 Register TargetReg, Register InsertReg,
3334 Register OffsetBits) {
3335 LLT TargetTy = B.getMRI()->getType(TargetReg);
3336 LLT InsertTy = B.getMRI()->getType(InsertReg);
3337 auto ZextVal = B.buildZExt(TargetTy, InsertReg);
3338 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
3339
3340 // Produce a bitmask of the value to insert
3341 auto EltMask = B.buildConstant(
3342 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
3343 InsertTy.getSizeInBits()));
3344 // Shift it into position
3345 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
3346 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
3347
3348 // Clear out the bits in the wide element
3349 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
3350
3351 // The value to insert has all zeros already, so stick it into the masked
3352 // wide element.
3353 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
3354 }
3355
3356 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
3357 /// is increasing the element size, perform the indexing in the target element
3358 /// type, and use bit operations to insert at the element position. This is
3359 /// intended for architectures that can dynamically index the register file and
3360 /// want to force indexing in the native register size.
3361 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3362 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
3363 LLT CastTy) {
3364 if (TypeIdx != 0)
3365 return UnableToLegalize;
3366
3367 auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] =
3368 MI.getFirst4RegLLTs();
3369 LLT VecTy = DstTy;
3370
3371 LLT VecEltTy = VecTy.getElementType();
3372 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
3373 const unsigned NewEltSize = NewEltTy.getSizeInBits();
3374 const unsigned OldEltSize = VecEltTy.getSizeInBits();
3375
3376 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
3377 unsigned OldNumElts = VecTy.getNumElements();
3378
3379 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
3380 if (NewNumElts < OldNumElts) {
3381 if (NewEltSize % OldEltSize != 0)
3382 return UnableToLegalize;
3383
3384 // This only depends on powers of 2 because we use bit tricks to figure out
3385 // the bit offset we need to shift to get the target element. A general
3386 // expansion could emit division/multiply.
3387 if (!isPowerOf2_32(NewEltSize / OldEltSize))
3388 return UnableToLegalize;
3389
3390 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3391 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
3392
3393 // Divide to get the index in the wider element type.
3394 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
3395
3396 Register ExtractedElt = CastVec;
3397 if (CastTy.isVector()) {
3398 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
3399 ScaledIdx).getReg(0);
3400 }
3401
3402 // Compute the bit offset into the register of the target element.
3403 Register OffsetBits = getBitcastWiderVectorElementOffset(
3404 MIRBuilder, Idx, NewEltSize, OldEltSize);
3405
3406 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
3407 Val, OffsetBits);
3408 if (CastTy.isVector()) {
3409 InsertedElt = MIRBuilder.buildInsertVectorElement(
3410 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
3411 }
3412
3413 MIRBuilder.buildBitcast(Dst, InsertedElt);
3414 MI.eraseFromParent();
3415 return Legalized;
3416 }
3417
3418 return UnableToLegalize;
3419 }
3420
3421 // This attempts to handle G_CONCAT_VECTORS with illegal operands, particularly
3422 // those that have smaller than legal operands.
3423 //
3424 // <16 x s8> = G_CONCAT_VECTORS <4 x s8>, <4 x s8>, <4 x s8>, <4 x s8>
3425 //
3426 // ===>
3427 //
3428 // s32 = G_BITCAST <4 x s8>
3429 // s32 = G_BITCAST <4 x s8>
3430 // s32 = G_BITCAST <4 x s8>
3431 // s32 = G_BITCAST <4 x s8>
3432 // <4 x s32> = G_BUILD_VECTOR s32, s32, s32, s32
3433 // <16 x s8> = G_BITCAST <4 x s32>
3434 LegalizerHelper::LegalizeResult
bitcastConcatVector(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3435 LegalizerHelper::bitcastConcatVector(MachineInstr &MI, unsigned TypeIdx,
3436 LLT CastTy) {
3437 // Convert it to CONCAT instruction
3438 auto ConcatMI = dyn_cast<GConcatVectors>(&MI);
3439 if (!ConcatMI) {
3440 return UnableToLegalize;
3441 }
3442
3443 // Check if bitcast is Legal
3444 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
3445 LLT SrcScalTy = LLT::scalar(SrcTy.getSizeInBits());
3446
3447 // Check if the build vector is Legal
3448 if (!LI.isLegal({TargetOpcode::G_BUILD_VECTOR, {CastTy, SrcScalTy}})) {
3449 return UnableToLegalize;
3450 }
3451
3452 // Bitcast the sources
3453 SmallVector<Register> BitcastRegs;
3454 for (unsigned i = 0; i < ConcatMI->getNumSources(); i++) {
3455 BitcastRegs.push_back(
3456 MIRBuilder.buildBitcast(SrcScalTy, ConcatMI->getSourceReg(i))
3457 .getReg(0));
3458 }
3459
3460 // Build the scalar values into a vector
3461 Register BuildReg =
3462 MIRBuilder.buildBuildVector(CastTy, BitcastRegs).getReg(0);
3463 MIRBuilder.buildBitcast(DstReg, BuildReg);
3464
3465 MI.eraseFromParent();
3466 return Legalized;
3467 }
3468
lowerLoad(GAnyLoad & LoadMI)3469 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
3470 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
3471 Register DstReg = LoadMI.getDstReg();
3472 Register PtrReg = LoadMI.getPointerReg();
3473 LLT DstTy = MRI.getType(DstReg);
3474 MachineMemOperand &MMO = LoadMI.getMMO();
3475 LLT MemTy = MMO.getMemoryType();
3476 MachineFunction &MF = MIRBuilder.getMF();
3477
3478 unsigned MemSizeInBits = MemTy.getSizeInBits();
3479 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
3480
3481 if (MemSizeInBits != MemStoreSizeInBits) {
3482 if (MemTy.isVector())
3483 return UnableToLegalize;
3484
3485 // Promote to a byte-sized load if not loading an integral number of
3486 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
3487 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
3488 MachineMemOperand *NewMMO =
3489 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
3490
3491 Register LoadReg = DstReg;
3492 LLT LoadTy = DstTy;
3493
3494 // If this wasn't already an extending load, we need to widen the result
3495 // register to avoid creating a load with a narrower result than the source.
3496 if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
3497 LoadTy = WideMemTy;
3498 LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
3499 }
3500
3501 if (isa<GSExtLoad>(LoadMI)) {
3502 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3503 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
3504 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
3505 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3506 // The extra bits are guaranteed to be zero, since we stored them that
3507 // way. A zext load from Wide thus automatically gives zext from MemVT.
3508 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3509 } else {
3510 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3511 }
3512
3513 if (DstTy != LoadTy)
3514 MIRBuilder.buildTrunc(DstReg, LoadReg);
3515
3516 LoadMI.eraseFromParent();
3517 return Legalized;
3518 }
3519
3520 // Big endian lowering not implemented.
3521 if (MIRBuilder.getDataLayout().isBigEndian())
3522 return UnableToLegalize;
3523
3524 // This load needs splitting into power of 2 sized loads.
3525 //
3526 // Our strategy here is to generate anyextending loads for the smaller
3527 // types up to next power-2 result type, and then combine the two larger
3528 // result values together, before truncating back down to the non-pow-2
3529 // type.
3530 // E.g. v1 = i24 load =>
3531 // v2 = i32 zextload (2 byte)
3532 // v3 = i32 load (1 byte)
3533 // v4 = i32 shl v3, 16
3534 // v5 = i32 or v4, v2
3535 // v1 = i24 trunc v5
3536 // By doing this we generate the correct truncate which should get
3537 // combined away as an artifact with a matching extend.
3538
3539 uint64_t LargeSplitSize, SmallSplitSize;
3540
3541 if (!isPowerOf2_32(MemSizeInBits)) {
3542 // This load needs splitting into power of 2 sized loads.
3543 LargeSplitSize = llvm::bit_floor(MemSizeInBits);
3544 SmallSplitSize = MemSizeInBits - LargeSplitSize;
3545 } else {
3546 // This is already a power of 2, but we still need to split this in half.
3547 //
3548 // Assume we're being asked to decompose an unaligned load.
3549 // TODO: If this requires multiple splits, handle them all at once.
3550 auto &Ctx = MF.getFunction().getContext();
3551 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3552 return UnableToLegalize;
3553
3554 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3555 }
3556
3557 if (MemTy.isVector()) {
3558 // TODO: Handle vector extloads
3559 if (MemTy != DstTy)
3560 return UnableToLegalize;
3561
3562 // TODO: We can do better than scalarizing the vector and at least split it
3563 // in half.
3564 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3565 }
3566
3567 MachineMemOperand *LargeMMO =
3568 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3569 MachineMemOperand *SmallMMO =
3570 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3571
3572 LLT PtrTy = MRI.getType(PtrReg);
3573 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3574 LLT AnyExtTy = LLT::scalar(AnyExtSize);
3575 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3576 PtrReg, *LargeMMO);
3577
3578 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3579 LargeSplitSize / 8);
3580 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3581 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3582 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3583 SmallPtr, *SmallMMO);
3584
3585 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3586 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3587
3588 if (AnyExtTy == DstTy)
3589 MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3590 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3591 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3592 MIRBuilder.buildTrunc(DstReg, {Or});
3593 } else {
3594 assert(DstTy.isPointer() && "expected pointer");
3595 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3596
3597 // FIXME: We currently consider this to be illegal for non-integral address
3598 // spaces, but we need still need a way to reinterpret the bits.
3599 MIRBuilder.buildIntToPtr(DstReg, Or);
3600 }
3601
3602 LoadMI.eraseFromParent();
3603 return Legalized;
3604 }
3605
lowerStore(GStore & StoreMI)3606 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3607 // Lower a non-power of 2 store into multiple pow-2 stores.
3608 // E.g. split an i24 store into an i16 store + i8 store.
3609 // We do this by first extending the stored value to the next largest power
3610 // of 2 type, and then using truncating stores to store the components.
3611 // By doing this, likewise with G_LOAD, generate an extend that can be
3612 // artifact-combined away instead of leaving behind extracts.
3613 Register SrcReg = StoreMI.getValueReg();
3614 Register PtrReg = StoreMI.getPointerReg();
3615 LLT SrcTy = MRI.getType(SrcReg);
3616 MachineFunction &MF = MIRBuilder.getMF();
3617 MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3618 LLT MemTy = MMO.getMemoryType();
3619
3620 unsigned StoreWidth = MemTy.getSizeInBits();
3621 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3622
3623 if (StoreWidth != StoreSizeInBits) {
3624 if (SrcTy.isVector())
3625 return UnableToLegalize;
3626
3627 // Promote to a byte-sized store with upper bits zero if not
3628 // storing an integral number of bytes. For example, promote
3629 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3630 LLT WideTy = LLT::scalar(StoreSizeInBits);
3631
3632 if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3633 // Avoid creating a store with a narrower source than result.
3634 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3635 SrcTy = WideTy;
3636 }
3637
3638 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3639
3640 MachineMemOperand *NewMMO =
3641 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3642 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3643 StoreMI.eraseFromParent();
3644 return Legalized;
3645 }
3646
3647 if (MemTy.isVector()) {
3648 // TODO: Handle vector trunc stores
3649 if (MemTy != SrcTy)
3650 return UnableToLegalize;
3651
3652 // TODO: We can do better than scalarizing the vector and at least split it
3653 // in half.
3654 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3655 }
3656
3657 unsigned MemSizeInBits = MemTy.getSizeInBits();
3658 uint64_t LargeSplitSize, SmallSplitSize;
3659
3660 if (!isPowerOf2_32(MemSizeInBits)) {
3661 LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits());
3662 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3663 } else {
3664 auto &Ctx = MF.getFunction().getContext();
3665 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3666 return UnableToLegalize; // Don't know what we're being asked to do.
3667
3668 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3669 }
3670
3671 // Extend to the next pow-2. If this store was itself the result of lowering,
3672 // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3673 // that's wider than the stored size.
3674 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3675 const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3676
3677 if (SrcTy.isPointer()) {
3678 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3679 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3680 }
3681
3682 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3683
3684 // Obtain the smaller value by shifting away the larger value.
3685 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3686 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3687
3688 // Generate the PtrAdd and truncating stores.
3689 LLT PtrTy = MRI.getType(PtrReg);
3690 auto OffsetCst = MIRBuilder.buildConstant(
3691 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3692 auto SmallPtr =
3693 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3694
3695 MachineMemOperand *LargeMMO =
3696 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3697 MachineMemOperand *SmallMMO =
3698 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3699 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3700 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3701 StoreMI.eraseFromParent();
3702 return Legalized;
3703 }
3704
3705 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3706 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3707 switch (MI.getOpcode()) {
3708 case TargetOpcode::G_LOAD: {
3709 if (TypeIdx != 0)
3710 return UnableToLegalize;
3711 MachineMemOperand &MMO = **MI.memoperands_begin();
3712
3713 // Not sure how to interpret a bitcast of an extending load.
3714 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3715 return UnableToLegalize;
3716
3717 Observer.changingInstr(MI);
3718 bitcastDst(MI, CastTy, 0);
3719 MMO.setType(CastTy);
3720 // The range metadata is no longer valid when reinterpreted as a different
3721 // type.
3722 MMO.clearRanges();
3723 Observer.changedInstr(MI);
3724 return Legalized;
3725 }
3726 case TargetOpcode::G_STORE: {
3727 if (TypeIdx != 0)
3728 return UnableToLegalize;
3729
3730 MachineMemOperand &MMO = **MI.memoperands_begin();
3731
3732 // Not sure how to interpret a bitcast of a truncating store.
3733 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3734 return UnableToLegalize;
3735
3736 Observer.changingInstr(MI);
3737 bitcastSrc(MI, CastTy, 0);
3738 MMO.setType(CastTy);
3739 Observer.changedInstr(MI);
3740 return Legalized;
3741 }
3742 case TargetOpcode::G_SELECT: {
3743 if (TypeIdx != 0)
3744 return UnableToLegalize;
3745
3746 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3747 LLVM_DEBUG(
3748 dbgs() << "bitcast action not implemented for vector select\n");
3749 return UnableToLegalize;
3750 }
3751
3752 Observer.changingInstr(MI);
3753 bitcastSrc(MI, CastTy, 2);
3754 bitcastSrc(MI, CastTy, 3);
3755 bitcastDst(MI, CastTy, 0);
3756 Observer.changedInstr(MI);
3757 return Legalized;
3758 }
3759 case TargetOpcode::G_AND:
3760 case TargetOpcode::G_OR:
3761 case TargetOpcode::G_XOR: {
3762 Observer.changingInstr(MI);
3763 bitcastSrc(MI, CastTy, 1);
3764 bitcastSrc(MI, CastTy, 2);
3765 bitcastDst(MI, CastTy, 0);
3766 Observer.changedInstr(MI);
3767 return Legalized;
3768 }
3769 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3770 return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3771 case TargetOpcode::G_INSERT_VECTOR_ELT:
3772 return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3773 case TargetOpcode::G_CONCAT_VECTORS:
3774 return bitcastConcatVector(MI, TypeIdx, CastTy);
3775 default:
3776 return UnableToLegalize;
3777 }
3778 }
3779
3780 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)3781 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3782 Observer.changingInstr(MI);
3783 MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3784 Observer.changedInstr(MI);
3785 }
3786
3787 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)3788 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3789 using namespace TargetOpcode;
3790
3791 switch(MI.getOpcode()) {
3792 default:
3793 return UnableToLegalize;
3794 case TargetOpcode::G_FCONSTANT:
3795 return lowerFConstant(MI);
3796 case TargetOpcode::G_BITCAST:
3797 return lowerBitcast(MI);
3798 case TargetOpcode::G_SREM:
3799 case TargetOpcode::G_UREM: {
3800 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3801 auto Quot =
3802 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3803 {MI.getOperand(1), MI.getOperand(2)});
3804
3805 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3806 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3807 MI.eraseFromParent();
3808 return Legalized;
3809 }
3810 case TargetOpcode::G_SADDO:
3811 case TargetOpcode::G_SSUBO:
3812 return lowerSADDO_SSUBO(MI);
3813 case TargetOpcode::G_UMULH:
3814 case TargetOpcode::G_SMULH:
3815 return lowerSMULH_UMULH(MI);
3816 case TargetOpcode::G_SMULO:
3817 case TargetOpcode::G_UMULO: {
3818 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3819 // result.
3820 auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs();
3821 LLT Ty = MRI.getType(Res);
3822
3823 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3824 ? TargetOpcode::G_SMULH
3825 : TargetOpcode::G_UMULH;
3826
3827 Observer.changingInstr(MI);
3828 const auto &TII = MIRBuilder.getTII();
3829 MI.setDesc(TII.get(TargetOpcode::G_MUL));
3830 MI.removeOperand(1);
3831 Observer.changedInstr(MI);
3832
3833 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3834 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3835
3836 // Move insert point forward so we can use the Res register if needed.
3837 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3838
3839 // For *signed* multiply, overflow is detected by checking:
3840 // (hi != (lo >> bitwidth-1))
3841 if (Opcode == TargetOpcode::G_SMULH) {
3842 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3843 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3844 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3845 } else {
3846 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3847 }
3848 return Legalized;
3849 }
3850 case TargetOpcode::G_FNEG: {
3851 auto [Res, SubByReg] = MI.getFirst2Regs();
3852 LLT Ty = MRI.getType(Res);
3853
3854 // TODO: Handle vector types once we are able to
3855 // represent them.
3856 if (Ty.isVector())
3857 return UnableToLegalize;
3858 auto SignMask =
3859 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3860 MIRBuilder.buildXor(Res, SubByReg, SignMask);
3861 MI.eraseFromParent();
3862 return Legalized;
3863 }
3864 case TargetOpcode::G_FSUB:
3865 case TargetOpcode::G_STRICT_FSUB: {
3866 auto [Res, LHS, RHS] = MI.getFirst3Regs();
3867 LLT Ty = MRI.getType(Res);
3868
3869 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3870 auto Neg = MIRBuilder.buildFNeg(Ty, RHS);
3871
3872 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB)
3873 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags());
3874 else
3875 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3876
3877 MI.eraseFromParent();
3878 return Legalized;
3879 }
3880 case TargetOpcode::G_FMAD:
3881 return lowerFMad(MI);
3882 case TargetOpcode::G_FFLOOR:
3883 return lowerFFloor(MI);
3884 case TargetOpcode::G_INTRINSIC_ROUND:
3885 return lowerIntrinsicRound(MI);
3886 case TargetOpcode::G_FRINT: {
3887 // Since round even is the assumed rounding mode for unconstrained FP
3888 // operations, rint and roundeven are the same operation.
3889 changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN);
3890 return Legalized;
3891 }
3892 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3893 auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs();
3894 Register NewOldValRes = MRI.cloneVirtualRegister(OldValRes);
3895 MIRBuilder.buildAtomicCmpXchg(NewOldValRes, Addr, CmpVal, NewVal,
3896 **MI.memoperands_begin());
3897 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, NewOldValRes, CmpVal);
3898 MIRBuilder.buildCopy(OldValRes, NewOldValRes);
3899 MI.eraseFromParent();
3900 return Legalized;
3901 }
3902 case TargetOpcode::G_LOAD:
3903 case TargetOpcode::G_SEXTLOAD:
3904 case TargetOpcode::G_ZEXTLOAD:
3905 return lowerLoad(cast<GAnyLoad>(MI));
3906 case TargetOpcode::G_STORE:
3907 return lowerStore(cast<GStore>(MI));
3908 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3909 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3910 case TargetOpcode::G_CTLZ:
3911 case TargetOpcode::G_CTTZ:
3912 case TargetOpcode::G_CTPOP:
3913 return lowerBitCount(MI);
3914 case G_UADDO: {
3915 auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs();
3916
3917 Register NewRes = MRI.cloneVirtualRegister(Res);
3918
3919 MIRBuilder.buildAdd(NewRes, LHS, RHS);
3920 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, NewRes, RHS);
3921
3922 MIRBuilder.buildCopy(Res, NewRes);
3923
3924 MI.eraseFromParent();
3925 return Legalized;
3926 }
3927 case G_UADDE: {
3928 auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs();
3929 const LLT CondTy = MRI.getType(CarryOut);
3930 const LLT Ty = MRI.getType(Res);
3931
3932 Register NewRes = MRI.cloneVirtualRegister(Res);
3933
3934 // Initial add of the two operands.
3935 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3936
3937 // Initial check for carry.
3938 auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS);
3939
3940 // Add the sum and the carry.
3941 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3942 MIRBuilder.buildAdd(NewRes, TmpRes, ZExtCarryIn);
3943
3944 // Second check for carry. We can only carry if the initial sum is all 1s
3945 // and the carry is set, resulting in a new sum of 0.
3946 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3947 auto ResEqZero =
3948 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, NewRes, Zero);
3949 auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn);
3950 MIRBuilder.buildOr(CarryOut, Carry, Carry2);
3951
3952 MIRBuilder.buildCopy(Res, NewRes);
3953
3954 MI.eraseFromParent();
3955 return Legalized;
3956 }
3957 case G_USUBO: {
3958 auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs();
3959
3960 MIRBuilder.buildSub(Res, LHS, RHS);
3961 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3962
3963 MI.eraseFromParent();
3964 return Legalized;
3965 }
3966 case G_USUBE: {
3967 auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs();
3968 const LLT CondTy = MRI.getType(BorrowOut);
3969 const LLT Ty = MRI.getType(Res);
3970
3971 // Initial subtract of the two operands.
3972 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3973
3974 // Initial check for borrow.
3975 auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS);
3976
3977 // Subtract the borrow from the first subtract.
3978 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3979 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3980
3981 // Second check for borrow. We can only borrow if the initial difference is
3982 // 0 and the borrow is set, resulting in a new difference of all 1s.
3983 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3984 auto TmpResEqZero =
3985 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero);
3986 auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn);
3987 MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2);
3988
3989 MI.eraseFromParent();
3990 return Legalized;
3991 }
3992 case G_UITOFP:
3993 return lowerUITOFP(MI);
3994 case G_SITOFP:
3995 return lowerSITOFP(MI);
3996 case G_FPTOUI:
3997 return lowerFPTOUI(MI);
3998 case G_FPTOSI:
3999 return lowerFPTOSI(MI);
4000 case G_FPTRUNC:
4001 return lowerFPTRUNC(MI);
4002 case G_FPOWI:
4003 return lowerFPOWI(MI);
4004 case G_SMIN:
4005 case G_SMAX:
4006 case G_UMIN:
4007 case G_UMAX:
4008 return lowerMinMax(MI);
4009 case G_SCMP:
4010 case G_UCMP:
4011 return lowerThreewayCompare(MI);
4012 case G_FCOPYSIGN:
4013 return lowerFCopySign(MI);
4014 case G_FMINNUM:
4015 case G_FMAXNUM:
4016 return lowerFMinNumMaxNum(MI);
4017 case G_MERGE_VALUES:
4018 return lowerMergeValues(MI);
4019 case G_UNMERGE_VALUES:
4020 return lowerUnmergeValues(MI);
4021 case TargetOpcode::G_SEXT_INREG: {
4022 assert(MI.getOperand(2).isImm() && "Expected immediate");
4023 int64_t SizeInBits = MI.getOperand(2).getImm();
4024
4025 auto [DstReg, SrcReg] = MI.getFirst2Regs();
4026 LLT DstTy = MRI.getType(DstReg);
4027 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
4028
4029 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
4030 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
4031 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
4032 MI.eraseFromParent();
4033 return Legalized;
4034 }
4035 case G_EXTRACT_VECTOR_ELT:
4036 case G_INSERT_VECTOR_ELT:
4037 return lowerExtractInsertVectorElt(MI);
4038 case G_SHUFFLE_VECTOR:
4039 return lowerShuffleVector(MI);
4040 case G_VECTOR_COMPRESS:
4041 return lowerVECTOR_COMPRESS(MI);
4042 case G_DYN_STACKALLOC:
4043 return lowerDynStackAlloc(MI);
4044 case G_STACKSAVE:
4045 return lowerStackSave(MI);
4046 case G_STACKRESTORE:
4047 return lowerStackRestore(MI);
4048 case G_EXTRACT:
4049 return lowerExtract(MI);
4050 case G_INSERT:
4051 return lowerInsert(MI);
4052 case G_BSWAP:
4053 return lowerBswap(MI);
4054 case G_BITREVERSE:
4055 return lowerBitreverse(MI);
4056 case G_READ_REGISTER:
4057 case G_WRITE_REGISTER:
4058 return lowerReadWriteRegister(MI);
4059 case G_UADDSAT:
4060 case G_USUBSAT: {
4061 // Try to make a reasonable guess about which lowering strategy to use. The
4062 // target can override this with custom lowering and calling the
4063 // implementation functions.
4064 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4065 if (LI.isLegalOrCustom({G_UMIN, Ty}))
4066 return lowerAddSubSatToMinMax(MI);
4067 return lowerAddSubSatToAddoSubo(MI);
4068 }
4069 case G_SADDSAT:
4070 case G_SSUBSAT: {
4071 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4072
4073 // FIXME: It would probably make more sense to see if G_SADDO is preferred,
4074 // since it's a shorter expansion. However, we would need to figure out the
4075 // preferred boolean type for the carry out for the query.
4076 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
4077 return lowerAddSubSatToMinMax(MI);
4078 return lowerAddSubSatToAddoSubo(MI);
4079 }
4080 case G_SSHLSAT:
4081 case G_USHLSAT:
4082 return lowerShlSat(MI);
4083 case G_ABS:
4084 return lowerAbsToAddXor(MI);
4085 case G_SELECT:
4086 return lowerSelect(MI);
4087 case G_IS_FPCLASS:
4088 return lowerISFPCLASS(MI);
4089 case G_SDIVREM:
4090 case G_UDIVREM:
4091 return lowerDIVREM(MI);
4092 case G_FSHL:
4093 case G_FSHR:
4094 return lowerFunnelShift(MI);
4095 case G_ROTL:
4096 case G_ROTR:
4097 return lowerRotate(MI);
4098 case G_MEMSET:
4099 case G_MEMCPY:
4100 case G_MEMMOVE:
4101 return lowerMemCpyFamily(MI);
4102 case G_MEMCPY_INLINE:
4103 return lowerMemcpyInline(MI);
4104 case G_ZEXT:
4105 case G_SEXT:
4106 case G_ANYEXT:
4107 return lowerEXT(MI);
4108 case G_TRUNC:
4109 return lowerTRUNC(MI);
4110 GISEL_VECREDUCE_CASES_NONSEQ
4111 return lowerVectorReduction(MI);
4112 case G_VAARG:
4113 return lowerVAArg(MI);
4114 }
4115 }
4116
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const4117 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
4118 Align MinAlign) const {
4119 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
4120 // datalayout for the preferred alignment. Also there should be a target hook
4121 // for this to allow targets to reduce the alignment and ignore the
4122 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
4123 // the type.
4124 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
4125 }
4126
4127 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)4128 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
4129 MachinePointerInfo &PtrInfo) {
4130 MachineFunction &MF = MIRBuilder.getMF();
4131 const DataLayout &DL = MIRBuilder.getDataLayout();
4132 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
4133
4134 unsigned AddrSpace = DL.getAllocaAddrSpace();
4135 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
4136
4137 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
4138 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
4139 }
4140
clampVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)4141 static Register clampVectorIndex(MachineIRBuilder &B, Register IdxReg,
4142 LLT VecTy) {
4143 LLT IdxTy = B.getMRI()->getType(IdxReg);
4144 unsigned NElts = VecTy.getNumElements();
4145
4146 int64_t IdxVal;
4147 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) {
4148 if (IdxVal < VecTy.getNumElements())
4149 return IdxReg;
4150 // If a constant index would be out of bounds, clamp it as well.
4151 }
4152
4153 if (isPowerOf2_32(NElts)) {
4154 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
4155 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
4156 }
4157
4158 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
4159 .getReg(0);
4160 }
4161
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)4162 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
4163 Register Index) {
4164 LLT EltTy = VecTy.getElementType();
4165
4166 // Calculate the element offset and add it to the pointer.
4167 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
4168 assert(EltSize * 8 == EltTy.getSizeInBits() &&
4169 "Converting bits to bytes lost precision");
4170
4171 Index = clampVectorIndex(MIRBuilder, Index, VecTy);
4172
4173 // Convert index to the correct size for the address space.
4174 const DataLayout &DL = MIRBuilder.getDataLayout();
4175 unsigned AS = MRI.getType(VecPtr).getAddressSpace();
4176 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8;
4177 LLT IdxTy = MRI.getType(Index).changeElementSize(IndexSizeInBits);
4178 if (IdxTy != MRI.getType(Index))
4179 Index = MIRBuilder.buildSExtOrTrunc(IdxTy, Index).getReg(0);
4180
4181 auto Mul = MIRBuilder.buildMul(IdxTy, Index,
4182 MIRBuilder.buildConstant(IdxTy, EltSize));
4183
4184 LLT PtrTy = MRI.getType(VecPtr);
4185 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
4186 }
4187
4188 #ifndef NDEBUG
4189 /// Check that all vector operands have same number of elements. Other operands
4190 /// should be listed in NonVecOp.
hasSameNumEltsOnAllVectorOperands(GenericMachineInstr & MI,MachineRegisterInfo & MRI,std::initializer_list<unsigned> NonVecOpIndices)4191 static bool hasSameNumEltsOnAllVectorOperands(
4192 GenericMachineInstr &MI, MachineRegisterInfo &MRI,
4193 std::initializer_list<unsigned> NonVecOpIndices) {
4194 if (MI.getNumMemOperands() != 0)
4195 return false;
4196
4197 LLT VecTy = MRI.getType(MI.getReg(0));
4198 if (!VecTy.isVector())
4199 return false;
4200 unsigned NumElts = VecTy.getNumElements();
4201
4202 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
4203 MachineOperand &Op = MI.getOperand(OpIdx);
4204 if (!Op.isReg()) {
4205 if (!is_contained(NonVecOpIndices, OpIdx))
4206 return false;
4207 continue;
4208 }
4209
4210 LLT Ty = MRI.getType(Op.getReg());
4211 if (!Ty.isVector()) {
4212 if (!is_contained(NonVecOpIndices, OpIdx))
4213 return false;
4214 continue;
4215 }
4216
4217 if (Ty.getNumElements() != NumElts)
4218 return false;
4219 }
4220
4221 return true;
4222 }
4223 #endif
4224
4225 /// Fill \p DstOps with DstOps that have same number of elements combined as
4226 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
4227 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
4228 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
makeDstOps(SmallVectorImpl<DstOp> & DstOps,LLT Ty,unsigned NumElts)4229 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
4230 unsigned NumElts) {
4231 LLT LeftoverTy;
4232 assert(Ty.isVector() && "Expected vector type");
4233 LLT EltTy = Ty.getElementType();
4234 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
4235 int NumParts, NumLeftover;
4236 std::tie(NumParts, NumLeftover) =
4237 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
4238
4239 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
4240 for (int i = 0; i < NumParts; ++i) {
4241 DstOps.push_back(NarrowTy);
4242 }
4243
4244 if (LeftoverTy.isValid()) {
4245 assert(NumLeftover == 1 && "expected exactly one leftover");
4246 DstOps.push_back(LeftoverTy);
4247 }
4248 }
4249
4250 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
4251 /// made from \p Op depending on operand type.
broadcastSrcOp(SmallVectorImpl<SrcOp> & Ops,unsigned N,MachineOperand & Op)4252 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
4253 MachineOperand &Op) {
4254 for (unsigned i = 0; i < N; ++i) {
4255 if (Op.isReg())
4256 Ops.push_back(Op.getReg());
4257 else if (Op.isImm())
4258 Ops.push_back(Op.getImm());
4259 else if (Op.isPredicate())
4260 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
4261 else
4262 llvm_unreachable("Unsupported type");
4263 }
4264 }
4265
4266 // Handle splitting vector operations which need to have the same number of
4267 // elements in each type index, but each type index may have a different element
4268 // type.
4269 //
4270 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
4271 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4272 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4273 //
4274 // Also handles some irregular breakdown cases, e.g.
4275 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
4276 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4277 // s64 = G_SHL s64, s32
4278 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(GenericMachineInstr & MI,unsigned NumElts,std::initializer_list<unsigned> NonVecOpIndices)4279 LegalizerHelper::fewerElementsVectorMultiEltType(
4280 GenericMachineInstr &MI, unsigned NumElts,
4281 std::initializer_list<unsigned> NonVecOpIndices) {
4282 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
4283 "Non-compatible opcode or not specified non-vector operands");
4284 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
4285
4286 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
4287 unsigned NumDefs = MI.getNumDefs();
4288
4289 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
4290 // Build instructions with DstOps to use instruction found by CSE directly.
4291 // CSE copies found instruction into given vreg when building with vreg dest.
4292 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
4293 // Output registers will be taken from created instructions.
4294 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
4295 for (unsigned i = 0; i < NumDefs; ++i) {
4296 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
4297 }
4298
4299 // Split vector input operands into sub-vectors with NumElts elts + Leftover.
4300 // Operands listed in NonVecOpIndices will be used as is without splitting;
4301 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
4302 // scalar condition (op 1), immediate in sext_inreg (op 2).
4303 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
4304 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
4305 ++UseIdx, ++UseNo) {
4306 if (is_contained(NonVecOpIndices, UseIdx)) {
4307 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
4308 MI.getOperand(UseIdx));
4309 } else {
4310 SmallVector<Register, 8> SplitPieces;
4311 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces, MIRBuilder,
4312 MRI);
4313 for (auto Reg : SplitPieces)
4314 InputOpsPieces[UseNo].push_back(Reg);
4315 }
4316 }
4317
4318 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
4319
4320 // Take i-th piece of each input operand split and build sub-vector/scalar
4321 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
4322 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
4323 SmallVector<DstOp, 2> Defs;
4324 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
4325 Defs.push_back(OutputOpsPieces[DstNo][i]);
4326
4327 SmallVector<SrcOp, 3> Uses;
4328 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
4329 Uses.push_back(InputOpsPieces[InputNo][i]);
4330
4331 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
4332 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
4333 OutputRegs[DstNo].push_back(I.getReg(DstNo));
4334 }
4335
4336 // Merge small outputs into MI's output for each def operand.
4337 if (NumLeftovers) {
4338 for (unsigned i = 0; i < NumDefs; ++i)
4339 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
4340 } else {
4341 for (unsigned i = 0; i < NumDefs; ++i)
4342 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]);
4343 }
4344
4345 MI.eraseFromParent();
4346 return Legalized;
4347 }
4348
4349 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(GenericMachineInstr & MI,unsigned NumElts)4350 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
4351 unsigned NumElts) {
4352 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
4353
4354 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
4355 unsigned NumDefs = MI.getNumDefs();
4356
4357 SmallVector<DstOp, 8> OutputOpsPieces;
4358 SmallVector<Register, 8> OutputRegs;
4359 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
4360
4361 // Instructions that perform register split will be inserted in basic block
4362 // where register is defined (basic block is in the next operand).
4363 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
4364 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
4365 UseIdx += 2, ++UseNo) {
4366 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
4367 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
4368 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo],
4369 MIRBuilder, MRI);
4370 }
4371
4372 // Build PHIs with fewer elements.
4373 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
4374 MIRBuilder.setInsertPt(*MI.getParent(), MI);
4375 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
4376 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
4377 Phi.addDef(
4378 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
4379 OutputRegs.push_back(Phi.getReg(0));
4380
4381 for (unsigned j = 0; j < NumInputs / 2; ++j) {
4382 Phi.addUse(InputOpsPieces[j][i]);
4383 Phi.add(MI.getOperand(1 + j * 2 + 1));
4384 }
4385 }
4386
4387 // Set the insert point after the existing PHIs
4388 MachineBasicBlock &MBB = *MI.getParent();
4389 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
4390
4391 // Merge small outputs into MI's def.
4392 if (NumLeftovers) {
4393 mergeMixedSubvectors(MI.getReg(0), OutputRegs);
4394 } else {
4395 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs);
4396 }
4397
4398 MI.eraseFromParent();
4399 return Legalized;
4400 }
4401
4402 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4403 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
4404 unsigned TypeIdx,
4405 LLT NarrowTy) {
4406 const int NumDst = MI.getNumOperands() - 1;
4407 const Register SrcReg = MI.getOperand(NumDst).getReg();
4408 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4409 LLT SrcTy = MRI.getType(SrcReg);
4410
4411 if (TypeIdx != 1 || NarrowTy == DstTy)
4412 return UnableToLegalize;
4413
4414 // Requires compatible types. Otherwise SrcReg should have been defined by
4415 // merge-like instruction that would get artifact combined. Most likely
4416 // instruction that defines SrcReg has to perform more/fewer elements
4417 // legalization compatible with NarrowTy.
4418 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
4419 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4420
4421 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
4422 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
4423 return UnableToLegalize;
4424
4425 // This is most likely DstTy (smaller then register size) packed in SrcTy
4426 // (larger then register size) and since unmerge was not combined it will be
4427 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
4428 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
4429
4430 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
4431 //
4432 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
4433 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
4434 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
4435 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
4436 const int NumUnmerge = Unmerge->getNumOperands() - 1;
4437 const int PartsPerUnmerge = NumDst / NumUnmerge;
4438
4439 for (int I = 0; I != NumUnmerge; ++I) {
4440 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4441
4442 for (int J = 0; J != PartsPerUnmerge; ++J)
4443 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
4444 MIB.addUse(Unmerge.getReg(I));
4445 }
4446
4447 MI.eraseFromParent();
4448 return Legalized;
4449 }
4450
4451 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4452 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
4453 LLT NarrowTy) {
4454 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
4455 // Requires compatible types. Otherwise user of DstReg did not perform unmerge
4456 // that should have been artifact combined. Most likely instruction that uses
4457 // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
4458 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
4459 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4460 if (NarrowTy == SrcTy)
4461 return UnableToLegalize;
4462
4463 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
4464 // is for old mir tests. Since the changes to more/fewer elements it should no
4465 // longer be possible to generate MIR like this when starting from llvm-ir
4466 // because LCMTy approach was replaced with merge/unmerge to vector elements.
4467 if (TypeIdx == 1) {
4468 assert(SrcTy.isVector() && "Expected vector types");
4469 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4470 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
4471 (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
4472 return UnableToLegalize;
4473 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
4474 //
4475 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
4476 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
4477 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
4478 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
4479 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
4480 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
4481
4482 SmallVector<Register, 8> Elts;
4483 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
4484 for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
4485 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
4486 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
4487 Elts.push_back(Unmerge.getReg(j));
4488 }
4489
4490 SmallVector<Register, 8> NarrowTyElts;
4491 unsigned NumNarrowTyElts = NarrowTy.getNumElements();
4492 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
4493 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
4494 ++i, Offset += NumNarrowTyElts) {
4495 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
4496 NarrowTyElts.push_back(
4497 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
4498 }
4499
4500 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
4501 MI.eraseFromParent();
4502 return Legalized;
4503 }
4504
4505 assert(TypeIdx == 0 && "Bad type index");
4506 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
4507 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
4508 return UnableToLegalize;
4509
4510 // This is most likely SrcTy (smaller then register size) packed in DstTy
4511 // (larger then register size) and since merge was not combined it will be
4512 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
4513 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
4514
4515 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
4516 //
4517 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
4518 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
4519 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
4520 SmallVector<Register, 8> NarrowTyElts;
4521 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
4522 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
4523 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
4524 for (unsigned i = 0; i < NumParts; ++i) {
4525 SmallVector<Register, 8> Sources;
4526 for (unsigned j = 0; j < NumElts; ++j)
4527 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
4528 NarrowTyElts.push_back(
4529 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0));
4530 }
4531
4532 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
4533 MI.eraseFromParent();
4534 return Legalized;
4535 }
4536
4537 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)4538 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
4539 unsigned TypeIdx,
4540 LLT NarrowVecTy) {
4541 auto [DstReg, SrcVec] = MI.getFirst2Regs();
4542 Register InsertVal;
4543 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
4544
4545 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4546 if (IsInsert)
4547 InsertVal = MI.getOperand(2).getReg();
4548
4549 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4550
4551 // TODO: Handle total scalarization case.
4552 if (!NarrowVecTy.isVector())
4553 return UnableToLegalize;
4554
4555 LLT VecTy = MRI.getType(SrcVec);
4556
4557 // If the index is a constant, we can really break this down as you would
4558 // expect, and index into the target size pieces.
4559 int64_t IdxVal;
4560 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4561 if (MaybeCst) {
4562 IdxVal = MaybeCst->Value.getSExtValue();
4563 // Avoid out of bounds indexing the pieces.
4564 if (IdxVal >= VecTy.getNumElements()) {
4565 MIRBuilder.buildUndef(DstReg);
4566 MI.eraseFromParent();
4567 return Legalized;
4568 }
4569
4570 SmallVector<Register, 8> VecParts;
4571 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4572
4573 // Build a sequence of NarrowTy pieces in VecParts for this operand.
4574 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4575 TargetOpcode::G_ANYEXT);
4576
4577 unsigned NewNumElts = NarrowVecTy.getNumElements();
4578
4579 LLT IdxTy = MRI.getType(Idx);
4580 int64_t PartIdx = IdxVal / NewNumElts;
4581 auto NewIdx =
4582 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4583
4584 if (IsInsert) {
4585 LLT PartTy = MRI.getType(VecParts[PartIdx]);
4586
4587 // Use the adjusted index to insert into one of the subvectors.
4588 auto InsertPart = MIRBuilder.buildInsertVectorElement(
4589 PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4590 VecParts[PartIdx] = InsertPart.getReg(0);
4591
4592 // Recombine the inserted subvector with the others to reform the result
4593 // vector.
4594 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4595 } else {
4596 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4597 }
4598
4599 MI.eraseFromParent();
4600 return Legalized;
4601 }
4602
4603 // With a variable index, we can't perform the operation in a smaller type, so
4604 // we're forced to expand this.
4605 //
4606 // TODO: We could emit a chain of compare/select to figure out which piece to
4607 // index.
4608 return lowerExtractInsertVectorElt(MI);
4609 }
4610
4611 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(GLoadStore & LdStMI,unsigned TypeIdx,LLT NarrowTy)4612 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4613 LLT NarrowTy) {
4614 // FIXME: Don't know how to handle secondary types yet.
4615 if (TypeIdx != 0)
4616 return UnableToLegalize;
4617
4618 // This implementation doesn't work for atomics. Give up instead of doing
4619 // something invalid.
4620 if (LdStMI.isAtomic())
4621 return UnableToLegalize;
4622
4623 bool IsLoad = isa<GLoad>(LdStMI);
4624 Register ValReg = LdStMI.getReg(0);
4625 Register AddrReg = LdStMI.getPointerReg();
4626 LLT ValTy = MRI.getType(ValReg);
4627
4628 // FIXME: Do we need a distinct NarrowMemory legalize action?
4629 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize().getValue()) {
4630 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4631 return UnableToLegalize;
4632 }
4633
4634 int NumParts = -1;
4635 int NumLeftover = -1;
4636 LLT LeftoverTy;
4637 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4638 if (IsLoad) {
4639 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4640 } else {
4641 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4642 NarrowLeftoverRegs, MIRBuilder, MRI)) {
4643 NumParts = NarrowRegs.size();
4644 NumLeftover = NarrowLeftoverRegs.size();
4645 }
4646 }
4647
4648 if (NumParts == -1)
4649 return UnableToLegalize;
4650
4651 LLT PtrTy = MRI.getType(AddrReg);
4652 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4653
4654 unsigned TotalSize = ValTy.getSizeInBits();
4655
4656 // Split the load/store into PartTy sized pieces starting at Offset. If this
4657 // is a load, return the new registers in ValRegs. For a store, each elements
4658 // of ValRegs should be PartTy. Returns the next offset that needs to be
4659 // handled.
4660 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4661 auto MMO = LdStMI.getMMO();
4662 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4663 unsigned NumParts, unsigned Offset) -> unsigned {
4664 MachineFunction &MF = MIRBuilder.getMF();
4665 unsigned PartSize = PartTy.getSizeInBits();
4666 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4667 ++Idx) {
4668 unsigned ByteOffset = Offset / 8;
4669 Register NewAddrReg;
4670
4671 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4672
4673 MachineMemOperand *NewMMO =
4674 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4675
4676 if (IsLoad) {
4677 Register Dst = MRI.createGenericVirtualRegister(PartTy);
4678 ValRegs.push_back(Dst);
4679 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4680 } else {
4681 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4682 }
4683 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4684 }
4685
4686 return Offset;
4687 };
4688
4689 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4690 unsigned HandledOffset =
4691 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4692
4693 // Handle the rest of the register if this isn't an even type breakdown.
4694 if (LeftoverTy.isValid())
4695 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4696
4697 if (IsLoad) {
4698 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4699 LeftoverTy, NarrowLeftoverRegs);
4700 }
4701
4702 LdStMI.eraseFromParent();
4703 return Legalized;
4704 }
4705
4706 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4707 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4708 LLT NarrowTy) {
4709 using namespace TargetOpcode;
4710 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4711 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4712
4713 switch (MI.getOpcode()) {
4714 case G_IMPLICIT_DEF:
4715 case G_TRUNC:
4716 case G_AND:
4717 case G_OR:
4718 case G_XOR:
4719 case G_ADD:
4720 case G_SUB:
4721 case G_MUL:
4722 case G_PTR_ADD:
4723 case G_SMULH:
4724 case G_UMULH:
4725 case G_FADD:
4726 case G_FMUL:
4727 case G_FSUB:
4728 case G_FNEG:
4729 case G_FABS:
4730 case G_FCANONICALIZE:
4731 case G_FDIV:
4732 case G_FREM:
4733 case G_FMA:
4734 case G_FMAD:
4735 case G_FPOW:
4736 case G_FEXP:
4737 case G_FEXP2:
4738 case G_FEXP10:
4739 case G_FLOG:
4740 case G_FLOG2:
4741 case G_FLOG10:
4742 case G_FLDEXP:
4743 case G_FNEARBYINT:
4744 case G_FCEIL:
4745 case G_FFLOOR:
4746 case G_FRINT:
4747 case G_INTRINSIC_ROUND:
4748 case G_INTRINSIC_ROUNDEVEN:
4749 case G_INTRINSIC_TRUNC:
4750 case G_FCOS:
4751 case G_FSIN:
4752 case G_FTAN:
4753 case G_FACOS:
4754 case G_FASIN:
4755 case G_FATAN:
4756 case G_FCOSH:
4757 case G_FSINH:
4758 case G_FTANH:
4759 case G_FSQRT:
4760 case G_BSWAP:
4761 case G_BITREVERSE:
4762 case G_SDIV:
4763 case G_UDIV:
4764 case G_SREM:
4765 case G_UREM:
4766 case G_SDIVREM:
4767 case G_UDIVREM:
4768 case G_SMIN:
4769 case G_SMAX:
4770 case G_UMIN:
4771 case G_UMAX:
4772 case G_ABS:
4773 case G_FMINNUM:
4774 case G_FMAXNUM:
4775 case G_FMINNUM_IEEE:
4776 case G_FMAXNUM_IEEE:
4777 case G_FMINIMUM:
4778 case G_FMAXIMUM:
4779 case G_FSHL:
4780 case G_FSHR:
4781 case G_ROTL:
4782 case G_ROTR:
4783 case G_FREEZE:
4784 case G_SADDSAT:
4785 case G_SSUBSAT:
4786 case G_UADDSAT:
4787 case G_USUBSAT:
4788 case G_UMULO:
4789 case G_SMULO:
4790 case G_SHL:
4791 case G_LSHR:
4792 case G_ASHR:
4793 case G_SSHLSAT:
4794 case G_USHLSAT:
4795 case G_CTLZ:
4796 case G_CTLZ_ZERO_UNDEF:
4797 case G_CTTZ:
4798 case G_CTTZ_ZERO_UNDEF:
4799 case G_CTPOP:
4800 case G_FCOPYSIGN:
4801 case G_ZEXT:
4802 case G_SEXT:
4803 case G_ANYEXT:
4804 case G_FPEXT:
4805 case G_FPTRUNC:
4806 case G_SITOFP:
4807 case G_UITOFP:
4808 case G_FPTOSI:
4809 case G_FPTOUI:
4810 case G_INTTOPTR:
4811 case G_PTRTOINT:
4812 case G_ADDRSPACE_CAST:
4813 case G_UADDO:
4814 case G_USUBO:
4815 case G_UADDE:
4816 case G_USUBE:
4817 case G_SADDO:
4818 case G_SSUBO:
4819 case G_SADDE:
4820 case G_SSUBE:
4821 case G_STRICT_FADD:
4822 case G_STRICT_FSUB:
4823 case G_STRICT_FMUL:
4824 case G_STRICT_FMA:
4825 case G_STRICT_FLDEXP:
4826 case G_FFREXP:
4827 return fewerElementsVectorMultiEltType(GMI, NumElts);
4828 case G_ICMP:
4829 case G_FCMP:
4830 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4831 case G_IS_FPCLASS:
4832 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/});
4833 case G_SELECT:
4834 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4835 return fewerElementsVectorMultiEltType(GMI, NumElts);
4836 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4837 case G_PHI:
4838 return fewerElementsVectorPhi(GMI, NumElts);
4839 case G_UNMERGE_VALUES:
4840 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4841 case G_BUILD_VECTOR:
4842 assert(TypeIdx == 0 && "not a vector type index");
4843 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4844 case G_CONCAT_VECTORS:
4845 if (TypeIdx != 1) // TODO: This probably does work as expected already.
4846 return UnableToLegalize;
4847 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4848 case G_EXTRACT_VECTOR_ELT:
4849 case G_INSERT_VECTOR_ELT:
4850 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4851 case G_LOAD:
4852 case G_STORE:
4853 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4854 case G_SEXT_INREG:
4855 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4856 GISEL_VECREDUCE_CASES_NONSEQ
4857 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4858 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
4859 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
4860 return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy);
4861 case G_SHUFFLE_VECTOR:
4862 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4863 case G_FPOWI:
4864 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/});
4865 case G_BITCAST:
4866 return fewerElementsBitcast(MI, TypeIdx, NarrowTy);
4867 case G_INTRINSIC_FPTRUNC_ROUND:
4868 return fewerElementsVectorMultiEltType(GMI, NumElts, {2});
4869 default:
4870 return UnableToLegalize;
4871 }
4872 }
4873
4874 LegalizerHelper::LegalizeResult
fewerElementsBitcast(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4875 LegalizerHelper::fewerElementsBitcast(MachineInstr &MI, unsigned int TypeIdx,
4876 LLT NarrowTy) {
4877 assert(MI.getOpcode() == TargetOpcode::G_BITCAST &&
4878 "Not a bitcast operation");
4879
4880 if (TypeIdx != 0)
4881 return UnableToLegalize;
4882
4883 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
4884
4885 unsigned SrcScalSize = SrcTy.getScalarSizeInBits();
4886 LLT SrcNarrowTy =
4887 LLT::fixed_vector(NarrowTy.getSizeInBits() / SrcScalSize, SrcScalSize);
4888
4889 // Split the Src and Dst Reg into smaller registers
4890 SmallVector<Register> SrcVRegs, BitcastVRegs;
4891 if (extractGCDType(SrcVRegs, DstTy, SrcNarrowTy, SrcReg) != SrcNarrowTy)
4892 return UnableToLegalize;
4893
4894 // Build new smaller bitcast instructions
4895 // Not supporting Leftover types for now but will have to
4896 for (unsigned i = 0; i < SrcVRegs.size(); i++)
4897 BitcastVRegs.push_back(
4898 MIRBuilder.buildBitcast(NarrowTy, SrcVRegs[i]).getReg(0));
4899
4900 MIRBuilder.buildMergeLikeInstr(DstReg, BitcastVRegs);
4901 MI.eraseFromParent();
4902 return Legalized;
4903 }
4904
fewerElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4905 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4906 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4907 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4908 if (TypeIdx != 0)
4909 return UnableToLegalize;
4910
4911 auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] =
4912 MI.getFirst3RegLLTs();
4913 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4914 // The shuffle should be canonicalized by now.
4915 if (DstTy != Src1Ty)
4916 return UnableToLegalize;
4917 if (DstTy != Src2Ty)
4918 return UnableToLegalize;
4919
4920 if (!isPowerOf2_32(DstTy.getNumElements()))
4921 return UnableToLegalize;
4922
4923 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4924 // Further legalization attempts will be needed to do split further.
4925 NarrowTy =
4926 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4927 unsigned NewElts = NarrowTy.getNumElements();
4928
4929 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4930 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs, MIRBuilder, MRI);
4931 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs, MIRBuilder, MRI);
4932 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4933 SplitSrc2Regs[1]};
4934
4935 Register Hi, Lo;
4936
4937 // If Lo or Hi uses elements from at most two of the four input vectors, then
4938 // express it as a vector shuffle of those two inputs. Otherwise extract the
4939 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4940 SmallVector<int, 16> Ops;
4941 for (unsigned High = 0; High < 2; ++High) {
4942 Register &Output = High ? Hi : Lo;
4943
4944 // Build a shuffle mask for the output, discovering on the fly which
4945 // input vectors to use as shuffle operands (recorded in InputUsed).
4946 // If building a suitable shuffle vector proves too hard, then bail
4947 // out with useBuildVector set.
4948 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4949 unsigned FirstMaskIdx = High * NewElts;
4950 bool UseBuildVector = false;
4951 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4952 // The mask element. This indexes into the input.
4953 int Idx = Mask[FirstMaskIdx + MaskOffset];
4954
4955 // The input vector this mask element indexes into.
4956 unsigned Input = (unsigned)Idx / NewElts;
4957
4958 if (Input >= std::size(Inputs)) {
4959 // The mask element does not index into any input vector.
4960 Ops.push_back(-1);
4961 continue;
4962 }
4963
4964 // Turn the index into an offset from the start of the input vector.
4965 Idx -= Input * NewElts;
4966
4967 // Find or create a shuffle vector operand to hold this input.
4968 unsigned OpNo;
4969 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) {
4970 if (InputUsed[OpNo] == Input) {
4971 // This input vector is already an operand.
4972 break;
4973 } else if (InputUsed[OpNo] == -1U) {
4974 // Create a new operand for this input vector.
4975 InputUsed[OpNo] = Input;
4976 break;
4977 }
4978 }
4979
4980 if (OpNo >= std::size(InputUsed)) {
4981 // More than two input vectors used! Give up on trying to create a
4982 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
4983 UseBuildVector = true;
4984 break;
4985 }
4986
4987 // Add the mask index for the new shuffle vector.
4988 Ops.push_back(Idx + OpNo * NewElts);
4989 }
4990
4991 if (UseBuildVector) {
4992 LLT EltTy = NarrowTy.getElementType();
4993 SmallVector<Register, 16> SVOps;
4994
4995 // Extract the input elements by hand.
4996 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4997 // The mask element. This indexes into the input.
4998 int Idx = Mask[FirstMaskIdx + MaskOffset];
4999
5000 // The input vector this mask element indexes into.
5001 unsigned Input = (unsigned)Idx / NewElts;
5002
5003 if (Input >= std::size(Inputs)) {
5004 // The mask element is "undef" or indexes off the end of the input.
5005 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
5006 continue;
5007 }
5008
5009 // Turn the index into an offset from the start of the input vector.
5010 Idx -= Input * NewElts;
5011
5012 // Extract the vector element by hand.
5013 SVOps.push_back(MIRBuilder
5014 .buildExtractVectorElement(
5015 EltTy, Inputs[Input],
5016 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
5017 .getReg(0));
5018 }
5019
5020 // Construct the Lo/Hi output using a G_BUILD_VECTOR.
5021 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
5022 } else if (InputUsed[0] == -1U) {
5023 // No input vectors were used! The result is undefined.
5024 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
5025 } else {
5026 Register Op0 = Inputs[InputUsed[0]];
5027 // If only one input was used, use an undefined vector for the other.
5028 Register Op1 = InputUsed[1] == -1U
5029 ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
5030 : Inputs[InputUsed[1]];
5031 // At least one input vector was used. Create a new shuffle vector.
5032 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
5033 }
5034
5035 Ops.clear();
5036 }
5037
5038 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
5039 MI.eraseFromParent();
5040 return Legalized;
5041 }
5042
fewerElementsVectorReductions(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)5043 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
5044 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
5045 auto &RdxMI = cast<GVecReduce>(MI);
5046
5047 if (TypeIdx != 1)
5048 return UnableToLegalize;
5049
5050 // The semantics of the normal non-sequential reductions allow us to freely
5051 // re-associate the operation.
5052 auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs();
5053
5054 if (NarrowTy.isVector() &&
5055 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
5056 return UnableToLegalize;
5057
5058 unsigned ScalarOpc = RdxMI.getScalarOpcForReduction();
5059 SmallVector<Register> SplitSrcs;
5060 // If NarrowTy is a scalar then we're being asked to scalarize.
5061 const unsigned NumParts =
5062 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
5063 : SrcTy.getNumElements();
5064
5065 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI);
5066 if (NarrowTy.isScalar()) {
5067 if (DstTy != NarrowTy)
5068 return UnableToLegalize; // FIXME: handle implicit extensions.
5069
5070 if (isPowerOf2_32(NumParts)) {
5071 // Generate a tree of scalar operations to reduce the critical path.
5072 SmallVector<Register> PartialResults;
5073 unsigned NumPartsLeft = NumParts;
5074 while (NumPartsLeft > 1) {
5075 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
5076 PartialResults.emplace_back(
5077 MIRBuilder
5078 .buildInstr(ScalarOpc, {NarrowTy},
5079 {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
5080 .getReg(0));
5081 }
5082 SplitSrcs = PartialResults;
5083 PartialResults.clear();
5084 NumPartsLeft = SplitSrcs.size();
5085 }
5086 assert(SplitSrcs.size() == 1);
5087 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
5088 MI.eraseFromParent();
5089 return Legalized;
5090 }
5091 // If we can't generate a tree, then just do sequential operations.
5092 Register Acc = SplitSrcs[0];
5093 for (unsigned Idx = 1; Idx < NumParts; ++Idx)
5094 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
5095 .getReg(0);
5096 MIRBuilder.buildCopy(DstReg, Acc);
5097 MI.eraseFromParent();
5098 return Legalized;
5099 }
5100 SmallVector<Register> PartialReductions;
5101 for (unsigned Part = 0; Part < NumParts; ++Part) {
5102 PartialReductions.push_back(
5103 MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]})
5104 .getReg(0));
5105 }
5106
5107 // If the types involved are powers of 2, we can generate intermediate vector
5108 // ops, before generating a final reduction operation.
5109 if (isPowerOf2_32(SrcTy.getNumElements()) &&
5110 isPowerOf2_32(NarrowTy.getNumElements())) {
5111 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
5112 }
5113
5114 Register Acc = PartialReductions[0];
5115 for (unsigned Part = 1; Part < NumParts; ++Part) {
5116 if (Part == NumParts - 1) {
5117 MIRBuilder.buildInstr(ScalarOpc, {DstReg},
5118 {Acc, PartialReductions[Part]});
5119 } else {
5120 Acc = MIRBuilder
5121 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
5122 .getReg(0);
5123 }
5124 }
5125 MI.eraseFromParent();
5126 return Legalized;
5127 }
5128
5129 LegalizerHelper::LegalizeResult
fewerElementsVectorSeqReductions(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)5130 LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI,
5131 unsigned int TypeIdx,
5132 LLT NarrowTy) {
5133 auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] =
5134 MI.getFirst3RegLLTs();
5135 if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy ||
5136 DstTy != NarrowTy)
5137 return UnableToLegalize;
5138
5139 assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD ||
5140 MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) &&
5141 "Unexpected vecreduce opcode");
5142 unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD
5143 ? TargetOpcode::G_FADD
5144 : TargetOpcode::G_FMUL;
5145
5146 SmallVector<Register> SplitSrcs;
5147 unsigned NumParts = SrcTy.getNumElements();
5148 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI);
5149 Register Acc = ScalarReg;
5150 for (unsigned i = 0; i < NumParts; i++)
5151 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]})
5152 .getReg(0);
5153
5154 MIRBuilder.buildCopy(DstReg, Acc);
5155 MI.eraseFromParent();
5156 return Legalized;
5157 }
5158
5159 LegalizerHelper::LegalizeResult
tryNarrowPow2Reduction(MachineInstr & MI,Register SrcReg,LLT SrcTy,LLT NarrowTy,unsigned ScalarOpc)5160 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
5161 LLT SrcTy, LLT NarrowTy,
5162 unsigned ScalarOpc) {
5163 SmallVector<Register> SplitSrcs;
5164 // Split the sources into NarrowTy size pieces.
5165 extractParts(SrcReg, NarrowTy,
5166 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs,
5167 MIRBuilder, MRI);
5168 // We're going to do a tree reduction using vector operations until we have
5169 // one NarrowTy size value left.
5170 while (SplitSrcs.size() > 1) {
5171 SmallVector<Register> PartialRdxs;
5172 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
5173 Register LHS = SplitSrcs[Idx];
5174 Register RHS = SplitSrcs[Idx + 1];
5175 // Create the intermediate vector op.
5176 Register Res =
5177 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
5178 PartialRdxs.push_back(Res);
5179 }
5180 SplitSrcs = std::move(PartialRdxs);
5181 }
5182 // Finally generate the requested NarrowTy based reduction.
5183 Observer.changingInstr(MI);
5184 MI.getOperand(1).setReg(SplitSrcs[0]);
5185 Observer.changedInstr(MI);
5186 return Legalized;
5187 }
5188
5189 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)5190 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
5191 const LLT HalfTy, const LLT AmtTy) {
5192
5193 Register InL = MRI.createGenericVirtualRegister(HalfTy);
5194 Register InH = MRI.createGenericVirtualRegister(HalfTy);
5195 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
5196
5197 if (Amt.isZero()) {
5198 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH});
5199 MI.eraseFromParent();
5200 return Legalized;
5201 }
5202
5203 LLT NVT = HalfTy;
5204 unsigned NVTBits = HalfTy.getSizeInBits();
5205 unsigned VTBits = 2 * NVTBits;
5206
5207 SrcOp Lo(Register(0)), Hi(Register(0));
5208 if (MI.getOpcode() == TargetOpcode::G_SHL) {
5209 if (Amt.ugt(VTBits)) {
5210 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
5211 } else if (Amt.ugt(NVTBits)) {
5212 Lo = MIRBuilder.buildConstant(NVT, 0);
5213 Hi = MIRBuilder.buildShl(NVT, InL,
5214 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
5215 } else if (Amt == NVTBits) {
5216 Lo = MIRBuilder.buildConstant(NVT, 0);
5217 Hi = InL;
5218 } else {
5219 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
5220 auto OrLHS =
5221 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
5222 auto OrRHS = MIRBuilder.buildLShr(
5223 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
5224 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
5225 }
5226 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
5227 if (Amt.ugt(VTBits)) {
5228 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
5229 } else if (Amt.ugt(NVTBits)) {
5230 Lo = MIRBuilder.buildLShr(NVT, InH,
5231 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
5232 Hi = MIRBuilder.buildConstant(NVT, 0);
5233 } else if (Amt == NVTBits) {
5234 Lo = InH;
5235 Hi = MIRBuilder.buildConstant(NVT, 0);
5236 } else {
5237 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
5238
5239 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
5240 auto OrRHS = MIRBuilder.buildShl(
5241 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
5242
5243 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
5244 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
5245 }
5246 } else {
5247 if (Amt.ugt(VTBits)) {
5248 Hi = Lo = MIRBuilder.buildAShr(
5249 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5250 } else if (Amt.ugt(NVTBits)) {
5251 Lo = MIRBuilder.buildAShr(NVT, InH,
5252 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
5253 Hi = MIRBuilder.buildAShr(NVT, InH,
5254 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5255 } else if (Amt == NVTBits) {
5256 Lo = InH;
5257 Hi = MIRBuilder.buildAShr(NVT, InH,
5258 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5259 } else {
5260 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
5261
5262 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
5263 auto OrRHS = MIRBuilder.buildShl(
5264 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
5265
5266 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
5267 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
5268 }
5269 }
5270
5271 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi});
5272 MI.eraseFromParent();
5273
5274 return Legalized;
5275 }
5276
5277 // TODO: Optimize if constant shift amount.
5278 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)5279 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
5280 LLT RequestedTy) {
5281 if (TypeIdx == 1) {
5282 Observer.changingInstr(MI);
5283 narrowScalarSrc(MI, RequestedTy, 2);
5284 Observer.changedInstr(MI);
5285 return Legalized;
5286 }
5287
5288 Register DstReg = MI.getOperand(0).getReg();
5289 LLT DstTy = MRI.getType(DstReg);
5290 if (DstTy.isVector())
5291 return UnableToLegalize;
5292
5293 Register Amt = MI.getOperand(2).getReg();
5294 LLT ShiftAmtTy = MRI.getType(Amt);
5295 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
5296 if (DstEltSize % 2 != 0)
5297 return UnableToLegalize;
5298
5299 // Ignore the input type. We can only go to exactly half the size of the
5300 // input. If that isn't small enough, the resulting pieces will be further
5301 // legalized.
5302 const unsigned NewBitSize = DstEltSize / 2;
5303 const LLT HalfTy = LLT::scalar(NewBitSize);
5304 const LLT CondTy = LLT::scalar(1);
5305
5306 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
5307 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
5308 ShiftAmtTy);
5309 }
5310
5311 // TODO: Expand with known bits.
5312
5313 // Handle the fully general expansion by an unknown amount.
5314 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
5315
5316 Register InL = MRI.createGenericVirtualRegister(HalfTy);
5317 Register InH = MRI.createGenericVirtualRegister(HalfTy);
5318 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
5319
5320 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
5321 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
5322
5323 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
5324 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
5325 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
5326
5327 Register ResultRegs[2];
5328 switch (MI.getOpcode()) {
5329 case TargetOpcode::G_SHL: {
5330 // Short: ShAmt < NewBitSize
5331 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
5332
5333 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
5334 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
5335 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
5336
5337 // Long: ShAmt >= NewBitSize
5338 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
5339 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
5340
5341 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
5342 auto Hi = MIRBuilder.buildSelect(
5343 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
5344
5345 ResultRegs[0] = Lo.getReg(0);
5346 ResultRegs[1] = Hi.getReg(0);
5347 break;
5348 }
5349 case TargetOpcode::G_LSHR:
5350 case TargetOpcode::G_ASHR: {
5351 // Short: ShAmt < NewBitSize
5352 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
5353
5354 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
5355 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
5356 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
5357
5358 // Long: ShAmt >= NewBitSize
5359 MachineInstrBuilder HiL;
5360 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
5361 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
5362 } else {
5363 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
5364 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
5365 }
5366 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
5367 {InH, AmtExcess}); // Lo from Hi part.
5368
5369 auto Lo = MIRBuilder.buildSelect(
5370 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
5371
5372 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
5373
5374 ResultRegs[0] = Lo.getReg(0);
5375 ResultRegs[1] = Hi.getReg(0);
5376 break;
5377 }
5378 default:
5379 llvm_unreachable("not a shift");
5380 }
5381
5382 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs);
5383 MI.eraseFromParent();
5384 return Legalized;
5385 }
5386
5387 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)5388 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
5389 LLT MoreTy) {
5390 assert(TypeIdx == 0 && "Expecting only Idx 0");
5391
5392 Observer.changingInstr(MI);
5393 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
5394 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
5395 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
5396 moreElementsVectorSrc(MI, MoreTy, I);
5397 }
5398
5399 MachineBasicBlock &MBB = *MI.getParent();
5400 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
5401 moreElementsVectorDst(MI, MoreTy, 0);
5402 Observer.changedInstr(MI);
5403 return Legalized;
5404 }
5405
getNeutralElementForVecReduce(unsigned Opcode,MachineIRBuilder & MIRBuilder,LLT Ty)5406 MachineInstrBuilder LegalizerHelper::getNeutralElementForVecReduce(
5407 unsigned Opcode, MachineIRBuilder &MIRBuilder, LLT Ty) {
5408 assert(Ty.isScalar() && "Expected scalar type to make neutral element for");
5409
5410 switch (Opcode) {
5411 default:
5412 llvm_unreachable(
5413 "getNeutralElementForVecReduce called with invalid opcode!");
5414 case TargetOpcode::G_VECREDUCE_ADD:
5415 case TargetOpcode::G_VECREDUCE_OR:
5416 case TargetOpcode::G_VECREDUCE_XOR:
5417 case TargetOpcode::G_VECREDUCE_UMAX:
5418 return MIRBuilder.buildConstant(Ty, 0);
5419 case TargetOpcode::G_VECREDUCE_MUL:
5420 return MIRBuilder.buildConstant(Ty, 1);
5421 case TargetOpcode::G_VECREDUCE_AND:
5422 case TargetOpcode::G_VECREDUCE_UMIN:
5423 return MIRBuilder.buildConstant(
5424 Ty, APInt::getAllOnes(Ty.getScalarSizeInBits()));
5425 case TargetOpcode::G_VECREDUCE_SMAX:
5426 return MIRBuilder.buildConstant(
5427 Ty, APInt::getSignedMinValue(Ty.getSizeInBits()));
5428 case TargetOpcode::G_VECREDUCE_SMIN:
5429 return MIRBuilder.buildConstant(
5430 Ty, APInt::getSignedMaxValue(Ty.getSizeInBits()));
5431 case TargetOpcode::G_VECREDUCE_FADD:
5432 return MIRBuilder.buildFConstant(Ty, -0.0);
5433 case TargetOpcode::G_VECREDUCE_FMUL:
5434 return MIRBuilder.buildFConstant(Ty, 1.0);
5435 case TargetOpcode::G_VECREDUCE_FMINIMUM:
5436 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
5437 assert(false && "getNeutralElementForVecReduce unimplemented for "
5438 "G_VECREDUCE_FMINIMUM and G_VECREDUCE_FMAXIMUM!");
5439 }
5440 llvm_unreachable("switch expected to return!");
5441 }
5442
5443 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)5444 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
5445 LLT MoreTy) {
5446 unsigned Opc = MI.getOpcode();
5447 switch (Opc) {
5448 case TargetOpcode::G_IMPLICIT_DEF:
5449 case TargetOpcode::G_LOAD: {
5450 if (TypeIdx != 0)
5451 return UnableToLegalize;
5452 Observer.changingInstr(MI);
5453 moreElementsVectorDst(MI, MoreTy, 0);
5454 Observer.changedInstr(MI);
5455 return Legalized;
5456 }
5457 case TargetOpcode::G_STORE:
5458 if (TypeIdx != 0)
5459 return UnableToLegalize;
5460 Observer.changingInstr(MI);
5461 moreElementsVectorSrc(MI, MoreTy, 0);
5462 Observer.changedInstr(MI);
5463 return Legalized;
5464 case TargetOpcode::G_AND:
5465 case TargetOpcode::G_OR:
5466 case TargetOpcode::G_XOR:
5467 case TargetOpcode::G_ADD:
5468 case TargetOpcode::G_SUB:
5469 case TargetOpcode::G_MUL:
5470 case TargetOpcode::G_FADD:
5471 case TargetOpcode::G_FSUB:
5472 case TargetOpcode::G_FMUL:
5473 case TargetOpcode::G_FDIV:
5474 case TargetOpcode::G_FCOPYSIGN:
5475 case TargetOpcode::G_UADDSAT:
5476 case TargetOpcode::G_USUBSAT:
5477 case TargetOpcode::G_SADDSAT:
5478 case TargetOpcode::G_SSUBSAT:
5479 case TargetOpcode::G_SMIN:
5480 case TargetOpcode::G_SMAX:
5481 case TargetOpcode::G_UMIN:
5482 case TargetOpcode::G_UMAX:
5483 case TargetOpcode::G_FMINNUM:
5484 case TargetOpcode::G_FMAXNUM:
5485 case TargetOpcode::G_FMINNUM_IEEE:
5486 case TargetOpcode::G_FMAXNUM_IEEE:
5487 case TargetOpcode::G_FMINIMUM:
5488 case TargetOpcode::G_FMAXIMUM:
5489 case TargetOpcode::G_STRICT_FADD:
5490 case TargetOpcode::G_STRICT_FSUB:
5491 case TargetOpcode::G_STRICT_FMUL:
5492 case TargetOpcode::G_SHL:
5493 case TargetOpcode::G_ASHR:
5494 case TargetOpcode::G_LSHR: {
5495 Observer.changingInstr(MI);
5496 moreElementsVectorSrc(MI, MoreTy, 1);
5497 moreElementsVectorSrc(MI, MoreTy, 2);
5498 moreElementsVectorDst(MI, MoreTy, 0);
5499 Observer.changedInstr(MI);
5500 return Legalized;
5501 }
5502 case TargetOpcode::G_FMA:
5503 case TargetOpcode::G_STRICT_FMA:
5504 case TargetOpcode::G_FSHR:
5505 case TargetOpcode::G_FSHL: {
5506 Observer.changingInstr(MI);
5507 moreElementsVectorSrc(MI, MoreTy, 1);
5508 moreElementsVectorSrc(MI, MoreTy, 2);
5509 moreElementsVectorSrc(MI, MoreTy, 3);
5510 moreElementsVectorDst(MI, MoreTy, 0);
5511 Observer.changedInstr(MI);
5512 return Legalized;
5513 }
5514 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
5515 case TargetOpcode::G_EXTRACT:
5516 if (TypeIdx != 1)
5517 return UnableToLegalize;
5518 Observer.changingInstr(MI);
5519 moreElementsVectorSrc(MI, MoreTy, 1);
5520 Observer.changedInstr(MI);
5521 return Legalized;
5522 case TargetOpcode::G_INSERT:
5523 case TargetOpcode::G_INSERT_VECTOR_ELT:
5524 case TargetOpcode::G_FREEZE:
5525 case TargetOpcode::G_FNEG:
5526 case TargetOpcode::G_FABS:
5527 case TargetOpcode::G_FSQRT:
5528 case TargetOpcode::G_FCEIL:
5529 case TargetOpcode::G_FFLOOR:
5530 case TargetOpcode::G_FNEARBYINT:
5531 case TargetOpcode::G_FRINT:
5532 case TargetOpcode::G_INTRINSIC_ROUND:
5533 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
5534 case TargetOpcode::G_INTRINSIC_TRUNC:
5535 case TargetOpcode::G_BSWAP:
5536 case TargetOpcode::G_FCANONICALIZE:
5537 case TargetOpcode::G_SEXT_INREG:
5538 case TargetOpcode::G_ABS:
5539 if (TypeIdx != 0)
5540 return UnableToLegalize;
5541 Observer.changingInstr(MI);
5542 moreElementsVectorSrc(MI, MoreTy, 1);
5543 moreElementsVectorDst(MI, MoreTy, 0);
5544 Observer.changedInstr(MI);
5545 return Legalized;
5546 case TargetOpcode::G_SELECT: {
5547 auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs();
5548 if (TypeIdx == 1) {
5549 if (!CondTy.isScalar() ||
5550 DstTy.getElementCount() != MoreTy.getElementCount())
5551 return UnableToLegalize;
5552
5553 // This is turning a scalar select of vectors into a vector
5554 // select. Broadcast the select condition.
5555 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg);
5556 Observer.changingInstr(MI);
5557 MI.getOperand(1).setReg(ShufSplat.getReg(0));
5558 Observer.changedInstr(MI);
5559 return Legalized;
5560 }
5561
5562 if (CondTy.isVector())
5563 return UnableToLegalize;
5564
5565 Observer.changingInstr(MI);
5566 moreElementsVectorSrc(MI, MoreTy, 2);
5567 moreElementsVectorSrc(MI, MoreTy, 3);
5568 moreElementsVectorDst(MI, MoreTy, 0);
5569 Observer.changedInstr(MI);
5570 return Legalized;
5571 }
5572 case TargetOpcode::G_UNMERGE_VALUES:
5573 return UnableToLegalize;
5574 case TargetOpcode::G_PHI:
5575 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5576 case TargetOpcode::G_SHUFFLE_VECTOR:
5577 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5578 case TargetOpcode::G_BUILD_VECTOR: {
5579 SmallVector<SrcOp, 8> Elts;
5580 for (auto Op : MI.uses()) {
5581 Elts.push_back(Op.getReg());
5582 }
5583
5584 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
5585 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
5586 }
5587
5588 MIRBuilder.buildDeleteTrailingVectorElements(
5589 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
5590 MI.eraseFromParent();
5591 return Legalized;
5592 }
5593 case TargetOpcode::G_SEXT:
5594 case TargetOpcode::G_ZEXT:
5595 case TargetOpcode::G_ANYEXT:
5596 case TargetOpcode::G_TRUNC:
5597 case TargetOpcode::G_FPTRUNC:
5598 case TargetOpcode::G_FPEXT:
5599 case TargetOpcode::G_FPTOSI:
5600 case TargetOpcode::G_FPTOUI:
5601 case TargetOpcode::G_SITOFP:
5602 case TargetOpcode::G_UITOFP: {
5603 Observer.changingInstr(MI);
5604 LLT SrcExtTy;
5605 LLT DstExtTy;
5606 if (TypeIdx == 0) {
5607 DstExtTy = MoreTy;
5608 SrcExtTy = LLT::fixed_vector(
5609 MoreTy.getNumElements(),
5610 MRI.getType(MI.getOperand(1).getReg()).getElementType());
5611 } else {
5612 DstExtTy = LLT::fixed_vector(
5613 MoreTy.getNumElements(),
5614 MRI.getType(MI.getOperand(0).getReg()).getElementType());
5615 SrcExtTy = MoreTy;
5616 }
5617 moreElementsVectorSrc(MI, SrcExtTy, 1);
5618 moreElementsVectorDst(MI, DstExtTy, 0);
5619 Observer.changedInstr(MI);
5620 return Legalized;
5621 }
5622 case TargetOpcode::G_ICMP:
5623 case TargetOpcode::G_FCMP: {
5624 if (TypeIdx != 1)
5625 return UnableToLegalize;
5626
5627 Observer.changingInstr(MI);
5628 moreElementsVectorSrc(MI, MoreTy, 2);
5629 moreElementsVectorSrc(MI, MoreTy, 3);
5630 LLT CondTy = LLT::fixed_vector(
5631 MoreTy.getNumElements(),
5632 MRI.getType(MI.getOperand(0).getReg()).getElementType());
5633 moreElementsVectorDst(MI, CondTy, 0);
5634 Observer.changedInstr(MI);
5635 return Legalized;
5636 }
5637 case TargetOpcode::G_BITCAST: {
5638 if (TypeIdx != 0)
5639 return UnableToLegalize;
5640
5641 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5642 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5643
5644 unsigned coefficient = SrcTy.getNumElements() * MoreTy.getNumElements();
5645 if (coefficient % DstTy.getNumElements() != 0)
5646 return UnableToLegalize;
5647
5648 coefficient = coefficient / DstTy.getNumElements();
5649
5650 LLT NewTy = SrcTy.changeElementCount(
5651 ElementCount::get(coefficient, MoreTy.isScalable()));
5652 Observer.changingInstr(MI);
5653 moreElementsVectorSrc(MI, NewTy, 1);
5654 moreElementsVectorDst(MI, MoreTy, 0);
5655 Observer.changedInstr(MI);
5656 return Legalized;
5657 }
5658 case TargetOpcode::G_VECREDUCE_FADD:
5659 case TargetOpcode::G_VECREDUCE_FMUL:
5660 case TargetOpcode::G_VECREDUCE_ADD:
5661 case TargetOpcode::G_VECREDUCE_MUL:
5662 case TargetOpcode::G_VECREDUCE_AND:
5663 case TargetOpcode::G_VECREDUCE_OR:
5664 case TargetOpcode::G_VECREDUCE_XOR:
5665 case TargetOpcode::G_VECREDUCE_SMAX:
5666 case TargetOpcode::G_VECREDUCE_SMIN:
5667 case TargetOpcode::G_VECREDUCE_UMAX:
5668 case TargetOpcode::G_VECREDUCE_UMIN: {
5669 LLT OrigTy = MRI.getType(MI.getOperand(1).getReg());
5670 MachineOperand &MO = MI.getOperand(1);
5671 auto NewVec = MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO);
5672 auto NeutralElement = getNeutralElementForVecReduce(
5673 MI.getOpcode(), MIRBuilder, MoreTy.getElementType());
5674
5675 LLT IdxTy(TLI.getVectorIdxTy(MIRBuilder.getDataLayout()));
5676 for (size_t i = OrigTy.getNumElements(), e = MoreTy.getNumElements();
5677 i != e; i++) {
5678 auto Idx = MIRBuilder.buildConstant(IdxTy, i);
5679 NewVec = MIRBuilder.buildInsertVectorElement(MoreTy, NewVec,
5680 NeutralElement, Idx);
5681 }
5682
5683 Observer.changingInstr(MI);
5684 MO.setReg(NewVec.getReg(0));
5685 Observer.changedInstr(MI);
5686 return Legalized;
5687 }
5688
5689 default:
5690 return UnableToLegalize;
5691 }
5692 }
5693
5694 LegalizerHelper::LegalizeResult
equalizeVectorShuffleLengths(MachineInstr & MI)5695 LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) {
5696 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
5697 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5698 unsigned MaskNumElts = Mask.size();
5699 unsigned SrcNumElts = SrcTy.getNumElements();
5700 LLT DestEltTy = DstTy.getElementType();
5701
5702 if (MaskNumElts == SrcNumElts)
5703 return Legalized;
5704
5705 if (MaskNumElts < SrcNumElts) {
5706 // Extend mask to match new destination vector size with
5707 // undef values.
5708 SmallVector<int, 16> NewMask(Mask);
5709 for (unsigned I = MaskNumElts; I < SrcNumElts; ++I)
5710 NewMask.push_back(-1);
5711
5712 moreElementsVectorDst(MI, SrcTy, 0);
5713 MIRBuilder.setInstrAndDebugLoc(MI);
5714 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5715 MI.getOperand(1).getReg(),
5716 MI.getOperand(2).getReg(), NewMask);
5717 MI.eraseFromParent();
5718
5719 return Legalized;
5720 }
5721
5722 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
5723 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
5724 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy);
5725
5726 // Create new source vectors by concatenating the initial
5727 // source vectors with undefined vectors of the same size.
5728 auto Undef = MIRBuilder.buildUndef(SrcTy);
5729 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0));
5730 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0));
5731 MOps1[0] = MI.getOperand(1).getReg();
5732 MOps2[0] = MI.getOperand(2).getReg();
5733
5734 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1);
5735 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2);
5736
5737 // Readjust mask for new input vector length.
5738 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
5739 for (unsigned I = 0; I != MaskNumElts; ++I) {
5740 int Idx = Mask[I];
5741 if (Idx >= static_cast<int>(SrcNumElts))
5742 Idx += PaddedMaskNumElts - SrcNumElts;
5743 MappedOps[I] = Idx;
5744 }
5745
5746 // If we got more elements than required, extract subvector.
5747 if (MaskNumElts != PaddedMaskNumElts) {
5748 auto Shuffle =
5749 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps);
5750
5751 SmallVector<Register, 16> Elts(MaskNumElts);
5752 for (unsigned I = 0; I < MaskNumElts; ++I) {
5753 Elts[I] =
5754 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I)
5755 .getReg(0);
5756 }
5757 MIRBuilder.buildBuildVector(DstReg, Elts);
5758 } else {
5759 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps);
5760 }
5761
5762 MI.eraseFromParent();
5763 return LegalizerHelper::LegalizeResult::Legalized;
5764 }
5765
5766 LegalizerHelper::LegalizeResult
moreElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT MoreTy)5767 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5768 unsigned int TypeIdx, LLT MoreTy) {
5769 auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs();
5770 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5771 unsigned NumElts = DstTy.getNumElements();
5772 unsigned WidenNumElts = MoreTy.getNumElements();
5773
5774 if (DstTy.isVector() && Src1Ty.isVector() &&
5775 DstTy.getNumElements() != Src1Ty.getNumElements()) {
5776 return equalizeVectorShuffleLengths(MI);
5777 }
5778
5779 if (TypeIdx != 0)
5780 return UnableToLegalize;
5781
5782 // Expect a canonicalized shuffle.
5783 if (DstTy != Src1Ty || DstTy != Src2Ty)
5784 return UnableToLegalize;
5785
5786 moreElementsVectorSrc(MI, MoreTy, 1);
5787 moreElementsVectorSrc(MI, MoreTy, 2);
5788
5789 // Adjust mask based on new input vector length.
5790 SmallVector<int, 16> NewMask;
5791 for (unsigned I = 0; I != NumElts; ++I) {
5792 int Idx = Mask[I];
5793 if (Idx < static_cast<int>(NumElts))
5794 NewMask.push_back(Idx);
5795 else
5796 NewMask.push_back(Idx - NumElts + WidenNumElts);
5797 }
5798 for (unsigned I = NumElts; I != WidenNumElts; ++I)
5799 NewMask.push_back(-1);
5800 moreElementsVectorDst(MI, MoreTy, 0);
5801 MIRBuilder.setInstrAndDebugLoc(MI);
5802 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5803 MI.getOperand(1).getReg(),
5804 MI.getOperand(2).getReg(), NewMask);
5805 MI.eraseFromParent();
5806 return Legalized;
5807 }
5808
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)5809 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5810 ArrayRef<Register> Src1Regs,
5811 ArrayRef<Register> Src2Regs,
5812 LLT NarrowTy) {
5813 MachineIRBuilder &B = MIRBuilder;
5814 unsigned SrcParts = Src1Regs.size();
5815 unsigned DstParts = DstRegs.size();
5816
5817 unsigned DstIdx = 0; // Low bits of the result.
5818 Register FactorSum =
5819 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5820 DstRegs[DstIdx] = FactorSum;
5821
5822 unsigned CarrySumPrevDstIdx;
5823 SmallVector<Register, 4> Factors;
5824
5825 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5826 // Collect low parts of muls for DstIdx.
5827 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5828 i <= std::min(DstIdx, SrcParts - 1); ++i) {
5829 MachineInstrBuilder Mul =
5830 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5831 Factors.push_back(Mul.getReg(0));
5832 }
5833 // Collect high parts of muls from previous DstIdx.
5834 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5835 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5836 MachineInstrBuilder Umulh =
5837 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5838 Factors.push_back(Umulh.getReg(0));
5839 }
5840 // Add CarrySum from additions calculated for previous DstIdx.
5841 if (DstIdx != 1) {
5842 Factors.push_back(CarrySumPrevDstIdx);
5843 }
5844
5845 Register CarrySum;
5846 // Add all factors and accumulate all carries into CarrySum.
5847 if (DstIdx != DstParts - 1) {
5848 MachineInstrBuilder Uaddo =
5849 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5850 FactorSum = Uaddo.getReg(0);
5851 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5852 for (unsigned i = 2; i < Factors.size(); ++i) {
5853 MachineInstrBuilder Uaddo =
5854 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5855 FactorSum = Uaddo.getReg(0);
5856 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5857 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5858 }
5859 } else {
5860 // Since value for the next index is not calculated, neither is CarrySum.
5861 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5862 for (unsigned i = 2; i < Factors.size(); ++i)
5863 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5864 }
5865
5866 CarrySumPrevDstIdx = CarrySum;
5867 DstRegs[DstIdx] = FactorSum;
5868 Factors.clear();
5869 }
5870 }
5871
5872 LegalizerHelper::LegalizeResult
narrowScalarAddSub(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5873 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5874 LLT NarrowTy) {
5875 if (TypeIdx != 0)
5876 return UnableToLegalize;
5877
5878 Register DstReg = MI.getOperand(0).getReg();
5879 LLT DstType = MRI.getType(DstReg);
5880 // FIXME: add support for vector types
5881 if (DstType.isVector())
5882 return UnableToLegalize;
5883
5884 unsigned Opcode = MI.getOpcode();
5885 unsigned OpO, OpE, OpF;
5886 switch (Opcode) {
5887 case TargetOpcode::G_SADDO:
5888 case TargetOpcode::G_SADDE:
5889 case TargetOpcode::G_UADDO:
5890 case TargetOpcode::G_UADDE:
5891 case TargetOpcode::G_ADD:
5892 OpO = TargetOpcode::G_UADDO;
5893 OpE = TargetOpcode::G_UADDE;
5894 OpF = TargetOpcode::G_UADDE;
5895 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5896 OpF = TargetOpcode::G_SADDE;
5897 break;
5898 case TargetOpcode::G_SSUBO:
5899 case TargetOpcode::G_SSUBE:
5900 case TargetOpcode::G_USUBO:
5901 case TargetOpcode::G_USUBE:
5902 case TargetOpcode::G_SUB:
5903 OpO = TargetOpcode::G_USUBO;
5904 OpE = TargetOpcode::G_USUBE;
5905 OpF = TargetOpcode::G_USUBE;
5906 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5907 OpF = TargetOpcode::G_SSUBE;
5908 break;
5909 default:
5910 llvm_unreachable("Unexpected add/sub opcode!");
5911 }
5912
5913 // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5914 unsigned NumDefs = MI.getNumExplicitDefs();
5915 Register Src1 = MI.getOperand(NumDefs).getReg();
5916 Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5917 Register CarryDst, CarryIn;
5918 if (NumDefs == 2)
5919 CarryDst = MI.getOperand(1).getReg();
5920 if (MI.getNumOperands() == NumDefs + 3)
5921 CarryIn = MI.getOperand(NumDefs + 2).getReg();
5922
5923 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5924 LLT LeftoverTy, DummyTy;
5925 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5926 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left,
5927 MIRBuilder, MRI);
5928 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left, MIRBuilder,
5929 MRI);
5930
5931 int NarrowParts = Src1Regs.size();
5932 for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5933 Src1Regs.push_back(Src1Left[I]);
5934 Src2Regs.push_back(Src2Left[I]);
5935 }
5936 DstRegs.reserve(Src1Regs.size());
5937
5938 for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5939 Register DstReg =
5940 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5941 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5942 // Forward the final carry-out to the destination register
5943 if (i == e - 1 && CarryDst)
5944 CarryOut = CarryDst;
5945
5946 if (!CarryIn) {
5947 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5948 {Src1Regs[i], Src2Regs[i]});
5949 } else if (i == e - 1) {
5950 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5951 {Src1Regs[i], Src2Regs[i], CarryIn});
5952 } else {
5953 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5954 {Src1Regs[i], Src2Regs[i], CarryIn});
5955 }
5956
5957 DstRegs.push_back(DstReg);
5958 CarryIn = CarryOut;
5959 }
5960 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5961 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5962 ArrayRef(DstRegs).drop_front(NarrowParts));
5963
5964 MI.eraseFromParent();
5965 return Legalized;
5966 }
5967
5968 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)5969 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5970 auto [DstReg, Src1, Src2] = MI.getFirst3Regs();
5971
5972 LLT Ty = MRI.getType(DstReg);
5973 if (Ty.isVector())
5974 return UnableToLegalize;
5975
5976 unsigned Size = Ty.getSizeInBits();
5977 unsigned NarrowSize = NarrowTy.getSizeInBits();
5978 if (Size % NarrowSize != 0)
5979 return UnableToLegalize;
5980
5981 unsigned NumParts = Size / NarrowSize;
5982 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5983 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5984
5985 SmallVector<Register, 2> Src1Parts, Src2Parts;
5986 SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5987 extractParts(Src1, NarrowTy, NumParts, Src1Parts, MIRBuilder, MRI);
5988 extractParts(Src2, NarrowTy, NumParts, Src2Parts, MIRBuilder, MRI);
5989 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5990
5991 // Take only high half of registers if this is high mul.
5992 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5993 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5994 MI.eraseFromParent();
5995 return Legalized;
5996 }
5997
5998 LegalizerHelper::LegalizeResult
narrowScalarFPTOI(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5999 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
6000 LLT NarrowTy) {
6001 if (TypeIdx != 0)
6002 return UnableToLegalize;
6003
6004 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
6005
6006 Register Src = MI.getOperand(1).getReg();
6007 LLT SrcTy = MRI.getType(Src);
6008
6009 // If all finite floats fit into the narrowed integer type, we can just swap
6010 // out the result type. This is practically only useful for conversions from
6011 // half to at least 16-bits, so just handle the one case.
6012 if (SrcTy.getScalarType() != LLT::scalar(16) ||
6013 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
6014 return UnableToLegalize;
6015
6016 Observer.changingInstr(MI);
6017 narrowScalarDst(MI, NarrowTy, 0,
6018 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
6019 Observer.changedInstr(MI);
6020 return Legalized;
6021 }
6022
6023 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6024 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
6025 LLT NarrowTy) {
6026 if (TypeIdx != 1)
6027 return UnableToLegalize;
6028
6029 uint64_t NarrowSize = NarrowTy.getSizeInBits();
6030
6031 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
6032 // FIXME: add support for when SizeOp1 isn't an exact multiple of
6033 // NarrowSize.
6034 if (SizeOp1 % NarrowSize != 0)
6035 return UnableToLegalize;
6036 int NumParts = SizeOp1 / NarrowSize;
6037
6038 SmallVector<Register, 2> SrcRegs, DstRegs;
6039 SmallVector<uint64_t, 2> Indexes;
6040 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs,
6041 MIRBuilder, MRI);
6042
6043 Register OpReg = MI.getOperand(0).getReg();
6044 uint64_t OpStart = MI.getOperand(2).getImm();
6045 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
6046 for (int i = 0; i < NumParts; ++i) {
6047 unsigned SrcStart = i * NarrowSize;
6048
6049 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
6050 // No part of the extract uses this subregister, ignore it.
6051 continue;
6052 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
6053 // The entire subregister is extracted, forward the value.
6054 DstRegs.push_back(SrcRegs[i]);
6055 continue;
6056 }
6057
6058 // OpSegStart is where this destination segment would start in OpReg if it
6059 // extended infinitely in both directions.
6060 int64_t ExtractOffset;
6061 uint64_t SegSize;
6062 if (OpStart < SrcStart) {
6063 ExtractOffset = 0;
6064 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
6065 } else {
6066 ExtractOffset = OpStart - SrcStart;
6067 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
6068 }
6069
6070 Register SegReg = SrcRegs[i];
6071 if (ExtractOffset != 0 || SegSize != NarrowSize) {
6072 // A genuine extract is needed.
6073 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
6074 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
6075 }
6076
6077 DstRegs.push_back(SegReg);
6078 }
6079
6080 Register DstReg = MI.getOperand(0).getReg();
6081 if (MRI.getType(DstReg).isVector())
6082 MIRBuilder.buildBuildVector(DstReg, DstRegs);
6083 else if (DstRegs.size() > 1)
6084 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
6085 else
6086 MIRBuilder.buildCopy(DstReg, DstRegs[0]);
6087 MI.eraseFromParent();
6088 return Legalized;
6089 }
6090
6091 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6092 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
6093 LLT NarrowTy) {
6094 // FIXME: Don't know how to handle secondary types yet.
6095 if (TypeIdx != 0)
6096 return UnableToLegalize;
6097
6098 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
6099 SmallVector<uint64_t, 2> Indexes;
6100 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
6101 LLT LeftoverTy;
6102 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
6103 LeftoverRegs, MIRBuilder, MRI);
6104
6105 for (Register Reg : LeftoverRegs)
6106 SrcRegs.push_back(Reg);
6107
6108 uint64_t NarrowSize = NarrowTy.getSizeInBits();
6109 Register OpReg = MI.getOperand(2).getReg();
6110 uint64_t OpStart = MI.getOperand(3).getImm();
6111 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
6112 for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
6113 unsigned DstStart = I * NarrowSize;
6114
6115 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
6116 // The entire subregister is defined by this insert, forward the new
6117 // value.
6118 DstRegs.push_back(OpReg);
6119 continue;
6120 }
6121
6122 Register SrcReg = SrcRegs[I];
6123 if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
6124 // The leftover reg is smaller than NarrowTy, so we need to extend it.
6125 SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
6126 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
6127 }
6128
6129 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
6130 // No part of the insert affects this subregister, forward the original.
6131 DstRegs.push_back(SrcReg);
6132 continue;
6133 }
6134
6135 // OpSegStart is where this destination segment would start in OpReg if it
6136 // extended infinitely in both directions.
6137 int64_t ExtractOffset, InsertOffset;
6138 uint64_t SegSize;
6139 if (OpStart < DstStart) {
6140 InsertOffset = 0;
6141 ExtractOffset = DstStart - OpStart;
6142 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
6143 } else {
6144 InsertOffset = OpStart - DstStart;
6145 ExtractOffset = 0;
6146 SegSize =
6147 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
6148 }
6149
6150 Register SegReg = OpReg;
6151 if (ExtractOffset != 0 || SegSize != OpSize) {
6152 // A genuine extract is needed.
6153 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
6154 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
6155 }
6156
6157 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
6158 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
6159 DstRegs.push_back(DstReg);
6160 }
6161
6162 uint64_t WideSize = DstRegs.size() * NarrowSize;
6163 Register DstReg = MI.getOperand(0).getReg();
6164 if (WideSize > RegTy.getSizeInBits()) {
6165 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
6166 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs);
6167 MIRBuilder.buildTrunc(DstReg, MergeReg);
6168 } else
6169 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
6170
6171 MI.eraseFromParent();
6172 return Legalized;
6173 }
6174
6175 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6176 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
6177 LLT NarrowTy) {
6178 Register DstReg = MI.getOperand(0).getReg();
6179 LLT DstTy = MRI.getType(DstReg);
6180
6181 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
6182
6183 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
6184 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
6185 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
6186 LLT LeftoverTy;
6187 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
6188 Src0Regs, Src0LeftoverRegs, MIRBuilder, MRI))
6189 return UnableToLegalize;
6190
6191 LLT Unused;
6192 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
6193 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI))
6194 llvm_unreachable("inconsistent extractParts result");
6195
6196 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
6197 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
6198 {Src0Regs[I], Src1Regs[I]});
6199 DstRegs.push_back(Inst.getReg(0));
6200 }
6201
6202 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
6203 auto Inst = MIRBuilder.buildInstr(
6204 MI.getOpcode(),
6205 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
6206 DstLeftoverRegs.push_back(Inst.getReg(0));
6207 }
6208
6209 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
6210 LeftoverTy, DstLeftoverRegs);
6211
6212 MI.eraseFromParent();
6213 return Legalized;
6214 }
6215
6216 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6217 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
6218 LLT NarrowTy) {
6219 if (TypeIdx != 0)
6220 return UnableToLegalize;
6221
6222 auto [DstReg, SrcReg] = MI.getFirst2Regs();
6223
6224 LLT DstTy = MRI.getType(DstReg);
6225 if (DstTy.isVector())
6226 return UnableToLegalize;
6227
6228 SmallVector<Register, 8> Parts;
6229 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
6230 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
6231 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
6232
6233 MI.eraseFromParent();
6234 return Legalized;
6235 }
6236
6237 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6238 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
6239 LLT NarrowTy) {
6240 if (TypeIdx != 0)
6241 return UnableToLegalize;
6242
6243 Register CondReg = MI.getOperand(1).getReg();
6244 LLT CondTy = MRI.getType(CondReg);
6245 if (CondTy.isVector()) // TODO: Handle vselect
6246 return UnableToLegalize;
6247
6248 Register DstReg = MI.getOperand(0).getReg();
6249 LLT DstTy = MRI.getType(DstReg);
6250
6251 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
6252 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
6253 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
6254 LLT LeftoverTy;
6255 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
6256 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI))
6257 return UnableToLegalize;
6258
6259 LLT Unused;
6260 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
6261 Src2Regs, Src2LeftoverRegs, MIRBuilder, MRI))
6262 llvm_unreachable("inconsistent extractParts result");
6263
6264 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
6265 auto Select = MIRBuilder.buildSelect(NarrowTy,
6266 CondReg, Src1Regs[I], Src2Regs[I]);
6267 DstRegs.push_back(Select.getReg(0));
6268 }
6269
6270 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
6271 auto Select = MIRBuilder.buildSelect(
6272 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
6273 DstLeftoverRegs.push_back(Select.getReg(0));
6274 }
6275
6276 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
6277 LeftoverTy, DstLeftoverRegs);
6278
6279 MI.eraseFromParent();
6280 return Legalized;
6281 }
6282
6283 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6284 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
6285 LLT NarrowTy) {
6286 if (TypeIdx != 1)
6287 return UnableToLegalize;
6288
6289 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6290 unsigned NarrowSize = NarrowTy.getSizeInBits();
6291
6292 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
6293 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
6294
6295 MachineIRBuilder &B = MIRBuilder;
6296 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
6297 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
6298 auto C_0 = B.buildConstant(NarrowTy, 0);
6299 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
6300 UnmergeSrc.getReg(1), C_0);
6301 auto LoCTLZ = IsUndef ?
6302 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
6303 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
6304 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
6305 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
6306 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
6307 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
6308
6309 MI.eraseFromParent();
6310 return Legalized;
6311 }
6312
6313 return UnableToLegalize;
6314 }
6315
6316 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6317 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
6318 LLT NarrowTy) {
6319 if (TypeIdx != 1)
6320 return UnableToLegalize;
6321
6322 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6323 unsigned NarrowSize = NarrowTy.getSizeInBits();
6324
6325 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
6326 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
6327
6328 MachineIRBuilder &B = MIRBuilder;
6329 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
6330 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
6331 auto C_0 = B.buildConstant(NarrowTy, 0);
6332 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
6333 UnmergeSrc.getReg(0), C_0);
6334 auto HiCTTZ = IsUndef ?
6335 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
6336 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
6337 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
6338 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
6339 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
6340 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
6341
6342 MI.eraseFromParent();
6343 return Legalized;
6344 }
6345
6346 return UnableToLegalize;
6347 }
6348
6349 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6350 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
6351 LLT NarrowTy) {
6352 if (TypeIdx != 1)
6353 return UnableToLegalize;
6354
6355 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6356 unsigned NarrowSize = NarrowTy.getSizeInBits();
6357
6358 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
6359 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
6360
6361 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
6362 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
6363 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
6364
6365 MI.eraseFromParent();
6366 return Legalized;
6367 }
6368
6369 return UnableToLegalize;
6370 }
6371
6372 LegalizerHelper::LegalizeResult
narrowScalarFLDEXP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)6373 LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx,
6374 LLT NarrowTy) {
6375 if (TypeIdx != 1)
6376 return UnableToLegalize;
6377
6378 MachineIRBuilder &B = MIRBuilder;
6379 Register ExpReg = MI.getOperand(2).getReg();
6380 LLT ExpTy = MRI.getType(ExpReg);
6381
6382 unsigned ClampSize = NarrowTy.getScalarSizeInBits();
6383
6384 // Clamp the exponent to the range of the target type.
6385 auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize));
6386 auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp);
6387 auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize));
6388 auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp);
6389
6390 auto Trunc = B.buildTrunc(NarrowTy, Clamp);
6391 Observer.changingInstr(MI);
6392 MI.getOperand(2).setReg(Trunc.getReg(0));
6393 Observer.changedInstr(MI);
6394 return Legalized;
6395 }
6396
6397 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)6398 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
6399 unsigned Opc = MI.getOpcode();
6400 const auto &TII = MIRBuilder.getTII();
6401 auto isSupported = [this](const LegalityQuery &Q) {
6402 auto QAction = LI.getAction(Q).Action;
6403 return QAction == Legal || QAction == Libcall || QAction == Custom;
6404 };
6405 switch (Opc) {
6406 default:
6407 return UnableToLegalize;
6408 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
6409 // This trivially expands to CTLZ.
6410 Observer.changingInstr(MI);
6411 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
6412 Observer.changedInstr(MI);
6413 return Legalized;
6414 }
6415 case TargetOpcode::G_CTLZ: {
6416 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6417 unsigned Len = SrcTy.getSizeInBits();
6418
6419 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
6420 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
6421 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
6422 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
6423 auto ICmp = MIRBuilder.buildICmp(
6424 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
6425 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
6426 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
6427 MI.eraseFromParent();
6428 return Legalized;
6429 }
6430 // for now, we do this:
6431 // NewLen = NextPowerOf2(Len);
6432 // x = x | (x >> 1);
6433 // x = x | (x >> 2);
6434 // ...
6435 // x = x | (x >>16);
6436 // x = x | (x >>32); // for 64-bit input
6437 // Upto NewLen/2
6438 // return Len - popcount(x);
6439 //
6440 // Ref: "Hacker's Delight" by Henry Warren
6441 Register Op = SrcReg;
6442 unsigned NewLen = PowerOf2Ceil(Len);
6443 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
6444 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
6445 auto MIBOp = MIRBuilder.buildOr(
6446 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
6447 Op = MIBOp.getReg(0);
6448 }
6449 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
6450 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
6451 MIBPop);
6452 MI.eraseFromParent();
6453 return Legalized;
6454 }
6455 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
6456 // This trivially expands to CTTZ.
6457 Observer.changingInstr(MI);
6458 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
6459 Observer.changedInstr(MI);
6460 return Legalized;
6461 }
6462 case TargetOpcode::G_CTTZ: {
6463 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6464
6465 unsigned Len = SrcTy.getSizeInBits();
6466 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
6467 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
6468 // zero.
6469 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
6470 auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
6471 auto ICmp = MIRBuilder.buildICmp(
6472 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
6473 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
6474 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
6475 MI.eraseFromParent();
6476 return Legalized;
6477 }
6478 // for now, we use: { return popcount(~x & (x - 1)); }
6479 // unless the target has ctlz but not ctpop, in which case we use:
6480 // { return 32 - nlz(~x & (x-1)); }
6481 // Ref: "Hacker's Delight" by Henry Warren
6482 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
6483 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
6484 auto MIBTmp = MIRBuilder.buildAnd(
6485 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
6486 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
6487 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
6488 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
6489 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
6490 MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
6491 MI.eraseFromParent();
6492 return Legalized;
6493 }
6494 Observer.changingInstr(MI);
6495 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
6496 MI.getOperand(1).setReg(MIBTmp.getReg(0));
6497 Observer.changedInstr(MI);
6498 return Legalized;
6499 }
6500 case TargetOpcode::G_CTPOP: {
6501 Register SrcReg = MI.getOperand(1).getReg();
6502 LLT Ty = MRI.getType(SrcReg);
6503 unsigned Size = Ty.getSizeInBits();
6504 MachineIRBuilder &B = MIRBuilder;
6505
6506 // Count set bits in blocks of 2 bits. Default approach would be
6507 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
6508 // We use following formula instead:
6509 // B2Count = val - { (val >> 1) & 0x55555555 }
6510 // since it gives same result in blocks of 2 with one instruction less.
6511 auto C_1 = B.buildConstant(Ty, 1);
6512 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
6513 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
6514 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
6515 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
6516 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
6517
6518 // In order to get count in blocks of 4 add values from adjacent block of 2.
6519 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
6520 auto C_2 = B.buildConstant(Ty, 2);
6521 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
6522 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
6523 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
6524 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
6525 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
6526 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
6527
6528 // For count in blocks of 8 bits we don't have to mask high 4 bits before
6529 // addition since count value sits in range {0,...,8} and 4 bits are enough
6530 // to hold such binary values. After addition high 4 bits still hold count
6531 // of set bits in high 4 bit block, set them to zero and get 8 bit result.
6532 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
6533 auto C_4 = B.buildConstant(Ty, 4);
6534 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
6535 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
6536 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
6537 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
6538 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
6539
6540 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
6541 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
6542 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
6543 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
6544
6545 // Shift count result from 8 high bits to low bits.
6546 auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
6547
6548 auto IsMulSupported = [this](const LLT Ty) {
6549 auto Action = LI.getAction({TargetOpcode::G_MUL, {Ty}}).Action;
6550 return Action == Legal || Action == WidenScalar || Action == Custom;
6551 };
6552 if (IsMulSupported(Ty)) {
6553 auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
6554 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
6555 } else {
6556 auto ResTmp = B8Count;
6557 for (unsigned Shift = 8; Shift < Size; Shift *= 2) {
6558 auto ShiftC = B.buildConstant(Ty, Shift);
6559 auto Shl = B.buildShl(Ty, ResTmp, ShiftC);
6560 ResTmp = B.buildAdd(Ty, ResTmp, Shl);
6561 }
6562 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
6563 }
6564 MI.eraseFromParent();
6565 return Legalized;
6566 }
6567 }
6568 }
6569
6570 // Check that (every element of) Reg is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(const MachineRegisterInfo & MRI,Register Reg,unsigned BW)6571 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
6572 Register Reg, unsigned BW) {
6573 return matchUnaryPredicate(
6574 MRI, Reg,
6575 [=](const Constant *C) {
6576 // Null constant here means an undef.
6577 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
6578 return !CI || CI->getValue().urem(BW) != 0;
6579 },
6580 /*AllowUndefs*/ true);
6581 }
6582
6583 LegalizerHelper::LegalizeResult
lowerFunnelShiftWithInverse(MachineInstr & MI)6584 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
6585 auto [Dst, X, Y, Z] = MI.getFirst4Regs();
6586 LLT Ty = MRI.getType(Dst);
6587 LLT ShTy = MRI.getType(Z);
6588
6589 unsigned BW = Ty.getScalarSizeInBits();
6590
6591 if (!isPowerOf2_32(BW))
6592 return UnableToLegalize;
6593
6594 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6595 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
6596
6597 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
6598 // fshl X, Y, Z -> fshr X, Y, -Z
6599 // fshr X, Y, Z -> fshl X, Y, -Z
6600 auto Zero = MIRBuilder.buildConstant(ShTy, 0);
6601 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
6602 } else {
6603 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6604 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6605 auto One = MIRBuilder.buildConstant(ShTy, 1);
6606 if (IsFSHL) {
6607 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
6608 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
6609 } else {
6610 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
6611 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
6612 }
6613
6614 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
6615 }
6616
6617 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
6618 MI.eraseFromParent();
6619 return Legalized;
6620 }
6621
6622 LegalizerHelper::LegalizeResult
lowerFunnelShiftAsShifts(MachineInstr & MI)6623 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
6624 auto [Dst, X, Y, Z] = MI.getFirst4Regs();
6625 LLT Ty = MRI.getType(Dst);
6626 LLT ShTy = MRI.getType(Z);
6627
6628 const unsigned BW = Ty.getScalarSizeInBits();
6629 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6630
6631 Register ShX, ShY;
6632 Register ShAmt, InvShAmt;
6633
6634 // FIXME: Emit optimized urem by constant instead of letting it expand later.
6635 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
6636 // fshl: X << C | Y >> (BW - C)
6637 // fshr: X << (BW - C) | Y >> C
6638 // where C = Z % BW is not zero
6639 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
6640 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
6641 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
6642 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
6643 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
6644 } else {
6645 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6646 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6647 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
6648 if (isPowerOf2_32(BW)) {
6649 // Z % BW -> Z & (BW - 1)
6650 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
6651 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6652 auto NotZ = MIRBuilder.buildNot(ShTy, Z);
6653 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
6654 } else {
6655 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
6656 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
6657 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
6658 }
6659
6660 auto One = MIRBuilder.buildConstant(ShTy, 1);
6661 if (IsFSHL) {
6662 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
6663 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
6664 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
6665 } else {
6666 auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
6667 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
6668 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
6669 }
6670 }
6671
6672 MIRBuilder.buildOr(Dst, ShX, ShY);
6673 MI.eraseFromParent();
6674 return Legalized;
6675 }
6676
6677 LegalizerHelper::LegalizeResult
lowerFunnelShift(MachineInstr & MI)6678 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
6679 // These operations approximately do the following (while avoiding undefined
6680 // shifts by BW):
6681 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6682 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6683 Register Dst = MI.getOperand(0).getReg();
6684 LLT Ty = MRI.getType(Dst);
6685 LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
6686
6687 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6688 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
6689
6690 // TODO: Use smarter heuristic that accounts for vector legalization.
6691 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
6692 return lowerFunnelShiftAsShifts(MI);
6693
6694 // This only works for powers of 2, fallback to shifts if it fails.
6695 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
6696 if (Result == UnableToLegalize)
6697 return lowerFunnelShiftAsShifts(MI);
6698 return Result;
6699 }
6700
lowerEXT(MachineInstr & MI)6701 LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) {
6702 auto [Dst, Src] = MI.getFirst2Regs();
6703 LLT DstTy = MRI.getType(Dst);
6704 LLT SrcTy = MRI.getType(Src);
6705
6706 uint32_t DstTySize = DstTy.getSizeInBits();
6707 uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits();
6708 uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits();
6709
6710 if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) ||
6711 !isPowerOf2_32(SrcTyScalarSize))
6712 return UnableToLegalize;
6713
6714 // The step between extend is too large, split it by creating an intermediate
6715 // extend instruction
6716 if (SrcTyScalarSize * 2 < DstTyScalarSize) {
6717 LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2);
6718 // If the destination type is illegal, split it into multiple statements
6719 // zext x -> zext(merge(zext(unmerge), zext(unmerge)))
6720 auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src});
6721 // Unmerge the vector
6722 LLT EltTy = MidTy.changeElementCount(
6723 MidTy.getElementCount().divideCoefficientBy(2));
6724 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt);
6725
6726 // ZExt the vectors
6727 LLT ZExtResTy = DstTy.changeElementCount(
6728 DstTy.getElementCount().divideCoefficientBy(2));
6729 auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy},
6730 {UnmergeSrc.getReg(0)});
6731 auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy},
6732 {UnmergeSrc.getReg(1)});
6733
6734 // Merge the ending vectors
6735 MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2});
6736
6737 MI.eraseFromParent();
6738 return Legalized;
6739 }
6740 return UnableToLegalize;
6741 }
6742
lowerTRUNC(MachineInstr & MI)6743 LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) {
6744 // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
6745 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
6746 // Similar to how operand splitting is done in SelectiondDAG, we can handle
6747 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
6748 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
6749 // %lo16(<4 x s16>) = G_TRUNC %inlo
6750 // %hi16(<4 x s16>) = G_TRUNC %inhi
6751 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
6752 // %res(<8 x s8>) = G_TRUNC %in16
6753
6754 assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
6755
6756 Register DstReg = MI.getOperand(0).getReg();
6757 Register SrcReg = MI.getOperand(1).getReg();
6758 LLT DstTy = MRI.getType(DstReg);
6759 LLT SrcTy = MRI.getType(SrcReg);
6760
6761 if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) &&
6762 isPowerOf2_32(DstTy.getScalarSizeInBits()) &&
6763 isPowerOf2_32(SrcTy.getNumElements()) &&
6764 isPowerOf2_32(SrcTy.getScalarSizeInBits())) {
6765 // Split input type.
6766 LLT SplitSrcTy = SrcTy.changeElementCount(
6767 SrcTy.getElementCount().divideCoefficientBy(2));
6768
6769 // First, split the source into two smaller vectors.
6770 SmallVector<Register, 2> SplitSrcs;
6771 extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs, MIRBuilder, MRI);
6772
6773 // Truncate the splits into intermediate narrower elements.
6774 LLT InterTy;
6775 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits())
6776 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
6777 else
6778 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits());
6779 for (unsigned I = 0; I < SplitSrcs.size(); ++I) {
6780 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
6781 }
6782
6783 // Combine the new truncates into one vector
6784 auto Merge = MIRBuilder.buildMergeLikeInstr(
6785 DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs);
6786
6787 // Truncate the new vector to the final result type
6788 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits())
6789 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0));
6790 else
6791 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0));
6792
6793 MI.eraseFromParent();
6794
6795 return Legalized;
6796 }
6797 return UnableToLegalize;
6798 }
6799
6800 LegalizerHelper::LegalizeResult
lowerRotateWithReverseRotate(MachineInstr & MI)6801 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
6802 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs();
6803 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6804 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6805 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6806 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6807 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
6808 MI.eraseFromParent();
6809 return Legalized;
6810 }
6811
lowerRotate(MachineInstr & MI)6812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
6813 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs();
6814
6815 unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
6816 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6817
6818 MIRBuilder.setInstrAndDebugLoc(MI);
6819
6820 // If a rotate in the other direction is supported, use it.
6821 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6822 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
6823 isPowerOf2_32(EltSizeInBits))
6824 return lowerRotateWithReverseRotate(MI);
6825
6826 // If a funnel shift is supported, use it.
6827 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
6828 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
6829 bool IsFShLegal = false;
6830 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
6831 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
6832 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
6833 Register R3) {
6834 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
6835 MI.eraseFromParent();
6836 return Legalized;
6837 };
6838 // If a funnel shift in the other direction is supported, use it.
6839 if (IsFShLegal) {
6840 return buildFunnelShift(FShOpc, Dst, Src, Amt);
6841 } else if (isPowerOf2_32(EltSizeInBits)) {
6842 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
6843 return buildFunnelShift(RevFsh, Dst, Src, Amt);
6844 }
6845 }
6846
6847 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6848 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
6849 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
6850 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
6851 Register ShVal;
6852 Register RevShiftVal;
6853 if (isPowerOf2_32(EltSizeInBits)) {
6854 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6855 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6856 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6857 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
6858 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6859 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6860 RevShiftVal =
6861 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6862 } else {
6863 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6864 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6865 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6866 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6867 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6868 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6869 auto One = MIRBuilder.buildConstant(AmtTy, 1);
6870 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6871 RevShiftVal =
6872 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6873 }
6874 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6875 MI.eraseFromParent();
6876 return Legalized;
6877 }
6878
6879 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6880 // representation.
6881 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)6882 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6883 auto [Dst, Src] = MI.getFirst2Regs();
6884 const LLT S64 = LLT::scalar(64);
6885 const LLT S32 = LLT::scalar(32);
6886 const LLT S1 = LLT::scalar(1);
6887
6888 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6889
6890 // unsigned cul2f(ulong u) {
6891 // uint lz = clz(u);
6892 // uint e = (u != 0) ? 127U + 63U - lz : 0;
6893 // u = (u << lz) & 0x7fffffffffffffffUL;
6894 // ulong t = u & 0xffffffffffUL;
6895 // uint v = (e << 23) | (uint)(u >> 40);
6896 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6897 // return as_float(v + r);
6898 // }
6899
6900 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6901 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6902
6903 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6904
6905 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6906 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6907
6908 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6909 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6910
6911 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6912 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6913
6914 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6915
6916 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6917 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6918
6919 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6920 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6921 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6922
6923 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6924 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6925 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6926 auto One = MIRBuilder.buildConstant(S32, 1);
6927
6928 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6929 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6930 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6931 MIRBuilder.buildAdd(Dst, V, R);
6932
6933 MI.eraseFromParent();
6934 return Legalized;
6935 }
6936
lowerUITOFP(MachineInstr & MI)6937 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6938 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6939
6940 if (SrcTy == LLT::scalar(1)) {
6941 auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6942 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6943 MIRBuilder.buildSelect(Dst, Src, True, False);
6944 MI.eraseFromParent();
6945 return Legalized;
6946 }
6947
6948 if (SrcTy != LLT::scalar(64))
6949 return UnableToLegalize;
6950
6951 if (DstTy == LLT::scalar(32)) {
6952 // TODO: SelectionDAG has several alternative expansions to port which may
6953 // be more reasonble depending on the available instructions. If a target
6954 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6955 // intermediate type, this is probably worse.
6956 return lowerU64ToF32BitOps(MI);
6957 }
6958
6959 return UnableToLegalize;
6960 }
6961
lowerSITOFP(MachineInstr & MI)6962 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6963 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6964
6965 const LLT S64 = LLT::scalar(64);
6966 const LLT S32 = LLT::scalar(32);
6967 const LLT S1 = LLT::scalar(1);
6968
6969 if (SrcTy == S1) {
6970 auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6971 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6972 MIRBuilder.buildSelect(Dst, Src, True, False);
6973 MI.eraseFromParent();
6974 return Legalized;
6975 }
6976
6977 if (SrcTy != S64)
6978 return UnableToLegalize;
6979
6980 if (DstTy == S32) {
6981 // signed cl2f(long l) {
6982 // long s = l >> 63;
6983 // float r = cul2f((l + s) ^ s);
6984 // return s ? -r : r;
6985 // }
6986 Register L = Src;
6987 auto SignBit = MIRBuilder.buildConstant(S64, 63);
6988 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6989
6990 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6991 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6992 auto R = MIRBuilder.buildUITOFP(S32, Xor);
6993
6994 auto RNeg = MIRBuilder.buildFNeg(S32, R);
6995 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6996 MIRBuilder.buildConstant(S64, 0));
6997 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6998 MI.eraseFromParent();
6999 return Legalized;
7000 }
7001
7002 return UnableToLegalize;
7003 }
7004
lowerFPTOUI(MachineInstr & MI)7005 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
7006 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
7007 const LLT S64 = LLT::scalar(64);
7008 const LLT S32 = LLT::scalar(32);
7009
7010 if (SrcTy != S64 && SrcTy != S32)
7011 return UnableToLegalize;
7012 if (DstTy != S32 && DstTy != S64)
7013 return UnableToLegalize;
7014
7015 // FPTOSI gives same result as FPTOUI for positive signed integers.
7016 // FPTOUI needs to deal with fp values that convert to unsigned integers
7017 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
7018
7019 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
7020 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
7021 : APFloat::IEEEdouble(),
7022 APInt::getZero(SrcTy.getSizeInBits()));
7023 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
7024
7025 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
7026
7027 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
7028 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
7029 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
7030 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
7031 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
7032 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
7033 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
7034
7035 const LLT S1 = LLT::scalar(1);
7036
7037 MachineInstrBuilder FCMP =
7038 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
7039 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
7040
7041 MI.eraseFromParent();
7042 return Legalized;
7043 }
7044
lowerFPTOSI(MachineInstr & MI)7045 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
7046 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
7047 const LLT S64 = LLT::scalar(64);
7048 const LLT S32 = LLT::scalar(32);
7049
7050 // FIXME: Only f32 to i64 conversions are supported.
7051 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
7052 return UnableToLegalize;
7053
7054 // Expand f32 -> i64 conversion
7055 // This algorithm comes from compiler-rt's implementation of fixsfdi:
7056 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7057
7058 unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
7059
7060 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
7061 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
7062
7063 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
7064 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
7065
7066 auto SignMask = MIRBuilder.buildConstant(SrcTy,
7067 APInt::getSignMask(SrcEltBits));
7068 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
7069 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
7070 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
7071 Sign = MIRBuilder.buildSExt(DstTy, Sign);
7072
7073 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
7074 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
7075 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
7076
7077 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
7078 R = MIRBuilder.buildZExt(DstTy, R);
7079
7080 auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
7081 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
7082 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
7083 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
7084
7085 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
7086 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
7087
7088 const LLT S1 = LLT::scalar(1);
7089 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
7090 S1, Exponent, ExponentLoBit);
7091
7092 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
7093
7094 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
7095 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
7096
7097 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
7098
7099 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
7100 S1, Exponent, ZeroSrcTy);
7101
7102 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
7103 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
7104
7105 MI.eraseFromParent();
7106 return Legalized;
7107 }
7108
7109 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
7110 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)7111 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
7112 const LLT S1 = LLT::scalar(1);
7113 const LLT S32 = LLT::scalar(32);
7114
7115 auto [Dst, Src] = MI.getFirst2Regs();
7116 assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) &&
7117 MRI.getType(Src).getScalarType() == LLT::scalar(64));
7118
7119 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
7120 return UnableToLegalize;
7121
7122 if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) {
7123 unsigned Flags = MI.getFlags();
7124 auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags);
7125 MIRBuilder.buildFPTrunc(Dst, Src32, Flags);
7126 MI.eraseFromParent();
7127 return Legalized;
7128 }
7129
7130 const unsigned ExpMask = 0x7ff;
7131 const unsigned ExpBiasf64 = 1023;
7132 const unsigned ExpBiasf16 = 15;
7133
7134 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
7135 Register U = Unmerge.getReg(0);
7136 Register UH = Unmerge.getReg(1);
7137
7138 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
7139 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
7140
7141 // Subtract the fp64 exponent bias (1023) to get the real exponent and
7142 // add the f16 bias (15) to get the biased exponent for the f16 format.
7143 E = MIRBuilder.buildAdd(
7144 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
7145
7146 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
7147 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
7148
7149 auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
7150 MIRBuilder.buildConstant(S32, 0x1ff));
7151 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
7152
7153 auto Zero = MIRBuilder.buildConstant(S32, 0);
7154 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
7155 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
7156 M = MIRBuilder.buildOr(S32, M, Lo40Set);
7157
7158 // (M != 0 ? 0x0200 : 0) | 0x7c00;
7159 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
7160 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
7161 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
7162
7163 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
7164 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
7165
7166 // N = M | (E << 12);
7167 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
7168 auto N = MIRBuilder.buildOr(S32, M, EShl12);
7169
7170 // B = clamp(1-E, 0, 13);
7171 auto One = MIRBuilder.buildConstant(S32, 1);
7172 auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
7173 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
7174 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
7175
7176 auto SigSetHigh = MIRBuilder.buildOr(S32, M,
7177 MIRBuilder.buildConstant(S32, 0x1000));
7178
7179 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
7180 auto D0 = MIRBuilder.buildShl(S32, D, B);
7181
7182 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
7183 D0, SigSetHigh);
7184 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
7185 D = MIRBuilder.buildOr(S32, D, D1);
7186
7187 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
7188 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
7189
7190 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
7191 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
7192
7193 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
7194 MIRBuilder.buildConstant(S32, 3));
7195 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
7196
7197 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
7198 MIRBuilder.buildConstant(S32, 5));
7199 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
7200
7201 V1 = MIRBuilder.buildOr(S32, V0, V1);
7202 V = MIRBuilder.buildAdd(S32, V, V1);
7203
7204 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
7205 E, MIRBuilder.buildConstant(S32, 30));
7206 V = MIRBuilder.buildSelect(S32, CmpEGt30,
7207 MIRBuilder.buildConstant(S32, 0x7c00), V);
7208
7209 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
7210 E, MIRBuilder.buildConstant(S32, 1039));
7211 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
7212
7213 // Extract the sign bit.
7214 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
7215 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
7216
7217 // Insert the sign bit
7218 V = MIRBuilder.buildOr(S32, Sign, V);
7219
7220 MIRBuilder.buildTrunc(Dst, V);
7221 MI.eraseFromParent();
7222 return Legalized;
7223 }
7224
7225 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)7226 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
7227 auto [DstTy, SrcTy] = MI.getFirst2LLTs();
7228 const LLT S64 = LLT::scalar(64);
7229 const LLT S16 = LLT::scalar(16);
7230
7231 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
7232 return lowerFPTRUNC_F64_TO_F16(MI);
7233
7234 return UnableToLegalize;
7235 }
7236
lowerFPOWI(MachineInstr & MI)7237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
7238 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
7239 LLT Ty = MRI.getType(Dst);
7240
7241 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
7242 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
7243 MI.eraseFromParent();
7244 return Legalized;
7245 }
7246
minMaxToCompare(unsigned Opc)7247 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
7248 switch (Opc) {
7249 case TargetOpcode::G_SMIN:
7250 return CmpInst::ICMP_SLT;
7251 case TargetOpcode::G_SMAX:
7252 return CmpInst::ICMP_SGT;
7253 case TargetOpcode::G_UMIN:
7254 return CmpInst::ICMP_ULT;
7255 case TargetOpcode::G_UMAX:
7256 return CmpInst::ICMP_UGT;
7257 default:
7258 llvm_unreachable("not in integer min/max");
7259 }
7260 }
7261
lowerMinMax(MachineInstr & MI)7262 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
7263 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
7264
7265 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
7266 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
7267
7268 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
7269 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
7270
7271 MI.eraseFromParent();
7272 return Legalized;
7273 }
7274
7275 LegalizerHelper::LegalizeResult
lowerThreewayCompare(MachineInstr & MI)7276 LegalizerHelper::lowerThreewayCompare(MachineInstr &MI) {
7277 GSUCmp *Cmp = cast<GSUCmp>(&MI);
7278
7279 Register Dst = Cmp->getReg(0);
7280 LLT DstTy = MRI.getType(Dst);
7281 LLT CmpTy = DstTy.changeElementSize(1);
7282
7283 CmpInst::Predicate LTPredicate = Cmp->isSigned()
7284 ? CmpInst::Predicate::ICMP_SLT
7285 : CmpInst::Predicate::ICMP_ULT;
7286 CmpInst::Predicate GTPredicate = Cmp->isSigned()
7287 ? CmpInst::Predicate::ICMP_SGT
7288 : CmpInst::Predicate::ICMP_UGT;
7289
7290 auto One = MIRBuilder.buildConstant(DstTy, 1);
7291 auto Zero = MIRBuilder.buildConstant(DstTy, 0);
7292 auto IsGT = MIRBuilder.buildICmp(GTPredicate, CmpTy, Cmp->getLHSReg(),
7293 Cmp->getRHSReg());
7294 auto SelectZeroOrOne = MIRBuilder.buildSelect(DstTy, IsGT, One, Zero);
7295
7296 auto MinusOne = MIRBuilder.buildConstant(DstTy, -1);
7297 auto IsLT = MIRBuilder.buildICmp(LTPredicate, CmpTy, Cmp->getLHSReg(),
7298 Cmp->getRHSReg());
7299 MIRBuilder.buildSelect(Dst, IsLT, MinusOne, SelectZeroOrOne);
7300
7301 MI.eraseFromParent();
7302 return Legalized;
7303 }
7304
7305 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)7306 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
7307 auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs();
7308 const int Src0Size = Src0Ty.getScalarSizeInBits();
7309 const int Src1Size = Src1Ty.getScalarSizeInBits();
7310
7311 auto SignBitMask = MIRBuilder.buildConstant(
7312 Src0Ty, APInt::getSignMask(Src0Size));
7313
7314 auto NotSignBitMask = MIRBuilder.buildConstant(
7315 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
7316
7317 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
7318 Register And1;
7319 if (Src0Ty == Src1Ty) {
7320 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
7321 } else if (Src0Size > Src1Size) {
7322 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
7323 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
7324 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
7325 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
7326 } else {
7327 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
7328 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
7329 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
7330 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
7331 }
7332
7333 // Be careful about setting nsz/nnan/ninf on every instruction, since the
7334 // constants are a nan and -0.0, but the final result should preserve
7335 // everything.
7336 unsigned Flags = MI.getFlags();
7337
7338 // We masked the sign bit and the not-sign bit, so these are disjoint.
7339 Flags |= MachineInstr::Disjoint;
7340
7341 MIRBuilder.buildOr(Dst, And0, And1, Flags);
7342
7343 MI.eraseFromParent();
7344 return Legalized;
7345 }
7346
7347 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)7348 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
7349 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
7350 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
7351
7352 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
7353 LLT Ty = MRI.getType(Dst);
7354
7355 if (!MI.getFlag(MachineInstr::FmNoNans)) {
7356 // Insert canonicalizes if it's possible we need to quiet to get correct
7357 // sNaN behavior.
7358
7359 // Note this must be done here, and not as an optimization combine in the
7360 // absence of a dedicate quiet-snan instruction as we're using an
7361 // omni-purpose G_FCANONICALIZE.
7362 if (!isKnownNeverSNaN(Src0, MRI))
7363 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
7364
7365 if (!isKnownNeverSNaN(Src1, MRI))
7366 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
7367 }
7368
7369 // If there are no nans, it's safe to simply replace this with the non-IEEE
7370 // version.
7371 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
7372 MI.eraseFromParent();
7373 return Legalized;
7374 }
7375
lowerFMad(MachineInstr & MI)7376 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
7377 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
7378 Register DstReg = MI.getOperand(0).getReg();
7379 LLT Ty = MRI.getType(DstReg);
7380 unsigned Flags = MI.getFlags();
7381
7382 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
7383 Flags);
7384 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
7385 MI.eraseFromParent();
7386 return Legalized;
7387 }
7388
7389 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)7390 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
7391 auto [DstReg, X] = MI.getFirst2Regs();
7392 const unsigned Flags = MI.getFlags();
7393 const LLT Ty = MRI.getType(DstReg);
7394 const LLT CondTy = Ty.changeElementSize(1);
7395
7396 // round(x) =>
7397 // t = trunc(x);
7398 // d = fabs(x - t);
7399 // o = copysign(d >= 0.5 ? 1.0 : 0.0, x);
7400 // return t + o;
7401
7402 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
7403
7404 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
7405 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
7406
7407 auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
7408 auto Cmp =
7409 MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags);
7410
7411 // Could emit G_UITOFP instead
7412 auto One = MIRBuilder.buildFConstant(Ty, 1.0);
7413 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
7414 auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero);
7415 auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X);
7416
7417 MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags);
7418
7419 MI.eraseFromParent();
7420 return Legalized;
7421 }
7422
lowerFFloor(MachineInstr & MI)7423 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) {
7424 auto [DstReg, SrcReg] = MI.getFirst2Regs();
7425 unsigned Flags = MI.getFlags();
7426 LLT Ty = MRI.getType(DstReg);
7427 const LLT CondTy = Ty.changeElementSize(1);
7428
7429 // result = trunc(src);
7430 // if (src < 0.0 && src != result)
7431 // result += -1.0.
7432
7433 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
7434 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
7435
7436 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
7437 SrcReg, Zero, Flags);
7438 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
7439 SrcReg, Trunc, Flags);
7440 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
7441 auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
7442
7443 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
7444 MI.eraseFromParent();
7445 return Legalized;
7446 }
7447
7448 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)7449 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
7450 const unsigned NumOps = MI.getNumOperands();
7451 auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs();
7452 unsigned PartSize = Src0Ty.getSizeInBits();
7453
7454 LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
7455 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
7456
7457 for (unsigned I = 2; I != NumOps; ++I) {
7458 const unsigned Offset = (I - 1) * PartSize;
7459
7460 Register SrcReg = MI.getOperand(I).getReg();
7461 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
7462
7463 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
7464 MRI.createGenericVirtualRegister(WideTy);
7465
7466 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
7467 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
7468 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
7469 ResultReg = NextResult;
7470 }
7471
7472 if (DstTy.isPointer()) {
7473 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
7474 DstTy.getAddressSpace())) {
7475 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
7476 return UnableToLegalize;
7477 }
7478
7479 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
7480 }
7481
7482 MI.eraseFromParent();
7483 return Legalized;
7484 }
7485
7486 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)7487 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
7488 const unsigned NumDst = MI.getNumOperands() - 1;
7489 Register SrcReg = MI.getOperand(NumDst).getReg();
7490 Register Dst0Reg = MI.getOperand(0).getReg();
7491 LLT DstTy = MRI.getType(Dst0Reg);
7492 if (DstTy.isPointer())
7493 return UnableToLegalize; // TODO
7494
7495 SrcReg = coerceToScalar(SrcReg);
7496 if (!SrcReg)
7497 return UnableToLegalize;
7498
7499 // Expand scalarizing unmerge as bitcast to integer and shift.
7500 LLT IntTy = MRI.getType(SrcReg);
7501
7502 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
7503
7504 const unsigned DstSize = DstTy.getSizeInBits();
7505 unsigned Offset = DstSize;
7506 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
7507 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
7508 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
7509 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
7510 }
7511
7512 MI.eraseFromParent();
7513 return Legalized;
7514 }
7515
7516 /// Lower a vector extract or insert by writing the vector to a stack temporary
7517 /// and reloading the element or vector.
7518 ///
7519 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
7520 /// =>
7521 /// %stack_temp = G_FRAME_INDEX
7522 /// G_STORE %vec, %stack_temp
7523 /// %idx = clamp(%idx, %vec.getNumElements())
7524 /// %element_ptr = G_PTR_ADD %stack_temp, %idx
7525 /// %dst = G_LOAD %element_ptr
7526 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)7527 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
7528 Register DstReg = MI.getOperand(0).getReg();
7529 Register SrcVec = MI.getOperand(1).getReg();
7530 Register InsertVal;
7531 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
7532 InsertVal = MI.getOperand(2).getReg();
7533
7534 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
7535
7536 LLT VecTy = MRI.getType(SrcVec);
7537 LLT EltTy = VecTy.getElementType();
7538 unsigned NumElts = VecTy.getNumElements();
7539
7540 int64_t IdxVal;
7541 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
7542 SmallVector<Register, 8> SrcRegs;
7543 extractParts(SrcVec, EltTy, NumElts, SrcRegs, MIRBuilder, MRI);
7544
7545 if (InsertVal) {
7546 SrcRegs[IdxVal] = MI.getOperand(2).getReg();
7547 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs);
7548 } else {
7549 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
7550 }
7551
7552 MI.eraseFromParent();
7553 return Legalized;
7554 }
7555
7556 if (!EltTy.isByteSized()) { // Not implemented.
7557 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
7558 return UnableToLegalize;
7559 }
7560
7561 unsigned EltBytes = EltTy.getSizeInBytes();
7562 Align VecAlign = getStackTemporaryAlignment(VecTy);
7563 Align EltAlign;
7564
7565 MachinePointerInfo PtrInfo;
7566 auto StackTemp = createStackTemporary(
7567 TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo);
7568 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
7569
7570 // Get the pointer to the element, and be sure not to hit undefined behavior
7571 // if the index is out of bounds.
7572 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
7573
7574 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
7575 int64_t Offset = IdxVal * EltBytes;
7576 PtrInfo = PtrInfo.getWithOffset(Offset);
7577 EltAlign = commonAlignment(VecAlign, Offset);
7578 } else {
7579 // We lose information with a variable offset.
7580 EltAlign = getStackTemporaryAlignment(EltTy);
7581 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
7582 }
7583
7584 if (InsertVal) {
7585 // Write the inserted element
7586 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
7587
7588 // Reload the whole vector.
7589 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
7590 } else {
7591 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
7592 }
7593
7594 MI.eraseFromParent();
7595 return Legalized;
7596 }
7597
7598 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)7599 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
7600 auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] =
7601 MI.getFirst3RegLLTs();
7602 LLT IdxTy = LLT::scalar(32);
7603
7604 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
7605 Register Undef;
7606 SmallVector<Register, 32> BuildVec;
7607 LLT EltTy = DstTy.getScalarType();
7608
7609 for (int Idx : Mask) {
7610 if (Idx < 0) {
7611 if (!Undef.isValid())
7612 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
7613 BuildVec.push_back(Undef);
7614 continue;
7615 }
7616
7617 if (Src0Ty.isScalar()) {
7618 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
7619 } else {
7620 int NumElts = Src0Ty.getNumElements();
7621 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
7622 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
7623 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
7624 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
7625 BuildVec.push_back(Extract.getReg(0));
7626 }
7627 }
7628
7629 if (DstTy.isScalar())
7630 MIRBuilder.buildCopy(DstReg, BuildVec[0]);
7631 else
7632 MIRBuilder.buildBuildVector(DstReg, BuildVec);
7633 MI.eraseFromParent();
7634 return Legalized;
7635 }
7636
7637 LegalizerHelper::LegalizeResult
lowerVECTOR_COMPRESS(llvm::MachineInstr & MI)7638 LegalizerHelper::lowerVECTOR_COMPRESS(llvm::MachineInstr &MI) {
7639 auto [Dst, DstTy, Vec, VecTy, Mask, MaskTy, Passthru, PassthruTy] =
7640 MI.getFirst4RegLLTs();
7641
7642 if (VecTy.isScalableVector())
7643 report_fatal_error("Cannot expand masked_compress for scalable vectors.");
7644
7645 Align VecAlign = getStackTemporaryAlignment(VecTy);
7646 MachinePointerInfo PtrInfo;
7647 Register StackPtr =
7648 createStackTemporary(TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign,
7649 PtrInfo)
7650 .getReg(0);
7651 MachinePointerInfo ValPtrInfo =
7652 MachinePointerInfo::getUnknownStack(*MI.getMF());
7653
7654 LLT IdxTy = LLT::scalar(32);
7655 LLT ValTy = VecTy.getElementType();
7656 Align ValAlign = getStackTemporaryAlignment(ValTy);
7657
7658 auto OutPos = MIRBuilder.buildConstant(IdxTy, 0);
7659
7660 bool HasPassthru =
7661 MRI.getVRegDef(Passthru)->getOpcode() != TargetOpcode::G_IMPLICIT_DEF;
7662
7663 if (HasPassthru)
7664 MIRBuilder.buildStore(Passthru, StackPtr, PtrInfo, VecAlign);
7665
7666 Register LastWriteVal;
7667 std::optional<APInt> PassthruSplatVal =
7668 isConstantOrConstantSplatVector(*MRI.getVRegDef(Passthru), MRI);
7669
7670 if (PassthruSplatVal.has_value()) {
7671 LastWriteVal =
7672 MIRBuilder.buildConstant(ValTy, PassthruSplatVal.value()).getReg(0);
7673 } else if (HasPassthru) {
7674 auto Popcount = MIRBuilder.buildZExt(MaskTy.changeElementSize(32), Mask);
7675 Popcount = MIRBuilder.buildInstr(TargetOpcode::G_VECREDUCE_ADD,
7676 {LLT::scalar(32)}, {Popcount});
7677
7678 Register LastElmtPtr =
7679 getVectorElementPointer(StackPtr, VecTy, Popcount.getReg(0));
7680 LastWriteVal =
7681 MIRBuilder.buildLoad(ValTy, LastElmtPtr, ValPtrInfo, ValAlign)
7682 .getReg(0);
7683 }
7684
7685 unsigned NumElmts = VecTy.getNumElements();
7686 for (unsigned I = 0; I < NumElmts; ++I) {
7687 auto Idx = MIRBuilder.buildConstant(IdxTy, I);
7688 auto Val = MIRBuilder.buildExtractVectorElement(ValTy, Vec, Idx);
7689 Register ElmtPtr =
7690 getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0));
7691 MIRBuilder.buildStore(Val, ElmtPtr, ValPtrInfo, ValAlign);
7692
7693 LLT MaskITy = MaskTy.getElementType();
7694 auto MaskI = MIRBuilder.buildExtractVectorElement(MaskITy, Mask, Idx);
7695 if (MaskITy.getSizeInBits() > 1)
7696 MaskI = MIRBuilder.buildTrunc(LLT::scalar(1), MaskI);
7697
7698 MaskI = MIRBuilder.buildZExt(IdxTy, MaskI);
7699 OutPos = MIRBuilder.buildAdd(IdxTy, OutPos, MaskI);
7700
7701 if (HasPassthru && I == NumElmts - 1) {
7702 auto EndOfVector =
7703 MIRBuilder.buildConstant(IdxTy, VecTy.getNumElements() - 1);
7704 auto AllLanesSelected = MIRBuilder.buildICmp(
7705 CmpInst::ICMP_UGT, LLT::scalar(1), OutPos, EndOfVector);
7706 OutPos = MIRBuilder.buildInstr(TargetOpcode::G_UMIN, {IdxTy},
7707 {OutPos, EndOfVector});
7708 ElmtPtr = getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0));
7709
7710 LastWriteVal =
7711 MIRBuilder.buildSelect(ValTy, AllLanesSelected, Val, LastWriteVal)
7712 .getReg(0);
7713 MIRBuilder.buildStore(LastWriteVal, ElmtPtr, ValPtrInfo, ValAlign);
7714 }
7715 }
7716
7717 // TODO: Use StackPtr's FrameIndex alignment.
7718 MIRBuilder.buildLoad(Dst, StackPtr, PtrInfo, VecAlign);
7719
7720 MI.eraseFromParent();
7721 return Legalized;
7722 }
7723
getDynStackAllocTargetPtr(Register SPReg,Register AllocSize,Align Alignment,LLT PtrTy)7724 Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg,
7725 Register AllocSize,
7726 Align Alignment,
7727 LLT PtrTy) {
7728 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
7729
7730 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
7731 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
7732
7733 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
7734 // have to generate an extra instruction to negate the alloc and then use
7735 // G_PTR_ADD to add the negative offset.
7736 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
7737 if (Alignment > Align(1)) {
7738 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
7739 AlignMask.negate();
7740 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
7741 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
7742 }
7743
7744 return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0);
7745 }
7746
7747 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)7748 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
7749 const auto &MF = *MI.getMF();
7750 const auto &TFI = *MF.getSubtarget().getFrameLowering();
7751 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
7752 return UnableToLegalize;
7753
7754 Register Dst = MI.getOperand(0).getReg();
7755 Register AllocSize = MI.getOperand(1).getReg();
7756 Align Alignment = assumeAligned(MI.getOperand(2).getImm());
7757
7758 LLT PtrTy = MRI.getType(Dst);
7759 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
7760 Register SPTmp =
7761 getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy);
7762
7763 MIRBuilder.buildCopy(SPReg, SPTmp);
7764 MIRBuilder.buildCopy(Dst, SPTmp);
7765
7766 MI.eraseFromParent();
7767 return Legalized;
7768 }
7769
7770 LegalizerHelper::LegalizeResult
lowerStackSave(MachineInstr & MI)7771 LegalizerHelper::lowerStackSave(MachineInstr &MI) {
7772 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore();
7773 if (!StackPtr)
7774 return UnableToLegalize;
7775
7776 MIRBuilder.buildCopy(MI.getOperand(0), StackPtr);
7777 MI.eraseFromParent();
7778 return Legalized;
7779 }
7780
7781 LegalizerHelper::LegalizeResult
lowerStackRestore(MachineInstr & MI)7782 LegalizerHelper::lowerStackRestore(MachineInstr &MI) {
7783 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore();
7784 if (!StackPtr)
7785 return UnableToLegalize;
7786
7787 MIRBuilder.buildCopy(StackPtr, MI.getOperand(0));
7788 MI.eraseFromParent();
7789 return Legalized;
7790 }
7791
7792 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)7793 LegalizerHelper::lowerExtract(MachineInstr &MI) {
7794 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
7795 unsigned Offset = MI.getOperand(2).getImm();
7796
7797 // Extract sub-vector or one element
7798 if (SrcTy.isVector()) {
7799 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
7800 unsigned DstSize = DstTy.getSizeInBits();
7801
7802 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
7803 (Offset + DstSize <= SrcTy.getSizeInBits())) {
7804 // Unmerge and allow access to each Src element for the artifact combiner.
7805 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg);
7806
7807 // Take element(s) we need to extract and copy it (merge them).
7808 SmallVector<Register, 8> SubVectorElts;
7809 for (unsigned Idx = Offset / SrcEltSize;
7810 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
7811 SubVectorElts.push_back(Unmerge.getReg(Idx));
7812 }
7813 if (SubVectorElts.size() == 1)
7814 MIRBuilder.buildCopy(DstReg, SubVectorElts[0]);
7815 else
7816 MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts);
7817
7818 MI.eraseFromParent();
7819 return Legalized;
7820 }
7821 }
7822
7823 if (DstTy.isScalar() &&
7824 (SrcTy.isScalar() ||
7825 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
7826 LLT SrcIntTy = SrcTy;
7827 if (!SrcTy.isScalar()) {
7828 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
7829 SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0);
7830 }
7831
7832 if (Offset == 0)
7833 MIRBuilder.buildTrunc(DstReg, SrcReg);
7834 else {
7835 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
7836 auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt);
7837 MIRBuilder.buildTrunc(DstReg, Shr);
7838 }
7839
7840 MI.eraseFromParent();
7841 return Legalized;
7842 }
7843
7844 return UnableToLegalize;
7845 }
7846
lowerInsert(MachineInstr & MI)7847 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
7848 auto [Dst, Src, InsertSrc] = MI.getFirst3Regs();
7849 uint64_t Offset = MI.getOperand(3).getImm();
7850
7851 LLT DstTy = MRI.getType(Src);
7852 LLT InsertTy = MRI.getType(InsertSrc);
7853
7854 // Insert sub-vector or one element
7855 if (DstTy.isVector() && !InsertTy.isPointer()) {
7856 LLT EltTy = DstTy.getElementType();
7857 unsigned EltSize = EltTy.getSizeInBits();
7858 unsigned InsertSize = InsertTy.getSizeInBits();
7859
7860 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
7861 (Offset + InsertSize <= DstTy.getSizeInBits())) {
7862 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
7863 SmallVector<Register, 8> DstElts;
7864 unsigned Idx = 0;
7865 // Elements from Src before insert start Offset
7866 for (; Idx < Offset / EltSize; ++Idx) {
7867 DstElts.push_back(UnmergeSrc.getReg(Idx));
7868 }
7869
7870 // Replace elements in Src with elements from InsertSrc
7871 if (InsertTy.getSizeInBits() > EltSize) {
7872 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
7873 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
7874 ++Idx, ++i) {
7875 DstElts.push_back(UnmergeInsertSrc.getReg(i));
7876 }
7877 } else {
7878 DstElts.push_back(InsertSrc);
7879 ++Idx;
7880 }
7881
7882 // Remaining elements from Src after insert
7883 for (; Idx < DstTy.getNumElements(); ++Idx) {
7884 DstElts.push_back(UnmergeSrc.getReg(Idx));
7885 }
7886
7887 MIRBuilder.buildMergeLikeInstr(Dst, DstElts);
7888 MI.eraseFromParent();
7889 return Legalized;
7890 }
7891 }
7892
7893 if (InsertTy.isVector() ||
7894 (DstTy.isVector() && DstTy.getElementType() != InsertTy))
7895 return UnableToLegalize;
7896
7897 const DataLayout &DL = MIRBuilder.getDataLayout();
7898 if ((DstTy.isPointer() &&
7899 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
7900 (InsertTy.isPointer() &&
7901 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
7902 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
7903 return UnableToLegalize;
7904 }
7905
7906 LLT IntDstTy = DstTy;
7907
7908 if (!DstTy.isScalar()) {
7909 IntDstTy = LLT::scalar(DstTy.getSizeInBits());
7910 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
7911 }
7912
7913 if (!InsertTy.isScalar()) {
7914 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
7915 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
7916 }
7917
7918 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
7919 if (Offset != 0) {
7920 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
7921 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
7922 }
7923
7924 APInt MaskVal = APInt::getBitsSetWithWrap(
7925 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
7926
7927 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
7928 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
7929 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
7930
7931 MIRBuilder.buildCast(Dst, Or);
7932 MI.eraseFromParent();
7933 return Legalized;
7934 }
7935
7936 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)7937 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
7938 auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] =
7939 MI.getFirst4RegLLTs();
7940 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
7941
7942 LLT Ty = Dst0Ty;
7943 LLT BoolTy = Dst1Ty;
7944
7945 Register NewDst0 = MRI.cloneVirtualRegister(Dst0);
7946
7947 if (IsAdd)
7948 MIRBuilder.buildAdd(NewDst0, LHS, RHS);
7949 else
7950 MIRBuilder.buildSub(NewDst0, LHS, RHS);
7951
7952 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7953
7954 auto Zero = MIRBuilder.buildConstant(Ty, 0);
7955
7956 // For an addition, the result should be less than one of the operands (LHS)
7957 // if and only if the other operand (RHS) is negative, otherwise there will
7958 // be overflow.
7959 // For a subtraction, the result should be less than one of the operands
7960 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7961 // otherwise there will be overflow.
7962 auto ResultLowerThanLHS =
7963 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, NewDst0, LHS);
7964 auto ConditionRHS = MIRBuilder.buildICmp(
7965 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
7966
7967 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
7968
7969 MIRBuilder.buildCopy(Dst0, NewDst0);
7970 MI.eraseFromParent();
7971
7972 return Legalized;
7973 }
7974
7975 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)7976 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
7977 auto [Res, LHS, RHS] = MI.getFirst3Regs();
7978 LLT Ty = MRI.getType(Res);
7979 bool IsSigned;
7980 bool IsAdd;
7981 unsigned BaseOp;
7982 switch (MI.getOpcode()) {
7983 default:
7984 llvm_unreachable("unexpected addsat/subsat opcode");
7985 case TargetOpcode::G_UADDSAT:
7986 IsSigned = false;
7987 IsAdd = true;
7988 BaseOp = TargetOpcode::G_ADD;
7989 break;
7990 case TargetOpcode::G_SADDSAT:
7991 IsSigned = true;
7992 IsAdd = true;
7993 BaseOp = TargetOpcode::G_ADD;
7994 break;
7995 case TargetOpcode::G_USUBSAT:
7996 IsSigned = false;
7997 IsAdd = false;
7998 BaseOp = TargetOpcode::G_SUB;
7999 break;
8000 case TargetOpcode::G_SSUBSAT:
8001 IsSigned = true;
8002 IsAdd = false;
8003 BaseOp = TargetOpcode::G_SUB;
8004 break;
8005 }
8006
8007 if (IsSigned) {
8008 // sadd.sat(a, b) ->
8009 // hi = 0x7fffffff - smax(a, 0)
8010 // lo = 0x80000000 - smin(a, 0)
8011 // a + smin(smax(lo, b), hi)
8012 // ssub.sat(a, b) ->
8013 // lo = smax(a, -1) - 0x7fffffff
8014 // hi = smin(a, -1) - 0x80000000
8015 // a - smin(smax(lo, b), hi)
8016 // TODO: AMDGPU can use a "median of 3" instruction here:
8017 // a +/- med3(lo, b, hi)
8018 uint64_t NumBits = Ty.getScalarSizeInBits();
8019 auto MaxVal =
8020 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
8021 auto MinVal =
8022 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
8023 MachineInstrBuilder Hi, Lo;
8024 if (IsAdd) {
8025 auto Zero = MIRBuilder.buildConstant(Ty, 0);
8026 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
8027 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
8028 } else {
8029 auto NegOne = MIRBuilder.buildConstant(Ty, -1);
8030 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
8031 MaxVal);
8032 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
8033 MinVal);
8034 }
8035 auto RHSClamped =
8036 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
8037 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
8038 } else {
8039 // uadd.sat(a, b) -> a + umin(~a, b)
8040 // usub.sat(a, b) -> a - umin(a, b)
8041 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
8042 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
8043 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
8044 }
8045
8046 MI.eraseFromParent();
8047 return Legalized;
8048 }
8049
8050 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)8051 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
8052 auto [Res, LHS, RHS] = MI.getFirst3Regs();
8053 LLT Ty = MRI.getType(Res);
8054 LLT BoolTy = Ty.changeElementSize(1);
8055 bool IsSigned;
8056 bool IsAdd;
8057 unsigned OverflowOp;
8058 switch (MI.getOpcode()) {
8059 default:
8060 llvm_unreachable("unexpected addsat/subsat opcode");
8061 case TargetOpcode::G_UADDSAT:
8062 IsSigned = false;
8063 IsAdd = true;
8064 OverflowOp = TargetOpcode::G_UADDO;
8065 break;
8066 case TargetOpcode::G_SADDSAT:
8067 IsSigned = true;
8068 IsAdd = true;
8069 OverflowOp = TargetOpcode::G_SADDO;
8070 break;
8071 case TargetOpcode::G_USUBSAT:
8072 IsSigned = false;
8073 IsAdd = false;
8074 OverflowOp = TargetOpcode::G_USUBO;
8075 break;
8076 case TargetOpcode::G_SSUBSAT:
8077 IsSigned = true;
8078 IsAdd = false;
8079 OverflowOp = TargetOpcode::G_SSUBO;
8080 break;
8081 }
8082
8083 auto OverflowRes =
8084 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
8085 Register Tmp = OverflowRes.getReg(0);
8086 Register Ov = OverflowRes.getReg(1);
8087 MachineInstrBuilder Clamp;
8088 if (IsSigned) {
8089 // sadd.sat(a, b) ->
8090 // {tmp, ov} = saddo(a, b)
8091 // ov ? (tmp >>s 31) + 0x80000000 : r
8092 // ssub.sat(a, b) ->
8093 // {tmp, ov} = ssubo(a, b)
8094 // ov ? (tmp >>s 31) + 0x80000000 : r
8095 uint64_t NumBits = Ty.getScalarSizeInBits();
8096 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
8097 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
8098 auto MinVal =
8099 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
8100 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
8101 } else {
8102 // uadd.sat(a, b) ->
8103 // {tmp, ov} = uaddo(a, b)
8104 // ov ? 0xffffffff : tmp
8105 // usub.sat(a, b) ->
8106 // {tmp, ov} = usubo(a, b)
8107 // ov ? 0 : tmp
8108 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
8109 }
8110 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
8111
8112 MI.eraseFromParent();
8113 return Legalized;
8114 }
8115
8116 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)8117 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
8118 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
8119 MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
8120 "Expected shlsat opcode!");
8121 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
8122 auto [Res, LHS, RHS] = MI.getFirst3Regs();
8123 LLT Ty = MRI.getType(Res);
8124 LLT BoolTy = Ty.changeElementSize(1);
8125
8126 unsigned BW = Ty.getScalarSizeInBits();
8127 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
8128 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
8129 : MIRBuilder.buildLShr(Ty, Result, RHS);
8130
8131 MachineInstrBuilder SatVal;
8132 if (IsSigned) {
8133 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
8134 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
8135 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
8136 MIRBuilder.buildConstant(Ty, 0));
8137 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
8138 } else {
8139 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
8140 }
8141 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
8142 MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
8143
8144 MI.eraseFromParent();
8145 return Legalized;
8146 }
8147
lowerBswap(MachineInstr & MI)8148 LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) {
8149 auto [Dst, Src] = MI.getFirst2Regs();
8150 const LLT Ty = MRI.getType(Src);
8151 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
8152 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
8153
8154 // Swap most and least significant byte, set remaining bytes in Res to zero.
8155 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
8156 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
8157 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
8158 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
8159
8160 // Set i-th high/low byte in Res to i-th low/high byte from Src.
8161 for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
8162 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
8163 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
8164 auto Mask = MIRBuilder.buildConstant(Ty, APMask);
8165 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
8166 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
8167 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
8168 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
8169 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
8170 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
8171 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
8172 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
8173 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
8174 }
8175 Res.getInstr()->getOperand(0).setReg(Dst);
8176
8177 MI.eraseFromParent();
8178 return Legalized;
8179 }
8180
8181 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,const APInt & Mask)8182 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
8183 MachineInstrBuilder Src, const APInt &Mask) {
8184 const LLT Ty = Dst.getLLTTy(*B.getMRI());
8185 MachineInstrBuilder C_N = B.buildConstant(Ty, N);
8186 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
8187 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
8188 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
8189 return B.buildOr(Dst, LHS, RHS);
8190 }
8191
8192 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)8193 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
8194 auto [Dst, Src] = MI.getFirst2Regs();
8195 const LLT Ty = MRI.getType(Src);
8196 unsigned Size = Ty.getScalarSizeInBits();
8197
8198 if (Size >= 8) {
8199 MachineInstrBuilder BSWAP =
8200 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
8201
8202 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
8203 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
8204 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
8205 MachineInstrBuilder Swap4 =
8206 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
8207
8208 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
8209 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
8210 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
8211 MachineInstrBuilder Swap2 =
8212 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
8213
8214 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5
8215 // 6|7
8216 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
8217 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
8218 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
8219 } else {
8220 // Expand bitreverse for types smaller than 8 bits.
8221 MachineInstrBuilder Tmp;
8222 for (unsigned I = 0, J = Size - 1; I < Size; ++I, --J) {
8223 MachineInstrBuilder Tmp2;
8224 if (I < J) {
8225 auto ShAmt = MIRBuilder.buildConstant(Ty, J - I);
8226 Tmp2 = MIRBuilder.buildShl(Ty, Src, ShAmt);
8227 } else {
8228 auto ShAmt = MIRBuilder.buildConstant(Ty, I - J);
8229 Tmp2 = MIRBuilder.buildLShr(Ty, Src, ShAmt);
8230 }
8231
8232 auto Mask = MIRBuilder.buildConstant(Ty, 1ULL << J);
8233 Tmp2 = MIRBuilder.buildAnd(Ty, Tmp2, Mask);
8234 if (I == 0)
8235 Tmp = Tmp2;
8236 else
8237 Tmp = MIRBuilder.buildOr(Ty, Tmp, Tmp2);
8238 }
8239 MIRBuilder.buildCopy(Dst, Tmp);
8240 }
8241
8242 MI.eraseFromParent();
8243 return Legalized;
8244 }
8245
8246 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)8247 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
8248 MachineFunction &MF = MIRBuilder.getMF();
8249
8250 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
8251 int NameOpIdx = IsRead ? 1 : 0;
8252 int ValRegIndex = IsRead ? 0 : 1;
8253
8254 Register ValReg = MI.getOperand(ValRegIndex).getReg();
8255 const LLT Ty = MRI.getType(ValReg);
8256 const MDString *RegStr = cast<MDString>(
8257 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
8258
8259 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
8260 if (!PhysReg.isValid())
8261 return UnableToLegalize;
8262
8263 if (IsRead)
8264 MIRBuilder.buildCopy(ValReg, PhysReg);
8265 else
8266 MIRBuilder.buildCopy(PhysReg, ValReg);
8267
8268 MI.eraseFromParent();
8269 return Legalized;
8270 }
8271
8272 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)8273 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
8274 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
8275 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
8276 Register Result = MI.getOperand(0).getReg();
8277 LLT OrigTy = MRI.getType(Result);
8278 auto SizeInBits = OrigTy.getScalarSizeInBits();
8279 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
8280
8281 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
8282 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
8283 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
8284 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
8285
8286 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
8287 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
8288 MIRBuilder.buildTrunc(Result, Shifted);
8289
8290 MI.eraseFromParent();
8291 return Legalized;
8292 }
8293
8294 LegalizerHelper::LegalizeResult
lowerISFPCLASS(MachineInstr & MI)8295 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) {
8296 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
8297 FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm());
8298
8299 if (Mask == fcNone) {
8300 MIRBuilder.buildConstant(DstReg, 0);
8301 MI.eraseFromParent();
8302 return Legalized;
8303 }
8304 if (Mask == fcAllFlags) {
8305 MIRBuilder.buildConstant(DstReg, 1);
8306 MI.eraseFromParent();
8307 return Legalized;
8308 }
8309
8310 // TODO: Try inverting the test with getInvertedFPClassTest like the DAG
8311 // version
8312
8313 unsigned BitSize = SrcTy.getScalarSizeInBits();
8314 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType());
8315
8316 LLT IntTy = LLT::scalar(BitSize);
8317 if (SrcTy.isVector())
8318 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy);
8319 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg);
8320
8321 // Various masks.
8322 APInt SignBit = APInt::getSignMask(BitSize);
8323 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
8324 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8325 APInt ExpMask = Inf;
8326 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8327 APInt QNaNBitMask =
8328 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8329 APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits());
8330
8331 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit);
8332 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask);
8333 auto InfC = MIRBuilder.buildConstant(IntTy, Inf);
8334 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask);
8335 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0);
8336
8337 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC);
8338 auto Sign =
8339 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs);
8340
8341 auto Res = MIRBuilder.buildConstant(DstTy, 0);
8342 // Clang doesn't support capture of structured bindings:
8343 LLT DstTyCopy = DstTy;
8344 const auto appendToRes = [&](MachineInstrBuilder ToAppend) {
8345 Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend);
8346 };
8347
8348 // Tests that involve more than one class should be processed first.
8349 if ((Mask & fcFinite) == fcFinite) {
8350 // finite(V) ==> abs(V) u< exp_mask
8351 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
8352 ExpMaskC));
8353 Mask &= ~fcFinite;
8354 } else if ((Mask & fcFinite) == fcPosFinite) {
8355 // finite(V) && V > 0 ==> V u< exp_mask
8356 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt,
8357 ExpMaskC));
8358 Mask &= ~fcPosFinite;
8359 } else if ((Mask & fcFinite) == fcNegFinite) {
8360 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1
8361 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
8362 ExpMaskC);
8363 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign);
8364 appendToRes(And);
8365 Mask &= ~fcNegFinite;
8366 }
8367
8368 if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) {
8369 // fcZero | fcSubnormal => test all exponent bits are 0
8370 // TODO: Handle sign bit specific cases
8371 // TODO: Handle inverted case
8372 if (PartialCheck == (fcZero | fcSubnormal)) {
8373 auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC);
8374 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
8375 ExpBits, ZeroC));
8376 Mask &= ~PartialCheck;
8377 }
8378 }
8379
8380 // Check for individual classes.
8381 if (FPClassTest PartialCheck = Mask & fcZero) {
8382 if (PartialCheck == fcPosZero)
8383 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
8384 AsInt, ZeroC));
8385 else if (PartialCheck == fcZero)
8386 appendToRes(
8387 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC));
8388 else // fcNegZero
8389 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
8390 AsInt, SignBitC));
8391 }
8392
8393 if (FPClassTest PartialCheck = Mask & fcSubnormal) {
8394 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set)
8395 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set)
8396 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs;
8397 auto OneC = MIRBuilder.buildConstant(IntTy, 1);
8398 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC);
8399 auto SubnormalRes =
8400 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne,
8401 MIRBuilder.buildConstant(IntTy, AllOneMantissa));
8402 if (PartialCheck == fcNegSubnormal)
8403 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign);
8404 appendToRes(SubnormalRes);
8405 }
8406
8407 if (FPClassTest PartialCheck = Mask & fcInf) {
8408 if (PartialCheck == fcPosInf)
8409 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
8410 AsInt, InfC));
8411 else if (PartialCheck == fcInf)
8412 appendToRes(
8413 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC));
8414 else { // fcNegInf
8415 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8416 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf);
8417 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
8418 AsInt, NegInfC));
8419 }
8420 }
8421
8422 if (FPClassTest PartialCheck = Mask & fcNan) {
8423 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask);
8424 if (PartialCheck == fcNan) {
8425 // isnan(V) ==> abs(V) u> int(inf)
8426 appendToRes(
8427 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC));
8428 } else if (PartialCheck == fcQNan) {
8429 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit)
8430 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs,
8431 InfWithQnanBitC));
8432 } else { // fcSNan
8433 // issignaling(V) ==> abs(V) u> unsigned(Inf) &&
8434 // abs(V) u< (unsigned(Inf) | quiet_bit)
8435 auto IsNan =
8436 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC);
8437 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy,
8438 Abs, InfWithQnanBitC);
8439 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan));
8440 }
8441 }
8442
8443 if (FPClassTest PartialCheck = Mask & fcNormal) {
8444 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u<
8445 // (max_exp-1))
8446 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
8447 auto ExpMinusOne = MIRBuilder.buildSub(
8448 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB));
8449 APInt MaxExpMinusOne = ExpMask - ExpLSB;
8450 auto NormalRes =
8451 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne,
8452 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne));
8453 if (PartialCheck == fcNegNormal)
8454 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign);
8455 else if (PartialCheck == fcPosNormal) {
8456 auto PosSign = MIRBuilder.buildXor(
8457 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask));
8458 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign);
8459 }
8460 appendToRes(NormalRes);
8461 }
8462
8463 MIRBuilder.buildCopy(DstReg, Res);
8464 MI.eraseFromParent();
8465 return Legalized;
8466 }
8467
lowerSelect(MachineInstr & MI)8468 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
8469 // Implement G_SELECT in terms of XOR, AND, OR.
8470 auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] =
8471 MI.getFirst4RegLLTs();
8472
8473 bool IsEltPtr = DstTy.isPointerOrPointerVector();
8474 if (IsEltPtr) {
8475 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits());
8476 LLT NewTy = DstTy.changeElementType(ScalarPtrTy);
8477 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0);
8478 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0);
8479 DstTy = NewTy;
8480 }
8481
8482 if (MaskTy.isScalar()) {
8483 // Turn the scalar condition into a vector condition mask if needed.
8484
8485 Register MaskElt = MaskReg;
8486
8487 // The condition was potentially zero extended before, but we want a sign
8488 // extended boolean.
8489 if (MaskTy != LLT::scalar(1))
8490 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
8491
8492 // Continue the sign extension (or truncate) to match the data type.
8493 MaskElt =
8494 MIRBuilder.buildSExtOrTrunc(DstTy.getScalarType(), MaskElt).getReg(0);
8495
8496 if (DstTy.isVector()) {
8497 // Generate a vector splat idiom.
8498 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
8499 MaskReg = ShufSplat.getReg(0);
8500 } else {
8501 MaskReg = MaskElt;
8502 }
8503 MaskTy = DstTy;
8504 } else if (!DstTy.isVector()) {
8505 // Cannot handle the case that mask is a vector and dst is a scalar.
8506 return UnableToLegalize;
8507 }
8508
8509 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
8510 return UnableToLegalize;
8511 }
8512
8513 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
8514 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
8515 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
8516 if (IsEltPtr) {
8517 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2);
8518 MIRBuilder.buildIntToPtr(DstReg, Or);
8519 } else {
8520 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
8521 }
8522 MI.eraseFromParent();
8523 return Legalized;
8524 }
8525
lowerDIVREM(MachineInstr & MI)8526 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
8527 // Split DIVREM into individual instructions.
8528 unsigned Opcode = MI.getOpcode();
8529
8530 MIRBuilder.buildInstr(
8531 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
8532 : TargetOpcode::G_UDIV,
8533 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
8534 MIRBuilder.buildInstr(
8535 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
8536 : TargetOpcode::G_UREM,
8537 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
8538 MI.eraseFromParent();
8539 return Legalized;
8540 }
8541
8542 LegalizerHelper::LegalizeResult
lowerAbsToAddXor(MachineInstr & MI)8543 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
8544 // Expand %res = G_ABS %a into:
8545 // %v1 = G_ASHR %a, scalar_size-1
8546 // %v2 = G_ADD %a, %v1
8547 // %res = G_XOR %v2, %v1
8548 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
8549 Register OpReg = MI.getOperand(1).getReg();
8550 auto ShiftAmt =
8551 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
8552 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
8553 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
8554 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
8555 MI.eraseFromParent();
8556 return Legalized;
8557 }
8558
8559 LegalizerHelper::LegalizeResult
lowerAbsToMaxNeg(MachineInstr & MI)8560 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
8561 // Expand %res = G_ABS %a into:
8562 // %v1 = G_CONSTANT 0
8563 // %v2 = G_SUB %v1, %a
8564 // %res = G_SMAX %a, %v2
8565 Register SrcReg = MI.getOperand(1).getReg();
8566 LLT Ty = MRI.getType(SrcReg);
8567 auto Zero = MIRBuilder.buildConstant(Ty, 0);
8568 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg);
8569 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
8570 MI.eraseFromParent();
8571 return Legalized;
8572 }
8573
8574 LegalizerHelper::LegalizeResult
lowerAbsToCNeg(MachineInstr & MI)8575 LegalizerHelper::lowerAbsToCNeg(MachineInstr &MI) {
8576 Register SrcReg = MI.getOperand(1).getReg();
8577 Register DestReg = MI.getOperand(0).getReg();
8578 LLT Ty = MRI.getType(SrcReg), IType = LLT::scalar(1);
8579 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
8580 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
8581 auto ICmp = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, IType, SrcReg, Zero);
8582 MIRBuilder.buildSelect(DestReg, ICmp, SrcReg, Sub);
8583 MI.eraseFromParent();
8584 return Legalized;
8585 }
8586
8587 LegalizerHelper::LegalizeResult
lowerVectorReduction(MachineInstr & MI)8588 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
8589 Register SrcReg = MI.getOperand(1).getReg();
8590 LLT SrcTy = MRI.getType(SrcReg);
8591 LLT DstTy = MRI.getType(SrcReg);
8592
8593 // The source could be a scalar if the IR type was <1 x sN>.
8594 if (SrcTy.isScalar()) {
8595 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
8596 return UnableToLegalize; // FIXME: handle extension.
8597 // This can be just a plain copy.
8598 Observer.changingInstr(MI);
8599 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
8600 Observer.changedInstr(MI);
8601 return Legalized;
8602 }
8603 return UnableToLegalize;
8604 }
8605
lowerVAArg(MachineInstr & MI)8606 LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) {
8607 MachineFunction &MF = *MI.getMF();
8608 const DataLayout &DL = MIRBuilder.getDataLayout();
8609 LLVMContext &Ctx = MF.getFunction().getContext();
8610 Register ListPtr = MI.getOperand(1).getReg();
8611 LLT PtrTy = MRI.getType(ListPtr);
8612
8613 // LstPtr is a pointer to the head of the list. Get the address
8614 // of the head of the list.
8615 Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
8616 MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand(
8617 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment);
8618 auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0);
8619
8620 const Align A(MI.getOperand(2).getImm());
8621 LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits());
8622 if (A > TLI.getMinStackArgumentAlignment()) {
8623 Register AlignAmt =
8624 MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0);
8625 auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt);
8626 auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A));
8627 VAList = AndDst.getReg(0);
8628 }
8629
8630 // Increment the pointer, VAList, to the next vaarg
8631 // The list should be bumped by the size of element in the current head of
8632 // list.
8633 Register Dst = MI.getOperand(0).getReg();
8634 LLT LLTTy = MRI.getType(Dst);
8635 Type *Ty = getTypeForLLT(LLTTy, Ctx);
8636 auto IncAmt =
8637 MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty));
8638 auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt);
8639
8640 // Store the increment VAList to the legalized pointer
8641 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
8642 MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment);
8643 MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO);
8644 // Load the actual argument out of the pointer VAList
8645 Align EltAlignment = DL.getABITypeAlign(Ty);
8646 MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand(
8647 MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment);
8648 MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO);
8649
8650 MI.eraseFromParent();
8651 return Legalized;
8652 }
8653
shouldLowerMemFuncForSize(const MachineFunction & MF)8654 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
8655 // On Darwin, -Os means optimize for size without hurting performance, so
8656 // only really optimize for size when -Oz (MinSize) is used.
8657 if (MF.getTarget().getTargetTriple().isOSDarwin())
8658 return MF.getFunction().hasMinSize();
8659 return MF.getFunction().hasOptSize();
8660 }
8661
8662 // Returns a list of types to use for memory op lowering in MemOps. A partial
8663 // port of findOptimalMemOpLowering in TargetLowering.
findGISelOptimalMemOpLowering(std::vector<LLT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes,const TargetLowering & TLI)8664 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
8665 unsigned Limit, const MemOp &Op,
8666 unsigned DstAS, unsigned SrcAS,
8667 const AttributeList &FuncAttributes,
8668 const TargetLowering &TLI) {
8669 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
8670 return false;
8671
8672 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
8673
8674 if (Ty == LLT()) {
8675 // Use the largest scalar type whose alignment constraints are satisfied.
8676 // We only need to check DstAlign here as SrcAlign is always greater or
8677 // equal to DstAlign (or zero).
8678 Ty = LLT::scalar(64);
8679 if (Op.isFixedDstAlign())
8680 while (Op.getDstAlign() < Ty.getSizeInBytes() &&
8681 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
8682 Ty = LLT::scalar(Ty.getSizeInBytes());
8683 assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
8684 // FIXME: check for the largest legal type we can load/store to.
8685 }
8686
8687 unsigned NumMemOps = 0;
8688 uint64_t Size = Op.size();
8689 while (Size) {
8690 unsigned TySize = Ty.getSizeInBytes();
8691 while (TySize > Size) {
8692 // For now, only use non-vector load / store's for the left-over pieces.
8693 LLT NewTy = Ty;
8694 // FIXME: check for mem op safety and legality of the types. Not all of
8695 // SDAGisms map cleanly to GISel concepts.
8696 if (NewTy.isVector())
8697 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
8698 NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1));
8699 unsigned NewTySize = NewTy.getSizeInBytes();
8700 assert(NewTySize > 0 && "Could not find appropriate type");
8701
8702 // If the new LLT cannot cover all of the remaining bits, then consider
8703 // issuing a (or a pair of) unaligned and overlapping load / store.
8704 unsigned Fast;
8705 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
8706 MVT VT = getMVTForLLT(Ty);
8707 if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
8708 TLI.allowsMisalignedMemoryAccesses(
8709 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
8710 MachineMemOperand::MONone, &Fast) &&
8711 Fast)
8712 TySize = Size;
8713 else {
8714 Ty = NewTy;
8715 TySize = NewTySize;
8716 }
8717 }
8718
8719 if (++NumMemOps > Limit)
8720 return false;
8721
8722 MemOps.push_back(Ty);
8723 Size -= TySize;
8724 }
8725
8726 return true;
8727 }
8728
8729 // Get a vectorized representation of the memset value operand, GISel edition.
getMemsetValue(Register Val,LLT Ty,MachineIRBuilder & MIB)8730 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
8731 MachineRegisterInfo &MRI = *MIB.getMRI();
8732 unsigned NumBits = Ty.getScalarSizeInBits();
8733 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
8734 if (!Ty.isVector() && ValVRegAndVal) {
8735 APInt Scalar = ValVRegAndVal->Value.trunc(8);
8736 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
8737 return MIB.buildConstant(Ty, SplatVal).getReg(0);
8738 }
8739
8740 // Extend the byte value to the larger type, and then multiply by a magic
8741 // value 0x010101... in order to replicate it across every byte.
8742 // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
8743 if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
8744 return MIB.buildConstant(Ty, 0).getReg(0);
8745 }
8746
8747 LLT ExtType = Ty.getScalarType();
8748 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
8749 if (NumBits > 8) {
8750 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8751 auto MagicMI = MIB.buildConstant(ExtType, Magic);
8752 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
8753 }
8754
8755 // For vector types create a G_BUILD_VECTOR.
8756 if (Ty.isVector())
8757 Val = MIB.buildSplatBuildVector(Ty, Val).getReg(0);
8758
8759 return Val;
8760 }
8761
8762 LegalizerHelper::LegalizeResult
lowerMemset(MachineInstr & MI,Register Dst,Register Val,uint64_t KnownLen,Align Alignment,bool IsVolatile)8763 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
8764 uint64_t KnownLen, Align Alignment,
8765 bool IsVolatile) {
8766 auto &MF = *MI.getParent()->getParent();
8767 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8768 auto &DL = MF.getDataLayout();
8769 LLVMContext &C = MF.getFunction().getContext();
8770
8771 assert(KnownLen != 0 && "Have a zero length memset length!");
8772
8773 bool DstAlignCanChange = false;
8774 MachineFrameInfo &MFI = MF.getFrameInfo();
8775 bool OptSize = shouldLowerMemFuncForSize(MF);
8776
8777 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
8778 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
8779 DstAlignCanChange = true;
8780
8781 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
8782 std::vector<LLT> MemOps;
8783
8784 const auto &DstMMO = **MI.memoperands_begin();
8785 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8786
8787 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
8788 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
8789
8790 if (!findGISelOptimalMemOpLowering(MemOps, Limit,
8791 MemOp::Set(KnownLen, DstAlignCanChange,
8792 Alignment,
8793 /*IsZeroMemset=*/IsZeroVal,
8794 /*IsVolatile=*/IsVolatile),
8795 DstPtrInfo.getAddrSpace(), ~0u,
8796 MF.getFunction().getAttributes(), TLI))
8797 return UnableToLegalize;
8798
8799 if (DstAlignCanChange) {
8800 // Get an estimate of the type from the LLT.
8801 Type *IRTy = getTypeForLLT(MemOps[0], C);
8802 Align NewAlign = DL.getABITypeAlign(IRTy);
8803 if (NewAlign > Alignment) {
8804 Alignment = NewAlign;
8805 unsigned FI = FIDef->getOperand(1).getIndex();
8806 // Give the stack frame object a larger alignment if needed.
8807 if (MFI.getObjectAlign(FI) < Alignment)
8808 MFI.setObjectAlignment(FI, Alignment);
8809 }
8810 }
8811
8812 MachineIRBuilder MIB(MI);
8813 // Find the largest store and generate the bit pattern for it.
8814 LLT LargestTy = MemOps[0];
8815 for (unsigned i = 1; i < MemOps.size(); i++)
8816 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
8817 LargestTy = MemOps[i];
8818
8819 // The memset stored value is always defined as an s8, so in order to make it
8820 // work with larger store types we need to repeat the bit pattern across the
8821 // wider type.
8822 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
8823
8824 if (!MemSetValue)
8825 return UnableToLegalize;
8826
8827 // Generate the stores. For each store type in the list, we generate the
8828 // matching store of that type to the destination address.
8829 LLT PtrTy = MRI.getType(Dst);
8830 unsigned DstOff = 0;
8831 unsigned Size = KnownLen;
8832 for (unsigned I = 0; I < MemOps.size(); I++) {
8833 LLT Ty = MemOps[I];
8834 unsigned TySize = Ty.getSizeInBytes();
8835 if (TySize > Size) {
8836 // Issuing an unaligned load / store pair that overlaps with the previous
8837 // pair. Adjust the offset accordingly.
8838 assert(I == MemOps.size() - 1 && I != 0);
8839 DstOff -= TySize - Size;
8840 }
8841
8842 // If this store is smaller than the largest store see whether we can get
8843 // the smaller value for free with a truncate.
8844 Register Value = MemSetValue;
8845 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
8846 MVT VT = getMVTForLLT(Ty);
8847 MVT LargestVT = getMVTForLLT(LargestTy);
8848 if (!LargestTy.isVector() && !Ty.isVector() &&
8849 TLI.isTruncateFree(LargestVT, VT))
8850 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
8851 else
8852 Value = getMemsetValue(Val, Ty, MIB);
8853 if (!Value)
8854 return UnableToLegalize;
8855 }
8856
8857 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
8858
8859 Register Ptr = Dst;
8860 if (DstOff != 0) {
8861 auto Offset =
8862 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
8863 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
8864 }
8865
8866 MIB.buildStore(Value, Ptr, *StoreMMO);
8867 DstOff += Ty.getSizeInBytes();
8868 Size -= TySize;
8869 }
8870
8871 MI.eraseFromParent();
8872 return Legalized;
8873 }
8874
8875 LegalizerHelper::LegalizeResult
lowerMemcpyInline(MachineInstr & MI)8876 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
8877 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
8878
8879 auto [Dst, Src, Len] = MI.getFirst3Regs();
8880
8881 const auto *MMOIt = MI.memoperands_begin();
8882 const MachineMemOperand *MemOp = *MMOIt;
8883 bool IsVolatile = MemOp->isVolatile();
8884
8885 // See if this is a constant length copy
8886 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
8887 // FIXME: support dynamically sized G_MEMCPY_INLINE
8888 assert(LenVRegAndVal &&
8889 "inline memcpy with dynamic size is not yet supported");
8890 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
8891 if (KnownLen == 0) {
8892 MI.eraseFromParent();
8893 return Legalized;
8894 }
8895
8896 const auto &DstMMO = **MI.memoperands_begin();
8897 const auto &SrcMMO = **std::next(MI.memoperands_begin());
8898 Align DstAlign = DstMMO.getBaseAlign();
8899 Align SrcAlign = SrcMMO.getBaseAlign();
8900
8901 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
8902 IsVolatile);
8903 }
8904
8905 LegalizerHelper::LegalizeResult
lowerMemcpyInline(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,Align DstAlign,Align SrcAlign,bool IsVolatile)8906 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
8907 uint64_t KnownLen, Align DstAlign,
8908 Align SrcAlign, bool IsVolatile) {
8909 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
8910 return lowerMemcpy(MI, Dst, Src, KnownLen,
8911 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
8912 IsVolatile);
8913 }
8914
8915 LegalizerHelper::LegalizeResult
lowerMemcpy(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,uint64_t Limit,Align DstAlign,Align SrcAlign,bool IsVolatile)8916 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
8917 uint64_t KnownLen, uint64_t Limit, Align DstAlign,
8918 Align SrcAlign, bool IsVolatile) {
8919 auto &MF = *MI.getParent()->getParent();
8920 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8921 auto &DL = MF.getDataLayout();
8922 LLVMContext &C = MF.getFunction().getContext();
8923
8924 assert(KnownLen != 0 && "Have a zero length memcpy length!");
8925
8926 bool DstAlignCanChange = false;
8927 MachineFrameInfo &MFI = MF.getFrameInfo();
8928 Align Alignment = std::min(DstAlign, SrcAlign);
8929
8930 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
8931 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
8932 DstAlignCanChange = true;
8933
8934 // FIXME: infer better src pointer alignment like SelectionDAG does here.
8935 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
8936 // if the memcpy is in a tail call position.
8937
8938 std::vector<LLT> MemOps;
8939
8940 const auto &DstMMO = **MI.memoperands_begin();
8941 const auto &SrcMMO = **std::next(MI.memoperands_begin());
8942 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8943 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
8944
8945 if (!findGISelOptimalMemOpLowering(
8946 MemOps, Limit,
8947 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
8948 IsVolatile),
8949 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8950 MF.getFunction().getAttributes(), TLI))
8951 return UnableToLegalize;
8952
8953 if (DstAlignCanChange) {
8954 // Get an estimate of the type from the LLT.
8955 Type *IRTy = getTypeForLLT(MemOps[0], C);
8956 Align NewAlign = DL.getABITypeAlign(IRTy);
8957
8958 // Don't promote to an alignment that would require dynamic stack
8959 // realignment.
8960 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8961 if (!TRI->hasStackRealignment(MF))
8962 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8963 NewAlign = NewAlign.previous();
8964
8965 if (NewAlign > Alignment) {
8966 Alignment = NewAlign;
8967 unsigned FI = FIDef->getOperand(1).getIndex();
8968 // Give the stack frame object a larger alignment if needed.
8969 if (MFI.getObjectAlign(FI) < Alignment)
8970 MFI.setObjectAlignment(FI, Alignment);
8971 }
8972 }
8973
8974 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
8975
8976 MachineIRBuilder MIB(MI);
8977 // Now we need to emit a pair of load and stores for each of the types we've
8978 // collected. I.e. for each type, generate a load from the source pointer of
8979 // that type width, and then generate a corresponding store to the dest buffer
8980 // of that value loaded. This can result in a sequence of loads and stores
8981 // mixed types, depending on what the target specifies as good types to use.
8982 unsigned CurrOffset = 0;
8983 unsigned Size = KnownLen;
8984 for (auto CopyTy : MemOps) {
8985 // Issuing an unaligned load / store pair that overlaps with the previous
8986 // pair. Adjust the offset accordingly.
8987 if (CopyTy.getSizeInBytes() > Size)
8988 CurrOffset -= CopyTy.getSizeInBytes() - Size;
8989
8990 // Construct MMOs for the accesses.
8991 auto *LoadMMO =
8992 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
8993 auto *StoreMMO =
8994 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
8995
8996 // Create the load.
8997 Register LoadPtr = Src;
8998 Register Offset;
8999 if (CurrOffset != 0) {
9000 LLT SrcTy = MRI.getType(Src);
9001 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
9002 .getReg(0);
9003 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
9004 }
9005 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
9006
9007 // Create the store.
9008 Register StorePtr = Dst;
9009 if (CurrOffset != 0) {
9010 LLT DstTy = MRI.getType(Dst);
9011 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
9012 }
9013 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
9014 CurrOffset += CopyTy.getSizeInBytes();
9015 Size -= CopyTy.getSizeInBytes();
9016 }
9017
9018 MI.eraseFromParent();
9019 return Legalized;
9020 }
9021
9022 LegalizerHelper::LegalizeResult
lowerMemmove(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,Align DstAlign,Align SrcAlign,bool IsVolatile)9023 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
9024 uint64_t KnownLen, Align DstAlign, Align SrcAlign,
9025 bool IsVolatile) {
9026 auto &MF = *MI.getParent()->getParent();
9027 const auto &TLI = *MF.getSubtarget().getTargetLowering();
9028 auto &DL = MF.getDataLayout();
9029 LLVMContext &C = MF.getFunction().getContext();
9030
9031 assert(KnownLen != 0 && "Have a zero length memmove length!");
9032
9033 bool DstAlignCanChange = false;
9034 MachineFrameInfo &MFI = MF.getFrameInfo();
9035 bool OptSize = shouldLowerMemFuncForSize(MF);
9036 Align Alignment = std::min(DstAlign, SrcAlign);
9037
9038 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
9039 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
9040 DstAlignCanChange = true;
9041
9042 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
9043 std::vector<LLT> MemOps;
9044
9045 const auto &DstMMO = **MI.memoperands_begin();
9046 const auto &SrcMMO = **std::next(MI.memoperands_begin());
9047 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
9048 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
9049
9050 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
9051 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
9052 // same thing here.
9053 if (!findGISelOptimalMemOpLowering(
9054 MemOps, Limit,
9055 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
9056 /*IsVolatile*/ true),
9057 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
9058 MF.getFunction().getAttributes(), TLI))
9059 return UnableToLegalize;
9060
9061 if (DstAlignCanChange) {
9062 // Get an estimate of the type from the LLT.
9063 Type *IRTy = getTypeForLLT(MemOps[0], C);
9064 Align NewAlign = DL.getABITypeAlign(IRTy);
9065
9066 // Don't promote to an alignment that would require dynamic stack
9067 // realignment.
9068 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
9069 if (!TRI->hasStackRealignment(MF))
9070 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
9071 NewAlign = NewAlign.previous();
9072
9073 if (NewAlign > Alignment) {
9074 Alignment = NewAlign;
9075 unsigned FI = FIDef->getOperand(1).getIndex();
9076 // Give the stack frame object a larger alignment if needed.
9077 if (MFI.getObjectAlign(FI) < Alignment)
9078 MFI.setObjectAlignment(FI, Alignment);
9079 }
9080 }
9081
9082 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
9083
9084 MachineIRBuilder MIB(MI);
9085 // Memmove requires that we perform the loads first before issuing the stores.
9086 // Apart from that, this loop is pretty much doing the same thing as the
9087 // memcpy codegen function.
9088 unsigned CurrOffset = 0;
9089 SmallVector<Register, 16> LoadVals;
9090 for (auto CopyTy : MemOps) {
9091 // Construct MMO for the load.
9092 auto *LoadMMO =
9093 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
9094
9095 // Create the load.
9096 Register LoadPtr = Src;
9097 if (CurrOffset != 0) {
9098 LLT SrcTy = MRI.getType(Src);
9099 auto Offset =
9100 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
9101 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
9102 }
9103 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
9104 CurrOffset += CopyTy.getSizeInBytes();
9105 }
9106
9107 CurrOffset = 0;
9108 for (unsigned I = 0; I < MemOps.size(); ++I) {
9109 LLT CopyTy = MemOps[I];
9110 // Now store the values loaded.
9111 auto *StoreMMO =
9112 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
9113
9114 Register StorePtr = Dst;
9115 if (CurrOffset != 0) {
9116 LLT DstTy = MRI.getType(Dst);
9117 auto Offset =
9118 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
9119 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
9120 }
9121 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
9122 CurrOffset += CopyTy.getSizeInBytes();
9123 }
9124 MI.eraseFromParent();
9125 return Legalized;
9126 }
9127
9128 LegalizerHelper::LegalizeResult
lowerMemCpyFamily(MachineInstr & MI,unsigned MaxLen)9129 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
9130 const unsigned Opc = MI.getOpcode();
9131 // This combine is fairly complex so it's not written with a separate
9132 // matcher function.
9133 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
9134 Opc == TargetOpcode::G_MEMSET) &&
9135 "Expected memcpy like instruction");
9136
9137 auto MMOIt = MI.memoperands_begin();
9138 const MachineMemOperand *MemOp = *MMOIt;
9139
9140 Align DstAlign = MemOp->getBaseAlign();
9141 Align SrcAlign;
9142 auto [Dst, Src, Len] = MI.getFirst3Regs();
9143
9144 if (Opc != TargetOpcode::G_MEMSET) {
9145 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
9146 MemOp = *(++MMOIt);
9147 SrcAlign = MemOp->getBaseAlign();
9148 }
9149
9150 // See if this is a constant length copy
9151 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
9152 if (!LenVRegAndVal)
9153 return UnableToLegalize;
9154 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
9155
9156 if (KnownLen == 0) {
9157 MI.eraseFromParent();
9158 return Legalized;
9159 }
9160
9161 bool IsVolatile = MemOp->isVolatile();
9162 if (Opc == TargetOpcode::G_MEMCPY_INLINE)
9163 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
9164 IsVolatile);
9165
9166 // Don't try to optimize volatile.
9167 if (IsVolatile)
9168 return UnableToLegalize;
9169
9170 if (MaxLen && KnownLen > MaxLen)
9171 return UnableToLegalize;
9172
9173 if (Opc == TargetOpcode::G_MEMCPY) {
9174 auto &MF = *MI.getParent()->getParent();
9175 const auto &TLI = *MF.getSubtarget().getTargetLowering();
9176 bool OptSize = shouldLowerMemFuncForSize(MF);
9177 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
9178 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
9179 IsVolatile);
9180 }
9181 if (Opc == TargetOpcode::G_MEMMOVE)
9182 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
9183 if (Opc == TargetOpcode::G_MEMSET)
9184 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
9185 return UnableToLegalize;
9186 }
9187