1 /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * IPsec controller part.
36 */
37
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/priv.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/errno.h>
52 #include <sys/hhook.h>
53 #include <sys/time.h>
54 #include <sys/kernel.h>
55 #include <sys/syslog.h>
56 #include <sys/sysctl.h>
57 #include <sys/proc.h>
58
59 #include <net/if.h>
60 #include <net/if_enc.h>
61 #include <net/if_var.h>
62 #include <net/vnet.h>
63
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/in_var.h>
69 #include <netinet/udp.h>
70 #include <netinet/udp_var.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73
74 #include <netinet/ip6.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #endif
78 #include <netinet/in_pcb.h>
79 #ifdef INET6
80 #include <netinet/icmp6.h>
81 #endif
82
83 #include <sys/types.h>
84 #include <netipsec/ipsec.h>
85 #ifdef INET6
86 #include <netipsec/ipsec6.h>
87 #endif
88 #include <netipsec/ipsec_offload.h>
89 #include <netipsec/ah_var.h>
90 #include <netipsec/esp_var.h>
91 #include <netipsec/ipcomp.h> /*XXX*/
92 #include <netipsec/ipcomp_var.h>
93 #include <netipsec/ipsec_support.h>
94
95 #include <netipsec/key.h>
96 #include <netipsec/keydb.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/xform.h>
100
101 #include <machine/in_cksum.h>
102
103 #include <opencrypto/cryptodev.h>
104
105 /* NB: name changed so netstat doesn't use it. */
106 VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec4stat);
107 VNET_PCPUSTAT_SYSINIT(ipsec4stat);
108
109 #ifdef VIMAGE
110 VNET_PCPUSTAT_SYSUNINIT(ipsec4stat);
111 #endif /* VIMAGE */
112
113 /* DF bit on encap. 0: clear 1: set 2: copy */
114 VNET_DEFINE(int, ip4_ipsec_dfbit) = 0;
115 VNET_DEFINE(int, ip4_ipsec_min_pmtu) = 576;
116 VNET_DEFINE(int, ip4_esp_trans_deflev) = IPSEC_LEVEL_USE;
117 VNET_DEFINE(int, ip4_esp_net_deflev) = IPSEC_LEVEL_USE;
118 VNET_DEFINE(int, ip4_ah_trans_deflev) = IPSEC_LEVEL_USE;
119 VNET_DEFINE(int, ip4_ah_net_deflev) = IPSEC_LEVEL_USE;
120 /* ECN ignore(-1)/forbidden(0)/allowed(1) */
121 VNET_DEFINE(int, ip4_ipsec_ecn) = 0;
122 VNET_DEFINE(int, ip4_ipsec_random_id) = 0;
123
124 VNET_DEFINE_STATIC(int, ip4_filtertunnel) = 0;
125 #define V_ip4_filtertunnel VNET(ip4_filtertunnel)
126 VNET_DEFINE_STATIC(int, check_policy_history) = 0;
127 #define V_check_policy_history VNET(check_policy_history)
128 VNET_DEFINE_STATIC(struct secpolicy *, def_policy) = NULL;
129 #define V_def_policy VNET(def_policy)
130 static int
sysctl_def_policy(SYSCTL_HANDLER_ARGS)131 sysctl_def_policy(SYSCTL_HANDLER_ARGS)
132 {
133 int error, value;
134
135 value = V_def_policy->policy;
136 error = sysctl_handle_int(oidp, &value, 0, req);
137 if (error == 0) {
138 if (value != IPSEC_POLICY_DISCARD &&
139 value != IPSEC_POLICY_NONE)
140 return (EINVAL);
141 V_def_policy->policy = value;
142 }
143 return (error);
144 }
145
146 /*
147 * Crypto support requirements:
148 *
149 * 1 require hardware support
150 * -1 require software support
151 * 0 take anything
152 */
153 VNET_DEFINE(int, crypto_support) = CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE;
154
155 /*
156 * Use asynchronous mode to parallelize crypto jobs:
157 *
158 * 0 - disabled
159 * 1 - enabled
160 */
161 VNET_DEFINE(int, async_crypto) = 0;
162
163 /*
164 * TCP/UDP checksum handling policy for transport mode NAT-T (RFC3948)
165 *
166 * 0 - auto: incrementally recompute, when checksum delta is known;
167 * if checksum delta isn't known, reset checksum to zero for UDP,
168 * and mark csum_flags as valid for TCP.
169 * 1 - fully recompute TCP/UDP checksum.
170 */
171 VNET_DEFINE(int, natt_cksum_policy) = 0;
172
173 FEATURE(ipsec, "Internet Protocol Security (IPsec)");
174 FEATURE(ipsec_natt, "UDP Encapsulation of IPsec ESP Packets ('NAT-T')");
175
176 /* net.inet.ipsec */
177 SYSCTL_PROC(_net_inet_ipsec, IPSECCTL_DEF_POLICY, def_policy,
178 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
179 0, 0, sysctl_def_policy, "I",
180 "IPsec default policy.");
181 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
182 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_trans_deflev), 0,
183 "Default ESP transport mode level");
184 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
185 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_net_deflev), 0,
186 "Default ESP tunnel mode level.");
187 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
188 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_trans_deflev), 0,
189 "AH transfer mode default level.");
190 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
191 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_net_deflev), 0,
192 "AH tunnel mode default level.");
193 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_CLEARTOS, ah_cleartos,
194 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ah_cleartos), 0,
195 "If set, clear type-of-service field when doing AH computation.");
196 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DFBIT, dfbit,
197 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_dfbit), 0,
198 "Do not fragment bit on encap.");
199 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_MIN_PMTU, min_pmtu,
200 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_min_pmtu), 0,
201 "Lowest acceptable PMTU value.");
202 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ECN, ecn,
203 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_ecn), 0,
204 "Explicit Congestion Notification handling.");
205 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_RANDOM_ID, random_id,
206 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_random_id), 0,
207 "Assign random ip_id values.");
208 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, crypto_support,
209 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(crypto_support), 0,
210 "Crypto driver selection.");
211 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, async_crypto,
212 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(async_crypto), 0,
213 "Use asynchronous mode to parallelize crypto jobs.");
214 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, check_policy_history,
215 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(check_policy_history), 0,
216 "Use strict check of inbound packets to security policy compliance.");
217 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, natt_cksum_policy,
218 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(natt_cksum_policy), 0,
219 "Method to fix TCP/UDP checksum for transport mode IPsec after NAT.");
220 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, filtertunnel,
221 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_filtertunnel), 0,
222 "If set, filter packets from an IPsec tunnel.");
223 SYSCTL_VNET_PCPUSTAT(_net_inet_ipsec, OID_AUTO, ipsecstats, struct ipsecstat,
224 ipsec4stat, "IPsec IPv4 statistics.");
225
226 #ifdef REGRESSION
227 /*
228 * When set to 1, IPsec will send packets with the same sequence number.
229 * This allows to verify if the other side has proper replay attacks detection.
230 */
231 VNET_DEFINE(int, ipsec_replay) = 0;
232 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_replay,
233 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_replay), 0,
234 "Emulate replay attack");
235 /*
236 * When set 1, IPsec will send packets with corrupted HMAC.
237 * This allows to verify if the other side properly detects modified packets.
238 */
239 VNET_DEFINE(int, ipsec_integrity) = 0;
240 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_integrity,
241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_integrity), 0,
242 "Emulate man-in-the-middle attack");
243 #endif
244
245 #ifdef INET6
246 VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec6stat);
247 VNET_PCPUSTAT_SYSINIT(ipsec6stat);
248
249 #ifdef VIMAGE
250 VNET_PCPUSTAT_SYSUNINIT(ipsec6stat);
251 #endif /* VIMAGE */
252
253 VNET_DEFINE(int, ip6_esp_trans_deflev) = IPSEC_LEVEL_USE;
254 VNET_DEFINE(int, ip6_esp_net_deflev) = IPSEC_LEVEL_USE;
255 VNET_DEFINE(int, ip6_ah_trans_deflev) = IPSEC_LEVEL_USE;
256 VNET_DEFINE(int, ip6_ah_net_deflev) = IPSEC_LEVEL_USE;
257 VNET_DEFINE(int, ip6_ipsec_ecn) = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
258
259 VNET_DEFINE_STATIC(int, ip6_filtertunnel) = 0;
260 #define V_ip6_filtertunnel VNET(ip6_filtertunnel)
261
262 /* net.inet6.ipsec6 */
263 SYSCTL_PROC(_net_inet6_ipsec6, IPSECCTL_DEF_POLICY, def_policy,
264 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
265 0, 0, sysctl_def_policy, "I",
266 "IPsec default policy.");
267 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
268 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_trans_deflev), 0,
269 "Default ESP transport mode level.");
270 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
271 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_net_deflev), 0,
272 "Default ESP tunnel mode level.");
273 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
274 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_trans_deflev), 0,
275 "AH transfer mode default level.");
276 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
277 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_net_deflev), 0,
278 "AH tunnel mode default level.");
279 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ECN, ecn,
280 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ipsec_ecn), 0,
281 "Explicit Congestion Notification handling.");
282 SYSCTL_INT(_net_inet6_ipsec6, OID_AUTO, filtertunnel,
283 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_filtertunnel), 0,
284 "If set, filter packets from an IPsec tunnel.");
285 SYSCTL_VNET_PCPUSTAT(_net_inet6_ipsec6, IPSECCTL_STATS, ipsecstats,
286 struct ipsecstat, ipsec6stat, "IPsec IPv6 statistics.");
287 #endif /* INET6 */
288
289 static int ipsec_in_reject(struct secpolicy *, struct inpcb *,
290 const struct mbuf *);
291
292 #ifdef INET
293 static void ipsec4_get_ulp(const struct mbuf *, const struct ip *,
294 struct secpolicyindex *, int);
295 static void ipsec4_setspidx_ipaddr(const struct mbuf *, struct ip *,
296 struct secpolicyindex *);
297 #endif
298 #ifdef INET6
299 static void ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *, int);
300 static void ipsec6_setspidx_ipaddr(const struct mbuf *,
301 struct secpolicyindex *);
302 #endif
303
304 /*
305 * Return a held reference to the default SP.
306 */
307 static struct secpolicy *
key_allocsp_default(void)308 key_allocsp_default(void)
309 {
310
311 key_addref(V_def_policy);
312 return (V_def_policy);
313 }
314
315 static void
ipsec_invalidate_cache(struct inpcb * inp,u_int dir)316 ipsec_invalidate_cache(struct inpcb *inp, u_int dir)
317 {
318 struct secpolicy *sp;
319
320 INP_WLOCK_ASSERT(inp);
321 if (dir == IPSEC_DIR_OUTBOUND) {
322 if (inp->inp_sp->flags & INP_INBOUND_POLICY)
323 return;
324 sp = inp->inp_sp->sp_in;
325 inp->inp_sp->sp_in = NULL;
326 } else {
327 if (inp->inp_sp->flags & INP_OUTBOUND_POLICY)
328 return;
329 sp = inp->inp_sp->sp_out;
330 inp->inp_sp->sp_out = NULL;
331 }
332 if (sp != NULL)
333 key_freesp(&sp); /* release extra reference */
334 }
335
336 static void
ipsec_cachepolicy(struct inpcb * inp,struct secpolicy * sp,u_int dir)337 ipsec_cachepolicy(struct inpcb *inp, struct secpolicy *sp, u_int dir)
338 {
339 uint32_t genid;
340 int downgrade;
341
342 INP_LOCK_ASSERT(inp);
343
344 if (dir == IPSEC_DIR_OUTBOUND) {
345 /* Do we have configured PCB policy? */
346 if (inp->inp_sp->flags & INP_OUTBOUND_POLICY)
347 return;
348 /* Another thread has already set cached policy */
349 if (inp->inp_sp->sp_out != NULL)
350 return;
351 /*
352 * Do not cache OUTBOUND policy if PCB isn't connected,
353 * i.e. foreign address is INADDR_ANY/UNSPECIFIED.
354 */
355 #ifdef INET
356 if ((inp->inp_vflag & INP_IPV4) != 0 &&
357 inp->inp_faddr.s_addr == INADDR_ANY)
358 return;
359 #endif
360 #ifdef INET6
361 if ((inp->inp_vflag & INP_IPV6) != 0 &&
362 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
363 return;
364 #endif
365 } else {
366 /* Do we have configured PCB policy? */
367 if (inp->inp_sp->flags & INP_INBOUND_POLICY)
368 return;
369 /* Another thread has already set cached policy */
370 if (inp->inp_sp->sp_in != NULL)
371 return;
372 /*
373 * Do not cache INBOUND policy for listen socket,
374 * that is bound to INADDR_ANY/UNSPECIFIED address.
375 */
376 #ifdef INET
377 if ((inp->inp_vflag & INP_IPV4) != 0 &&
378 inp->inp_faddr.s_addr == INADDR_ANY)
379 return;
380 #endif
381 #ifdef INET6
382 if ((inp->inp_vflag & INP_IPV6) != 0 &&
383 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
384 return;
385 #endif
386 }
387 downgrade = 0;
388 if (!INP_WLOCKED(inp)) {
389 if ((downgrade = INP_TRY_UPGRADE(inp)) == 0)
390 return;
391 }
392 if (dir == IPSEC_DIR_OUTBOUND)
393 inp->inp_sp->sp_out = sp;
394 else
395 inp->inp_sp->sp_in = sp;
396 /*
397 * SP is already referenced by the lookup code.
398 * We take extra reference here to avoid race in the
399 * ipsec_getpcbpolicy() function - SP will not be freed in the
400 * time between we take SP pointer from the cache and key_addref()
401 * call.
402 */
403 key_addref(sp);
404 genid = key_getspgen();
405 if (genid != inp->inp_sp->genid) {
406 ipsec_invalidate_cache(inp, dir);
407 inp->inp_sp->genid = genid;
408 }
409 KEYDBG(IPSEC_STAMP,
410 printf("%s: PCB(%p): cached %s SP(%p)\n",
411 __func__, inp, dir == IPSEC_DIR_OUTBOUND ? "OUTBOUND":
412 "INBOUND", sp));
413 if (downgrade != 0)
414 INP_DOWNGRADE(inp);
415 }
416
417 static struct secpolicy *
ipsec_checkpolicy(struct secpolicy * sp,struct inpcb * inp,int * error)418 ipsec_checkpolicy(struct secpolicy *sp, struct inpcb *inp, int *error)
419 {
420
421 /* Save found OUTBOUND policy into PCB SP cache. */
422 if (inp != NULL && inp->inp_sp != NULL && inp->inp_sp->sp_out == NULL)
423 ipsec_cachepolicy(inp, sp, IPSEC_DIR_OUTBOUND);
424
425 switch (sp->policy) {
426 default:
427 printf("%s: invalid policy %u\n", __func__, sp->policy);
428 /* FALLTHROUGH */
429 case IPSEC_POLICY_DISCARD:
430 *error = -EINVAL; /* Packet is discarded by caller. */
431 /* FALLTHROUGH */
432 case IPSEC_POLICY_BYPASS:
433 case IPSEC_POLICY_NONE:
434 key_freesp(&sp);
435 sp = NULL; /* NB: force NULL result. */
436 break;
437 case IPSEC_POLICY_IPSEC:
438 /* XXXAE: handle LARVAL SP */
439 break;
440 }
441 KEYDBG(IPSEC_DUMP,
442 printf("%s: get SP(%p), error %d\n", __func__, sp, *error));
443 return (sp);
444 }
445
446 static struct secpolicy *
ipsec_getpcbpolicy(struct inpcb * inp,u_int dir)447 ipsec_getpcbpolicy(struct inpcb *inp, u_int dir)
448 {
449 struct secpolicy *sp;
450 int flags, downgrade;
451
452 if (inp == NULL || inp->inp_sp == NULL)
453 return (NULL);
454
455 INP_LOCK_ASSERT(inp);
456
457 flags = inp->inp_sp->flags;
458 if (dir == IPSEC_DIR_OUTBOUND) {
459 sp = inp->inp_sp->sp_out;
460 flags &= INP_OUTBOUND_POLICY;
461 } else {
462 sp = inp->inp_sp->sp_in;
463 flags &= INP_INBOUND_POLICY;
464 }
465 /*
466 * Check flags. If we have PCB SP, just return it.
467 * Otherwise we need to check that cached SP entry isn't stale.
468 */
469 if (flags == 0) {
470 if (sp == NULL)
471 return (NULL);
472 if (inp->inp_sp->genid != key_getspgen()) {
473 /* Invalidate the cache. */
474 downgrade = 0;
475 if (!INP_WLOCKED(inp)) {
476 if ((downgrade = INP_TRY_UPGRADE(inp)) == 0)
477 return (NULL);
478 }
479 ipsec_invalidate_cache(inp, IPSEC_DIR_OUTBOUND);
480 ipsec_invalidate_cache(inp, IPSEC_DIR_INBOUND);
481 if (downgrade != 0)
482 INP_DOWNGRADE(inp);
483 return (NULL);
484 }
485 KEYDBG(IPSEC_STAMP,
486 printf("%s: PCB(%p): cache hit SP(%p)\n",
487 __func__, inp, sp));
488 /* Return referenced cached policy */
489 }
490 key_addref(sp);
491 return (sp);
492 }
493
494 #ifdef INET
495 static void
ipsec4_get_ulp(const struct mbuf * m,const struct ip * ip1,struct secpolicyindex * spidx,int needport)496 ipsec4_get_ulp(const struct mbuf *m, const struct ip *ip1,
497 struct secpolicyindex *spidx, int needport)
498 {
499 uint8_t nxt;
500 int off;
501
502 /* Sanity check. */
503 IPSEC_ASSERT(m->m_pkthdr.len >= sizeof(struct ip),
504 ("packet too short"));
505
506 if (ip1->ip_off & htons(IP_MF | IP_OFFMASK))
507 goto done;
508 off = ip1->ip_hl << 2;
509 nxt = ip1->ip_p;
510
511 while (off < m->m_pkthdr.len) {
512 struct ip6_ext ip6e;
513 struct tcphdr th;
514 struct udphdr uh;
515
516 switch (nxt) {
517 case IPPROTO_TCP:
518 spidx->ul_proto = nxt;
519 if (!needport)
520 goto done_proto;
521 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
522 goto done;
523 m_copydata(m, off, sizeof (th), (caddr_t) &th);
524 spidx->src.sin.sin_port = th.th_sport;
525 spidx->dst.sin.sin_port = th.th_dport;
526 return;
527 case IPPROTO_UDP:
528 spidx->ul_proto = nxt;
529 if (!needport)
530 goto done_proto;
531 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
532 goto done;
533 m_copydata(m, off, sizeof (uh), (caddr_t) &uh);
534 spidx->src.sin.sin_port = uh.uh_sport;
535 spidx->dst.sin.sin_port = uh.uh_dport;
536 return;
537 case IPPROTO_AH:
538 if (off + sizeof(ip6e) > m->m_pkthdr.len)
539 goto done;
540 /* XXX Sigh, this works but is totally bogus. */
541 m_copydata(m, off, sizeof(ip6e), (caddr_t) &ip6e);
542 off += (ip6e.ip6e_len + 2) << 2;
543 nxt = ip6e.ip6e_nxt;
544 break;
545 case IPPROTO_ICMP:
546 default:
547 /* XXX Intermediate headers??? */
548 spidx->ul_proto = nxt;
549 goto done_proto;
550 }
551 }
552 done:
553 spidx->ul_proto = IPSEC_ULPROTO_ANY;
554 done_proto:
555 spidx->src.sin.sin_port = IPSEC_PORT_ANY;
556 spidx->dst.sin.sin_port = IPSEC_PORT_ANY;
557 KEYDBG(IPSEC_DUMP,
558 printf("%s: ", __func__); kdebug_secpolicyindex(spidx, NULL));
559 }
560
561 static void
ipsec4_setspidx_ipaddr(const struct mbuf * m,struct ip * ip1,struct secpolicyindex * spidx)562 ipsec4_setspidx_ipaddr(const struct mbuf *m, struct ip *ip1,
563 struct secpolicyindex *spidx)
564 {
565
566 ipsec4_setsockaddrs(m, ip1, &spidx->src, &spidx->dst);
567 spidx->prefs = sizeof(struct in_addr) << 3;
568 spidx->prefd = sizeof(struct in_addr) << 3;
569 }
570
571 static struct secpolicy *
ipsec4_getpolicy(const struct mbuf * m,struct inpcb * inp,struct ip * ip1,u_int dir,int needport)572 ipsec4_getpolicy(const struct mbuf *m, struct inpcb *inp, struct ip *ip1,
573 u_int dir, int needport)
574 {
575 struct secpolicyindex spidx;
576 struct secpolicy *sp;
577
578 sp = ipsec_getpcbpolicy(inp, dir);
579 if (sp == NULL && key_havesp(dir)) {
580 /* Make an index to look for a policy. */
581 ipsec4_setspidx_ipaddr(m, ip1, &spidx);
582 ipsec4_get_ulp(m, ip1, &spidx, needport);
583 spidx.dir = dir;
584 sp = key_allocsp(&spidx, dir);
585 }
586 if (sp == NULL) /* No SP found, use system default. */
587 sp = key_allocsp_default();
588 return (sp);
589 }
590
591 /*
592 * Check security policy for *OUTBOUND* IPv4 packet.
593 */
594 struct secpolicy *
ipsec4_checkpolicy(const struct mbuf * m,struct inpcb * inp,struct ip * ip1,int * error,int needport)595 ipsec4_checkpolicy(const struct mbuf *m, struct inpcb *inp, struct ip *ip1,
596 int *error, int needport)
597 {
598 struct secpolicy *sp;
599
600 *error = 0;
601 sp = ipsec4_getpolicy(m, inp, ip1, IPSEC_DIR_OUTBOUND, needport);
602 if (sp != NULL)
603 sp = ipsec_checkpolicy(sp, inp, error);
604 if (sp == NULL) {
605 switch (*error) {
606 case 0: /* No IPsec required: BYPASS or NONE */
607 break;
608 case -EINVAL:
609 IPSECSTAT_INC(ips_out_polvio);
610 break;
611 default:
612 IPSECSTAT_INC(ips_out_inval);
613 }
614 }
615 KEYDBG(IPSEC_STAMP,
616 printf("%s: using SP(%p), error %d\n", __func__, sp, *error));
617 if (sp != NULL)
618 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
619 return (sp);
620 }
621
622 /*
623 * Check IPv4 packet against *INBOUND* security policy.
624 * This function is called from tcp_input(), udp_input(),
625 * rip_input() and sctp_input().
626 */
627 int
ipsec4_in_reject1(const struct mbuf * m,struct ip * ip1,struct inpcb * inp)628 ipsec4_in_reject1(const struct mbuf *m, struct ip *ip1, struct inpcb *inp)
629 {
630 struct secpolicy *sp;
631 #ifdef IPSEC_OFFLOAD
632 struct ipsec_accel_in_tag *tag;
633 #endif
634 struct ip ip_hdr;
635 int result;
636
637 #ifdef IPSEC_OFFLOAD
638 tag = ipsec_accel_input_tag_lookup(m);
639 if (tag != NULL)
640 return (0);
641 #endif
642
643 if (ip1 == NULL) {
644 ip1 = &ip_hdr;
645 m_copydata(m, 0, sizeof(*ip1), (char *)ip1);
646 }
647
648 sp = ipsec4_getpolicy(m, inp, ip1, IPSEC_DIR_INBOUND, 0);
649 result = ipsec_in_reject(sp, inp, m);
650 key_freesp(&sp);
651 if (result != 0)
652 IPSECSTAT_INC(ips_in_polvio);
653 return (result);
654 }
655
656 int
ipsec4_in_reject(const struct mbuf * m,struct inpcb * inp)657 ipsec4_in_reject(const struct mbuf *m, struct inpcb *inp)
658 {
659 return (ipsec4_in_reject1(m, NULL, inp));
660 }
661
662 /*
663 * IPSEC_CAP() method implementation for IPv4.
664 */
665 int
ipsec4_capability(struct mbuf * m,u_int cap)666 ipsec4_capability(struct mbuf *m, u_int cap)
667 {
668
669 switch (cap) {
670 case IPSEC_CAP_BYPASS_FILTER:
671 /*
672 * Bypass packet filtering for packets previously handled
673 * by IPsec.
674 */
675 if (!V_ip4_filtertunnel &&
676 m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
677 return (1);
678 return (0);
679 case IPSEC_CAP_OPERABLE:
680 /* Do we have active security policies? */
681 return (key_havesp_any());
682 };
683 return (EOPNOTSUPP);
684 }
685
686 #endif /* INET */
687
688 #ifdef INET6
689 static void
ipsec6_get_ulp(const struct mbuf * m,struct secpolicyindex * spidx,int needport)690 ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *spidx,
691 int needport)
692 {
693 struct tcphdr th;
694 struct udphdr uh;
695 struct icmp6_hdr ih;
696 int off, nxt;
697
698 IPSEC_ASSERT(m->m_pkthdr.len >= sizeof(struct ip6_hdr),
699 ("packet too short"));
700
701 /* Set default. */
702 spidx->ul_proto = IPSEC_ULPROTO_ANY;
703 spidx->src.sin6.sin6_port = IPSEC_PORT_ANY;
704 spidx->dst.sin6.sin6_port = IPSEC_PORT_ANY;
705
706 nxt = -1;
707 off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
708 if (off < 0 || m->m_pkthdr.len < off)
709 return;
710
711 switch (nxt) {
712 case IPPROTO_TCP:
713 spidx->ul_proto = nxt;
714 if (!needport)
715 break;
716 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
717 break;
718 m_copydata(m, off, sizeof(th), (caddr_t)&th);
719 spidx->src.sin6.sin6_port = th.th_sport;
720 spidx->dst.sin6.sin6_port = th.th_dport;
721 break;
722 case IPPROTO_UDP:
723 spidx->ul_proto = nxt;
724 if (!needport)
725 break;
726 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
727 break;
728 m_copydata(m, off, sizeof(uh), (caddr_t)&uh);
729 spidx->src.sin6.sin6_port = uh.uh_sport;
730 spidx->dst.sin6.sin6_port = uh.uh_dport;
731 break;
732 case IPPROTO_ICMPV6:
733 spidx->ul_proto = nxt;
734 if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len)
735 break;
736 m_copydata(m, off, sizeof(ih), (caddr_t)&ih);
737 spidx->src.sin6.sin6_port = htons((uint16_t)ih.icmp6_type);
738 spidx->dst.sin6.sin6_port = htons((uint16_t)ih.icmp6_code);
739 break;
740 default:
741 /* XXX Intermediate headers??? */
742 spidx->ul_proto = nxt;
743 break;
744 }
745 KEYDBG(IPSEC_DUMP,
746 printf("%s: ", __func__); kdebug_secpolicyindex(spidx, NULL));
747 }
748
749 static void
ipsec6_setspidx_ipaddr(const struct mbuf * m,struct secpolicyindex * spidx)750 ipsec6_setspidx_ipaddr(const struct mbuf *m, struct secpolicyindex *spidx)
751 {
752
753 ipsec6_setsockaddrs(m, &spidx->src, &spidx->dst);
754 spidx->prefs = sizeof(struct in6_addr) << 3;
755 spidx->prefd = sizeof(struct in6_addr) << 3;
756 }
757
758 static struct secpolicy *
ipsec6_getpolicy(const struct mbuf * m,struct inpcb * inp,u_int dir,int needport)759 ipsec6_getpolicy(const struct mbuf *m, struct inpcb *inp, u_int dir,
760 int needport)
761 {
762 struct secpolicyindex spidx;
763 struct secpolicy *sp;
764
765 sp = ipsec_getpcbpolicy(inp, dir);
766 if (sp == NULL && key_havesp(dir)) {
767 /* Make an index to look for a policy. */
768 ipsec6_setspidx_ipaddr(m, &spidx);
769 ipsec6_get_ulp(m, &spidx, needport);
770 spidx.dir = dir;
771 sp = key_allocsp(&spidx, dir);
772 }
773 if (sp == NULL) /* No SP found, use system default. */
774 sp = key_allocsp_default();
775 return (sp);
776 }
777
778 /*
779 * Check security policy for *OUTBOUND* IPv6 packet.
780 */
781 struct secpolicy *
ipsec6_checkpolicy(const struct mbuf * m,struct inpcb * inp,int * error,int needport)782 ipsec6_checkpolicy(const struct mbuf *m, struct inpcb *inp, int *error,
783 int needport)
784 {
785 struct secpolicy *sp;
786
787 *error = 0;
788 sp = ipsec6_getpolicy(m, inp, IPSEC_DIR_OUTBOUND, needport);
789 if (sp != NULL)
790 sp = ipsec_checkpolicy(sp, inp, error);
791 if (sp == NULL) {
792 switch (*error) {
793 case 0: /* No IPsec required: BYPASS or NONE */
794 break;
795 case -EINVAL:
796 IPSEC6STAT_INC(ips_out_polvio);
797 break;
798 default:
799 IPSEC6STAT_INC(ips_out_inval);
800 }
801 }
802 KEYDBG(IPSEC_STAMP,
803 printf("%s: using SP(%p), error %d\n", __func__, sp, *error));
804 if (sp != NULL)
805 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
806 return (sp);
807 }
808
809 /*
810 * Check IPv6 packet against inbound security policy.
811 * This function is called from tcp6_input(), udp6_input(),
812 * rip6_input() and sctp_input().
813 */
814 int
ipsec6_in_reject(const struct mbuf * m,struct inpcb * inp)815 ipsec6_in_reject(const struct mbuf *m, struct inpcb *inp)
816 {
817 struct secpolicy *sp;
818 #ifdef IPSEC_OFFLOAD
819 struct ipsec_accel_in_tag *tag;
820 #endif
821 int result;
822
823 #ifdef IPSEC_OFFLOAD
824 tag = ipsec_accel_input_tag_lookup(m);
825 if (tag != NULL)
826 return (0);
827 #endif
828 sp = ipsec6_getpolicy(m, inp, IPSEC_DIR_INBOUND, 0);
829 result = ipsec_in_reject(sp, inp, m);
830 key_freesp(&sp);
831 if (result)
832 IPSEC6STAT_INC(ips_in_polvio);
833 return (result);
834 }
835
836 /*
837 * IPSEC_CAP() method implementation for IPv6.
838 */
839 int
ipsec6_capability(struct mbuf * m,u_int cap)840 ipsec6_capability(struct mbuf *m, u_int cap)
841 {
842
843 switch (cap) {
844 case IPSEC_CAP_BYPASS_FILTER:
845 /*
846 * Bypass packet filtering for packets previously handled
847 * by IPsec.
848 */
849 if (!V_ip6_filtertunnel &&
850 m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
851 return (1);
852 return (0);
853 case IPSEC_CAP_OPERABLE:
854 /* Do we have active security policies? */
855 return (key_havesp_any());
856 };
857 return (EOPNOTSUPP);
858 }
859 #endif /* INET6 */
860
861 int
ipsec_run_hhooks(struct ipsec_ctx_data * ctx,int type)862 ipsec_run_hhooks(struct ipsec_ctx_data *ctx, int type)
863 {
864 int idx;
865
866 switch (ctx->af) {
867 #ifdef INET
868 case AF_INET:
869 idx = HHOOK_IPSEC_INET;
870 break;
871 #endif
872 #ifdef INET6
873 case AF_INET6:
874 idx = HHOOK_IPSEC_INET6;
875 break;
876 #endif
877 default:
878 return (EPFNOSUPPORT);
879 }
880 if (type == HHOOK_TYPE_IPSEC_IN)
881 HHOOKS_RUN_IF(V_ipsec_hhh_in[idx], ctx, NULL);
882 else
883 HHOOKS_RUN_IF(V_ipsec_hhh_out[idx], ctx, NULL);
884 if (*ctx->mp == NULL)
885 return (EACCES);
886 return (0);
887 }
888
889 /*
890 * Return current level.
891 * Either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE are always returned.
892 */
893 u_int
ipsec_get_reqlevel(struct secpolicy * sp,u_int idx)894 ipsec_get_reqlevel(struct secpolicy *sp, u_int idx)
895 {
896 struct ipsecrequest *isr;
897 u_int esp_trans_deflev, esp_net_deflev;
898 u_int ah_trans_deflev, ah_net_deflev;
899 u_int level = 0;
900
901 IPSEC_ASSERT(idx < sp->tcount, ("Wrong IPsec request index %d", idx));
902 /* XXX Note that we have ipseclog() expanded here - code sync issue. */
903 #define IPSEC_CHECK_DEFAULT(lev) \
904 (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE && \
905 (lev) != IPSEC_LEVEL_UNIQUE) \
906 ? (V_ipsec_debug ? \
907 log(LOG_INFO, "fixed system default level " #lev ":%d->%d\n",\
908 (lev), IPSEC_LEVEL_REQUIRE) : 0), \
909 (lev) = IPSEC_LEVEL_REQUIRE, (lev) : (lev))
910
911 /*
912 * IPsec VTI uses unique security policy with fake spidx filled
913 * with zeroes. Just return IPSEC_LEVEL_REQUIRE instead of doing
914 * full level lookup for such policies.
915 */
916 if (sp->state == IPSEC_SPSTATE_IFNET) {
917 IPSEC_ASSERT(sp->req[idx]->level == IPSEC_LEVEL_UNIQUE,
918 ("Wrong IPsec request level %d", sp->req[idx]->level));
919 return (IPSEC_LEVEL_REQUIRE);
920 }
921
922 /* Set default level. */
923 switch (sp->spidx.src.sa.sa_family) {
924 #ifdef INET
925 case AF_INET:
926 esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_trans_deflev);
927 esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_net_deflev);
928 ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_trans_deflev);
929 ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_net_deflev);
930 break;
931 #endif
932 #ifdef INET6
933 case AF_INET6:
934 esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_trans_deflev);
935 esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_net_deflev);
936 ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_trans_deflev);
937 ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_net_deflev);
938 break;
939 #endif /* INET6 */
940 default:
941 panic("%s: unknown af %u",
942 __func__, sp->spidx.src.sa.sa_family);
943 }
944
945 #undef IPSEC_CHECK_DEFAULT
946
947 isr = sp->req[idx];
948 /* Set level. */
949 switch (isr->level) {
950 case IPSEC_LEVEL_DEFAULT:
951 switch (isr->saidx.proto) {
952 case IPPROTO_ESP:
953 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
954 level = esp_net_deflev;
955 else
956 level = esp_trans_deflev;
957 break;
958 case IPPROTO_AH:
959 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
960 level = ah_net_deflev;
961 else
962 level = ah_trans_deflev;
963 break;
964 case IPPROTO_IPCOMP:
965 /*
966 * We don't really care, as IPcomp document says that
967 * we shouldn't compress small packets.
968 */
969 level = IPSEC_LEVEL_USE;
970 break;
971 default:
972 panic("%s: Illegal protocol defined %u\n", __func__,
973 isr->saidx.proto);
974 }
975 break;
976
977 case IPSEC_LEVEL_USE:
978 case IPSEC_LEVEL_REQUIRE:
979 level = isr->level;
980 break;
981 case IPSEC_LEVEL_UNIQUE:
982 level = IPSEC_LEVEL_REQUIRE;
983 break;
984
985 default:
986 panic("%s: Illegal IPsec level %u\n", __func__, isr->level);
987 }
988
989 return (level);
990 }
991
992 static int
ipsec_check_history(const struct mbuf * m,struct secpolicy * sp,u_int idx)993 ipsec_check_history(const struct mbuf *m, struct secpolicy *sp, u_int idx)
994 {
995 struct xform_history *xh;
996 struct m_tag *mtag;
997
998 mtag = NULL;
999 while ((mtag = m_tag_find(__DECONST(struct mbuf *, m),
1000 PACKET_TAG_IPSEC_IN_DONE, mtag)) != NULL) {
1001 xh = (struct xform_history *)(mtag + 1);
1002 KEYDBG(IPSEC_DATA,
1003 char buf[IPSEC_ADDRSTRLEN];
1004 printf("%s: mode %s proto %u dst %s\n", __func__,
1005 kdebug_secasindex_mode(xh->mode), xh->proto,
1006 ipsec_address(&xh->dst, buf, sizeof(buf))));
1007 if (xh->proto != sp->req[idx]->saidx.proto)
1008 continue;
1009 /* If SA had IPSEC_MODE_ANY, consider this as match. */
1010 if (xh->mode != sp->req[idx]->saidx.mode &&
1011 xh->mode != IPSEC_MODE_ANY)
1012 continue;
1013 /*
1014 * For transport mode IPsec request doesn't contain
1015 * addresses. We need to use address from spidx.
1016 */
1017 if (sp->req[idx]->saidx.mode == IPSEC_MODE_TRANSPORT) {
1018 if (key_sockaddrcmp_withmask(&xh->dst.sa,
1019 &sp->spidx.dst.sa, sp->spidx.prefd) != 0)
1020 continue;
1021 } else {
1022 if (key_sockaddrcmp(&xh->dst.sa,
1023 &sp->req[idx]->saidx.dst.sa, 0) != 0)
1024 continue;
1025 }
1026 return (0); /* matched */
1027 }
1028 return (1);
1029 }
1030
1031 /*
1032 * Check security policy requirements against the actual
1033 * packet contents. Return one if the packet should be
1034 * rejected as "invalid"; otherwise return zero to have the
1035 * packet treated as "valid".
1036 *
1037 * OUT:
1038 * 0: valid
1039 * 1: invalid
1040 */
1041 static int
ipsec_in_reject(struct secpolicy * sp,struct inpcb * inp,const struct mbuf * m)1042 ipsec_in_reject(struct secpolicy *sp, struct inpcb *inp, const struct mbuf *m)
1043 {
1044 int i;
1045
1046 KEYDBG(IPSEC_STAMP,
1047 printf("%s: PCB(%p): using SP(%p)\n", __func__, inp, sp));
1048 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1049
1050 if (inp != NULL && inp->inp_sp != NULL && inp->inp_sp->sp_in == NULL)
1051 ipsec_cachepolicy(inp, sp, IPSEC_DIR_INBOUND);
1052
1053 /* Check policy. */
1054 switch (sp->policy) {
1055 case IPSEC_POLICY_DISCARD:
1056 return (1);
1057 case IPSEC_POLICY_BYPASS:
1058 case IPSEC_POLICY_NONE:
1059 return (0);
1060 }
1061
1062 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
1063 ("invalid policy %u", sp->policy));
1064
1065 /*
1066 * ipsec[46]_common_input_cb after each transform adds
1067 * PACKET_TAG_IPSEC_IN_DONE mbuf tag. It contains SPI, proto, mode
1068 * and destination address from saidx. We can compare info from
1069 * these tags with requirements in SP.
1070 */
1071 for (i = 0; i < sp->tcount; i++) {
1072 /*
1073 * Do not check IPcomp, since IPcomp document
1074 * says that we shouldn't compress small packets.
1075 * IPComp policy should always be treated as being
1076 * in "use" level.
1077 */
1078 if (sp->req[i]->saidx.proto == IPPROTO_IPCOMP ||
1079 ipsec_get_reqlevel(sp, i) != IPSEC_LEVEL_REQUIRE)
1080 continue;
1081 if (V_check_policy_history != 0 &&
1082 ipsec_check_history(m, sp, i) != 0)
1083 return (1);
1084 else switch (sp->req[i]->saidx.proto) {
1085 case IPPROTO_ESP:
1086 if ((m->m_flags & M_DECRYPTED) == 0) {
1087 KEYDBG(IPSEC_DUMP,
1088 printf("%s: ESP m_flags:%x\n", __func__,
1089 m->m_flags));
1090 return (1);
1091 }
1092 break;
1093 case IPPROTO_AH:
1094 if ((m->m_flags & M_AUTHIPHDR) == 0) {
1095 KEYDBG(IPSEC_DUMP,
1096 printf("%s: AH m_flags:%x\n", __func__,
1097 m->m_flags));
1098 return (1);
1099 }
1100 break;
1101 }
1102 }
1103 return (0); /* Valid. */
1104 }
1105
1106 /*
1107 * Compute the byte size to be occupied by IPsec header.
1108 * In case it is tunnelled, it includes the size of outer IP header.
1109 */
1110 size_t
ipsec_hdrsiz_internal(struct secpolicy * sp)1111 ipsec_hdrsiz_internal(struct secpolicy *sp)
1112 {
1113 size_t size;
1114 int i;
1115
1116 KEYDBG(IPSEC_STAMP, printf("%s: using SP(%p)\n", __func__, sp));
1117 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1118
1119 switch (sp->policy) {
1120 case IPSEC_POLICY_DISCARD:
1121 case IPSEC_POLICY_BYPASS:
1122 case IPSEC_POLICY_NONE:
1123 return (0);
1124 }
1125
1126 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
1127 ("invalid policy %u", sp->policy));
1128
1129 /*
1130 * XXX: for each transform we need to lookup suitable SA
1131 * and use info from SA to calculate headers size.
1132 * XXX: for NAT-T we need to cosider UDP header size.
1133 */
1134 size = 0;
1135 for (i = 0; i < sp->tcount; i++) {
1136 switch (sp->req[i]->saidx.proto) {
1137 case IPPROTO_ESP:
1138 size += esp_hdrsiz(NULL);
1139 break;
1140 case IPPROTO_AH:
1141 size += ah_hdrsiz(NULL);
1142 break;
1143 case IPPROTO_IPCOMP:
1144 size += sizeof(struct ipcomp);
1145 break;
1146 }
1147
1148 if (sp->req[i]->saidx.mode == IPSEC_MODE_TUNNEL) {
1149 switch (sp->req[i]->saidx.dst.sa.sa_family) {
1150 #ifdef INET
1151 case AF_INET:
1152 size += sizeof(struct ip);
1153 break;
1154 #endif
1155 #ifdef INET6
1156 case AF_INET6:
1157 size += sizeof(struct ip6_hdr);
1158 break;
1159 #endif
1160 default:
1161 ipseclog((LOG_ERR, "%s: unknown AF %d in "
1162 "IPsec tunnel SA\n", __func__,
1163 sp->req[i]->saidx.dst.sa.sa_family));
1164 break;
1165 }
1166 }
1167 }
1168 return (size);
1169 }
1170
1171 /*
1172 * Compute ESP/AH header size for protocols with PCB, including
1173 * outer IP header. Currently only tcp_output() uses it.
1174 */
1175 size_t
ipsec_hdrsiz_inpcb(struct inpcb * inp)1176 ipsec_hdrsiz_inpcb(struct inpcb *inp)
1177 {
1178 struct secpolicyindex spidx;
1179 struct secpolicy *sp;
1180 size_t sz;
1181
1182 sp = ipsec_getpcbpolicy(inp, IPSEC_DIR_OUTBOUND);
1183 if (sp == NULL && key_havesp(IPSEC_DIR_OUTBOUND)) {
1184 ipsec_setspidx_inpcb(inp, &spidx, IPSEC_DIR_OUTBOUND);
1185 sp = key_allocsp(&spidx, IPSEC_DIR_OUTBOUND);
1186 }
1187 if (sp == NULL)
1188 sp = key_allocsp_default();
1189 sz = ipsec_hdrsiz_internal(sp);
1190 key_freesp(&sp);
1191 return (sz);
1192 }
1193
1194
1195 #define IPSEC_BITMAP_INDEX_MASK(w) (w - 1)
1196 #define IPSEC_REDUNDANT_BIT_SHIFTS 5
1197 #define IPSEC_REDUNDANT_BITS (1 << IPSEC_REDUNDANT_BIT_SHIFTS)
1198 #define IPSEC_BITMAP_LOC_MASK (IPSEC_REDUNDANT_BITS - 1)
1199
1200 /*
1201 * Functions below are responsible for checking and updating bitmap.
1202 * These are used to separate ipsec_chkreplay() and ipsec_updatereplay()
1203 * from window implementation
1204 *
1205 * Based on RFC 6479. Blocks are 32 bits unsigned integers
1206 */
1207
1208 static inline int
check_window(const struct secreplay * replay,uint64_t seq)1209 check_window(const struct secreplay *replay, uint64_t seq)
1210 {
1211 int index, bit_location;
1212
1213 SECREPLAY_ASSERT(replay);
1214
1215 bit_location = seq & IPSEC_BITMAP_LOC_MASK;
1216 index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS)
1217 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size);
1218
1219 /* This packet already seen? */
1220 return ((replay->bitmap)[index] & (1 << bit_location));
1221 }
1222
1223 static inline void
advance_window(const struct secreplay * replay,uint64_t seq)1224 advance_window(const struct secreplay *replay, uint64_t seq)
1225 {
1226 int i;
1227 uint64_t index, index_cur, diff;
1228
1229 SECREPLAY_ASSERT(replay);
1230
1231 index_cur = replay->last >> IPSEC_REDUNDANT_BIT_SHIFTS;
1232 index = seq >> IPSEC_REDUNDANT_BIT_SHIFTS;
1233 diff = index - index_cur;
1234
1235 if (diff > replay->bitmap_size) {
1236 /* something unusual in this case */
1237 diff = replay->bitmap_size;
1238 }
1239
1240 for (i = 0; i < diff; i++) {
1241 replay->bitmap[(i + index_cur + 1)
1242 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size)] = 0;
1243 }
1244 }
1245
1246 static inline void
set_window(const struct secreplay * replay,uint64_t seq)1247 set_window(const struct secreplay *replay, uint64_t seq)
1248 {
1249 int index, bit_location;
1250
1251 SECREPLAY_ASSERT(replay);
1252
1253 bit_location = seq & IPSEC_BITMAP_LOC_MASK;
1254 index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS)
1255 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size);
1256
1257 replay->bitmap[index] |= (1 << bit_location);
1258 }
1259
1260 /*
1261 * Check the variable replay window.
1262 * ipsec_chkreplay() performs replay check before ICV verification.
1263 * ipsec_updatereplay() updates replay bitmap. This must be called after
1264 * ICV verification (it also performs replay check, which is usually done
1265 * beforehand).
1266 * 0 (zero) is returned if packet disallowed, 1 if packet permitted.
1267 *
1268 * Based on RFC 4303
1269 */
1270
1271 int
ipsec_chkreplay(uint32_t seq,uint32_t * seqhigh,struct secasvar * sav)1272 ipsec_chkreplay(uint32_t seq, uint32_t *seqhigh, struct secasvar *sav)
1273 {
1274 char buf[128];
1275 struct secreplay *replay;
1276 uint32_t window;
1277 uint32_t tl, th, bl;
1278 uint32_t seqh;
1279
1280 IPSEC_ASSERT(sav != NULL, ("Null SA"));
1281 IPSEC_ASSERT(sav->replay != NULL, ("Null replay state"));
1282
1283 replay = sav->replay;
1284
1285 /* No need to check replay if disabled. */
1286 if (replay->wsize == 0) {
1287 return (1);
1288 }
1289
1290 SECREPLAY_LOCK(replay);
1291
1292 /* Zero sequence number is not allowed. */
1293 if (seq == 0 && replay->last == 0) {
1294 SECREPLAY_UNLOCK(replay);
1295 return (0);
1296 }
1297
1298 window = replay->wsize << 3; /* Size of window */
1299 tl = (uint32_t)replay->last; /* Top of window, lower part */
1300 th = (uint32_t)(replay->last >> 32); /* Top of window, high part */
1301 bl = tl - window + 1; /* Bottom of window, lower part */
1302
1303 /*
1304 * We keep the high part intact when:
1305 * 1) the seq is within [bl, 0xffffffff] and the whole window is
1306 * within one subspace;
1307 * 2) the seq is within [0, bl) and window spans two subspaces.
1308 */
1309 if ((tl >= window - 1 && seq >= bl) ||
1310 (tl < window - 1 && seq < bl)) {
1311 *seqhigh = th;
1312 if (seq <= tl) {
1313 /* Sequence number inside window - check against replay */
1314 if (check_window(replay, seq)) {
1315 SECREPLAY_UNLOCK(replay);
1316 return (0);
1317 }
1318 }
1319
1320 SECREPLAY_UNLOCK(replay);
1321 /* Sequence number above top of window or not found in bitmap */
1322 return (1);
1323 }
1324
1325 /*
1326 * If ESN is not enabled and packet with highest sequence number
1327 * was received we should report overflow
1328 */
1329 if (tl == 0xffffffff && !(sav->flags & SADB_X_SAFLAGS_ESN)) {
1330 /* Set overflow flag. */
1331 replay->overflow++;
1332
1333 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) {
1334 if (sav->sah->saidx.proto == IPPROTO_ESP)
1335 ESPSTAT_INC(esps_wrap);
1336 else if (sav->sah->saidx.proto == IPPROTO_AH)
1337 AHSTAT_INC(ahs_wrap);
1338 SECREPLAY_UNLOCK(replay);
1339 return (0);
1340 }
1341
1342 ipseclog((LOG_WARNING, "%s: replay counter made %d cycle. %s\n",
1343 __func__, replay->overflow,
1344 ipsec_sa2str(sav, buf, sizeof(buf))));
1345 }
1346
1347 /*
1348 * Seq is within [bl, 0xffffffff] and bl is within
1349 * [0xffffffff-window, 0xffffffff]. This means we got a seq
1350 * which is within our replay window, but in the previous
1351 * subspace.
1352 */
1353 if (tl < window - 1 && seq >= bl) {
1354 if (th == 0)
1355 return (0);
1356 *seqhigh = th - 1;
1357 seqh = th - 1;
1358 if (check_window(replay, seq)) {
1359 SECREPLAY_UNLOCK(replay);
1360 return (0);
1361 }
1362 SECREPLAY_UNLOCK(replay);
1363 return (1);
1364 }
1365
1366 /*
1367 * Seq is within [0, bl) but the whole window is within one subspace.
1368 * This means that seq has wrapped and is in next subspace
1369 */
1370 *seqhigh = th + 1;
1371 seqh = th + 1;
1372
1373 /* Don't let high part wrap. */
1374 if (seqh == 0) {
1375 /* Set overflow flag. */
1376 replay->overflow++;
1377
1378 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) {
1379 if (sav->sah->saidx.proto == IPPROTO_ESP)
1380 ESPSTAT_INC(esps_wrap);
1381 else if (sav->sah->saidx.proto == IPPROTO_AH)
1382 AHSTAT_INC(ahs_wrap);
1383 SECREPLAY_UNLOCK(replay);
1384 return (0);
1385 }
1386
1387 ipseclog((LOG_WARNING, "%s: replay counter made %d cycle. %s\n",
1388 __func__, replay->overflow,
1389 ipsec_sa2str(sav, buf, sizeof(buf))));
1390 }
1391
1392 SECREPLAY_UNLOCK(replay);
1393 return (1);
1394 }
1395
1396 /*
1397 * Check replay counter whether to update or not.
1398 * OUT: 0: OK
1399 * 1: NG
1400 */
1401 int
ipsec_updatereplay(uint32_t seq,struct secasvar * sav)1402 ipsec_updatereplay(uint32_t seq, struct secasvar *sav)
1403 {
1404 struct secreplay *replay;
1405 uint32_t window;
1406 uint32_t tl, th, bl;
1407 uint32_t seqh;
1408
1409 IPSEC_ASSERT(sav != NULL, ("Null SA"));
1410 IPSEC_ASSERT(sav->replay != NULL, ("Null replay state"));
1411
1412 replay = sav->replay;
1413
1414 /* No need to check replay if disabled. */
1415 if (replay->wsize == 0)
1416 return (0);
1417
1418 SECREPLAY_LOCK(replay);
1419
1420 /* Zero sequence number is not allowed. */
1421 if (seq == 0 && replay->last == 0) {
1422 SECREPLAY_UNLOCK(replay);
1423 return (1);
1424 }
1425
1426 window = replay->wsize << 3; /* Size of window */
1427 tl = (uint32_t)replay->last; /* Top of window, lower part */
1428 th = (uint32_t)(replay->last >> 32); /* Top of window, high part */
1429 bl = tl - window + 1; /* Bottom of window, lower part */
1430
1431 /*
1432 * We keep the high part intact when:
1433 * 1) the seq is within [bl, 0xffffffff] and the whole window is
1434 * within one subspace;
1435 * 2) the seq is within [0, bl) and window spans two subspaces.
1436 */
1437 if ((tl >= window - 1 && seq >= bl) ||
1438 (tl < window - 1 && seq < bl)) {
1439 seqh = th;
1440 if (seq <= tl) {
1441 /* Sequence number inside window - check against replay */
1442 if (check_window(replay, seq)) {
1443 SECREPLAY_UNLOCK(replay);
1444 return (1);
1445 }
1446 set_window(replay, seq);
1447 } else {
1448 advance_window(replay, ((uint64_t)seqh << 32) | seq);
1449 set_window(replay, seq);
1450 replay->last = ((uint64_t)seqh << 32) | seq;
1451 }
1452
1453 /* Sequence number above top of window or not found in bitmap */
1454 replay->count++;
1455 SECREPLAY_UNLOCK(replay);
1456 return (0);
1457 }
1458
1459 if (!(sav->flags & SADB_X_SAFLAGS_ESN)) {
1460 SECREPLAY_UNLOCK(replay);
1461 return (1);
1462 }
1463
1464 /*
1465 * Seq is within [bl, 0xffffffff] and bl is within
1466 * [0xffffffff-window, 0xffffffff]. This means we got a seq
1467 * which is within our replay window, but in the previous
1468 * subspace.
1469 */
1470 if (tl < window - 1 && seq >= bl) {
1471 if (th == 0) {
1472 SECREPLAY_UNLOCK(replay);
1473 return (1);
1474 }
1475 if (check_window(replay, seq)) {
1476 SECREPLAY_UNLOCK(replay);
1477 return (1);
1478 }
1479
1480 set_window(replay, seq);
1481 replay->count++;
1482 SECREPLAY_UNLOCK(replay);
1483 return (0);
1484 }
1485
1486 /*
1487 * Seq is within [0, bl) but the whole window is within one subspace.
1488 * This means that seq has wrapped and is in next subspace
1489 */
1490 seqh = th + 1;
1491
1492 /* Don't let high part wrap. */
1493 if (seqh == 0) {
1494 SECREPLAY_UNLOCK(replay);
1495 return (1);
1496 }
1497
1498 advance_window(replay, ((uint64_t)seqh << 32) | seq);
1499 set_window(replay, seq);
1500 replay->last = ((uint64_t)seqh << 32) | seq;
1501 replay->count++;
1502
1503 SECREPLAY_UNLOCK(replay);
1504 return (0);
1505 }
1506 int
ipsec_updateid(struct secasvar * sav,crypto_session_t * new,crypto_session_t * old)1507 ipsec_updateid(struct secasvar *sav, crypto_session_t *new,
1508 crypto_session_t *old)
1509 {
1510 crypto_session_t tmp;
1511
1512 /*
1513 * tdb_cryptoid is initialized by xform_init().
1514 * Then it can be changed only when some crypto error occurred or
1515 * when SA is deleted. We stored used cryptoid in the xform_data
1516 * structure. In case when crypto error occurred and crypto
1517 * subsystem has reinited the session, it returns new cryptoid
1518 * and EAGAIN error code.
1519 *
1520 * This function will be called when we got EAGAIN from crypto
1521 * subsystem.
1522 * *new is cryptoid that was returned by crypto subsystem in
1523 * the crp_sid.
1524 * *old is the original cryptoid that we stored in xform_data.
1525 *
1526 * For first failed request *old == sav->tdb_cryptoid, then
1527 * we update sav->tdb_cryptoid and redo crypto_dispatch().
1528 * For next failed request *old != sav->tdb_cryptoid, then
1529 * we store cryptoid from first request into the *new variable
1530 * and crp_sid from this second session will be returned via
1531 * *old pointer, so caller can release second session.
1532 *
1533 * XXXAE: check this more carefully.
1534 */
1535 KEYDBG(IPSEC_STAMP,
1536 printf("%s: SA(%p) moves cryptoid %p -> %p\n",
1537 __func__, sav, *old, *new));
1538 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1539 SECASVAR_WLOCK(sav);
1540 if (sav->tdb_cryptoid != *old) {
1541 /* cryptoid was already updated */
1542 tmp = *new;
1543 *new = sav->tdb_cryptoid;
1544 *old = tmp;
1545 SECASVAR_WUNLOCK(sav);
1546 return (1);
1547 }
1548 sav->tdb_cryptoid = *new;
1549 SECASVAR_WUNLOCK(sav);
1550 return (0);
1551 }
1552
1553 int
ipsec_initialized(void)1554 ipsec_initialized(void)
1555 {
1556
1557 return (V_def_policy != NULL);
1558 }
1559
1560 static void
def_policy_init(const void * unused __unused)1561 def_policy_init(const void *unused __unused)
1562 {
1563
1564 V_def_policy = key_newsp();
1565 if (V_def_policy != NULL) {
1566 V_def_policy->policy = IPSEC_POLICY_NONE;
1567 /* Force INPCB SP cache invalidation */
1568 key_bumpspgen();
1569 } else
1570 printf("%s: failed to initialize default policy\n", __func__);
1571 }
1572
1573 static void
def_policy_uninit(const void * unused __unused)1574 def_policy_uninit(const void *unused __unused)
1575 {
1576
1577 if (V_def_policy != NULL) {
1578 key_freesp(&V_def_policy);
1579 key_bumpspgen();
1580 }
1581 }
1582
1583 VNET_SYSINIT(def_policy_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
1584 def_policy_init, NULL);
1585 VNET_SYSUNINIT(def_policy_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
1586 def_policy_uninit, NULL);
1587