1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include "opt_ktrace.h"
75 #include "opt_vm.h"
76
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mman.h>
81 #include <sys/mutex.h>
82 #include <sys/pctrie.h>
83 #include <sys/proc.h>
84 #include <sys/racct.h>
85 #include <sys/refcount.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sched.h>
89 #include <sys/sf_buf.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111
112 #define PFBAK 4
113 #define PFFOR 4
114
115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
116
117 #define VM_FAULT_DONTNEED_MIN 1048576
118
119 struct faultstate {
120 /* Fault parameters. */
121 vm_offset_t vaddr;
122 vm_page_t *m_hold;
123 vm_prot_t fault_type;
124 vm_prot_t prot;
125 int fault_flags;
126 boolean_t wired;
127
128 /* Control state. */
129 struct timeval oom_start_time;
130 bool oom_started;
131 int nera;
132 bool can_read_lock;
133
134 /* Page reference for cow. */
135 vm_page_t m_cow;
136
137 /* Current object. */
138 vm_object_t object;
139 vm_pindex_t pindex;
140 vm_page_t m;
141 bool m_needs_zeroing;
142
143 /* Top-level map object. */
144 vm_object_t first_object;
145 vm_pindex_t first_pindex;
146 vm_page_t first_m;
147
148 /* Map state. */
149 vm_map_t map;
150 vm_map_entry_t entry;
151 int map_generation;
152 bool lookup_still_valid;
153
154 /* Vnode if locked. */
155 struct vnode *vp;
156 };
157
158 /*
159 * Return codes for internal fault routines.
160 */
161 enum fault_status {
162 FAULT_SUCCESS = 10000, /* Return success to user. */
163 FAULT_FAILURE, /* Return failure to user. */
164 FAULT_CONTINUE, /* Continue faulting. */
165 FAULT_RESTART, /* Restart fault. */
166 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
167 FAULT_HARD, /* Performed I/O. */
168 FAULT_SOFT, /* Found valid page. */
169 FAULT_PROTECTION_FAILURE, /* Invalid access. */
170 };
171
172 enum fault_next_status {
173 FAULT_NEXT_GOTOBJ = 1,
174 FAULT_NEXT_NOOBJ,
175 FAULT_NEXT_RESTART,
176 };
177
178 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
179 int ahead);
180 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
181 int backward, int forward, bool obj_locked);
182
183 static int vm_pfault_oom_attempts = 3;
184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
185 &vm_pfault_oom_attempts, 0,
186 "Number of page allocation attempts in page fault handler before it "
187 "triggers OOM handling");
188
189 static int vm_pfault_oom_wait = 10;
190 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
191 &vm_pfault_oom_wait, 0,
192 "Number of seconds to wait for free pages before retrying "
193 "the page fault handler");
194
195 static inline void
vm_fault_page_release(vm_page_t * mp)196 vm_fault_page_release(vm_page_t *mp)
197 {
198 vm_page_t m;
199
200 m = *mp;
201 if (m != NULL) {
202 /*
203 * We are likely to loop around again and attempt to busy
204 * this page. Deactivating it leaves it available for
205 * pageout while optimizing fault restarts.
206 */
207 vm_page_deactivate(m);
208 if (vm_page_xbusied(m))
209 vm_page_xunbusy(m);
210 else
211 vm_page_sunbusy(m);
212 *mp = NULL;
213 }
214 }
215
216 static inline void
vm_fault_page_free(vm_page_t * mp)217 vm_fault_page_free(vm_page_t *mp)
218 {
219 vm_page_t m;
220
221 m = *mp;
222 if (m != NULL) {
223 VM_OBJECT_ASSERT_WLOCKED(m->object);
224 if (!vm_page_wired(m))
225 vm_page_free(m);
226 else
227 vm_page_xunbusy(m);
228 *mp = NULL;
229 }
230 }
231
232 /*
233 * Return true if a vm_pager_get_pages() call is needed in order to check
234 * whether the pager might have a particular page, false if it can be determined
235 * immediately that the pager can not have a copy. For swap objects, this can
236 * be checked quickly.
237 */
238 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)239 vm_fault_object_needs_getpages(vm_object_t object)
240 {
241 VM_OBJECT_ASSERT_LOCKED(object);
242
243 return ((object->flags & OBJ_SWAP) == 0 ||
244 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
245 }
246
247 static inline void
vm_fault_unlock_map(struct faultstate * fs)248 vm_fault_unlock_map(struct faultstate *fs)
249 {
250
251 if (fs->lookup_still_valid) {
252 vm_map_lookup_done(fs->map, fs->entry);
253 fs->lookup_still_valid = false;
254 }
255 }
256
257 static void
vm_fault_unlock_vp(struct faultstate * fs)258 vm_fault_unlock_vp(struct faultstate *fs)
259 {
260
261 if (fs->vp != NULL) {
262 vput(fs->vp);
263 fs->vp = NULL;
264 }
265 }
266
267 static bool
vm_fault_might_be_cow(struct faultstate * fs)268 vm_fault_might_be_cow(struct faultstate *fs)
269 {
270 return (fs->object != fs->first_object);
271 }
272
273 static void
vm_fault_deallocate(struct faultstate * fs)274 vm_fault_deallocate(struct faultstate *fs)
275 {
276
277 fs->m_needs_zeroing = true;
278 vm_fault_page_release(&fs->m_cow);
279 vm_fault_page_release(&fs->m);
280 vm_object_pip_wakeup(fs->object);
281 if (vm_fault_might_be_cow(fs)) {
282 VM_OBJECT_WLOCK(fs->first_object);
283 vm_fault_page_free(&fs->first_m);
284 VM_OBJECT_WUNLOCK(fs->first_object);
285 vm_object_pip_wakeup(fs->first_object);
286 }
287 vm_object_deallocate(fs->first_object);
288 vm_fault_unlock_map(fs);
289 vm_fault_unlock_vp(fs);
290 }
291
292 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)293 vm_fault_unlock_and_deallocate(struct faultstate *fs)
294 {
295
296 VM_OBJECT_UNLOCK(fs->object);
297 vm_fault_deallocate(fs);
298 }
299
300 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)301 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
302 {
303 bool need_dirty;
304
305 if (((fs->prot & VM_PROT_WRITE) == 0 &&
306 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
307 (m->oflags & VPO_UNMANAGED) != 0)
308 return;
309
310 VM_PAGE_OBJECT_BUSY_ASSERT(m);
311
312 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
313 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
314 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
315
316 vm_object_set_writeable_dirty(m->object);
317
318 /*
319 * If the fault is a write, we know that this page is being
320 * written NOW so dirty it explicitly to save on
321 * pmap_is_modified() calls later.
322 *
323 * Also, since the page is now dirty, we can possibly tell
324 * the pager to release any swap backing the page.
325 */
326 if (need_dirty && vm_page_set_dirty(m) == 0) {
327 /*
328 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
329 * if the page is already dirty to prevent data written with
330 * the expectation of being synced from not being synced.
331 * Likewise if this entry does not request NOSYNC then make
332 * sure the page isn't marked NOSYNC. Applications sharing
333 * data should use the same flags to avoid ping ponging.
334 */
335 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
336 vm_page_aflag_set(m, PGA_NOSYNC);
337 else
338 vm_page_aflag_clear(m, PGA_NOSYNC);
339 }
340
341 }
342
343 static bool
vm_fault_is_read(const struct faultstate * fs)344 vm_fault_is_read(const struct faultstate *fs)
345 {
346 return ((fs->prot & VM_PROT_WRITE) == 0 &&
347 (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
348 }
349
350 /*
351 * Unlocks fs.first_object and fs.map on success.
352 */
353 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)354 vm_fault_soft_fast(struct faultstate *fs)
355 {
356 vm_page_t m, m_map;
357 #if VM_NRESERVLEVEL > 0
358 vm_page_t m_super;
359 int flags;
360 #endif
361 int psind;
362 vm_offset_t vaddr;
363
364 MPASS(fs->vp == NULL);
365
366 /*
367 * If we fail, vast majority of the time it is because the page is not
368 * there to begin with. Opportunistically perform the lookup and
369 * subsequent checks without the object lock, revalidate later.
370 *
371 * Note: a busy page can be mapped for read|execute access.
372 */
373 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
374 if (m == NULL || !vm_page_all_valid(m) ||
375 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
376 VM_OBJECT_WLOCK(fs->first_object);
377 return (FAULT_FAILURE);
378 }
379
380 vaddr = fs->vaddr;
381
382 VM_OBJECT_RLOCK(fs->first_object);
383
384 /*
385 * Now that we stabilized the state, revalidate the page is in the shape
386 * we encountered above.
387 */
388
389 if (m->object != fs->first_object || m->pindex != fs->first_pindex)
390 goto fail;
391
392 vm_object_busy(fs->first_object);
393
394 if (!vm_page_all_valid(m) ||
395 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
396 goto fail_busy;
397
398 m_map = m;
399 psind = 0;
400 #if VM_NRESERVLEVEL > 0
401 if ((m->flags & PG_FICTITIOUS) == 0 &&
402 (m_super = vm_reserv_to_superpage(m)) != NULL) {
403 psind = m_super->psind;
404 KASSERT(psind > 0,
405 ("psind %d of m_super %p < 1", psind, m_super));
406 flags = PS_ALL_VALID;
407 if ((fs->prot & VM_PROT_WRITE) != 0) {
408 /*
409 * Create a superpage mapping allowing write access
410 * only if none of the constituent pages are busy and
411 * all of them are already dirty (except possibly for
412 * the page that was faulted on).
413 */
414 flags |= PS_NONE_BUSY;
415 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
416 flags |= PS_ALL_DIRTY;
417 }
418 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
419 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
420 (vaddr & (pagesizes[psind] - 1)) !=
421 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
422 !vm_page_ps_test(m_super, psind, flags, m) ||
423 !pmap_ps_enabled(fs->map->pmap)) {
424 psind--;
425 if (psind == 0)
426 break;
427 m_super += rounddown2(m - m_super,
428 atop(pagesizes[psind]));
429 KASSERT(m_super->psind >= psind,
430 ("psind %d of m_super %p < %d", m_super->psind,
431 m_super, psind));
432 }
433 if (psind > 0) {
434 m_map = m_super;
435 vaddr = rounddown2(vaddr, pagesizes[psind]);
436 /* Preset the modified bit for dirty superpages. */
437 if ((flags & PS_ALL_DIRTY) != 0)
438 fs->fault_type |= VM_PROT_WRITE;
439 }
440 }
441 #endif
442 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
443 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
444 KERN_SUCCESS)
445 goto fail_busy;
446 if (fs->m_hold != NULL) {
447 (*fs->m_hold) = m;
448 vm_page_wire(m);
449 }
450 if (psind == 0 && !fs->wired)
451 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
452 VM_OBJECT_RUNLOCK(fs->first_object);
453 vm_fault_dirty(fs, m);
454 vm_object_unbusy(fs->first_object);
455 vm_map_lookup_done(fs->map, fs->entry);
456 curthread->td_ru.ru_minflt++;
457 return (FAULT_SUCCESS);
458 fail_busy:
459 vm_object_unbusy(fs->first_object);
460 fail:
461 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
462 VM_OBJECT_RUNLOCK(fs->first_object);
463 VM_OBJECT_WLOCK(fs->first_object);
464 }
465 return (FAULT_FAILURE);
466 }
467
468 static void
vm_fault_restore_map_lock(struct faultstate * fs)469 vm_fault_restore_map_lock(struct faultstate *fs)
470 {
471
472 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
473 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
474
475 if (!vm_map_trylock_read(fs->map)) {
476 VM_OBJECT_WUNLOCK(fs->first_object);
477 vm_map_lock_read(fs->map);
478 VM_OBJECT_WLOCK(fs->first_object);
479 }
480 fs->lookup_still_valid = true;
481 }
482
483 static void
vm_fault_populate_check_page(vm_page_t m)484 vm_fault_populate_check_page(vm_page_t m)
485 {
486
487 /*
488 * Check each page to ensure that the pager is obeying the
489 * interface: the page must be installed in the object, fully
490 * valid, and exclusively busied.
491 */
492 MPASS(m != NULL);
493 MPASS(vm_page_all_valid(m));
494 MPASS(vm_page_xbusied(m));
495 }
496
497 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)498 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
499 vm_pindex_t last)
500 {
501 struct pctrie_iter pages;
502 vm_page_t m;
503
504 VM_OBJECT_ASSERT_WLOCKED(object);
505 MPASS(first <= last);
506 vm_page_iter_limit_init(&pages, object, last + 1);
507 VM_RADIX_FORALL_FROM(m, &pages, first) {
508 vm_fault_populate_check_page(m);
509 vm_page_deactivate(m);
510 vm_page_xunbusy(m);
511 }
512 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
513 }
514
515 static enum fault_status
vm_fault_populate(struct faultstate * fs)516 vm_fault_populate(struct faultstate *fs)
517 {
518 vm_offset_t vaddr;
519 vm_page_t m;
520 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
521 int bdry_idx, i, npages, psind, rv;
522 enum fault_status res;
523
524 MPASS(fs->object == fs->first_object);
525 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
526 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
527 MPASS(fs->first_object->backing_object == NULL);
528 MPASS(fs->lookup_still_valid);
529
530 pager_first = OFF_TO_IDX(fs->entry->offset);
531 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
532 vm_fault_unlock_map(fs);
533 vm_fault_unlock_vp(fs);
534
535 res = FAULT_SUCCESS;
536
537 /*
538 * Call the pager (driver) populate() method.
539 *
540 * There is no guarantee that the method will be called again
541 * if the current fault is for read, and a future fault is
542 * for write. Report the entry's maximum allowed protection
543 * to the driver.
544 */
545 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
546 fs->fault_type, fs->entry->max_protection, &pager_first,
547 &pager_last);
548
549 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
550 if (rv == VM_PAGER_BAD) {
551 /*
552 * VM_PAGER_BAD is the backdoor for a pager to request
553 * normal fault handling.
554 */
555 vm_fault_restore_map_lock(fs);
556 if (fs->map->timestamp != fs->map_generation)
557 return (FAULT_RESTART);
558 return (FAULT_CONTINUE);
559 }
560 if (rv != VM_PAGER_OK)
561 return (FAULT_FAILURE); /* AKA SIGSEGV */
562
563 /* Ensure that the driver is obeying the interface. */
564 MPASS(pager_first <= pager_last);
565 MPASS(fs->first_pindex <= pager_last);
566 MPASS(fs->first_pindex >= pager_first);
567 MPASS(pager_last < fs->first_object->size);
568
569 vm_fault_restore_map_lock(fs);
570 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
571 if (fs->map->timestamp != fs->map_generation) {
572 if (bdry_idx == 0) {
573 vm_fault_populate_cleanup(fs->first_object, pager_first,
574 pager_last);
575 } else {
576 m = vm_page_lookup(fs->first_object, pager_first);
577 if (m != fs->m)
578 vm_page_xunbusy(m);
579 }
580 return (FAULT_RESTART);
581 }
582
583 /*
584 * The map is unchanged after our last unlock. Process the fault.
585 *
586 * First, the special case of largepage mappings, where
587 * populate only busies the first page in superpage run.
588 */
589 if (bdry_idx != 0) {
590 KASSERT(PMAP_HAS_LARGEPAGES,
591 ("missing pmap support for large pages"));
592 m = vm_page_lookup(fs->first_object, pager_first);
593 vm_fault_populate_check_page(m);
594 VM_OBJECT_WUNLOCK(fs->first_object);
595 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
596 fs->entry->offset;
597 /* assert alignment for entry */
598 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
599 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
600 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
601 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
602 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
603 ("unaligned superpage m %p %#jx", m,
604 (uintmax_t)VM_PAGE_TO_PHYS(m)));
605 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
606 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
607 PMAP_ENTER_LARGEPAGE, bdry_idx);
608 VM_OBJECT_WLOCK(fs->first_object);
609 vm_page_xunbusy(m);
610 if (rv != KERN_SUCCESS) {
611 res = FAULT_FAILURE;
612 goto out;
613 }
614 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
615 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
616 vm_page_wire(m + i);
617 }
618 if (fs->m_hold != NULL) {
619 *fs->m_hold = m + (fs->first_pindex - pager_first);
620 vm_page_wire(*fs->m_hold);
621 }
622 goto out;
623 }
624
625 /*
626 * The range [pager_first, pager_last] that is given to the
627 * pager is only a hint. The pager may populate any range
628 * within the object that includes the requested page index.
629 * In case the pager expanded the range, clip it to fit into
630 * the map entry.
631 */
632 map_first = OFF_TO_IDX(fs->entry->offset);
633 if (map_first > pager_first) {
634 vm_fault_populate_cleanup(fs->first_object, pager_first,
635 map_first - 1);
636 pager_first = map_first;
637 }
638 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
639 if (map_last < pager_last) {
640 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
641 pager_last);
642 pager_last = map_last;
643 }
644 for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
645 m = vm_page_lookup(fs->first_object, pidx);
646 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
647 KASSERT(m != NULL && m->pindex == pidx,
648 ("%s: pindex mismatch", __func__));
649 psind = m->psind;
650 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
651 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
652 !pmap_ps_enabled(fs->map->pmap)))
653 psind--;
654
655 npages = atop(pagesizes[psind]);
656 for (i = 0; i < npages; i++) {
657 vm_fault_populate_check_page(&m[i]);
658 vm_fault_dirty(fs, &m[i]);
659 }
660 VM_OBJECT_WUNLOCK(fs->first_object);
661 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
662 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
663
664 /*
665 * pmap_enter() may fail for a superpage mapping if additional
666 * protection policies prevent the full mapping.
667 * For example, this will happen on amd64 if the entire
668 * address range does not share the same userspace protection
669 * key. Revert to single-page mappings if this happens.
670 */
671 MPASS(rv == KERN_SUCCESS ||
672 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
673 if (__predict_false(psind > 0 &&
674 rv == KERN_PROTECTION_FAILURE)) {
675 MPASS(!fs->wired);
676 for (i = 0; i < npages; i++) {
677 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
678 &m[i], fs->prot, fs->fault_type, 0);
679 MPASS(rv == KERN_SUCCESS);
680 }
681 }
682
683 VM_OBJECT_WLOCK(fs->first_object);
684 for (i = 0; i < npages; i++) {
685 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
686 m[i].pindex == fs->first_pindex)
687 vm_page_wire(&m[i]);
688 else
689 vm_page_activate(&m[i]);
690 if (fs->m_hold != NULL &&
691 m[i].pindex == fs->first_pindex) {
692 (*fs->m_hold) = &m[i];
693 vm_page_wire(&m[i]);
694 }
695 vm_page_xunbusy(&m[i]);
696 }
697 }
698 out:
699 curthread->td_ru.ru_majflt++;
700 return (res);
701 }
702
703 static int prot_fault_translation;
704 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
705 &prot_fault_translation, 0,
706 "Control signal to deliver on protection fault");
707
708 /* compat definition to keep common code for signal translation */
709 #define UCODE_PAGEFLT 12
710 #ifdef T_PAGEFLT
711 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
712 #endif
713
714 /*
715 * vm_fault_trap:
716 *
717 * Helper for the page fault trap handlers, wrapping vm_fault().
718 * Issues ktrace(2) tracepoints for the faults.
719 *
720 * If a fault cannot be handled successfully by satisfying the
721 * required mapping, and the faulted instruction cannot be restarted,
722 * the signal number and si_code values are returned for trapsignal()
723 * to deliver.
724 *
725 * Returns Mach error codes, but callers should only check for
726 * KERN_SUCCESS.
727 */
728 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)729 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
730 int fault_flags, int *signo, int *ucode)
731 {
732 int result;
733
734 MPASS(signo == NULL || ucode != NULL);
735 #ifdef KTRACE
736 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
737 ktrfault(vaddr, fault_type);
738 #endif
739 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
740 NULL);
741 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
742 result == KERN_INVALID_ADDRESS ||
743 result == KERN_RESOURCE_SHORTAGE ||
744 result == KERN_PROTECTION_FAILURE ||
745 result == KERN_OUT_OF_BOUNDS,
746 ("Unexpected Mach error %d from vm_fault()", result));
747 #ifdef KTRACE
748 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
749 ktrfaultend(result);
750 #endif
751 if (result != KERN_SUCCESS && signo != NULL) {
752 switch (result) {
753 case KERN_FAILURE:
754 case KERN_INVALID_ADDRESS:
755 *signo = SIGSEGV;
756 *ucode = SEGV_MAPERR;
757 break;
758 case KERN_RESOURCE_SHORTAGE:
759 *signo = SIGBUS;
760 *ucode = BUS_OOMERR;
761 break;
762 case KERN_OUT_OF_BOUNDS:
763 *signo = SIGBUS;
764 *ucode = BUS_OBJERR;
765 break;
766 case KERN_PROTECTION_FAILURE:
767 if (prot_fault_translation == 0) {
768 /*
769 * Autodetect. This check also covers
770 * the images without the ABI-tag ELF
771 * note.
772 */
773 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
774 curproc->p_osrel >= P_OSREL_SIGSEGV) {
775 *signo = SIGSEGV;
776 *ucode = SEGV_ACCERR;
777 } else {
778 *signo = SIGBUS;
779 *ucode = UCODE_PAGEFLT;
780 }
781 } else if (prot_fault_translation == 1) {
782 /* Always compat mode. */
783 *signo = SIGBUS;
784 *ucode = UCODE_PAGEFLT;
785 } else {
786 /* Always SIGSEGV mode. */
787 *signo = SIGSEGV;
788 *ucode = SEGV_ACCERR;
789 }
790 break;
791 default:
792 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
793 result));
794 break;
795 }
796 }
797 return (result);
798 }
799
800 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)801 vm_fault_object_ensure_wlocked(struct faultstate *fs)
802 {
803 if (fs->object == fs->first_object)
804 VM_OBJECT_ASSERT_WLOCKED(fs->object);
805
806 if (!fs->can_read_lock) {
807 VM_OBJECT_ASSERT_WLOCKED(fs->object);
808 return (true);
809 }
810
811 if (VM_OBJECT_WOWNED(fs->object))
812 return (true);
813
814 if (VM_OBJECT_TRYUPGRADE(fs->object))
815 return (true);
816
817 return (false);
818 }
819
820 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)821 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
822 {
823 struct vnode *vp;
824 int error, locked;
825
826 if (fs->object->type != OBJT_VNODE)
827 return (FAULT_CONTINUE);
828 vp = fs->object->handle;
829 if (vp == fs->vp) {
830 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
831 return (FAULT_CONTINUE);
832 }
833
834 /*
835 * Perform an unlock in case the desired vnode changed while
836 * the map was unlocked during a retry.
837 */
838 vm_fault_unlock_vp(fs);
839
840 locked = VOP_ISLOCKED(vp);
841 if (locked != LK_EXCLUSIVE)
842 locked = LK_SHARED;
843
844 /*
845 * We must not sleep acquiring the vnode lock while we have
846 * the page exclusive busied or the object's
847 * paging-in-progress count incremented. Otherwise, we could
848 * deadlock.
849 */
850 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
851 if (error == 0) {
852 fs->vp = vp;
853 return (FAULT_CONTINUE);
854 }
855
856 vhold(vp);
857 if (objlocked)
858 vm_fault_unlock_and_deallocate(fs);
859 else
860 vm_fault_deallocate(fs);
861 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
862 vdrop(vp);
863 fs->vp = vp;
864 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
865 return (FAULT_RESTART);
866 }
867
868 /*
869 * Calculate the desired readahead. Handle drop-behind.
870 *
871 * Returns the number of readahead blocks to pass to the pager.
872 */
873 static int
vm_fault_readahead(struct faultstate * fs)874 vm_fault_readahead(struct faultstate *fs)
875 {
876 int era, nera;
877 u_char behavior;
878
879 KASSERT(fs->lookup_still_valid, ("map unlocked"));
880 era = fs->entry->read_ahead;
881 behavior = vm_map_entry_behavior(fs->entry);
882 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
883 nera = 0;
884 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
885 nera = VM_FAULT_READ_AHEAD_MAX;
886 if (fs->vaddr == fs->entry->next_read)
887 vm_fault_dontneed(fs, fs->vaddr, nera);
888 } else if (fs->vaddr == fs->entry->next_read) {
889 /*
890 * This is a sequential fault. Arithmetically
891 * increase the requested number of pages in
892 * the read-ahead window. The requested
893 * number of pages is "# of sequential faults
894 * x (read ahead min + 1) + read ahead min"
895 */
896 nera = VM_FAULT_READ_AHEAD_MIN;
897 if (era > 0) {
898 nera += era + 1;
899 if (nera > VM_FAULT_READ_AHEAD_MAX)
900 nera = VM_FAULT_READ_AHEAD_MAX;
901 }
902 if (era == VM_FAULT_READ_AHEAD_MAX)
903 vm_fault_dontneed(fs, fs->vaddr, nera);
904 } else {
905 /*
906 * This is a non-sequential fault.
907 */
908 nera = 0;
909 }
910 if (era != nera) {
911 /*
912 * A read lock on the map suffices to update
913 * the read ahead count safely.
914 */
915 fs->entry->read_ahead = nera;
916 }
917
918 return (nera);
919 }
920
921 static int
vm_fault_lookup(struct faultstate * fs)922 vm_fault_lookup(struct faultstate *fs)
923 {
924 int result;
925
926 KASSERT(!fs->lookup_still_valid,
927 ("vm_fault_lookup: Map already locked."));
928 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
929 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
930 &fs->first_pindex, &fs->prot, &fs->wired);
931 if (result != KERN_SUCCESS) {
932 vm_fault_unlock_vp(fs);
933 return (result);
934 }
935
936 fs->map_generation = fs->map->timestamp;
937
938 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
939 panic("%s: fault on nofault entry, addr: %#lx",
940 __func__, (u_long)fs->vaddr);
941 }
942
943 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
944 fs->entry->wiring_thread != curthread) {
945 vm_map_unlock_read(fs->map);
946 vm_map_lock(fs->map);
947 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
948 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
949 vm_fault_unlock_vp(fs);
950 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
951 vm_map_unlock_and_wait(fs->map, 0);
952 } else
953 vm_map_unlock(fs->map);
954 return (KERN_RESOURCE_SHORTAGE);
955 }
956
957 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
958
959 if (fs->wired)
960 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
961 else
962 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
963 ("!fs->wired && VM_FAULT_WIRE"));
964 fs->lookup_still_valid = true;
965
966 return (KERN_SUCCESS);
967 }
968
969 static int
vm_fault_relookup(struct faultstate * fs)970 vm_fault_relookup(struct faultstate *fs)
971 {
972 vm_object_t retry_object;
973 vm_pindex_t retry_pindex;
974 vm_prot_t retry_prot;
975 int result;
976
977 if (!vm_map_trylock_read(fs->map))
978 return (KERN_RESTART);
979
980 fs->lookup_still_valid = true;
981 if (fs->map->timestamp == fs->map_generation)
982 return (KERN_SUCCESS);
983
984 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
985 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
986 &fs->wired);
987 if (result != KERN_SUCCESS) {
988 /*
989 * If retry of map lookup would have blocked then
990 * retry fault from start.
991 */
992 if (result == KERN_FAILURE)
993 return (KERN_RESTART);
994 return (result);
995 }
996 if (retry_object != fs->first_object ||
997 retry_pindex != fs->first_pindex)
998 return (KERN_RESTART);
999
1000 /*
1001 * Check whether the protection has changed or the object has
1002 * been copied while we left the map unlocked. Changing from
1003 * read to write permission is OK - we leave the page
1004 * write-protected, and catch the write fault. Changing from
1005 * write to read permission means that we can't mark the page
1006 * write-enabled after all.
1007 */
1008 fs->prot &= retry_prot;
1009 fs->fault_type &= retry_prot;
1010 if (fs->prot == 0)
1011 return (KERN_RESTART);
1012
1013 /* Reassert because wired may have changed. */
1014 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1015 ("!wired && VM_FAULT_WIRE"));
1016
1017 return (KERN_SUCCESS);
1018 }
1019
1020 static bool
vm_fault_can_cow_rename(struct faultstate * fs)1021 vm_fault_can_cow_rename(struct faultstate *fs)
1022 {
1023 return (
1024 /* Only one shadow object and no other refs. */
1025 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1026 /* No other ways to look the object up. */
1027 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1028 }
1029
1030 static void
vm_fault_cow(struct faultstate * fs)1031 vm_fault_cow(struct faultstate *fs)
1032 {
1033 bool is_first_object_locked, rename_cow;
1034
1035 KASSERT(vm_fault_might_be_cow(fs),
1036 ("source and target COW objects are identical"));
1037
1038 /*
1039 * This allows pages to be virtually copied from a backing_object
1040 * into the first_object, where the backing object has no other
1041 * refs to it, and cannot gain any more refs. Instead of a bcopy,
1042 * we just move the page from the backing object to the first
1043 * object. Note that we must mark the page dirty in the first
1044 * object so that it will go out to swap when needed.
1045 */
1046 is_first_object_locked = false;
1047 rename_cow = false;
1048
1049 if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1050 /*
1051 * Check that we don't chase down the shadow chain and
1052 * we can acquire locks. Recheck the conditions for
1053 * rename after the shadow chain is stable after the
1054 * object locking.
1055 */
1056 is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1057 if (is_first_object_locked &&
1058 fs->object == fs->first_object->backing_object) {
1059 if (VM_OBJECT_TRYWLOCK(fs->object)) {
1060 rename_cow = vm_fault_can_cow_rename(fs);
1061 if (!rename_cow)
1062 VM_OBJECT_WUNLOCK(fs->object);
1063 }
1064 }
1065 }
1066
1067 if (rename_cow) {
1068 vm_page_assert_xbusied(fs->m);
1069
1070 /*
1071 * Remove but keep xbusy for replace. fs->m is moved into
1072 * fs->first_object and left busy while fs->first_m is
1073 * conditionally freed.
1074 */
1075 vm_page_remove_xbusy(fs->m);
1076 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1077 fs->first_m);
1078 vm_page_dirty(fs->m);
1079 #if VM_NRESERVLEVEL > 0
1080 /*
1081 * Rename the reservation.
1082 */
1083 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1084 OFF_TO_IDX(fs->first_object->backing_object_offset));
1085 #endif
1086 VM_OBJECT_WUNLOCK(fs->object);
1087 VM_OBJECT_WUNLOCK(fs->first_object);
1088 fs->first_m = fs->m;
1089 fs->m = NULL;
1090 VM_CNT_INC(v_cow_optim);
1091 } else {
1092 if (is_first_object_locked)
1093 VM_OBJECT_WUNLOCK(fs->first_object);
1094 /*
1095 * Oh, well, lets copy it.
1096 */
1097 pmap_copy_page(fs->m, fs->first_m);
1098 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1099 vm_page_wire(fs->first_m);
1100 vm_page_unwire(fs->m, PQ_INACTIVE);
1101 }
1102 /*
1103 * Save the COW page to be released after pmap_enter is
1104 * complete. The new copy will be marked valid when we're ready
1105 * to map it.
1106 */
1107 fs->m_cow = fs->m;
1108 fs->m = NULL;
1109
1110 /*
1111 * Typically, the shadow object is either private to this
1112 * address space (OBJ_ONEMAPPING) or its pages are read only.
1113 * In the highly unusual case where the pages of a shadow object
1114 * are read/write shared between this and other address spaces,
1115 * we need to ensure that any pmap-level mappings to the
1116 * original, copy-on-write page from the backing object are
1117 * removed from those other address spaces.
1118 *
1119 * The flag check is racy, but this is tolerable: if
1120 * OBJ_ONEMAPPING is cleared after the check, the busy state
1121 * ensures that new mappings of m_cow can't be created.
1122 * pmap_enter() will replace an existing mapping in the current
1123 * address space. If OBJ_ONEMAPPING is set after the check,
1124 * removing mappings will at worse trigger some unnecessary page
1125 * faults.
1126 *
1127 * In the fs->m shared busy case, the xbusy state of
1128 * fs->first_m prevents new mappings of fs->m from
1129 * being created because a parallel fault on this
1130 * shadow chain should wait for xbusy on fs->first_m.
1131 */
1132 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1133 pmap_remove_all(fs->m_cow);
1134 }
1135
1136 vm_object_pip_wakeup(fs->object);
1137
1138 /*
1139 * Only use the new page below...
1140 */
1141 fs->object = fs->first_object;
1142 fs->pindex = fs->first_pindex;
1143 fs->m = fs->first_m;
1144 VM_CNT_INC(v_cow_faults);
1145 curthread->td_cow++;
1146 }
1147
1148 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1149 vm_fault_next(struct faultstate *fs)
1150 {
1151 vm_object_t next_object;
1152
1153 if (fs->object == fs->first_object || !fs->can_read_lock)
1154 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1155 else
1156 VM_OBJECT_ASSERT_LOCKED(fs->object);
1157
1158 /*
1159 * The requested page does not exist at this object/
1160 * offset. Remove the invalid page from the object,
1161 * waking up anyone waiting for it, and continue on to
1162 * the next object. However, if this is the top-level
1163 * object, we must leave the busy page in place to
1164 * prevent another process from rushing past us, and
1165 * inserting the page in that object at the same time
1166 * that we are.
1167 */
1168 if (fs->object == fs->first_object) {
1169 fs->first_m = fs->m;
1170 fs->m = NULL;
1171 } else if (fs->m != NULL) {
1172 if (!vm_fault_object_ensure_wlocked(fs)) {
1173 fs->can_read_lock = false;
1174 vm_fault_unlock_and_deallocate(fs);
1175 return (FAULT_NEXT_RESTART);
1176 }
1177 vm_fault_page_free(&fs->m);
1178 }
1179
1180 /*
1181 * Move on to the next object. Lock the next object before
1182 * unlocking the current one.
1183 */
1184 next_object = fs->object->backing_object;
1185 if (next_object == NULL)
1186 return (FAULT_NEXT_NOOBJ);
1187 MPASS(fs->first_m != NULL);
1188 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1189 if (fs->can_read_lock)
1190 VM_OBJECT_RLOCK(next_object);
1191 else
1192 VM_OBJECT_WLOCK(next_object);
1193 vm_object_pip_add(next_object, 1);
1194 if (fs->object != fs->first_object)
1195 vm_object_pip_wakeup(fs->object);
1196 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1197 VM_OBJECT_UNLOCK(fs->object);
1198 fs->object = next_object;
1199
1200 return (FAULT_NEXT_GOTOBJ);
1201 }
1202
1203 static void
vm_fault_zerofill(struct faultstate * fs)1204 vm_fault_zerofill(struct faultstate *fs)
1205 {
1206
1207 /*
1208 * If there's no object left, fill the page in the top
1209 * object with zeros.
1210 */
1211 if (vm_fault_might_be_cow(fs)) {
1212 vm_object_pip_wakeup(fs->object);
1213 fs->object = fs->first_object;
1214 fs->pindex = fs->first_pindex;
1215 }
1216 MPASS(fs->first_m != NULL);
1217 MPASS(fs->m == NULL);
1218 fs->m = fs->first_m;
1219 fs->first_m = NULL;
1220
1221 /*
1222 * Zero the page if necessary and mark it valid.
1223 */
1224 if (fs->m_needs_zeroing) {
1225 pmap_zero_page(fs->m);
1226 } else {
1227 #ifdef INVARIANTS
1228 if (vm_check_pg_zero) {
1229 struct sf_buf *sf;
1230 unsigned long *p;
1231 int i;
1232
1233 sched_pin();
1234 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
1235 p = (unsigned long *)sf_buf_kva(sf);
1236 for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) {
1237 KASSERT(*p == 0,
1238 ("zerocheck failed page %p PG_ZERO %d %jx",
1239 fs->m, i, (uintmax_t)*p));
1240 }
1241 sf_buf_free(sf);
1242 sched_unpin();
1243 }
1244 #endif
1245 VM_CNT_INC(v_ozfod);
1246 }
1247 VM_CNT_INC(v_zfod);
1248 vm_page_valid(fs->m);
1249 }
1250
1251 /*
1252 * Initiate page fault after timeout. Returns true if caller should
1253 * do vm_waitpfault() after the call.
1254 */
1255 static bool
vm_fault_allocate_oom(struct faultstate * fs)1256 vm_fault_allocate_oom(struct faultstate *fs)
1257 {
1258 struct timeval now;
1259
1260 vm_fault_unlock_and_deallocate(fs);
1261 if (vm_pfault_oom_attempts < 0)
1262 return (true);
1263 if (!fs->oom_started) {
1264 fs->oom_started = true;
1265 getmicrotime(&fs->oom_start_time);
1266 return (true);
1267 }
1268
1269 getmicrotime(&now);
1270 timevalsub(&now, &fs->oom_start_time);
1271 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1272 return (true);
1273
1274 if (bootverbose)
1275 printf(
1276 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1277 curproc->p_pid, curproc->p_comm);
1278 vm_pageout_oom(VM_OOM_MEM_PF);
1279 fs->oom_started = false;
1280 return (false);
1281 }
1282
1283 /*
1284 * Allocate a page directly or via the object populate method.
1285 */
1286 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1287 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1288 {
1289 struct domainset *dset;
1290 enum fault_status res;
1291
1292 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1293 res = vm_fault_lock_vnode(fs, true);
1294 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1295 if (res == FAULT_RESTART)
1296 return (res);
1297 }
1298
1299 if (fs->pindex >= fs->object->size) {
1300 vm_fault_unlock_and_deallocate(fs);
1301 return (FAULT_OUT_OF_BOUNDS);
1302 }
1303
1304 if (fs->object == fs->first_object &&
1305 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1306 fs->first_object->shadow_count == 0) {
1307 res = vm_fault_populate(fs);
1308 switch (res) {
1309 case FAULT_SUCCESS:
1310 case FAULT_FAILURE:
1311 case FAULT_RESTART:
1312 vm_fault_unlock_and_deallocate(fs);
1313 return (res);
1314 case FAULT_CONTINUE:
1315 pctrie_iter_reset(pages);
1316 /*
1317 * Pager's populate() method
1318 * returned VM_PAGER_BAD.
1319 */
1320 break;
1321 default:
1322 panic("inconsistent return codes");
1323 }
1324 }
1325
1326 /*
1327 * Allocate a new page for this object/offset pair.
1328 *
1329 * If the process has a fatal signal pending, prioritize the allocation
1330 * with the expectation that the process will exit shortly and free some
1331 * pages. In particular, the signal may have been posted by the page
1332 * daemon in an attempt to resolve an out-of-memory condition.
1333 *
1334 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1335 * might be not observed here, and allocation fails, causing a restart
1336 * and new reading of the p_flag.
1337 */
1338 dset = fs->object->domain.dr_policy;
1339 if (dset == NULL)
1340 dset = curthread->td_domain.dr_policy;
1341 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1342 #if VM_NRESERVLEVEL > 0
1343 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1344 #endif
1345 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1346 vm_fault_unlock_and_deallocate(fs);
1347 return (FAULT_FAILURE);
1348 }
1349 fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1350 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1351 }
1352 if (fs->m == NULL) {
1353 if (vm_fault_allocate_oom(fs))
1354 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1355 return (FAULT_RESTART);
1356 }
1357 fs->m_needs_zeroing = (fs->m->flags & PG_ZERO) == 0;
1358 fs->oom_started = false;
1359
1360 return (FAULT_CONTINUE);
1361 }
1362
1363 /*
1364 * Call the pager to retrieve the page if there is a chance
1365 * that the pager has it, and potentially retrieve additional
1366 * pages at the same time.
1367 */
1368 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1369 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1370 {
1371 vm_offset_t e_end, e_start;
1372 int ahead, behind, cluster_offset, rv;
1373 enum fault_status status;
1374 u_char behavior;
1375
1376 /*
1377 * Prepare for unlocking the map. Save the map
1378 * entry's start and end addresses, which are used to
1379 * optimize the size of the pager operation below.
1380 * Even if the map entry's addresses change after
1381 * unlocking the map, using the saved addresses is
1382 * safe.
1383 */
1384 e_start = fs->entry->start;
1385 e_end = fs->entry->end;
1386 behavior = vm_map_entry_behavior(fs->entry);
1387
1388 /*
1389 * If the pager for the current object might have
1390 * the page, then determine the number of additional
1391 * pages to read and potentially reprioritize
1392 * previously read pages for earlier reclamation.
1393 * These operations should only be performed once per
1394 * page fault. Even if the current pager doesn't
1395 * have the page, the number of additional pages to
1396 * read will apply to subsequent objects in the
1397 * shadow chain.
1398 */
1399 if (fs->nera == -1 && !P_KILLED(curproc))
1400 fs->nera = vm_fault_readahead(fs);
1401
1402 /*
1403 * Release the map lock before locking the vnode or
1404 * sleeping in the pager. (If the current object has
1405 * a shadow, then an earlier iteration of this loop
1406 * may have already unlocked the map.)
1407 */
1408 vm_fault_unlock_map(fs);
1409
1410 status = vm_fault_lock_vnode(fs, false);
1411 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1412 if (status == FAULT_RESTART)
1413 return (status);
1414 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1415 ("vm_fault: vnode-backed object mapped by system map"));
1416
1417 /*
1418 * Page in the requested page and hint the pager,
1419 * that it may bring up surrounding pages.
1420 */
1421 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1422 P_KILLED(curproc)) {
1423 behind = 0;
1424 ahead = 0;
1425 } else {
1426 /* Is this a sequential fault? */
1427 if (fs->nera > 0) {
1428 behind = 0;
1429 ahead = fs->nera;
1430 } else {
1431 /*
1432 * Request a cluster of pages that is
1433 * aligned to a VM_FAULT_READ_DEFAULT
1434 * page offset boundary within the
1435 * object. Alignment to a page offset
1436 * boundary is more likely to coincide
1437 * with the underlying file system
1438 * block than alignment to a virtual
1439 * address boundary.
1440 */
1441 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1442 behind = ulmin(cluster_offset,
1443 atop(fs->vaddr - e_start));
1444 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1445 }
1446 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1447 }
1448 *behindp = behind;
1449 *aheadp = ahead;
1450 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1451 if (rv == VM_PAGER_OK)
1452 return (FAULT_HARD);
1453 if (rv == VM_PAGER_ERROR)
1454 printf("vm_fault: pager read error, pid %d (%s)\n",
1455 curproc->p_pid, curproc->p_comm);
1456 /*
1457 * If an I/O error occurred or the requested page was
1458 * outside the range of the pager, clean up and return
1459 * an error.
1460 */
1461 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1462 VM_OBJECT_WLOCK(fs->object);
1463 vm_fault_page_free(&fs->m);
1464 vm_fault_unlock_and_deallocate(fs);
1465 return (FAULT_OUT_OF_BOUNDS);
1466 }
1467 KASSERT(rv == VM_PAGER_FAIL,
1468 ("%s: unexpected pager error %d", __func__, rv));
1469 return (FAULT_CONTINUE);
1470 }
1471
1472 /*
1473 * Wait/Retry if the page is busy. We have to do this if the page is
1474 * either exclusive or shared busy because the vm_pager may be using
1475 * read busy for pageouts (and even pageins if it is the vnode pager),
1476 * and we could end up trying to pagein and pageout the same page
1477 * simultaneously.
1478 *
1479 * We allow the busy case on a read fault if the page is valid. We
1480 * cannot under any circumstances mess around with a shared busied
1481 * page except, perhaps, to pmap it. This is controlled by the
1482 * VM_ALLOC_SBUSY bit in the allocflags argument.
1483 */
1484 static void
vm_fault_busy_sleep(struct faultstate * fs,int allocflags)1485 vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1486 {
1487 /*
1488 * Reference the page before unlocking and
1489 * sleeping so that the page daemon is less
1490 * likely to reclaim it.
1491 */
1492 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1493 if (vm_fault_might_be_cow(fs)) {
1494 vm_fault_page_release(&fs->first_m);
1495 vm_object_pip_wakeup(fs->first_object);
1496 }
1497 vm_object_pip_wakeup(fs->object);
1498 vm_fault_unlock_map(fs);
1499 if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1500 VM_OBJECT_UNLOCK(fs->object);
1501 VM_CNT_INC(v_intrans);
1502 vm_object_deallocate(fs->first_object);
1503 }
1504
1505 /*
1506 * Handle page lookup, populate, allocate, page-in for the current
1507 * object.
1508 *
1509 * The object is locked on entry and will remain locked with a return
1510 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1511 * Otherwise, the object will be unlocked upon return.
1512 */
1513 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1514 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1515 {
1516 struct pctrie_iter pages;
1517 enum fault_status res;
1518 bool dead;
1519
1520 if (fs->object == fs->first_object || !fs->can_read_lock)
1521 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1522 else
1523 VM_OBJECT_ASSERT_LOCKED(fs->object);
1524
1525 /*
1526 * If the object is marked for imminent termination, we retry
1527 * here, since the collapse pass has raced with us. Otherwise,
1528 * if we see terminally dead object, return fail.
1529 */
1530 if ((fs->object->flags & OBJ_DEAD) != 0) {
1531 dead = fs->object->type == OBJT_DEAD;
1532 vm_fault_unlock_and_deallocate(fs);
1533 if (dead)
1534 return (FAULT_PROTECTION_FAILURE);
1535 pause("vmf_de", 1);
1536 return (FAULT_RESTART);
1537 }
1538
1539 /*
1540 * See if the page is resident.
1541 */
1542 vm_page_iter_init(&pages, fs->object);
1543 fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1544 if (fs->m != NULL) {
1545 /*
1546 * If the found page is valid, will be either shadowed
1547 * or mapped read-only, and will not be renamed for
1548 * COW, then busy it in shared mode. This allows
1549 * other faults needing this page to proceed in
1550 * parallel.
1551 *
1552 * Unlocked check for validity, rechecked after busy
1553 * is obtained.
1554 */
1555 if (vm_page_all_valid(fs->m) &&
1556 /*
1557 * No write permissions for the new fs->m mapping,
1558 * or the first object has only one mapping, so
1559 * other writeable COW mappings of fs->m cannot
1560 * appear under us.
1561 */
1562 (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1563 /*
1564 * fs->m cannot be renamed from object to
1565 * first_object. These conditions will be
1566 * re-checked with proper synchronization in
1567 * vm_fault_cow().
1568 */
1569 (!vm_fault_can_cow_rename(fs) ||
1570 fs->object != fs->first_object->backing_object)) {
1571 if (!vm_page_trysbusy(fs->m)) {
1572 vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1573 return (FAULT_RESTART);
1574 }
1575
1576 /*
1577 * Now make sure that racily checked
1578 * conditions are still valid.
1579 */
1580 if (__predict_true(vm_page_all_valid(fs->m) &&
1581 (vm_fault_is_read(fs) ||
1582 vm_fault_might_be_cow(fs)))) {
1583 VM_OBJECT_UNLOCK(fs->object);
1584 return (FAULT_SOFT);
1585 }
1586
1587 vm_page_sunbusy(fs->m);
1588 }
1589
1590 if (!vm_page_tryxbusy(fs->m)) {
1591 vm_fault_busy_sleep(fs, 0);
1592 return (FAULT_RESTART);
1593 }
1594
1595 /*
1596 * The page is marked busy for other processes and the
1597 * pagedaemon. If it is still completely valid we are
1598 * done.
1599 */
1600 if (vm_page_all_valid(fs->m)) {
1601 VM_OBJECT_UNLOCK(fs->object);
1602 return (FAULT_SOFT);
1603 }
1604 }
1605
1606 /*
1607 * Page is not resident. If the pager might contain the page
1608 * or this is the beginning of the search, allocate a new
1609 * page.
1610 */
1611 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1612 fs->object == fs->first_object)) {
1613 if (!vm_fault_object_ensure_wlocked(fs)) {
1614 fs->can_read_lock = false;
1615 vm_fault_unlock_and_deallocate(fs);
1616 return (FAULT_RESTART);
1617 }
1618 res = vm_fault_allocate(fs, &pages);
1619 if (res != FAULT_CONTINUE)
1620 return (res);
1621 }
1622
1623 /*
1624 * Check to see if the pager can possibly satisfy this fault.
1625 * If not, skip to the next object without dropping the lock to
1626 * preserve atomicity of shadow faults.
1627 */
1628 if (vm_fault_object_needs_getpages(fs->object)) {
1629 /*
1630 * At this point, we have either allocated a new page
1631 * or found an existing page that is only partially
1632 * valid.
1633 *
1634 * We hold a reference on the current object and the
1635 * page is exclusive busied. The exclusive busy
1636 * prevents simultaneous faults and collapses while
1637 * the object lock is dropped.
1638 */
1639 VM_OBJECT_UNLOCK(fs->object);
1640 res = vm_fault_getpages(fs, behindp, aheadp);
1641 if (res == FAULT_CONTINUE)
1642 VM_OBJECT_WLOCK(fs->object);
1643 } else {
1644 res = FAULT_CONTINUE;
1645 }
1646 return (res);
1647 }
1648
1649 /*
1650 * vm_fault:
1651 *
1652 * Handle a page fault occurring at the given address, requiring the
1653 * given permissions, in the map specified. If successful, the page
1654 * is inserted into the associated physical map, and optionally
1655 * referenced and returned in *m_hold.
1656 *
1657 * The given address should be truncated to the proper page address.
1658 *
1659 * KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1660 * Mach error specifying why the fault is fatal is returned.
1661 *
1662 * The map in question must be alive, either being the map for current
1663 * process, or the owner process hold count incremented to prevent
1664 * exit().
1665 *
1666 * If the thread private TDP_NOFAULTING flag is set, any fault results
1667 * in immediate protection failure. Otherwise the fault is processed,
1668 * and caller may hold no locks.
1669 */
1670 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1671 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1672 int fault_flags, vm_page_t *m_hold)
1673 {
1674 struct pctrie_iter pages;
1675 struct faultstate fs;
1676 int ahead, behind, faultcount, rv;
1677 enum fault_status res;
1678 enum fault_next_status res_next;
1679 bool hardfault;
1680
1681 VM_CNT_INC(v_vm_faults);
1682
1683 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1684 return (KERN_PROTECTION_FAILURE);
1685
1686 fs.vp = NULL;
1687 fs.vaddr = vaddr;
1688 fs.m_hold = m_hold;
1689 fs.fault_flags = fault_flags;
1690 fs.map = map;
1691 fs.lookup_still_valid = false;
1692 fs.m_needs_zeroing = true;
1693 fs.oom_started = false;
1694 fs.nera = -1;
1695 fs.can_read_lock = true;
1696 faultcount = 0;
1697 hardfault = false;
1698
1699 RetryFault:
1700 fs.fault_type = fault_type;
1701
1702 /*
1703 * Find the backing store object and offset into it to begin the
1704 * search.
1705 */
1706 rv = vm_fault_lookup(&fs);
1707 if (rv != KERN_SUCCESS) {
1708 if (rv == KERN_RESOURCE_SHORTAGE)
1709 goto RetryFault;
1710 return (rv);
1711 }
1712
1713 /*
1714 * Try to avoid lock contention on the top-level object through
1715 * special-case handling of some types of page faults, specifically,
1716 * those that are mapping an existing page from the top-level object.
1717 * Under this condition, a read lock on the object suffices, allowing
1718 * multiple page faults of a similar type to run in parallel.
1719 */
1720 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1721 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1722 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1723 res = vm_fault_soft_fast(&fs);
1724 if (res == FAULT_SUCCESS) {
1725 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1726 return (KERN_SUCCESS);
1727 }
1728 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1729 } else {
1730 vm_page_iter_init(&pages, fs.first_object);
1731 VM_OBJECT_WLOCK(fs.first_object);
1732 }
1733
1734 /*
1735 * Make a reference to this object to prevent its disposal while we
1736 * are messing with it. Once we have the reference, the map is free
1737 * to be diddled. Since objects reference their shadows (and copies),
1738 * they will stay around as well.
1739 *
1740 * Bump the paging-in-progress count to prevent size changes (e.g.
1741 * truncation operations) during I/O.
1742 */
1743 vm_object_reference_locked(fs.first_object);
1744 vm_object_pip_add(fs.first_object, 1);
1745
1746 fs.m_cow = fs.m = fs.first_m = NULL;
1747
1748 /*
1749 * Search for the page at object/offset.
1750 */
1751 fs.object = fs.first_object;
1752 fs.pindex = fs.first_pindex;
1753
1754 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1755 res = vm_fault_allocate(&fs, &pages);
1756 switch (res) {
1757 case FAULT_RESTART:
1758 goto RetryFault;
1759 case FAULT_SUCCESS:
1760 return (KERN_SUCCESS);
1761 case FAULT_FAILURE:
1762 return (KERN_FAILURE);
1763 case FAULT_OUT_OF_BOUNDS:
1764 return (KERN_OUT_OF_BOUNDS);
1765 case FAULT_CONTINUE:
1766 break;
1767 default:
1768 panic("vm_fault: Unhandled status %d", res);
1769 }
1770 }
1771
1772 while (TRUE) {
1773 KASSERT(fs.m == NULL,
1774 ("page still set %p at loop start", fs.m));
1775
1776 res = vm_fault_object(&fs, &behind, &ahead);
1777 switch (res) {
1778 case FAULT_SOFT:
1779 goto found;
1780 case FAULT_HARD:
1781 faultcount = behind + 1 + ahead;
1782 hardfault = true;
1783 goto found;
1784 case FAULT_RESTART:
1785 goto RetryFault;
1786 case FAULT_SUCCESS:
1787 return (KERN_SUCCESS);
1788 case FAULT_FAILURE:
1789 return (KERN_FAILURE);
1790 case FAULT_OUT_OF_BOUNDS:
1791 return (KERN_OUT_OF_BOUNDS);
1792 case FAULT_PROTECTION_FAILURE:
1793 return (KERN_PROTECTION_FAILURE);
1794 case FAULT_CONTINUE:
1795 break;
1796 default:
1797 panic("vm_fault: Unhandled status %d", res);
1798 }
1799
1800 /*
1801 * The page was not found in the current object. Try to
1802 * traverse into a backing object or zero fill if none is
1803 * found.
1804 */
1805 res_next = vm_fault_next(&fs);
1806 if (res_next == FAULT_NEXT_RESTART)
1807 goto RetryFault;
1808 else if (res_next == FAULT_NEXT_GOTOBJ)
1809 continue;
1810 MPASS(res_next == FAULT_NEXT_NOOBJ);
1811 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1812 if (fs.first_object == fs.object)
1813 vm_fault_page_free(&fs.first_m);
1814 vm_fault_unlock_and_deallocate(&fs);
1815 return (KERN_OUT_OF_BOUNDS);
1816 }
1817 VM_OBJECT_UNLOCK(fs.object);
1818 vm_fault_zerofill(&fs);
1819 /* Don't try to prefault neighboring pages. */
1820 faultcount = 1;
1821 break;
1822 }
1823
1824 found:
1825 /*
1826 * A valid page has been found and busied. The object lock
1827 * must no longer be held if the page was busied.
1828 *
1829 * Regardless of the busy state of fs.m, fs.first_m is always
1830 * exclusively busied after the first iteration of the loop
1831 * calling vm_fault_object(). This is an ordering point for
1832 * the parallel faults occuring in on the same page.
1833 */
1834 vm_page_assert_busied(fs.m);
1835 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1836
1837 /*
1838 * If the page is being written, but isn't already owned by the
1839 * top-level object, we have to copy it into a new page owned by the
1840 * top-level object.
1841 */
1842 if (vm_fault_might_be_cow(&fs)) {
1843 /*
1844 * We only really need to copy if we want to write it.
1845 */
1846 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1847 vm_fault_cow(&fs);
1848 /*
1849 * We only try to prefault read-only mappings to the
1850 * neighboring pages when this copy-on-write fault is
1851 * a hard fault. In other cases, trying to prefault
1852 * is typically wasted effort.
1853 */
1854 if (faultcount == 0)
1855 faultcount = 1;
1856
1857 } else {
1858 fs.prot &= ~VM_PROT_WRITE;
1859 }
1860 }
1861
1862 /*
1863 * We must verify that the maps have not changed since our last
1864 * lookup.
1865 */
1866 if (!fs.lookup_still_valid) {
1867 rv = vm_fault_relookup(&fs);
1868 if (rv != KERN_SUCCESS) {
1869 vm_fault_deallocate(&fs);
1870 if (rv == KERN_RESTART)
1871 goto RetryFault;
1872 return (rv);
1873 }
1874 }
1875 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1876
1877 /*
1878 * If the page was filled by a pager, save the virtual address that
1879 * should be faulted on next under a sequential access pattern to the
1880 * map entry. A read lock on the map suffices to update this address
1881 * safely.
1882 */
1883 if (hardfault)
1884 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1885
1886 /*
1887 * If the page to be mapped was copied from a backing object, we defer
1888 * marking it valid until here, where the fault handler is guaranteed to
1889 * succeed. Otherwise we can end up with a shadowed, mapped page in the
1890 * backing object, which violates an invariant of vm_object_collapse()
1891 * that shadowed pages are not mapped.
1892 */
1893 if (fs.m_cow != NULL) {
1894 KASSERT(vm_page_none_valid(fs.m),
1895 ("vm_fault: page %p is already valid", fs.m_cow));
1896 vm_page_valid(fs.m);
1897 }
1898
1899 /*
1900 * Page must be completely valid or it is not fit to
1901 * map into user space. vm_pager_get_pages() ensures this.
1902 */
1903 vm_page_assert_busied(fs.m);
1904 KASSERT(vm_page_all_valid(fs.m),
1905 ("vm_fault: page %p partially invalid", fs.m));
1906
1907 vm_fault_dirty(&fs, fs.m);
1908
1909 /*
1910 * Put this page into the physical map. We had to do the unlock above
1911 * because pmap_enter() may sleep. We don't put the page
1912 * back on the active queue until later so that the pageout daemon
1913 * won't find it (yet).
1914 */
1915 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1916 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1917 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1918 fs.wired == 0)
1919 vm_fault_prefault(&fs, vaddr,
1920 faultcount > 0 ? behind : PFBAK,
1921 faultcount > 0 ? ahead : PFFOR, false);
1922
1923 /*
1924 * If the page is not wired down, then put it where the pageout daemon
1925 * can find it.
1926 */
1927 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1928 vm_page_wire(fs.m);
1929 else
1930 vm_page_activate(fs.m);
1931 if (fs.m_hold != NULL) {
1932 (*fs.m_hold) = fs.m;
1933 vm_page_wire(fs.m);
1934 }
1935
1936 KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1937 ("first_m must be xbusy"));
1938 if (vm_page_xbusied(fs.m))
1939 vm_page_xunbusy(fs.m);
1940 else
1941 vm_page_sunbusy(fs.m);
1942 fs.m = NULL;
1943
1944 /*
1945 * Unlock everything, and return
1946 */
1947 vm_fault_deallocate(&fs);
1948 if (hardfault) {
1949 VM_CNT_INC(v_io_faults);
1950 curthread->td_ru.ru_majflt++;
1951 #ifdef RACCT
1952 if (racct_enable && fs.object->type == OBJT_VNODE) {
1953 PROC_LOCK(curproc);
1954 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1955 racct_add_force(curproc, RACCT_WRITEBPS,
1956 PAGE_SIZE + behind * PAGE_SIZE);
1957 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1958 } else {
1959 racct_add_force(curproc, RACCT_READBPS,
1960 PAGE_SIZE + ahead * PAGE_SIZE);
1961 racct_add_force(curproc, RACCT_READIOPS, 1);
1962 }
1963 PROC_UNLOCK(curproc);
1964 }
1965 #endif
1966 } else
1967 curthread->td_ru.ru_minflt++;
1968
1969 return (KERN_SUCCESS);
1970 }
1971
1972 /*
1973 * Speed up the reclamation of pages that precede the faulting pindex within
1974 * the first object of the shadow chain. Essentially, perform the equivalent
1975 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1976 * the faulting pindex by the cluster size when the pages read by vm_fault()
1977 * cross a cluster-size boundary. The cluster size is the greater of the
1978 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1979 *
1980 * When "fs->first_object" is a shadow object, the pages in the backing object
1981 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1982 * function must only be concerned with pages in the first object.
1983 */
1984 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1985 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1986 {
1987 struct pctrie_iter pages;
1988 vm_map_entry_t entry;
1989 vm_object_t first_object;
1990 vm_offset_t end, start;
1991 vm_page_t m;
1992 vm_size_t size;
1993
1994 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1995 first_object = fs->first_object;
1996 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1997 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1998 VM_OBJECT_RLOCK(first_object);
1999 size = VM_FAULT_DONTNEED_MIN;
2000 if (MAXPAGESIZES > 1 && size < pagesizes[1])
2001 size = pagesizes[1];
2002 end = rounddown2(vaddr, size);
2003 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
2004 (entry = fs->entry)->start < end) {
2005 if (end - entry->start < size)
2006 start = entry->start;
2007 else
2008 start = end - size;
2009 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
2010 vm_page_iter_limit_init(&pages, first_object,
2011 OFF_TO_IDX(entry->offset) +
2012 atop(end - entry->start));
2013 VM_RADIX_FOREACH_FROM(m, &pages,
2014 OFF_TO_IDX(entry->offset) +
2015 atop(start - entry->start)) {
2016 if (!vm_page_all_valid(m) ||
2017 vm_page_busied(m))
2018 continue;
2019
2020 /*
2021 * Don't clear PGA_REFERENCED, since it would
2022 * likely represent a reference by a different
2023 * process.
2024 *
2025 * Typically, at this point, prefetched pages
2026 * are still in the inactive queue. Only
2027 * pages that triggered page faults are in the
2028 * active queue. The test for whether the page
2029 * is in the inactive queue is racy; in the
2030 * worst case we will requeue the page
2031 * unnecessarily.
2032 */
2033 if (!vm_page_inactive(m))
2034 vm_page_deactivate(m);
2035 }
2036 }
2037 VM_OBJECT_RUNLOCK(first_object);
2038 }
2039 }
2040
2041 /*
2042 * vm_fault_prefault provides a quick way of clustering
2043 * pagefaults into a processes address space. It is a "cousin"
2044 * of vm_map_pmap_enter, except it runs at page fault time instead
2045 * of mmap time.
2046 */
2047 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)2048 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2049 int backward, int forward, bool obj_locked)
2050 {
2051 pmap_t pmap;
2052 vm_map_entry_t entry;
2053 vm_object_t backing_object, lobject;
2054 vm_offset_t addr, starta;
2055 vm_pindex_t pindex;
2056 vm_page_t m;
2057 vm_prot_t prot;
2058 int i;
2059
2060 pmap = fs->map->pmap;
2061 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2062 return;
2063
2064 entry = fs->entry;
2065
2066 if (addra < backward * PAGE_SIZE) {
2067 starta = entry->start;
2068 } else {
2069 starta = addra - backward * PAGE_SIZE;
2070 if (starta < entry->start)
2071 starta = entry->start;
2072 }
2073 prot = entry->protection;
2074
2075 /*
2076 * If pmap_enter() has enabled write access on a nearby mapping, then
2077 * don't attempt promotion, because it will fail.
2078 */
2079 if ((fs->prot & VM_PROT_WRITE) != 0)
2080 prot |= VM_PROT_NO_PROMOTE;
2081
2082 /*
2083 * Generate the sequence of virtual addresses that are candidates for
2084 * prefaulting in an outward spiral from the faulting virtual address,
2085 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
2086 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2087 * If the candidate address doesn't have a backing physical page, then
2088 * the loop immediately terminates.
2089 */
2090 for (i = 0; i < 2 * imax(backward, forward); i++) {
2091 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2092 PAGE_SIZE);
2093 if (addr > addra + forward * PAGE_SIZE)
2094 addr = 0;
2095
2096 if (addr < starta || addr >= entry->end)
2097 continue;
2098
2099 if (!pmap_is_prefaultable(pmap, addr))
2100 continue;
2101
2102 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2103 lobject = entry->object.vm_object;
2104 if (!obj_locked)
2105 VM_OBJECT_RLOCK(lobject);
2106 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2107 !vm_fault_object_needs_getpages(lobject) &&
2108 (backing_object = lobject->backing_object) != NULL) {
2109 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2110 0, ("vm_fault_prefault: unaligned object offset"));
2111 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2112 VM_OBJECT_RLOCK(backing_object);
2113 if (!obj_locked || lobject != entry->object.vm_object)
2114 VM_OBJECT_RUNLOCK(lobject);
2115 lobject = backing_object;
2116 }
2117 if (m == NULL) {
2118 if (!obj_locked || lobject != entry->object.vm_object)
2119 VM_OBJECT_RUNLOCK(lobject);
2120 break;
2121 }
2122 if (vm_page_all_valid(m) &&
2123 (m->flags & PG_FICTITIOUS) == 0)
2124 pmap_enter_quick(pmap, addr, m, prot);
2125 if (!obj_locked || lobject != entry->object.vm_object)
2126 VM_OBJECT_RUNLOCK(lobject);
2127 }
2128 }
2129
2130 /*
2131 * Hold each of the physical pages that are mapped by the specified
2132 * range of virtual addresses, ["addr", "addr" + "len"), if those
2133 * mappings are valid and allow the specified types of access, "prot".
2134 * If all of the implied pages are successfully held, then the number
2135 * of held pages is assigned to *ppages_count, together with pointers
2136 * to those pages in the array "ma". The returned value is zero.
2137 *
2138 * However, if any of the pages cannot be held, an error is returned,
2139 * and no pages are held.
2140 * Error values:
2141 * ENOMEM - the range is not valid
2142 * EINVAL - the provided vm_page array is too small to hold all pages
2143 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2144 * EFAULT - a page with requested permissions cannot be mapped
2145 * (more detailed result from vm_fault() is lost)
2146 */
2147 int
vm_fault_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count,int * ppages_count)2148 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2149 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2150 {
2151 vm_offset_t end, va;
2152 vm_page_t *mp;
2153 int count, error;
2154 boolean_t pmap_failed;
2155
2156 if (len == 0) {
2157 *ppages_count = 0;
2158 return (0);
2159 }
2160 end = round_page(addr + len);
2161 addr = trunc_page(addr);
2162
2163 if (!vm_map_range_valid(map, addr, end))
2164 return (ENOMEM);
2165
2166 if (atop(end - addr) > max_count)
2167 return (EINVAL);
2168 count = atop(end - addr);
2169
2170 /*
2171 * Most likely, the physical pages are resident in the pmap, so it is
2172 * faster to try pmap_extract_and_hold() first.
2173 */
2174 pmap_failed = FALSE;
2175 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2176 *mp = pmap_extract_and_hold(map->pmap, va, prot);
2177 if (*mp == NULL)
2178 pmap_failed = TRUE;
2179 else if ((prot & VM_PROT_WRITE) != 0 &&
2180 (*mp)->dirty != VM_PAGE_BITS_ALL) {
2181 /*
2182 * Explicitly dirty the physical page. Otherwise, the
2183 * caller's changes may go unnoticed because they are
2184 * performed through an unmanaged mapping or by a DMA
2185 * operation.
2186 *
2187 * The object lock is not held here.
2188 * See vm_page_clear_dirty_mask().
2189 */
2190 vm_page_dirty(*mp);
2191 }
2192 }
2193 if (pmap_failed) {
2194 /*
2195 * One or more pages could not be held by the pmap. Either no
2196 * page was mapped at the specified virtual address or that
2197 * mapping had insufficient permissions. Attempt to fault in
2198 * and hold these pages.
2199 *
2200 * If vm_fault_disable_pagefaults() was called,
2201 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2202 * acquire MD VM locks, which means we must not call
2203 * vm_fault(). Some (out of tree) callers mark
2204 * too wide a code area with vm_fault_disable_pagefaults()
2205 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2206 * the proper behaviour explicitly.
2207 */
2208 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2209 (curthread->td_pflags & TDP_NOFAULTING) != 0) {
2210 error = EAGAIN;
2211 goto fail;
2212 }
2213 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2214 if (*mp == NULL && vm_fault(map, va, prot,
2215 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2216 error = EFAULT;
2217 goto fail;
2218 }
2219 }
2220 }
2221 *ppages_count = count;
2222 return (0);
2223 fail:
2224 for (mp = ma; mp < ma + count; mp++)
2225 if (*mp != NULL)
2226 vm_page_unwire(*mp, PQ_INACTIVE);
2227 return (error);
2228 }
2229
2230 /*
2231 * Hold each of the physical pages that are mapped by the specified range of
2232 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2233 * and allow the specified types of access, "prot". If all of the implied
2234 * pages are successfully held, then the number of held pages is returned
2235 * together with pointers to those pages in the array "ma". However, if any
2236 * of the pages cannot be held, -1 is returned.
2237 */
2238 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2239 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2240 vm_prot_t prot, vm_page_t *ma, int max_count)
2241 {
2242 int error, pages_count;
2243
2244 error = vm_fault_hold_pages(map, addr, len, prot, ma,
2245 max_count, &pages_count);
2246 if (error != 0) {
2247 if (error == EINVAL)
2248 panic("vm_fault_quick_hold_pages: count > max_count");
2249 return (-1);
2250 }
2251 return (pages_count);
2252 }
2253
2254 /*
2255 * Routine:
2256 * vm_fault_copy_entry
2257 * Function:
2258 * Create new object backing dst_entry with private copy of all
2259 * underlying pages. When src_entry is equal to dst_entry, function
2260 * implements COW for wired-down map entry. Otherwise, it forks
2261 * wired entry into dst_map.
2262 *
2263 * In/out conditions:
2264 * The source and destination maps must be locked for write.
2265 * The source map entry must be wired down (or be a sharing map
2266 * entry corresponding to a main map entry that is wired down).
2267 */
2268 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2269 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2270 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2271 vm_ooffset_t *fork_charge)
2272 {
2273 struct pctrie_iter pages;
2274 vm_object_t backing_object, dst_object, object, src_object;
2275 vm_pindex_t dst_pindex, pindex, src_pindex;
2276 vm_prot_t access, prot;
2277 vm_offset_t vaddr;
2278 vm_page_t dst_m;
2279 vm_page_t src_m;
2280 bool upgrade;
2281
2282 upgrade = src_entry == dst_entry;
2283 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2284 ("vm_fault_copy_entry: vm_object not NULL"));
2285
2286 /*
2287 * If not an upgrade, then enter the mappings in the pmap as
2288 * read and/or execute accesses. Otherwise, enter them as
2289 * write accesses.
2290 *
2291 * A writeable large page mapping is only created if all of
2292 * the constituent small page mappings are modified. Marking
2293 * PTEs as modified on inception allows promotion to happen
2294 * without taking potentially large number of soft faults.
2295 */
2296 access = prot = dst_entry->protection;
2297 if (!upgrade)
2298 access &= ~VM_PROT_WRITE;
2299
2300 src_object = src_entry->object.vm_object;
2301 src_pindex = OFF_TO_IDX(src_entry->offset);
2302
2303 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2304 dst_object = src_object;
2305 vm_object_reference(dst_object);
2306 } else {
2307 /*
2308 * Create the top-level object for the destination entry.
2309 * Doesn't actually shadow anything - we copy the pages
2310 * directly.
2311 */
2312 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2313 dst_entry->start), NULL, NULL, 0);
2314 #if VM_NRESERVLEVEL > 0
2315 dst_object->flags |= OBJ_COLORED;
2316 dst_object->pg_color = atop(dst_entry->start);
2317 #endif
2318 dst_object->domain = src_object->domain;
2319 dst_object->charge = dst_entry->end - dst_entry->start;
2320
2321 dst_entry->object.vm_object = dst_object;
2322 dst_entry->offset = 0;
2323 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2324 }
2325
2326 VM_OBJECT_WLOCK(dst_object);
2327 if (fork_charge != NULL) {
2328 KASSERT(dst_entry->cred == NULL,
2329 ("vm_fault_copy_entry: leaked swp charge"));
2330 dst_object->cred = curthread->td_ucred;
2331 crhold(dst_object->cred);
2332 *fork_charge += dst_object->charge;
2333 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2334 dst_object->cred == NULL) {
2335 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2336 dst_entry));
2337 dst_object->cred = dst_entry->cred;
2338 dst_entry->cred = NULL;
2339 }
2340
2341 /*
2342 * Loop through all of the virtual pages within the entry's
2343 * range, copying each page from the source object to the
2344 * destination object. Since the source is wired, those pages
2345 * must exist. In contrast, the destination is pageable.
2346 * Since the destination object doesn't share any backing storage
2347 * with the source object, all of its pages must be dirtied,
2348 * regardless of whether they can be written.
2349 */
2350 vm_page_iter_init(&pages, dst_object);
2351 for (vaddr = dst_entry->start, dst_pindex = 0;
2352 vaddr < dst_entry->end;
2353 vaddr += PAGE_SIZE, dst_pindex++) {
2354 again:
2355 /*
2356 * Find the page in the source object, and copy it in.
2357 * Because the source is wired down, the page will be
2358 * in memory.
2359 */
2360 if (src_object != dst_object)
2361 VM_OBJECT_RLOCK(src_object);
2362 object = src_object;
2363 pindex = src_pindex + dst_pindex;
2364 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2365 (backing_object = object->backing_object) != NULL) {
2366 /*
2367 * Unless the source mapping is read-only or
2368 * it is presently being upgraded from
2369 * read-only, the first object in the shadow
2370 * chain should provide all of the pages. In
2371 * other words, this loop body should never be
2372 * executed when the source mapping is already
2373 * read/write.
2374 */
2375 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2376 upgrade,
2377 ("vm_fault_copy_entry: main object missing page"));
2378
2379 VM_OBJECT_RLOCK(backing_object);
2380 pindex += OFF_TO_IDX(object->backing_object_offset);
2381 if (object != dst_object)
2382 VM_OBJECT_RUNLOCK(object);
2383 object = backing_object;
2384 }
2385 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2386
2387 if (object != dst_object) {
2388 /*
2389 * Allocate a page in the destination object.
2390 */
2391 pindex = (src_object == dst_object ? src_pindex : 0) +
2392 dst_pindex;
2393 dst_m = vm_page_alloc_iter(dst_object, pindex,
2394 VM_ALLOC_NORMAL, &pages);
2395 if (dst_m == NULL) {
2396 VM_OBJECT_WUNLOCK(dst_object);
2397 VM_OBJECT_RUNLOCK(object);
2398 vm_wait(dst_object);
2399 VM_OBJECT_WLOCK(dst_object);
2400 pctrie_iter_reset(&pages);
2401 goto again;
2402 }
2403
2404 /*
2405 * See the comment in vm_fault_cow().
2406 */
2407 if (src_object == dst_object &&
2408 (object->flags & OBJ_ONEMAPPING) == 0)
2409 pmap_remove_all(src_m);
2410 pmap_copy_page(src_m, dst_m);
2411
2412 /*
2413 * The object lock does not guarantee that "src_m" will
2414 * transition from invalid to valid, but it does ensure
2415 * that "src_m" will not transition from valid to
2416 * invalid.
2417 */
2418 dst_m->dirty = dst_m->valid = src_m->valid;
2419 VM_OBJECT_RUNLOCK(object);
2420 } else {
2421 dst_m = src_m;
2422 if (vm_page_busy_acquire(
2423 dst_m, VM_ALLOC_WAITFAIL) == 0) {
2424 pctrie_iter_reset(&pages);
2425 goto again;
2426 }
2427 if (dst_m->pindex >= dst_object->size) {
2428 /*
2429 * We are upgrading. Index can occur
2430 * out of bounds if the object type is
2431 * vnode and the file was truncated.
2432 */
2433 vm_page_xunbusy(dst_m);
2434 break;
2435 }
2436 }
2437
2438 /*
2439 * Enter it in the pmap. If a wired, copy-on-write
2440 * mapping is being replaced by a write-enabled
2441 * mapping, then wire that new mapping.
2442 *
2443 * The page can be invalid if the user called
2444 * msync(MS_INVALIDATE) or truncated the backing vnode
2445 * or shared memory object. In this case, do not
2446 * insert it into pmap, but still do the copy so that
2447 * all copies of the wired map entry have similar
2448 * backing pages.
2449 */
2450 if (vm_page_all_valid(dst_m)) {
2451 VM_OBJECT_WUNLOCK(dst_object);
2452 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2453 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2454 VM_OBJECT_WLOCK(dst_object);
2455 }
2456
2457 /*
2458 * Mark it no longer busy, and put it on the active list.
2459 */
2460 if (upgrade) {
2461 if (src_m != dst_m) {
2462 vm_page_unwire(src_m, PQ_INACTIVE);
2463 vm_page_wire(dst_m);
2464 } else {
2465 KASSERT(vm_page_wired(dst_m),
2466 ("dst_m %p is not wired", dst_m));
2467 }
2468 } else {
2469 vm_page_activate(dst_m);
2470 }
2471 vm_page_xunbusy(dst_m);
2472 }
2473 VM_OBJECT_WUNLOCK(dst_object);
2474 if (upgrade) {
2475 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2476 vm_object_deallocate(src_object);
2477 }
2478 }
2479
2480 /*
2481 * Block entry into the machine-independent layer's page fault handler by
2482 * the calling thread. Subsequent calls to vm_fault() by that thread will
2483 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2484 * spurious page faults.
2485 */
2486 int
vm_fault_disable_pagefaults(void)2487 vm_fault_disable_pagefaults(void)
2488 {
2489
2490 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2491 }
2492
2493 void
vm_fault_enable_pagefaults(int save)2494 vm_fault_enable_pagefaults(int save)
2495 {
2496
2497 curthread_pflags_restore(save);
2498 }
2499