xref: /freebsd/sys/vm/vm_page.h (revision 07297aee35f26cfd37aef078ff6c0cbe67bbba15)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Resident memory system definitions.
63  */
64 
65 #ifndef	_VM_PAGE_
66 #define	_VM_PAGE_
67 
68 #include <vm/pmap.h>
69 #include <vm/_vm_phys.h>
70 
71 /*
72  *	Management of resident (logical) pages.
73  *
74  *	A small structure is kept for each resident
75  *	page, indexed by page number.  Each structure
76  *	is an element of several collections:
77  *
78  *		A radix tree used to quickly
79  *		perform object/offset lookups
80  *
81  *		An ordered list of pages due for pageout.
82  *
83  *	In addition, the structure contains the object
84  *	and offset to which this page belongs (for pageout),
85  *	and sundry status bits.
86  *
87  *	In general, operations on this structure's mutable fields are
88  *	synchronized using either one of or a combination of locks.  If a
89  *	field is annotated with two of these locks then holding either is
90  *	sufficient for read access but both are required for write access.
91  *	The queue lock for a page depends on the value of its queue field and is
92  *	described in detail below.
93  *
94  *	The following annotations are possible:
95  *	(A) the field must be accessed using atomic(9) and may require
96  *	    additional synchronization.
97  *	(B) the page busy lock.
98  *	(C) the field is immutable.
99  *	(F) the per-domain lock for the free queues.
100  *	(M) Machine dependent, defined by pmap layer.
101  *	(O) the object that the page belongs to.
102  *	(Q) the page's queue lock.
103  *
104  *	The busy lock is an embedded reader-writer lock that protects the
105  *	page's contents and identity (i.e., its <object, pindex> tuple) as
106  *	well as certain valid/dirty modifications.  To avoid bloating the
107  *	the page structure, the busy lock lacks some of the features available
108  *	the kernel's general-purpose synchronization primitives.  As a result,
109  *	busy lock ordering rules are not verified, lock recursion is not
110  *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
111  *	results will trigger a panic rather than causing the thread to block.
112  *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
113  *	state changes, after which the caller must re-lookup the page and
114  *	re-evaluate its state.  vm_page_busy_acquire() will block until
115  *	the lock is acquired.
116  *
117  *	The valid field is protected by the page busy lock (B) and object
118  *	lock (O).  Transitions from invalid to valid are generally done
119  *	via I/O or zero filling and do not require the object lock.
120  *	These must be protected with the busy lock to prevent page-in or
121  *	creation races.  Page invalidation generally happens as a result
122  *	of truncate or msync.  When invalidated, pages must not be present
123  *	in pmap and must hold the object lock to prevent concurrent
124  *	speculative read-only mappings that do not require busy.  I/O
125  *	routines may check for validity without a lock if they are prepared
126  *	to handle invalidation races with higher level locks (vnode) or are
127  *	unconcerned with races so long as they hold a reference to prevent
128  *	recycling.  When a valid bit is set while holding a shared busy
129  *	lock (A) atomic operations are used to protect against concurrent
130  *	modification.
131  *
132  *	In contrast, the synchronization of accesses to the page's
133  *	dirty field is a mix of machine dependent (M) and busy (B).  In
134  *	the machine-independent layer, the page busy must be held to
135  *	operate on the field.  However, the pmap layer is permitted to
136  *	set all bits within the field without holding that lock.  If the
137  *	underlying architecture does not support atomic read-modify-write
138  *	operations on the field's type, then the machine-independent
139  *	layer uses a 32-bit atomic on the aligned 32-bit word that
140  *	contains the dirty field.  In the machine-independent layer,
141  *	the implementation of read-modify-write operations on the
142  *	field is encapsulated in vm_page_clear_dirty_mask().  An
143  *	exclusive busy lock combined with pmap_remove_{write/all}() is the
144  *	only way to ensure a page can not become dirty.  I/O generally
145  *	removes the page from pmap to ensure exclusive access and atomic
146  *	writes.
147  *
148  *	The ref_count field tracks references to the page.  References that
149  *	prevent the page from being reclaimable are called wirings and are
150  *	counted in the low bits of ref_count.  The containing object's
151  *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
152  *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
153  *	atomically check for wirings and prevent new wirings via
154  *	pmap_extract_and_hold().  When a page belongs to an object, it may be
155  *	wired only when the object is locked, or the page is busy, or by
156  *	pmap_extract_and_hold().  As a result, if the object is locked and the
157  *	page is not busy (or is exclusively busied by the current thread), and
158  *	the page is unmapped, its wire count will not increase.  The ref_count
159  *	field is updated using atomic operations in most cases, except when it
160  *	is known that no other references to the page exist, such as in the page
161  *	allocator.  A page may be present in the page queues, or even actively
162  *	scanned by the page daemon, without an explicitly counted referenced.
163  *	The page daemon must therefore handle the possibility of a concurrent
164  *	free of the page.
165  *
166  *	The queue state of a page consists of the queue and act_count fields of
167  *	its atomically updated state, and the subset of atomic flags specified
168  *	by PGA_QUEUE_STATE_MASK.  The queue field contains the page's page queue
169  *	index, or PQ_NONE if it does not belong to a page queue.  To modify the
170  *	queue field, the page queue lock corresponding to the old value must be
171  *	held, unless that value is PQ_NONE, in which case the queue index must
172  *	be updated using an atomic RMW operation.  There is one exception to
173  *	this rule: the page daemon may transition the queue field from
174  *	PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
175  *	inactive queue scan.  At that point the page is already dequeued and no
176  *	other references to that vm_page structure can exist.  The PGA_ENQUEUED
177  *	flag, when set, indicates that the page structure is physically inserted
178  *	into the queue corresponding to the page's queue index, and may only be
179  *	set or cleared with the corresponding page queue lock held.
180  *
181  *	To avoid contention on page queue locks, page queue operations (enqueue,
182  *	dequeue, requeue) are batched using fixed-size per-CPU queues.  A
183  *	deferred operation is requested by setting one of the flags in
184  *	PGA_QUEUE_OP_MASK and inserting an entry into a batch queue.  When a
185  *	queue is full, an attempt to insert a new entry will lock the page
186  *	queues and trigger processing of the pending entries.  The
187  *	type-stability of vm_page structures is crucial to this scheme since the
188  *	processing of entries in a given batch queue may be deferred
189  *	indefinitely.  In particular, a page may be freed with pending batch
190  *	queue entries.  The page queue operation flags must be set using atomic
191  *	RWM operations.
192  */
193 
194 #if PAGE_SIZE == 4096
195 #define VM_PAGE_BITS_ALL 0xffu
196 typedef uint8_t vm_page_bits_t;
197 #elif PAGE_SIZE == 8192
198 #define VM_PAGE_BITS_ALL 0xffffu
199 typedef uint16_t vm_page_bits_t;
200 #elif PAGE_SIZE == 16384
201 #define VM_PAGE_BITS_ALL 0xffffffffu
202 typedef uint32_t vm_page_bits_t;
203 #elif PAGE_SIZE == 32768
204 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
205 typedef uint64_t vm_page_bits_t;
206 #endif
207 
208 typedef union vm_page_astate {
209 	struct {
210 		uint16_t flags;
211 		uint8_t	queue;
212 		uint8_t act_count;
213 	};
214 	uint32_t _bits;
215 } vm_page_astate_t;
216 
217 struct vm_page {
218 	union {
219 		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
220 		struct {
221 			SLIST_ENTRY(vm_page) ss; /* private slists */
222 		} s;
223 		struct {
224 			u_long p;
225 			u_long v;
226 		} memguard;
227 		struct {
228 			void *slab;
229 			void *zone;
230 		} uma;
231 	} plinks;
232 	vm_object_t object;		/* which object am I in (O) */
233 	vm_pindex_t pindex;		/* offset into object (O,P) */
234 	vm_paddr_t phys_addr;		/* physical address of page (C) */
235 	struct md_page md;		/* machine dependent stuff */
236 	u_int ref_count;		/* page references (A) */
237 	u_int busy_lock;		/* busy owners lock (A) */
238 	union vm_page_astate a;		/* state accessed atomically (A) */
239 	uint8_t order;			/* index of the buddy queue (F) */
240 	uint8_t pool;			/* vm_phys freepool index (F) */
241 	uint8_t flags;			/* page PG_* flags (P) */
242 	uint8_t oflags;			/* page VPO_* flags (O) */
243 	int8_t psind;			/* pagesizes[] index (O) */
244 	int8_t segind;			/* vm_phys segment index (C) */
245 	/* NOTE that these must support one bit per DEV_BSIZE in a page */
246 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
247 	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
248 	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
249 };
250 
251 /*
252  * Special bits used in the ref_count field.
253  *
254  * ref_count is normally used to count wirings that prevent the page from being
255  * reclaimed, but also supports several special types of references that do not
256  * prevent reclamation.  Accesses to the ref_count field must be atomic unless
257  * the page is unallocated.
258  *
259  * VPRC_OBJREF is the reference held by the containing object.  It can set or
260  * cleared only when the corresponding object's write lock is held.
261  *
262  * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
263  * attempting to tear down all mappings of a given page.  The page busy lock and
264  * object write lock must both be held in order to set or clear this bit.
265  */
266 #define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
267 #define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
268 #define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
269 #define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
270 
271 /*
272  * Page flags stored in oflags:
273  *
274  * Access to these page flags is synchronized by the lock on the object
275  * containing the page (O).
276  *
277  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
278  * 	 indicates that the page is not under PV management but
279  * 	 otherwise should be treated as a normal page.  Pages not
280  * 	 under PV management cannot be paged out via the
281  * 	 object/vm_page_t because there is no knowledge of their pte
282  * 	 mappings, and such pages are also not on any PQ queue.
283  *
284  */
285 #define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
286 #define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
287 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
288 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
289 
290 /*
291  * Busy page implementation details.
292  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
293  * even if the support for owner identity is removed because of size
294  * constraints.  Checks on lock recursion are then not possible, while the
295  * lock assertions effectiveness is someway reduced.
296  */
297 #define	VPB_BIT_SHARED		0x01
298 #define	VPB_BIT_EXCLUSIVE	0x02
299 #define	VPB_BIT_WAITERS		0x04
300 #define	VPB_BIT_FLAGMASK						\
301 	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
302 
303 #define	VPB_SHARERS_SHIFT	3
304 #define	VPB_SHARERS(x)							\
305 	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
306 #define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
307 #define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
308 
309 #define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
310 #ifdef INVARIANTS
311 #define	VPB_CURTHREAD_EXCLUSIVE						\
312 	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
313 #else
314 #define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
315 #endif
316 
317 #define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
318 
319 /* Freed lock blocks both shared and exclusive. */
320 #define	VPB_FREED		(0xffffffff - VPB_BIT_SHARED)
321 
322 #define	PQ_NONE		255
323 #define	PQ_INACTIVE	0
324 #define	PQ_ACTIVE	1
325 #define	PQ_LAUNDRY	2
326 #define	PQ_UNSWAPPABLE	3
327 #define	PQ_COUNT	4
328 
329 #ifndef VM_PAGE_HAVE_PGLIST
330 TAILQ_HEAD(pglist, vm_page);
331 #define VM_PAGE_HAVE_PGLIST
332 #endif
333 SLIST_HEAD(spglist, vm_page);
334 
335 #ifdef _KERNEL
336 extern vm_page_t bogus_page;
337 #endif	/* _KERNEL */
338 
339 /*
340  * The vm_page's aflags are updated using atomic operations.  To set or clear
341  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
342  * must be used.  Neither these flags nor these functions are part of the KBI.
343  *
344  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
345  * both the MI and MD VM layers.  However, kernel loadable modules should not
346  * directly set this flag.  They should call vm_page_reference() instead.
347  *
348  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
349  * When it does so, the object must be locked, or the page must be
350  * exclusive busied.  The MI VM layer must never access this flag
351  * directly.  Instead, it should call pmap_page_is_write_mapped().
352  *
353  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
354  * at least one executable mapping.  It is not consumed by the MI VM layer.
355  *
356  * PGA_NOSYNC must be set and cleared with the page busy lock held.
357  *
358  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
359  * from a page queue, respectively.  It determines whether the plinks.q field
360  * of the page is valid.  To set or clear this flag, page's "queue" field must
361  * be a valid queue index, and the corresponding page queue lock must be held.
362  *
363  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
364  * queue, and cleared when the dequeue request is processed.  A page may
365  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
366  * is requested after the page is scheduled to be enqueued but before it is
367  * actually inserted into the page queue.
368  *
369  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
370  * in its page queue.
371  *
372  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
373  * the inactive queue, thus bypassing LRU.
374  *
375  * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
376  * atomic RMW operation to ensure that the "queue" field is a valid queue index,
377  * and the corresponding page queue lock must be held when clearing any of the
378  * flags.
379  *
380  * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
381  * when the context that dirties the page does not have the object write lock
382  * held.
383  */
384 #define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
385 #define	PGA_REFERENCED	0x0002		/* page has been referenced */
386 #define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
387 #define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
388 #define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
389 #define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
390 #define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
391 #define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
392 #define	PGA_SWAP_FREE	0x0100		/* page with swap space was dirtied */
393 #define	PGA_SWAP_SPACE	0x0200		/* page has allocated swap space */
394 
395 #define	PGA_QUEUE_OP_MASK	(PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
396 #define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
397 
398 /*
399  * Page flags.  Updates to these flags are not synchronized, and thus they must
400  * be set during page allocation or free to avoid races.
401  *
402  * The PG_PCPU_CACHE flag is set at allocation time if the page was
403  * allocated from a per-CPU cache.  It is cleared the next time that the
404  * page is allocated from the physical memory allocator.
405  */
406 #define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
407 #define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
408 #define	PG_ZERO		0x04		/* page is zeroed */
409 #define	PG_MARKER	0x08		/* special queue marker page */
410 #define	PG_NODUMP	0x10		/* don't include this page in a dump */
411 #define	PG_NOFREE	0x20		/* page should never be freed. */
412 
413 /*
414  * Misc constants.
415  */
416 #define ACT_DECLINE		1
417 #define ACT_ADVANCE		3
418 #define ACT_INIT		5
419 #define ACT_MAX			64
420 
421 #ifdef _KERNEL
422 
423 #include <sys/kassert.h>
424 #include <machine/atomic.h>
425 struct pctrie_iter;
426 
427 /*
428  * Each pageable resident page falls into one of five lists:
429  *
430  *	free
431  *		Available for allocation now.
432  *
433  *	inactive
434  *		Low activity, candidates for reclamation.
435  *		This list is approximately LRU ordered.
436  *
437  *	laundry
438  *		This is the list of pages that should be
439  *		paged out next.
440  *
441  *	unswappable
442  *		Dirty anonymous pages that cannot be paged
443  *		out because no swap device is configured.
444  *
445  *	active
446  *		Pages that are "active", i.e., they have been
447  *		recently referenced.
448  *
449  */
450 
451 extern vm_page_t vm_page_array;		/* First resident page in table */
452 extern long vm_page_array_size;		/* number of vm_page_t's */
453 extern long first_page;			/* first physical page number */
454 
455 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
456 
457 /*
458  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
459  * page to which the given physical address belongs. The correct vm_page_t
460  * object is returned for addresses that are not page-aligned.
461  */
462 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
463 
464 /*
465  * vm_page allocation arguments for the functions vm_page_alloc(),
466  * vm_page_alloc_contig(), vm_page_alloc_noobj(), vm_page_grab(), and
467  * vm_page_grab_pages().  Each function supports only a subset of the flags.
468  * See the flags legend.
469  *
470  * The meaning of VM_ALLOC_ZERO varies: vm_page_alloc_noobj(), vm_page_grab(),
471  * and vm_page_grab_pages() guarantee that the returned pages are zeroed; in
472  * contrast vm_page_alloc() and vm_page_alloc_contig() do not, leaving it to
473  * the caller to test the page's flags for PG_ZERO.
474  *
475  * Bits 0 - 1 define class.
476  * Bits 2 - 15 dedicated for flags.
477  * Legend:
478  * (a) - vm_page_alloc() supports the flag.
479  * (c) - vm_page_alloc_contig() supports the flag.
480  * (g) - vm_page_grab() supports the flag.
481  * (n) - vm_page_alloc_noobj() supports the flag.
482  * (p) - vm_page_grab_pages() supports the flag.
483  * Bits above 15 define the count of additional pages that the caller
484  * intends to allocate.
485  */
486 #define VM_ALLOC_NORMAL		0
487 #define VM_ALLOC_INTERRUPT	1
488 #define VM_ALLOC_SYSTEM		2
489 #define	VM_ALLOC_CLASS_MASK	3
490 #define	VM_ALLOC_WAITOK		0x0008	/* (gnp) Sleep and retry */
491 #define	VM_ALLOC_WAITFAIL	0x0010	/* (acgnp) Sleep and return error */
492 #define	VM_ALLOC_WIRED		0x0020	/* (acgnp) Allocate a wired page */
493 #define	VM_ALLOC_ZERO		0x0040	/* (acgnp) Allocate a zeroed page */
494 #define	VM_ALLOC_NORECLAIM	0x0080	/* (c) Do not reclaim after failure */
495 #define	VM_ALLOC_NOFREE		0x0100	/* (agnp) Page will never be freed */
496 #define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
497 #define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Do not allocate a page */
498 #define	VM_ALLOC_AVAIL1		0x0800
499 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy state */
500 #define	VM_ALLOC_NODUMP		0x2000	/* (acgnp) Do not include in dump */
501 #define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
502 #define	VM_ALLOC_NOWAIT		0x8000	/* (acgnp) Do not sleep */
503 #define	VM_ALLOC_COUNT_MAX	0xffff
504 #define	VM_ALLOC_COUNT_SHIFT	16
505 #define	VM_ALLOC_COUNT_MASK	(VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
506 #define	VM_ALLOC_COUNT(count)	({ 	/* (acgn) Additional pages */	\
507 	KASSERT((count) <= VM_ALLOC_COUNT_MAX,				\
508 	    ("%s: invalid VM_ALLOC_COUNT value", __func__));		\
509 	(count) << VM_ALLOC_COUNT_SHIFT;				\
510 })
511 
512 #ifdef M_NOWAIT
513 static inline int
malloc2vm_flags(int malloc_flags)514 malloc2vm_flags(int malloc_flags)
515 {
516 	int pflags;
517 
518 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
519 	    (malloc_flags & M_NOWAIT) != 0,
520 	    ("M_USE_RESERVE requires M_NOWAIT"));
521 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
522 	    VM_ALLOC_SYSTEM;
523 	if ((malloc_flags & M_ZERO) != 0)
524 		pflags |= VM_ALLOC_ZERO;
525 	if ((malloc_flags & M_NODUMP) != 0)
526 		pflags |= VM_ALLOC_NODUMP;
527 	if ((malloc_flags & M_NOWAIT))
528 		pflags |= VM_ALLOC_NOWAIT;
529 	if ((malloc_flags & M_WAITOK))
530 		pflags |= VM_ALLOC_WAITOK;
531 	if ((malloc_flags & M_NORECLAIM))
532 		pflags |= VM_ALLOC_NORECLAIM;
533 	if ((malloc_flags & M_NEVERFREED))
534 		pflags |= VM_ALLOC_NOFREE;
535 	return (pflags);
536 }
537 #endif
538 
539 /*
540  * Predicates supported by vm_page_ps_test():
541  *
542  *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
543  *	However, it can be spuriously false when the (super)page has become
544  *	dirty in the pmap but that information has not been propagated to the
545  *	machine-independent layer.
546  */
547 #define	PS_ALL_DIRTY	0x1
548 #define	PS_ALL_VALID	0x2
549 #define	PS_NONE_BUSY	0x4
550 
551 void vm_page_activate (vm_page_t);
552 void vm_page_advise(vm_page_t m, int advice);
553 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
554 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
555     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
556     vm_paddr_t boundary, vm_memattr_t memattr);
557 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
558     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
559     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
560     vm_memattr_t memattr);
561 vm_page_t vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex,
562     int domain, int req, struct pctrie_iter *pages);
563 vm_page_t vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
564     struct pctrie_iter *pages);
565 vm_page_t vm_page_alloc_noobj(int);
566 vm_page_t vm_page_alloc_noobj_domain(int, int);
567 vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
568     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
569     vm_memattr_t memattr);
570 vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
571     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
572     vm_memattr_t memattr);
573 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
574 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
575 bool vm_page_busy_acquire(vm_page_t m, int allocflags);
576 void vm_page_busy_downgrade(vm_page_t m);
577 int vm_page_busy_tryupgrade(vm_page_t m);
578 bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags);
579 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
580     vm_pindex_t pindex, const char *wmesg, int allocflags);
581 void vm_page_deactivate(vm_page_t m);
582 void vm_page_deactivate_noreuse(vm_page_t m);
583 void vm_page_dequeue(vm_page_t m);
584 void vm_page_dequeue_deferred(vm_page_t m);
585 void vm_page_free(vm_page_t m);
586 void vm_page_free_invalid(vm_page_t m);
587 int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
588 void vm_page_free_zero(vm_page_t m);
589 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
590 int vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
591     int end);
592 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
593 vm_page_t vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex,
594     int allocflags, struct pctrie_iter *pages);
595 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
596 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
597     vm_page_t *ma, int count);
598 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
599     int allocflags, vm_page_t *ma, int count);
600 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
601     int allocflags);
602 int vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object,
603     vm_pindex_t pindex, int allocflags, struct pctrie_iter *pages);
604 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
605     vm_pindex_t pindex, int allocflags);
606 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
607 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
608 void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool);
609 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
610 void vm_page_invalid(vm_page_t m);
611 void vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m);
612 void vm_page_iter_init(struct pctrie_iter *, vm_object_t);
613 int vm_page_iter_insert(vm_page_t m, vm_object_t, vm_pindex_t,
614     struct pctrie_iter *);
615 void vm_page_iter_limit_init(struct pctrie_iter *, vm_object_t, vm_pindex_t);
616 bool vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m);
617 bool vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
618     vm_object_t new_object, vm_pindex_t new_pindex);
619 void vm_page_launder(vm_page_t m);
620 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
621 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
622 void vm_page_pqbatch_drain(void);
623 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
624 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
625     vm_page_astate_t new);
626 bool vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m);
627 void vm_page_putfake(vm_page_t m);
628 void vm_page_readahead_finish(vm_page_t m);
629 int vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
630     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
631 int vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
632     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
633 int vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
634     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
635     int desired_runs);
636 void vm_page_reference(vm_page_t m);
637 #define	VPR_TRYFREE	0x01
638 #define	VPR_NOREUSE	0x02
639 void vm_page_release(vm_page_t m, int flags);
640 void vm_page_release_locked(vm_page_t m, int flags);
641 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
642 bool vm_page_remove(vm_page_t);
643 bool vm_page_remove_xbusy(vm_page_t);
644 void vm_page_replace(vm_page_t mnew, vm_object_t object,
645     vm_pindex_t pindex, vm_page_t mold);
646 int vm_page_sbusied(vm_page_t m);
647 vm_page_bits_t vm_page_set_dirty(vm_page_t m);
648 void vm_page_set_valid_range(vm_page_t m, int base, int size);
649 vm_offset_t vm_page_startup(vm_offset_t vaddr);
650 void vm_page_sunbusy(vm_page_t m);
651 bool vm_page_try_remove_all(vm_page_t m);
652 bool vm_page_try_remove_write(vm_page_t m);
653 int vm_page_trysbusy(vm_page_t m);
654 int vm_page_tryxbusy(vm_page_t m);
655 void vm_page_unhold_pages(vm_page_t *ma, int count);
656 void vm_page_unswappable(vm_page_t m);
657 void vm_page_unwire(vm_page_t m, uint8_t queue);
658 bool vm_page_unwire_noq(vm_page_t m);
659 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
660 void vm_page_wire(vm_page_t);
661 bool vm_page_wire_mapped(vm_page_t m);
662 void vm_page_xunbusy_hard(vm_page_t m);
663 void vm_page_xunbusy_hard_unchecked(vm_page_t m);
664 void vm_page_set_validclean (vm_page_t, int, int);
665 void vm_page_clear_dirty(vm_page_t, int, int);
666 void vm_page_set_invalid(vm_page_t, int, int);
667 void vm_page_valid(vm_page_t m);
668 int vm_page_is_valid(vm_page_t, int, int);
669 void vm_page_test_dirty(vm_page_t);
670 vm_page_bits_t vm_page_bits(int base, int size);
671 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
672 
673 void vm_page_dirty_KBI(vm_page_t m);
674 
675 #define	vm_page_busy_fetch(m)	atomic_load_int(&(m)->busy_lock)
676 
677 #define	vm_page_assert_busied(m)					\
678 	KASSERT(vm_page_busied(m),					\
679 	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
680 	    (m), __FILE__, __LINE__))
681 
682 #define	vm_page_assert_sbusied(m)					\
683 	KASSERT(vm_page_sbusied(m),					\
684 	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
685 	    (m), __FILE__, __LINE__))
686 
687 #define	vm_page_assert_unbusied(m)					\
688 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) !=		\
689 	    VPB_CURTHREAD_EXCLUSIVE,					\
690 	    ("vm_page_assert_unbusied: page %p busy_lock %#x owned"	\
691 	     " by me (%p) @ %s:%d",					\
692 	    (m), (m)->busy_lock, curthread, __FILE__, __LINE__));	\
693 
694 #define	vm_page_assert_xbusied_unchecked(m) do {			\
695 	KASSERT(vm_page_xbusied(m),					\
696 	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
697 	    (m), __FILE__, __LINE__));					\
698 } while (0)
699 #define	vm_page_assert_xbusied(m) do {					\
700 	vm_page_assert_xbusied_unchecked(m);				\
701 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) ==		\
702 	    VPB_CURTHREAD_EXCLUSIVE,					\
703 	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
704 	     " by me (%p) @ %s:%d",					\
705 	    (m), (m)->busy_lock, curthread, __FILE__, __LINE__));	\
706 } while (0)
707 
708 #define	vm_page_busied(m)						\
709 	(vm_page_busy_fetch(m) != VPB_UNBUSIED)
710 
711 #define	vm_page_xbusied(m)						\
712 	((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
713 
714 #define	vm_page_busy_freed(m)						\
715 	(vm_page_busy_fetch(m) == VPB_FREED)
716 
717 /* Note: page m's lock must not be owned by the caller. */
718 #define	vm_page_xunbusy(m) do {						\
719 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
720 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
721 		vm_page_xunbusy_hard(m);				\
722 } while (0)
723 #define	vm_page_xunbusy_unchecked(m) do {				\
724 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
725 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
726 		vm_page_xunbusy_hard_unchecked(m);			\
727 } while (0)
728 
729 #ifdef INVARIANTS
730 void vm_page_object_busy_assert(vm_page_t m);
731 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
732 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
733 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
734 	vm_page_assert_pga_writeable(m, bits)
735 /*
736  * Claim ownership of a page's xbusy state.  In non-INVARIANTS kernels this
737  * operation is a no-op since ownership is not tracked.  In particular
738  * this macro does not provide any synchronization with the previous owner.
739  */
740 #define	vm_page_xbusy_claim(m) do {					\
741 	u_int _busy_lock;						\
742 									\
743 	vm_page_assert_xbusied_unchecked((m));				\
744 	do {								\
745 		_busy_lock = vm_page_busy_fetch(m);			\
746 	} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock,	\
747 	    (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
748 } while (0)
749 #else
750 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
751 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
752 #define	vm_page_xbusy_claim(m)
753 #endif
754 
755 #if BYTE_ORDER == BIG_ENDIAN
756 #define	VM_PAGE_AFLAG_SHIFT	16
757 #else
758 #define	VM_PAGE_AFLAG_SHIFT	0
759 #endif
760 
761 /*
762  *	Load a snapshot of a page's 32-bit atomic state.
763  */
764 static inline vm_page_astate_t
vm_page_astate_load(vm_page_t m)765 vm_page_astate_load(vm_page_t m)
766 {
767 	vm_page_astate_t a;
768 
769 	a._bits = atomic_load_32(&m->a._bits);
770 	return (a);
771 }
772 
773 /*
774  *	Atomically compare and set a page's atomic state.
775  */
776 static inline bool
vm_page_astate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)777 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
778 {
779 
780 	KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
781 	    ("%s: invalid head requeue request for page %p", __func__, m));
782 	KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
783 	    ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
784 	KASSERT(new._bits != old->_bits,
785 	    ("%s: bits are unchanged", __func__));
786 
787 	return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
788 }
789 
790 /*
791  *	Clear the given bits in the specified page.
792  */
793 static inline void
vm_page_aflag_clear(vm_page_t m,uint16_t bits)794 vm_page_aflag_clear(vm_page_t m, uint16_t bits)
795 {
796 	uint32_t *addr, val;
797 
798 	/*
799 	 * Access the whole 32-bit word containing the aflags field with an
800 	 * atomic update.  Parallel non-atomic updates to the other fields
801 	 * within this word are handled properly by the atomic update.
802 	 */
803 	addr = (void *)&m->a;
804 	val = bits << VM_PAGE_AFLAG_SHIFT;
805 	atomic_clear_32(addr, val);
806 }
807 
808 /*
809  *	Set the given bits in the specified page.
810  */
811 static inline void
vm_page_aflag_set(vm_page_t m,uint16_t bits)812 vm_page_aflag_set(vm_page_t m, uint16_t bits)
813 {
814 	uint32_t *addr, val;
815 
816 	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
817 
818 	/*
819 	 * Access the whole 32-bit word containing the aflags field with an
820 	 * atomic update.  Parallel non-atomic updates to the other fields
821 	 * within this word are handled properly by the atomic update.
822 	 */
823 	addr = (void *)&m->a;
824 	val = bits << VM_PAGE_AFLAG_SHIFT;
825 	atomic_set_32(addr, val);
826 }
827 
828 /*
829  *	vm_page_dirty:
830  *
831  *	Set all bits in the page's dirty field.
832  *
833  *	The object containing the specified page must be locked if the
834  *	call is made from the machine-independent layer.
835  *
836  *	See vm_page_clear_dirty_mask().
837  */
838 static __inline void
vm_page_dirty(vm_page_t m)839 vm_page_dirty(vm_page_t m)
840 {
841 
842 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
843 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
844 	vm_page_dirty_KBI(m);
845 #else
846 	m->dirty = VM_PAGE_BITS_ALL;
847 #endif
848 }
849 
850 /*
851  *	vm_page_undirty:
852  *
853  *	Set page to not be dirty.  Note: does not clear pmap modify bits
854  */
855 static __inline void
vm_page_undirty(vm_page_t m)856 vm_page_undirty(vm_page_t m)
857 {
858 
859 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
860 	m->dirty = 0;
861 }
862 
863 static inline uint8_t
_vm_page_queue(vm_page_astate_t as)864 _vm_page_queue(vm_page_astate_t as)
865 {
866 
867 	if ((as.flags & PGA_DEQUEUE) != 0)
868 		return (PQ_NONE);
869 	return (as.queue);
870 }
871 
872 /*
873  *	vm_page_queue:
874  *
875  *	Return the index of the queue containing m.
876  */
877 static inline uint8_t
vm_page_queue(vm_page_t m)878 vm_page_queue(vm_page_t m)
879 {
880 
881 	return (_vm_page_queue(vm_page_astate_load(m)));
882 }
883 
884 static inline bool
vm_page_active(vm_page_t m)885 vm_page_active(vm_page_t m)
886 {
887 
888 	return (vm_page_queue(m) == PQ_ACTIVE);
889 }
890 
891 static inline bool
vm_page_inactive(vm_page_t m)892 vm_page_inactive(vm_page_t m)
893 {
894 
895 	return (vm_page_queue(m) == PQ_INACTIVE);
896 }
897 
898 static inline bool
vm_page_in_laundry(vm_page_t m)899 vm_page_in_laundry(vm_page_t m)
900 {
901 	uint8_t queue;
902 
903 	queue = vm_page_queue(m);
904 	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
905 }
906 
907 static inline void
vm_page_clearref(vm_page_t m)908 vm_page_clearref(vm_page_t m)
909 {
910 	u_int r;
911 
912 	r = m->ref_count;
913 	while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED |
914 	    VPRC_OBJREF)) == 0)
915 		;
916 }
917 
918 /*
919  *	vm_page_drop:
920  *
921  *	Release a reference to a page and return the old reference count.
922  */
923 static inline u_int
vm_page_drop(vm_page_t m,u_int val)924 vm_page_drop(vm_page_t m, u_int val)
925 {
926 	u_int old;
927 
928 	/*
929 	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
930 	 * page structure are visible before it is freed.
931 	 */
932 	atomic_thread_fence_rel();
933 	old = atomic_fetchadd_int(&m->ref_count, -val);
934 	KASSERT(old != VPRC_BLOCKED,
935 	    ("vm_page_drop: page %p has an invalid refcount value", m));
936 	return (old);
937 }
938 
939 /*
940  *	vm_page_wired:
941  *
942  *	Perform a racy check to determine whether a reference prevents the page
943  *	from being reclaimable.  If the page's object is locked, and the page is
944  *	unmapped and exclusively busied by the current thread, no new wirings
945  *	may be created.
946  */
947 static inline bool
vm_page_wired(vm_page_t m)948 vm_page_wired(vm_page_t m)
949 {
950 
951 	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
952 }
953 
954 static inline bool
vm_page_all_valid(vm_page_t m)955 vm_page_all_valid(vm_page_t m)
956 {
957 
958 	return (m->valid == VM_PAGE_BITS_ALL);
959 }
960 
961 static inline bool
vm_page_any_valid(vm_page_t m)962 vm_page_any_valid(vm_page_t m)
963 {
964 
965 	return (m->valid != 0);
966 }
967 
968 static inline bool
vm_page_none_valid(vm_page_t m)969 vm_page_none_valid(vm_page_t m)
970 {
971 
972 	return (m->valid == 0);
973 }
974 
975 static inline int
vm_page_domain(vm_page_t m __numa_used)976 vm_page_domain(vm_page_t m __numa_used)
977 {
978 #ifdef NUMA
979 	int domn, segind;
980 
981 	segind = m->segind;
982 	KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
983 	domn = vm_phys_segs[segind].domain;
984 	KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
985 	return (domn);
986 #else
987 	return (0);
988 #endif
989 }
990 
991 #endif				/* _KERNEL */
992 #endif				/* !_VM_PAGE_ */
993