1 /*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 * Copyright 2012 ADARA Networks, Inc.
4 * Copyright 2017 Dell EMC Isilon
5 *
6 * Portions of this software were developed by Robert N. M. Watson under
7 * contract to ADARA Networks, Inc.
8 *
9 * Permission to use, copy, modify, and distribute this software and
10 * its documentation for any purpose and without fee is hereby
11 * granted, provided that both the above copyright notice and this
12 * permission notice appear in all copies, that both the above
13 * copyright notice and this permission notice appear in all
14 * supporting documentation, and that the name of M.I.T. not be used
15 * in advertising or publicity pertaining to distribution of the
16 * software without specific, written prior permission. M.I.T. makes
17 * no representations about the suitability of this software for any
18 * purpose. It is provided "as is" without express or implied
19 * warranty.
20 *
21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37 * This is sort of sneaky in the implementation, since
38 * we need to pretend to be enough of an Ethernet implementation
39 * to make arp work. The way we do this is by telling everyone
40 * that we are an Ethernet, and then catch the packets that
41 * ether_output() sends to us via if_transmit(), rewrite them for
42 * use by the real outgoing interface, and ask it to send them.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ipsec.h"
48 #include "opt_kern_tls.h"
49 #include "opt_vlan.h"
50 #include "opt_ratelimit.h"
51
52 #include <sys/param.h>
53 #include <sys/eventhandler.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/module.h>
59 #include <sys/rmlock.h>
60 #include <sys/priv.h>
61 #include <sys/queue.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/sx.h>
67 #include <sys/taskqueue.h>
68
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/if_clone.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85
86 #include <netlink/netlink.h>
87 #include <netlink/netlink_ctl.h>
88 #include <netlink/netlink_route.h>
89 #include <netlink/route/route_var.h>
90
91 #define VLAN_DEF_HWIDTH 4
92 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST)
93
94 #define UP_AND_RUNNING(ifp) \
95 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
96
97 CK_SLIST_HEAD(ifvlanhead, ifvlan);
98
99 struct ifvlantrunk {
100 struct ifnet *parent; /* parent interface of this trunk */
101 struct mtx lock;
102 #ifdef VLAN_ARRAY
103 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
104 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */
105 #else
106 struct ifvlanhead *hash; /* dynamic hash-list table */
107 uint16_t hmask;
108 uint16_t hwidth;
109 #endif
110 int refcnt;
111 };
112
113 #if defined(KERN_TLS) || defined(RATELIMIT)
114 struct vlan_snd_tag {
115 struct m_snd_tag com;
116 struct m_snd_tag *tag;
117 };
118
119 static inline struct vlan_snd_tag *
mst_to_vst(struct m_snd_tag * mst)120 mst_to_vst(struct m_snd_tag *mst)
121 {
122
123 return (__containerof(mst, struct vlan_snd_tag, com));
124 }
125 #endif
126
127 /*
128 * This macro provides a facility to iterate over every vlan on a trunk with
129 * the assumption that none will be added/removed during iteration.
130 */
131 #ifdef VLAN_ARRAY
132 #define VLAN_FOREACH(_ifv, _trunk) \
133 size_t _i; \
134 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
135 if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
136 #else /* VLAN_ARRAY */
137 #define VLAN_FOREACH(_ifv, _trunk) \
138 struct ifvlan *_next; \
139 size_t _i; \
140 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
141 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
142 #endif /* VLAN_ARRAY */
143
144 /*
145 * This macro provides a facility to iterate over every vlan on a trunk while
146 * also modifying the number of vlans on the trunk. The iteration continues
147 * until some condition is met or there are no more vlans on the trunk.
148 */
149 #ifdef VLAN_ARRAY
150 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
151 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
152 size_t _i; \
153 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
154 if (((_ifv) = (_trunk)->vlans[_i]))
155 #else /* VLAN_ARRAY */
156 /*
157 * The hash table case is more complicated. We allow for the hash table to be
158 * modified (i.e. vlans removed) while we are iterating over it. To allow for
159 * this we must restart the iteration every time we "touch" something during
160 * the iteration, since removal will resize the hash table and invalidate our
161 * current position. If acting on the touched element causes the trunk to be
162 * emptied, then iteration also stops.
163 */
164 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
165 size_t _i; \
166 bool _touch = false; \
167 for (_i = 0; \
168 !(_cond) && _i < (1 << (_trunk)->hwidth); \
169 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
170 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
171 (_touch = true))
172 #endif /* VLAN_ARRAY */
173
174 struct vlan_mc_entry {
175 struct sockaddr_dl mc_addr;
176 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries;
177 struct epoch_context mc_epoch_ctx;
178 };
179
180 struct ifvlan {
181 struct ifvlantrunk *ifv_trunk;
182 struct ifnet *ifv_ifp;
183 #define TRUNK(ifv) ((ifv)->ifv_trunk)
184 #define PARENT(ifv) (TRUNK(ifv)->parent)
185 void *ifv_cookie;
186 int ifv_pflags; /* special flags we have set on parent */
187 int ifv_capenable;
188 int ifv_capenable2;
189 int ifv_encaplen; /* encapsulation length */
190 int ifv_mtufudge; /* MTU fudged by this much */
191 int ifv_mintu; /* min transmission unit */
192 struct ether_8021q_tag ifv_qtag;
193 #define ifv_proto ifv_qtag.proto
194 #define ifv_vid ifv_qtag.vid
195 #define ifv_pcp ifv_qtag.pcp
196 struct task lladdr_task;
197 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
198 #ifndef VLAN_ARRAY
199 CK_SLIST_ENTRY(ifvlan) ifv_list;
200 #endif
201 };
202
203 /* Special flags we should propagate to parent. */
204 static struct {
205 int flag;
206 int (*func)(struct ifnet *, int);
207 } vlan_pflags[] = {
208 {IFF_PROMISC, ifpromisc},
209 {IFF_ALLMULTI, if_allmulti},
210 {0, NULL}
211 };
212
213 VNET_DECLARE(int, vlan_mtag_pcp);
214 #define V_vlan_mtag_pcp VNET(vlan_mtag_pcp)
215
216 static const char vlanname[] = "vlan";
217 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
218
219 static eventhandler_tag ifdetach_tag;
220 static eventhandler_tag iflladdr_tag;
221 static eventhandler_tag ifevent_tag;
222
223 /*
224 * if_vlan uses two module-level synchronizations primitives to allow concurrent
225 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
226 * while they are being used for tx/rx. To accomplish this in a way that has
227 * acceptable performance and cooperation with other parts of the network stack
228 * there is a non-sleepable epoch(9) and an sx(9).
229 *
230 * The performance-sensitive paths that warrant using the epoch(9) are
231 * vlan_transmit and vlan_input. Both have to check for the vlan interface's
232 * existence using if_vlantrunk, and being in the network tx/rx paths the use
233 * of an epoch(9) gives a measureable improvement in performance.
234 *
235 * The reason for having an sx(9) is mostly because there are still areas that
236 * must be sleepable and also have safe concurrent access to a vlan interface.
237 * Since the sx(9) exists, it is used by default in most paths unless sleeping
238 * is not permitted, or if it is not clear whether sleeping is permitted.
239 *
240 */
241 #define _VLAN_SX_ID ifv_sx
242
243 static struct sx _VLAN_SX_ID;
244
245 #define VLAN_LOCKING_INIT() \
246 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
247
248 #define VLAN_LOCKING_DESTROY() \
249 sx_destroy(&_VLAN_SX_ID)
250
251 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID)
252 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID)
253 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID)
254 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID)
255 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
256 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
257 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED)
258
259 /*
260 * We also have a per-trunk mutex that should be acquired when changing
261 * its state.
262 */
263 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
264 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock)
265 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock)
266 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock)
267 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED);
268
269 /*
270 * The VLAN_ARRAY substitutes the dynamic hash with a static array
271 * with 4096 entries. In theory this can give a boost in processing,
272 * however in practice it does not. Probably this is because the array
273 * is too big to fit into CPU cache.
274 */
275 #ifndef VLAN_ARRAY
276 static void vlan_inithash(struct ifvlantrunk *trunk);
277 static void vlan_freehash(struct ifvlantrunk *trunk);
278 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
279 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
281 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
282 uint16_t vid);
283 #endif
284 static void trunk_destroy(struct ifvlantrunk *trunk);
285
286 static void vlan_init(void *foo);
287 static void vlan_input(struct ifnet *ifp, struct mbuf *m);
288 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
289 #if defined(KERN_TLS) || defined(RATELIMIT)
290 static int vlan_snd_tag_alloc(struct ifnet *,
291 union if_snd_tag_alloc_params *, struct m_snd_tag **);
292 static int vlan_snd_tag_modify(struct m_snd_tag *,
293 union if_snd_tag_modify_params *);
294 static int vlan_snd_tag_query(struct m_snd_tag *,
295 union if_snd_tag_query_params *);
296 static void vlan_snd_tag_free(struct m_snd_tag *);
297 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
298 static void vlan_ratelimit_query(struct ifnet *,
299 struct if_ratelimit_query_results *);
300 #endif
301 static void vlan_qflush(struct ifnet *ifp);
302 static int vlan_setflag(struct ifnet *ifp, int flag, int status,
303 int (*func)(struct ifnet *, int));
304 static int vlan_setflags(struct ifnet *ifp, int status);
305 static int vlan_setmulti(struct ifnet *ifp);
306 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
307 #ifdef ALTQ
308 static void vlan_altq_start(struct ifnet *ifp);
309 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
310 #endif
311 static int vlan_output(struct ifnet *ifp, struct mbuf *m,
312 const struct sockaddr *dst, struct route *ro);
313 static void vlan_unconfig(struct ifnet *ifp);
314 static void vlan_unconfig_locked(struct ifnet *ifp, int departing);
315 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
316 uint16_t proto);
317 static void vlan_link_state(struct ifnet *ifp);
318 static void vlan_capabilities(struct ifvlan *ifv);
319 static void vlan_trunk_capabilities(struct ifnet *ifp);
320
321 static struct ifnet *vlan_clone_match_ethervid(const char *, int *);
322 static int vlan_clone_match(struct if_clone *, const char *);
323 static int vlan_clone_create(struct if_clone *, char *, size_t,
324 struct ifc_data *, struct ifnet **);
325 static int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
326
327 static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
328 struct ifc_data_nl *ifd);
329 static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd);
330 static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw);
331
332 static void vlan_ifdetach(void *arg, struct ifnet *ifp);
333 static void vlan_iflladdr(void *arg, struct ifnet *ifp);
334 static void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
335
336 static void vlan_lladdr_fn(void *arg, int pending);
337
338 static struct if_clone *vlan_cloner;
339
340 #ifdef VIMAGE
341 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
342 #define V_vlan_cloner VNET(vlan_cloner)
343 #endif
344
345 #ifdef RATELIMIT
346 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
347 .snd_tag_modify = vlan_snd_tag_modify,
348 .snd_tag_query = vlan_snd_tag_query,
349 .snd_tag_free = vlan_snd_tag_free,
350 .next_snd_tag = vlan_next_snd_tag,
351 .type = IF_SND_TAG_TYPE_UNLIMITED
352 };
353
354 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
355 .snd_tag_modify = vlan_snd_tag_modify,
356 .snd_tag_query = vlan_snd_tag_query,
357 .snd_tag_free = vlan_snd_tag_free,
358 .next_snd_tag = vlan_next_snd_tag,
359 .type = IF_SND_TAG_TYPE_RATE_LIMIT
360 };
361 #endif
362
363 #ifdef KERN_TLS
364 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
365 .snd_tag_modify = vlan_snd_tag_modify,
366 .snd_tag_query = vlan_snd_tag_query,
367 .snd_tag_free = vlan_snd_tag_free,
368 .next_snd_tag = vlan_next_snd_tag,
369 .type = IF_SND_TAG_TYPE_TLS
370 };
371
372 #ifdef RATELIMIT
373 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
374 .snd_tag_modify = vlan_snd_tag_modify,
375 .snd_tag_query = vlan_snd_tag_query,
376 .snd_tag_free = vlan_snd_tag_free,
377 .next_snd_tag = vlan_next_snd_tag,
378 .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
379 };
380 #endif
381 #endif
382
383 static void
vlan_mc_free(struct epoch_context * ctx)384 vlan_mc_free(struct epoch_context *ctx)
385 {
386 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
387 free(mc, M_VLAN);
388 }
389
390 #ifndef VLAN_ARRAY
391 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
392
393 static void
vlan_inithash(struct ifvlantrunk * trunk)394 vlan_inithash(struct ifvlantrunk *trunk)
395 {
396 int i, n;
397
398 /*
399 * The trunk must not be locked here since we call malloc(M_WAITOK).
400 * It is OK in case this function is called before the trunk struct
401 * gets hooked up and becomes visible from other threads.
402 */
403
404 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
405 ("%s: hash already initialized", __func__));
406
407 trunk->hwidth = VLAN_DEF_HWIDTH;
408 n = 1 << trunk->hwidth;
409 trunk->hmask = n - 1;
410 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
411 for (i = 0; i < n; i++)
412 CK_SLIST_INIT(&trunk->hash[i]);
413 }
414
415 static void
vlan_freehash(struct ifvlantrunk * trunk)416 vlan_freehash(struct ifvlantrunk *trunk)
417 {
418 #ifdef INVARIANTS
419 int i;
420
421 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
422 for (i = 0; i < (1 << trunk->hwidth); i++)
423 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
424 ("%s: hash table not empty", __func__));
425 #endif
426 free(trunk->hash, M_VLAN);
427 trunk->hash = NULL;
428 trunk->hwidth = trunk->hmask = 0;
429 }
430
431 static int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)432 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
433 {
434 int i, b;
435 struct ifvlan *ifv2;
436
437 VLAN_XLOCK_ASSERT();
438 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
439
440 b = 1 << trunk->hwidth;
441 i = HASH(ifv->ifv_vid, trunk->hmask);
442 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
443 if (ifv->ifv_vid == ifv2->ifv_vid)
444 return (EEXIST);
445
446 /*
447 * Grow the hash when the number of vlans exceeds half of the number of
448 * hash buckets squared. This will make the average linked-list length
449 * buckets/2.
450 */
451 if (trunk->refcnt > (b * b) / 2) {
452 vlan_growhash(trunk, 1);
453 i = HASH(ifv->ifv_vid, trunk->hmask);
454 }
455 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
456 trunk->refcnt++;
457
458 return (0);
459 }
460
461 static int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)462 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
463 {
464 int i, b;
465 struct ifvlan *ifv2;
466
467 VLAN_XLOCK_ASSERT();
468 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
469
470 b = 1 << (trunk->hwidth - 1);
471 i = HASH(ifv->ifv_vid, trunk->hmask);
472 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
473 if (ifv2 == ifv) {
474 trunk->refcnt--;
475 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
476 if (trunk->refcnt < (b * b) / 2)
477 vlan_growhash(trunk, -1);
478 return (0);
479 }
480
481 panic("%s: vlan not found\n", __func__);
482 return (ENOENT); /*NOTREACHED*/
483 }
484
485 /*
486 * Grow the hash larger or smaller if memory permits.
487 */
488 static void
vlan_growhash(struct ifvlantrunk * trunk,int howmuch)489 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
490 {
491 struct ifvlan *ifv;
492 struct ifvlanhead *hash2;
493 int hwidth2, i, j, n, n2;
494
495 VLAN_XLOCK_ASSERT();
496 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
497
498 if (howmuch == 0) {
499 /* Harmless yet obvious coding error */
500 printf("%s: howmuch is 0\n", __func__);
501 return;
502 }
503
504 hwidth2 = trunk->hwidth + howmuch;
505 n = 1 << trunk->hwidth;
506 n2 = 1 << hwidth2;
507 /* Do not shrink the table below the default */
508 if (hwidth2 < VLAN_DEF_HWIDTH)
509 return;
510
511 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
512 for (j = 0; j < n2; j++)
513 CK_SLIST_INIT(&hash2[j]);
514 for (i = 0; i < n; i++)
515 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
516 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
517 j = HASH(ifv->ifv_vid, n2 - 1);
518 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
519 }
520 NET_EPOCH_WAIT();
521 free(trunk->hash, M_VLAN);
522 trunk->hash = hash2;
523 trunk->hwidth = hwidth2;
524 trunk->hmask = n2 - 1;
525
526 if (bootverbose)
527 if_printf(trunk->parent,
528 "VLAN hash table resized from %d to %d buckets\n", n, n2);
529 }
530
531 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)532 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
533 {
534 struct ifvlan *ifv;
535
536 NET_EPOCH_ASSERT();
537
538 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
539 if (ifv->ifv_vid == vid)
540 return (ifv);
541 return (NULL);
542 }
543
544 #if 0
545 /* Debugging code to view the hashtables. */
546 static void
547 vlan_dumphash(struct ifvlantrunk *trunk)
548 {
549 int i;
550 struct ifvlan *ifv;
551
552 for (i = 0; i < (1 << trunk->hwidth); i++) {
553 printf("%d: ", i);
554 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
555 printf("%s ", ifv->ifv_ifp->if_xname);
556 printf("\n");
557 }
558 }
559 #endif /* 0 */
560 #else
561
562 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)563 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
564 {
565
566 return trunk->vlans[vid];
567 }
568
569 static __inline int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)570 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
571 {
572
573 if (trunk->vlans[ifv->ifv_vid] != NULL)
574 return EEXIST;
575 trunk->vlans[ifv->ifv_vid] = ifv;
576 trunk->refcnt++;
577
578 return (0);
579 }
580
581 static __inline int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)582 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
583 {
584
585 trunk->vlans[ifv->ifv_vid] = NULL;
586 trunk->refcnt--;
587
588 return (0);
589 }
590
591 static __inline void
vlan_freehash(struct ifvlantrunk * trunk)592 vlan_freehash(struct ifvlantrunk *trunk)
593 {
594 }
595
596 static __inline void
vlan_inithash(struct ifvlantrunk * trunk)597 vlan_inithash(struct ifvlantrunk *trunk)
598 {
599 }
600
601 #endif /* !VLAN_ARRAY */
602
603 static void
trunk_destroy(struct ifvlantrunk * trunk)604 trunk_destroy(struct ifvlantrunk *trunk)
605 {
606 VLAN_XLOCK_ASSERT();
607
608 vlan_freehash(trunk);
609 trunk->parent->if_vlantrunk = NULL;
610 TRUNK_LOCK_DESTROY(trunk);
611 if_rele(trunk->parent);
612 free(trunk, M_VLAN);
613 }
614
615 /*
616 * Program our multicast filter. What we're actually doing is
617 * programming the multicast filter of the parent. This has the
618 * side effect of causing the parent interface to receive multicast
619 * traffic that it doesn't really want, which ends up being discarded
620 * later by the upper protocol layers. Unfortunately, there's no way
621 * to avoid this: there really is only one physical interface.
622 */
623 static int
vlan_setmulti(struct ifnet * ifp)624 vlan_setmulti(struct ifnet *ifp)
625 {
626 struct ifnet *ifp_p;
627 struct ifmultiaddr *ifma;
628 struct ifvlan *sc;
629 struct vlan_mc_entry *mc;
630 int error;
631
632 VLAN_XLOCK_ASSERT();
633
634 /* Find the parent. */
635 sc = ifp->if_softc;
636 ifp_p = PARENT(sc);
637
638 CURVNET_SET_QUIET(ifp_p->if_vnet);
639
640 /* First, remove any existing filter entries. */
641 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
642 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
643 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
644 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
645 }
646
647 /* Now program new ones. */
648 IF_ADDR_WLOCK(ifp);
649 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
650 if (ifma->ifma_addr->sa_family != AF_LINK)
651 continue;
652 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
653 if (mc == NULL) {
654 IF_ADDR_WUNLOCK(ifp);
655 CURVNET_RESTORE();
656 return (ENOMEM);
657 }
658 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
659 mc->mc_addr.sdl_index = ifp_p->if_index;
660 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
661 }
662 IF_ADDR_WUNLOCK(ifp);
663 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
664 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
665 NULL);
666 if (error) {
667 CURVNET_RESTORE();
668 return (error);
669 }
670 }
671
672 CURVNET_RESTORE();
673 return (0);
674 }
675
676 /*
677 * A handler for interface ifnet events.
678 */
679 static void
vlan_ifevent(void * arg __unused,struct ifnet * ifp,int event)680 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
681 {
682 struct epoch_tracker et;
683 struct ifvlan *ifv;
684 struct ifvlantrunk *trunk;
685
686 if (event != IFNET_EVENT_UPDATE_BAUDRATE)
687 return;
688
689 NET_EPOCH_ENTER(et);
690 trunk = ifp->if_vlantrunk;
691 if (trunk == NULL) {
692 NET_EPOCH_EXIT(et);
693 return;
694 }
695
696 TRUNK_WLOCK(trunk);
697 VLAN_FOREACH(ifv, trunk) {
698 ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
699 }
700 TRUNK_WUNLOCK(trunk);
701 NET_EPOCH_EXIT(et);
702 }
703
704 /*
705 * A handler for parent interface link layer address changes.
706 * If the parent interface link layer address is changed we
707 * should also change it on all children vlans.
708 */
709 static void
vlan_iflladdr(void * arg __unused,struct ifnet * ifp)710 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
711 {
712 struct epoch_tracker et;
713 struct ifvlan *ifv;
714 struct ifnet *ifv_ifp;
715 struct ifvlantrunk *trunk;
716 struct sockaddr_dl *sdl;
717
718 /* Need the epoch since this is run on taskqueue_swi. */
719 NET_EPOCH_ENTER(et);
720 trunk = ifp->if_vlantrunk;
721 if (trunk == NULL) {
722 NET_EPOCH_EXIT(et);
723 return;
724 }
725
726 /*
727 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it.
728 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
729 * ioctl calls on the parent garbling the lladdr of the child vlan.
730 */
731 TRUNK_WLOCK(trunk);
732 VLAN_FOREACH(ifv, trunk) {
733 /*
734 * Copy new new lladdr into the ifv_ifp, enqueue a task
735 * to actually call if_setlladdr. if_setlladdr needs to
736 * be deferred to a taskqueue because it will call into
737 * the if_vlan ioctl path and try to acquire the global
738 * lock.
739 */
740 ifv_ifp = ifv->ifv_ifp;
741 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
742 ifp->if_addrlen);
743 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
744 sdl->sdl_alen = ifp->if_addrlen;
745 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
746 }
747 TRUNK_WUNLOCK(trunk);
748 NET_EPOCH_EXIT(et);
749 }
750
751 /*
752 * A handler for network interface departure events.
753 * Track departure of trunks here so that we don't access invalid
754 * pointers or whatever if a trunk is ripped from under us, e.g.,
755 * by ejecting its hot-plug card. However, if an ifnet is simply
756 * being renamed, then there's no need to tear down the state.
757 */
758 static void
vlan_ifdetach(void * arg __unused,struct ifnet * ifp)759 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
760 {
761 struct ifvlan *ifv;
762 struct ifvlantrunk *trunk;
763
764 /* If the ifnet is just being renamed, don't do anything. */
765 if (ifp->if_flags & IFF_RENAMING)
766 return;
767 VLAN_XLOCK();
768 trunk = ifp->if_vlantrunk;
769 if (trunk == NULL) {
770 VLAN_XUNLOCK();
771 return;
772 }
773
774 /*
775 * OK, it's a trunk. Loop over and detach all vlan's on it.
776 * Check trunk pointer after each vlan_unconfig() as it will
777 * free it and set to NULL after the last vlan was detached.
778 */
779 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
780 ifp->if_vlantrunk == NULL)
781 vlan_unconfig_locked(ifv->ifv_ifp, 1);
782
783 /* Trunk should have been destroyed in vlan_unconfig(). */
784 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
785 VLAN_XUNLOCK();
786 }
787
788 /*
789 * Return the trunk device for a virtual interface.
790 */
791 static struct ifnet *
vlan_trunkdev(struct ifnet * ifp)792 vlan_trunkdev(struct ifnet *ifp)
793 {
794 struct ifvlan *ifv;
795
796 NET_EPOCH_ASSERT();
797
798 if (ifp->if_type != IFT_L2VLAN)
799 return (NULL);
800
801 ifv = ifp->if_softc;
802 ifp = NULL;
803 if (ifv->ifv_trunk)
804 ifp = PARENT(ifv);
805 return (ifp);
806 }
807
808 /*
809 * Return the 12-bit VLAN VID for this interface, for use by external
810 * components such as Infiniband.
811 *
812 * XXXRW: Note that the function name here is historical; it should be named
813 * vlan_vid().
814 */
815 static int
vlan_tag(struct ifnet * ifp,uint16_t * vidp)816 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
817 {
818 struct ifvlan *ifv;
819
820 if (ifp->if_type != IFT_L2VLAN)
821 return (EINVAL);
822 ifv = ifp->if_softc;
823 *vidp = ifv->ifv_vid;
824 return (0);
825 }
826
827 static int
vlan_pcp(struct ifnet * ifp,uint16_t * pcpp)828 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
829 {
830 struct ifvlan *ifv;
831
832 if (ifp->if_type != IFT_L2VLAN)
833 return (EINVAL);
834 ifv = ifp->if_softc;
835 *pcpp = ifv->ifv_pcp;
836 return (0);
837 }
838
839 /*
840 * Return a driver specific cookie for this interface. Synchronization
841 * with setcookie must be provided by the driver.
842 */
843 static void *
vlan_cookie(struct ifnet * ifp)844 vlan_cookie(struct ifnet *ifp)
845 {
846 struct ifvlan *ifv;
847
848 if (ifp->if_type != IFT_L2VLAN)
849 return (NULL);
850 ifv = ifp->if_softc;
851 return (ifv->ifv_cookie);
852 }
853
854 /*
855 * Store a cookie in our softc that drivers can use to store driver
856 * private per-instance data in.
857 */
858 static int
vlan_setcookie(struct ifnet * ifp,void * cookie)859 vlan_setcookie(struct ifnet *ifp, void *cookie)
860 {
861 struct ifvlan *ifv;
862
863 if (ifp->if_type != IFT_L2VLAN)
864 return (EINVAL);
865 ifv = ifp->if_softc;
866 ifv->ifv_cookie = cookie;
867 return (0);
868 }
869
870 /*
871 * Return the vlan device present at the specific VID.
872 */
873 static struct ifnet *
vlan_devat(struct ifnet * ifp,uint16_t vid)874 vlan_devat(struct ifnet *ifp, uint16_t vid)
875 {
876 struct ifvlantrunk *trunk;
877 struct ifvlan *ifv;
878
879 NET_EPOCH_ASSERT();
880
881 trunk = ifp->if_vlantrunk;
882 if (trunk == NULL)
883 return (NULL);
884 ifp = NULL;
885 ifv = vlan_gethash(trunk, vid);
886 if (ifv)
887 ifp = ifv->ifv_ifp;
888 return (ifp);
889 }
890
891 /*
892 * VLAN support can be loaded as a module. The only place in the
893 * system that's intimately aware of this is ether_input. We hook
894 * into this code through vlan_input_p which is defined there and
895 * set here. No one else in the system should be aware of this so
896 * we use an explicit reference here.
897 */
898 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
899
900 /* For if_link_state_change() eyes only... */
901 extern void (*vlan_link_state_p)(struct ifnet *);
902
903 static struct if_clone_addreq_v2 vlan_addreq = {
904 .version = 2,
905 .match_f = vlan_clone_match,
906 .create_f = vlan_clone_create,
907 .destroy_f = vlan_clone_destroy,
908 .create_nl_f = vlan_clone_create_nl,
909 .modify_nl_f = vlan_clone_modify_nl,
910 .dump_nl_f = vlan_clone_dump_nl,
911 };
912
913 static int
vlan_modevent(module_t mod,int type,void * data)914 vlan_modevent(module_t mod, int type, void *data)
915 {
916
917 switch (type) {
918 case MOD_LOAD:
919 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
920 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
921 if (ifdetach_tag == NULL)
922 return (ENOMEM);
923 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
924 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
925 if (iflladdr_tag == NULL)
926 return (ENOMEM);
927 ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
928 vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
929 if (ifevent_tag == NULL)
930 return (ENOMEM);
931 VLAN_LOCKING_INIT();
932 vlan_input_p = vlan_input;
933 vlan_link_state_p = vlan_link_state;
934 vlan_trunk_cap_p = vlan_trunk_capabilities;
935 vlan_trunkdev_p = vlan_trunkdev;
936 vlan_cookie_p = vlan_cookie;
937 vlan_setcookie_p = vlan_setcookie;
938 vlan_tag_p = vlan_tag;
939 vlan_pcp_p = vlan_pcp;
940 vlan_devat_p = vlan_devat;
941 #ifndef VIMAGE
942 vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
943 #endif
944 if (bootverbose)
945 printf("vlan: initialized, using "
946 #ifdef VLAN_ARRAY
947 "full-size arrays"
948 #else
949 "hash tables with chaining"
950 #endif
951
952 "\n");
953 break;
954 case MOD_UNLOAD:
955 #ifndef VIMAGE
956 ifc_detach_cloner(vlan_cloner);
957 #endif
958 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
959 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
960 EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
961 vlan_input_p = NULL;
962 vlan_link_state_p = NULL;
963 vlan_trunk_cap_p = NULL;
964 vlan_trunkdev_p = NULL;
965 vlan_tag_p = NULL;
966 vlan_cookie_p = NULL;
967 vlan_setcookie_p = NULL;
968 vlan_devat_p = NULL;
969 VLAN_LOCKING_DESTROY();
970 if (bootverbose)
971 printf("vlan: unloaded\n");
972 break;
973 default:
974 return (EOPNOTSUPP);
975 }
976 return (0);
977 }
978
979 static moduledata_t vlan_mod = {
980 "if_vlan",
981 vlan_modevent,
982 0
983 };
984
985 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
986 MODULE_VERSION(if_vlan, 3);
987
988 #ifdef VIMAGE
989 static void
vnet_vlan_init(const void * unused __unused)990 vnet_vlan_init(const void *unused __unused)
991 {
992 vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
993 V_vlan_cloner = vlan_cloner;
994 }
995 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
996 vnet_vlan_init, NULL);
997
998 static void
vnet_vlan_uninit(const void * unused __unused)999 vnet_vlan_uninit(const void *unused __unused)
1000 {
1001
1002 ifc_detach_cloner(V_vlan_cloner);
1003 }
1004 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1005 vnet_vlan_uninit, NULL);
1006 #endif
1007
1008 /*
1009 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1010 */
1011 static struct ifnet *
vlan_clone_match_ethervid(const char * name,int * vidp)1012 vlan_clone_match_ethervid(const char *name, int *vidp)
1013 {
1014 char ifname[IFNAMSIZ];
1015 char *cp;
1016 struct ifnet *ifp;
1017 int vid;
1018
1019 strlcpy(ifname, name, IFNAMSIZ);
1020 if ((cp = strrchr(ifname, '.')) == NULL)
1021 return (NULL);
1022 *cp = '\0';
1023 if ((ifp = ifunit_ref(ifname)) == NULL)
1024 return (NULL);
1025 /* Parse VID. */
1026 if (*++cp == '\0') {
1027 if_rele(ifp);
1028 return (NULL);
1029 }
1030 vid = 0;
1031 for(; *cp >= '0' && *cp <= '9'; cp++)
1032 vid = (vid * 10) + (*cp - '0');
1033 if (*cp != '\0') {
1034 if_rele(ifp);
1035 return (NULL);
1036 }
1037 if (vidp != NULL)
1038 *vidp = vid;
1039
1040 return (ifp);
1041 }
1042
1043 static int
vlan_clone_match(struct if_clone * ifc,const char * name)1044 vlan_clone_match(struct if_clone *ifc, const char *name)
1045 {
1046 struct ifnet *ifp;
1047 const char *cp;
1048
1049 ifp = vlan_clone_match_ethervid(name, NULL);
1050 if (ifp != NULL) {
1051 if_rele(ifp);
1052 return (1);
1053 }
1054
1055 if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1056 return (0);
1057 for (cp = name + 4; *cp != '\0'; cp++) {
1058 if (*cp < '0' || *cp > '9')
1059 return (0);
1060 }
1061
1062 return (1);
1063 }
1064
1065 static int
vlan_clone_create(struct if_clone * ifc,char * name,size_t len,struct ifc_data * ifd,struct ifnet ** ifpp)1066 vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1067 struct ifc_data *ifd, struct ifnet **ifpp)
1068 {
1069 char *dp;
1070 bool wildcard = false;
1071 bool subinterface = false;
1072 int unit;
1073 int error;
1074 int vid = 0;
1075 uint16_t proto = ETHERTYPE_VLAN;
1076 struct ifvlan *ifv;
1077 struct ifnet *ifp;
1078 struct ifnet *p = NULL;
1079 struct ifaddr *ifa;
1080 struct sockaddr_dl *sdl;
1081 struct vlanreq vlr;
1082 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
1083
1084
1085 /*
1086 * There are three ways to specify the cloned device:
1087 * o pass a parameter block with the clone request.
1088 * o specify parameters in the text of the clone device name
1089 * o specify no parameters and get an unattached device that
1090 * must be configured separately.
1091 * The first technique is preferred; the latter two are supported
1092 * for backwards compatibility.
1093 *
1094 * XXXRW: Note historic use of the word "tag" here. New ioctls may be
1095 * called for.
1096 */
1097
1098 if (ifd->params != NULL) {
1099 error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1100 if (error)
1101 return error;
1102 vid = vlr.vlr_tag;
1103 proto = vlr.vlr_proto;
1104 if (proto == 0)
1105 proto = ETHERTYPE_VLAN;
1106 p = ifunit_ref(vlr.vlr_parent);
1107 if (p == NULL)
1108 return (ENXIO);
1109 }
1110
1111 if ((error = ifc_name2unit(name, &unit)) == 0) {
1112
1113 /*
1114 * vlanX interface. Set wildcard to true if the unit number
1115 * is not fixed (-1)
1116 */
1117 wildcard = (unit < 0);
1118 } else {
1119 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1120 if (p_tmp != NULL) {
1121 error = 0;
1122 subinterface = true;
1123 unit = IF_DUNIT_NONE;
1124 wildcard = false;
1125 if (p != NULL) {
1126 if_rele(p_tmp);
1127 if (p != p_tmp)
1128 error = EINVAL;
1129 } else
1130 p = p_tmp;
1131 } else
1132 error = ENXIO;
1133 }
1134
1135 if (error != 0) {
1136 if (p != NULL)
1137 if_rele(p);
1138 return (error);
1139 }
1140
1141 if (!subinterface) {
1142 /* vlanX interface, mark X as busy or allocate new unit # */
1143 error = ifc_alloc_unit(ifc, &unit);
1144 if (error != 0) {
1145 if (p != NULL)
1146 if_rele(p);
1147 return (error);
1148 }
1149 }
1150
1151 /* In the wildcard case, we need to update the name. */
1152 if (wildcard) {
1153 for (dp = name; *dp != '\0'; dp++);
1154 if (snprintf(dp, len - (dp-name), "%d", unit) >
1155 len - (dp-name) - 1) {
1156 panic("%s: interface name too long", __func__);
1157 }
1158 }
1159
1160 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1161 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1162 CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1163 ifp->if_softc = ifv;
1164 /*
1165 * Set the name manually rather than using if_initname because
1166 * we don't conform to the default naming convention for interfaces.
1167 */
1168 strlcpy(ifp->if_xname, name, IFNAMSIZ);
1169 ifp->if_dname = vlanname;
1170 ifp->if_dunit = unit;
1171
1172 ifp->if_init = vlan_init;
1173 #ifdef ALTQ
1174 ifp->if_start = vlan_altq_start;
1175 ifp->if_transmit = vlan_altq_transmit;
1176 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1177 ifp->if_snd.ifq_drv_maxlen = 0;
1178 IFQ_SET_READY(&ifp->if_snd);
1179 #else
1180 ifp->if_transmit = vlan_transmit;
1181 #endif
1182 ifp->if_qflush = vlan_qflush;
1183 ifp->if_ioctl = vlan_ioctl;
1184 #if defined(KERN_TLS) || defined(RATELIMIT)
1185 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1186 ifp->if_ratelimit_query = vlan_ratelimit_query;
1187 #endif
1188 ifp->if_flags = VLAN_IFFLAGS;
1189 ether_ifattach(ifp, eaddr);
1190 /* Now undo some of the damage... */
1191 ifp->if_baudrate = 0;
1192 ifp->if_type = IFT_L2VLAN;
1193 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1194 ifa = ifp->if_addr;
1195 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1196 sdl->sdl_type = IFT_L2VLAN;
1197
1198 if (p != NULL) {
1199 error = vlan_config(ifv, p, vid, proto);
1200 if_rele(p);
1201 if (error != 0) {
1202 /*
1203 * Since we've partially failed, we need to back
1204 * out all the way, otherwise userland could get
1205 * confused. Thus, we destroy the interface.
1206 */
1207 ether_ifdetach(ifp);
1208 vlan_unconfig(ifp);
1209 if_free(ifp);
1210 if (!subinterface)
1211 ifc_free_unit(ifc, unit);
1212 free(ifv, M_VLAN);
1213
1214 return (error);
1215 }
1216 }
1217 *ifpp = ifp;
1218
1219 return (0);
1220 }
1221
1222 /*
1223 *
1224 * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK
1225 * {{nla_len=8, nla_type=IFLA_LINK}, 2},
1226 * {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"},
1227 * {{nla_len=24, nla_type=IFLA_LINKINFO},
1228 * [
1229 * {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1230 * {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1231 */
1232
1233 struct nl_parsed_vlan {
1234 uint16_t vlan_id;
1235 uint16_t vlan_proto;
1236 struct ifla_vlan_flags vlan_flags;
1237 };
1238
1239 #define _OUT(_field) offsetof(struct nl_parsed_vlan, _field)
1240 static const struct nlattr_parser nla_p_vlan[] = {
1241 { .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 },
1242 { .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla },
1243 { .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 },
1244 };
1245 #undef _OUT
1246 NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan);
1247
1248 static int
vlan_clone_create_nl(struct if_clone * ifc,char * name,size_t len,struct ifc_data_nl * ifd)1249 vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
1250 struct ifc_data_nl *ifd)
1251 {
1252 struct epoch_tracker et;
1253 struct ifnet *ifp_parent;
1254 struct nl_pstate *npt = ifd->npt;
1255 struct nl_parsed_link *lattrs = ifd->lattrs;
1256 int error;
1257
1258 /*
1259 * lattrs.ifla_ifname is the new interface name
1260 * lattrs.ifi_index contains parent interface index
1261 * lattrs.ifla_idata contains un-parsed vlan data
1262 */
1263 struct nl_parsed_vlan attrs = {
1264 .vlan_id = 0xFEFE,
1265 .vlan_proto = ETHERTYPE_VLAN
1266 };
1267
1268 if (lattrs->ifla_idata == NULL) {
1269 nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported");
1270 return (ENOTSUP);
1271 }
1272
1273 error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs);
1274 if (error != 0)
1275 return (error);
1276 if (attrs.vlan_id > 4095) {
1277 nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id);
1278 return (EINVAL);
1279 }
1280 if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) {
1281 nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto);
1282 return (ENOTSUP);
1283 }
1284
1285 struct vlanreq params = {
1286 .vlr_tag = attrs.vlan_id,
1287 .vlr_proto = attrs.vlan_proto,
1288 };
1289 struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = ¶ms };
1290
1291 NET_EPOCH_ENTER(et);
1292 ifp_parent = ifnet_byindex(lattrs->ifi_index);
1293 if (ifp_parent != NULL)
1294 strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent));
1295 NET_EPOCH_EXIT(et);
1296
1297 if (ifp_parent == NULL) {
1298 nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index);
1299 return (ENOENT);
1300 }
1301
1302 error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp);
1303
1304 return (error);
1305 }
1306
1307 static int
vlan_clone_modify_nl(struct ifnet * ifp,struct ifc_data_nl * ifd)1308 vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd)
1309 {
1310 struct nl_parsed_link *lattrs = ifd->lattrs;
1311
1312 if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) {
1313 struct epoch_tracker et;
1314 struct nl_parsed_vlan attrs = {
1315 .vlan_proto = ETHERTYPE_VLAN,
1316 };
1317 int error;
1318
1319 error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs);
1320 if (error != 0)
1321 return (error);
1322
1323 NET_EPOCH_ENTER(et);
1324 struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link);
1325 NET_EPOCH_EXIT(et);
1326
1327 if (ifp_parent == NULL) {
1328 nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u",
1329 lattrs->ifla_link);
1330 return (ENOENT);
1331 }
1332
1333 struct ifvlan *ifv = ifp->if_softc;
1334 error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto);
1335
1336 if_rele(ifp_parent);
1337 if (error != 0)
1338 return (error);
1339 }
1340
1341 return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt));
1342 }
1343
1344 /*
1345 * {{nla_len=24, nla_type=IFLA_LINKINFO},
1346 * [
1347 * {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1348 * {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1349 */
1350 static void
vlan_clone_dump_nl(struct ifnet * ifp,struct nl_writer * nw)1351 vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw)
1352 {
1353 uint32_t parent_index = 0;
1354 uint16_t vlan_id = 0;
1355 uint16_t vlan_proto = 0;
1356
1357 VLAN_SLOCK();
1358 struct ifvlan *ifv = ifp->if_softc;
1359 if (TRUNK(ifv) != NULL)
1360 parent_index = PARENT(ifv)->if_index;
1361 vlan_id = ifv->ifv_vid;
1362 vlan_proto = ifv->ifv_proto;
1363 VLAN_SUNLOCK();
1364
1365 if (parent_index != 0)
1366 nlattr_add_u32(nw, IFLA_LINK, parent_index);
1367
1368 int off = nlattr_add_nested(nw, IFLA_LINKINFO);
1369 if (off != 0) {
1370 nlattr_add_string(nw, IFLA_INFO_KIND, "vlan");
1371 int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA);
1372 if (off2 != 0) {
1373 nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id);
1374 nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto);
1375 nlattr_set_len(nw, off2);
1376 }
1377 nlattr_set_len(nw, off);
1378 }
1379 }
1380
1381 static int
vlan_clone_destroy(struct if_clone * ifc,struct ifnet * ifp,uint32_t flags)1382 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1383 {
1384 struct ifvlan *ifv = ifp->if_softc;
1385 int unit = ifp->if_dunit;
1386
1387 if (ifp->if_vlantrunk)
1388 return (EBUSY);
1389
1390 #ifdef ALTQ
1391 IFQ_PURGE(&ifp->if_snd);
1392 #endif
1393 ether_ifdetach(ifp); /* first, remove it from system-wide lists */
1394 vlan_unconfig(ifp); /* now it can be unconfigured and freed */
1395 /*
1396 * We should have the only reference to the ifv now, so we can now
1397 * drain any remaining lladdr task before freeing the ifnet and the
1398 * ifvlan.
1399 */
1400 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1401 NET_EPOCH_WAIT();
1402 if_free(ifp);
1403 free(ifv, M_VLAN);
1404 if (unit != IF_DUNIT_NONE)
1405 ifc_free_unit(ifc, unit);
1406
1407 return (0);
1408 }
1409
1410 /*
1411 * The ifp->if_init entry point for vlan(4) is a no-op.
1412 */
1413 static void
vlan_init(void * foo __unused)1414 vlan_init(void *foo __unused)
1415 {
1416 }
1417
1418 /*
1419 * The if_transmit method for vlan(4) interface.
1420 */
1421 static int
vlan_transmit(struct ifnet * ifp,struct mbuf * m)1422 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1423 {
1424 struct ifvlan *ifv;
1425 struct ifnet *p;
1426 int error, len, mcast;
1427
1428 NET_EPOCH_ASSERT();
1429
1430 ifv = ifp->if_softc;
1431 if (TRUNK(ifv) == NULL) {
1432 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1433 m_freem(m);
1434 return (ENETDOWN);
1435 }
1436 p = PARENT(ifv);
1437 len = m->m_pkthdr.len;
1438 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1439
1440 BPF_MTAP(ifp, m);
1441
1442 #if defined(KERN_TLS) || defined(RATELIMIT)
1443 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1444 struct vlan_snd_tag *vst;
1445 struct m_snd_tag *mst;
1446
1447 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1448 mst = m->m_pkthdr.snd_tag;
1449 vst = mst_to_vst(mst);
1450 if (vst->tag->ifp != p) {
1451 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1452 m_freem(m);
1453 return (EAGAIN);
1454 }
1455
1456 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1457 m_snd_tag_rele(mst);
1458 }
1459 #endif
1460
1461 /*
1462 * Do not run parent's if_transmit() if the parent is not up,
1463 * or parent's driver will cause a system crash.
1464 */
1465 if (!UP_AND_RUNNING(p)) {
1466 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1467 m_freem(m);
1468 return (ENETDOWN);
1469 }
1470
1471 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1472 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1473 return (0);
1474 }
1475
1476 /*
1477 * Send it, precisely as ether_output() would have.
1478 */
1479 error = (p->if_transmit)(p, m);
1480 if (error == 0) {
1481 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1482 if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1483 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1484 } else
1485 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1486 return (error);
1487 }
1488
1489 static int
vlan_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)1490 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1491 struct route *ro)
1492 {
1493 struct ifvlan *ifv;
1494 struct ifnet *p;
1495
1496 NET_EPOCH_ASSERT();
1497
1498 /*
1499 * Find the first non-VLAN parent interface.
1500 */
1501 ifv = ifp->if_softc;
1502 do {
1503 if (TRUNK(ifv) == NULL) {
1504 m_freem(m);
1505 return (ENETDOWN);
1506 }
1507 p = PARENT(ifv);
1508 ifv = p->if_softc;
1509 } while (p->if_type == IFT_L2VLAN);
1510
1511 return p->if_output(ifp, m, dst, ro);
1512 }
1513
1514 #ifdef ALTQ
1515 static void
vlan_altq_start(if_t ifp)1516 vlan_altq_start(if_t ifp)
1517 {
1518 struct ifaltq *ifq = &ifp->if_snd;
1519 struct mbuf *m;
1520
1521 IFQ_LOCK(ifq);
1522 IFQ_DEQUEUE_NOLOCK(ifq, m);
1523 while (m != NULL) {
1524 vlan_transmit(ifp, m);
1525 IFQ_DEQUEUE_NOLOCK(ifq, m);
1526 }
1527 IFQ_UNLOCK(ifq);
1528 }
1529
1530 static int
vlan_altq_transmit(if_t ifp,struct mbuf * m)1531 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1532 {
1533 int err;
1534
1535 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1536 IFQ_ENQUEUE(&ifp->if_snd, m, err);
1537 if (err == 0)
1538 vlan_altq_start(ifp);
1539 } else
1540 err = vlan_transmit(ifp, m);
1541
1542 return (err);
1543 }
1544 #endif /* ALTQ */
1545
1546 /*
1547 * The ifp->if_qflush entry point for vlan(4) is a no-op.
1548 */
1549 static void
vlan_qflush(struct ifnet * ifp __unused)1550 vlan_qflush(struct ifnet *ifp __unused)
1551 {
1552 }
1553
1554 static void
vlan_input(struct ifnet * ifp,struct mbuf * m)1555 vlan_input(struct ifnet *ifp, struct mbuf *m)
1556 {
1557 struct ifvlantrunk *trunk;
1558 struct ifvlan *ifv;
1559 struct m_tag *mtag;
1560 uint16_t vid, tag;
1561
1562 NET_EPOCH_ASSERT();
1563
1564 trunk = ifp->if_vlantrunk;
1565 if (trunk == NULL) {
1566 m_freem(m);
1567 return;
1568 }
1569
1570 if (m->m_flags & M_VLANTAG) {
1571 /*
1572 * Packet is tagged, but m contains a normal
1573 * Ethernet frame; the tag is stored out-of-band.
1574 */
1575 tag = m->m_pkthdr.ether_vtag;
1576 m->m_flags &= ~M_VLANTAG;
1577 } else {
1578 struct ether_vlan_header *evl;
1579
1580 /*
1581 * Packet is tagged in-band as specified by 802.1q.
1582 */
1583 switch (ifp->if_type) {
1584 case IFT_ETHER:
1585 if (m->m_len < sizeof(*evl) &&
1586 (m = m_pullup(m, sizeof(*evl))) == NULL) {
1587 if_printf(ifp, "cannot pullup VLAN header\n");
1588 return;
1589 }
1590 evl = mtod(m, struct ether_vlan_header *);
1591 tag = ntohs(evl->evl_tag);
1592
1593 /*
1594 * Remove the 802.1q header by copying the Ethernet
1595 * addresses over it and adjusting the beginning of
1596 * the data in the mbuf. The encapsulated Ethernet
1597 * type field is already in place.
1598 */
1599 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1600 ETHER_HDR_LEN - ETHER_TYPE_LEN);
1601 m_adj(m, ETHER_VLAN_ENCAP_LEN);
1602 break;
1603
1604 default:
1605 #ifdef INVARIANTS
1606 panic("%s: %s has unsupported if_type %u",
1607 __func__, ifp->if_xname, ifp->if_type);
1608 #endif
1609 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1610 m_freem(m);
1611 return;
1612 }
1613 }
1614
1615 vid = EVL_VLANOFTAG(tag);
1616
1617 ifv = vlan_gethash(trunk, vid);
1618 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1619 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1620 m_freem(m);
1621 return;
1622 }
1623
1624 if (V_vlan_mtag_pcp) {
1625 /*
1626 * While uncommon, it is possible that we will find a 802.1q
1627 * packet encapsulated inside another packet that also had an
1628 * 802.1q header. For example, ethernet tunneled over IPSEC
1629 * arriving over ethernet. In that case, we replace the
1630 * existing 802.1q PCP m_tag value.
1631 */
1632 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1633 if (mtag == NULL) {
1634 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1635 sizeof(uint8_t), M_NOWAIT);
1636 if (mtag == NULL) {
1637 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1638 m_freem(m);
1639 return;
1640 }
1641 m_tag_prepend(m, mtag);
1642 }
1643 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1644 }
1645
1646 m->m_pkthdr.rcvif = ifv->ifv_ifp;
1647 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1648
1649 /* Pass it back through the parent's input routine. */
1650 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1651 }
1652
1653 static void
vlan_lladdr_fn(void * arg,int pending __unused)1654 vlan_lladdr_fn(void *arg, int pending __unused)
1655 {
1656 struct ifvlan *ifv;
1657 struct ifnet *ifp;
1658
1659 ifv = (struct ifvlan *)arg;
1660 ifp = ifv->ifv_ifp;
1661
1662 CURVNET_SET(ifp->if_vnet);
1663
1664 /* The ifv_ifp already has the lladdr copied in. */
1665 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1666
1667 CURVNET_RESTORE();
1668 }
1669
1670 static int
vlan_config(struct ifvlan * ifv,struct ifnet * p,uint16_t vid,uint16_t proto)1671 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1672 uint16_t proto)
1673 {
1674 struct epoch_tracker et;
1675 struct ifvlantrunk *trunk;
1676 struct ifnet *ifp;
1677 int error = 0;
1678
1679 /*
1680 * We can handle non-ethernet hardware types as long as
1681 * they handle the tagging and headers themselves.
1682 */
1683 if (p->if_type != IFT_ETHER &&
1684 p->if_type != IFT_L2VLAN &&
1685 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1686 return (EPROTONOSUPPORT);
1687 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1688 return (EPROTONOSUPPORT);
1689 /*
1690 * Don't let the caller set up a VLAN VID with
1691 * anything except VLID bits.
1692 * VID numbers 0x0 and 0xFFF are reserved.
1693 */
1694 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1695 return (EINVAL);
1696 if (ifv->ifv_trunk) {
1697 trunk = ifv->ifv_trunk;
1698 if (trunk->parent != p)
1699 return (EBUSY);
1700
1701 VLAN_XLOCK();
1702
1703 ifv->ifv_proto = proto;
1704
1705 if (ifv->ifv_vid != vid) {
1706 int oldvid = ifv->ifv_vid;
1707
1708 /* Re-hash */
1709 vlan_remhash(trunk, ifv);
1710 ifv->ifv_vid = vid;
1711 error = vlan_inshash(trunk, ifv);
1712 if (error) {
1713 int ret __diagused;
1714
1715 ifv->ifv_vid = oldvid;
1716 /* Re-insert back where we found it. */
1717 ret = vlan_inshash(trunk, ifv);
1718 MPASS(ret == 0);
1719 }
1720 }
1721 /* Will unlock */
1722 goto done;
1723 }
1724
1725 VLAN_XLOCK();
1726 if (p->if_vlantrunk == NULL) {
1727 trunk = malloc(sizeof(struct ifvlantrunk),
1728 M_VLAN, M_WAITOK | M_ZERO);
1729 vlan_inithash(trunk);
1730 TRUNK_LOCK_INIT(trunk);
1731 TRUNK_WLOCK(trunk);
1732 p->if_vlantrunk = trunk;
1733 trunk->parent = p;
1734 if_ref(trunk->parent);
1735 TRUNK_WUNLOCK(trunk);
1736 } else {
1737 trunk = p->if_vlantrunk;
1738 }
1739
1740 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */
1741 ifv->ifv_pcp = 0; /* Default: best effort delivery. */
1742 error = vlan_inshash(trunk, ifv);
1743 if (error)
1744 goto done;
1745 ifv->ifv_proto = proto;
1746 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1747 ifv->ifv_mintu = ETHERMIN;
1748 ifv->ifv_pflags = 0;
1749 ifv->ifv_capenable = -1;
1750 ifv->ifv_capenable2 = -1;
1751
1752 /*
1753 * If the parent supports the VLAN_MTU capability,
1754 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1755 * use it.
1756 */
1757 if (p->if_capenable & IFCAP_VLAN_MTU) {
1758 /*
1759 * No need to fudge the MTU since the parent can
1760 * handle extended frames.
1761 */
1762 ifv->ifv_mtufudge = 0;
1763 } else {
1764 /*
1765 * Fudge the MTU by the encapsulation size. This
1766 * makes us incompatible with strictly compliant
1767 * 802.1Q implementations, but allows us to use
1768 * the feature with other NetBSD implementations,
1769 * which might still be useful.
1770 */
1771 ifv->ifv_mtufudge = ifv->ifv_encaplen;
1772 }
1773
1774 ifv->ifv_trunk = trunk;
1775 ifp = ifv->ifv_ifp;
1776 /*
1777 * Initialize fields from our parent. This duplicates some
1778 * work with ether_ifattach() but allows for non-ethernet
1779 * interfaces to also work.
1780 */
1781 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1782 ifp->if_baudrate = p->if_baudrate;
1783 ifp->if_input = p->if_input;
1784 ifp->if_resolvemulti = p->if_resolvemulti;
1785 ifp->if_addrlen = p->if_addrlen;
1786 ifp->if_broadcastaddr = p->if_broadcastaddr;
1787 ifp->if_pcp = ifv->ifv_pcp;
1788
1789 /*
1790 * We wrap the parent's if_output using vlan_output to ensure that it
1791 * can't become stale.
1792 */
1793 ifp->if_output = vlan_output;
1794
1795 /*
1796 * Copy only a selected subset of flags from the parent.
1797 * Other flags are none of our business.
1798 */
1799 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1800 ifp->if_flags &= ~VLAN_COPY_FLAGS;
1801 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1802 #undef VLAN_COPY_FLAGS
1803
1804 ifp->if_link_state = p->if_link_state;
1805
1806 NET_EPOCH_ENTER(et);
1807 vlan_capabilities(ifv);
1808 NET_EPOCH_EXIT(et);
1809
1810 /*
1811 * Set up our interface address to reflect the underlying
1812 * physical interface's.
1813 */
1814 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1815 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1816 p->if_addrlen;
1817
1818 /*
1819 * Do not schedule link address update if it was the same
1820 * as previous parent's. This helps avoid updating for each
1821 * associated llentry.
1822 */
1823 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1824 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1825 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1826 }
1827
1828 /* We are ready for operation now. */
1829 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1830
1831 /* Update flags on the parent, if necessary. */
1832 vlan_setflags(ifp, 1);
1833
1834 /*
1835 * Configure multicast addresses that may already be
1836 * joined on the vlan device.
1837 */
1838 (void)vlan_setmulti(ifp);
1839
1840 done:
1841 if (error == 0)
1842 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1843 VLAN_XUNLOCK();
1844
1845 return (error);
1846 }
1847
1848 static void
vlan_unconfig(struct ifnet * ifp)1849 vlan_unconfig(struct ifnet *ifp)
1850 {
1851
1852 VLAN_XLOCK();
1853 vlan_unconfig_locked(ifp, 0);
1854 VLAN_XUNLOCK();
1855 }
1856
1857 static void
vlan_unconfig_locked(struct ifnet * ifp,int departing)1858 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1859 {
1860 struct ifvlantrunk *trunk;
1861 struct vlan_mc_entry *mc;
1862 struct ifvlan *ifv;
1863 struct ifnet *parent;
1864 int error;
1865
1866 VLAN_XLOCK_ASSERT();
1867
1868 ifv = ifp->if_softc;
1869 trunk = ifv->ifv_trunk;
1870 parent = NULL;
1871
1872 if (trunk != NULL) {
1873 parent = trunk->parent;
1874
1875 /*
1876 * Since the interface is being unconfigured, we need to
1877 * empty the list of multicast groups that we may have joined
1878 * while we were alive from the parent's list.
1879 */
1880 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1881 /*
1882 * If the parent interface is being detached,
1883 * all its multicast addresses have already
1884 * been removed. Warn about errors if
1885 * if_delmulti() does fail, but don't abort as
1886 * all callers expect vlan destruction to
1887 * succeed.
1888 */
1889 if (!departing) {
1890 error = if_delmulti(parent,
1891 (struct sockaddr *)&mc->mc_addr);
1892 if (error)
1893 if_printf(ifp,
1894 "Failed to delete multicast address from parent: %d\n",
1895 error);
1896 }
1897 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1898 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1899 }
1900
1901 vlan_setflags(ifp, 0); /* clear special flags on parent */
1902
1903 vlan_remhash(trunk, ifv);
1904 ifv->ifv_trunk = NULL;
1905
1906 /*
1907 * Check if we were the last.
1908 */
1909 if (trunk->refcnt == 0) {
1910 parent->if_vlantrunk = NULL;
1911 NET_EPOCH_WAIT();
1912 trunk_destroy(trunk);
1913 }
1914 }
1915
1916 /* Disconnect from parent. */
1917 if (ifv->ifv_pflags)
1918 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1919 ifp->if_mtu = ETHERMTU;
1920 ifp->if_link_state = LINK_STATE_UNKNOWN;
1921 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1922
1923 /*
1924 * Only dispatch an event if vlan was
1925 * attached, otherwise there is nothing
1926 * to cleanup anyway.
1927 */
1928 if (parent != NULL)
1929 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1930 }
1931
1932 /* Handle a reference counted flag that should be set on the parent as well */
1933 static int
vlan_setflag(struct ifnet * ifp,int flag,int status,int (* func)(struct ifnet *,int))1934 vlan_setflag(struct ifnet *ifp, int flag, int status,
1935 int (*func)(struct ifnet *, int))
1936 {
1937 struct ifvlan *ifv;
1938 int error;
1939
1940 VLAN_SXLOCK_ASSERT();
1941
1942 ifv = ifp->if_softc;
1943 status = status ? (ifp->if_flags & flag) : 0;
1944 /* Now "status" contains the flag value or 0 */
1945
1946 /*
1947 * See if recorded parent's status is different from what
1948 * we want it to be. If it is, flip it. We record parent's
1949 * status in ifv_pflags so that we won't clear parent's flag
1950 * we haven't set. In fact, we don't clear or set parent's
1951 * flags directly, but get or release references to them.
1952 * That's why we can be sure that recorded flags still are
1953 * in accord with actual parent's flags.
1954 */
1955 if (status != (ifv->ifv_pflags & flag)) {
1956 error = (*func)(PARENT(ifv), status);
1957 if (error)
1958 return (error);
1959 ifv->ifv_pflags &= ~flag;
1960 ifv->ifv_pflags |= status;
1961 }
1962 return (0);
1963 }
1964
1965 /*
1966 * Handle IFF_* flags that require certain changes on the parent:
1967 * if "status" is true, update parent's flags respective to our if_flags;
1968 * if "status" is false, forcedly clear the flags set on parent.
1969 */
1970 static int
vlan_setflags(struct ifnet * ifp,int status)1971 vlan_setflags(struct ifnet *ifp, int status)
1972 {
1973 int error, i;
1974
1975 for (i = 0; vlan_pflags[i].flag; i++) {
1976 error = vlan_setflag(ifp, vlan_pflags[i].flag,
1977 status, vlan_pflags[i].func);
1978 if (error)
1979 return (error);
1980 }
1981 return (0);
1982 }
1983
1984 /* Inform all vlans that their parent has changed link state */
1985 static void
vlan_link_state(struct ifnet * ifp)1986 vlan_link_state(struct ifnet *ifp)
1987 {
1988 struct epoch_tracker et;
1989 struct ifvlantrunk *trunk;
1990 struct ifvlan *ifv;
1991
1992 NET_EPOCH_ENTER(et);
1993 trunk = ifp->if_vlantrunk;
1994 if (trunk == NULL) {
1995 NET_EPOCH_EXIT(et);
1996 return;
1997 }
1998
1999 TRUNK_WLOCK(trunk);
2000 VLAN_FOREACH(ifv, trunk) {
2001 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
2002 if_link_state_change(ifv->ifv_ifp,
2003 trunk->parent->if_link_state);
2004 }
2005 TRUNK_WUNLOCK(trunk);
2006 NET_EPOCH_EXIT(et);
2007 }
2008
2009 #ifdef IPSEC_OFFLOAD
2010 #define VLAN_IPSEC_METHOD(exp) \
2011 if_t p; \
2012 struct ifvlan *ifv; \
2013 int error; \
2014 \
2015 ifv = ifp->if_softc; \
2016 VLAN_SLOCK(); \
2017 if (TRUNK(ifv) != NULL) { \
2018 p = PARENT(ifv); \
2019 if_ref(p); \
2020 error = p->if_ipsec_accel_m->exp; \
2021 if_rele(p); \
2022 } else { \
2023 error = ENXIO; \
2024 } \
2025 VLAN_SUNLOCK(); \
2026 return (error);
2027
2028
2029 static int
vlan_if_spdadd(if_t ifp,void * sp,void * inp,void ** priv)2030 vlan_if_spdadd(if_t ifp, void *sp, void *inp, void **priv)
2031 {
2032 VLAN_IPSEC_METHOD(if_spdadd(ifp, sp, inp, priv));
2033 }
2034
2035 static int
vlan_if_spddel(if_t ifp,void * sp,void * priv)2036 vlan_if_spddel(if_t ifp, void *sp, void *priv)
2037 {
2038 VLAN_IPSEC_METHOD(if_spddel(ifp, sp, priv));
2039 }
2040
2041 static int
vlan_if_sa_newkey(if_t ifp,void * sav,u_int drv_spi,void ** privp)2042 vlan_if_sa_newkey(if_t ifp, void *sav, u_int drv_spi, void **privp)
2043 {
2044 VLAN_IPSEC_METHOD(if_sa_newkey(ifp, sav, drv_spi, privp));
2045 }
2046
2047 static int
vlan_if_sa_deinstall(if_t ifp,u_int drv_spi,void * priv)2048 vlan_if_sa_deinstall(if_t ifp, u_int drv_spi, void *priv)
2049 {
2050 VLAN_IPSEC_METHOD(if_sa_deinstall(ifp, drv_spi, priv));
2051 }
2052
2053 static int
vlan_if_sa_cnt(if_t ifp,void * sa,uint32_t drv_spi,void * priv,struct seclifetime * lt)2054 vlan_if_sa_cnt(if_t ifp, void *sa, uint32_t drv_spi, void *priv,
2055 struct seclifetime *lt)
2056 {
2057 VLAN_IPSEC_METHOD(if_sa_cnt(ifp, sa, drv_spi, priv, lt));
2058 }
2059
2060 static int
vlan_if_ipsec_hwassist(if_t ifp,void * sav,u_int drv_spi,void * priv)2061 vlan_if_ipsec_hwassist(if_t ifp, void *sav, u_int drv_spi,void *priv)
2062 {
2063 if_t trunk;
2064
2065 NET_EPOCH_ASSERT();
2066 trunk = vlan_trunkdev(ifp);
2067 if (trunk == NULL)
2068 return (0);
2069 return (trunk->if_ipsec_accel_m->if_hwassist(trunk, sav,
2070 drv_spi, priv));
2071 }
2072
2073 static const struct if_ipsec_accel_methods vlan_if_ipsec_accel_methods = {
2074 .if_spdadd = vlan_if_spdadd,
2075 .if_spddel = vlan_if_spddel,
2076 .if_sa_newkey = vlan_if_sa_newkey,
2077 .if_sa_deinstall = vlan_if_sa_deinstall,
2078 .if_sa_cnt = vlan_if_sa_cnt,
2079 .if_hwassist = vlan_if_ipsec_hwassist,
2080 };
2081
2082 #undef VLAN_IPSEC_METHOD
2083 #endif /* IPSEC_OFFLOAD */
2084
2085 static void
vlan_capabilities(struct ifvlan * ifv)2086 vlan_capabilities(struct ifvlan *ifv)
2087 {
2088 struct ifnet *p;
2089 struct ifnet *ifp;
2090 struct ifnet_hw_tsomax hw_tsomax;
2091 int cap = 0, ena = 0, mena, cap2 = 0, ena2 = 0;
2092 int mena2 __unused;
2093 u_long hwa = 0;
2094
2095 NET_EPOCH_ASSERT();
2096 VLAN_SXLOCK_ASSERT();
2097
2098 p = PARENT(ifv);
2099 ifp = ifv->ifv_ifp;
2100
2101 /* Mask parent interface enabled capabilities disabled by user. */
2102 mena = p->if_capenable & ifv->ifv_capenable;
2103 mena2 = p->if_capenable2 & ifv->ifv_capenable2;
2104
2105 /*
2106 * If the parent interface can do checksum offloading
2107 * on VLANs, then propagate its hardware-assisted
2108 * checksumming flags. Also assert that checksum
2109 * offloading requires hardware VLAN tagging.
2110 */
2111 if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2112 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2113 if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
2114 p->if_capenable & IFCAP_VLAN_HWTAGGING) {
2115 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2116 if (ena & IFCAP_TXCSUM)
2117 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
2118 CSUM_UDP | CSUM_SCTP);
2119 if (ena & IFCAP_TXCSUM_IPV6)
2120 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
2121 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
2122 }
2123
2124 /*
2125 * If the parent interface can do TSO on VLANs then
2126 * propagate the hardware-assisted flag. TSO on VLANs
2127 * does not necessarily require hardware VLAN tagging.
2128 */
2129 memset(&hw_tsomax, 0, sizeof(hw_tsomax));
2130 if_hw_tsomax_common(p, &hw_tsomax);
2131 if_hw_tsomax_update(ifp, &hw_tsomax);
2132 if (p->if_capabilities & IFCAP_VLAN_HWTSO)
2133 cap |= p->if_capabilities & IFCAP_TSO;
2134 if (p->if_capenable & IFCAP_VLAN_HWTSO) {
2135 ena |= mena & IFCAP_TSO;
2136 if (ena & IFCAP_TSO)
2137 hwa |= p->if_hwassist & CSUM_TSO;
2138 }
2139
2140 /*
2141 * If the parent interface can do LRO and checksum offloading on
2142 * VLANs, then guess it may do LRO on VLANs. False positive here
2143 * cost nothing, while false negative may lead to some confusions.
2144 */
2145 if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2146 cap |= p->if_capabilities & IFCAP_LRO;
2147 if (p->if_capenable & IFCAP_VLAN_HWCSUM)
2148 ena |= mena & IFCAP_LRO;
2149
2150 /*
2151 * If the parent interface can offload TCP connections over VLANs then
2152 * propagate its TOE capability to the VLAN interface.
2153 *
2154 * All TOE drivers in the tree today can deal with VLANs. If this
2155 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
2156 * with its own bit.
2157 */
2158 #define IFCAP_VLAN_TOE IFCAP_TOE
2159 if (p->if_capabilities & IFCAP_VLAN_TOE)
2160 cap |= p->if_capabilities & IFCAP_TOE;
2161 if (p->if_capenable & IFCAP_VLAN_TOE) {
2162 SETTOEDEV(ifp, TOEDEV(p));
2163 ena |= mena & IFCAP_TOE;
2164 }
2165
2166 /*
2167 * If the parent interface supports dynamic link state, so does the
2168 * VLAN interface.
2169 */
2170 cap |= (p->if_capabilities & IFCAP_LINKSTATE);
2171 ena |= (mena & IFCAP_LINKSTATE);
2172
2173 #ifdef RATELIMIT
2174 /*
2175 * If the parent interface supports ratelimiting, so does the
2176 * VLAN interface.
2177 */
2178 cap |= (p->if_capabilities & IFCAP_TXRTLMT);
2179 ena |= (mena & IFCAP_TXRTLMT);
2180 #endif
2181
2182 /*
2183 * If the parent interface supports unmapped mbufs, so does
2184 * the VLAN interface. Note that this should be fine even for
2185 * interfaces that don't support hardware tagging as headers
2186 * are prepended in normal mbufs to unmapped mbufs holding
2187 * payload data.
2188 */
2189 cap |= (p->if_capabilities & IFCAP_MEXTPG);
2190 ena |= (mena & IFCAP_MEXTPG);
2191
2192 /*
2193 * If the parent interface can offload encryption and segmentation
2194 * of TLS records over TCP, propagate it's capability to the VLAN
2195 * interface.
2196 *
2197 * All TLS drivers in the tree today can deal with VLANs. If
2198 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
2199 * defined.
2200 */
2201 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2202 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2203 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2204 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2205
2206 ifp->if_capabilities = cap;
2207 ifp->if_capenable = ena;
2208 ifp->if_hwassist = hwa;
2209
2210 #ifdef IPSEC_OFFLOAD
2211 cap2 |= p->if_capabilities2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD);
2212 ena2 |= mena2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD);
2213 ifp->if_ipsec_accel_m = &vlan_if_ipsec_accel_methods;
2214 #endif
2215
2216 ifp->if_capabilities2 = cap2;
2217 ifp->if_capenable2 = ena2;
2218 }
2219
2220 static void
vlan_trunk_capabilities(struct ifnet * ifp)2221 vlan_trunk_capabilities(struct ifnet *ifp)
2222 {
2223 struct epoch_tracker et;
2224 struct ifvlantrunk *trunk;
2225 struct ifvlan *ifv;
2226
2227 VLAN_SLOCK();
2228 trunk = ifp->if_vlantrunk;
2229 if (trunk == NULL) {
2230 VLAN_SUNLOCK();
2231 return;
2232 }
2233 NET_EPOCH_ENTER(et);
2234 VLAN_FOREACH(ifv, trunk)
2235 vlan_capabilities(ifv);
2236 NET_EPOCH_EXIT(et);
2237 VLAN_SUNLOCK();
2238 }
2239
2240 static int
vlan_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)2241 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2242 {
2243 struct ifnet *p;
2244 struct ifreq *ifr;
2245 #ifdef INET
2246 struct ifaddr *ifa;
2247 #endif
2248 struct ifvlan *ifv;
2249 struct ifvlantrunk *trunk;
2250 struct vlanreq vlr;
2251 int error = 0, oldmtu;
2252
2253 ifr = (struct ifreq *)data;
2254 #ifdef INET
2255 ifa = (struct ifaddr *) data;
2256 #endif
2257 ifv = ifp->if_softc;
2258
2259 switch (cmd) {
2260 case SIOCSIFADDR:
2261 ifp->if_flags |= IFF_UP;
2262 #ifdef INET
2263 if (ifa->ifa_addr->sa_family == AF_INET)
2264 arp_ifinit(ifp, ifa);
2265 #endif
2266 break;
2267 case SIOCGIFADDR:
2268 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2269 ifp->if_addrlen);
2270 break;
2271 case SIOCGIFMEDIA:
2272 VLAN_SLOCK();
2273 if (TRUNK(ifv) != NULL) {
2274 p = PARENT(ifv);
2275 if_ref(p);
2276 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2277 if_rele(p);
2278 /* Limit the result to the parent's current config. */
2279 if (error == 0) {
2280 struct ifmediareq *ifmr;
2281
2282 ifmr = (struct ifmediareq *)data;
2283 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2284 ifmr->ifm_count = 1;
2285 error = copyout(&ifmr->ifm_current,
2286 ifmr->ifm_ulist,
2287 sizeof(int));
2288 }
2289 }
2290 } else {
2291 error = EINVAL;
2292 }
2293 VLAN_SUNLOCK();
2294 break;
2295
2296 case SIOCSIFMEDIA:
2297 error = EINVAL;
2298 break;
2299
2300 case SIOCSIFMTU:
2301 /*
2302 * Set the interface MTU.
2303 */
2304 VLAN_SLOCK();
2305 trunk = TRUNK(ifv);
2306 if (trunk != NULL) {
2307 TRUNK_WLOCK(trunk);
2308 if (ifr->ifr_mtu >
2309 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2310 ifr->ifr_mtu <
2311 (ifv->ifv_mintu - ifv->ifv_mtufudge))
2312 error = EINVAL;
2313 else
2314 ifp->if_mtu = ifr->ifr_mtu;
2315 TRUNK_WUNLOCK(trunk);
2316 } else
2317 error = EINVAL;
2318 VLAN_SUNLOCK();
2319 break;
2320
2321 case SIOCSETVLAN:
2322 #ifdef VIMAGE
2323 /*
2324 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2325 * interface to be delegated to a jail without allowing the
2326 * jail to change what underlying interface/VID it is
2327 * associated with. We are not entirely convinced that this
2328 * is the right way to accomplish that policy goal.
2329 */
2330 if (ifp->if_vnet != ifp->if_home_vnet) {
2331 error = EPERM;
2332 break;
2333 }
2334 #endif
2335 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2336 if (error)
2337 break;
2338 if (vlr.vlr_parent[0] == '\0') {
2339 vlan_unconfig(ifp);
2340 break;
2341 }
2342 p = ifunit_ref(vlr.vlr_parent);
2343 if (p == NULL) {
2344 error = ENOENT;
2345 break;
2346 }
2347 if (vlr.vlr_proto == 0)
2348 vlr.vlr_proto = ETHERTYPE_VLAN;
2349 oldmtu = ifp->if_mtu;
2350 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2351 if_rele(p);
2352
2353 /*
2354 * VLAN MTU may change during addition of the vlandev.
2355 * If it did, do network layer specific procedure.
2356 */
2357 if (ifp->if_mtu != oldmtu)
2358 if_notifymtu(ifp);
2359 break;
2360
2361 case SIOCGETVLAN:
2362 #ifdef VIMAGE
2363 if (ifp->if_vnet != ifp->if_home_vnet) {
2364 error = EPERM;
2365 break;
2366 }
2367 #endif
2368 bzero(&vlr, sizeof(vlr));
2369 VLAN_SLOCK();
2370 if (TRUNK(ifv) != NULL) {
2371 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2372 sizeof(vlr.vlr_parent));
2373 vlr.vlr_tag = ifv->ifv_vid;
2374 vlr.vlr_proto = ifv->ifv_proto;
2375 }
2376 VLAN_SUNLOCK();
2377 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2378 break;
2379
2380 case SIOCSIFFLAGS:
2381 /*
2382 * We should propagate selected flags to the parent,
2383 * e.g., promiscuous mode.
2384 */
2385 VLAN_SLOCK();
2386 if (TRUNK(ifv) != NULL)
2387 error = vlan_setflags(ifp, 1);
2388 VLAN_SUNLOCK();
2389 break;
2390
2391 case SIOCADDMULTI:
2392 case SIOCDELMULTI:
2393 /*
2394 * If we don't have a parent, just remember the membership for
2395 * when we do.
2396 *
2397 * XXX We need the rmlock here to avoid sleeping while
2398 * holding in6_multi_mtx.
2399 */
2400 VLAN_XLOCK();
2401 trunk = TRUNK(ifv);
2402 if (trunk != NULL)
2403 error = vlan_setmulti(ifp);
2404 VLAN_XUNLOCK();
2405
2406 break;
2407 case SIOCGVLANPCP:
2408 #ifdef VIMAGE
2409 if (ifp->if_vnet != ifp->if_home_vnet) {
2410 error = EPERM;
2411 break;
2412 }
2413 #endif
2414 ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2415 break;
2416
2417 case SIOCSVLANPCP:
2418 #ifdef VIMAGE
2419 if (ifp->if_vnet != ifp->if_home_vnet) {
2420 error = EPERM;
2421 break;
2422 }
2423 #endif
2424 error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2425 if (error)
2426 break;
2427 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2428 error = EINVAL;
2429 break;
2430 }
2431 ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2432 ifp->if_pcp = ifv->ifv_pcp;
2433 /* broadcast event about PCP change */
2434 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2435 break;
2436
2437 case SIOCSIFCAP:
2438 VLAN_SLOCK();
2439 ifv->ifv_capenable = ifr->ifr_reqcap;
2440 trunk = TRUNK(ifv);
2441 if (trunk != NULL) {
2442 struct epoch_tracker et;
2443
2444 NET_EPOCH_ENTER(et);
2445 vlan_capabilities(ifv);
2446 NET_EPOCH_EXIT(et);
2447 }
2448 VLAN_SUNLOCK();
2449 break;
2450
2451 default:
2452 error = EINVAL;
2453 break;
2454 }
2455
2456 return (error);
2457 }
2458
2459 #if defined(KERN_TLS) || defined(RATELIMIT)
2460 static int
vlan_snd_tag_alloc(struct ifnet * ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** ppmt)2461 vlan_snd_tag_alloc(struct ifnet *ifp,
2462 union if_snd_tag_alloc_params *params,
2463 struct m_snd_tag **ppmt)
2464 {
2465 struct epoch_tracker et;
2466 const struct if_snd_tag_sw *sw;
2467 struct vlan_snd_tag *vst;
2468 struct ifvlan *ifv;
2469 struct ifnet *parent;
2470 struct m_snd_tag *mst;
2471 int error;
2472
2473 NET_EPOCH_ENTER(et);
2474 ifv = ifp->if_softc;
2475
2476 switch (params->hdr.type) {
2477 #ifdef RATELIMIT
2478 case IF_SND_TAG_TYPE_UNLIMITED:
2479 sw = &vlan_snd_tag_ul_sw;
2480 break;
2481 case IF_SND_TAG_TYPE_RATE_LIMIT:
2482 sw = &vlan_snd_tag_rl_sw;
2483 break;
2484 #endif
2485 #ifdef KERN_TLS
2486 case IF_SND_TAG_TYPE_TLS:
2487 sw = &vlan_snd_tag_tls_sw;
2488 break;
2489 case IF_SND_TAG_TYPE_TLS_RX:
2490 sw = NULL;
2491 if (params->tls_rx.vlan_id != 0)
2492 goto failure;
2493 params->tls_rx.vlan_id = ifv->ifv_vid;
2494 break;
2495 #ifdef RATELIMIT
2496 case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2497 sw = &vlan_snd_tag_tls_rl_sw;
2498 break;
2499 #endif
2500 #endif
2501 default:
2502 goto failure;
2503 }
2504
2505 if (ifv->ifv_trunk != NULL)
2506 parent = PARENT(ifv);
2507 else
2508 parent = NULL;
2509 if (parent == NULL)
2510 goto failure;
2511 if_ref(parent);
2512 NET_EPOCH_EXIT(et);
2513
2514 if (sw != NULL) {
2515 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2516 if (vst == NULL) {
2517 if_rele(parent);
2518 return (ENOMEM);
2519 }
2520 } else
2521 vst = NULL;
2522
2523 error = m_snd_tag_alloc(parent, params, &mst);
2524 if_rele(parent);
2525 if (error) {
2526 free(vst, M_VLAN);
2527 return (error);
2528 }
2529
2530 if (sw != NULL) {
2531 m_snd_tag_init(&vst->com, ifp, sw);
2532 vst->tag = mst;
2533
2534 *ppmt = &vst->com;
2535 } else
2536 *ppmt = mst;
2537
2538 return (0);
2539 failure:
2540 NET_EPOCH_EXIT(et);
2541 return (EOPNOTSUPP);
2542 }
2543
2544 static struct m_snd_tag *
vlan_next_snd_tag(struct m_snd_tag * mst)2545 vlan_next_snd_tag(struct m_snd_tag *mst)
2546 {
2547 struct vlan_snd_tag *vst;
2548
2549 vst = mst_to_vst(mst);
2550 return (vst->tag);
2551 }
2552
2553 static int
vlan_snd_tag_modify(struct m_snd_tag * mst,union if_snd_tag_modify_params * params)2554 vlan_snd_tag_modify(struct m_snd_tag *mst,
2555 union if_snd_tag_modify_params *params)
2556 {
2557 struct vlan_snd_tag *vst;
2558
2559 vst = mst_to_vst(mst);
2560 return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2561 }
2562
2563 static int
vlan_snd_tag_query(struct m_snd_tag * mst,union if_snd_tag_query_params * params)2564 vlan_snd_tag_query(struct m_snd_tag *mst,
2565 union if_snd_tag_query_params *params)
2566 {
2567 struct vlan_snd_tag *vst;
2568
2569 vst = mst_to_vst(mst);
2570 return (vst->tag->sw->snd_tag_query(vst->tag, params));
2571 }
2572
2573 static void
vlan_snd_tag_free(struct m_snd_tag * mst)2574 vlan_snd_tag_free(struct m_snd_tag *mst)
2575 {
2576 struct vlan_snd_tag *vst;
2577
2578 vst = mst_to_vst(mst);
2579 m_snd_tag_rele(vst->tag);
2580 free(vst, M_VLAN);
2581 }
2582
2583 static void
vlan_ratelimit_query(struct ifnet * ifp __unused,struct if_ratelimit_query_results * q)2584 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2585 {
2586 /*
2587 * For vlan, we have an indirect
2588 * interface. The caller needs to
2589 * get a ratelimit tag on the actual
2590 * interface the flow will go on.
2591 */
2592 q->rate_table = NULL;
2593 q->flags = RT_IS_INDIRECT;
2594 q->max_flows = 0;
2595 q->number_of_rates = 0;
2596 }
2597
2598 #endif
2599