1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Generic implementation of equivalence classes through the use Tarjan's 11 /// efficient union-find algorithm. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H 16 #define LLVM_ADT_EQUIVALENCECLASSES_H 17 18 #include <cassert> 19 #include <cstddef> 20 #include <cstdint> 21 #include <iterator> 22 #include <set> 23 24 namespace llvm { 25 26 /// EquivalenceClasses - This represents a collection of equivalence classes and 27 /// supports three efficient operations: insert an element into a class of its 28 /// own, union two classes, and find the class for a given element. In 29 /// addition to these modification methods, it is possible to iterate over all 30 /// of the equivalence classes and all of the elements in a class. 31 /// 32 /// This implementation is an efficient implementation that only stores one copy 33 /// of the element being indexed per entry in the set, and allows any arbitrary 34 /// type to be indexed (as long as it can be ordered with operator< or a 35 /// comparator is provided). 36 /// 37 /// Here is a simple example using integers: 38 /// 39 /// \code 40 /// EquivalenceClasses<int> EC; 41 /// EC.unionSets(1, 2); // insert 1, 2 into the same set 42 /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets 43 /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. 44 /// 45 /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); 46 /// I != E; ++I) { // Iterate over all of the equivalence sets. 47 /// if (!I->isLeader()) continue; // Ignore non-leader sets. 48 /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); 49 /// MI != EC.member_end(); ++MI) // Loop over members in this set. 50 /// cerr << *MI << " "; // Print member. 51 /// cerr << "\n"; // Finish set. 52 /// } 53 /// \endcode 54 /// 55 /// This example prints: 56 /// 4 57 /// 5 1 2 58 /// 59 template <class ElemTy, class Compare = std::less<ElemTy>> 60 class EquivalenceClasses { 61 /// ECValue - The EquivalenceClasses data structure is just a set of these. 62 /// Each of these represents a relation for a value. First it stores the 63 /// value itself, which provides the ordering that the set queries. Next, it 64 /// provides a "next pointer", which is used to enumerate all of the elements 65 /// in the unioned set. Finally, it defines either a "end of list pointer" or 66 /// "leader pointer" depending on whether the value itself is a leader. A 67 /// "leader pointer" points to the node that is the leader for this element, 68 /// if the node is not a leader. A "end of list pointer" points to the last 69 /// node in the list of members of this list. Whether or not a node is a 70 /// leader is determined by a bit stolen from one of the pointers. 71 class ECValue { 72 friend class EquivalenceClasses; 73 74 mutable const ECValue *Leader, *Next; 75 ElemTy Data; 76 77 // ECValue ctor - Start out with EndOfList pointing to this node, Next is 78 // Null, isLeader = true. ECValue(const ElemTy & Elt)79 ECValue(const ElemTy &Elt) 80 : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} 81 getLeader()82 const ECValue *getLeader() const { 83 if (isLeader()) return this; 84 if (Leader->isLeader()) return Leader; 85 // Path compression. 86 return Leader = Leader->getLeader(); 87 } 88 getEndOfList()89 const ECValue *getEndOfList() const { 90 assert(isLeader() && "Cannot get the end of a list for a non-leader!"); 91 return Leader; 92 } 93 setNext(const ECValue * NewNext)94 void setNext(const ECValue *NewNext) const { 95 assert(getNext() == nullptr && "Already has a next pointer!"); 96 Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); 97 } 98 99 public: ECValue(const ECValue & RHS)100 ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), 101 Data(RHS.Data) { 102 // Only support copying of singleton nodes. 103 assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); 104 } 105 isLeader()106 bool isLeader() const { return (intptr_t)Next & 1; } getData()107 const ElemTy &getData() const { return Data; } 108 getNext()109 const ECValue *getNext() const { 110 return (ECValue*)((intptr_t)Next & ~(intptr_t)1); 111 } 112 }; 113 114 /// A wrapper of the comparator, to be passed to the set. 115 struct ECValueComparator { 116 using is_transparent = void; 117 ECValueComparatorECValueComparator118 ECValueComparator() : compare(Compare()) {} 119 operatorECValueComparator120 bool operator()(const ECValue &lhs, const ECValue &rhs) const { 121 return compare(lhs.Data, rhs.Data); 122 } 123 124 template <typename T> operatorECValueComparator125 bool operator()(const T &lhs, const ECValue &rhs) const { 126 return compare(lhs, rhs.Data); 127 } 128 129 template <typename T> operatorECValueComparator130 bool operator()(const ECValue &lhs, const T &rhs) const { 131 return compare(lhs.Data, rhs); 132 } 133 134 const Compare compare; 135 }; 136 137 /// TheMapping - This implicitly provides a mapping from ElemTy values to the 138 /// ECValues, it just keeps the key as part of the value. 139 std::set<ECValue, ECValueComparator> TheMapping; 140 141 public: 142 EquivalenceClasses() = default; EquivalenceClasses(const EquivalenceClasses & RHS)143 EquivalenceClasses(const EquivalenceClasses &RHS) { 144 operator=(RHS); 145 } 146 147 const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { 148 TheMapping.clear(); 149 for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 150 if (I->isLeader()) { 151 member_iterator MI = RHS.member_begin(I); 152 member_iterator LeaderIt = member_begin(insert(*MI)); 153 for (++MI; MI != member_end(); ++MI) 154 unionSets(LeaderIt, member_begin(insert(*MI))); 155 } 156 return *this; 157 } 158 159 //===--------------------------------------------------------------------===// 160 // Inspection methods 161 // 162 163 /// iterator* - Provides a way to iterate over all values in the set. 164 using iterator = 165 typename std::set<ECValue, ECValueComparator>::const_iterator; 166 begin()167 iterator begin() const { return TheMapping.begin(); } end()168 iterator end() const { return TheMapping.end(); } 169 empty()170 bool empty() const { return TheMapping.empty(); } 171 172 /// member_* Iterate over the members of an equivalence class. 173 class member_iterator; member_begin(iterator I)174 member_iterator member_begin(iterator I) const { 175 // Only leaders provide anything to iterate over. 176 return member_iterator(I->isLeader() ? &*I : nullptr); 177 } member_end()178 member_iterator member_end() const { 179 return member_iterator(nullptr); 180 } 181 182 /// findValue - Return an iterator to the specified value. If it does not 183 /// exist, end() is returned. findValue(const ElemTy & V)184 iterator findValue(const ElemTy &V) const { 185 return TheMapping.find(V); 186 } 187 188 /// getLeaderValue - Return the leader for the specified value that is in the 189 /// set. It is an error to call this method for a value that is not yet in 190 /// the set. For that, call getOrInsertLeaderValue(V). getLeaderValue(const ElemTy & V)191 const ElemTy &getLeaderValue(const ElemTy &V) const { 192 member_iterator MI = findLeader(V); 193 assert(MI != member_end() && "Value is not in the set!"); 194 return *MI; 195 } 196 197 /// getOrInsertLeaderValue - Return the leader for the specified value that is 198 /// in the set. If the member is not in the set, it is inserted, then 199 /// returned. getOrInsertLeaderValue(const ElemTy & V)200 const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { 201 member_iterator MI = findLeader(insert(V)); 202 assert(MI != member_end() && "Value is not in the set!"); 203 return *MI; 204 } 205 206 /// getNumClasses - Return the number of equivalence classes in this set. 207 /// Note that this is a linear time operation. getNumClasses()208 unsigned getNumClasses() const { 209 unsigned NC = 0; 210 for (iterator I = begin(), E = end(); I != E; ++I) 211 if (I->isLeader()) ++NC; 212 return NC; 213 } 214 215 //===--------------------------------------------------------------------===// 216 // Mutation methods 217 218 /// insert - Insert a new value into the union/find set, ignoring the request 219 /// if the value already exists. insert(const ElemTy & Data)220 iterator insert(const ElemTy &Data) { 221 return TheMapping.insert(ECValue(Data)).first; 222 } 223 224 /// findLeader - Given a value in the set, return a member iterator for the 225 /// equivalence class it is in. This does the path-compression part that 226 /// makes union-find "union findy". This returns an end iterator if the value 227 /// is not in the equivalence class. findLeader(iterator I)228 member_iterator findLeader(iterator I) const { 229 if (I == TheMapping.end()) return member_end(); 230 return member_iterator(I->getLeader()); 231 } findLeader(const ElemTy & V)232 member_iterator findLeader(const ElemTy &V) const { 233 return findLeader(TheMapping.find(V)); 234 } 235 236 /// union - Merge the two equivalence sets for the specified values, inserting 237 /// them if they do not already exist in the equivalence set. unionSets(const ElemTy & V1,const ElemTy & V2)238 member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { 239 iterator V1I = insert(V1), V2I = insert(V2); 240 return unionSets(findLeader(V1I), findLeader(V2I)); 241 } unionSets(member_iterator L1,member_iterator L2)242 member_iterator unionSets(member_iterator L1, member_iterator L2) { 243 assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); 244 if (L1 == L2) return L1; // Unifying the same two sets, noop. 245 246 // Otherwise, this is a real union operation. Set the end of the L1 list to 247 // point to the L2 leader node. 248 const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; 249 L1LV.getEndOfList()->setNext(&L2LV); 250 251 // Update L1LV's end of list pointer. 252 L1LV.Leader = L2LV.getEndOfList(); 253 254 // Clear L2's leader flag: 255 L2LV.Next = L2LV.getNext(); 256 257 // L2's leader is now L1. 258 L2LV.Leader = &L1LV; 259 return L1; 260 } 261 262 // isEquivalent - Return true if V1 is equivalent to V2. This can happen if 263 // V1 is equal to V2 or if they belong to one equivalence class. isEquivalent(const ElemTy & V1,const ElemTy & V2)264 bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { 265 // Fast path: any element is equivalent to itself. 266 if (V1 == V2) 267 return true; 268 auto It = findLeader(V1); 269 return It != member_end() && It == findLeader(V2); 270 } 271 272 class member_iterator { 273 friend class EquivalenceClasses; 274 275 const ECValue *Node; 276 277 public: 278 using iterator_category = std::forward_iterator_tag; 279 using value_type = const ElemTy; 280 using size_type = std::size_t; 281 using difference_type = std::ptrdiff_t; 282 using pointer = value_type *; 283 using reference = value_type &; 284 285 explicit member_iterator() = default; member_iterator(const ECValue * N)286 explicit member_iterator(const ECValue *N) : Node(N) {} 287 288 reference operator*() const { 289 assert(Node != nullptr && "Dereferencing end()!"); 290 return Node->getData(); 291 } 292 pointer operator->() const { return &operator*(); } 293 294 member_iterator &operator++() { 295 assert(Node != nullptr && "++'d off the end of the list!"); 296 Node = Node->getNext(); 297 return *this; 298 } 299 300 member_iterator operator++(int) { // postincrement operators. 301 member_iterator tmp = *this; 302 ++*this; 303 return tmp; 304 } 305 306 bool operator==(const member_iterator &RHS) const { 307 return Node == RHS.Node; 308 } 309 bool operator!=(const member_iterator &RHS) const { 310 return Node != RHS.Node; 311 } 312 }; 313 }; 314 315 } // end namespace llvm 316 317 #endif // LLVM_ADT_EQUIVALENCECLASSES_H 318