xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/EquivalenceClasses.h (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Generic implementation of equivalence classes through the use Tarjan's
11 /// efficient union-find algorithm.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
16 #define LLVM_ADT_EQUIVALENCECLASSES_H
17 
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <iterator>
22 #include <set>
23 
24 namespace llvm {
25 
26 /// EquivalenceClasses - This represents a collection of equivalence classes and
27 /// supports three efficient operations: insert an element into a class of its
28 /// own, union two classes, and find the class for a given element.  In
29 /// addition to these modification methods, it is possible to iterate over all
30 /// of the equivalence classes and all of the elements in a class.
31 ///
32 /// This implementation is an efficient implementation that only stores one copy
33 /// of the element being indexed per entry in the set, and allows any arbitrary
34 /// type to be indexed (as long as it can be ordered with operator< or a
35 /// comparator is provided).
36 ///
37 /// Here is a simple example using integers:
38 ///
39 /// \code
40 ///  EquivalenceClasses<int> EC;
41 ///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
42 ///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
43 ///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
44 ///
45 ///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
46 ///       I != E; ++I) {           // Iterate over all of the equivalence sets.
47 ///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
48 ///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
49 ///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
50 ///      cerr << *MI << " ";  // Print member.
51 ///    cerr << "\n";   // Finish set.
52 ///  }
53 /// \endcode
54 ///
55 /// This example prints:
56 ///   4
57 ///   5 1 2
58 ///
59 template <class ElemTy, class Compare = std::less<ElemTy>>
60 class EquivalenceClasses {
61   /// ECValue - The EquivalenceClasses data structure is just a set of these.
62   /// Each of these represents a relation for a value.  First it stores the
63   /// value itself, which provides the ordering that the set queries.  Next, it
64   /// provides a "next pointer", which is used to enumerate all of the elements
65   /// in the unioned set.  Finally, it defines either a "end of list pointer" or
66   /// "leader pointer" depending on whether the value itself is a leader.  A
67   /// "leader pointer" points to the node that is the leader for this element,
68   /// if the node is not a leader.  A "end of list pointer" points to the last
69   /// node in the list of members of this list.  Whether or not a node is a
70   /// leader is determined by a bit stolen from one of the pointers.
71   class ECValue {
72     friend class EquivalenceClasses;
73 
74     mutable const ECValue *Leader, *Next;
75     ElemTy Data;
76 
77     // ECValue ctor - Start out with EndOfList pointing to this node, Next is
78     // Null, isLeader = true.
ECValue(const ElemTy & Elt)79     ECValue(const ElemTy &Elt)
80       : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
81 
getLeader()82     const ECValue *getLeader() const {
83       if (isLeader()) return this;
84       if (Leader->isLeader()) return Leader;
85       // Path compression.
86       return Leader = Leader->getLeader();
87     }
88 
getEndOfList()89     const ECValue *getEndOfList() const {
90       assert(isLeader() && "Cannot get the end of a list for a non-leader!");
91       return Leader;
92     }
93 
setNext(const ECValue * NewNext)94     void setNext(const ECValue *NewNext) const {
95       assert(getNext() == nullptr && "Already has a next pointer!");
96       Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
97     }
98 
99   public:
ECValue(const ECValue & RHS)100     ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
101                                   Data(RHS.Data) {
102       // Only support copying of singleton nodes.
103       assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
104     }
105 
isLeader()106     bool isLeader() const { return (intptr_t)Next & 1; }
getData()107     const ElemTy &getData() const { return Data; }
108 
getNext()109     const ECValue *getNext() const {
110       return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
111     }
112   };
113 
114   /// A wrapper of the comparator, to be passed to the set.
115   struct ECValueComparator {
116     using is_transparent = void;
117 
ECValueComparatorECValueComparator118     ECValueComparator() : compare(Compare()) {}
119 
operatorECValueComparator120     bool operator()(const ECValue &lhs, const ECValue &rhs) const {
121       return compare(lhs.Data, rhs.Data);
122     }
123 
124     template <typename T>
operatorECValueComparator125     bool operator()(const T &lhs, const ECValue &rhs) const {
126       return compare(lhs, rhs.Data);
127     }
128 
129     template <typename T>
operatorECValueComparator130     bool operator()(const ECValue &lhs, const T &rhs) const {
131       return compare(lhs.Data, rhs);
132     }
133 
134     const Compare compare;
135   };
136 
137   /// TheMapping - This implicitly provides a mapping from ElemTy values to the
138   /// ECValues, it just keeps the key as part of the value.
139   std::set<ECValue, ECValueComparator> TheMapping;
140 
141 public:
142   EquivalenceClasses() = default;
EquivalenceClasses(const EquivalenceClasses & RHS)143   EquivalenceClasses(const EquivalenceClasses &RHS) {
144     operator=(RHS);
145   }
146 
147   const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
148     TheMapping.clear();
149     for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
150       if (I->isLeader()) {
151         member_iterator MI = RHS.member_begin(I);
152         member_iterator LeaderIt = member_begin(insert(*MI));
153         for (++MI; MI != member_end(); ++MI)
154           unionSets(LeaderIt, member_begin(insert(*MI)));
155       }
156     return *this;
157   }
158 
159   //===--------------------------------------------------------------------===//
160   // Inspection methods
161   //
162 
163   /// iterator* - Provides a way to iterate over all values in the set.
164   using iterator =
165       typename std::set<ECValue, ECValueComparator>::const_iterator;
166 
begin()167   iterator begin() const { return TheMapping.begin(); }
end()168   iterator end() const { return TheMapping.end(); }
169 
empty()170   bool empty() const { return TheMapping.empty(); }
171 
172   /// member_* Iterate over the members of an equivalence class.
173   class member_iterator;
member_begin(iterator I)174   member_iterator member_begin(iterator I) const {
175     // Only leaders provide anything to iterate over.
176     return member_iterator(I->isLeader() ? &*I : nullptr);
177   }
member_end()178   member_iterator member_end() const {
179     return member_iterator(nullptr);
180   }
181 
182   /// findValue - Return an iterator to the specified value.  If it does not
183   /// exist, end() is returned.
findValue(const ElemTy & V)184   iterator findValue(const ElemTy &V) const {
185     return TheMapping.find(V);
186   }
187 
188   /// getLeaderValue - Return the leader for the specified value that is in the
189   /// set.  It is an error to call this method for a value that is not yet in
190   /// the set.  For that, call getOrInsertLeaderValue(V).
getLeaderValue(const ElemTy & V)191   const ElemTy &getLeaderValue(const ElemTy &V) const {
192     member_iterator MI = findLeader(V);
193     assert(MI != member_end() && "Value is not in the set!");
194     return *MI;
195   }
196 
197   /// getOrInsertLeaderValue - Return the leader for the specified value that is
198   /// in the set.  If the member is not in the set, it is inserted, then
199   /// returned.
getOrInsertLeaderValue(const ElemTy & V)200   const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
201     member_iterator MI = findLeader(insert(V));
202     assert(MI != member_end() && "Value is not in the set!");
203     return *MI;
204   }
205 
206   /// getNumClasses - Return the number of equivalence classes in this set.
207   /// Note that this is a linear time operation.
getNumClasses()208   unsigned getNumClasses() const {
209     unsigned NC = 0;
210     for (iterator I = begin(), E = end(); I != E; ++I)
211       if (I->isLeader()) ++NC;
212     return NC;
213   }
214 
215   //===--------------------------------------------------------------------===//
216   // Mutation methods
217 
218   /// insert - Insert a new value into the union/find set, ignoring the request
219   /// if the value already exists.
insert(const ElemTy & Data)220   iterator insert(const ElemTy &Data) {
221     return TheMapping.insert(ECValue(Data)).first;
222   }
223 
224   /// findLeader - Given a value in the set, return a member iterator for the
225   /// equivalence class it is in.  This does the path-compression part that
226   /// makes union-find "union findy".  This returns an end iterator if the value
227   /// is not in the equivalence class.
findLeader(iterator I)228   member_iterator findLeader(iterator I) const {
229     if (I == TheMapping.end()) return member_end();
230     return member_iterator(I->getLeader());
231   }
findLeader(const ElemTy & V)232   member_iterator findLeader(const ElemTy &V) const {
233     return findLeader(TheMapping.find(V));
234   }
235 
236   /// union - Merge the two equivalence sets for the specified values, inserting
237   /// them if they do not already exist in the equivalence set.
unionSets(const ElemTy & V1,const ElemTy & V2)238   member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
239     iterator V1I = insert(V1), V2I = insert(V2);
240     return unionSets(findLeader(V1I), findLeader(V2I));
241   }
unionSets(member_iterator L1,member_iterator L2)242   member_iterator unionSets(member_iterator L1, member_iterator L2) {
243     assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
244     if (L1 == L2) return L1;   // Unifying the same two sets, noop.
245 
246     // Otherwise, this is a real union operation.  Set the end of the L1 list to
247     // point to the L2 leader node.
248     const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
249     L1LV.getEndOfList()->setNext(&L2LV);
250 
251     // Update L1LV's end of list pointer.
252     L1LV.Leader = L2LV.getEndOfList();
253 
254     // Clear L2's leader flag:
255     L2LV.Next = L2LV.getNext();
256 
257     // L2's leader is now L1.
258     L2LV.Leader = &L1LV;
259     return L1;
260   }
261 
262   // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
263   // V1 is equal to V2 or if they belong to one equivalence class.
isEquivalent(const ElemTy & V1,const ElemTy & V2)264   bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
265     // Fast path: any element is equivalent to itself.
266     if (V1 == V2)
267       return true;
268     auto It = findLeader(V1);
269     return It != member_end() && It == findLeader(V2);
270   }
271 
272   class member_iterator {
273     friend class EquivalenceClasses;
274 
275     const ECValue *Node;
276 
277   public:
278     using iterator_category = std::forward_iterator_tag;
279     using value_type = const ElemTy;
280     using size_type = std::size_t;
281     using difference_type = std::ptrdiff_t;
282     using pointer = value_type *;
283     using reference = value_type &;
284 
285     explicit member_iterator() = default;
member_iterator(const ECValue * N)286     explicit member_iterator(const ECValue *N) : Node(N) {}
287 
288     reference operator*() const {
289       assert(Node != nullptr && "Dereferencing end()!");
290       return Node->getData();
291     }
292     pointer operator->() const { return &operator*(); }
293 
294     member_iterator &operator++() {
295       assert(Node != nullptr && "++'d off the end of the list!");
296       Node = Node->getNext();
297       return *this;
298     }
299 
300     member_iterator operator++(int) {    // postincrement operators.
301       member_iterator tmp = *this;
302       ++*this;
303       return tmp;
304     }
305 
306     bool operator==(const member_iterator &RHS) const {
307       return Node == RHS.Node;
308     }
309     bool operator!=(const member_iterator &RHS) const {
310       return Node != RHS.Node;
311     }
312   };
313 };
314 
315 } // end namespace llvm
316 
317 #endif // LLVM_ADT_EQUIVALENCECLASSES_H
318