1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 // Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
19 //
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
24 //
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
32 //
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
40 //
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "ValueProfileCollector.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Twine.h"
59 #include "llvm/ADT/iterator.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/BlockFrequencyInfo.h"
62 #include "llvm/Analysis/BranchProbabilityInfo.h"
63 #include "llvm/Analysis/CFG.h"
64 #include "llvm/Analysis/LoopInfo.h"
65 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
66 #include "llvm/Analysis/ProfileSummaryInfo.h"
67 #include "llvm/Analysis/TargetLibraryInfo.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/Comdat.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/EHPersonalities.h"
77 #include "llvm/IR/Function.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalValue.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/IRBuilder.h"
82 #include "llvm/IR/InstVisitor.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/MDBuilder.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/PassManager.h"
92 #include "llvm/IR/ProfDataUtils.h"
93 #include "llvm/IR/ProfileSummary.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/ProfileData/InstrProf.h"
97 #include "llvm/ProfileData/InstrProfReader.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/CRC.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/DOTGraphTraits.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/Error.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/GraphWriter.h"
107 #include "llvm/Support/VirtualFileSystem.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/TargetParser/Triple.h"
110 #include "llvm/Transforms/Instrumentation.h"
111 #include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
112 #include "llvm/Transforms/Instrumentation/CFGMST.h"
113 #include "llvm/Transforms/Instrumentation/PGOCtxProfLowering.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/MisExpect.h"
116 #include "llvm/Transforms/Utils/ModuleUtils.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstdint>
120 #include <memory>
121 #include <numeric>
122 #include <optional>
123 #include <stack>
124 #include <string>
125 #include <unordered_map>
126 #include <utility>
127 #include <vector>
128
129 using namespace llvm;
130 using ProfileCount = Function::ProfileCount;
131 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
132
133 #define DEBUG_TYPE "pgo-instrumentation"
134
135 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
136 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
137 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
138 STATISTIC(NumOfPGOEdge, "Number of edges.");
139 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
140 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
141 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
142 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
143 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
144 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
145 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
146 STATISTIC(NumOfCSPGOSelectInsts,
147 "Number of select instruction instrumented in CSPGO.");
148 STATISTIC(NumOfCSPGOMemIntrinsics,
149 "Number of mem intrinsics instrumented in CSPGO.");
150 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
151 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
152 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
153 STATISTIC(NumOfCSPGOFunc,
154 "Number of functions having valid profile counts in CSPGO.");
155 STATISTIC(NumOfCSPGOMismatch,
156 "Number of functions having mismatch profile in CSPGO.");
157 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
158 STATISTIC(NumCoveredBlocks, "Number of basic blocks that were executed");
159
160 // Command line option to specify the file to read profile from. This is
161 // mainly used for testing.
162 static cl::opt<std::string>
163 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
164 cl::value_desc("filename"),
165 cl::desc("Specify the path of profile data file. This is"
166 "mainly for test purpose."));
167 static cl::opt<std::string> PGOTestProfileRemappingFile(
168 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
169 cl::value_desc("filename"),
170 cl::desc("Specify the path of profile remapping file. This is mainly for "
171 "test purpose."));
172
173 // Command line option to disable value profiling. The default is false:
174 // i.e. value profiling is enabled by default. This is for debug purpose.
175 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
176 cl::Hidden,
177 cl::desc("Disable Value Profiling"));
178
179 // Command line option to set the maximum number of VP annotations to write to
180 // the metadata for a single indirect call callsite.
181 static cl::opt<unsigned> MaxNumAnnotations(
182 "icp-max-annotations", cl::init(3), cl::Hidden,
183 cl::desc("Max number of annotations for a single indirect "
184 "call callsite"));
185
186 // Command line option to set the maximum number of value annotations
187 // to write to the metadata for a single memop intrinsic.
188 static cl::opt<unsigned> MaxNumMemOPAnnotations(
189 "memop-max-annotations", cl::init(4), cl::Hidden,
190 cl::desc("Max number of preicise value annotations for a single memop"
191 "intrinsic"));
192
193 // Command line option to control appending FunctionHash to the name of a COMDAT
194 // function. This is to avoid the hash mismatch caused by the preinliner.
195 static cl::opt<bool> DoComdatRenaming(
196 "do-comdat-renaming", cl::init(false), cl::Hidden,
197 cl::desc("Append function hash to the name of COMDAT function to avoid "
198 "function hash mismatch due to the preinliner"));
199
200 namespace llvm {
201 // Command line option to enable/disable the warning about missing profile
202 // information.
203 cl::opt<bool> PGOWarnMissing("pgo-warn-missing-function", cl::init(false),
204 cl::Hidden,
205 cl::desc("Use this option to turn on/off "
206 "warnings about missing profile data for "
207 "functions."));
208
209 // Command line option to enable/disable the warning about a hash mismatch in
210 // the profile data.
211 cl::opt<bool>
212 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
213 cl::desc("Use this option to turn off/on "
214 "warnings about profile cfg mismatch."));
215
216 // Command line option to enable/disable the warning about a hash mismatch in
217 // the profile data for Comdat functions, which often turns out to be false
218 // positive due to the pre-instrumentation inline.
219 cl::opt<bool> NoPGOWarnMismatchComdatWeak(
220 "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden,
221 cl::desc("The option is used to turn on/off "
222 "warnings about hash mismatch for comdat "
223 "or weak functions."));
224 } // namespace llvm
225
226 // Command line option to enable/disable select instruction instrumentation.
227 static cl::opt<bool>
228 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
229 cl::desc("Use this option to turn on/off SELECT "
230 "instruction instrumentation. "));
231
232 // Command line option to turn on CFG dot or text dump of raw profile counts
233 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
234 "pgo-view-raw-counts", cl::Hidden,
235 cl::desc("A boolean option to show CFG dag or text "
236 "with raw profile counts from "
237 "profile data. See also option "
238 "-pgo-view-counts. To limit graph "
239 "display to only one function, use "
240 "filtering option -view-bfi-func-name."),
241 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
242 clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
243 clEnumValN(PGOVCT_Text, "text", "show in text.")));
244
245 // Command line option to enable/disable memop intrinsic call.size profiling.
246 static cl::opt<bool>
247 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
248 cl::desc("Use this option to turn on/off "
249 "memory intrinsic size profiling."));
250
251 // Emit branch probability as optimization remarks.
252 static cl::opt<bool>
253 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
254 cl::desc("When this option is on, the annotated "
255 "branch probability will be emitted as "
256 "optimization remarks: -{Rpass|"
257 "pass-remarks}=pgo-instrumentation"));
258
259 static cl::opt<bool> PGOInstrumentEntry(
260 "pgo-instrument-entry", cl::init(false), cl::Hidden,
261 cl::desc("Force to instrument function entry basicblock."));
262
263 static cl::opt<bool> PGOFunctionEntryCoverage(
264 "pgo-function-entry-coverage", cl::Hidden,
265 cl::desc(
266 "Use this option to enable function entry coverage instrumentation."));
267
268 static cl::opt<bool> PGOBlockCoverage(
269 "pgo-block-coverage",
270 cl::desc("Use this option to enable basic block coverage instrumentation"));
271
272 static cl::opt<bool>
273 PGOViewBlockCoverageGraph("pgo-view-block-coverage-graph",
274 cl::desc("Create a dot file of CFGs with block "
275 "coverage inference information"));
276
277 static cl::opt<bool> PGOTemporalInstrumentation(
278 "pgo-temporal-instrumentation",
279 cl::desc("Use this option to enable temporal instrumentation"));
280
281 static cl::opt<bool>
282 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
283 cl::desc("Fix function entry count in profile use."));
284
285 static cl::opt<bool> PGOVerifyHotBFI(
286 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
287 cl::desc("Print out the non-match BFI count if a hot raw profile count "
288 "becomes non-hot, or a cold raw profile count becomes hot. "
289 "The print is enabled under -Rpass-analysis=pgo, or "
290 "internal option -pass-remakrs-analysis=pgo."));
291
292 static cl::opt<bool> PGOVerifyBFI(
293 "pgo-verify-bfi", cl::init(false), cl::Hidden,
294 cl::desc("Print out mismatched BFI counts after setting profile metadata "
295 "The print is enabled under -Rpass-analysis=pgo, or "
296 "internal option -pass-remakrs-analysis=pgo."));
297
298 static cl::opt<unsigned> PGOVerifyBFIRatio(
299 "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden,
300 cl::desc("Set the threshold for pgo-verify-bfi: only print out "
301 "mismatched BFI if the difference percentage is greater than "
302 "this value (in percentage)."));
303
304 static cl::opt<unsigned> PGOVerifyBFICutoff(
305 "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden,
306 cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose "
307 "profile count value is below."));
308
309 static cl::opt<std::string> PGOTraceFuncHash(
310 "pgo-trace-func-hash", cl::init("-"), cl::Hidden,
311 cl::value_desc("function name"),
312 cl::desc("Trace the hash of the function with this name."));
313
314 static cl::opt<unsigned> PGOFunctionSizeThreshold(
315 "pgo-function-size-threshold", cl::Hidden,
316 cl::desc("Do not instrument functions smaller than this threshold."));
317
318 static cl::opt<unsigned> PGOFunctionCriticalEdgeThreshold(
319 "pgo-critical-edge-threshold", cl::init(20000), cl::Hidden,
320 cl::desc("Do not instrument functions with the number of critical edges "
321 " greater than this threshold."));
322
323 extern cl::opt<unsigned> MaxNumVTableAnnotations;
324
325 namespace llvm {
326 // Command line option to turn on CFG dot dump after profile annotation.
327 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
328 extern cl::opt<PGOViewCountsType> PGOViewCounts;
329
330 // Command line option to specify the name of the function for CFG dump
331 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
332 extern cl::opt<std::string> ViewBlockFreqFuncName;
333
334 // Command line option to enable vtable value profiling. Defined in
335 // ProfileData/InstrProf.cpp: -enable-vtable-value-profiling=
336 extern cl::opt<bool> EnableVTableValueProfiling;
337 extern cl::opt<bool> EnableVTableProfileUse;
338 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
339 } // namespace llvm
340
shouldInstrumentEntryBB()341 bool shouldInstrumentEntryBB() {
342 return PGOInstrumentEntry ||
343 PGOCtxProfLoweringPass::isContextualIRPGOEnabled();
344 }
345
346 // FIXME(mtrofin): re-enable this for ctx profiling, for non-indirect calls. Ctx
347 // profiling implicitly captures indirect call cases, but not other values.
348 // Supporting other values is relatively straight-forward - just another counter
349 // range within the context.
isValueProfilingDisabled()350 bool isValueProfilingDisabled() {
351 return DisableValueProfiling ||
352 PGOCtxProfLoweringPass::isContextualIRPGOEnabled();
353 }
354
355 // Return a string describing the branch condition that can be
356 // used in static branch probability heuristics:
getBranchCondString(Instruction * TI)357 static std::string getBranchCondString(Instruction *TI) {
358 BranchInst *BI = dyn_cast<BranchInst>(TI);
359 if (!BI || !BI->isConditional())
360 return std::string();
361
362 Value *Cond = BI->getCondition();
363 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
364 if (!CI)
365 return std::string();
366
367 std::string result;
368 raw_string_ostream OS(result);
369 OS << CI->getPredicate() << "_";
370 CI->getOperand(0)->getType()->print(OS, true);
371
372 Value *RHS = CI->getOperand(1);
373 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
374 if (CV) {
375 if (CV->isZero())
376 OS << "_Zero";
377 else if (CV->isOne())
378 OS << "_One";
379 else if (CV->isMinusOne())
380 OS << "_MinusOne";
381 else
382 OS << "_Const";
383 }
384 OS.flush();
385 return result;
386 }
387
388 static const char *ValueProfKindDescr[] = {
389 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
390 #include "llvm/ProfileData/InstrProfData.inc"
391 };
392
393 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
394 // aware this is an ir_level profile so it can set the version flag.
createIRLevelProfileFlagVar(Module & M,bool IsCS)395 static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
396 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
397 Type *IntTy64 = Type::getInt64Ty(M.getContext());
398 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
399 if (IsCS)
400 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
401 if (shouldInstrumentEntryBB())
402 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
403 if (DebugInfoCorrelate || ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO)
404 ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
405 if (PGOFunctionEntryCoverage)
406 ProfileVersion |=
407 VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
408 if (PGOBlockCoverage)
409 ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE;
410 if (PGOTemporalInstrumentation)
411 ProfileVersion |= VARIANT_MASK_TEMPORAL_PROF;
412 auto IRLevelVersionVariable = new GlobalVariable(
413 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
414 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
415 IRLevelVersionVariable->setVisibility(GlobalValue::HiddenVisibility);
416 Triple TT(M.getTargetTriple());
417 if (TT.supportsCOMDAT()) {
418 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
419 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
420 }
421 return IRLevelVersionVariable;
422 }
423
424 namespace {
425
426 /// The select instruction visitor plays three roles specified
427 /// by the mode. In \c VM_counting mode, it simply counts the number of
428 /// select instructions. In \c VM_instrument mode, it inserts code to count
429 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
430 /// it reads the profile data and annotate the select instruction with metadata.
431 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
432 class PGOUseFunc;
433
434 /// Instruction Visitor class to visit select instructions.
435 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
436 Function &F;
437 unsigned NSIs = 0; // Number of select instructions instrumented.
438 VisitMode Mode = VM_counting; // Visiting mode.
439 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
440 unsigned TotalNumCtrs = 0; // Total number of counters
441 GlobalVariable *FuncNameVar = nullptr;
442 uint64_t FuncHash = 0;
443 PGOUseFunc *UseFunc = nullptr;
444 bool HasSingleByteCoverage;
445
SelectInstVisitor__anon0925556b0111::SelectInstVisitor446 SelectInstVisitor(Function &Func, bool HasSingleByteCoverage)
447 : F(Func), HasSingleByteCoverage(HasSingleByteCoverage) {}
448
countSelects__anon0925556b0111::SelectInstVisitor449 void countSelects() {
450 NSIs = 0;
451 Mode = VM_counting;
452 visit(F);
453 }
454
455 // Visit the IR stream and instrument all select instructions. \p
456 // Ind is a pointer to the counter index variable; \p TotalNC
457 // is the total number of counters; \p FNV is the pointer to the
458 // PGO function name var; \p FHash is the function hash.
instrumentSelects__anon0925556b0111::SelectInstVisitor459 void instrumentSelects(unsigned *Ind, unsigned TotalNC, GlobalVariable *FNV,
460 uint64_t FHash) {
461 Mode = VM_instrument;
462 CurCtrIdx = Ind;
463 TotalNumCtrs = TotalNC;
464 FuncHash = FHash;
465 FuncNameVar = FNV;
466 visit(F);
467 }
468
469 // Visit the IR stream and annotate all select instructions.
annotateSelects__anon0925556b0111::SelectInstVisitor470 void annotateSelects(PGOUseFunc *UF, unsigned *Ind) {
471 Mode = VM_annotate;
472 UseFunc = UF;
473 CurCtrIdx = Ind;
474 visit(F);
475 }
476
477 void instrumentOneSelectInst(SelectInst &SI);
478 void annotateOneSelectInst(SelectInst &SI);
479
480 // Visit \p SI instruction and perform tasks according to visit mode.
481 void visitSelectInst(SelectInst &SI);
482
483 // Return the number of select instructions. This needs be called after
484 // countSelects().
getNumOfSelectInsts__anon0925556b0111::SelectInstVisitor485 unsigned getNumOfSelectInsts() const { return NSIs; }
486 };
487
488 /// This class implements the CFG edges for the Minimum Spanning Tree (MST)
489 /// based instrumentation.
490 /// Note that the CFG can be a multi-graph. So there might be multiple edges
491 /// with the same SrcBB and DestBB.
492 struct PGOEdge {
493 BasicBlock *SrcBB;
494 BasicBlock *DestBB;
495 uint64_t Weight;
496 bool InMST = false;
497 bool Removed = false;
498 bool IsCritical = false;
499
PGOEdge__anon0925556b0111::PGOEdge500 PGOEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W = 1)
501 : SrcBB(Src), DestBB(Dest), Weight(W) {}
502
503 /// Return the information string of an edge.
infoString__anon0925556b0111::PGOEdge504 std::string infoString() const {
505 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
506 (IsCritical ? "c" : " ") + " W=" + Twine(Weight))
507 .str();
508 }
509 };
510
511 /// This class stores the auxiliary information for each BB in the MST.
512 struct PGOBBInfo {
513 PGOBBInfo *Group;
514 uint32_t Index;
515 uint32_t Rank = 0;
516
PGOBBInfo__anon0925556b0111::PGOBBInfo517 PGOBBInfo(unsigned IX) : Group(this), Index(IX) {}
518
519 /// Return the information string of this object.
infoString__anon0925556b0111::PGOBBInfo520 std::string infoString() const {
521 return (Twine("Index=") + Twine(Index)).str();
522 }
523 };
524
525 // This class implements the CFG edges. Note the CFG can be a multi-graph.
526 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
527 private:
528 Function &F;
529
530 // Is this is context-sensitive instrumentation.
531 bool IsCS;
532
533 // A map that stores the Comdat group in function F.
534 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
535
536 ValueProfileCollector VPC;
537
538 void computeCFGHash();
539 void renameComdatFunction();
540
541 public:
542 const TargetLibraryInfo &TLI;
543 std::vector<std::vector<VPCandidateInfo>> ValueSites;
544 SelectInstVisitor SIVisitor;
545 std::string FuncName;
546 std::string DeprecatedFuncName;
547 GlobalVariable *FuncNameVar;
548
549 // CFG hash value for this function.
550 uint64_t FunctionHash = 0;
551
552 // The Minimum Spanning Tree of function CFG.
553 CFGMST<Edge, BBInfo> MST;
554
555 const std::optional<BlockCoverageInference> BCI;
556
557 static std::optional<BlockCoverageInference>
constructBCI(Function & Func,bool HasSingleByteCoverage,bool InstrumentFuncEntry)558 constructBCI(Function &Func, bool HasSingleByteCoverage,
559 bool InstrumentFuncEntry) {
560 if (HasSingleByteCoverage)
561 return BlockCoverageInference(Func, InstrumentFuncEntry);
562 return {};
563 }
564
565 // Collect all the BBs that will be instrumented, and store them in
566 // InstrumentBBs.
567 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
568
569 // Give an edge, find the BB that will be instrumented.
570 // Return nullptr if there is no BB to be instrumented.
571 BasicBlock *getInstrBB(Edge *E);
572
573 // Return the auxiliary BB information.
getBBInfo(const BasicBlock * BB) const574 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
575
576 // Return the auxiliary BB information if available.
findBBInfo(const BasicBlock * BB) const577 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
578
579 // Dump edges and BB information.
dumpInfo(StringRef Str="") const580 void dumpInfo(StringRef Str = "") const {
581 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName +
582 " Hash: " + Twine(FunctionHash) + "\t" + Str);
583 }
584
FuncPGOInstrumentation(Function & Func,TargetLibraryInfo & TLI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,bool CreateGlobalVar=false,BranchProbabilityInfo * BPI=nullptr,BlockFrequencyInfo * BFI=nullptr,bool IsCS=false,bool InstrumentFuncEntry=true,bool HasSingleByteCoverage=false)585 FuncPGOInstrumentation(
586 Function &Func, TargetLibraryInfo &TLI,
587 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
588 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
589 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
590 bool InstrumentFuncEntry = true, bool HasSingleByteCoverage = false)
591 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
592 TLI(TLI), ValueSites(IPVK_Last + 1),
593 SIVisitor(Func, HasSingleByteCoverage),
594 MST(F, InstrumentFuncEntry, BPI, BFI),
595 BCI(constructBCI(Func, HasSingleByteCoverage, InstrumentFuncEntry)) {
596 if (BCI && PGOViewBlockCoverageGraph)
597 BCI->viewBlockCoverageGraph();
598 // This should be done before CFG hash computation.
599 SIVisitor.countSelects();
600 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
601 if (!IsCS) {
602 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
603 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
604 NumOfPGOBB += MST.bbInfoSize();
605 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
606 if (EnableVTableValueProfiling)
607 ValueSites[IPVK_VTableTarget] = VPC.get(IPVK_VTableTarget);
608 } else {
609 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
610 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
611 NumOfCSPGOBB += MST.bbInfoSize();
612 }
613
614 FuncName = getIRPGOFuncName(F);
615 DeprecatedFuncName = getPGOFuncName(F);
616 computeCFGHash();
617 if (!ComdatMembers.empty())
618 renameComdatFunction();
619 LLVM_DEBUG(dumpInfo("after CFGMST"));
620
621 for (const auto &E : MST.allEdges()) {
622 if (E->Removed)
623 continue;
624 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
625 if (!E->InMST)
626 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
627 }
628
629 if (CreateGlobalVar)
630 FuncNameVar = createPGOFuncNameVar(F, FuncName);
631 }
632 };
633
634 } // end anonymous namespace
635
636 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
637 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
638 // of selects, indirect calls, mem ops and edges.
639 template <class Edge, class BBInfo>
computeCFGHash()640 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
641 std::vector<uint8_t> Indexes;
642 JamCRC JC;
643 for (auto &BB : F) {
644 for (BasicBlock *Succ : successors(&BB)) {
645 auto BI = findBBInfo(Succ);
646 if (BI == nullptr)
647 continue;
648 uint32_t Index = BI->Index;
649 for (int J = 0; J < 4; J++)
650 Indexes.push_back((uint8_t)(Index >> (J * 8)));
651 }
652 }
653 JC.update(Indexes);
654
655 JamCRC JCH;
656 // The higher 32 bits.
657 auto updateJCH = [&JCH](uint64_t Num) {
658 uint8_t Data[8];
659 support::endian::write64le(Data, Num);
660 JCH.update(Data);
661 };
662 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
663 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
664 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
665 if (BCI) {
666 updateJCH(BCI->getInstrumentedBlocksHash());
667 } else {
668 updateJCH((uint64_t)MST.numEdges());
669 }
670
671 // Hash format for context sensitive profile. Reserve 4 bits for other
672 // information.
673 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
674
675 // Reserve bit 60-63 for other information purpose.
676 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
677 if (IsCS)
678 NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
679 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
680 << " CRC = " << JC.getCRC()
681 << ", Selects = " << SIVisitor.getNumOfSelectInsts()
682 << ", Edges = " << MST.numEdges() << ", ICSites = "
683 << ValueSites[IPVK_IndirectCallTarget].size()
684 << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
685 << ", High32 CRC = " << JCH.getCRC()
686 << ", Hash = " << FunctionHash << "\n";);
687
688 if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash))
689 dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash
690 << " in building " << F.getParent()->getSourceFileName() << "\n";
691 }
692
693 // Check if we can safely rename this Comdat function.
canRenameComdat(Function & F,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers)694 static bool canRenameComdat(
695 Function &F,
696 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
697 if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
698 return false;
699
700 // FIXME: Current only handle those Comdat groups that only containing one
701 // function.
702 // (1) For a Comdat group containing multiple functions, we need to have a
703 // unique postfix based on the hashes for each function. There is a
704 // non-trivial code refactoring to do this efficiently.
705 // (2) Variables can not be renamed, so we can not rename Comdat function in a
706 // group including global vars.
707 Comdat *C = F.getComdat();
708 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
709 assert(!isa<GlobalAlias>(CM.second));
710 Function *FM = dyn_cast<Function>(CM.second);
711 if (FM != &F)
712 return false;
713 }
714 return true;
715 }
716
717 // Append the CFGHash to the Comdat function name.
718 template <class Edge, class BBInfo>
renameComdatFunction()719 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
720 if (!canRenameComdat(F, ComdatMembers))
721 return;
722 std::string OrigName = F.getName().str();
723 std::string NewFuncName =
724 Twine(F.getName() + "." + Twine(FunctionHash)).str();
725 F.setName(Twine(NewFuncName));
726 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
727 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
728 Comdat *NewComdat;
729 Module *M = F.getParent();
730 // For AvailableExternallyLinkage functions, change the linkage to
731 // LinkOnceODR and put them into comdat. This is because after renaming, there
732 // is no backup external copy available for the function.
733 if (!F.hasComdat()) {
734 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
735 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
736 F.setLinkage(GlobalValue::LinkOnceODRLinkage);
737 F.setComdat(NewComdat);
738 return;
739 }
740
741 // This function belongs to a single function Comdat group.
742 Comdat *OrigComdat = F.getComdat();
743 std::string NewComdatName =
744 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
745 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
746 NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
747
748 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
749 // Must be a function.
750 cast<Function>(CM.second)->setComdat(NewComdat);
751 }
752 }
753
754 /// Collect all the BBs that will be instruments and add them to
755 /// `InstrumentBBs`.
756 template <class Edge, class BBInfo>
getInstrumentBBs(std::vector<BasicBlock * > & InstrumentBBs)757 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
758 std::vector<BasicBlock *> &InstrumentBBs) {
759 if (BCI) {
760 for (auto &BB : F)
761 if (BCI->shouldInstrumentBlock(BB))
762 InstrumentBBs.push_back(&BB);
763 return;
764 }
765
766 // Use a worklist as we will update the vector during the iteration.
767 std::vector<Edge *> EdgeList;
768 EdgeList.reserve(MST.numEdges());
769 for (const auto &E : MST.allEdges())
770 EdgeList.push_back(E.get());
771
772 for (auto &E : EdgeList) {
773 BasicBlock *InstrBB = getInstrBB(E);
774 if (InstrBB)
775 InstrumentBBs.push_back(InstrBB);
776 }
777 }
778
779 // Given a CFG E to be instrumented, find which BB to place the instrumented
780 // code. The function will split the critical edge if necessary.
781 template <class Edge, class BBInfo>
getInstrBB(Edge * E)782 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
783 if (E->InMST || E->Removed)
784 return nullptr;
785
786 BasicBlock *SrcBB = E->SrcBB;
787 BasicBlock *DestBB = E->DestBB;
788 // For a fake edge, instrument the real BB.
789 if (SrcBB == nullptr)
790 return DestBB;
791 if (DestBB == nullptr)
792 return SrcBB;
793
794 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
795 // There are basic blocks (such as catchswitch) cannot be instrumented.
796 // If the returned first insertion point is the end of BB, skip this BB.
797 if (BB->getFirstInsertionPt() == BB->end())
798 return nullptr;
799 return BB;
800 };
801
802 // Instrument the SrcBB if it has a single successor,
803 // otherwise, the DestBB if this is not a critical edge.
804 Instruction *TI = SrcBB->getTerminator();
805 if (TI->getNumSuccessors() <= 1)
806 return canInstrument(SrcBB);
807 if (!E->IsCritical)
808 return canInstrument(DestBB);
809
810 // Some IndirectBr critical edges cannot be split by the previous
811 // SplitIndirectBrCriticalEdges call. Bail out.
812 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
813 BasicBlock *InstrBB =
814 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
815 if (!InstrBB) {
816 LLVM_DEBUG(
817 dbgs() << "Fail to split critical edge: not instrument this edge.\n");
818 return nullptr;
819 }
820 // For a critical edge, we have to split. Instrument the newly
821 // created BB.
822 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
823 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
824 << " --> " << getBBInfo(DestBB).Index << "\n");
825 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
826 MST.addEdge(SrcBB, InstrBB, 0);
827 // Second one: Add new edge of InstrBB->DestBB.
828 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
829 NewEdge1.InMST = true;
830 E->Removed = true;
831
832 return canInstrument(InstrBB);
833 }
834
835 // When generating value profiling calls on Windows routines that make use of
836 // handler funclets for exception processing an operand bundle needs to attached
837 // to the called function. This routine will set \p OpBundles to contain the
838 // funclet information, if any is needed, that should be placed on the generated
839 // value profiling call for the value profile candidate call.
840 static void
populateEHOperandBundle(VPCandidateInfo & Cand,DenseMap<BasicBlock *,ColorVector> & BlockColors,SmallVectorImpl<OperandBundleDef> & OpBundles)841 populateEHOperandBundle(VPCandidateInfo &Cand,
842 DenseMap<BasicBlock *, ColorVector> &BlockColors,
843 SmallVectorImpl<OperandBundleDef> &OpBundles) {
844 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
845 if (!OrigCall)
846 return;
847
848 if (!isa<IntrinsicInst>(OrigCall)) {
849 // The instrumentation call should belong to the same funclet as a
850 // non-intrinsic call, so just copy the operand bundle, if any exists.
851 std::optional<OperandBundleUse> ParentFunclet =
852 OrigCall->getOperandBundle(LLVMContext::OB_funclet);
853 if (ParentFunclet)
854 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
855 } else {
856 // Intrinsics or other instructions do not get funclet information from the
857 // front-end. Need to use the BlockColors that was computed by the routine
858 // colorEHFunclets to determine whether a funclet is needed.
859 if (!BlockColors.empty()) {
860 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
861 assert(CV.size() == 1 && "non-unique color for block!");
862 Instruction *EHPad = CV.front()->getFirstNonPHI();
863 if (EHPad->isEHPad())
864 OpBundles.emplace_back("funclet", EHPad);
865 }
866 }
867 }
868
869 // Visit all edge and instrument the edges not in MST, and do value profiling.
870 // Critical edges will be split.
instrumentOneFunc(Function & F,Module * M,TargetLibraryInfo & TLI,BranchProbabilityInfo * BPI,BlockFrequencyInfo * BFI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,bool IsCS)871 static void instrumentOneFunc(
872 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
873 BlockFrequencyInfo *BFI,
874 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
875 bool IsCS) {
876 if (!PGOBlockCoverage) {
877 // Split indirectbr critical edges here before computing the MST rather than
878 // later in getInstrBB() to avoid invalidating it.
879 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
880 }
881
882 FuncPGOInstrumentation<PGOEdge, PGOBBInfo> FuncInfo(
883 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, shouldInstrumentEntryBB(),
884 PGOBlockCoverage);
885
886 auto Name = FuncInfo.FuncNameVar;
887 auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()),
888 FuncInfo.FunctionHash);
889 if (PGOFunctionEntryCoverage) {
890 auto &EntryBB = F.getEntryBlock();
891 IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
892 // llvm.instrprof.cover(i8* <name>, i64 <hash>, i32 <num-counters>,
893 // i32 <index>)
894 Builder.CreateCall(
895 Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover),
896 {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)});
897 return;
898 }
899
900 std::vector<BasicBlock *> InstrumentBBs;
901 FuncInfo.getInstrumentBBs(InstrumentBBs);
902 unsigned NumCounters =
903 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
904
905 if (PGOCtxProfLoweringPass::isContextualIRPGOEnabled()) {
906 auto *CSIntrinsic =
907 Intrinsic::getDeclaration(M, Intrinsic::instrprof_callsite);
908 // We want to count the instrumentable callsites, then instrument them. This
909 // is because the llvm.instrprof.callsite intrinsic has an argument (like
910 // the other instrprof intrinsics) capturing the total number of
911 // instrumented objects (counters, or callsites, in this case). In this
912 // case, we want that value so we can readily pass it to the compiler-rt
913 // APIs that may have to allocate memory based on the nr of callsites.
914 // The traversal logic is the same for both counting and instrumentation,
915 // just needs to be done in succession.
916 auto Visit = [&](llvm::function_ref<void(CallBase * CB)> Visitor) {
917 for (auto &BB : F)
918 for (auto &Instr : BB)
919 if (auto *CS = dyn_cast<CallBase>(&Instr)) {
920 if ((CS->getCalledFunction() &&
921 CS->getCalledFunction()->isIntrinsic()) ||
922 dyn_cast<InlineAsm>(CS->getCalledOperand()))
923 continue;
924 Visitor(CS);
925 }
926 };
927 // First, count callsites.
928 uint32_t TotalNrCallsites = 0;
929 Visit([&TotalNrCallsites](auto *) { ++TotalNrCallsites; });
930
931 // Now instrument.
932 uint32_t CallsiteIndex = 0;
933 Visit([&](auto *CB) {
934 IRBuilder<> Builder(CB);
935 Builder.CreateCall(CSIntrinsic,
936 {Name, CFGHash, Builder.getInt32(TotalNrCallsites),
937 Builder.getInt32(CallsiteIndex++),
938 CB->getCalledOperand()});
939 });
940 }
941
942 uint32_t I = 0;
943 if (PGOTemporalInstrumentation) {
944 NumCounters += PGOBlockCoverage ? 8 : 1;
945 auto &EntryBB = F.getEntryBlock();
946 IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
947 // llvm.instrprof.timestamp(i8* <name>, i64 <hash>, i32 <num-counters>,
948 // i32 <index>)
949 Builder.CreateCall(
950 Intrinsic::getDeclaration(M, Intrinsic::instrprof_timestamp),
951 {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I)});
952 I += PGOBlockCoverage ? 8 : 1;
953 }
954
955 for (auto *InstrBB : InstrumentBBs) {
956 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
957 assert(Builder.GetInsertPoint() != InstrBB->end() &&
958 "Cannot get the Instrumentation point");
959 // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
960 // i32 <index>)
961 Builder.CreateCall(
962 Intrinsic::getDeclaration(M, PGOBlockCoverage
963 ? Intrinsic::instrprof_cover
964 : Intrinsic::instrprof_increment),
965 {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
966 }
967
968 // Now instrument select instructions:
969 FuncInfo.SIVisitor.instrumentSelects(&I, NumCounters, FuncInfo.FuncNameVar,
970 FuncInfo.FunctionHash);
971 assert(I == NumCounters);
972
973 if (isValueProfilingDisabled())
974 return;
975
976 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
977
978 // Intrinsic function calls do not have funclet operand bundles needed for
979 // Windows exception handling attached to them. However, if value profiling is
980 // inserted for one of these calls, then a funclet value will need to be set
981 // on the instrumentation call based on the funclet coloring.
982 DenseMap<BasicBlock *, ColorVector> BlockColors;
983 if (F.hasPersonalityFn() &&
984 isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
985 BlockColors = colorEHFunclets(F);
986
987 // For each VP Kind, walk the VP candidates and instrument each one.
988 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
989 unsigned SiteIndex = 0;
990 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
991 continue;
992
993 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
994 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
995 << " site: CallSite Index = " << SiteIndex << "\n");
996
997 IRBuilder<> Builder(Cand.InsertPt);
998 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
999 "Cannot get the Instrumentation point");
1000
1001 Value *ToProfile = nullptr;
1002 if (Cand.V->getType()->isIntegerTy())
1003 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
1004 else if (Cand.V->getType()->isPointerTy())
1005 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
1006 assert(ToProfile && "value profiling Value is of unexpected type");
1007
1008 SmallVector<OperandBundleDef, 1> OpBundles;
1009 populateEHOperandBundle(Cand, BlockColors, OpBundles);
1010 Builder.CreateCall(
1011 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
1012 {FuncInfo.FuncNameVar, Builder.getInt64(FuncInfo.FunctionHash),
1013 ToProfile, Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
1014 OpBundles);
1015 }
1016 } // IPVK_First <= Kind <= IPVK_Last
1017 }
1018
1019 namespace {
1020
1021 // This class represents a CFG edge in profile use compilation.
1022 struct PGOUseEdge : public PGOEdge {
1023 using PGOEdge::PGOEdge;
1024
1025 std::optional<uint64_t> Count;
1026
1027 // Set edge count value
setEdgeCount__anon0925556b0711::PGOUseEdge1028 void setEdgeCount(uint64_t Value) { Count = Value; }
1029
1030 // Return the information string for this object.
infoString__anon0925556b0711::PGOUseEdge1031 std::string infoString() const {
1032 if (!Count)
1033 return PGOEdge::infoString();
1034 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(*Count)).str();
1035 }
1036 };
1037
1038 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
1039
1040 // This class stores the auxiliary information for each BB.
1041 struct PGOUseBBInfo : public PGOBBInfo {
1042 std::optional<uint64_t> Count;
1043 int32_t UnknownCountInEdge = 0;
1044 int32_t UnknownCountOutEdge = 0;
1045 DirectEdges InEdges;
1046 DirectEdges OutEdges;
1047
PGOUseBBInfo__anon0925556b0711::PGOUseBBInfo1048 PGOUseBBInfo(unsigned IX) : PGOBBInfo(IX) {}
1049
1050 // Set the profile count value for this BB.
setBBInfoCount__anon0925556b0711::PGOUseBBInfo1051 void setBBInfoCount(uint64_t Value) { Count = Value; }
1052
1053 // Return the information string of this object.
infoString__anon0925556b0711::PGOUseBBInfo1054 std::string infoString() const {
1055 if (!Count)
1056 return PGOBBInfo::infoString();
1057 return (Twine(PGOBBInfo::infoString()) + " Count=" + Twine(*Count)).str();
1058 }
1059
1060 // Add an OutEdge and update the edge count.
addOutEdge__anon0925556b0711::PGOUseBBInfo1061 void addOutEdge(PGOUseEdge *E) {
1062 OutEdges.push_back(E);
1063 UnknownCountOutEdge++;
1064 }
1065
1066 // Add an InEdge and update the edge count.
addInEdge__anon0925556b0711::PGOUseBBInfo1067 void addInEdge(PGOUseEdge *E) {
1068 InEdges.push_back(E);
1069 UnknownCountInEdge++;
1070 }
1071 };
1072
1073 } // end anonymous namespace
1074
1075 // Sum up the count values for all the edges.
sumEdgeCount(const ArrayRef<PGOUseEdge * > Edges)1076 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
1077 uint64_t Total = 0;
1078 for (const auto &E : Edges) {
1079 if (E->Removed)
1080 continue;
1081 if (E->Count)
1082 Total += *E->Count;
1083 }
1084 return Total;
1085 }
1086
1087 namespace {
1088
1089 class PGOUseFunc {
1090 public:
PGOUseFunc(Function & Func,Module * Modu,TargetLibraryInfo & TLI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,BranchProbabilityInfo * BPI,BlockFrequencyInfo * BFIin,ProfileSummaryInfo * PSI,bool IsCS,bool InstrumentFuncEntry,bool HasSingleByteCoverage)1091 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1092 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1093 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1094 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry,
1095 bool HasSingleByteCoverage)
1096 : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1097 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1098 InstrumentFuncEntry, HasSingleByteCoverage),
1099 FreqAttr(FFA_Normal), IsCS(IsCS), VPC(Func, TLI) {}
1100
1101 void handleInstrProfError(Error Err, uint64_t MismatchedFuncSum);
1102
1103 // Read counts for the instrumented BB from profile.
1104 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1105 InstrProfRecord::CountPseudoKind &PseudoKind);
1106
1107 // Populate the counts for all BBs.
1108 void populateCounters();
1109
1110 // Set block coverage based on profile coverage values.
1111 void populateCoverage(IndexedInstrProfReader *PGOReader);
1112
1113 // Set the branch weights based on the count values.
1114 void setBranchWeights();
1115
1116 // Annotate the value profile call sites for all value kind.
1117 void annotateValueSites();
1118
1119 // Annotate the value profile call sites for one value kind.
1120 void annotateValueSites(uint32_t Kind);
1121
1122 // Annotate the irreducible loop header weights.
1123 void annotateIrrLoopHeaderWeights();
1124
1125 // The hotness of the function from the profile count.
1126 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1127
1128 // Return the function hotness from the profile.
getFuncFreqAttr() const1129 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1130
1131 // Return the function hash.
getFuncHash() const1132 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1133
1134 // Return the profile record for this function;
getProfileRecord()1135 InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1136
1137 // Return the auxiliary BB information.
getBBInfo(const BasicBlock * BB) const1138 PGOUseBBInfo &getBBInfo(const BasicBlock *BB) const {
1139 return FuncInfo.getBBInfo(BB);
1140 }
1141
1142 // Return the auxiliary BB information if available.
findBBInfo(const BasicBlock * BB) const1143 PGOUseBBInfo *findBBInfo(const BasicBlock *BB) const {
1144 return FuncInfo.findBBInfo(BB);
1145 }
1146
getFunc() const1147 Function &getFunc() const { return F; }
1148
dumpInfo(StringRef Str="") const1149 void dumpInfo(StringRef Str = "") const { FuncInfo.dumpInfo(Str); }
1150
getProgramMaxCount() const1151 uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1152
1153 private:
1154 Function &F;
1155 Module *M;
1156 BlockFrequencyInfo *BFI;
1157 ProfileSummaryInfo *PSI;
1158
1159 // This member stores the shared information with class PGOGenFunc.
1160 FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> FuncInfo;
1161
1162 // The maximum count value in the profile. This is only used in PGO use
1163 // compilation.
1164 uint64_t ProgramMaxCount;
1165
1166 // Position of counter that remains to be read.
1167 uint32_t CountPosition = 0;
1168
1169 // Total size of the profile count for this function.
1170 uint32_t ProfileCountSize = 0;
1171
1172 // ProfileRecord for this function.
1173 InstrProfRecord ProfileRecord;
1174
1175 // Function hotness info derived from profile.
1176 FuncFreqAttr FreqAttr;
1177
1178 // Is to use the context sensitive profile.
1179 bool IsCS;
1180
1181 ValueProfileCollector VPC;
1182
1183 // Find the Instrumented BB and set the value. Return false on error.
1184 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1185
1186 // Set the edge counter value for the unknown edge -- there should be only
1187 // one unknown edge.
1188 void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1189
1190 // Set the hot/cold inline hints based on the count values.
1191 // FIXME: This function should be removed once the functionality in
1192 // the inliner is implemented.
markFunctionAttributes(uint64_t EntryCount,uint64_t MaxCount)1193 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1194 if (PSI->isHotCount(EntryCount))
1195 FreqAttr = FFA_Hot;
1196 else if (PSI->isColdCount(MaxCount))
1197 FreqAttr = FFA_Cold;
1198 }
1199 };
1200
1201 } // end anonymous namespace
1202
1203 /// Set up InEdges/OutEdges for all BBs in the MST.
setupBBInfoEdges(const FuncPGOInstrumentation<PGOUseEdge,PGOUseBBInfo> & FuncInfo)1204 static void setupBBInfoEdges(
1205 const FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> &FuncInfo) {
1206 // This is not required when there is block coverage inference.
1207 if (FuncInfo.BCI)
1208 return;
1209 for (const auto &E : FuncInfo.MST.allEdges()) {
1210 if (E->Removed)
1211 continue;
1212 const BasicBlock *SrcBB = E->SrcBB;
1213 const BasicBlock *DestBB = E->DestBB;
1214 PGOUseBBInfo &SrcInfo = FuncInfo.getBBInfo(SrcBB);
1215 PGOUseBBInfo &DestInfo = FuncInfo.getBBInfo(DestBB);
1216 SrcInfo.addOutEdge(E.get());
1217 DestInfo.addInEdge(E.get());
1218 }
1219 }
1220
1221 // Visit all the edges and assign the count value for the instrumented
1222 // edges and the BB. Return false on error.
setInstrumentedCounts(const std::vector<uint64_t> & CountFromProfile)1223 bool PGOUseFunc::setInstrumentedCounts(
1224 const std::vector<uint64_t> &CountFromProfile) {
1225
1226 std::vector<BasicBlock *> InstrumentBBs;
1227 FuncInfo.getInstrumentBBs(InstrumentBBs);
1228
1229 setupBBInfoEdges(FuncInfo);
1230
1231 unsigned NumCounters =
1232 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1233 // The number of counters here should match the number of counters
1234 // in profile. Return if they mismatch.
1235 if (NumCounters != CountFromProfile.size()) {
1236 return false;
1237 }
1238 auto *FuncEntry = &*F.begin();
1239
1240 // Set the profile count to the Instrumented BBs.
1241 uint32_t I = 0;
1242 for (BasicBlock *InstrBB : InstrumentBBs) {
1243 uint64_t CountValue = CountFromProfile[I++];
1244 PGOUseBBInfo &Info = getBBInfo(InstrBB);
1245 // If we reach here, we know that we have some nonzero count
1246 // values in this function. The entry count should not be 0.
1247 // Fix it if necessary.
1248 if (InstrBB == FuncEntry && CountValue == 0)
1249 CountValue = 1;
1250 Info.setBBInfoCount(CountValue);
1251 }
1252 ProfileCountSize = CountFromProfile.size();
1253 CountPosition = I;
1254
1255 // Set the edge count and update the count of unknown edges for BBs.
1256 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1257 E->setEdgeCount(Value);
1258 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1259 this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1260 };
1261
1262 // Set the profile count the Instrumented edges. There are BBs that not in
1263 // MST but not instrumented. Need to set the edge count value so that we can
1264 // populate the profile counts later.
1265 for (const auto &E : FuncInfo.MST.allEdges()) {
1266 if (E->Removed || E->InMST)
1267 continue;
1268 const BasicBlock *SrcBB = E->SrcBB;
1269 PGOUseBBInfo &SrcInfo = getBBInfo(SrcBB);
1270
1271 // If only one out-edge, the edge profile count should be the same as BB
1272 // profile count.
1273 if (SrcInfo.Count && SrcInfo.OutEdges.size() == 1)
1274 setEdgeCount(E.get(), *SrcInfo.Count);
1275 else {
1276 const BasicBlock *DestBB = E->DestBB;
1277 PGOUseBBInfo &DestInfo = getBBInfo(DestBB);
1278 // If only one in-edge, the edge profile count should be the same as BB
1279 // profile count.
1280 if (DestInfo.Count && DestInfo.InEdges.size() == 1)
1281 setEdgeCount(E.get(), *DestInfo.Count);
1282 }
1283 if (E->Count)
1284 continue;
1285 // E's count should have been set from profile. If not, this meenas E skips
1286 // the instrumentation. We set the count to 0.
1287 setEdgeCount(E.get(), 0);
1288 }
1289 return true;
1290 }
1291
1292 // Set the count value for the unknown edge. There should be one and only one
1293 // unknown edge in Edges vector.
setEdgeCount(DirectEdges & Edges,uint64_t Value)1294 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1295 for (auto &E : Edges) {
1296 if (E->Count)
1297 continue;
1298 E->setEdgeCount(Value);
1299
1300 getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1301 getBBInfo(E->DestBB).UnknownCountInEdge--;
1302 return;
1303 }
1304 llvm_unreachable("Cannot find the unknown count edge");
1305 }
1306
1307 // Emit function metadata indicating PGO profile mismatch.
annotateFunctionWithHashMismatch(Function & F,LLVMContext & ctx)1308 static void annotateFunctionWithHashMismatch(Function &F, LLVMContext &ctx) {
1309 const char MetadataName[] = "instr_prof_hash_mismatch";
1310 SmallVector<Metadata *, 2> Names;
1311 // If this metadata already exists, ignore.
1312 auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1313 if (Existing) {
1314 MDTuple *Tuple = cast<MDTuple>(Existing);
1315 for (const auto &N : Tuple->operands()) {
1316 if (N.equalsStr(MetadataName))
1317 return;
1318 Names.push_back(N.get());
1319 }
1320 }
1321
1322 MDBuilder MDB(ctx);
1323 Names.push_back(MDB.createString(MetadataName));
1324 MDNode *MD = MDTuple::get(ctx, Names);
1325 F.setMetadata(LLVMContext::MD_annotation, MD);
1326 }
1327
handleInstrProfError(Error Err,uint64_t MismatchedFuncSum)1328 void PGOUseFunc::handleInstrProfError(Error Err, uint64_t MismatchedFuncSum) {
1329 handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
1330 auto &Ctx = M->getContext();
1331 auto Err = IPE.get();
1332 bool SkipWarning = false;
1333 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1334 << FuncInfo.FuncName << ": ");
1335 if (Err == instrprof_error::unknown_function) {
1336 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1337 SkipWarning = !PGOWarnMissing;
1338 LLVM_DEBUG(dbgs() << "unknown function");
1339 } else if (Err == instrprof_error::hash_mismatch ||
1340 Err == instrprof_error::malformed) {
1341 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1342 SkipWarning =
1343 NoPGOWarnMismatch ||
1344 (NoPGOWarnMismatchComdatWeak &&
1345 (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
1346 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1347 LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
1348 << " skip=" << SkipWarning << ")");
1349 // Emit function metadata indicating PGO profile mismatch.
1350 annotateFunctionWithHashMismatch(F, M->getContext());
1351 }
1352
1353 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1354 if (SkipWarning)
1355 return;
1356
1357 std::string Msg =
1358 IPE.message() + std::string(" ") + F.getName().str() +
1359 std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
1360 std::string(" up to ") + std::to_string(MismatchedFuncSum) +
1361 std::string(" count discarded");
1362
1363 Ctx.diagnose(
1364 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1365 });
1366 }
1367
1368 // Read the profile from ProfileFileName and assign the value to the
1369 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1370 // Return true if the profile are successfully read, and false on errors.
readCounters(IndexedInstrProfReader * PGOReader,bool & AllZeros,InstrProfRecord::CountPseudoKind & PseudoKind)1371 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1372 InstrProfRecord::CountPseudoKind &PseudoKind) {
1373 auto &Ctx = M->getContext();
1374 uint64_t MismatchedFuncSum = 0;
1375 Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1376 FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1377 &MismatchedFuncSum);
1378 if (Error E = Result.takeError()) {
1379 handleInstrProfError(std::move(E), MismatchedFuncSum);
1380 return false;
1381 }
1382 ProfileRecord = std::move(Result.get());
1383 PseudoKind = ProfileRecord.getCountPseudoKind();
1384 if (PseudoKind != InstrProfRecord::NotPseudo) {
1385 return true;
1386 }
1387 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1388
1389 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1390 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1391
1392 uint64_t ValueSum = 0;
1393 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1394 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
1395 ValueSum += CountFromProfile[I];
1396 }
1397 AllZeros = (ValueSum == 0);
1398
1399 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
1400
1401 getBBInfo(nullptr).UnknownCountOutEdge = 2;
1402 getBBInfo(nullptr).UnknownCountInEdge = 2;
1403
1404 if (!setInstrumentedCounts(CountFromProfile)) {
1405 LLVM_DEBUG(
1406 dbgs() << "Inconsistent number of counts, skipping this function");
1407 Ctx.diagnose(DiagnosticInfoPGOProfile(
1408 M->getName().data(),
1409 Twine("Inconsistent number of counts in ") + F.getName().str() +
1410 Twine(": the profile may be stale or there is a function name "
1411 "collision."),
1412 DS_Warning));
1413 return false;
1414 }
1415 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1416 return true;
1417 }
1418
populateCoverage(IndexedInstrProfReader * PGOReader)1419 void PGOUseFunc::populateCoverage(IndexedInstrProfReader *PGOReader) {
1420 uint64_t MismatchedFuncSum = 0;
1421 Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1422 FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1423 &MismatchedFuncSum);
1424 if (auto Err = Result.takeError()) {
1425 handleInstrProfError(std::move(Err), MismatchedFuncSum);
1426 return;
1427 }
1428 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1429
1430 std::vector<uint64_t> &CountsFromProfile = Result.get().Counts;
1431 DenseMap<const BasicBlock *, bool> Coverage;
1432 unsigned Index = 0;
1433 for (auto &BB : F)
1434 if (FuncInfo.BCI->shouldInstrumentBlock(BB))
1435 Coverage[&BB] = (CountsFromProfile[Index++] != 0);
1436 assert(Index == CountsFromProfile.size());
1437
1438 // For each B in InverseDependencies[A], if A is covered then B is covered.
1439 DenseMap<const BasicBlock *, DenseSet<const BasicBlock *>>
1440 InverseDependencies;
1441 for (auto &BB : F) {
1442 for (auto *Dep : FuncInfo.BCI->getDependencies(BB)) {
1443 // If Dep is covered then BB is covered.
1444 InverseDependencies[Dep].insert(&BB);
1445 }
1446 }
1447
1448 // Infer coverage of the non-instrumented blocks using a flood-fill algorithm.
1449 std::stack<const BasicBlock *> CoveredBlocksToProcess;
1450 for (auto &[BB, IsCovered] : Coverage)
1451 if (IsCovered)
1452 CoveredBlocksToProcess.push(BB);
1453
1454 while (!CoveredBlocksToProcess.empty()) {
1455 auto *CoveredBlock = CoveredBlocksToProcess.top();
1456 assert(Coverage[CoveredBlock]);
1457 CoveredBlocksToProcess.pop();
1458 for (auto *BB : InverseDependencies[CoveredBlock]) {
1459 // If CoveredBlock is covered then BB is covered.
1460 if (Coverage[BB])
1461 continue;
1462 Coverage[BB] = true;
1463 CoveredBlocksToProcess.push(BB);
1464 }
1465 }
1466
1467 // Annotate block coverage.
1468 MDBuilder MDB(F.getContext());
1469 // We set the entry count to 10000 if the entry block is covered so that BFI
1470 // can propagate a fraction of this count to the other covered blocks.
1471 F.setEntryCount(Coverage[&F.getEntryBlock()] ? 10000 : 0);
1472 for (auto &BB : F) {
1473 // For a block A and its successor B, we set the edge weight as follows:
1474 // If A is covered and B is covered, set weight=1.
1475 // If A is covered and B is uncovered, set weight=0.
1476 // If A is uncovered, set weight=1.
1477 // This setup will allow BFI to give nonzero profile counts to only covered
1478 // blocks.
1479 SmallVector<uint32_t, 4> Weights;
1480 for (auto *Succ : successors(&BB))
1481 Weights.push_back((Coverage[Succ] || !Coverage[&BB]) ? 1 : 0);
1482 if (Weights.size() >= 2)
1483 llvm::setBranchWeights(*BB.getTerminator(), Weights,
1484 /*IsExpected=*/false);
1485 }
1486
1487 unsigned NumCorruptCoverage = 0;
1488 DominatorTree DT(F);
1489 LoopInfo LI(DT);
1490 BranchProbabilityInfo BPI(F, LI);
1491 BlockFrequencyInfo BFI(F, BPI, LI);
1492 auto IsBlockDead = [&](const BasicBlock &BB) -> std::optional<bool> {
1493 if (auto C = BFI.getBlockProfileCount(&BB))
1494 return C == 0;
1495 return {};
1496 };
1497 LLVM_DEBUG(dbgs() << "Block Coverage: (Instrumented=*, Covered=X)\n");
1498 for (auto &BB : F) {
1499 LLVM_DEBUG(dbgs() << (FuncInfo.BCI->shouldInstrumentBlock(BB) ? "* " : " ")
1500 << (Coverage[&BB] ? "X " : " ") << " " << BB.getName()
1501 << "\n");
1502 // In some cases it is possible to find a covered block that has no covered
1503 // successors, e.g., when a block calls a function that may call exit(). In
1504 // those cases, BFI could find its successor to be covered while BCI could
1505 // find its successor to be dead.
1506 if (Coverage[&BB] == IsBlockDead(BB).value_or(false)) {
1507 LLVM_DEBUG(
1508 dbgs() << "Found inconsistent block covearge for " << BB.getName()
1509 << ": BCI=" << (Coverage[&BB] ? "Covered" : "Dead") << " BFI="
1510 << (IsBlockDead(BB).value() ? "Dead" : "Covered") << "\n");
1511 ++NumCorruptCoverage;
1512 }
1513 if (Coverage[&BB])
1514 ++NumCoveredBlocks;
1515 }
1516 if (PGOVerifyBFI && NumCorruptCoverage) {
1517 auto &Ctx = M->getContext();
1518 Ctx.diagnose(DiagnosticInfoPGOProfile(
1519 M->getName().data(),
1520 Twine("Found inconsistent block coverage for function ") + F.getName() +
1521 " in " + Twine(NumCorruptCoverage) + " blocks.",
1522 DS_Warning));
1523 }
1524 if (PGOViewBlockCoverageGraph)
1525 FuncInfo.BCI->viewBlockCoverageGraph(&Coverage);
1526 }
1527
1528 // Populate the counters from instrumented BBs to all BBs.
1529 // In the end of this operation, all BBs should have a valid count value.
populateCounters()1530 void PGOUseFunc::populateCounters() {
1531 bool Changes = true;
1532 unsigned NumPasses = 0;
1533 while (Changes) {
1534 NumPasses++;
1535 Changes = false;
1536
1537 // For efficient traversal, it's better to start from the end as most
1538 // of the instrumented edges are at the end.
1539 for (auto &BB : reverse(F)) {
1540 PGOUseBBInfo *UseBBInfo = findBBInfo(&BB);
1541 if (UseBBInfo == nullptr)
1542 continue;
1543 if (!UseBBInfo->Count) {
1544 if (UseBBInfo->UnknownCountOutEdge == 0) {
1545 UseBBInfo->Count = sumEdgeCount(UseBBInfo->OutEdges);
1546 Changes = true;
1547 } else if (UseBBInfo->UnknownCountInEdge == 0) {
1548 UseBBInfo->Count = sumEdgeCount(UseBBInfo->InEdges);
1549 Changes = true;
1550 }
1551 }
1552 if (UseBBInfo->Count) {
1553 if (UseBBInfo->UnknownCountOutEdge == 1) {
1554 uint64_t Total = 0;
1555 uint64_t OutSum = sumEdgeCount(UseBBInfo->OutEdges);
1556 // If the one of the successor block can early terminate (no-return),
1557 // we can end up with situation where out edge sum count is larger as
1558 // the source BB's count is collected by a post-dominated block.
1559 if (*UseBBInfo->Count > OutSum)
1560 Total = *UseBBInfo->Count - OutSum;
1561 setEdgeCount(UseBBInfo->OutEdges, Total);
1562 Changes = true;
1563 }
1564 if (UseBBInfo->UnknownCountInEdge == 1) {
1565 uint64_t Total = 0;
1566 uint64_t InSum = sumEdgeCount(UseBBInfo->InEdges);
1567 if (*UseBBInfo->Count > InSum)
1568 Total = *UseBBInfo->Count - InSum;
1569 setEdgeCount(UseBBInfo->InEdges, Total);
1570 Changes = true;
1571 }
1572 }
1573 }
1574 }
1575
1576 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1577 (void)NumPasses;
1578 #ifndef NDEBUG
1579 // Assert every BB has a valid counter.
1580 for (auto &BB : F) {
1581 auto BI = findBBInfo(&BB);
1582 if (BI == nullptr)
1583 continue;
1584 assert(BI->Count && "BB count is not valid");
1585 }
1586 #endif
1587 uint64_t FuncEntryCount = *getBBInfo(&*F.begin()).Count;
1588 uint64_t FuncMaxCount = FuncEntryCount;
1589 for (auto &BB : F) {
1590 auto BI = findBBInfo(&BB);
1591 if (BI == nullptr)
1592 continue;
1593 FuncMaxCount = std::max(FuncMaxCount, *BI->Count);
1594 }
1595
1596 // Fix the obviously inconsistent entry count.
1597 if (FuncMaxCount > 0 && FuncEntryCount == 0)
1598 FuncEntryCount = 1;
1599 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1600 markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1601
1602 // Now annotate select instructions
1603 FuncInfo.SIVisitor.annotateSelects(this, &CountPosition);
1604 assert(CountPosition == ProfileCountSize);
1605
1606 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1607 }
1608
1609 // Assign the scaled count values to the BB with multiple out edges.
setBranchWeights()1610 void PGOUseFunc::setBranchWeights() {
1611 // Generate MD_prof metadata for every branch instruction.
1612 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1613 << " IsCS=" << IsCS << "\n");
1614 for (auto &BB : F) {
1615 Instruction *TI = BB.getTerminator();
1616 if (TI->getNumSuccessors() < 2)
1617 continue;
1618 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1619 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI) ||
1620 isa<CallBrInst>(TI)))
1621 continue;
1622
1623 const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1624 if (!*BBCountInfo.Count)
1625 continue;
1626
1627 // We have a non-zero Branch BB.
1628
1629 // SuccessorCount can be greater than OutEdgesCount, because
1630 // removed edges don't appear in OutEdges.
1631 unsigned OutEdgesCount = BBCountInfo.OutEdges.size();
1632 unsigned SuccessorCount = BB.getTerminator()->getNumSuccessors();
1633 assert(OutEdgesCount <= SuccessorCount);
1634
1635 SmallVector<uint64_t, 2> EdgeCounts(SuccessorCount, 0);
1636 uint64_t MaxCount = 0;
1637 for (unsigned It = 0; It < OutEdgesCount; It++) {
1638 const PGOUseEdge *E = BBCountInfo.OutEdges[It];
1639 const BasicBlock *SrcBB = E->SrcBB;
1640 const BasicBlock *DestBB = E->DestBB;
1641 if (DestBB == nullptr)
1642 continue;
1643 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1644 uint64_t EdgeCount = *E->Count;
1645 if (EdgeCount > MaxCount)
1646 MaxCount = EdgeCount;
1647 EdgeCounts[SuccNum] = EdgeCount;
1648 }
1649
1650 if (MaxCount)
1651 setProfMetadata(M, TI, EdgeCounts, MaxCount);
1652 else {
1653 // A zero MaxCount can come about when we have a BB with a positive
1654 // count, and whose successor blocks all have 0 count. This can happen
1655 // when there is no exit block and the code exits via a noreturn function.
1656 auto &Ctx = M->getContext();
1657 Ctx.diagnose(DiagnosticInfoPGOProfile(
1658 M->getName().data(),
1659 Twine("Profile in ") + F.getName().str() +
1660 Twine(" partially ignored") +
1661 Twine(", possibly due to the lack of a return path."),
1662 DS_Warning));
1663 }
1664 }
1665 }
1666
isIndirectBrTarget(BasicBlock * BB)1667 static bool isIndirectBrTarget(BasicBlock *BB) {
1668 for (BasicBlock *Pred : predecessors(BB)) {
1669 if (isa<IndirectBrInst>(Pred->getTerminator()))
1670 return true;
1671 }
1672 return false;
1673 }
1674
annotateIrrLoopHeaderWeights()1675 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1676 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1677 // Find irr loop headers
1678 for (auto &BB : F) {
1679 // As a heuristic also annotate indrectbr targets as they have a high chance
1680 // to become an irreducible loop header after the indirectbr tail
1681 // duplication.
1682 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1683 Instruction *TI = BB.getTerminator();
1684 const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1685 setIrrLoopHeaderMetadata(M, TI, *BBCountInfo.Count);
1686 }
1687 }
1688 }
1689
instrumentOneSelectInst(SelectInst & SI)1690 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1691 Module *M = F.getParent();
1692 IRBuilder<> Builder(&SI);
1693 Type *Int64Ty = Builder.getInt64Ty();
1694 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1695 Builder.CreateCall(
1696 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1697 {FuncNameVar, Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1698 Builder.getInt32(*CurCtrIdx), Step});
1699 ++(*CurCtrIdx);
1700 }
1701
annotateOneSelectInst(SelectInst & SI)1702 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1703 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1704 assert(*CurCtrIdx < CountFromProfile.size() &&
1705 "Out of bound access of counters");
1706 uint64_t SCounts[2];
1707 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1708 ++(*CurCtrIdx);
1709 uint64_t TotalCount = 0;
1710 auto BI = UseFunc->findBBInfo(SI.getParent());
1711 if (BI != nullptr)
1712 TotalCount = *BI->Count;
1713 // False Count
1714 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1715 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1716 if (MaxCount)
1717 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1718 }
1719
visitSelectInst(SelectInst & SI)1720 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1721 if (!PGOInstrSelect || PGOFunctionEntryCoverage || HasSingleByteCoverage)
1722 return;
1723 // FIXME: do not handle this yet.
1724 if (SI.getCondition()->getType()->isVectorTy())
1725 return;
1726
1727 switch (Mode) {
1728 case VM_counting:
1729 NSIs++;
1730 return;
1731 case VM_instrument:
1732 instrumentOneSelectInst(SI);
1733 return;
1734 case VM_annotate:
1735 annotateOneSelectInst(SI);
1736 return;
1737 }
1738
1739 llvm_unreachable("Unknown visiting mode");
1740 }
1741
getMaxNumAnnotations(InstrProfValueKind ValueProfKind)1742 static uint32_t getMaxNumAnnotations(InstrProfValueKind ValueProfKind) {
1743 if (ValueProfKind == IPVK_MemOPSize)
1744 return MaxNumMemOPAnnotations;
1745 if (ValueProfKind == llvm::IPVK_VTableTarget)
1746 return MaxNumVTableAnnotations;
1747 return MaxNumAnnotations;
1748 }
1749
1750 // Traverse all valuesites and annotate the instructions for all value kind.
annotateValueSites()1751 void PGOUseFunc::annotateValueSites() {
1752 if (isValueProfilingDisabled())
1753 return;
1754
1755 // Create the PGOFuncName meta data.
1756 createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1757
1758 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1759 annotateValueSites(Kind);
1760 }
1761
1762 // Annotate the instructions for a specific value kind.
annotateValueSites(uint32_t Kind)1763 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1764 assert(Kind <= IPVK_Last);
1765 unsigned ValueSiteIndex = 0;
1766
1767 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1768
1769 // Since there isn't a reliable or fast way for profile reader to tell if a
1770 // profile is generated with `-enable-vtable-value-profiling` on, we run the
1771 // value profile collector over the function IR to find the instrumented sites
1772 // iff function profile records shows the number of instrumented vtable sites
1773 // is not zero. Function cfg already takes the number of instrumented
1774 // indirect call sites into account so it doesn't hash the number of
1775 // instrumented vtables; as a side effect it makes it easier to enable
1776 // profiling and profile use in two steps if needed.
1777 // TODO: Remove this if/when -enable-vtable-value-profiling is on by default.
1778 if (NumValueSites > 0 && Kind == IPVK_VTableTarget &&
1779 NumValueSites != FuncInfo.ValueSites[IPVK_VTableTarget].size() &&
1780 MaxNumVTableAnnotations != 0)
1781 FuncInfo.ValueSites[IPVK_VTableTarget] = VPC.get(IPVK_VTableTarget);
1782 auto &ValueSites = FuncInfo.ValueSites[Kind];
1783 if (NumValueSites != ValueSites.size()) {
1784 auto &Ctx = M->getContext();
1785 Ctx.diagnose(DiagnosticInfoPGOProfile(
1786 M->getName().data(),
1787 Twine("Inconsistent number of value sites for ") +
1788 Twine(ValueProfKindDescr[Kind]) + Twine(" profiling in \"") +
1789 F.getName().str() +
1790 Twine("\", possibly due to the use of a stale profile."),
1791 DS_Warning));
1792 return;
1793 }
1794
1795 for (VPCandidateInfo &I : ValueSites) {
1796 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1797 << "): Index = " << ValueSiteIndex << " out of "
1798 << NumValueSites << "\n");
1799 annotateValueSite(
1800 *M, *I.AnnotatedInst, ProfileRecord,
1801 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1802 getMaxNumAnnotations(static_cast<InstrProfValueKind>(Kind)));
1803 ValueSiteIndex++;
1804 }
1805 }
1806
1807 // Collect the set of members for each Comdat in module M and store
1808 // in ComdatMembers.
collectComdatMembers(Module & M,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers)1809 static void collectComdatMembers(
1810 Module &M,
1811 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1812 if (!DoComdatRenaming)
1813 return;
1814 for (Function &F : M)
1815 if (Comdat *C = F.getComdat())
1816 ComdatMembers.insert(std::make_pair(C, &F));
1817 for (GlobalVariable &GV : M.globals())
1818 if (Comdat *C = GV.getComdat())
1819 ComdatMembers.insert(std::make_pair(C, &GV));
1820 for (GlobalAlias &GA : M.aliases())
1821 if (Comdat *C = GA.getComdat())
1822 ComdatMembers.insert(std::make_pair(C, &GA));
1823 }
1824
1825 // Return true if we should not find instrumentation data for this function
skipPGOUse(const Function & F)1826 static bool skipPGOUse(const Function &F) {
1827 if (F.isDeclaration())
1828 return true;
1829 // If there are too many critical edges, PGO might cause
1830 // compiler time problem. Skip PGO if the number of
1831 // critical edges execeed the threshold.
1832 unsigned NumCriticalEdges = 0;
1833 for (auto &BB : F) {
1834 const Instruction *TI = BB.getTerminator();
1835 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
1836 if (isCriticalEdge(TI, I))
1837 NumCriticalEdges++;
1838 }
1839 }
1840 if (NumCriticalEdges > PGOFunctionCriticalEdgeThreshold) {
1841 LLVM_DEBUG(dbgs() << "In func " << F.getName()
1842 << ", NumCriticalEdges=" << NumCriticalEdges
1843 << " exceed the threshold. Skip PGO.\n");
1844 return true;
1845 }
1846 return false;
1847 }
1848
1849 // Return true if we should not instrument this function
skipPGOGen(const Function & F)1850 static bool skipPGOGen(const Function &F) {
1851 if (skipPGOUse(F))
1852 return true;
1853 if (F.hasFnAttribute(llvm::Attribute::Naked))
1854 return true;
1855 if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1856 return true;
1857 if (F.hasFnAttribute(llvm::Attribute::SkipProfile))
1858 return true;
1859 if (F.getInstructionCount() < PGOFunctionSizeThreshold)
1860 return true;
1861 return false;
1862 }
1863
InstrumentAllFunctions(Module & M,function_ref<TargetLibraryInfo & (Function &)> LookupTLI,function_ref<BranchProbabilityInfo * (Function &)> LookupBPI,function_ref<BlockFrequencyInfo * (Function &)> LookupBFI,bool IsCS)1864 static bool InstrumentAllFunctions(
1865 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1866 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1867 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1868 // For the context-sensitve instrumentation, we should have a separated pass
1869 // (before LTO/ThinLTO linking) to create these variables.
1870 if (!IsCS && !PGOCtxProfLoweringPass::isContextualIRPGOEnabled())
1871 createIRLevelProfileFlagVar(M, /*IsCS=*/false);
1872
1873 Triple TT(M.getTargetTriple());
1874 LLVMContext &Ctx = M.getContext();
1875 if (!TT.isOSBinFormatELF() && EnableVTableValueProfiling)
1876 Ctx.diagnose(DiagnosticInfoPGOProfile(
1877 M.getName().data(),
1878 Twine("VTable value profiling is presently not "
1879 "supported for non-ELF object formats"),
1880 DS_Warning));
1881 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1882 collectComdatMembers(M, ComdatMembers);
1883
1884 for (auto &F : M) {
1885 if (skipPGOGen(F))
1886 continue;
1887 auto &TLI = LookupTLI(F);
1888 auto *BPI = LookupBPI(F);
1889 auto *BFI = LookupBFI(F);
1890 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1891 }
1892 return true;
1893 }
1894
1895 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & MAM)1896 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &MAM) {
1897 createProfileFileNameVar(M, CSInstrName);
1898 // The variable in a comdat may be discarded by LTO. Ensure the declaration
1899 // will be retained.
1900 appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true));
1901 if (ProfileSampling)
1902 createProfileSamplingVar(M);
1903 PreservedAnalyses PA;
1904 PA.preserve<FunctionAnalysisManagerModuleProxy>();
1905 PA.preserveSet<AllAnalysesOn<Function>>();
1906 return PA;
1907 }
1908
run(Module & M,ModuleAnalysisManager & MAM)1909 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1910 ModuleAnalysisManager &MAM) {
1911 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1912 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1913 return FAM.getResult<TargetLibraryAnalysis>(F);
1914 };
1915 auto LookupBPI = [&FAM](Function &F) {
1916 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1917 };
1918 auto LookupBFI = [&FAM](Function &F) {
1919 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1920 };
1921
1922 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1923 return PreservedAnalyses::all();
1924
1925 return PreservedAnalyses::none();
1926 }
1927
1928 // Using the ratio b/w sums of profile count values and BFI count values to
1929 // adjust the func entry count.
fixFuncEntryCount(PGOUseFunc & Func,LoopInfo & LI,BranchProbabilityInfo & NBPI)1930 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1931 BranchProbabilityInfo &NBPI) {
1932 Function &F = Func.getFunc();
1933 BlockFrequencyInfo NBFI(F, NBPI, LI);
1934 #ifndef NDEBUG
1935 auto BFIEntryCount = F.getEntryCount();
1936 assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) &&
1937 "Invalid BFI Entrycount");
1938 #endif
1939 auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1940 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1941 for (auto &BBI : F) {
1942 uint64_t CountValue = 0;
1943 uint64_t BFICountValue = 0;
1944 if (!Func.findBBInfo(&BBI))
1945 continue;
1946 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1947 CountValue = *Func.getBBInfo(&BBI).Count;
1948 BFICountValue = *BFICount;
1949 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1950 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1951 }
1952 if (SumCount.isZero())
1953 return;
1954
1955 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1956 "Incorrect sum of BFI counts");
1957 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1958 return;
1959 double Scale = (SumCount / SumBFICount).convertToDouble();
1960 if (Scale < 1.001 && Scale > 0.999)
1961 return;
1962
1963 uint64_t FuncEntryCount = *Func.getBBInfo(&*F.begin()).Count;
1964 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1965 if (NewEntryCount == 0)
1966 NewEntryCount = 1;
1967 if (NewEntryCount != FuncEntryCount) {
1968 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1969 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1970 << ", entry_count " << FuncEntryCount << " --> "
1971 << NewEntryCount << "\n");
1972 }
1973 }
1974
1975 // Compare the profile count values with BFI count values, and print out
1976 // the non-matching ones.
verifyFuncBFI(PGOUseFunc & Func,LoopInfo & LI,BranchProbabilityInfo & NBPI,uint64_t HotCountThreshold,uint64_t ColdCountThreshold)1977 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1978 BranchProbabilityInfo &NBPI,
1979 uint64_t HotCountThreshold,
1980 uint64_t ColdCountThreshold) {
1981 Function &F = Func.getFunc();
1982 BlockFrequencyInfo NBFI(F, NBPI, LI);
1983 // bool PrintFunc = false;
1984 bool HotBBOnly = PGOVerifyHotBFI;
1985 StringRef Msg;
1986 OptimizationRemarkEmitter ORE(&F);
1987
1988 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1989 for (auto &BBI : F) {
1990 uint64_t CountValue = 0;
1991 uint64_t BFICountValue = 0;
1992
1993 CountValue = Func.getBBInfo(&BBI).Count.value_or(CountValue);
1994
1995 BBNum++;
1996 if (CountValue)
1997 NonZeroBBNum++;
1998 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1999 if (BFICount)
2000 BFICountValue = *BFICount;
2001
2002 if (HotBBOnly) {
2003 bool rawIsHot = CountValue >= HotCountThreshold;
2004 bool BFIIsHot = BFICountValue >= HotCountThreshold;
2005 bool rawIsCold = CountValue <= ColdCountThreshold;
2006 bool ShowCount = false;
2007 if (rawIsHot && !BFIIsHot) {
2008 Msg = "raw-Hot to BFI-nonHot";
2009 ShowCount = true;
2010 } else if (rawIsCold && BFIIsHot) {
2011 Msg = "raw-Cold to BFI-Hot";
2012 ShowCount = true;
2013 }
2014 if (!ShowCount)
2015 continue;
2016 } else {
2017 if ((CountValue < PGOVerifyBFICutoff) &&
2018 (BFICountValue < PGOVerifyBFICutoff))
2019 continue;
2020 uint64_t Diff = (BFICountValue >= CountValue)
2021 ? BFICountValue - CountValue
2022 : CountValue - BFICountValue;
2023 if (Diff <= CountValue / 100 * PGOVerifyBFIRatio)
2024 continue;
2025 }
2026 BBMisMatchNum++;
2027
2028 ORE.emit([&]() {
2029 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
2030 F.getSubprogram(), &BBI);
2031 Remark << "BB " << ore::NV("Block", BBI.getName())
2032 << " Count=" << ore::NV("Count", CountValue)
2033 << " BFI_Count=" << ore::NV("Count", BFICountValue);
2034 if (!Msg.empty())
2035 Remark << " (" << Msg << ")";
2036 return Remark;
2037 });
2038 }
2039 if (BBMisMatchNum)
2040 ORE.emit([&]() {
2041 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
2042 F.getSubprogram(), &F.getEntryBlock())
2043 << "In Func " << ore::NV("Function", F.getName())
2044 << ": Num_of_BB=" << ore::NV("Count", BBNum)
2045 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
2046 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
2047 });
2048 }
2049
annotateAllFunctions(Module & M,StringRef ProfileFileName,StringRef ProfileRemappingFileName,vfs::FileSystem & FS,function_ref<TargetLibraryInfo & (Function &)> LookupTLI,function_ref<BranchProbabilityInfo * (Function &)> LookupBPI,function_ref<BlockFrequencyInfo * (Function &)> LookupBFI,ProfileSummaryInfo * PSI,bool IsCS)2050 static bool annotateAllFunctions(
2051 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
2052 vfs::FileSystem &FS,
2053 function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
2054 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
2055 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
2056 ProfileSummaryInfo *PSI, bool IsCS) {
2057 LLVM_DEBUG(dbgs() << "Read in profile counters: ");
2058 auto &Ctx = M.getContext();
2059 // Read the counter array from file.
2060 auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName, FS,
2061 ProfileRemappingFileName);
2062 if (Error E = ReaderOrErr.takeError()) {
2063 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
2064 Ctx.diagnose(
2065 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
2066 });
2067 return false;
2068 }
2069
2070 std::unique_ptr<IndexedInstrProfReader> PGOReader =
2071 std::move(ReaderOrErr.get());
2072 if (!PGOReader) {
2073 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
2074 StringRef("Cannot get PGOReader")));
2075 return false;
2076 }
2077 if (!PGOReader->hasCSIRLevelProfile() && IsCS)
2078 return false;
2079
2080 // TODO: might need to change the warning once the clang option is finalized.
2081 if (!PGOReader->isIRLevelProfile()) {
2082 Ctx.diagnose(DiagnosticInfoPGOProfile(
2083 ProfileFileName.data(), "Not an IR level instrumentation profile"));
2084 return false;
2085 }
2086 if (PGOReader->functionEntryOnly()) {
2087 Ctx.diagnose(DiagnosticInfoPGOProfile(
2088 ProfileFileName.data(),
2089 "Function entry profiles are not yet supported for optimization"));
2090 return false;
2091 }
2092
2093 if (EnableVTableProfileUse) {
2094 for (GlobalVariable &G : M.globals()) {
2095 if (!G.hasName() || !G.hasMetadata(LLVMContext::MD_type))
2096 continue;
2097
2098 // Create the PGOFuncName meta data.
2099 createPGONameMetadata(G, getPGOName(G, false /* InLTO*/));
2100 }
2101 }
2102
2103 // Add the profile summary (read from the header of the indexed summary) here
2104 // so that we can use it below when reading counters (which checks if the
2105 // function should be marked with a cold or inlinehint attribute).
2106 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
2107 IsCS ? ProfileSummary::PSK_CSInstr
2108 : ProfileSummary::PSK_Instr);
2109 PSI->refresh();
2110
2111 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
2112 collectComdatMembers(M, ComdatMembers);
2113 std::vector<Function *> HotFunctions;
2114 std::vector<Function *> ColdFunctions;
2115
2116 // If the profile marked as always instrument the entry BB, do the
2117 // same. Note this can be overwritten by the internal option in CFGMST.h
2118 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
2119 if (PGOInstrumentEntry.getNumOccurrences() > 0)
2120 InstrumentFuncEntry = PGOInstrumentEntry;
2121 InstrumentFuncEntry |= PGOCtxProfLoweringPass::isContextualIRPGOEnabled();
2122
2123 bool HasSingleByteCoverage = PGOReader->hasSingleByteCoverage();
2124 for (auto &F : M) {
2125 if (skipPGOUse(F))
2126 continue;
2127 auto &TLI = LookupTLI(F);
2128 auto *BPI = LookupBPI(F);
2129 auto *BFI = LookupBFI(F);
2130 if (!HasSingleByteCoverage) {
2131 // Split indirectbr critical edges here before computing the MST rather
2132 // than later in getInstrBB() to avoid invalidating it.
2133 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI,
2134 BFI);
2135 }
2136 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
2137 InstrumentFuncEntry, HasSingleByteCoverage);
2138 if (HasSingleByteCoverage) {
2139 Func.populateCoverage(PGOReader.get());
2140 continue;
2141 }
2142 // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo,
2143 // it means the profile for the function is unrepresentative and this
2144 // function is actually hot / warm. We will reset the function hot / cold
2145 // attribute and drop all the profile counters.
2146 InstrProfRecord::CountPseudoKind PseudoKind = InstrProfRecord::NotPseudo;
2147 bool AllZeros = false;
2148 if (!Func.readCounters(PGOReader.get(), AllZeros, PseudoKind))
2149 continue;
2150 if (AllZeros) {
2151 F.setEntryCount(ProfileCount(0, Function::PCT_Real));
2152 if (Func.getProgramMaxCount() != 0)
2153 ColdFunctions.push_back(&F);
2154 continue;
2155 }
2156 if (PseudoKind != InstrProfRecord::NotPseudo) {
2157 // Clear function attribute cold.
2158 if (F.hasFnAttribute(Attribute::Cold))
2159 F.removeFnAttr(Attribute::Cold);
2160 // Set function attribute as hot.
2161 if (PseudoKind == InstrProfRecord::PseudoHot)
2162 F.addFnAttr(Attribute::Hot);
2163 continue;
2164 }
2165 Func.populateCounters();
2166 Func.setBranchWeights();
2167 Func.annotateValueSites();
2168 Func.annotateIrrLoopHeaderWeights();
2169 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
2170 if (FreqAttr == PGOUseFunc::FFA_Cold)
2171 ColdFunctions.push_back(&F);
2172 else if (FreqAttr == PGOUseFunc::FFA_Hot)
2173 HotFunctions.push_back(&F);
2174 if (PGOViewCounts != PGOVCT_None &&
2175 (ViewBlockFreqFuncName.empty() ||
2176 F.getName() == ViewBlockFreqFuncName)) {
2177 LoopInfo LI{DominatorTree(F)};
2178 std::unique_ptr<BranchProbabilityInfo> NewBPI =
2179 std::make_unique<BranchProbabilityInfo>(F, LI);
2180 std::unique_ptr<BlockFrequencyInfo> NewBFI =
2181 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
2182 if (PGOViewCounts == PGOVCT_Graph)
2183 NewBFI->view();
2184 else if (PGOViewCounts == PGOVCT_Text) {
2185 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
2186 NewBFI->print(dbgs());
2187 }
2188 }
2189 if (PGOViewRawCounts != PGOVCT_None &&
2190 (ViewBlockFreqFuncName.empty() ||
2191 F.getName() == ViewBlockFreqFuncName)) {
2192 if (PGOViewRawCounts == PGOVCT_Graph)
2193 if (ViewBlockFreqFuncName.empty())
2194 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2195 else
2196 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2197 else if (PGOViewRawCounts == PGOVCT_Text) {
2198 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
2199 Func.dumpInfo();
2200 }
2201 }
2202
2203 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
2204 LoopInfo LI{DominatorTree(F)};
2205 BranchProbabilityInfo NBPI(F, LI);
2206
2207 // Fix func entry count.
2208 if (PGOFixEntryCount)
2209 fixFuncEntryCount(Func, LI, NBPI);
2210
2211 // Verify BlockFrequency information.
2212 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
2213 if (PGOVerifyHotBFI) {
2214 HotCountThreshold = PSI->getOrCompHotCountThreshold();
2215 ColdCountThreshold = PSI->getOrCompColdCountThreshold();
2216 }
2217 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
2218 }
2219 }
2220
2221 // Set function hotness attribute from the profile.
2222 // We have to apply these attributes at the end because their presence
2223 // can affect the BranchProbabilityInfo of any callers, resulting in an
2224 // inconsistent MST between prof-gen and prof-use.
2225 for (auto &F : HotFunctions) {
2226 F->addFnAttr(Attribute::InlineHint);
2227 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
2228 << "\n");
2229 }
2230 for (auto &F : ColdFunctions) {
2231 // Only set when there is no Attribute::Hot set by the user. For Hot
2232 // attribute, user's annotation has the precedence over the profile.
2233 if (F->hasFnAttribute(Attribute::Hot)) {
2234 auto &Ctx = M.getContext();
2235 std::string Msg = std::string("Function ") + F->getName().str() +
2236 std::string(" is annotated as a hot function but"
2237 " the profile is cold");
2238 Ctx.diagnose(
2239 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
2240 continue;
2241 }
2242 F->addFnAttr(Attribute::Cold);
2243 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
2244 << "\n");
2245 }
2246 return true;
2247 }
2248
PGOInstrumentationUse(std::string Filename,std::string RemappingFilename,bool IsCS,IntrusiveRefCntPtr<vfs::FileSystem> VFS)2249 PGOInstrumentationUse::PGOInstrumentationUse(
2250 std::string Filename, std::string RemappingFilename, bool IsCS,
2251 IntrusiveRefCntPtr<vfs::FileSystem> VFS)
2252 : ProfileFileName(std::move(Filename)),
2253 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS),
2254 FS(std::move(VFS)) {
2255 if (!PGOTestProfileFile.empty())
2256 ProfileFileName = PGOTestProfileFile;
2257 if (!PGOTestProfileRemappingFile.empty())
2258 ProfileRemappingFileName = PGOTestProfileRemappingFile;
2259 if (!FS)
2260 FS = vfs::getRealFileSystem();
2261 }
2262
run(Module & M,ModuleAnalysisManager & MAM)2263 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
2264 ModuleAnalysisManager &MAM) {
2265
2266 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2267 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2268 return FAM.getResult<TargetLibraryAnalysis>(F);
2269 };
2270 auto LookupBPI = [&FAM](Function &F) {
2271 return &FAM.getResult<BranchProbabilityAnalysis>(F);
2272 };
2273 auto LookupBFI = [&FAM](Function &F) {
2274 return &FAM.getResult<BlockFrequencyAnalysis>(F);
2275 };
2276
2277 auto *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
2278 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, *FS,
2279 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
2280 return PreservedAnalyses::all();
2281
2282 return PreservedAnalyses::none();
2283 }
2284
getSimpleNodeName(const BasicBlock * Node)2285 static std::string getSimpleNodeName(const BasicBlock *Node) {
2286 if (!Node->getName().empty())
2287 return Node->getName().str();
2288
2289 std::string SimpleNodeName;
2290 raw_string_ostream OS(SimpleNodeName);
2291 Node->printAsOperand(OS, false);
2292 return SimpleNodeName;
2293 }
2294
setProfMetadata(Module * M,Instruction * TI,ArrayRef<uint64_t> EdgeCounts,uint64_t MaxCount)2295 void llvm::setProfMetadata(Module *M, Instruction *TI,
2296 ArrayRef<uint64_t> EdgeCounts, uint64_t MaxCount) {
2297 assert(MaxCount > 0 && "Bad max count");
2298 uint64_t Scale = calculateCountScale(MaxCount);
2299 SmallVector<unsigned, 4> Weights;
2300 for (const auto &ECI : EdgeCounts)
2301 Weights.push_back(scaleBranchCount(ECI, Scale));
2302
2303 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
2304 : Weights) {
2305 dbgs() << W << " ";
2306 } dbgs() << "\n";);
2307
2308 misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false);
2309
2310 setBranchWeights(*TI, Weights, /*IsExpected=*/false);
2311 if (EmitBranchProbability) {
2312 std::string BrCondStr = getBranchCondString(TI);
2313 if (BrCondStr.empty())
2314 return;
2315
2316 uint64_t WSum =
2317 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
2318 [](uint64_t w1, uint64_t w2) { return w1 + w2; });
2319 uint64_t TotalCount =
2320 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
2321 [](uint64_t c1, uint64_t c2) { return c1 + c2; });
2322 Scale = calculateCountScale(WSum);
2323 BranchProbability BP(scaleBranchCount(Weights[0], Scale),
2324 scaleBranchCount(WSum, Scale));
2325 std::string BranchProbStr;
2326 raw_string_ostream OS(BranchProbStr);
2327 OS << BP;
2328 OS << " (total count : " << TotalCount << ")";
2329 OS.flush();
2330 Function *F = TI->getParent()->getParent();
2331 OptimizationRemarkEmitter ORE(F);
2332 ORE.emit([&]() {
2333 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2334 << BrCondStr << " is true with probability : " << BranchProbStr;
2335 });
2336 }
2337 }
2338
2339 namespace llvm {
2340
setIrrLoopHeaderMetadata(Module * M,Instruction * TI,uint64_t Count)2341 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2342 MDBuilder MDB(M->getContext());
2343 TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2344 MDB.createIrrLoopHeaderWeight(Count));
2345 }
2346
2347 template <> struct GraphTraits<PGOUseFunc *> {
2348 using NodeRef = const BasicBlock *;
2349 using ChildIteratorType = const_succ_iterator;
2350 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2351
getEntryNodellvm::GraphTraits2352 static NodeRef getEntryNode(const PGOUseFunc *G) {
2353 return &G->getFunc().front();
2354 }
2355
child_beginllvm::GraphTraits2356 static ChildIteratorType child_begin(const NodeRef N) {
2357 return succ_begin(N);
2358 }
2359
child_endllvm::GraphTraits2360 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2361
nodes_beginllvm::GraphTraits2362 static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2363 return nodes_iterator(G->getFunc().begin());
2364 }
2365
nodes_endllvm::GraphTraits2366 static nodes_iterator nodes_end(const PGOUseFunc *G) {
2367 return nodes_iterator(G->getFunc().end());
2368 }
2369 };
2370
2371 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits2372 explicit DOTGraphTraits(bool isSimple = false)
2373 : DefaultDOTGraphTraits(isSimple) {}
2374
getGraphNamellvm::DOTGraphTraits2375 static std::string getGraphName(const PGOUseFunc *G) {
2376 return std::string(G->getFunc().getName());
2377 }
2378
getNodeLabelllvm::DOTGraphTraits2379 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2380 std::string Result;
2381 raw_string_ostream OS(Result);
2382
2383 OS << getSimpleNodeName(Node) << ":\\l";
2384 PGOUseBBInfo *BI = Graph->findBBInfo(Node);
2385 OS << "Count : ";
2386 if (BI && BI->Count)
2387 OS << *BI->Count << "\\l";
2388 else
2389 OS << "Unknown\\l";
2390
2391 if (!PGOInstrSelect)
2392 return Result;
2393
2394 for (const Instruction &I : *Node) {
2395 if (!isa<SelectInst>(&I))
2396 continue;
2397 // Display scaled counts for SELECT instruction:
2398 OS << "SELECT : { T = ";
2399 uint64_t TC, FC;
2400 bool HasProf = extractBranchWeights(I, TC, FC);
2401 if (!HasProf)
2402 OS << "Unknown, F = Unknown }\\l";
2403 else
2404 OS << TC << ", F = " << FC << " }\\l";
2405 }
2406 return Result;
2407 }
2408 };
2409
2410 } // end namespace llvm
2411