1 /*-
2 * Copyright (c) 2005-2009 Jung-uk Kim <jkim@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <stand.h>
28 #include <sys/endian.h>
29
30 #define PTOV(x) ptov(x)
31
32 /*
33 * Detect SMBIOS and export information about the SMBIOS into the
34 * environment.
35 *
36 * System Management BIOS Reference Specification, v2.6 Final
37 * http://www.dmtf.org/standards/published_documents/DSP0134_2.6.0.pdf
38 *
39 * System Management BIOS (SMBIOS) Reference Specification, 3.6.0
40 * https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.6.0.pdf
41 */
42
43 /*
44 * The first quoted paragraph below can also be found in section 2.1.1 SMBIOS
45 * Structure Table Entry Point of System Management BIOS Reference
46 * Specification, v2.6 Final
47 *
48 * (From System Management BIOS (SMBIOS) Reference Specification, 3.6.0)
49 * 5.2.1 SMBIOS 2.1 (32-bit) Entry Point
50 *
51 * "On non-UEFI systems, the 32-bit SMBIOS Entry Point structure, can be
52 * located by application software by searching for the anchor-string on
53 * paragraph (16-byte) boundaries within the physical memory address
54 * range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate
55 * anchor string that is used by some existing DMI browsers.
56 *
57 * On UEFI-based systems, the SMBIOS Entry Point structure can be located by
58 * looking in the EFI Configuration Table for the SMBIOS GUID
59 * (SMBIOS_TABLE_GUID, {EB9D2D31-2D88-11D3-9A16-0090273FC14D}) and using the
60 * associated pointer. See section 4.6 of the UEFI Specification for details.
61 * See section 2.3 of the UEFI Specification for how to report the containing
62 * memory type.
63 *
64 * NOTE While the SMBIOS Major and Minor Versions (offsets 06h and 07h)
65 * currently duplicate the information that is present in the SMBIOS BCD
66 * Revision (offset 1Eh), they provide a path for future growth in this
67 * specification. The BCD Revision, for example, provides only a single digit
68 * for each of the major and minor version numbers."
69 *
70 * 5.2.2 SMBIOS 860 3.0 (64-bit) Entry Point
71 *
72 * "On non-UEFI systems, the 64-bit SMBIOS Entry Point structure can be located
73 * by application software by searching for the anchor-string on paragraph
74 * (16-byte) boundaries within the physical memory address range 000F0000h to
75 * 000FFFFFh.
76 *
77 * On UEFI-based systems, the SMBIOS Entry Point structure can be located by
78 * looking in the EFI Configuration Table for the SMBIOS 3.x GUID
79 * (SMBIOS3_TABLE_GUID, {F2FD1544-9794-4A2C-992E-E5BBCF20E394}) and using the
80 * associated pointer. See section 4.6 of the UEFI Specification for details.
81 * See section 2.3 of the UEFI Specification for how to report the containing
82 * memory type."
83 */
84 #define SMBIOS_START 0xf0000
85 #define SMBIOS_LENGTH 0x10000
86 #define SMBIOS_STEP 0x10
87 #define SMBIOS_SIG "_SM_"
88 #define SMBIOS3_SIG "_SM3_"
89 #define SMBIOS_DMI_SIG "_DMI_"
90 #define SMBIOS_EOT_TYPE 0x7f
91
92 /*
93 * 5.1 General
94 *...
95 * NOTE The Entry Point Structure and all SMBIOS structures assume a
96 * little-endian ordering convention...
97 * ...
98 *
99 * We use memcpy to avoid unaligned access to memory. To normal memory, this is
100 * fine, but the memory we are using might be mmap'd /dev/mem which under Linux
101 * on aarch64 doesn't allow unaligned access. leXdec and friends can't be used
102 * because those can optimize to an unaligned load (which often is fine, but not
103 * for mmap'd /dev/mem which has special memory attributes).
104 */
105 static inline uint8_t
SMBIOS_GET8(const caddr_t base,int off)106 SMBIOS_GET8(const caddr_t base, int off)
107 {
108 return (base[off]);
109 }
110
111 static inline uint16_t
SMBIOS_GET16(const caddr_t base,int off)112 SMBIOS_GET16(const caddr_t base, int off)
113 {
114 uint16_t v;
115
116 memcpy(&v, base + off, sizeof(v));
117 return (le16toh(v));
118 }
119
120 static inline uint32_t
SMBIOS_GET32(const caddr_t base,int off)121 SMBIOS_GET32(const caddr_t base, int off)
122 {
123 uint32_t v;
124
125 memcpy(&v, base + off, sizeof(v));
126 return (le32toh(v));
127 }
128
129 static inline uint64_t
SMBIOS_GET64(const caddr_t base,int off)130 SMBIOS_GET64(const caddr_t base, int off)
131 {
132 uint64_t v;
133
134 memcpy(&v, base + off, sizeof(v));
135 return (le64toh(v));
136 }
137
138 #define SMBIOS_GETLEN(base) SMBIOS_GET8(base, 0x01)
139 #define SMBIOS_GETSTR(base) ((base) + SMBIOS_GETLEN(base))
140
141 struct smbios_attr {
142 int is_64bit_ep;
143 caddr_t addr;
144 size_t length;
145 size_t count;
146 int major;
147 int minor;
148 int ver;
149 const char* bios_vendor;
150 const char* maker;
151 const char* product;
152 uint32_t enabled_memory;
153 uint32_t old_enabled_memory;
154 uint8_t enabled_sockets;
155 uint8_t populated_sockets;
156 };
157
158 static struct smbios_attr smbios;
159
160 static uint8_t
smbios_checksum(const caddr_t addr,const uint8_t len)161 smbios_checksum(const caddr_t addr, const uint8_t len)
162 {
163 uint8_t sum;
164 int i;
165
166 for (sum = 0, i = 0; i < len; i++)
167 sum += SMBIOS_GET8(addr, i);
168 return (sum);
169 }
170
171 static caddr_t
smbios_sigsearch(const caddr_t addr,const uint32_t len)172 smbios_sigsearch(const caddr_t addr, const uint32_t len)
173 {
174 caddr_t cp;
175 caddr_t v2_p = NULL;
176
177 /* Search on 16-byte boundaries. */
178 for (cp = addr; cp < addr + len; cp += SMBIOS_STEP) {
179 /* v3.0, 64-bit Entry point */
180 if (strncmp(cp, SMBIOS3_SIG, sizeof(SMBIOS3_SIG) - 1) == 0 &&
181 /*
182 * The specification only guarantees the presence of the
183 * Structure Table Maximum Size and Address Entry fields at
184 * offsets 0x0c and 0x10 if the Entry Point Revision is not
185 * 0.
186 */
187 SMBIOS_GET8(cp, 0x0a) != 0 &&
188 smbios_checksum(cp, SMBIOS_GET8(cp, 0x06)) == 0) {
189 #ifdef __ILP32__
190 uint64_t end_addr;
191
192 end_addr = SMBIOS_GET64(cp, 0x10) + /* Start address. */
193 SMBIOS_GET32(cp, 0x0c); /* Maximum size. */
194 /* Is the table (or part of it) located above 4G? */
195 if (end_addr >= (uint64_t)1 << 32)
196 /* Can't access it with 32-bit addressing. */
197 continue;
198 #endif
199 smbios.is_64bit_ep = 1;
200 return (cp);
201 }
202
203 /* v2.1, 32-bit Entry point */
204 if (strncmp(cp, SMBIOS_SIG, sizeof(SMBIOS_SIG) - 1) == 0 &&
205 smbios_checksum(cp, SMBIOS_GET8(cp, 0x05)) == 0 &&
206 strncmp(cp + 0x10, SMBIOS_DMI_SIG, 5) == 0 &&
207 smbios_checksum(cp + 0x10, 0x0f) == 0) {
208 /*
209 * Note that we saw this entry point, but don't return
210 * it right now as we favor the 64-bit one if present.
211 */
212 v2_p = cp;
213 }
214 }
215 return (v2_p);
216 }
217
218 static const char*
smbios_getstring(caddr_t addr,const int offset)219 smbios_getstring(caddr_t addr, const int offset)
220 {
221 caddr_t cp;
222 int i, idx;
223
224 idx = SMBIOS_GET8(addr, offset);
225 if (idx != 0) {
226 cp = SMBIOS_GETSTR(addr);
227 for (i = 1; i < idx; i++)
228 cp += strlen(cp) + 1;
229 return cp;
230 }
231 return (NULL);
232 }
233
234 static void
smbios_setenv(const char * name,caddr_t addr,const int offset)235 smbios_setenv(const char *name, caddr_t addr, const int offset)
236 {
237 const char* val;
238
239 val = smbios_getstring(addr, offset);
240 if (val != NULL)
241 setenv(name, val, 1);
242 }
243
244 #ifdef SMBIOS_SERIAL_NUMBERS
245
246 #define UUID_SIZE 16
247 #define UUID_TYPE uint32_t
248 #define UUID_STEP sizeof(UUID_TYPE)
249 #define UUID_ALL_BITS (UUID_SIZE / UUID_STEP)
250 #define UUID_GET(base, off) SMBIOS_GET32(base, off)
251
252 static void
smbios_setuuid(const char * name,const caddr_t addr,const int ver __unused)253 smbios_setuuid(const char *name, const caddr_t addr, const int ver __unused)
254 {
255 char uuid[37];
256 int byteorder, i, ones, zeros;
257 UUID_TYPE n;
258 uint32_t f1;
259 uint16_t f2, f3;
260
261 for (i = 0, ones = 0, zeros = 0; i < UUID_SIZE; i += UUID_STEP) {
262 n = UUID_GET(addr, i) + 1;
263 if (zeros == 0 && n == 0)
264 ones++;
265 else if (ones == 0 && n == 1)
266 zeros++;
267 else
268 break;
269 }
270
271 if (ones != UUID_ALL_BITS && zeros != UUID_ALL_BITS) {
272 /*
273 * 3.3.2.1 System UUID
274 *
275 * "Although RFC 4122 recommends network byte order for all
276 * fields, the PC industry (including the ACPI, UEFI, and
277 * Microsoft specifications) has consistently used
278 * little-endian byte encoding for the first three fields:
279 * time_low, time_mid, time_hi_and_version. The same encoding,
280 * also known as wire format, should also be used for the
281 * SMBIOS representation of the UUID."
282 *
283 * Note: We use network byte order for backward compatibility
284 * unless SMBIOS version is 2.6+ or little-endian is forced.
285 */
286 #if defined(SMBIOS_LITTLE_ENDIAN_UUID)
287 byteorder = LITTLE_ENDIAN;
288 #elif defined(SMBIOS_NETWORK_ENDIAN_UUID)
289 byteorder = BIG_ENDIAN;
290 #else
291 byteorder = ver < 0x0206 ? BIG_ENDIAN : LITTLE_ENDIAN;
292 #endif
293 if (byteorder != LITTLE_ENDIAN) {
294 f1 = ntohl(SMBIOS_GET32(addr, 0));
295 f2 = ntohs(SMBIOS_GET16(addr, 4));
296 f3 = ntohs(SMBIOS_GET16(addr, 6));
297 } else {
298 f1 = le32toh(SMBIOS_GET32(addr, 0));
299 f2 = le16toh(SMBIOS_GET16(addr, 4));
300 f3 = le16toh(SMBIOS_GET16(addr, 6));
301 }
302 sprintf(uuid,
303 "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
304 f1, f2, f3, SMBIOS_GET8(addr, 8), SMBIOS_GET8(addr, 9),
305 SMBIOS_GET8(addr, 10), SMBIOS_GET8(addr, 11),
306 SMBIOS_GET8(addr, 12), SMBIOS_GET8(addr, 13),
307 SMBIOS_GET8(addr, 14), SMBIOS_GET8(addr, 15));
308 setenv(name, uuid, 1);
309 }
310 }
311
312 #undef UUID_SIZE
313 #undef UUID_TYPE
314 #undef UUID_STEP
315 #undef UUID_ALL_BITS
316 #undef UUID_GET
317
318 #endif
319
320 static const char *
smbios_parse_chassis_type(caddr_t addr)321 smbios_parse_chassis_type(caddr_t addr)
322 {
323 int type;
324
325 type = SMBIOS_GET8(addr, 0x5);
326 switch (type) {
327 case 0x1:
328 return ("Other");
329 case 0x2:
330 return ("Unknown");
331 case 0x3:
332 return ("Desktop");
333 case 0x4:
334 return ("Low Profile Desktop");
335 case 0x5:
336 return ("Pizza Box");
337 case 0x6:
338 return ("Mini Tower");
339 case 0x7:
340 return ("Tower");
341 case 0x8:
342 return ("Portable");
343 case 0x9:
344 return ("Laptop");
345 case 0xA:
346 return ("Notebook");
347 case 0xB:
348 return ("Hand Held");
349 case 0xC:
350 return ("Docking Station");
351 case 0xD:
352 return ("All in One");
353 case 0xE:
354 return ("Sub Notebook");
355 case 0xF:
356 return ("Lunch Box");
357 case 0x10:
358 return ("Space-saving");
359 case 0x11:
360 return ("Main Server Chassis");
361 case 0x12:
362 return ("Expansion Chassis");
363 case 0x13:
364 return ("SubChassis");
365 case 0x14:
366 return ("Bus Expansion Chassis");
367 case 0x15:
368 return ("Peripheral Chassis");
369 case 0x16:
370 return ("RAID Chassis");
371 case 0x17:
372 return ("Rack Mount Chassis");
373 case 0x18:
374 return ("Sealed-case PC");
375 case 0x19:
376 return ("Multi-system chassis");
377 case 0x1A:
378 return ("Compact PCI");
379 case 0x1B:
380 return ("Advanced TCA");
381 case 0x1C:
382 return ("Blade");
383 case 0x1D:
384 return ("Blade Enclosure");
385 case 0x1E:
386 return ("Tablet");
387 case 0x1F:
388 return ("Convertible");
389 case 0x20:
390 return ("Detachable");
391 case 0x21:
392 return ("IoT Gateway");
393 case 0x22:
394 return ("Embedded PC");
395 case 0x23:
396 return ("Mini PC");
397 case 0x24:
398 return ("Stick PC");
399 }
400
401 return ("Undefined");
402 }
403
404 static caddr_t
smbios_parse_table(const caddr_t addr)405 smbios_parse_table(const caddr_t addr)
406 {
407 caddr_t cp;
408 int proc, size, osize, type;
409 uint8_t bios_minor, bios_major;
410 char buf[16];
411
412 type = SMBIOS_GET8(addr, 0); /* 3.1.2 Structure Header Format */
413 switch(type) {
414 case 0: /* 3.3.1 BIOS Information (Type 0) */
415 smbios_setenv("smbios.bios.vendor", addr, 0x04);
416 smbios_setenv("smbios.bios.version", addr, 0x05);
417 smbios_setenv("smbios.bios.reldate", addr, 0x08);
418 bios_major = SMBIOS_GET8(addr, 0x14);
419 bios_minor = SMBIOS_GET8(addr, 0x15);
420 if (bios_minor != 0xFF && bios_major != 0xFF) {
421 snprintf(buf, sizeof(buf), "%u.%u",
422 bios_major, bios_minor);
423 setenv("smbios.bios.revision", buf, 1);
424 }
425 break;
426
427 case 1: /* 3.3.2 System Information (Type 1) */
428 smbios_setenv("smbios.system.maker", addr, 0x04);
429 smbios_setenv("smbios.system.product", addr, 0x05);
430 smbios_setenv("smbios.system.version", addr, 0x06);
431 #ifdef SMBIOS_SERIAL_NUMBERS
432 smbios_setenv("smbios.system.serial", addr, 0x07);
433 smbios_setuuid("smbios.system.uuid", addr + 0x08, smbios.ver);
434 #endif
435 if (smbios.major > 2 ||
436 (smbios.major == 2 && smbios.minor >= 4)) {
437 smbios_setenv("smbios.system.sku", addr, 0x19);
438 smbios_setenv("smbios.system.family", addr, 0x1a);
439 }
440 break;
441
442 case 2: /* 3.3.3 Base Board (or Module) Information (Type 2) */
443 smbios_setenv("smbios.planar.maker", addr, 0x04);
444 smbios_setenv("smbios.planar.product", addr, 0x05);
445 smbios_setenv("smbios.planar.version", addr, 0x06);
446 #ifdef SMBIOS_SERIAL_NUMBERS
447 smbios_setenv("smbios.planar.serial", addr, 0x07);
448 smbios_setenv("smbios.planar.tag", addr, 0x08);
449 #endif
450 smbios_setenv("smbios.planar.location", addr, 0x0a);
451 break;
452
453 case 3: /* 3.3.4 System Enclosure or Chassis (Type 3) */
454 smbios_setenv("smbios.chassis.maker", addr, 0x04);
455 setenv("smbios.chassis.type", smbios_parse_chassis_type(addr), 1);
456 smbios_setenv("smbios.chassis.version", addr, 0x06);
457 #ifdef SMBIOS_SERIAL_NUMBERS
458 smbios_setenv("smbios.chassis.serial", addr, 0x07);
459 smbios_setenv("smbios.chassis.tag", addr, 0x08);
460 #endif
461 break;
462
463 case 4: /* 3.3.5 Processor Information (Type 4) */
464 smbios_setenv("smbios.processor.version", addr, 0x10);
465 /*
466 * Offset 18h: Processor Status
467 *
468 * Bit 7 Reserved, must be 0
469 * Bit 6 CPU Socket Populated
470 * 1 - CPU Socket Populated
471 * 0 - CPU Socket Unpopulated
472 * Bit 5:3 Reserved, must be zero
473 * Bit 2:0 CPU Status
474 * 0h - Unknown
475 * 1h - CPU Enabled
476 * 2h - CPU Disabled by User via BIOS Setup
477 * 3h - CPU Disabled by BIOS (POST Error)
478 * 4h - CPU is Idle, waiting to be enabled
479 * 5-6h - Reserved
480 * 7h - Other
481 */
482 proc = SMBIOS_GET8(addr, 0x18);
483 if ((proc & 0x07) == 1)
484 smbios.enabled_sockets++;
485 if ((proc & 0x40) != 0)
486 smbios.populated_sockets++;
487 break;
488
489 case 6: /* 3.3.7 Memory Module Information (Type 6, Obsolete) */
490 /*
491 * Offset 0Ah: Enabled Size
492 *
493 * Bit 7 Bank connection
494 * 1 - Double-bank connection
495 * 0 - Single-bank connection
496 * Bit 6:0 Size (n), where 2**n is the size in MB
497 * 7Dh - Not determinable (Installed Size only)
498 * 7Eh - Module is installed, but no memory
499 * has been enabled
500 * 7Fh - Not installed
501 */
502 osize = SMBIOS_GET8(addr, 0x0a) & 0x7f;
503 if (osize > 0 && osize < 22)
504 smbios.old_enabled_memory += 1 << (osize + 10);
505 break;
506
507 case 17: /* 3.3.18 Memory Device (Type 17) */
508 /*
509 * Offset 0Ch: Size
510 *
511 * Bit 15 Granularity
512 * 1 - Value is in kilobytes units
513 * 0 - Value is in megabytes units
514 * Bit 14:0 Size
515 */
516 size = SMBIOS_GET16(addr, 0x0c);
517 if (size != 0 && size != 0xffff)
518 smbios.enabled_memory += (size & 0x8000) != 0 ?
519 (size & 0x7fff) : (size << 10);
520 break;
521
522 case SMBIOS_EOT_TYPE: /* 3.3.42 End-of-Table (Type 127) */
523 return (NULL);
524
525 default: /* skip other types */
526 break;
527 }
528
529 /* Find structure terminator. */
530 cp = SMBIOS_GETSTR(addr);
531 while (SMBIOS_GET16(cp, 0) != 0)
532 cp++;
533
534 return (cp + 2);
535 }
536
537 static caddr_t
smbios_find_struct(int type)538 smbios_find_struct(int type)
539 {
540 caddr_t dmi;
541 size_t i;
542 caddr_t ep;
543
544 if (smbios.addr == NULL)
545 return (NULL);
546
547 ep = smbios.addr + smbios.length;
548 for (dmi = smbios.addr, i = 0;
549 dmi < ep && i < smbios.count; i++) {
550 const uint8_t seen_type = SMBIOS_GET8(dmi, 0);
551
552 if (seen_type == type)
553 return (dmi);
554 if (seen_type == SMBIOS_EOT_TYPE)
555 /* End of table. */
556 break;
557 /* Find structure terminator. */
558 dmi = SMBIOS_GETSTR(dmi);
559 while (SMBIOS_GET16(dmi, 0) != 0 && dmi < ep)
560 dmi++;
561 /* Skip it. */
562 dmi += 2;
563 }
564
565 return (NULL);
566 }
567
568 static void
smbios_probe(const caddr_t addr)569 smbios_probe(const caddr_t addr)
570 {
571 caddr_t saddr, info;
572 uintptr_t paddr;
573 int maj_off;
574 int min_off;
575
576 /* Search signatures and validate checksums. */
577 saddr = addr != NULL ? smbios_sigsearch(addr, 1) :
578 smbios_sigsearch(PTOV(SMBIOS_START), SMBIOS_LENGTH);
579 if (saddr == NULL)
580 return;
581
582 if (smbios.is_64bit_ep) {
583 /* Structure Table Length */
584 smbios.length = SMBIOS_GET32(saddr, 0x0c);
585 /* Structure Table Address */
586 paddr = SMBIOS_GET64(saddr, 0x10);
587 /* Not present in V3, set it to the maximum value (no limit). */
588 smbios.count = -1;
589 /*
590 * No BCD revision in V3, we'll determine the version thanks to
591 * the major and minor fields below.
592 */
593 smbios.ver = 0;
594 maj_off = 0x07;
595 min_off = 0x08;
596 } else {
597 /* Structure Table Length */
598 smbios.length = SMBIOS_GET16(saddr, 0x16);
599 /* Structure Table Address */
600 paddr = SMBIOS_GET32(saddr, 0x18);
601 /* No. of SMBIOS Structures */
602 smbios.count = SMBIOS_GET16(saddr, 0x1c);
603 /* SMBIOS BCD Revision */
604 smbios.ver = SMBIOS_GET8(saddr, 0x1e);
605 if (smbios.ver != 0) {
606 smbios.major = smbios.ver >> 4;
607 smbios.minor = smbios.ver & 0x0f;
608 if (smbios.major > 9 || smbios.minor > 9)
609 smbios.ver = 0;
610 }
611 maj_off = 0x06;
612 min_off = 0x07;
613 }
614
615
616 if (smbios.ver == 0) {
617 /*
618 * v3 table, or v2 with BCD revision being 0 or bad. Use the
619 * major and minor version fields.
620 */
621 smbios.major = SMBIOS_GET8(saddr, maj_off);
622 smbios.minor = SMBIOS_GET8(saddr, min_off);
623 }
624 smbios.ver = (smbios.major << 8) | smbios.minor;
625 smbios.addr = PTOV(paddr);
626
627 /* Get system information from SMBIOS */
628 info = smbios_find_struct(0x00);
629 if (info != NULL) {
630 smbios.bios_vendor = smbios_getstring(info, 0x04);
631 }
632 info = smbios_find_struct(0x01);
633 if (info != NULL) {
634 smbios.maker = smbios_getstring(info, 0x04);
635 smbios.product = smbios_getstring(info, 0x05);
636 }
637 }
638
639 caddr_t
smbios_detect(const caddr_t addr)640 smbios_detect(const caddr_t addr)
641 {
642 char buf[16];
643 caddr_t dmi;
644 size_t i;
645
646 smbios_probe(addr);
647 if (smbios.addr == NULL)
648 return (NULL);
649
650 for (dmi = smbios.addr, i = 0; dmi != NULL &&
651 dmi < smbios.addr + smbios.length && i < smbios.count; i++)
652 dmi = smbios_parse_table(dmi);
653
654 setenv("smbios.entry_point_type", smbios.is_64bit_ep ?
655 "v3 (64-bit)" : "v2.1 (32-bit)", 1);
656 sprintf(buf, "%d.%d", smbios.major, smbios.minor);
657 setenv("smbios.version", buf, 1);
658 if (smbios.enabled_memory > 0 || smbios.old_enabled_memory > 0) {
659 sprintf(buf, "%u", smbios.enabled_memory > 0 ?
660 smbios.enabled_memory : smbios.old_enabled_memory);
661 setenv("smbios.memory.enabled", buf, 1);
662 }
663 if (smbios.enabled_sockets > 0) {
664 sprintf(buf, "%u", smbios.enabled_sockets);
665 setenv("smbios.socket.enabled", buf, 1);
666 }
667 if (smbios.populated_sockets > 0) {
668 sprintf(buf, "%u", smbios.populated_sockets);
669 setenv("smbios.socket.populated", buf, 1);
670 }
671
672 return (smbios.addr);
673 }
674
675 static int
smbios_match_str(const char * s1,const char * s2)676 smbios_match_str(const char* s1, const char* s2)
677 {
678 return (s1 == NULL || (s2 != NULL && !strcmp(s1, s2)));
679 }
680
681 int
smbios_match(const char * bios_vendor,const char * maker,const char * product)682 smbios_match(const char* bios_vendor, const char* maker,
683 const char* product)
684 {
685 static bool probed = false;
686
687 /*
688 * This routine is called only from non-EFI loaders on determining the
689 * amount of usable memory. In particular, it is so before malloc() can
690 * be used, so before smbios_detect() can be called (as it uses
691 * setenv()). Consequently, since smbios_probe() is not exported, we
692 * ensure it has been called beforehand to fetch into the static
693 * 'smbios' structure the metadata that is to be matched.
694 */
695 if (!probed) {
696 probed = true;
697 smbios_probe(NULL);
698 }
699
700 return (smbios_match_str(bios_vendor, smbios.bios_vendor) &&
701 smbios_match_str(maker, smbios.maker) &&
702 smbios_match_str(product, smbios.product));
703 }
704