1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
9 *
10 * Many thanks to all socketcan devs!
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/clocksource.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/signal.h>
20 #include <linux/timecounter.h>
21 #include <linux/units.h>
22 #include <linux/usb.h>
23 #include <linux/workqueue.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 #include <linux/can/rx-offload.h>
29
30 /* Device specific constants */
31 #define USB_GS_USB_1_VENDOR_ID 0x1d50
32 #define USB_GS_USB_1_PRODUCT_ID 0x606f
33
34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
39
40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
42
43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0
44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30
45
46 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
47 * for timer overflow (will be after ~71 minutes)
48 */
49 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
50 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
51 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
52 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
53
54 /* Device specific constants */
55 enum gs_usb_breq {
56 GS_USB_BREQ_HOST_FORMAT = 0,
57 GS_USB_BREQ_BITTIMING,
58 GS_USB_BREQ_MODE,
59 GS_USB_BREQ_BERR,
60 GS_USB_BREQ_BT_CONST,
61 GS_USB_BREQ_DEVICE_CONFIG,
62 GS_USB_BREQ_TIMESTAMP,
63 GS_USB_BREQ_IDENTIFY,
64 GS_USB_BREQ_GET_USER_ID,
65 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
66 GS_USB_BREQ_SET_USER_ID,
67 GS_USB_BREQ_DATA_BITTIMING,
68 GS_USB_BREQ_BT_CONST_EXT,
69 GS_USB_BREQ_SET_TERMINATION,
70 GS_USB_BREQ_GET_TERMINATION,
71 GS_USB_BREQ_GET_STATE,
72 };
73
74 enum gs_can_mode {
75 /* reset a channel. turns it off */
76 GS_CAN_MODE_RESET = 0,
77 /* starts a channel */
78 GS_CAN_MODE_START
79 };
80
81 enum gs_can_state {
82 GS_CAN_STATE_ERROR_ACTIVE = 0,
83 GS_CAN_STATE_ERROR_WARNING,
84 GS_CAN_STATE_ERROR_PASSIVE,
85 GS_CAN_STATE_BUS_OFF,
86 GS_CAN_STATE_STOPPED,
87 GS_CAN_STATE_SLEEPING
88 };
89
90 enum gs_can_identify_mode {
91 GS_CAN_IDENTIFY_OFF = 0,
92 GS_CAN_IDENTIFY_ON
93 };
94
95 enum gs_can_termination_state {
96 GS_CAN_TERMINATION_STATE_OFF = 0,
97 GS_CAN_TERMINATION_STATE_ON
98 };
99
100 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
101 #define GS_USB_TERMINATION_ENABLED 120
102
103 /* data types passed between host and device */
104
105 /* The firmware on the original USB2CAN by Geschwister Schneider
106 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
107 * between the host and the device in host byte order. This is done
108 * with the struct gs_host_config::byte_order member, which is sent
109 * first to indicate the desired byte order.
110 *
111 * The widely used open source firmware candleLight doesn't support
112 * this feature and exchanges the data in little endian byte order.
113 */
114 struct gs_host_config {
115 __le32 byte_order;
116 } __packed;
117
118 struct gs_device_config {
119 u8 reserved1;
120 u8 reserved2;
121 u8 reserved3;
122 u8 icount;
123 __le32 sw_version;
124 __le32 hw_version;
125 } __packed;
126
127 #define GS_CAN_MODE_NORMAL 0
128 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
129 #define GS_CAN_MODE_LOOP_BACK BIT(1)
130 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
131 #define GS_CAN_MODE_ONE_SHOT BIT(3)
132 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
133 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
134 /* GS_CAN_FEATURE_USER_ID BIT(6) */
135 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
136 #define GS_CAN_MODE_FD BIT(8)
137 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
138 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
139 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
140 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
141 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
142
143 struct gs_device_mode {
144 __le32 mode;
145 __le32 flags;
146 } __packed;
147
148 struct gs_device_state {
149 __le32 state;
150 __le32 rxerr;
151 __le32 txerr;
152 } __packed;
153
154 struct gs_device_bittiming {
155 __le32 prop_seg;
156 __le32 phase_seg1;
157 __le32 phase_seg2;
158 __le32 sjw;
159 __le32 brp;
160 } __packed;
161
162 struct gs_identify_mode {
163 __le32 mode;
164 } __packed;
165
166 struct gs_device_termination_state {
167 __le32 state;
168 } __packed;
169
170 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
171 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
172 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
173 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
174 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
175 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
176 #define GS_CAN_FEATURE_USER_ID BIT(6)
177 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
178 #define GS_CAN_FEATURE_FD BIT(8)
179 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
180 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
181 #define GS_CAN_FEATURE_TERMINATION BIT(11)
182 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
183 #define GS_CAN_FEATURE_GET_STATE BIT(13)
184 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
185
186 /* internal quirks - keep in GS_CAN_FEATURE space for now */
187
188 /* CANtact Pro original firmware:
189 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
190 */
191 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
192
193 struct gs_device_bt_const {
194 __le32 feature;
195 __le32 fclk_can;
196 __le32 tseg1_min;
197 __le32 tseg1_max;
198 __le32 tseg2_min;
199 __le32 tseg2_max;
200 __le32 sjw_max;
201 __le32 brp_min;
202 __le32 brp_max;
203 __le32 brp_inc;
204 } __packed;
205
206 struct gs_device_bt_const_extended {
207 __le32 feature;
208 __le32 fclk_can;
209 __le32 tseg1_min;
210 __le32 tseg1_max;
211 __le32 tseg2_min;
212 __le32 tseg2_max;
213 __le32 sjw_max;
214 __le32 brp_min;
215 __le32 brp_max;
216 __le32 brp_inc;
217
218 __le32 dtseg1_min;
219 __le32 dtseg1_max;
220 __le32 dtseg2_min;
221 __le32 dtseg2_max;
222 __le32 dsjw_max;
223 __le32 dbrp_min;
224 __le32 dbrp_max;
225 __le32 dbrp_inc;
226 } __packed;
227
228 #define GS_CAN_FLAG_OVERFLOW BIT(0)
229 #define GS_CAN_FLAG_FD BIT(1)
230 #define GS_CAN_FLAG_BRS BIT(2)
231 #define GS_CAN_FLAG_ESI BIT(3)
232
233 struct classic_can {
234 u8 data[8];
235 } __packed;
236
237 struct classic_can_ts {
238 u8 data[8];
239 __le32 timestamp_us;
240 } __packed;
241
242 struct classic_can_quirk {
243 u8 data[8];
244 u8 quirk;
245 } __packed;
246
247 struct canfd {
248 u8 data[64];
249 } __packed;
250
251 struct canfd_ts {
252 u8 data[64];
253 __le32 timestamp_us;
254 } __packed;
255
256 struct canfd_quirk {
257 u8 data[64];
258 u8 quirk;
259 } __packed;
260
261 struct gs_host_frame {
262 u32 echo_id;
263 __le32 can_id;
264
265 u8 can_dlc;
266 u8 channel;
267 u8 flags;
268 u8 reserved;
269
270 union {
271 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
272 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
273 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
274 DECLARE_FLEX_ARRAY(struct canfd, canfd);
275 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
276 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
277 };
278 } __packed;
279 /* The GS USB devices make use of the same flags and masks as in
280 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
281 */
282
283 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
284 #define GS_MAX_TX_URBS 10
285 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
286 #define GS_MAX_RX_URBS 30
287 #define GS_NAPI_WEIGHT 32
288
289 /* Maximum number of interfaces the driver supports per device.
290 * Current hardware only supports 3 interfaces. The future may vary.
291 */
292 #define GS_MAX_INTF 3
293
294 struct gs_tx_context {
295 struct gs_can *dev;
296 unsigned int echo_id;
297 };
298
299 struct gs_can {
300 struct can_priv can; /* must be the first member */
301
302 struct can_rx_offload offload;
303 struct gs_usb *parent;
304
305 struct net_device *netdev;
306 struct usb_device *udev;
307
308 struct can_bittiming_const bt_const, data_bt_const;
309 unsigned int channel; /* channel number */
310
311 u32 feature;
312 unsigned int hf_size_tx;
313
314 /* This lock prevents a race condition between xmit and receive. */
315 spinlock_t tx_ctx_lock;
316 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
317
318 struct usb_anchor tx_submitted;
319 atomic_t active_tx_urbs;
320 };
321
322 /* usb interface struct */
323 struct gs_usb {
324 struct gs_can *canch[GS_MAX_INTF];
325 struct usb_anchor rx_submitted;
326 struct usb_device *udev;
327
328 /* time counter for hardware timestamps */
329 struct cyclecounter cc;
330 struct timecounter tc;
331 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
332 struct delayed_work timestamp;
333
334 unsigned int hf_size_rx;
335 u8 active_channels;
336
337 unsigned int pipe_in;
338 unsigned int pipe_out;
339 };
340
341 /* 'allocate' a tx context.
342 * returns a valid tx context or NULL if there is no space.
343 */
gs_alloc_tx_context(struct gs_can * dev)344 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
345 {
346 int i = 0;
347 unsigned long flags;
348
349 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
350
351 for (; i < GS_MAX_TX_URBS; i++) {
352 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
353 dev->tx_context[i].echo_id = i;
354 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
355 return &dev->tx_context[i];
356 }
357 }
358
359 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
360 return NULL;
361 }
362
363 /* releases a tx context
364 */
gs_free_tx_context(struct gs_tx_context * txc)365 static void gs_free_tx_context(struct gs_tx_context *txc)
366 {
367 txc->echo_id = GS_MAX_TX_URBS;
368 }
369
370 /* Get a tx context by id.
371 */
gs_get_tx_context(struct gs_can * dev,unsigned int id)372 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
373 unsigned int id)
374 {
375 unsigned long flags;
376
377 if (id < GS_MAX_TX_URBS) {
378 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
379 if (dev->tx_context[id].echo_id == id) {
380 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
381 return &dev->tx_context[id];
382 }
383 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
384 }
385 return NULL;
386 }
387
gs_cmd_reset(struct gs_can * dev)388 static int gs_cmd_reset(struct gs_can *dev)
389 {
390 struct gs_device_mode dm = {
391 .mode = cpu_to_le32(GS_CAN_MODE_RESET),
392 };
393
394 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
395 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
396 dev->channel, 0, &dm, sizeof(dm), 1000,
397 GFP_KERNEL);
398 }
399
gs_usb_get_timestamp(const struct gs_usb * parent,u32 * timestamp_p)400 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
401 u32 *timestamp_p)
402 {
403 __le32 timestamp;
404 int rc;
405
406 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
407 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
408 0, 0,
409 ×tamp, sizeof(timestamp),
410 USB_CTRL_GET_TIMEOUT,
411 GFP_KERNEL);
412 if (rc)
413 return rc;
414
415 *timestamp_p = le32_to_cpu(timestamp);
416
417 return 0;
418 }
419
gs_usb_timestamp_read(const struct cyclecounter * cc)420 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
421 {
422 struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
423 u32 timestamp = 0;
424 int err;
425
426 lockdep_assert_held(&parent->tc_lock);
427
428 /* drop lock for synchronous USB transfer */
429 spin_unlock_bh(&parent->tc_lock);
430 err = gs_usb_get_timestamp(parent, ×tamp);
431 spin_lock_bh(&parent->tc_lock);
432 if (err)
433 dev_err(&parent->udev->dev,
434 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
435 err);
436
437 return timestamp;
438 }
439
gs_usb_timestamp_work(struct work_struct * work)440 static void gs_usb_timestamp_work(struct work_struct *work)
441 {
442 struct delayed_work *delayed_work = to_delayed_work(work);
443 struct gs_usb *parent;
444
445 parent = container_of(delayed_work, struct gs_usb, timestamp);
446 spin_lock_bh(&parent->tc_lock);
447 timecounter_read(&parent->tc);
448 spin_unlock_bh(&parent->tc_lock);
449
450 schedule_delayed_work(&parent->timestamp,
451 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
452 }
453
gs_usb_skb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,u32 timestamp)454 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
455 struct sk_buff *skb, u32 timestamp)
456 {
457 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
458 struct gs_usb *parent = dev->parent;
459 u64 ns;
460
461 spin_lock_bh(&parent->tc_lock);
462 ns = timecounter_cyc2time(&parent->tc, timestamp);
463 spin_unlock_bh(&parent->tc_lock);
464
465 hwtstamps->hwtstamp = ns_to_ktime(ns);
466 }
467
gs_usb_timestamp_init(struct gs_usb * parent)468 static void gs_usb_timestamp_init(struct gs_usb *parent)
469 {
470 struct cyclecounter *cc = &parent->cc;
471
472 cc->read = gs_usb_timestamp_read;
473 cc->mask = CYCLECOUNTER_MASK(32);
474 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
475 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
476
477 spin_lock_init(&parent->tc_lock);
478 spin_lock_bh(&parent->tc_lock);
479 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
480 spin_unlock_bh(&parent->tc_lock);
481
482 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
483 schedule_delayed_work(&parent->timestamp,
484 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
485 }
486
gs_usb_timestamp_stop(struct gs_usb * parent)487 static void gs_usb_timestamp_stop(struct gs_usb *parent)
488 {
489 cancel_delayed_work_sync(&parent->timestamp);
490 }
491
gs_update_state(struct gs_can * dev,struct can_frame * cf)492 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
493 {
494 struct can_device_stats *can_stats = &dev->can.can_stats;
495
496 if (cf->can_id & CAN_ERR_RESTARTED) {
497 dev->can.state = CAN_STATE_ERROR_ACTIVE;
498 can_stats->restarts++;
499 } else if (cf->can_id & CAN_ERR_BUSOFF) {
500 dev->can.state = CAN_STATE_BUS_OFF;
501 can_stats->bus_off++;
502 } else if (cf->can_id & CAN_ERR_CRTL) {
503 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
504 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
505 dev->can.state = CAN_STATE_ERROR_WARNING;
506 can_stats->error_warning++;
507 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
508 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
509 dev->can.state = CAN_STATE_ERROR_PASSIVE;
510 can_stats->error_passive++;
511 } else {
512 dev->can.state = CAN_STATE_ERROR_ACTIVE;
513 }
514 }
515 }
516
gs_usb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)517 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
518 const struct gs_host_frame *hf)
519 {
520 u32 timestamp;
521
522 if (hf->flags & GS_CAN_FLAG_FD)
523 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
524 else
525 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
526
527 if (skb)
528 gs_usb_skb_set_timestamp(dev, skb, timestamp);
529
530 return timestamp;
531 }
532
gs_usb_rx_offload(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)533 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb,
534 const struct gs_host_frame *hf)
535 {
536 struct can_rx_offload *offload = &dev->offload;
537 int rc;
538
539 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
540 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
541
542 rc = can_rx_offload_queue_timestamp(offload, skb, ts);
543 } else {
544 rc = can_rx_offload_queue_tail(offload, skb);
545 }
546
547 if (rc)
548 dev->netdev->stats.rx_fifo_errors++;
549 }
550
551 static unsigned int
gs_usb_get_echo_skb(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)552 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb,
553 const struct gs_host_frame *hf)
554 {
555 struct can_rx_offload *offload = &dev->offload;
556 const u32 echo_id = hf->echo_id;
557 unsigned int len;
558
559 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
560 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
561
562 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id,
563 ts, NULL);
564 } else {
565 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id,
566 NULL);
567 }
568
569 return len;
570 }
571
gs_usb_receive_bulk_callback(struct urb * urb)572 static void gs_usb_receive_bulk_callback(struct urb *urb)
573 {
574 struct gs_usb *parent = urb->context;
575 struct gs_can *dev;
576 struct net_device *netdev;
577 int rc;
578 struct net_device_stats *stats;
579 struct gs_host_frame *hf = urb->transfer_buffer;
580 struct gs_tx_context *txc;
581 struct can_frame *cf;
582 struct canfd_frame *cfd;
583 struct sk_buff *skb;
584
585 BUG_ON(!parent);
586
587 switch (urb->status) {
588 case 0: /* success */
589 break;
590 case -ENOENT:
591 case -ESHUTDOWN:
592 return;
593 default:
594 /* do not resubmit aborted urbs. eg: when device goes down */
595 return;
596 }
597
598 /* device reports out of range channel id */
599 if (hf->channel >= GS_MAX_INTF)
600 goto device_detach;
601
602 dev = parent->canch[hf->channel];
603
604 netdev = dev->netdev;
605 stats = &netdev->stats;
606
607 if (!netif_device_present(netdev))
608 return;
609
610 if (!netif_running(netdev))
611 goto resubmit_urb;
612
613 if (hf->echo_id == -1) { /* normal rx */
614 if (hf->flags & GS_CAN_FLAG_FD) {
615 skb = alloc_canfd_skb(netdev, &cfd);
616 if (!skb)
617 return;
618
619 cfd->can_id = le32_to_cpu(hf->can_id);
620 cfd->len = can_fd_dlc2len(hf->can_dlc);
621 if (hf->flags & GS_CAN_FLAG_BRS)
622 cfd->flags |= CANFD_BRS;
623 if (hf->flags & GS_CAN_FLAG_ESI)
624 cfd->flags |= CANFD_ESI;
625
626 memcpy(cfd->data, hf->canfd->data, cfd->len);
627 } else {
628 skb = alloc_can_skb(netdev, &cf);
629 if (!skb)
630 return;
631
632 cf->can_id = le32_to_cpu(hf->can_id);
633 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
634
635 memcpy(cf->data, hf->classic_can->data, 8);
636
637 /* ERROR frames tell us information about the controller */
638 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
639 gs_update_state(dev, cf);
640 }
641
642 gs_usb_rx_offload(dev, skb, hf);
643 } else { /* echo_id == hf->echo_id */
644 if (hf->echo_id >= GS_MAX_TX_URBS) {
645 netdev_err(netdev,
646 "Unexpected out of range echo id %u\n",
647 hf->echo_id);
648 goto resubmit_urb;
649 }
650
651 txc = gs_get_tx_context(dev, hf->echo_id);
652
653 /* bad devices send bad echo_ids. */
654 if (!txc) {
655 netdev_err(netdev,
656 "Unexpected unused echo id %u\n",
657 hf->echo_id);
658 goto resubmit_urb;
659 }
660
661 skb = dev->can.echo_skb[hf->echo_id];
662 stats->tx_packets++;
663 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf);
664 gs_free_tx_context(txc);
665
666 atomic_dec(&dev->active_tx_urbs);
667
668 netif_wake_queue(netdev);
669 }
670
671 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
672 stats->rx_over_errors++;
673 stats->rx_errors++;
674
675 skb = alloc_can_err_skb(netdev, &cf);
676 if (!skb)
677 goto resubmit_urb;
678
679 cf->can_id |= CAN_ERR_CRTL;
680 cf->len = CAN_ERR_DLC;
681 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
682
683 gs_usb_rx_offload(dev, skb, hf);
684 }
685
686 can_rx_offload_irq_finish(&dev->offload);
687
688 resubmit_urb:
689 usb_fill_bulk_urb(urb, parent->udev,
690 parent->pipe_in,
691 hf, dev->parent->hf_size_rx,
692 gs_usb_receive_bulk_callback, parent);
693
694 rc = usb_submit_urb(urb, GFP_ATOMIC);
695
696 /* USB failure take down all interfaces */
697 if (rc == -ENODEV) {
698 device_detach:
699 for (rc = 0; rc < GS_MAX_INTF; rc++) {
700 if (parent->canch[rc])
701 netif_device_detach(parent->canch[rc]->netdev);
702 }
703 }
704 }
705
gs_usb_set_bittiming(struct net_device * netdev)706 static int gs_usb_set_bittiming(struct net_device *netdev)
707 {
708 struct gs_can *dev = netdev_priv(netdev);
709 struct can_bittiming *bt = &dev->can.bittiming;
710 struct gs_device_bittiming dbt = {
711 .prop_seg = cpu_to_le32(bt->prop_seg),
712 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
713 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
714 .sjw = cpu_to_le32(bt->sjw),
715 .brp = cpu_to_le32(bt->brp),
716 };
717
718 /* request bit timings */
719 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
720 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
721 dev->channel, 0, &dbt, sizeof(dbt), 1000,
722 GFP_KERNEL);
723 }
724
gs_usb_set_data_bittiming(struct net_device * netdev)725 static int gs_usb_set_data_bittiming(struct net_device *netdev)
726 {
727 struct gs_can *dev = netdev_priv(netdev);
728 struct can_bittiming *bt = &dev->can.data_bittiming;
729 struct gs_device_bittiming dbt = {
730 .prop_seg = cpu_to_le32(bt->prop_seg),
731 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
732 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
733 .sjw = cpu_to_le32(bt->sjw),
734 .brp = cpu_to_le32(bt->brp),
735 };
736 u8 request = GS_USB_BREQ_DATA_BITTIMING;
737
738 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
739 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
740
741 /* request data bit timings */
742 return usb_control_msg_send(dev->udev, 0, request,
743 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
744 dev->channel, 0, &dbt, sizeof(dbt), 1000,
745 GFP_KERNEL);
746 }
747
gs_usb_xmit_callback(struct urb * urb)748 static void gs_usb_xmit_callback(struct urb *urb)
749 {
750 struct gs_tx_context *txc = urb->context;
751 struct gs_can *dev = txc->dev;
752 struct net_device *netdev = dev->netdev;
753
754 if (urb->status)
755 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
756 }
757
gs_can_start_xmit(struct sk_buff * skb,struct net_device * netdev)758 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
759 struct net_device *netdev)
760 {
761 struct gs_can *dev = netdev_priv(netdev);
762 struct net_device_stats *stats = &dev->netdev->stats;
763 struct urb *urb;
764 struct gs_host_frame *hf;
765 struct can_frame *cf;
766 struct canfd_frame *cfd;
767 int rc;
768 unsigned int idx;
769 struct gs_tx_context *txc;
770
771 if (can_dev_dropped_skb(netdev, skb))
772 return NETDEV_TX_OK;
773
774 /* find an empty context to keep track of transmission */
775 txc = gs_alloc_tx_context(dev);
776 if (!txc)
777 return NETDEV_TX_BUSY;
778
779 /* create a URB, and a buffer for it */
780 urb = usb_alloc_urb(0, GFP_ATOMIC);
781 if (!urb)
782 goto nomem_urb;
783
784 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
785 if (!hf)
786 goto nomem_hf;
787
788 idx = txc->echo_id;
789
790 if (idx >= GS_MAX_TX_URBS) {
791 netdev_err(netdev, "Invalid tx context %u\n", idx);
792 goto badidx;
793 }
794
795 hf->echo_id = idx;
796 hf->channel = dev->channel;
797 hf->flags = 0;
798 hf->reserved = 0;
799
800 if (can_is_canfd_skb(skb)) {
801 cfd = (struct canfd_frame *)skb->data;
802
803 hf->can_id = cpu_to_le32(cfd->can_id);
804 hf->can_dlc = can_fd_len2dlc(cfd->len);
805 hf->flags |= GS_CAN_FLAG_FD;
806 if (cfd->flags & CANFD_BRS)
807 hf->flags |= GS_CAN_FLAG_BRS;
808 if (cfd->flags & CANFD_ESI)
809 hf->flags |= GS_CAN_FLAG_ESI;
810
811 memcpy(hf->canfd->data, cfd->data, cfd->len);
812 } else {
813 cf = (struct can_frame *)skb->data;
814
815 hf->can_id = cpu_to_le32(cf->can_id);
816 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
817
818 memcpy(hf->classic_can->data, cf->data, cf->len);
819 }
820
821 usb_fill_bulk_urb(urb, dev->udev,
822 dev->parent->pipe_out,
823 hf, dev->hf_size_tx,
824 gs_usb_xmit_callback, txc);
825
826 urb->transfer_flags |= URB_FREE_BUFFER;
827 usb_anchor_urb(urb, &dev->tx_submitted);
828
829 can_put_echo_skb(skb, netdev, idx, 0);
830
831 atomic_inc(&dev->active_tx_urbs);
832
833 rc = usb_submit_urb(urb, GFP_ATOMIC);
834 if (unlikely(rc)) { /* usb send failed */
835 atomic_dec(&dev->active_tx_urbs);
836
837 can_free_echo_skb(netdev, idx, NULL);
838 gs_free_tx_context(txc);
839
840 usb_unanchor_urb(urb);
841
842 if (rc == -ENODEV) {
843 netif_device_detach(netdev);
844 } else {
845 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
846 stats->tx_dropped++;
847 }
848 } else {
849 /* Slow down tx path */
850 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
851 netif_stop_queue(netdev);
852 }
853
854 /* let usb core take care of this urb */
855 usb_free_urb(urb);
856
857 return NETDEV_TX_OK;
858
859 badidx:
860 kfree(hf);
861 nomem_hf:
862 usb_free_urb(urb);
863
864 nomem_urb:
865 gs_free_tx_context(txc);
866 dev_kfree_skb(skb);
867 stats->tx_dropped++;
868 return NETDEV_TX_OK;
869 }
870
gs_can_open(struct net_device * netdev)871 static int gs_can_open(struct net_device *netdev)
872 {
873 struct gs_can *dev = netdev_priv(netdev);
874 struct gs_usb *parent = dev->parent;
875 struct gs_device_mode dm = {
876 .mode = cpu_to_le32(GS_CAN_MODE_START),
877 };
878 struct gs_host_frame *hf;
879 struct urb *urb = NULL;
880 u32 ctrlmode;
881 u32 flags = 0;
882 int rc, i;
883
884 rc = open_candev(netdev);
885 if (rc)
886 return rc;
887
888 ctrlmode = dev->can.ctrlmode;
889 if (ctrlmode & CAN_CTRLMODE_FD) {
890 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
891 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
892 else
893 dev->hf_size_tx = struct_size(hf, canfd, 1);
894 } else {
895 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
896 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
897 else
898 dev->hf_size_tx = struct_size(hf, classic_can, 1);
899 }
900
901 can_rx_offload_enable(&dev->offload);
902
903 if (!parent->active_channels) {
904 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
905 gs_usb_timestamp_init(parent);
906
907 for (i = 0; i < GS_MAX_RX_URBS; i++) {
908 u8 *buf;
909
910 /* alloc rx urb */
911 urb = usb_alloc_urb(0, GFP_KERNEL);
912 if (!urb) {
913 rc = -ENOMEM;
914 goto out_usb_kill_anchored_urbs;
915 }
916
917 /* alloc rx buffer */
918 buf = kmalloc(dev->parent->hf_size_rx,
919 GFP_KERNEL);
920 if (!buf) {
921 rc = -ENOMEM;
922 goto out_usb_free_urb;
923 }
924
925 /* fill, anchor, and submit rx urb */
926 usb_fill_bulk_urb(urb,
927 dev->udev,
928 dev->parent->pipe_in,
929 buf,
930 dev->parent->hf_size_rx,
931 gs_usb_receive_bulk_callback, parent);
932 urb->transfer_flags |= URB_FREE_BUFFER;
933
934 usb_anchor_urb(urb, &parent->rx_submitted);
935
936 rc = usb_submit_urb(urb, GFP_KERNEL);
937 if (rc) {
938 if (rc == -ENODEV)
939 netif_device_detach(dev->netdev);
940
941 netdev_err(netdev,
942 "usb_submit_urb() failed, error %pe\n",
943 ERR_PTR(rc));
944
945 goto out_usb_unanchor_urb;
946 }
947
948 /* Drop reference,
949 * USB core will take care of freeing it
950 */
951 usb_free_urb(urb);
952 }
953 }
954
955 /* flags */
956 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
957 flags |= GS_CAN_MODE_LOOP_BACK;
958
959 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
960 flags |= GS_CAN_MODE_LISTEN_ONLY;
961
962 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
963 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
964
965 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
966 flags |= GS_CAN_MODE_ONE_SHOT;
967
968 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
969 flags |= GS_CAN_MODE_BERR_REPORTING;
970
971 if (ctrlmode & CAN_CTRLMODE_FD)
972 flags |= GS_CAN_MODE_FD;
973
974 /* if hardware supports timestamps, enable it */
975 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
976 flags |= GS_CAN_MODE_HW_TIMESTAMP;
977
978 /* finally start device */
979 dev->can.state = CAN_STATE_ERROR_ACTIVE;
980 dm.flags = cpu_to_le32(flags);
981 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
982 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
983 dev->channel, 0, &dm, sizeof(dm), 1000,
984 GFP_KERNEL);
985 if (rc) {
986 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
987 dev->can.state = CAN_STATE_STOPPED;
988
989 goto out_usb_kill_anchored_urbs;
990 }
991
992 parent->active_channels++;
993 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
994 netif_start_queue(netdev);
995
996 return 0;
997
998 out_usb_unanchor_urb:
999 usb_unanchor_urb(urb);
1000 out_usb_free_urb:
1001 usb_free_urb(urb);
1002 out_usb_kill_anchored_urbs:
1003 if (!parent->active_channels) {
1004 usb_kill_anchored_urbs(&dev->tx_submitted);
1005
1006 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1007 gs_usb_timestamp_stop(parent);
1008 }
1009
1010 can_rx_offload_disable(&dev->offload);
1011 close_candev(netdev);
1012
1013 return rc;
1014 }
1015
gs_usb_get_state(const struct net_device * netdev,struct can_berr_counter * bec,enum can_state * state)1016 static int gs_usb_get_state(const struct net_device *netdev,
1017 struct can_berr_counter *bec,
1018 enum can_state *state)
1019 {
1020 struct gs_can *dev = netdev_priv(netdev);
1021 struct gs_device_state ds;
1022 int rc;
1023
1024 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
1025 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1026 dev->channel, 0,
1027 &ds, sizeof(ds),
1028 USB_CTRL_GET_TIMEOUT,
1029 GFP_KERNEL);
1030 if (rc)
1031 return rc;
1032
1033 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
1034 return -EOPNOTSUPP;
1035
1036 *state = le32_to_cpu(ds.state);
1037 bec->txerr = le32_to_cpu(ds.txerr);
1038 bec->rxerr = le32_to_cpu(ds.rxerr);
1039
1040 return 0;
1041 }
1042
gs_usb_can_get_berr_counter(const struct net_device * netdev,struct can_berr_counter * bec)1043 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1044 struct can_berr_counter *bec)
1045 {
1046 enum can_state state;
1047
1048 return gs_usb_get_state(netdev, bec, &state);
1049 }
1050
gs_can_close(struct net_device * netdev)1051 static int gs_can_close(struct net_device *netdev)
1052 {
1053 int rc;
1054 struct gs_can *dev = netdev_priv(netdev);
1055 struct gs_usb *parent = dev->parent;
1056
1057 netif_stop_queue(netdev);
1058
1059 /* Stop polling */
1060 parent->active_channels--;
1061 if (!parent->active_channels) {
1062 usb_kill_anchored_urbs(&parent->rx_submitted);
1063
1064 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1065 gs_usb_timestamp_stop(parent);
1066 }
1067
1068 /* Stop sending URBs */
1069 usb_kill_anchored_urbs(&dev->tx_submitted);
1070 atomic_set(&dev->active_tx_urbs, 0);
1071
1072 dev->can.state = CAN_STATE_STOPPED;
1073
1074 /* reset the device */
1075 gs_cmd_reset(dev);
1076
1077 /* reset tx contexts */
1078 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1079 dev->tx_context[rc].dev = dev;
1080 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1081 }
1082
1083 can_rx_offload_disable(&dev->offload);
1084
1085 /* close the netdev */
1086 close_candev(netdev);
1087
1088 return 0;
1089 }
1090
gs_can_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1091 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1092 {
1093 const struct gs_can *dev = netdev_priv(netdev);
1094
1095 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1096 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1097
1098 return -EOPNOTSUPP;
1099 }
1100
1101 static const struct net_device_ops gs_usb_netdev_ops = {
1102 .ndo_open = gs_can_open,
1103 .ndo_stop = gs_can_close,
1104 .ndo_start_xmit = gs_can_start_xmit,
1105 .ndo_change_mtu = can_change_mtu,
1106 .ndo_eth_ioctl = gs_can_eth_ioctl,
1107 };
1108
gs_usb_set_identify(struct net_device * netdev,bool do_identify)1109 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1110 {
1111 struct gs_can *dev = netdev_priv(netdev);
1112 struct gs_identify_mode imode;
1113
1114 if (do_identify)
1115 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1116 else
1117 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1118
1119 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1120 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1121 dev->channel, 0, &imode, sizeof(imode), 100,
1122 GFP_KERNEL);
1123 }
1124
1125 /* blink LED's for finding the this interface */
gs_usb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1126 static int gs_usb_set_phys_id(struct net_device *netdev,
1127 enum ethtool_phys_id_state state)
1128 {
1129 const struct gs_can *dev = netdev_priv(netdev);
1130 int rc = 0;
1131
1132 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1133 return -EOPNOTSUPP;
1134
1135 switch (state) {
1136 case ETHTOOL_ID_ACTIVE:
1137 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1138 break;
1139 case ETHTOOL_ID_INACTIVE:
1140 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1141 break;
1142 default:
1143 break;
1144 }
1145
1146 return rc;
1147 }
1148
gs_usb_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)1149 static int gs_usb_get_ts_info(struct net_device *netdev,
1150 struct kernel_ethtool_ts_info *info)
1151 {
1152 struct gs_can *dev = netdev_priv(netdev);
1153
1154 /* report if device supports HW timestamps */
1155 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1156 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1157
1158 return ethtool_op_get_ts_info(netdev, info);
1159 }
1160
1161 static const struct ethtool_ops gs_usb_ethtool_ops = {
1162 .set_phys_id = gs_usb_set_phys_id,
1163 .get_ts_info = gs_usb_get_ts_info,
1164 };
1165
gs_usb_get_termination(struct net_device * netdev,u16 * term)1166 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1167 {
1168 struct gs_can *dev = netdev_priv(netdev);
1169 struct gs_device_termination_state term_state;
1170 int rc;
1171
1172 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1173 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1174 dev->channel, 0,
1175 &term_state, sizeof(term_state), 1000,
1176 GFP_KERNEL);
1177 if (rc)
1178 return rc;
1179
1180 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1181 *term = GS_USB_TERMINATION_ENABLED;
1182 else
1183 *term = GS_USB_TERMINATION_DISABLED;
1184
1185 return 0;
1186 }
1187
gs_usb_set_termination(struct net_device * netdev,u16 term)1188 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1189 {
1190 struct gs_can *dev = netdev_priv(netdev);
1191 struct gs_device_termination_state term_state;
1192
1193 if (term == GS_USB_TERMINATION_ENABLED)
1194 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1195 else
1196 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1197
1198 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1199 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1200 dev->channel, 0,
1201 &term_state, sizeof(term_state), 1000,
1202 GFP_KERNEL);
1203 }
1204
1205 static const u16 gs_usb_termination_const[] = {
1206 GS_USB_TERMINATION_DISABLED,
1207 GS_USB_TERMINATION_ENABLED
1208 };
1209
gs_make_candev(unsigned int channel,struct usb_interface * intf,struct gs_device_config * dconf)1210 static struct gs_can *gs_make_candev(unsigned int channel,
1211 struct usb_interface *intf,
1212 struct gs_device_config *dconf)
1213 {
1214 struct gs_can *dev;
1215 struct net_device *netdev;
1216 int rc;
1217 struct gs_device_bt_const_extended bt_const_extended;
1218 struct gs_device_bt_const bt_const;
1219 u32 feature;
1220
1221 /* fetch bit timing constants */
1222 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1223 GS_USB_BREQ_BT_CONST,
1224 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1225 channel, 0, &bt_const, sizeof(bt_const), 1000,
1226 GFP_KERNEL);
1227
1228 if (rc) {
1229 dev_err(&intf->dev,
1230 "Couldn't get bit timing const for channel %d (%pe)\n",
1231 channel, ERR_PTR(rc));
1232 return ERR_PTR(rc);
1233 }
1234
1235 /* create netdev */
1236 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1237 if (!netdev) {
1238 dev_err(&intf->dev, "Couldn't allocate candev\n");
1239 return ERR_PTR(-ENOMEM);
1240 }
1241
1242 dev = netdev_priv(netdev);
1243
1244 netdev->netdev_ops = &gs_usb_netdev_ops;
1245 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1246
1247 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1248 netdev->dev_id = channel;
1249
1250 /* dev setup */
1251 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1252 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1253 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1254 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1255 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1256 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1257 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1258 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1259 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1260
1261 dev->udev = interface_to_usbdev(intf);
1262 dev->netdev = netdev;
1263 dev->channel = channel;
1264
1265 init_usb_anchor(&dev->tx_submitted);
1266 atomic_set(&dev->active_tx_urbs, 0);
1267 spin_lock_init(&dev->tx_ctx_lock);
1268 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1269 dev->tx_context[rc].dev = dev;
1270 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1271 }
1272
1273 /* can setup */
1274 dev->can.state = CAN_STATE_STOPPED;
1275 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1276 dev->can.bittiming_const = &dev->bt_const;
1277 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1278
1279 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1280
1281 feature = le32_to_cpu(bt_const.feature);
1282 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1283 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1284 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1285
1286 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1287 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1288
1289 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1290 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1291
1292 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1293 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1294
1295 if (feature & GS_CAN_FEATURE_FD) {
1296 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1297 /* The data bit timing will be overwritten, if
1298 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1299 */
1300 dev->can.data_bittiming_const = &dev->bt_const;
1301 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1302 }
1303
1304 if (feature & GS_CAN_FEATURE_TERMINATION) {
1305 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1306 if (rc) {
1307 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1308
1309 dev_info(&intf->dev,
1310 "Disabling termination support for channel %d (%pe)\n",
1311 channel, ERR_PTR(rc));
1312 } else {
1313 dev->can.termination_const = gs_usb_termination_const;
1314 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1315 dev->can.do_set_termination = gs_usb_set_termination;
1316 }
1317 }
1318
1319 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1320 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1321
1322 if (feature & GS_CAN_FEATURE_GET_STATE)
1323 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1324
1325 /* The CANtact Pro from LinkLayer Labs is based on the
1326 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1327 * erratum. However, the current firmware (version 2) doesn't
1328 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1329 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1330 * this issue.
1331 *
1332 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1333 * CANtact Pro firmware uses a request value, which is already
1334 * used by the candleLight firmware for a different purpose
1335 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1336 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1337 * issue.
1338 */
1339 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1340 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1341 dev->udev->manufacturer && dev->udev->product &&
1342 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1343 !strcmp(dev->udev->product, "CANtact Pro") &&
1344 (le32_to_cpu(dconf->sw_version) <= 2))
1345 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1346 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1347
1348 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1349 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1350 feature & GS_CAN_FEATURE_IDENTIFY))
1351 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1352
1353 /* fetch extended bit timing constants if device has feature
1354 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1355 */
1356 if (feature & GS_CAN_FEATURE_FD &&
1357 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1358 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1359 GS_USB_BREQ_BT_CONST_EXT,
1360 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1361 channel, 0, &bt_const_extended,
1362 sizeof(bt_const_extended),
1363 1000, GFP_KERNEL);
1364 if (rc) {
1365 dev_err(&intf->dev,
1366 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1367 channel, ERR_PTR(rc));
1368 goto out_free_candev;
1369 }
1370
1371 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1372 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1373 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1374 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1375 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1376 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1377 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1378 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1379 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1380
1381 dev->can.data_bittiming_const = &dev->data_bt_const;
1382 }
1383
1384 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT);
1385 SET_NETDEV_DEV(netdev, &intf->dev);
1386
1387 rc = register_candev(dev->netdev);
1388 if (rc) {
1389 dev_err(&intf->dev,
1390 "Couldn't register candev for channel %d (%pe)\n",
1391 channel, ERR_PTR(rc));
1392 goto out_can_rx_offload_del;
1393 }
1394
1395 return dev;
1396
1397 out_can_rx_offload_del:
1398 can_rx_offload_del(&dev->offload);
1399 out_free_candev:
1400 free_candev(dev->netdev);
1401 return ERR_PTR(rc);
1402 }
1403
gs_destroy_candev(struct gs_can * dev)1404 static void gs_destroy_candev(struct gs_can *dev)
1405 {
1406 unregister_candev(dev->netdev);
1407 can_rx_offload_del(&dev->offload);
1408 free_candev(dev->netdev);
1409 }
1410
gs_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)1411 static int gs_usb_probe(struct usb_interface *intf,
1412 const struct usb_device_id *id)
1413 {
1414 struct usb_device *udev = interface_to_usbdev(intf);
1415 struct usb_endpoint_descriptor *ep_in, *ep_out;
1416 struct gs_host_frame *hf;
1417 struct gs_usb *parent;
1418 struct gs_host_config hconf = {
1419 .byte_order = cpu_to_le32(0x0000beef),
1420 };
1421 struct gs_device_config dconf;
1422 unsigned int icount, i;
1423 int rc;
1424
1425 rc = usb_find_common_endpoints(intf->cur_altsetting,
1426 &ep_in, &ep_out, NULL, NULL);
1427 if (rc) {
1428 dev_err(&intf->dev, "Required endpoints not found\n");
1429 return rc;
1430 }
1431
1432 /* send host config */
1433 rc = usb_control_msg_send(udev, 0,
1434 GS_USB_BREQ_HOST_FORMAT,
1435 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1436 1, intf->cur_altsetting->desc.bInterfaceNumber,
1437 &hconf, sizeof(hconf), 1000,
1438 GFP_KERNEL);
1439 if (rc) {
1440 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1441 return rc;
1442 }
1443
1444 /* read device config */
1445 rc = usb_control_msg_recv(udev, 0,
1446 GS_USB_BREQ_DEVICE_CONFIG,
1447 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1448 1, intf->cur_altsetting->desc.bInterfaceNumber,
1449 &dconf, sizeof(dconf), 1000,
1450 GFP_KERNEL);
1451 if (rc) {
1452 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1453 rc);
1454 return rc;
1455 }
1456
1457 icount = dconf.icount + 1;
1458 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1459
1460 if (icount > GS_MAX_INTF) {
1461 dev_err(&intf->dev,
1462 "Driver cannot handle more that %u CAN interfaces\n",
1463 GS_MAX_INTF);
1464 return -EINVAL;
1465 }
1466
1467 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
1468 if (!parent)
1469 return -ENOMEM;
1470
1471 init_usb_anchor(&parent->rx_submitted);
1472
1473 usb_set_intfdata(intf, parent);
1474 parent->udev = udev;
1475
1476 /* store the detected endpoints */
1477 parent->pipe_in = usb_rcvbulkpipe(parent->udev, ep_in->bEndpointAddress);
1478 parent->pipe_out = usb_sndbulkpipe(parent->udev, ep_out->bEndpointAddress);
1479
1480 for (i = 0; i < icount; i++) {
1481 unsigned int hf_size_rx = 0;
1482
1483 parent->canch[i] = gs_make_candev(i, intf, &dconf);
1484 if (IS_ERR_OR_NULL(parent->canch[i])) {
1485 /* save error code to return later */
1486 rc = PTR_ERR(parent->canch[i]);
1487
1488 /* on failure destroy previously created candevs */
1489 icount = i;
1490 for (i = 0; i < icount; i++)
1491 gs_destroy_candev(parent->canch[i]);
1492
1493 usb_kill_anchored_urbs(&parent->rx_submitted);
1494 kfree(parent);
1495 return rc;
1496 }
1497 parent->canch[i]->parent = parent;
1498
1499 /* set RX packet size based on FD and if hardware
1500 * timestamps are supported.
1501 */
1502 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1503 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1504 hf_size_rx = struct_size(hf, canfd_ts, 1);
1505 else
1506 hf_size_rx = struct_size(hf, canfd, 1);
1507 } else {
1508 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1509 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1510 else
1511 hf_size_rx = struct_size(hf, classic_can, 1);
1512 }
1513 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx);
1514 }
1515
1516 return 0;
1517 }
1518
gs_usb_disconnect(struct usb_interface * intf)1519 static void gs_usb_disconnect(struct usb_interface *intf)
1520 {
1521 struct gs_usb *parent = usb_get_intfdata(intf);
1522 unsigned int i;
1523
1524 usb_set_intfdata(intf, NULL);
1525
1526 if (!parent) {
1527 dev_err(&intf->dev, "Disconnect (nodata)\n");
1528 return;
1529 }
1530
1531 for (i = 0; i < GS_MAX_INTF; i++)
1532 if (parent->canch[i])
1533 gs_destroy_candev(parent->canch[i]);
1534
1535 kfree(parent);
1536 }
1537
1538 static const struct usb_device_id gs_usb_table[] = {
1539 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1540 USB_GS_USB_1_PRODUCT_ID, 0) },
1541 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1542 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1543 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1544 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1545 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1546 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1547 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID,
1548 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) },
1549 {} /* Terminating entry */
1550 };
1551
1552 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1553
1554 static struct usb_driver gs_usb_driver = {
1555 .name = KBUILD_MODNAME,
1556 .probe = gs_usb_probe,
1557 .disconnect = gs_usb_disconnect,
1558 .id_table = gs_usb_table,
1559 };
1560
1561 module_usb_driver(gs_usb_driver);
1562
1563 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1564 MODULE_DESCRIPTION(
1565 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1566 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1567 "and bytewerk.org candleLight USB CAN interfaces.");
1568 MODULE_LICENSE("GPL v2");
1569