xref: /freebsd/sys/kern/uipc_usrreq.c (revision 82d8a5029a80a77166dca098b8fedb10d84e4e38)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include "opt_ddb.h"
60 
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 static struct domain localdomain;
107 
108 static uma_zone_t	unp_zone;
109 static unp_gen_t	unp_gencnt;	/* (l) */
110 static u_int		unp_count;	/* (l) Count of local sockets. */
111 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
112 static int		unp_rights;	/* (g) File descriptors in flight. */
113 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
114 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
115 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
116 static struct mtx_pool	*unp_vp_mtxpool;
117 
118 struct unp_defer {
119 	SLIST_ENTRY(unp_defer) ud_link;
120 	struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124 
125 static const struct sockaddr	sun_noname = {
126 	.sa_len = sizeof(sun_noname),
127 	.sa_family = AF_LOCAL,
128 };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147  * however the notion of send buffer still makes sense with them.  Its size is
148  * the amount of space that a send(2) syscall may copyin(9) before checking
149  * with the receive buffer of a peer.  Although not linked anywhere yet,
150  * pointed to by a stack variable, effectively it is a buffer that needs to be
151  * sized.
152  *
153  * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154  * and don't really want to reserve the sendspace.  Their recvspace should be
155  * large enough for at least one max-size datagram plus address.
156  */
157 static u_long	unpst_sendspace = 64*1024;
158 static u_long	unpst_recvspace = 64*1024;
159 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
160 static u_long	unpdg_recvspace = 16*1024;
161 static u_long	unpsp_sendspace = 64*1024;
162 static u_long	unpsp_recvspace = 64*1024;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pr_attach() and freed in pr_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *, bool);
296 static void	unp_connect2(struct socket *, struct socket *, bool);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf *, struct mchain *,
305 		    struct thread *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static void	unp_addsockcred(struct thread *, struct mchain *, int);
310 static void	unp_process_defers(void * __unused, int);
311 
312 static void	uipc_wrknl_lock(void *);
313 static void	uipc_wrknl_unlock(void *);
314 static void	uipc_wrknl_assert_lock(void *, int);
315 
316 static void
unp_pcb_hold(struct unpcb * unp)317 unp_pcb_hold(struct unpcb *unp)
318 {
319 	u_int old __unused;
320 
321 	old = refcount_acquire(&unp->unp_refcount);
322 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
323 }
324 
325 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)326 unp_pcb_rele(struct unpcb *unp)
327 {
328 	bool ret;
329 
330 	UNP_PCB_LOCK_ASSERT(unp);
331 
332 	if ((ret = refcount_release(&unp->unp_refcount))) {
333 		UNP_PCB_UNLOCK(unp);
334 		UNP_PCB_LOCK_DESTROY(unp);
335 		uma_zfree(unp_zone, unp);
336 	}
337 	return (ret);
338 }
339 
340 static void
unp_pcb_rele_notlast(struct unpcb * unp)341 unp_pcb_rele_notlast(struct unpcb *unp)
342 {
343 	bool ret __unused;
344 
345 	ret = refcount_release(&unp->unp_refcount);
346 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
347 }
348 
349 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
351 {
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 
355 	if (unp == unp2) {
356 		UNP_PCB_LOCK(unp);
357 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
358 		UNP_PCB_LOCK(unp);
359 		UNP_PCB_LOCK(unp2);
360 	} else {
361 		UNP_PCB_LOCK(unp2);
362 		UNP_PCB_LOCK(unp);
363 	}
364 }
365 
366 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
368 {
369 	UNP_PCB_UNLOCK(unp);
370 	if (unp != unp2)
371 		UNP_PCB_UNLOCK(unp2);
372 }
373 
374 /*
375  * Try to lock the connected peer of an already locked socket.  In some cases
376  * this requires that we unlock the current socket.  The pairbusy counter is
377  * used to block concurrent connection attempts while the lock is dropped.  The
378  * caller must be careful to revalidate PCB state.
379  */
380 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)381 unp_pcb_lock_peer(struct unpcb *unp)
382 {
383 	struct unpcb *unp2;
384 
385 	UNP_PCB_LOCK_ASSERT(unp);
386 	unp2 = unp->unp_conn;
387 	if (unp2 == NULL)
388 		return (NULL);
389 	if (__predict_false(unp == unp2))
390 		return (unp);
391 
392 	UNP_PCB_UNLOCK_ASSERT(unp2);
393 
394 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
395 		return (unp2);
396 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
397 		UNP_PCB_LOCK(unp2);
398 		return (unp2);
399 	}
400 	unp->unp_pairbusy++;
401 	unp_pcb_hold(unp2);
402 	UNP_PCB_UNLOCK(unp);
403 
404 	UNP_PCB_LOCK(unp2);
405 	UNP_PCB_LOCK(unp);
406 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
407 	    ("%s: socket %p was reconnected", __func__, unp));
408 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
409 		unp->unp_flags &= ~UNP_WAITING;
410 		wakeup(unp);
411 	}
412 	if (unp_pcb_rele(unp2)) {
413 		/* unp2 is unlocked. */
414 		return (NULL);
415 	}
416 	if (unp->unp_conn == NULL) {
417 		UNP_PCB_UNLOCK(unp2);
418 		return (NULL);
419 	}
420 	return (unp2);
421 }
422 
423 /*
424  * Try to lock peer of our socket for purposes of sending data to it.
425  */
426 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)427 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
428 {
429 	struct unpcb *unp;
430 	int error;
431 
432 	unp = sotounpcb(so);
433 	UNP_PCB_LOCK(unp);
434 	*unp2 = unp_pcb_lock_peer(unp);
435 	if (__predict_false(so->so_error != 0)) {
436 		error = so->so_error;
437 		so->so_error = 0;
438 		UNP_PCB_UNLOCK(unp);
439 		if (*unp2 != NULL)
440 			UNP_PCB_UNLOCK(*unp2);
441 		return (error);
442 	}
443 	if (__predict_false(*unp2 == NULL)) {
444 		/*
445 		 * Different error code for a previously connected socket and
446 		 * a never connected one.  The SS_ISDISCONNECTED is set in the
447 		 * unp_soisdisconnected() and is synchronized by the pcb lock.
448 		 */
449 		error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
450 		UNP_PCB_UNLOCK(unp);
451 		return (error);
452 	}
453 	UNP_PCB_UNLOCK(unp);
454 
455 	return (0);
456 }
457 
458 static void
uipc_abort(struct socket * so)459 uipc_abort(struct socket *so)
460 {
461 	struct unpcb *unp, *unp2;
462 
463 	unp = sotounpcb(so);
464 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
465 	UNP_PCB_UNLOCK_ASSERT(unp);
466 
467 	UNP_PCB_LOCK(unp);
468 	unp2 = unp->unp_conn;
469 	if (unp2 != NULL) {
470 		unp_pcb_hold(unp2);
471 		UNP_PCB_UNLOCK(unp);
472 		unp_drop(unp2);
473 	} else
474 		UNP_PCB_UNLOCK(unp);
475 }
476 
477 static int
uipc_attach(struct socket * so,int proto,struct thread * td)478 uipc_attach(struct socket *so, int proto, struct thread *td)
479 {
480 	u_long sendspace, recvspace;
481 	struct unpcb *unp;
482 	int error;
483 	bool locked;
484 
485 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
486 	switch (so->so_type) {
487 	case SOCK_DGRAM:
488 		STAILQ_INIT(&so->so_rcv.uxdg_mb);
489 		STAILQ_INIT(&so->so_snd.uxdg_mb);
490 		TAILQ_INIT(&so->so_rcv.uxdg_conns);
491 		/*
492 		 * Since send buffer is either bypassed or is a part
493 		 * of one-to-many receive buffer, we assign both space
494 		 * limits to unpdg_recvspace.
495 		 */
496 		sendspace = recvspace = unpdg_recvspace;
497 		break;
498 
499 	case SOCK_STREAM:
500 		sendspace = unpst_sendspace;
501 		recvspace = unpst_recvspace;
502 		goto common;
503 
504 	case SOCK_SEQPACKET:
505 		sendspace = unpsp_sendspace;
506 		recvspace = unpsp_recvspace;
507 common:
508 		/*
509 		 * XXXGL: we need to initialize the mutex with MTX_DUPOK.
510 		 * Ideally, protocols that have PR_SOCKBUF should be
511 		 * responsible for mutex initialization officially, and then
512 		 * this uglyness with mtx_destroy(); mtx_init(); would go away.
513 		 */
514 		mtx_destroy(&so->so_rcv_mtx);
515 		mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK);
516 		knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
517 		    uipc_wrknl_unlock, uipc_wrknl_assert_lock);
518 		STAILQ_INIT(&so->so_rcv.uxst_mbq);
519 		break;
520 	default:
521 		panic("uipc_attach");
522 	}
523 	error = soreserve(so, sendspace, recvspace);
524 	if (error)
525 		return (error);
526 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
527 	if (unp == NULL)
528 		return (ENOBUFS);
529 	LIST_INIT(&unp->unp_refs);
530 	UNP_PCB_LOCK_INIT(unp);
531 	unp->unp_socket = so;
532 	so->so_pcb = unp;
533 	refcount_init(&unp->unp_refcount, 1);
534 	unp->unp_mode = ACCESSPERMS;
535 
536 	if ((locked = UNP_LINK_WOWNED()) == false)
537 		UNP_LINK_WLOCK();
538 
539 	unp->unp_gencnt = ++unp_gencnt;
540 	unp->unp_ino = ++unp_ino;
541 	unp_count++;
542 	switch (so->so_type) {
543 	case SOCK_STREAM:
544 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
545 		break;
546 
547 	case SOCK_DGRAM:
548 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
549 		break;
550 
551 	case SOCK_SEQPACKET:
552 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
553 		break;
554 
555 	default:
556 		panic("uipc_attach");
557 	}
558 
559 	if (locked == false)
560 		UNP_LINK_WUNLOCK();
561 
562 	return (0);
563 }
564 
565 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)566 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
567 {
568 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
569 	struct vattr vattr;
570 	int error, namelen;
571 	struct nameidata nd;
572 	struct unpcb *unp;
573 	struct vnode *vp;
574 	struct mount *mp;
575 	cap_rights_t rights;
576 	char *buf;
577 	mode_t mode;
578 
579 	if (nam->sa_family != AF_UNIX)
580 		return (EAFNOSUPPORT);
581 
582 	unp = sotounpcb(so);
583 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
584 
585 	if (soun->sun_len > sizeof(struct sockaddr_un))
586 		return (EINVAL);
587 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
588 	if (namelen <= 0)
589 		return (EINVAL);
590 
591 	/*
592 	 * We don't allow simultaneous bind() calls on a single UNIX domain
593 	 * socket, so flag in-progress operations, and return an error if an
594 	 * operation is already in progress.
595 	 *
596 	 * Historically, we have not allowed a socket to be rebound, so this
597 	 * also returns an error.  Not allowing re-binding simplifies the
598 	 * implementation and avoids a great many possible failure modes.
599 	 */
600 	UNP_PCB_LOCK(unp);
601 	if (unp->unp_vnode != NULL) {
602 		UNP_PCB_UNLOCK(unp);
603 		return (EINVAL);
604 	}
605 	if (unp->unp_flags & UNP_BINDING) {
606 		UNP_PCB_UNLOCK(unp);
607 		return (EALREADY);
608 	}
609 	unp->unp_flags |= UNP_BINDING;
610 	mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
611 	UNP_PCB_UNLOCK(unp);
612 
613 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
614 	bcopy(soun->sun_path, buf, namelen);
615 	buf[namelen] = 0;
616 
617 restart:
618 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
619 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
620 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
621 	error = namei(&nd);
622 	if (error)
623 		goto error;
624 	vp = nd.ni_vp;
625 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
626 		NDFREE_PNBUF(&nd);
627 		if (nd.ni_dvp == vp)
628 			vrele(nd.ni_dvp);
629 		else
630 			vput(nd.ni_dvp);
631 		if (vp != NULL) {
632 			vrele(vp);
633 			error = EADDRINUSE;
634 			goto error;
635 		}
636 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
637 		if (error)
638 			goto error;
639 		goto restart;
640 	}
641 	VATTR_NULL(&vattr);
642 	vattr.va_type = VSOCK;
643 	vattr.va_mode = mode;
644 #ifdef MAC
645 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
646 	    &vattr);
647 #endif
648 	if (error == 0) {
649 		/*
650 		 * The prior lookup may have left LK_SHARED in cn_lkflags,
651 		 * and VOP_CREATE technically only requires the new vnode to
652 		 * be locked shared. Most filesystems will return the new vnode
653 		 * locked exclusive regardless, but we should explicitly
654 		 * specify that here since we require it and assert to that
655 		 * effect below.
656 		 */
657 		nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
658 		    LK_EXCLUSIVE;
659 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
660 	}
661 	NDFREE_PNBUF(&nd);
662 	if (error) {
663 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
664 		vn_finished_write(mp);
665 		if (error == ERELOOKUP)
666 			goto restart;
667 		goto error;
668 	}
669 	vp = nd.ni_vp;
670 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
671 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
672 
673 	UNP_PCB_LOCK(unp);
674 	VOP_UNP_BIND(vp, unp);
675 	unp->unp_vnode = vp;
676 	unp->unp_addr = soun;
677 	unp->unp_flags &= ~UNP_BINDING;
678 	UNP_PCB_UNLOCK(unp);
679 	vref(vp);
680 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
681 	vn_finished_write(mp);
682 	free(buf, M_TEMP);
683 	return (0);
684 
685 error:
686 	UNP_PCB_LOCK(unp);
687 	unp->unp_flags &= ~UNP_BINDING;
688 	UNP_PCB_UNLOCK(unp);
689 	free(buf, M_TEMP);
690 	return (error);
691 }
692 
693 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)694 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
695 {
696 
697 	return (uipc_bindat(AT_FDCWD, so, nam, td));
698 }
699 
700 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)701 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
702 {
703 	int error;
704 
705 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
706 	error = unp_connect(so, nam, td);
707 	return (error);
708 }
709 
710 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)711 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
712     struct thread *td)
713 {
714 	int error;
715 
716 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
717 	error = unp_connectat(fd, so, nam, td, false);
718 	return (error);
719 }
720 
721 static void
uipc_close(struct socket * so)722 uipc_close(struct socket *so)
723 {
724 	struct unpcb *unp, *unp2;
725 	struct vnode *vp = NULL;
726 	struct mtx *vplock;
727 
728 	unp = sotounpcb(so);
729 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
730 
731 	vplock = NULL;
732 	if ((vp = unp->unp_vnode) != NULL) {
733 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
734 		mtx_lock(vplock);
735 	}
736 	UNP_PCB_LOCK(unp);
737 	if (vp && unp->unp_vnode == NULL) {
738 		mtx_unlock(vplock);
739 		vp = NULL;
740 	}
741 	if (vp != NULL) {
742 		VOP_UNP_DETACH(vp);
743 		unp->unp_vnode = NULL;
744 	}
745 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
746 		unp_disconnect(unp, unp2);
747 	else
748 		UNP_PCB_UNLOCK(unp);
749 	if (vp) {
750 		mtx_unlock(vplock);
751 		vrele(vp);
752 	}
753 }
754 
755 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)756 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
757     struct thread *td __unused)
758 {
759 	struct unpcb *unp;
760 	int error;
761 
762 	if ((mode & ~ACCESSPERMS) != 0)
763 		return (EINVAL);
764 
765 	error = 0;
766 	unp = sotounpcb(so);
767 	UNP_PCB_LOCK(unp);
768 	if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
769 		error = EINVAL;
770 	else
771 		unp->unp_mode = mode;
772 	UNP_PCB_UNLOCK(unp);
773 	return (error);
774 }
775 
776 static int
uipc_connect2(struct socket * so1,struct socket * so2)777 uipc_connect2(struct socket *so1, struct socket *so2)
778 {
779 	struct unpcb *unp, *unp2;
780 
781 	if (so1->so_type != so2->so_type)
782 		return (EPROTOTYPE);
783 
784 	unp = so1->so_pcb;
785 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
786 	unp2 = so2->so_pcb;
787 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
788 	unp_pcb_lock_pair(unp, unp2);
789 	unp_connect2(so1, so2, false);
790 	unp_pcb_unlock_pair(unp, unp2);
791 
792 	return (0);
793 }
794 
795 static void
uipc_detach(struct socket * so)796 uipc_detach(struct socket *so)
797 {
798 	struct unpcb *unp, *unp2;
799 	struct mtx *vplock;
800 	struct vnode *vp;
801 	int local_unp_rights;
802 
803 	unp = sotounpcb(so);
804 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
805 
806 	vp = NULL;
807 	vplock = NULL;
808 
809 	if (!SOLISTENING(so))
810 		unp_dispose(so);
811 
812 	UNP_LINK_WLOCK();
813 	LIST_REMOVE(unp, unp_link);
814 	if (unp->unp_gcflag & UNPGC_DEAD)
815 		LIST_REMOVE(unp, unp_dead);
816 	unp->unp_gencnt = ++unp_gencnt;
817 	--unp_count;
818 	UNP_LINK_WUNLOCK();
819 
820 	UNP_PCB_UNLOCK_ASSERT(unp);
821  restart:
822 	if ((vp = unp->unp_vnode) != NULL) {
823 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
824 		mtx_lock(vplock);
825 	}
826 	UNP_PCB_LOCK(unp);
827 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
828 		if (vplock)
829 			mtx_unlock(vplock);
830 		UNP_PCB_UNLOCK(unp);
831 		goto restart;
832 	}
833 	if ((vp = unp->unp_vnode) != NULL) {
834 		VOP_UNP_DETACH(vp);
835 		unp->unp_vnode = NULL;
836 	}
837 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
838 		unp_disconnect(unp, unp2);
839 	else
840 		UNP_PCB_UNLOCK(unp);
841 
842 	UNP_REF_LIST_LOCK();
843 	while (!LIST_EMPTY(&unp->unp_refs)) {
844 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
845 
846 		unp_pcb_hold(ref);
847 		UNP_REF_LIST_UNLOCK();
848 
849 		MPASS(ref != unp);
850 		UNP_PCB_UNLOCK_ASSERT(ref);
851 		unp_drop(ref);
852 		UNP_REF_LIST_LOCK();
853 	}
854 	UNP_REF_LIST_UNLOCK();
855 
856 	UNP_PCB_LOCK(unp);
857 	local_unp_rights = unp_rights;
858 	unp->unp_socket->so_pcb = NULL;
859 	unp->unp_socket = NULL;
860 	free(unp->unp_addr, M_SONAME);
861 	unp->unp_addr = NULL;
862 	if (!unp_pcb_rele(unp))
863 		UNP_PCB_UNLOCK(unp);
864 	if (vp) {
865 		mtx_unlock(vplock);
866 		vrele(vp);
867 	}
868 	if (local_unp_rights)
869 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
870 
871 	switch (so->so_type) {
872 	case SOCK_STREAM:
873 	case SOCK_SEQPACKET:
874 		MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
875 		    so->so_rcv.uxst_peer == NULL));
876 		break;
877 	case SOCK_DGRAM:
878 		/*
879 		 * Everything should have been unlinked/freed by unp_dispose()
880 		 * and/or unp_disconnect().
881 		 */
882 		MPASS(so->so_rcv.uxdg_peeked == NULL);
883 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
884 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
885 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
886 	}
887 }
888 
889 static int
uipc_disconnect(struct socket * so)890 uipc_disconnect(struct socket *so)
891 {
892 	struct unpcb *unp, *unp2;
893 
894 	unp = sotounpcb(so);
895 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
896 
897 	UNP_PCB_LOCK(unp);
898 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
899 		unp_disconnect(unp, unp2);
900 	else
901 		UNP_PCB_UNLOCK(unp);
902 	return (0);
903 }
904 
905 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)906 uipc_listen(struct socket *so, int backlog, struct thread *td)
907 {
908 	struct unpcb *unp;
909 	int error;
910 
911 	MPASS(so->so_type != SOCK_DGRAM);
912 
913 	/*
914 	 * Synchronize with concurrent connection attempts.
915 	 */
916 	error = 0;
917 	unp = sotounpcb(so);
918 	UNP_PCB_LOCK(unp);
919 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
920 		error = EINVAL;
921 	else if (unp->unp_vnode == NULL)
922 		error = EDESTADDRREQ;
923 	if (error != 0) {
924 		UNP_PCB_UNLOCK(unp);
925 		return (error);
926 	}
927 
928 	SOCK_LOCK(so);
929 	error = solisten_proto_check(so);
930 	if (error == 0) {
931 		cru2xt(td, &unp->unp_peercred);
932 		if (!SOLISTENING(so)) {
933 			(void)chgsbsize(so->so_cred->cr_uidinfo,
934 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
935 			(void)chgsbsize(so->so_cred->cr_uidinfo,
936 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
937 		}
938 		solisten_proto(so, backlog);
939 	}
940 	SOCK_UNLOCK(so);
941 	UNP_PCB_UNLOCK(unp);
942 	return (error);
943 }
944 
945 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)946 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
947 {
948 	struct unpcb *unp, *unp2;
949 	const struct sockaddr *sa;
950 
951 	unp = sotounpcb(so);
952 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
953 
954 	UNP_PCB_LOCK(unp);
955 	unp2 = unp_pcb_lock_peer(unp);
956 	if (unp2 != NULL) {
957 		if (unp2->unp_addr != NULL)
958 			sa = (struct sockaddr *)unp2->unp_addr;
959 		else
960 			sa = &sun_noname;
961 		bcopy(sa, ret, sa->sa_len);
962 		unp_pcb_unlock_pair(unp, unp2);
963 	} else {
964 		UNP_PCB_UNLOCK(unp);
965 		sa = &sun_noname;
966 		bcopy(sa, ret, sa->sa_len);
967 	}
968 	return (0);
969 }
970 
971 /*
972  * pr_sosend() called with mbuf instead of uio is a kernel thread.  NFS,
973  * netgraph(4) and other subsystems can call into socket code.  The
974  * function will condition the mbuf so that it can be safely put onto socket
975  * buffer and calculate its char count and mbuf count.
976  *
977  * Note: we don't support receiving control data from a kernel thread.  Our
978  * pr_sosend methods have MPASS() to check that.  This may change.
979  */
980 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)981 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
982 {
983 
984 	M_ASSERTPKTHDR(m);
985 
986 	m_clrprotoflags(m);
987 	m_tag_delete_chain(m, NULL);
988 	m->m_pkthdr.rcvif = NULL;
989 	m->m_pkthdr.flowid = 0;
990 	m->m_pkthdr.csum_flags = 0;
991 	m->m_pkthdr.fibnum = 0;
992 	m->m_pkthdr.rsstype = 0;
993 
994 	mc_init_m(mc, m);
995 	MPASS(m->m_pkthdr.len == mc->mc_len);
996 }
997 
998 #ifdef SOCKBUF_DEBUG
999 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1000 uipc_stream_sbcheck(struct sockbuf *sb)
1001 {
1002 	struct mbuf *d;
1003 	u_int dacc, dccc, dctl, dmbcnt;
1004 	bool notready = false;
1005 
1006 	dacc = dccc = dctl = dmbcnt = 0;
1007 	STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1008 		if (d == sb->uxst_fnrdy) {
1009 			MPASS(d->m_flags & M_NOTREADY);
1010 			notready = true;
1011 		}
1012 		if (d->m_type == MT_CONTROL)
1013 			dctl += d->m_len;
1014 		else if (d->m_type == MT_DATA) {
1015 			dccc +=  d->m_len;
1016 			if (!notready)
1017 				dacc += d->m_len;
1018 		} else
1019 			MPASS(0);
1020 		dmbcnt += MSIZE;
1021 		if (d->m_flags & M_EXT)
1022 			dmbcnt += d->m_ext.ext_size;
1023 		if (d->m_stailq.stqe_next == NULL)
1024 			MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1025 	}
1026 	MPASS(sb->uxst_fnrdy == NULL || notready);
1027 	MPASS(dacc == sb->sb_acc);
1028 	MPASS(dccc == sb->sb_ccc);
1029 	MPASS(dctl == sb->sb_ctl);
1030 	MPASS(dmbcnt == sb->sb_mbcnt);
1031 	(void)STAILQ_EMPTY(&sb->uxst_mbq);
1032 }
1033 #define	UIPC_STREAM_SBCHECK(sb)	uipc_stream_sbcheck(sb)
1034 #else
1035 #define	UIPC_STREAM_SBCHECK(sb)	do {} while (0)
1036 #endif
1037 
1038 /*
1039  * uipc_stream_sbspace() returns how much a writer can send, limited by char
1040  * count or mbuf memory use, whatever ends first.
1041  *
1042  * An obvious and legitimate reason for a socket having more data than allowed,
1043  * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1044  * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1045  * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1046  * up with 'mc_mlen > mbspace'.  A typical scenario would be a full buffer with
1047  * writer trying to push in a large write, and a slow reader, that reads just
1048  * a few bytes at a time.  In that case writer will keep creating new mbufs
1049  * with mc_split().  These mbufs will carry little chars, but will all point at
1050  * the same cluster, thus each adding cluster size to sb_mbcnt.  This means we
1051  * will count same cluster many times potentially underutilizing socket buffer.
1052  * We aren't optimizing towards ineffective readers.  Classic socket buffer had
1053  * the same "feature".
1054  */
1055 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1056 uipc_stream_sbspace(struct sockbuf *sb)
1057 {
1058 	u_int space, mbspace;
1059 
1060 	if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1061 		space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1062 	else
1063 		return (0);
1064 	if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1065 		mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1066 	else
1067 		return (0);
1068 
1069 	return (min(space, mbspace));
1070 }
1071 
1072 /*
1073  * UNIX version of generic sbwait() for writes.  We wait on peer's receive
1074  * buffer, using our timeout.
1075  */
1076 static int
uipc_stream_sbwait(struct socket * so,sbintime_t timeo)1077 uipc_stream_sbwait(struct socket *so, sbintime_t timeo)
1078 {
1079 	struct sockbuf *sb = &so->so_rcv;
1080 
1081 	SOCK_RECVBUF_LOCK_ASSERT(so);
1082 	sb->sb_flags |= SB_WAIT;
1083 	return (msleep_sbt(&sb->sb_acc, SOCK_RECVBUF_MTX(so), PSOCK | PCATCH,
1084 	    "sbwait", timeo, 0, 0));
1085 }
1086 
1087 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1088 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1089     struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1090     struct thread *td)
1091 {
1092 	struct unpcb *unp2;
1093 	struct socket *so2;
1094 	struct sockbuf *sb;
1095 	struct uio *uio;
1096 	struct mchain mc, cmc;
1097 	size_t resid, sent;
1098 	bool nonblock, eor, aio;
1099 	int error;
1100 
1101 	MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1102 	MPASS(m == NULL || c == NULL);
1103 
1104 	if (__predict_false(flags & MSG_OOB))
1105 		return (EOPNOTSUPP);
1106 
1107 	nonblock = (so->so_state & SS_NBIO) ||
1108 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1109 	eor = flags & MSG_EOR;
1110 
1111 	mc = MCHAIN_INITIALIZER(&mc);
1112 	cmc = MCHAIN_INITIALIZER(&cmc);
1113 	sent = 0;
1114 	aio = false;
1115 
1116 	if (m == NULL) {
1117 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1118 			goto out;
1119 		/*
1120 		 * This function may read more data from the uio than it would
1121 		 * then place on socket.  That would leave uio inconsistent
1122 		 * upon return.  Normally uio is allocated on the stack of the
1123 		 * syscall thread and we don't care about leaving it consistent.
1124 		 * However, aio(9) will allocate a uio as part of job and will
1125 		 * use it to track progress.  We detect aio(9) checking the
1126 		 * SB_AIO_RUNNING flag.  It is safe to check it without lock
1127 		 * cause it is set and cleared in the same taskqueue thread.
1128 		 *
1129 		 * This check can also produce a false positive: there is
1130 		 * aio(9) job and also there is a syscall we are serving now.
1131 		 * No sane software does that, it would leave to a mess in
1132 		 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1133 		 * But syzkaller can create this mess.  For such false positive
1134 		 * our goal is just don't panic or leak memory.
1135 		 */
1136 		if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1137 			uio = cloneuio(uio0);
1138 			aio = true;
1139 		} else {
1140 			uio = uio0;
1141 			resid = uio->uio_resid;
1142 		}
1143 		/*
1144 		 * Optimization for a case when our send fits into the receive
1145 		 * buffer - do the copyin before taking any locks, sized to our
1146 		 * send buffer.  Later copyins will also take into account
1147 		 * space in the peer's receive buffer.
1148 		 */
1149 		error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1150 		    eor ? M_EOR : 0);
1151 		if (__predict_false(error))
1152 			goto out2;
1153 	} else
1154 		uipc_reset_kernel_mbuf(m, &mc);
1155 
1156 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1157 	if (error)
1158 		goto out2;
1159 
1160 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1161 		goto out3;
1162 
1163 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1164 		/*
1165 		 * Credentials are passed only once on SOCK_STREAM and
1166 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1167 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1168 		 */
1169 		unp_addsockcred(td, &cmc, unp2->unp_flags);
1170 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1171 	}
1172 
1173 	/*
1174 	 * Cycle through the data to send and available space in the peer's
1175 	 * receive buffer.  Put a reference on the peer socket, so that it
1176 	 * doesn't get freed while we sbwait().  If peer goes away, we will
1177 	 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1178 	 * socket destruction.
1179 	 */
1180 	so2 = unp2->unp_socket;
1181 	soref(so2);
1182 	UNP_PCB_UNLOCK(unp2);
1183 	sb = &so2->so_rcv;
1184 	while (mc.mc_len + cmc.mc_len > 0) {
1185 		struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1186 		u_int space;
1187 
1188 		SOCK_RECVBUF_LOCK(so2);
1189 restart:
1190 		UIPC_STREAM_SBCHECK(sb);
1191 		if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1192 			SOCK_RECVBUF_UNLOCK(so2);
1193 			error = EMSGSIZE;
1194 			goto out4;
1195 		}
1196 		if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1197 			SOCK_RECVBUF_UNLOCK(so2);
1198 			error = EPIPE;
1199 			goto out4;
1200 		}
1201 		/*
1202 		 * Wait on the peer socket receive buffer until we have enough
1203 		 * space to put at least control.  The data is a stream and can
1204 		 * be put partially, but control is really a datagram.
1205 		 */
1206 		space = uipc_stream_sbspace(sb);
1207 		if (space < sb->sb_lowat || space < cmc.mc_len) {
1208 			if (nonblock) {
1209 				if (aio)
1210 					sb->uxst_flags |= UXST_PEER_AIO;
1211 				SOCK_RECVBUF_UNLOCK(so2);
1212 				if (aio) {
1213 					SOCK_SENDBUF_LOCK(so);
1214 					so->so_snd.sb_ccc =
1215 					    so->so_snd.sb_hiwat - space;
1216 					SOCK_SENDBUF_UNLOCK(so);
1217 				}
1218 				error = EWOULDBLOCK;
1219 				goto out4;
1220 			}
1221 			if ((error = uipc_stream_sbwait(so2,
1222 			    so->so_snd.sb_timeo)) != 0) {
1223 				SOCK_RECVBUF_UNLOCK(so2);
1224 				goto out4;
1225 			} else
1226 				goto restart;
1227 		}
1228 		MPASS(space >= cmc.mc_len);
1229 		space -= cmc.mc_len;
1230 		if (space == 0) {
1231 			/* There is space only to send control. */
1232 			MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1233 			mcnext = mc;
1234 			mc = MCHAIN_INITIALIZER(&mc);
1235 		} else if (space < mc.mc_len) {
1236 			/* Not enough space. */
1237 			if (__predict_false(mc_split(&mc, &mcnext, space,
1238 			    M_NOWAIT) == ENOMEM)) {
1239 				/*
1240 				 * If allocation failed use M_WAITOK and merge
1241 				 * the chain back.  Next time mc_split() will
1242 				 * easily split at the same place.  Only if we
1243 				 * race with setsockopt(SO_RCVBUF) shrinking
1244 				 * sb_hiwat can this happen more than once.
1245 				 */
1246 				SOCK_RECVBUF_UNLOCK(so2);
1247 				(void)mc_split(&mc, &mcnext, space, M_WAITOK);
1248 				mc_concat(&mc, &mcnext);
1249 				SOCK_RECVBUF_LOCK(so2);
1250 				goto restart;
1251 			}
1252 			MPASS(mc.mc_len == space);
1253 		}
1254 		if (!STAILQ_EMPTY(&cmc.mc_q)) {
1255 			STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1256 			sb->sb_ctl += cmc.mc_len;
1257 			sb->sb_mbcnt += cmc.mc_mlen;
1258 			cmc.mc_len = 0;
1259 		}
1260 		sent += mc.mc_len;
1261 		if (sb->uxst_fnrdy == NULL)
1262 			sb->sb_acc += mc.mc_len;
1263 		sb->sb_ccc += mc.mc_len;
1264 		sb->sb_mbcnt += mc.mc_mlen;
1265 		STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1266 		UIPC_STREAM_SBCHECK(sb);
1267 		space = uipc_stream_sbspace(sb);
1268 		sorwakeup_locked(so2);
1269 		if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1270 			/*
1271 			 * Such assignment is unsafe in general, but it is
1272 			 * safe with !STAILQ_EMPTY(&mcnext.mc_q).  In C++ we
1273 			 * could reload = for STAILQs :)
1274 			 */
1275 			mc = mcnext;
1276 		} else if (uio != NULL && uio->uio_resid > 0) {
1277 			/*
1278 			 * Copyin sum of peer's receive buffer space and our
1279 			 * sb_hiwat, which is our virtual send buffer size.
1280 			 * See comment above unpst_sendspace declaration.
1281 			 * We are reading sb_hiwat locklessly, cause a) we
1282 			 * don't care about an application that does send(2)
1283 			 * and setsockopt(2) racing internally, and for an
1284 			 * application that does this in sequence we will see
1285 			 * the correct value cause sbsetopt() uses buffer lock
1286 			 * and we also have already acquired it at least once.
1287 			 */
1288 			error = mc_uiotomc(&mc, uio, space +
1289 			    atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1290 			    eor ? M_EOR : 0);
1291 			if (__predict_false(error))
1292 				goto out4;
1293 		} else
1294 			mc = MCHAIN_INITIALIZER(&mc);
1295 	}
1296 
1297 	MPASS(STAILQ_EMPTY(&mc.mc_q));
1298 
1299 	td->td_ru.ru_msgsnd++;
1300 out4:
1301 	sorele(so2);
1302 out3:
1303 	SOCK_IO_SEND_UNLOCK(so);
1304 out2:
1305 	if (aio) {
1306 		freeuio(uio);
1307 		uioadvance(uio0, sent);
1308 	} else if (uio != NULL)
1309 		uio->uio_resid = resid - sent;
1310 	if (!mc_empty(&cmc))
1311 		unp_scan(mc_first(&cmc), unp_freerights);
1312 out:
1313 	mc_freem(&mc);
1314 	mc_freem(&cmc);
1315 
1316 	return (error);
1317 }
1318 
1319 /*
1320  * Wakeup a writer, used by recv(2) and shutdown(2).
1321  *
1322  * @param so	Points to a connected stream socket with receive buffer locked
1323  *
1324  * In a blocking mode peer is sleeping on our receive buffer, and we need just
1325  * wakeup(9) on it.  But to wake up various event engines, we need to reach
1326  * over to peer's selinfo.  This can be safely done as the socket buffer
1327  * receive lock is protecting us from the peer going away.
1328  */
1329 static void
uipc_wakeup_writer(struct socket * so)1330 uipc_wakeup_writer(struct socket *so)
1331 {
1332 	struct sockbuf *sb = &so->so_rcv;
1333 	struct selinfo *sel;
1334 
1335 	SOCK_RECVBUF_LOCK_ASSERT(so);
1336 	MPASS(sb->uxst_peer != NULL);
1337 
1338 	sel = &sb->uxst_peer->so_wrsel;
1339 
1340 	if (sb->uxst_flags & UXST_PEER_SEL) {
1341 		selwakeuppri(sel, PSOCK);
1342 		/*
1343 		 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1344 		 */
1345 		if (!SEL_WAITING(sel))
1346 			sb->uxst_flags &= ~UXST_PEER_SEL;
1347 	}
1348 	if (sb->sb_flags & SB_WAIT) {
1349 		sb->sb_flags &= ~SB_WAIT;
1350 		wakeup(&sb->sb_acc);
1351 	}
1352 	KNOTE_LOCKED(&sel->si_note, 0);
1353 	SOCK_RECVBUF_UNLOCK(so);
1354 }
1355 
1356 static void
uipc_cantrcvmore(struct socket * so)1357 uipc_cantrcvmore(struct socket *so)
1358 {
1359 
1360 	SOCK_RECVBUF_LOCK(so);
1361 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1362 	selwakeuppri(&so->so_rdsel, PSOCK);
1363 	KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1364 	if (so->so_rcv.uxst_peer != NULL)
1365 		uipc_wakeup_writer(so);
1366 	else
1367 		SOCK_RECVBUF_UNLOCK(so);
1368 }
1369 
1370 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1371 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1372     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1373 {
1374 	struct sockbuf *sb = &so->so_rcv;
1375 	struct mbuf *control, *m, *first, *part, *next;
1376 	u_int ctl, space, datalen, mbcnt, partlen;
1377 	int error, flags;
1378 	bool nonblock, waitall, peek;
1379 
1380 	MPASS(mp0 == NULL);
1381 
1382 	if (psa != NULL)
1383 		*psa = NULL;
1384 	if (controlp != NULL)
1385 		*controlp = NULL;
1386 
1387 	flags = flagsp != NULL ? *flagsp : 0;
1388 	nonblock = (so->so_state & SS_NBIO) ||
1389 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1390 	peek = flags & MSG_PEEK;
1391 	waitall = (flags & MSG_WAITALL) && !peek;
1392 
1393 	/*
1394 	 * This check may fail only on a socket that never went through
1395 	 * connect(2).  We can check this locklessly, cause: a) for a new born
1396 	 * socket we don't care about applications that may race internally
1397 	 * between connect(2) and recv(2), and b) for a dying socket if we
1398 	 * miss update by unp_sosidisconnected(), we would still get the check
1399 	 * correct.  For dying socket we would observe SBS_CANTRCVMORE later.
1400 	 */
1401 	if (__predict_false((atomic_load_short(&so->so_state) &
1402 	    (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1403 		return (ENOTCONN);
1404 
1405 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1406 	if (__predict_false(error))
1407 		return (error);
1408 
1409 restart:
1410 	SOCK_RECVBUF_LOCK(so);
1411 	UIPC_STREAM_SBCHECK(sb);
1412 	while (sb->sb_acc < sb->sb_lowat &&
1413 	    (sb->sb_ctl == 0 || controlp == NULL)) {
1414 		if (so->so_error) {
1415 			error = so->so_error;
1416 			if (!peek)
1417 				so->so_error = 0;
1418 			SOCK_RECVBUF_UNLOCK(so);
1419 			SOCK_IO_RECV_UNLOCK(so);
1420 			return (error);
1421 		}
1422 		if (sb->sb_state & SBS_CANTRCVMORE) {
1423 			SOCK_RECVBUF_UNLOCK(so);
1424 			SOCK_IO_RECV_UNLOCK(so);
1425 			return (0);
1426 		}
1427 		if (nonblock) {
1428 			SOCK_RECVBUF_UNLOCK(so);
1429 			SOCK_IO_RECV_UNLOCK(so);
1430 			return (EWOULDBLOCK);
1431 		}
1432 		error = sbwait(so, SO_RCV);
1433 		if (error) {
1434 			SOCK_RECVBUF_UNLOCK(so);
1435 			SOCK_IO_RECV_UNLOCK(so);
1436 			return (error);
1437 		}
1438 	}
1439 
1440 	MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1441 	MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1442 
1443 	mbcnt = 0;
1444 	ctl = 0;
1445 	first = STAILQ_FIRST(&sb->uxst_mbq);
1446 	if (first->m_type == MT_CONTROL) {
1447 		control = first;
1448 		STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1449 			if (first->m_type != MT_CONTROL)
1450 				break;
1451 			ctl += first->m_len;
1452 			mbcnt += MSIZE;
1453 			if (first->m_flags & M_EXT)
1454 				mbcnt += first->m_ext.ext_size;
1455 		}
1456 	} else
1457 		control = NULL;
1458 
1459 	/*
1460 	 * Find split point for the next copyout.  On exit from the loop,
1461 	 * 'next' points to the new head of the buffer STAILQ and 'datalen'
1462 	 * contains the amount of data we will copy out at the end.  The
1463 	 * copyout is protected by the I/O lock only, as writers can only
1464 	 * append to the buffer.  We need to record the socket buffer state
1465 	 * and do all length adjustments before dropping the socket buffer lock.
1466 	 */
1467 	for (space = uio->uio_resid, m = next = first, part = NULL, datalen = 0;
1468 	     space > 0 && m != sb->uxst_fnrdy && m->m_type == MT_DATA;
1469 	     m = STAILQ_NEXT(m, m_stailq)) {
1470 		if (space >= m->m_len) {
1471 			space -= m->m_len;
1472 			datalen += m->m_len;
1473 			mbcnt += MSIZE;
1474 			if (m->m_flags & M_EXT)
1475 				mbcnt += m->m_ext.ext_size;
1476 			if (m->m_flags & M_EOR) {
1477 				flags |= MSG_EOR;
1478 				next = STAILQ_NEXT(m, m_stailq);
1479 				break;
1480 			}
1481 		} else {
1482 			datalen += space;
1483 			partlen = space;
1484 			if (!peek) {
1485 				m->m_len -= partlen;
1486 				m->m_data += partlen;
1487 			}
1488 			next = part = m;
1489 			break;
1490 		}
1491 		next = STAILQ_NEXT(m, m_stailq);
1492 	}
1493 
1494 	if (!peek) {
1495 		if (next == NULL)
1496 			STAILQ_INIT(&sb->uxst_mbq);
1497 		else
1498 			STAILQ_FIRST(&sb->uxst_mbq) = next;
1499 		MPASS(sb->sb_acc >= datalen);
1500 		sb->sb_acc -= datalen;
1501 		sb->sb_ccc -= datalen;
1502 		MPASS(sb->sb_ctl >= ctl);
1503 		sb->sb_ctl -= ctl;
1504 		MPASS(sb->sb_mbcnt >= mbcnt);
1505 		sb->sb_mbcnt -= mbcnt;
1506 		UIPC_STREAM_SBCHECK(sb);
1507 		if (__predict_true(sb->uxst_peer != NULL)) {
1508 			struct unpcb *unp2;
1509 			bool aio;
1510 
1511 			if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1512 				sb->uxst_flags &= ~UXST_PEER_AIO;
1513 
1514 			uipc_wakeup_writer(so);
1515 			/*
1516 			 * XXXGL: need to go through uipc_lock_peer() after
1517 			 * the receive buffer lock dropped, it was protecting
1518 			 * us from unp_soisdisconnected().  The aio workarounds
1519 			 * should be refactored to the aio(4) side.
1520 			 */
1521 			if (aio && uipc_lock_peer(so, &unp2) == 0) {
1522 				struct socket *so2 = unp2->unp_socket;
1523 
1524 				SOCK_SENDBUF_LOCK(so2);
1525 				so2->so_snd.sb_ccc -= datalen;
1526 				sowakeup_aio(so2, SO_SND);
1527 				SOCK_SENDBUF_UNLOCK(so2);
1528 				UNP_PCB_UNLOCK(unp2);
1529 			}
1530 		} else
1531 			SOCK_RECVBUF_UNLOCK(so);
1532 	} else
1533 		SOCK_RECVBUF_UNLOCK(so);
1534 
1535 	while (control != NULL && control->m_type == MT_CONTROL) {
1536 		if (!peek) {
1537 			/*
1538 			 * unp_externalize() failure must abort entire read(2).
1539 			 * Such failure should also free the problematic
1540 			 * control, but link back the remaining data to the head
1541 			 * of the buffer, so that socket is not left in a state
1542 			 * where it can't progress forward with reading.
1543 			 * Probability of such a failure is really low, so it
1544 			 * is fine that we need to perform pretty complex
1545 			 * operation here to reconstruct the buffer.
1546 			 */
1547 			error = unp_externalize(control, controlp, flags);
1548 			control = m_free(control);
1549 			if (__predict_false(error && control != NULL)) {
1550 				struct mchain cmc;
1551 
1552 				mc_init_m(&cmc, control);
1553 
1554 				SOCK_RECVBUF_LOCK(so);
1555 				if (__predict_false(
1556 				    (sb->sb_state & SBS_CANTRCVMORE) ||
1557 				    cmc.mc_len + sb->sb_ccc + sb->sb_ctl >
1558 				    sb->sb_hiwat)) {
1559 					/*
1560 					 * While the lock was dropped and we
1561 					 * were failing in unp_externalize(),
1562 					 * the peer could has a) disconnected,
1563 					 * b) filled the buffer so that we
1564 					 * can't prepend data back.
1565 					 * These are two edge conditions that
1566 					 * we just can't handle, so lose the
1567 					 * data and return the error.
1568 					 */
1569 					SOCK_RECVBUF_UNLOCK(so);
1570 					SOCK_IO_RECV_UNLOCK(so);
1571 					unp_scan(mc_first(&cmc),
1572 					    unp_freerights);
1573 					mc_freem(&cmc);
1574 					return (error);
1575 				}
1576 
1577 				UIPC_STREAM_SBCHECK(sb);
1578 				/* XXXGL: STAILQ_PREPEND */
1579 				STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1580 				STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1581 
1582 				sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1583 				    sb->sb_mbcnt = 0;
1584 				STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1585 					if (m->m_type == MT_DATA) {
1586 						sb->sb_acc += m->m_len;
1587 						sb->sb_ccc += m->m_len;
1588 					} else {
1589 						sb->sb_ctl += m->m_len;
1590 					}
1591 					sb->sb_mbcnt += MSIZE;
1592 					if (m->m_flags & M_EXT)
1593 						sb->sb_mbcnt +=
1594 						    m->m_ext.ext_size;
1595 				}
1596 				UIPC_STREAM_SBCHECK(sb);
1597 				SOCK_RECVBUF_UNLOCK(so);
1598 				SOCK_IO_RECV_UNLOCK(so);
1599 				return (error);
1600 			}
1601 			if (controlp != NULL) {
1602 				while (*controlp != NULL)
1603 					controlp = &(*controlp)->m_next;
1604 			}
1605 		} else {
1606 			/*
1607 			 * XXXGL
1608 			 *
1609 			 * In MSG_PEEK case control is not externalized.  This
1610 			 * means we are leaking some kernel pointers to the
1611 			 * userland.  They are useless to a law-abiding
1612 			 * application, but may be useful to a malware.  This
1613 			 * is what the historical implementation in the
1614 			 * soreceive_generic() did. To be improved?
1615 			 */
1616 			if (controlp != NULL) {
1617 				*controlp = m_copym(control, 0, control->m_len,
1618 				    M_WAITOK);
1619 				controlp = &(*controlp)->m_next;
1620 			}
1621 			control = STAILQ_NEXT(control, m_stailq);
1622 		}
1623 	}
1624 
1625 	for (m = first; datalen > 0; m = next) {
1626 		void *data;
1627 		u_int len;
1628 
1629 		next = STAILQ_NEXT(m, m_stailq);
1630 		if (m == part) {
1631 			data = peek ?
1632 			    mtod(m, char *) : mtod(m, char *) - partlen;
1633 			len = partlen;
1634 		} else {
1635 			data = mtod(m, char *);
1636 			len = m->m_len;
1637 		}
1638 		error = uiomove(data, len, uio);
1639 		if (__predict_false(error)) {
1640 			if (!peek)
1641 				for (; m != part && datalen > 0; m = next) {
1642 					next = STAILQ_NEXT(m, m_stailq);
1643 					MPASS(datalen >= m->m_len);
1644 					datalen -= m->m_len;
1645 					m_free(m);
1646 				}
1647 			SOCK_IO_RECV_UNLOCK(so);
1648 			return (error);
1649 		}
1650 		datalen -= len;
1651 		if (!peek && m != part)
1652 			m_free(m);
1653 	}
1654 	if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1655 		goto restart;
1656 	SOCK_IO_RECV_UNLOCK(so);
1657 
1658 	if (flagsp != NULL)
1659 		*flagsp |= flags;
1660 
1661 	uio->uio_td->td_ru.ru_msgrcv++;
1662 
1663 	return (0);
1664 }
1665 
1666 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1667 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1668     struct thread *td)
1669 {
1670 	struct unpcb *unp = sotounpcb(so);
1671 	int revents;
1672 
1673 	UNP_PCB_LOCK(unp);
1674 	if (SOLISTENING(so)) {
1675 		/* The above check is safe, since conversion to listening uses
1676 		 * both protocol and socket lock.
1677 		 */
1678 		SOCK_LOCK(so);
1679 		if (!(events & (POLLIN | POLLRDNORM)))
1680 			revents = 0;
1681 		else if (!TAILQ_EMPTY(&so->sol_comp))
1682 			revents = events & (POLLIN | POLLRDNORM);
1683 		else if (so->so_error)
1684 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1685 		else {
1686 			selrecord(td, &so->so_rdsel);
1687 			revents = 0;
1688 		}
1689 		SOCK_UNLOCK(so);
1690 	} else {
1691 		if (so->so_state & SS_ISDISCONNECTED)
1692 			revents = POLLHUP;
1693 		else
1694 			revents = 0;
1695 		if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1696 			SOCK_RECVBUF_LOCK(so);
1697 			if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1698 			    so->so_error || so->so_rerror)
1699 				revents |= events & (POLLIN | POLLRDNORM);
1700 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1701 				revents |= events &
1702 				    (POLLIN | POLLRDNORM | POLLRDHUP);
1703 			if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1704 				selrecord(td, &so->so_rdsel);
1705 				so->so_rcv.sb_flags |= SB_SEL;
1706 			}
1707 			SOCK_RECVBUF_UNLOCK(so);
1708 		}
1709 		if (events & (POLLOUT | POLLWRNORM)) {
1710 			struct socket *so2 = so->so_rcv.uxst_peer;
1711 
1712 			if (so2 != NULL) {
1713 				struct sockbuf *sb = &so2->so_rcv;
1714 
1715 				SOCK_RECVBUF_LOCK(so2);
1716 				if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1717 					revents |= events &
1718 					    (POLLOUT | POLLWRNORM);
1719 				if (sb->sb_state & SBS_CANTRCVMORE)
1720 					revents |= POLLHUP;
1721 				if (!(revents & (POLLOUT | POLLWRNORM))) {
1722 					so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1723 					selrecord(td, &so->so_wrsel);
1724 				}
1725 				SOCK_RECVBUF_UNLOCK(so2);
1726 			} else
1727 				selrecord(td, &so->so_wrsel);
1728 		}
1729 	}
1730 	UNP_PCB_UNLOCK(unp);
1731 	return (revents);
1732 }
1733 
1734 static void
uipc_wrknl_lock(void * arg)1735 uipc_wrknl_lock(void *arg)
1736 {
1737 	struct socket *so = arg;
1738 	struct unpcb *unp = sotounpcb(so);
1739 
1740 retry:
1741 	if (SOLISTENING(so)) {
1742 		SOLISTEN_LOCK(so);
1743 	} else {
1744 		UNP_PCB_LOCK(unp);
1745 		if (__predict_false(SOLISTENING(so))) {
1746 			UNP_PCB_UNLOCK(unp);
1747 			goto retry;
1748 		}
1749 		if (so->so_rcv.uxst_peer != NULL)
1750 			SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1751 	}
1752 }
1753 
1754 static void
uipc_wrknl_unlock(void * arg)1755 uipc_wrknl_unlock(void *arg)
1756 {
1757 	struct socket *so = arg;
1758 	struct unpcb *unp = sotounpcb(so);
1759 
1760 	if (SOLISTENING(so))
1761 		SOLISTEN_UNLOCK(so);
1762 	else {
1763 		if (so->so_rcv.uxst_peer != NULL)
1764 			SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1765 		UNP_PCB_UNLOCK(unp);
1766 	}
1767 }
1768 
1769 static void
uipc_wrknl_assert_lock(void * arg,int what)1770 uipc_wrknl_assert_lock(void *arg, int what)
1771 {
1772 	struct socket *so = arg;
1773 
1774 	if (SOLISTENING(so)) {
1775 		if (what == LA_LOCKED)
1776 			SOLISTEN_LOCK_ASSERT(so);
1777 		else
1778 			SOLISTEN_UNLOCK_ASSERT(so);
1779 	} else {
1780 		/*
1781 		 * The pr_soreceive method will put a note without owning the
1782 		 * unp lock, so we can't assert it here.  But we can safely
1783 		 * dereference uxst_peer pointer, since receive buffer lock
1784 		 * is assumed to be held here.
1785 		 */
1786 		if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1787 			SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1788 	}
1789 }
1790 
1791 static void
uipc_filt_sowdetach(struct knote * kn)1792 uipc_filt_sowdetach(struct knote *kn)
1793 {
1794 	struct socket *so = kn->kn_fp->f_data;
1795 
1796 	uipc_wrknl_lock(so);
1797 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
1798 	uipc_wrknl_unlock(so);
1799 }
1800 
1801 static int
uipc_filt_sowrite(struct knote * kn,long hint)1802 uipc_filt_sowrite(struct knote *kn, long hint)
1803 {
1804 	struct socket *so = kn->kn_fp->f_data, *so2;
1805 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1806 
1807 	if (SOLISTENING(so))
1808 		return (0);
1809 
1810 	if (unp2 == NULL) {
1811 		if (so->so_state & SS_ISDISCONNECTED) {
1812 			kn->kn_flags |= EV_EOF;
1813 			kn->kn_fflags = so->so_error;
1814 			return (1);
1815 		} else
1816 			return (0);
1817 	}
1818 
1819 	so2 = unp2->unp_socket;
1820 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1821 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1822 
1823 	if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1824 		kn->kn_flags |= EV_EOF;
1825 		return (1);
1826 	} else if (kn->kn_sfflags & NOTE_LOWAT)
1827 		return (kn->kn_data >= kn->kn_sdata);
1828 	else
1829 		return (kn->kn_data >= so2->so_rcv.sb_lowat);
1830 }
1831 
1832 static int
uipc_filt_soempty(struct knote * kn,long hint)1833 uipc_filt_soempty(struct knote *kn, long hint)
1834 {
1835 	struct socket *so = kn->kn_fp->f_data, *so2;
1836 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1837 
1838 	if (SOLISTENING(so) || unp2 == NULL)
1839 		return (1);
1840 
1841 	so2 = unp2->unp_socket;
1842 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1843 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1844 
1845 	return (kn->kn_data == 0 ? 1 : 0);
1846 }
1847 
1848 static const struct filterops uipc_write_filtops = {
1849 	.f_isfd = 1,
1850 	.f_detach = uipc_filt_sowdetach,
1851 	.f_event = uipc_filt_sowrite,
1852 	.f_copy = knote_triv_copy,
1853 };
1854 static const struct filterops uipc_empty_filtops = {
1855 	.f_isfd = 1,
1856 	.f_detach = uipc_filt_sowdetach,
1857 	.f_event = uipc_filt_soempty,
1858 	.f_copy = knote_triv_copy,
1859 };
1860 
1861 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1862 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1863 {
1864 	struct unpcb *unp = sotounpcb(so);
1865 	struct knlist *knl;
1866 
1867 	switch (kn->kn_filter) {
1868 	case EVFILT_READ:
1869 		return (sokqfilter_generic(so, kn));
1870 	case EVFILT_WRITE:
1871 		kn->kn_fop = &uipc_write_filtops;
1872 		break;
1873 	case EVFILT_EMPTY:
1874 		kn->kn_fop = &uipc_empty_filtops;
1875 		break;
1876 	default:
1877 		return (EINVAL);
1878 	}
1879 
1880 	knl = &so->so_wrsel.si_note;
1881 	UNP_PCB_LOCK(unp);
1882 	if (SOLISTENING(so)) {
1883 		SOLISTEN_LOCK(so);
1884 		knlist_add(knl, kn, 1);
1885 		SOLISTEN_UNLOCK(so);
1886 	} else {
1887 		struct socket *so2 = so->so_rcv.uxst_peer;
1888 
1889 		if (so2 != NULL)
1890 			SOCK_RECVBUF_LOCK(so2);
1891 		knlist_add(knl, kn, 1);
1892 		if (so2 != NULL)
1893 			SOCK_RECVBUF_UNLOCK(so2);
1894 	}
1895 	UNP_PCB_UNLOCK(unp);
1896 	return (0);
1897 }
1898 
1899 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1900 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1901 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1902 {
1903 	u_int bleft, mleft;
1904 
1905 	/*
1906 	 * Negative space may happen if send(2) is followed by
1907 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1908 	 */
1909 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1910 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1911 		return (false);
1912 
1913 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1914 		return (false);
1915 
1916 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1917 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1918 
1919 	return (bleft >= cc && mleft >= mbcnt);
1920 }
1921 
1922 /*
1923  * PF_UNIX/SOCK_DGRAM send
1924  *
1925  * Allocate a record consisting of 3 mbufs in the sequence of
1926  * from -> control -> data and append it to the socket buffer.
1927  *
1928  * The first mbuf carries sender's name and is a pkthdr that stores
1929  * overall length of datagram, its memory consumption and control length.
1930  */
1931 #define	ctllen	PH_loc.thirtytwo[1]
1932 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1933     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1934 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1935 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1936     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1937 {
1938 	struct unpcb *unp, *unp2;
1939 	const struct sockaddr *from;
1940 	struct socket *so2;
1941 	struct sockbuf *sb;
1942 	struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1943 	struct mbuf *f;
1944 	u_int cc, ctl, mbcnt;
1945 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1946 	int error;
1947 
1948 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1949 
1950 	error = 0;
1951 	f = NULL;
1952 
1953 	if (__predict_false(flags & MSG_OOB)) {
1954 		error = EOPNOTSUPP;
1955 		goto out;
1956 	}
1957 	if (m == NULL) {
1958 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1959 			error = EMSGSIZE;
1960 			goto out;
1961 		}
1962 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1963 		if (__predict_false(m == NULL)) {
1964 			error = EFAULT;
1965 			goto out;
1966 		}
1967 		f = m_gethdr(M_WAITOK, MT_SONAME);
1968 		cc = m->m_pkthdr.len;
1969 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1970 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1971 			goto out;
1972 	} else {
1973 		struct mchain mc;
1974 
1975 		uipc_reset_kernel_mbuf(m, &mc);
1976 		cc = mc.mc_len;
1977 		mbcnt = mc.mc_mlen;
1978 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1979 			error = EMSGSIZE;
1980 			goto out;
1981 		}
1982 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1983 			error = ENOBUFS;
1984 			goto out;
1985 		}
1986 	}
1987 
1988 	unp = sotounpcb(so);
1989 	MPASS(unp);
1990 
1991 	/*
1992 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1993 	 * and avoid this lock, which is not only extraneous, but also being
1994 	 * released, thus still leaving possibility for a race.  We can easily
1995 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1996 	 * is more difficult to invent something to handle so_error.
1997 	 */
1998 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1999 	if (error)
2000 		goto out2;
2001 	SOCK_SENDBUF_LOCK(so);
2002 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2003 		SOCK_SENDBUF_UNLOCK(so);
2004 		error = EPIPE;
2005 		goto out3;
2006 	}
2007 	if (so->so_error != 0) {
2008 		error = so->so_error;
2009 		so->so_error = 0;
2010 		SOCK_SENDBUF_UNLOCK(so);
2011 		goto out3;
2012 	}
2013 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2014 		SOCK_SENDBUF_UNLOCK(so);
2015 		error = EDESTADDRREQ;
2016 		goto out3;
2017 	}
2018 	SOCK_SENDBUF_UNLOCK(so);
2019 
2020 	if (addr != NULL) {
2021 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2022 			goto out3;
2023 		UNP_PCB_LOCK_ASSERT(unp);
2024 		unp2 = unp->unp_conn;
2025 		UNP_PCB_LOCK_ASSERT(unp2);
2026 	} else {
2027 		UNP_PCB_LOCK(unp);
2028 		unp2 = unp_pcb_lock_peer(unp);
2029 		if (unp2 == NULL) {
2030 			UNP_PCB_UNLOCK(unp);
2031 			error = ENOTCONN;
2032 			goto out3;
2033 		}
2034 	}
2035 
2036 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
2037 		unp_addsockcred(td, &cmc, unp2->unp_flags);
2038 	if (unp->unp_addr != NULL)
2039 		from = (struct sockaddr *)unp->unp_addr;
2040 	else
2041 		from = &sun_noname;
2042 	f->m_len = from->sa_len;
2043 	MPASS(from->sa_len <= MLEN);
2044 	bcopy(from, mtod(f, void *), from->sa_len);
2045 
2046 	/*
2047 	 * Concatenate mbufs: from -> control -> data.
2048 	 * Save overall cc and mbcnt in "from" mbuf.
2049 	 */
2050 	if (!STAILQ_EMPTY(&cmc.mc_q)) {
2051 		f->m_next = mc_first(&cmc);
2052 		mc_last(&cmc)->m_next = m;
2053 		/* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2054 		STAILQ_INIT(&cmc.mc_q);
2055 	} else
2056 		f->m_next = m;
2057 	m = NULL;
2058 	ctl = f->m_len + cmc.mc_len;
2059 	mbcnt += cmc.mc_mlen;
2060 #ifdef INVARIANTS
2061 	dcc = dctl = dmbcnt = 0;
2062 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2063 		if (mb->m_type == MT_DATA)
2064 			dcc += mb->m_len;
2065 		else
2066 			dctl += mb->m_len;
2067 		dmbcnt += MSIZE;
2068 		if (mb->m_flags & M_EXT)
2069 			dmbcnt += mb->m_ext.ext_size;
2070 	}
2071 	MPASS(dcc == cc);
2072 	MPASS(dctl == ctl);
2073 	MPASS(dmbcnt == mbcnt);
2074 #endif
2075 	f->m_pkthdr.len = cc + ctl;
2076 	f->m_pkthdr.memlen = mbcnt;
2077 	f->m_pkthdr.ctllen = ctl;
2078 
2079 	/*
2080 	 * Destination socket buffer selection.
2081 	 *
2082 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2083 	 * destination address is supplied, create a temporary connection for
2084 	 * the run time of the function (see call to unp_connectat() above and
2085 	 * to unp_disconnect() below).  We distinguish them by condition of
2086 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
2087 	 * that condition, since, again, through the run time of this code we
2088 	 * are always connected.  For such "unconnected" sends, the destination
2089 	 * buffer would be the receive buffer of destination socket so2.
2090 	 *
2091 	 * For connected sends, data lands on the send buffer of the sender's
2092 	 * socket "so".  Then, if we just added the very first datagram
2093 	 * on this send buffer, we need to add the send buffer on to the
2094 	 * receiving socket's buffer list.  We put ourselves on top of the
2095 	 * list.  Such logic gives infrequent senders priority over frequent
2096 	 * senders.
2097 	 *
2098 	 * Note on byte count management. As long as event methods kevent(2),
2099 	 * select(2) are not protocol specific (yet), we need to maintain
2100 	 * meaningful values on the receive buffer.  So, the receive buffer
2101 	 * would accumulate counters from all connected buffers potentially
2102 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2103 	 */
2104 	so2 = unp2->unp_socket;
2105 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2106 	SOCK_RECVBUF_LOCK(so2);
2107 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2108 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2109 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2110 			    uxdg_clist);
2111 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2112 		sb->uxdg_cc += cc + ctl;
2113 		sb->uxdg_ctl += ctl;
2114 		sb->uxdg_mbcnt += mbcnt;
2115 		so2->so_rcv.sb_acc += cc + ctl;
2116 		so2->so_rcv.sb_ccc += cc + ctl;
2117 		so2->so_rcv.sb_ctl += ctl;
2118 		so2->so_rcv.sb_mbcnt += mbcnt;
2119 		sorwakeup_locked(so2);
2120 		f = NULL;
2121 	} else {
2122 		soroverflow_locked(so2);
2123 		error = ENOBUFS;
2124 		if (f->m_next->m_type == MT_CONTROL) {
2125 			STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2126 			f->m_next = NULL;
2127 		}
2128 	}
2129 
2130 	if (addr != NULL)
2131 		unp_disconnect(unp, unp2);
2132 	else
2133 		unp_pcb_unlock_pair(unp, unp2);
2134 
2135 	td->td_ru.ru_msgsnd++;
2136 
2137 out3:
2138 	SOCK_IO_SEND_UNLOCK(so);
2139 out2:
2140 	if (!mc_empty(&cmc))
2141 		unp_scan(mc_first(&cmc), unp_freerights);
2142 out:
2143 	if (f)
2144 		m_freem(f);
2145 	mc_freem(&cmc);
2146 	if (m)
2147 		m_freem(m);
2148 
2149 	return (error);
2150 }
2151 
2152 /*
2153  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2154  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2155  * and needs to be linked onto uxdg_peeked of receive socket buffer.
2156  */
2157 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2158 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2159     struct uio *uio, struct mbuf **controlp, int *flagsp)
2160 {
2161 	ssize_t len = 0;
2162 	int error;
2163 
2164 	so->so_rcv.uxdg_peeked = m;
2165 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2166 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2167 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2168 	SOCK_RECVBUF_UNLOCK(so);
2169 
2170 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2171 	if (psa != NULL)
2172 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2173 
2174 	m = m->m_next;
2175 	KASSERT(m, ("%s: no data or control after soname", __func__));
2176 
2177 	/*
2178 	 * With MSG_PEEK the control isn't executed, just copied.
2179 	 */
2180 	while (m != NULL && m->m_type == MT_CONTROL) {
2181 		if (controlp != NULL) {
2182 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2183 			controlp = &(*controlp)->m_next;
2184 		}
2185 		m = m->m_next;
2186 	}
2187 	KASSERT(m == NULL || m->m_type == MT_DATA,
2188 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2189 	while (m != NULL && uio->uio_resid > 0) {
2190 		len = uio->uio_resid;
2191 		if (len > m->m_len)
2192 			len = m->m_len;
2193 		error = uiomove(mtod(m, char *), (int)len, uio);
2194 		if (error) {
2195 			SOCK_IO_RECV_UNLOCK(so);
2196 			return (error);
2197 		}
2198 		if (len == m->m_len)
2199 			m = m->m_next;
2200 	}
2201 	SOCK_IO_RECV_UNLOCK(so);
2202 
2203 	if (flagsp != NULL) {
2204 		if (m != NULL) {
2205 			if (*flagsp & MSG_TRUNC) {
2206 				/* Report real length of the packet */
2207 				uio->uio_resid -= m_length(m, NULL) - len;
2208 			}
2209 			*flagsp |= MSG_TRUNC;
2210 		} else
2211 			*flagsp &= ~MSG_TRUNC;
2212 	}
2213 
2214 	return (0);
2215 }
2216 
2217 /*
2218  * PF_UNIX/SOCK_DGRAM receive
2219  */
2220 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2221 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2222     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2223 {
2224 	struct sockbuf *sb = NULL;
2225 	struct mbuf *m;
2226 	int flags, error;
2227 	ssize_t len = 0;
2228 	bool nonblock;
2229 
2230 	MPASS(mp0 == NULL);
2231 
2232 	if (psa != NULL)
2233 		*psa = NULL;
2234 	if (controlp != NULL)
2235 		*controlp = NULL;
2236 
2237 	flags = flagsp != NULL ? *flagsp : 0;
2238 	nonblock = (so->so_state & SS_NBIO) ||
2239 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
2240 
2241 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2242 	if (__predict_false(error))
2243 		return (error);
2244 
2245 	/*
2246 	 * Loop blocking while waiting for a datagram.  Prioritize connected
2247 	 * peers over unconnected sends.  Set sb to selected socket buffer
2248 	 * containing an mbuf on exit from the wait loop.  A datagram that
2249 	 * had already been peeked at has top priority.
2250 	 */
2251 	SOCK_RECVBUF_LOCK(so);
2252 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2253 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2254 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2255 		if (so->so_error) {
2256 			error = so->so_error;
2257 			if (!(flags & MSG_PEEK))
2258 				so->so_error = 0;
2259 			SOCK_RECVBUF_UNLOCK(so);
2260 			SOCK_IO_RECV_UNLOCK(so);
2261 			return (error);
2262 		}
2263 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2264 		    uio->uio_resid == 0) {
2265 			SOCK_RECVBUF_UNLOCK(so);
2266 			SOCK_IO_RECV_UNLOCK(so);
2267 			return (0);
2268 		}
2269 		if (nonblock) {
2270 			SOCK_RECVBUF_UNLOCK(so);
2271 			SOCK_IO_RECV_UNLOCK(so);
2272 			return (EWOULDBLOCK);
2273 		}
2274 		error = sbwait(so, SO_RCV);
2275 		if (error) {
2276 			SOCK_RECVBUF_UNLOCK(so);
2277 			SOCK_IO_RECV_UNLOCK(so);
2278 			return (error);
2279 		}
2280 	}
2281 
2282 	if (sb == NULL)
2283 		sb = &so->so_rcv;
2284 	else if (m == NULL)
2285 		m = STAILQ_FIRST(&sb->uxdg_mb);
2286 	else
2287 		MPASS(m == so->so_rcv.uxdg_peeked);
2288 
2289 	MPASS(sb->uxdg_cc > 0);
2290 	M_ASSERTPKTHDR(m);
2291 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2292 
2293 	if (uio->uio_td)
2294 		uio->uio_td->td_ru.ru_msgrcv++;
2295 
2296 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2297 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2298 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2299 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2300 	} else
2301 		so->so_rcv.uxdg_peeked = NULL;
2302 
2303 	sb->uxdg_cc -= m->m_pkthdr.len;
2304 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2305 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2306 
2307 	if (__predict_false(flags & MSG_PEEK))
2308 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2309 
2310 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
2311 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2312 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2313 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2314 	SOCK_RECVBUF_UNLOCK(so);
2315 
2316 	if (psa != NULL)
2317 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2318 	m = m_free(m);
2319 	KASSERT(m, ("%s: no data or control after soname", __func__));
2320 
2321 	/*
2322 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2323 	 * queue.
2324 	 *
2325 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2326 	 * in the first mbuf chain on the socket buffer.  We call into the
2327 	 * unp_externalize() to perform externalization (or freeing if
2328 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2329 	 * without MT_DATA mbufs.
2330 	 */
2331 	while (m != NULL && m->m_type == MT_CONTROL) {
2332 		error = unp_externalize(m, controlp, flags);
2333 		m = m_free(m);
2334 		if (error != 0) {
2335 			SOCK_IO_RECV_UNLOCK(so);
2336 			unp_scan(m, unp_freerights);
2337 			m_freem(m);
2338 			return (error);
2339 		}
2340 		if (controlp != NULL) {
2341 			while (*controlp != NULL)
2342 				controlp = &(*controlp)->m_next;
2343 		}
2344 	}
2345 	KASSERT(m == NULL || m->m_type == MT_DATA,
2346 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2347 	while (m != NULL && uio->uio_resid > 0) {
2348 		len = uio->uio_resid;
2349 		if (len > m->m_len)
2350 			len = m->m_len;
2351 		error = uiomove(mtod(m, char *), (int)len, uio);
2352 		if (error) {
2353 			SOCK_IO_RECV_UNLOCK(so);
2354 			m_freem(m);
2355 			return (error);
2356 		}
2357 		if (len == m->m_len)
2358 			m = m_free(m);
2359 		else {
2360 			m->m_data += len;
2361 			m->m_len -= len;
2362 		}
2363 	}
2364 	SOCK_IO_RECV_UNLOCK(so);
2365 
2366 	if (m != NULL) {
2367 		if (flagsp != NULL) {
2368 			if (flags & MSG_TRUNC) {
2369 				/* Report real length of the packet */
2370 				uio->uio_resid -= m_length(m, NULL);
2371 			}
2372 			*flagsp |= MSG_TRUNC;
2373 		}
2374 		m_freem(m);
2375 	} else if (flagsp != NULL)
2376 		*flagsp &= ~MSG_TRUNC;
2377 
2378 	return (0);
2379 }
2380 
2381 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2382 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2383 {
2384 	struct unpcb *unp2;
2385 	struct socket *so2;
2386 	struct sockbuf *sb;
2387 	bool nonblock, sockref;
2388 	int error;
2389 
2390 	MPASS(so->so_type == SOCK_STREAM);
2391 	MPASS(need > 0);
2392 	MPASS(space != NULL);
2393 
2394 	nonblock = so->so_state & SS_NBIO;
2395 	sockref = false;
2396 
2397 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2398 		return (ENOTCONN);
2399 
2400 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2401 		return (error);
2402 
2403 	so2 = unp2->unp_socket;
2404 	sb = &so2->so_rcv;
2405 	SOCK_RECVBUF_LOCK(so2);
2406 	UNP_PCB_UNLOCK(unp2);
2407 	while ((*space = uipc_stream_sbspace(sb)) < need &&
2408 	    (*space < so->so_snd.sb_hiwat / 2)) {
2409 		UIPC_STREAM_SBCHECK(sb);
2410 		if (nonblock) {
2411 			SOCK_RECVBUF_UNLOCK(so2);
2412 			return (EAGAIN);
2413 		}
2414 		if (!sockref)
2415 			soref(so2);
2416 		error = uipc_stream_sbwait(so2, so->so_snd.sb_timeo);
2417 		if (error == 0 &&
2418 		    __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2419 			error = EPIPE;
2420 		if (error) {
2421 			SOCK_RECVBUF_UNLOCK(so2);
2422 			sorele(so2);
2423 			return (error);
2424 		}
2425 	}
2426 	UIPC_STREAM_SBCHECK(sb);
2427 	SOCK_RECVBUF_UNLOCK(so2);
2428 	if (sockref)
2429 		sorele(so2);
2430 
2431 	return (0);
2432 }
2433 
2434 /*
2435  * Although this is a pr_send method, for unix(4) it is called only via
2436  * sendfile(2) path.  This means we can be sure that mbufs are clear of
2437  * any extra flags and don't require any conditioning.
2438  */
2439 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2440 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2441     struct sockaddr *from, struct mbuf *control, struct thread *td)
2442 {
2443 	struct mchain mc;
2444 	struct unpcb *unp2;
2445 	struct socket *so2;
2446 	struct sockbuf *sb;
2447 	bool notready, wakeup;
2448 	int error;
2449 
2450 	MPASS(so->so_type == SOCK_STREAM);
2451 	MPASS(from == NULL && control == NULL);
2452 	KASSERT(!(m->m_flags & M_EXTPG),
2453 	    ("unix(4): TLS sendfile(2) not supported"));
2454 
2455 	notready = flags & PRUS_NOTREADY;
2456 
2457 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2458 		error = ENOTCONN;
2459 		goto out;
2460 	}
2461 
2462 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2463 		goto out;
2464 
2465 	mc_init_m(&mc, m);
2466 
2467 	so2 = unp2->unp_socket;
2468 	sb = &so2->so_rcv;
2469 	SOCK_RECVBUF_LOCK(so2);
2470 	UNP_PCB_UNLOCK(unp2);
2471 	UIPC_STREAM_SBCHECK(sb);
2472 	sb->sb_ccc += mc.mc_len;
2473 	sb->sb_mbcnt += mc.mc_mlen;
2474 	if (sb->uxst_fnrdy == NULL) {
2475 		if (notready) {
2476 			wakeup = false;
2477 			STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2478 				if (m->m_flags & M_NOTREADY) {
2479 					sb->uxst_fnrdy = m;
2480 					break;
2481 				} else {
2482 					sb->sb_acc += m->m_len;
2483 					wakeup = true;
2484 				}
2485 			}
2486 		} else {
2487 			wakeup = true;
2488 			sb->sb_acc += mc.mc_len;
2489 		}
2490 	} else {
2491 		wakeup = false;
2492 	}
2493 	STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2494 	UIPC_STREAM_SBCHECK(sb);
2495 	if (wakeup)
2496 		sorwakeup_locked(so2);
2497 	else
2498 		SOCK_RECVBUF_UNLOCK(so2);
2499 
2500 	return (0);
2501 out:
2502 	/*
2503 	 * In case of not ready data, uipc_ready() is responsible
2504 	 * for freeing memory.
2505 	 */
2506 	if (m != NULL && !notready)
2507 		m_freem(m);
2508 
2509 	return (error);
2510 }
2511 
2512 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2513 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2514 {
2515 	bool blocker;
2516 
2517 	/* assert locked */
2518 
2519 	blocker = (sb->uxst_fnrdy == m);
2520 	STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2521 		if (count > 0) {
2522 			MPASS(m->m_flags & M_NOTREADY);
2523 			m->m_flags &= ~M_NOTREADY;
2524 			if (blocker)
2525 				sb->sb_acc += m->m_len;
2526 			count--;
2527 		} else if (m->m_flags & M_NOTREADY)
2528 			break;
2529 		else if (blocker)
2530 			sb->sb_acc += m->m_len;
2531 	}
2532 	if (blocker) {
2533 		sb->uxst_fnrdy = m;
2534 		return (0);
2535 	} else
2536 		return (EINPROGRESS);
2537 }
2538 
2539 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2540 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2541 {
2542 	struct mbuf *mb;
2543 	struct sockbuf *sb;
2544 
2545 	SOCK_LOCK(so);
2546 	if (SOLISTENING(so)) {
2547 		SOCK_UNLOCK(so);
2548 		return (false);
2549 	}
2550 	mb = NULL;
2551 	sb = &so->so_rcv;
2552 	SOCK_RECVBUF_LOCK(so);
2553 	if (sb->uxst_fnrdy != NULL) {
2554 		STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2555 			if (mb == m) {
2556 				*errorp = uipc_sbready(sb, m, count);
2557 				break;
2558 			}
2559 		}
2560 	}
2561 	SOCK_RECVBUF_UNLOCK(so);
2562 	SOCK_UNLOCK(so);
2563 	return (mb != NULL);
2564 }
2565 
2566 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2567 uipc_ready(struct socket *so, struct mbuf *m, int count)
2568 {
2569 	struct unpcb *unp, *unp2;
2570 	int error;
2571 
2572 	MPASS(so->so_type == SOCK_STREAM);
2573 
2574 	if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2575 		struct socket *so2;
2576 		struct sockbuf *sb;
2577 
2578 		so2 = unp2->unp_socket;
2579 		sb = &so2->so_rcv;
2580 		SOCK_RECVBUF_LOCK(so2);
2581 		UNP_PCB_UNLOCK(unp2);
2582 		UIPC_STREAM_SBCHECK(sb);
2583 		error = uipc_sbready(sb, m, count);
2584 		UIPC_STREAM_SBCHECK(sb);
2585 		if (error == 0)
2586 			sorwakeup_locked(so2);
2587 		else
2588 			SOCK_RECVBUF_UNLOCK(so2);
2589 	} else {
2590 		/*
2591 		 * The receiving socket has been disconnected, but may still
2592 		 * be valid.  In this case, the not-ready mbufs are still
2593 		 * present in its socket buffer, so perform an exhaustive
2594 		 * search before giving up and freeing the mbufs.
2595 		 */
2596 		UNP_LINK_RLOCK();
2597 		LIST_FOREACH(unp, &unp_shead, unp_link) {
2598 			if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2599 				break;
2600 		}
2601 		UNP_LINK_RUNLOCK();
2602 
2603 		if (unp == NULL) {
2604 			for (int i = 0; i < count; i++)
2605 				m = m_free(m);
2606 			return (ECONNRESET);
2607 		}
2608 	}
2609 	return (error);
2610 }
2611 
2612 static int
uipc_sense(struct socket * so,struct stat * sb)2613 uipc_sense(struct socket *so, struct stat *sb)
2614 {
2615 	struct unpcb *unp;
2616 
2617 	unp = sotounpcb(so);
2618 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2619 
2620 	sb->st_blksize = so->so_snd.sb_hiwat;
2621 	sb->st_dev = NODEV;
2622 	sb->st_ino = unp->unp_ino;
2623 	return (0);
2624 }
2625 
2626 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2627 uipc_shutdown(struct socket *so, enum shutdown_how how)
2628 {
2629 	struct unpcb *unp = sotounpcb(so);
2630 	int error;
2631 
2632 	SOCK_LOCK(so);
2633 	if (SOLISTENING(so)) {
2634 		if (how != SHUT_WR) {
2635 			so->so_error = ECONNABORTED;
2636 			solisten_wakeup(so);    /* unlocks so */
2637 		} else
2638 			SOCK_UNLOCK(so);
2639 		return (ENOTCONN);
2640 	} else if ((so->so_state &
2641 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2642 		/*
2643 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2644 		 * invoked on a datagram sockets, however historically we would
2645 		 * actually tear socket down.  This is known to be leveraged by
2646 		 * some applications to unblock process waiting in recv(2) by
2647 		 * other process that it shares that socket with.  Try to meet
2648 		 * both backward-compatibility and POSIX requirements by forcing
2649 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
2650 		 *
2651 		 * XXXGL: it remains unknown what applications expect this
2652 		 * behavior and is this isolated to unix/dgram or inet/dgram or
2653 		 * both.  See: D10351, D3039.
2654 		 */
2655 		error = ENOTCONN;
2656 		if (so->so_type != SOCK_DGRAM) {
2657 			SOCK_UNLOCK(so);
2658 			return (error);
2659 		}
2660 	} else
2661 		error = 0;
2662 	SOCK_UNLOCK(so);
2663 
2664 	switch (how) {
2665 	case SHUT_RD:
2666 		if (so->so_type == SOCK_DGRAM)
2667 			socantrcvmore(so);
2668 		else
2669 			uipc_cantrcvmore(so);
2670 		unp_dispose(so);
2671 		break;
2672 	case SHUT_RDWR:
2673 		if (so->so_type == SOCK_DGRAM)
2674 			socantrcvmore(so);
2675 		else
2676 			uipc_cantrcvmore(so);
2677 		unp_dispose(so);
2678 		/* FALLTHROUGH */
2679 	case SHUT_WR:
2680 		if (so->so_type == SOCK_DGRAM) {
2681 			socantsendmore(so);
2682 		} else {
2683 			UNP_PCB_LOCK(unp);
2684 			if (unp->unp_conn != NULL)
2685 				uipc_cantrcvmore(unp->unp_conn->unp_socket);
2686 			UNP_PCB_UNLOCK(unp);
2687 		}
2688 	}
2689 	wakeup(&so->so_timeo);
2690 
2691 	return (error);
2692 }
2693 
2694 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2695 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2696 {
2697 	struct unpcb *unp;
2698 	const struct sockaddr *sa;
2699 
2700 	unp = sotounpcb(so);
2701 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2702 
2703 	UNP_PCB_LOCK(unp);
2704 	if (unp->unp_addr != NULL)
2705 		sa = (struct sockaddr *) unp->unp_addr;
2706 	else
2707 		sa = &sun_noname;
2708 	bcopy(sa, ret, sa->sa_len);
2709 	UNP_PCB_UNLOCK(unp);
2710 	return (0);
2711 }
2712 
2713 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2714 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2715 {
2716 	struct unpcb *unp;
2717 	struct xucred xu;
2718 	int error, optval;
2719 
2720 	if (sopt->sopt_level != SOL_LOCAL)
2721 		return (EINVAL);
2722 
2723 	unp = sotounpcb(so);
2724 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2725 	error = 0;
2726 	switch (sopt->sopt_dir) {
2727 	case SOPT_GET:
2728 		switch (sopt->sopt_name) {
2729 		case LOCAL_PEERCRED:
2730 			UNP_PCB_LOCK(unp);
2731 			if (unp->unp_flags & UNP_HAVEPC)
2732 				xu = unp->unp_peercred;
2733 			else {
2734 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2735 					error = ENOTCONN;
2736 				else
2737 					error = EINVAL;
2738 			}
2739 			UNP_PCB_UNLOCK(unp);
2740 			if (error == 0)
2741 				error = sooptcopyout(sopt, &xu, sizeof(xu));
2742 			break;
2743 
2744 		case LOCAL_CREDS:
2745 			/* Unlocked read. */
2746 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2747 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2748 			break;
2749 
2750 		case LOCAL_CREDS_PERSISTENT:
2751 			/* Unlocked read. */
2752 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2753 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2754 			break;
2755 
2756 		default:
2757 			error = EOPNOTSUPP;
2758 			break;
2759 		}
2760 		break;
2761 
2762 	case SOPT_SET:
2763 		switch (sopt->sopt_name) {
2764 		case LOCAL_CREDS:
2765 		case LOCAL_CREDS_PERSISTENT:
2766 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2767 					    sizeof(optval));
2768 			if (error)
2769 				break;
2770 
2771 #define	OPTSET(bit, exclusive) do {					\
2772 	UNP_PCB_LOCK(unp);						\
2773 	if (optval) {							\
2774 		if ((unp->unp_flags & (exclusive)) != 0) {		\
2775 			UNP_PCB_UNLOCK(unp);				\
2776 			error = EINVAL;					\
2777 			break;						\
2778 		}							\
2779 		unp->unp_flags |= (bit);				\
2780 	} else								\
2781 		unp->unp_flags &= ~(bit);				\
2782 	UNP_PCB_UNLOCK(unp);						\
2783 } while (0)
2784 
2785 			switch (sopt->sopt_name) {
2786 			case LOCAL_CREDS:
2787 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2788 				break;
2789 
2790 			case LOCAL_CREDS_PERSISTENT:
2791 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2792 				break;
2793 
2794 			default:
2795 				break;
2796 			}
2797 			break;
2798 #undef	OPTSET
2799 		default:
2800 			error = ENOPROTOOPT;
2801 			break;
2802 		}
2803 		break;
2804 
2805 	default:
2806 		error = EOPNOTSUPP;
2807 		break;
2808 	}
2809 	return (error);
2810 }
2811 
2812 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2813 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2814 {
2815 
2816 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
2817 }
2818 
2819 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2820 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2821     struct thread *td, bool return_locked)
2822 {
2823 	struct mtx *vplock;
2824 	struct sockaddr_un *soun;
2825 	struct vnode *vp;
2826 	struct socket *so2;
2827 	struct unpcb *unp, *unp2, *unp3;
2828 	struct nameidata nd;
2829 	char buf[SOCK_MAXADDRLEN];
2830 	struct sockaddr *sa;
2831 	cap_rights_t rights;
2832 	int error, len;
2833 	bool connreq;
2834 
2835 	CURVNET_ASSERT_SET();
2836 
2837 	if (nam->sa_family != AF_UNIX)
2838 		return (EAFNOSUPPORT);
2839 	if (nam->sa_len > sizeof(struct sockaddr_un))
2840 		return (EINVAL);
2841 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2842 	if (len <= 0)
2843 		return (EINVAL);
2844 	soun = (struct sockaddr_un *)nam;
2845 	bcopy(soun->sun_path, buf, len);
2846 	buf[len] = 0;
2847 
2848 	error = 0;
2849 	unp = sotounpcb(so);
2850 	UNP_PCB_LOCK(unp);
2851 	for (;;) {
2852 		/*
2853 		 * Wait for connection state to stabilize.  If a connection
2854 		 * already exists, give up.  For datagram sockets, which permit
2855 		 * multiple consecutive connect(2) calls, upper layers are
2856 		 * responsible for disconnecting in advance of a subsequent
2857 		 * connect(2), but this is not synchronized with PCB connection
2858 		 * state.
2859 		 *
2860 		 * Also make sure that no threads are currently attempting to
2861 		 * lock the peer socket, to ensure that unp_conn cannot
2862 		 * transition between two valid sockets while locks are dropped.
2863 		 */
2864 		if (SOLISTENING(so))
2865 			error = EOPNOTSUPP;
2866 		else if (unp->unp_conn != NULL)
2867 			error = EISCONN;
2868 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2869 			error = EALREADY;
2870 		}
2871 		if (error != 0) {
2872 			UNP_PCB_UNLOCK(unp);
2873 			return (error);
2874 		}
2875 		if (unp->unp_pairbusy > 0) {
2876 			unp->unp_flags |= UNP_WAITING;
2877 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2878 			continue;
2879 		}
2880 		break;
2881 	}
2882 	unp->unp_flags |= UNP_CONNECTING;
2883 	UNP_PCB_UNLOCK(unp);
2884 
2885 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2886 	if (connreq)
2887 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2888 	else
2889 		sa = NULL;
2890 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2891 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2892 	error = namei(&nd);
2893 	if (error)
2894 		vp = NULL;
2895 	else
2896 		vp = nd.ni_vp;
2897 	ASSERT_VOP_LOCKED(vp, "unp_connect");
2898 	if (error)
2899 		goto bad;
2900 	NDFREE_PNBUF(&nd);
2901 
2902 	if (vp->v_type != VSOCK) {
2903 		error = ENOTSOCK;
2904 		goto bad;
2905 	}
2906 #ifdef MAC
2907 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2908 	if (error)
2909 		goto bad;
2910 #endif
2911 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2912 	if (error)
2913 		goto bad;
2914 
2915 	unp = sotounpcb(so);
2916 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2917 
2918 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2919 	mtx_lock(vplock);
2920 	VOP_UNP_CONNECT(vp, &unp2);
2921 	if (unp2 == NULL) {
2922 		error = ECONNREFUSED;
2923 		goto bad2;
2924 	}
2925 	so2 = unp2->unp_socket;
2926 	if (so->so_type != so2->so_type) {
2927 		error = EPROTOTYPE;
2928 		goto bad2;
2929 	}
2930 	if (connreq) {
2931 		if (SOLISTENING(so2))
2932 			so2 = solisten_clone(so2);
2933 		else
2934 			so2 = NULL;
2935 		if (so2 == NULL) {
2936 			error = ECONNREFUSED;
2937 			goto bad2;
2938 		}
2939 		if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2940 			sodealloc(so2);
2941 			goto bad2;
2942 		}
2943 		unp3 = sotounpcb(so2);
2944 		unp_pcb_lock_pair(unp2, unp3);
2945 		if (unp2->unp_addr != NULL) {
2946 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2947 			unp3->unp_addr = (struct sockaddr_un *) sa;
2948 			sa = NULL;
2949 		}
2950 
2951 		unp_copy_peercred(td, unp3, unp, unp2);
2952 
2953 		UNP_PCB_UNLOCK(unp2);
2954 		unp2 = unp3;
2955 
2956 		/*
2957 		 * It is safe to block on the PCB lock here since unp2 is
2958 		 * nascent and cannot be connected to any other sockets.
2959 		 */
2960 		UNP_PCB_LOCK(unp);
2961 #ifdef MAC
2962 		mac_socketpeer_set_from_socket(so, so2);
2963 		mac_socketpeer_set_from_socket(so2, so);
2964 #endif
2965 	} else {
2966 		unp_pcb_lock_pair(unp, unp2);
2967 	}
2968 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2969 	    sotounpcb(so2) == unp2,
2970 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2971 	unp_connect2(so, so2, connreq);
2972 	if (connreq)
2973 		(void)solisten_enqueue(so2, SS_ISCONNECTED);
2974 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2975 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2976 	unp->unp_flags &= ~UNP_CONNECTING;
2977 	if (!return_locked)
2978 		unp_pcb_unlock_pair(unp, unp2);
2979 bad2:
2980 	mtx_unlock(vplock);
2981 bad:
2982 	if (vp != NULL) {
2983 		/*
2984 		 * If we are returning locked (called via uipc_sosend_dgram()),
2985 		 * we need to be sure that vput() won't sleep.  This is
2986 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2987 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2988 		 */
2989 		MPASS(!(return_locked && connreq));
2990 		vput(vp);
2991 	}
2992 	free(sa, M_SONAME);
2993 	if (__predict_false(error)) {
2994 		UNP_PCB_LOCK(unp);
2995 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2996 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2997 		unp->unp_flags &= ~UNP_CONNECTING;
2998 		UNP_PCB_UNLOCK(unp);
2999 	}
3000 	return (error);
3001 }
3002 
3003 /*
3004  * Set socket peer credentials at connection time.
3005  *
3006  * The client's PCB credentials are copied from its process structure.  The
3007  * server's PCB credentials are copied from the socket on which it called
3008  * listen(2).  uipc_listen cached that process's credentials at the time.
3009  */
3010 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)3011 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
3012     struct unpcb *server_unp, struct unpcb *listen_unp)
3013 {
3014 	cru2xt(td, &client_unp->unp_peercred);
3015 	client_unp->unp_flags |= UNP_HAVEPC;
3016 
3017 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3018 	    sizeof(server_unp->unp_peercred));
3019 	server_unp->unp_flags |= UNP_HAVEPC;
3020 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3021 }
3022 
3023 /*
3024  * unix/stream & unix/seqpacket version of soisconnected().
3025  *
3026  * The crucial thing we are doing here is setting up the uxst_peer linkage,
3027  * holding unp and receive buffer locks of the both sockets.  The disconnect
3028  * procedure does the same.  This gives as a safe way to access the peer in the
3029  * send(2) and recv(2) during the socket lifetime.
3030  *
3031  * The less important thing is event notification of the fact that a socket is
3032  * now connected.  It is unusual for a software to put a socket into event
3033  * mechanism before connect(2), but is supposed to be supported.  Note that
3034  * there can not be any sleeping I/O on the socket, yet, only presence in the
3035  * select/poll/kevent.
3036  *
3037  * This function can be called via two call paths:
3038  * 1) socketpair(2) - in this case socket has not been yet reported to userland
3039  *    and just can't have any event notifications mechanisms set up.  The
3040  *    'wakeup' boolean is always false.
3041  * 2) connect(2) of existing socket to a recent clone of a listener:
3042  *   2.1) Socket that connect(2)s will have 'wakeup' true.  An application
3043  *        could have already put it into event mechanism, is it shall be
3044  *        reported as readable and as writable.
3045  *   2.2) Socket that was just cloned with solisten_clone().  Same as 1).
3046  */
3047 static void
unp_soisconnected(struct socket * so,bool wakeup)3048 unp_soisconnected(struct socket *so, bool wakeup)
3049 {
3050 	struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3051 	struct sockbuf *sb;
3052 
3053 	SOCK_LOCK_ASSERT(so);
3054 	UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3055 	UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3056 	SOCK_RECVBUF_LOCK_ASSERT(so);
3057 	SOCK_RECVBUF_LOCK_ASSERT(so2);
3058 
3059 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3060 	MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3061 	    SS_ISDISCONNECTING)) == 0);
3062 	MPASS(so->so_qstate == SQ_NONE);
3063 
3064 	so->so_state &= ~SS_ISDISCONNECTED;
3065 	so->so_state |= SS_ISCONNECTED;
3066 
3067 	sb = &so2->so_rcv;
3068 	sb->uxst_peer = so;
3069 
3070 	if (wakeup) {
3071 		KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3072 		sb = &so->so_rcv;
3073 		selwakeuppri(sb->sb_sel, PSOCK);
3074 		SOCK_SENDBUF_LOCK_ASSERT(so);
3075 		sb = &so->so_snd;
3076 		selwakeuppri(sb->sb_sel, PSOCK);
3077 		SOCK_SENDBUF_UNLOCK(so);
3078 	}
3079 }
3080 
3081 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3082 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3083 {
3084 	struct unpcb *unp;
3085 	struct unpcb *unp2;
3086 
3087 	MPASS(so2->so_type == so->so_type);
3088 	unp = sotounpcb(so);
3089 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3090 	unp2 = sotounpcb(so2);
3091 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3092 
3093 	UNP_PCB_LOCK_ASSERT(unp);
3094 	UNP_PCB_LOCK_ASSERT(unp2);
3095 	KASSERT(unp->unp_conn == NULL,
3096 	    ("%s: socket %p is already connected", __func__, unp));
3097 
3098 	unp->unp_conn = unp2;
3099 	unp_pcb_hold(unp2);
3100 	unp_pcb_hold(unp);
3101 	switch (so->so_type) {
3102 	case SOCK_DGRAM:
3103 		UNP_REF_LIST_LOCK();
3104 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3105 		UNP_REF_LIST_UNLOCK();
3106 		soisconnected(so);
3107 		break;
3108 
3109 	case SOCK_STREAM:
3110 	case SOCK_SEQPACKET:
3111 		KASSERT(unp2->unp_conn == NULL,
3112 		    ("%s: socket %p is already connected", __func__, unp2));
3113 		unp2->unp_conn = unp;
3114 		SOCK_LOCK(so);
3115 		SOCK_LOCK(so2);
3116 		if (wakeup)	/* Avoid LOR with receive buffer lock. */
3117 			SOCK_SENDBUF_LOCK(so);
3118 		SOCK_RECVBUF_LOCK(so);
3119 		SOCK_RECVBUF_LOCK(so2);
3120 		unp_soisconnected(so, wakeup);	/* Will unlock send buffer. */
3121 		unp_soisconnected(so2, false);
3122 		SOCK_RECVBUF_UNLOCK(so);
3123 		SOCK_RECVBUF_UNLOCK(so2);
3124 		SOCK_UNLOCK(so);
3125 		SOCK_UNLOCK(so2);
3126 		break;
3127 
3128 	default:
3129 		panic("unp_connect2");
3130 	}
3131 }
3132 
3133 static void
unp_soisdisconnected(struct socket * so)3134 unp_soisdisconnected(struct socket *so)
3135 {
3136 	SOCK_LOCK_ASSERT(so);
3137 	SOCK_RECVBUF_LOCK_ASSERT(so);
3138 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3139 	MPASS(!SOLISTENING(so));
3140 	MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3141 	    SS_ISDISCONNECTED)) == 0);
3142 	MPASS(so->so_state & SS_ISCONNECTED);
3143 
3144 	so->so_state |= SS_ISDISCONNECTED;
3145 	so->so_state &= ~SS_ISCONNECTED;
3146 	so->so_rcv.uxst_peer = NULL;
3147 	socantrcvmore_locked(so);
3148 }
3149 
3150 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3151 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3152 {
3153 	struct socket *so, *so2;
3154 	struct mbuf *m = NULL;
3155 #ifdef INVARIANTS
3156 	struct unpcb *unptmp;
3157 #endif
3158 
3159 	UNP_PCB_LOCK_ASSERT(unp);
3160 	UNP_PCB_LOCK_ASSERT(unp2);
3161 	KASSERT(unp->unp_conn == unp2,
3162 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3163 
3164 	unp->unp_conn = NULL;
3165 	so = unp->unp_socket;
3166 	so2 = unp2->unp_socket;
3167 	switch (unp->unp_socket->so_type) {
3168 	case SOCK_DGRAM:
3169 		/*
3170 		 * Remove our send socket buffer from the peer's receive buffer.
3171 		 * Move the data to the receive buffer only if it is empty.
3172 		 * This is a protection against a scenario where a peer
3173 		 * connects, floods and disconnects, effectively blocking
3174 		 * sendto() from unconnected sockets.
3175 		 */
3176 		SOCK_RECVBUF_LOCK(so2);
3177 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3178 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3179 			    uxdg_clist);
3180 			if (__predict_true((so2->so_rcv.sb_state &
3181 			    SBS_CANTRCVMORE) == 0) &&
3182 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3183 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3184 				    &so->so_snd.uxdg_mb);
3185 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3186 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3187 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3188 			} else {
3189 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3190 				STAILQ_INIT(&so->so_snd.uxdg_mb);
3191 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3192 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3193 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3194 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3195 			}
3196 			/* Note: so may reconnect. */
3197 			so->so_snd.uxdg_cc = 0;
3198 			so->so_snd.uxdg_ctl = 0;
3199 			so->so_snd.uxdg_mbcnt = 0;
3200 		}
3201 		SOCK_RECVBUF_UNLOCK(so2);
3202 		UNP_REF_LIST_LOCK();
3203 #ifdef INVARIANTS
3204 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3205 			if (unptmp == unp)
3206 				break;
3207 		}
3208 		KASSERT(unptmp != NULL,
3209 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3210 #endif
3211 		LIST_REMOVE(unp, unp_reflink);
3212 		UNP_REF_LIST_UNLOCK();
3213 		SOCK_LOCK(so);
3214 		so->so_state &= ~SS_ISCONNECTED;
3215 		SOCK_UNLOCK(so);
3216 		break;
3217 
3218 	case SOCK_STREAM:
3219 	case SOCK_SEQPACKET:
3220 		SOCK_LOCK(so);
3221 		SOCK_LOCK(so2);
3222 		SOCK_RECVBUF_LOCK(so);
3223 		SOCK_RECVBUF_LOCK(so2);
3224 		unp_soisdisconnected(so);
3225 		MPASS(unp2->unp_conn == unp);
3226 		unp2->unp_conn = NULL;
3227 		unp_soisdisconnected(so2);
3228 		SOCK_UNLOCK(so);
3229 		SOCK_UNLOCK(so2);
3230 		break;
3231 	}
3232 
3233 	if (unp == unp2) {
3234 		unp_pcb_rele_notlast(unp);
3235 		if (!unp_pcb_rele(unp))
3236 			UNP_PCB_UNLOCK(unp);
3237 	} else {
3238 		if (!unp_pcb_rele(unp))
3239 			UNP_PCB_UNLOCK(unp);
3240 		if (!unp_pcb_rele(unp2))
3241 			UNP_PCB_UNLOCK(unp2);
3242 	}
3243 
3244 	if (m != NULL) {
3245 		unp_scan(m, unp_freerights);
3246 		m_freemp(m);
3247 	}
3248 }
3249 
3250 /*
3251  * unp_pcblist() walks the global list of struct unpcb's to generate a
3252  * pointer list, bumping the refcount on each unpcb.  It then copies them out
3253  * sequentially, validating the generation number on each to see if it has
3254  * been detached.  All of this is necessary because copyout() may sleep on
3255  * disk I/O.
3256  */
3257 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3258 unp_pcblist(SYSCTL_HANDLER_ARGS)
3259 {
3260 	struct unpcb *unp, **unp_list;
3261 	unp_gen_t gencnt;
3262 	struct xunpgen *xug;
3263 	struct unp_head *head;
3264 	struct xunpcb *xu;
3265 	u_int i;
3266 	int error, n;
3267 
3268 	switch ((intptr_t)arg1) {
3269 	case SOCK_STREAM:
3270 		head = &unp_shead;
3271 		break;
3272 
3273 	case SOCK_DGRAM:
3274 		head = &unp_dhead;
3275 		break;
3276 
3277 	case SOCK_SEQPACKET:
3278 		head = &unp_sphead;
3279 		break;
3280 
3281 	default:
3282 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3283 	}
3284 
3285 	/*
3286 	 * The process of preparing the PCB list is too time-consuming and
3287 	 * resource-intensive to repeat twice on every request.
3288 	 */
3289 	if (req->oldptr == NULL) {
3290 		n = unp_count;
3291 		req->oldidx = 2 * (sizeof *xug)
3292 			+ (n + n/8) * sizeof(struct xunpcb);
3293 		return (0);
3294 	}
3295 
3296 	if (req->newptr != NULL)
3297 		return (EPERM);
3298 
3299 	/*
3300 	 * OK, now we're committed to doing something.
3301 	 */
3302 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3303 	UNP_LINK_RLOCK();
3304 	gencnt = unp_gencnt;
3305 	n = unp_count;
3306 	UNP_LINK_RUNLOCK();
3307 
3308 	xug->xug_len = sizeof *xug;
3309 	xug->xug_count = n;
3310 	xug->xug_gen = gencnt;
3311 	xug->xug_sogen = so_gencnt;
3312 	error = SYSCTL_OUT(req, xug, sizeof *xug);
3313 	if (error) {
3314 		free(xug, M_TEMP);
3315 		return (error);
3316 	}
3317 
3318 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3319 
3320 	UNP_LINK_RLOCK();
3321 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3322 	     unp = LIST_NEXT(unp, unp_link)) {
3323 		UNP_PCB_LOCK(unp);
3324 		if (unp->unp_gencnt <= gencnt) {
3325 			if (cr_cansee(req->td->td_ucred,
3326 			    unp->unp_socket->so_cred)) {
3327 				UNP_PCB_UNLOCK(unp);
3328 				continue;
3329 			}
3330 			unp_list[i++] = unp;
3331 			unp_pcb_hold(unp);
3332 		}
3333 		UNP_PCB_UNLOCK(unp);
3334 	}
3335 	UNP_LINK_RUNLOCK();
3336 	n = i;			/* In case we lost some during malloc. */
3337 
3338 	error = 0;
3339 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3340 	for (i = 0; i < n; i++) {
3341 		unp = unp_list[i];
3342 		UNP_PCB_LOCK(unp);
3343 		if (unp_pcb_rele(unp))
3344 			continue;
3345 
3346 		if (unp->unp_gencnt <= gencnt) {
3347 			xu->xu_len = sizeof *xu;
3348 			xu->xu_unpp = (uintptr_t)unp;
3349 			/*
3350 			 * XXX - need more locking here to protect against
3351 			 * connect/disconnect races for SMP.
3352 			 */
3353 			if (unp->unp_addr != NULL)
3354 				bcopy(unp->unp_addr, &xu->xu_addr,
3355 				      unp->unp_addr->sun_len);
3356 			else
3357 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3358 			if (unp->unp_conn != NULL &&
3359 			    unp->unp_conn->unp_addr != NULL)
3360 				bcopy(unp->unp_conn->unp_addr,
3361 				      &xu->xu_caddr,
3362 				      unp->unp_conn->unp_addr->sun_len);
3363 			else
3364 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3365 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3366 			xu->unp_conn = (uintptr_t)unp->unp_conn;
3367 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3368 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3369 			xu->unp_gencnt = unp->unp_gencnt;
3370 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
3371 			UNP_PCB_UNLOCK(unp);
3372 			error = SYSCTL_OUT(req, xu, sizeof *xu);
3373 		} else {
3374 			UNP_PCB_UNLOCK(unp);
3375 		}
3376 	}
3377 	free(xu, M_TEMP);
3378 	if (!error) {
3379 		/*
3380 		 * Give the user an updated idea of our state.  If the
3381 		 * generation differs from what we told her before, she knows
3382 		 * that something happened while we were processing this
3383 		 * request, and it might be necessary to retry.
3384 		 */
3385 		xug->xug_gen = unp_gencnt;
3386 		xug->xug_sogen = so_gencnt;
3387 		xug->xug_count = unp_count;
3388 		error = SYSCTL_OUT(req, xug, sizeof *xug);
3389 	}
3390 	free(unp_list, M_TEMP);
3391 	free(xug, M_TEMP);
3392 	return (error);
3393 }
3394 
3395 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3396     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3397     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3398     "List of active local datagram sockets");
3399 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3400     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3401     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3402     "List of active local stream sockets");
3403 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3404     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3405     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3406     "List of active local seqpacket sockets");
3407 
3408 static void
unp_drop(struct unpcb * unp)3409 unp_drop(struct unpcb *unp)
3410 {
3411 	struct socket *so;
3412 	struct unpcb *unp2;
3413 
3414 	/*
3415 	 * Regardless of whether the socket's peer dropped the connection
3416 	 * with this socket by aborting or disconnecting, POSIX requires
3417 	 * that ECONNRESET is returned on next connected send(2) in case of
3418 	 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3419 	 */
3420 	UNP_PCB_LOCK(unp);
3421 	if ((so = unp->unp_socket) != NULL)
3422 		so->so_error =
3423 		    so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3424 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3425 		/* Last reference dropped in unp_disconnect(). */
3426 		unp_pcb_rele_notlast(unp);
3427 		unp_disconnect(unp, unp2);
3428 	} else if (!unp_pcb_rele(unp)) {
3429 		UNP_PCB_UNLOCK(unp);
3430 	}
3431 }
3432 
3433 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3434 unp_freerights(struct filedescent **fdep, int fdcount)
3435 {
3436 	struct file *fp;
3437 	int i;
3438 
3439 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3440 
3441 	for (i = 0; i < fdcount; i++) {
3442 		fp = fdep[i]->fde_file;
3443 		filecaps_free(&fdep[i]->fde_caps);
3444 		unp_discard(fp);
3445 	}
3446 	free(fdep[0], M_FILECAPS);
3447 }
3448 
3449 static bool
restrict_rights(struct file * fp,struct thread * td)3450 restrict_rights(struct file *fp, struct thread *td)
3451 {
3452 	struct prison *prison1, *prison2;
3453 
3454 	prison1 = fp->f_cred->cr_prison;
3455 	prison2 = td->td_ucred->cr_prison;
3456 	return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3457 	    prison2 != &prison0);
3458 }
3459 
3460 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3461 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3462 {
3463 	struct thread *td = curthread;		/* XXX */
3464 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3465 	int *fdp;
3466 	struct filedesc *fdesc = td->td_proc->p_fd;
3467 	struct filedescent **fdep;
3468 	void *data;
3469 	socklen_t clen = control->m_len, datalen;
3470 	int error, fdflags, newfds;
3471 	u_int newlen;
3472 
3473 	UNP_LINK_UNLOCK_ASSERT();
3474 
3475 	fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) |
3476 	    ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0);
3477 
3478 	error = 0;
3479 	if (controlp != NULL) /* controlp == NULL => free control messages */
3480 		*controlp = NULL;
3481 	while (cm != NULL) {
3482 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3483 
3484 		data = CMSG_DATA(cm);
3485 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3486 		if (cm->cmsg_level == SOL_SOCKET
3487 		    && cm->cmsg_type == SCM_RIGHTS) {
3488 			newfds = datalen / sizeof(*fdep);
3489 			if (newfds == 0)
3490 				goto next;
3491 			fdep = data;
3492 
3493 			/* If we're not outputting the descriptors free them. */
3494 			if (error || controlp == NULL) {
3495 				unp_freerights(fdep, newfds);
3496 				goto next;
3497 			}
3498 			FILEDESC_XLOCK(fdesc);
3499 
3500 			/*
3501 			 * Now change each pointer to an fd in the global
3502 			 * table to an integer that is the index to the local
3503 			 * fd table entry that we set up to point to the
3504 			 * global one we are transferring.
3505 			 */
3506 			newlen = newfds * sizeof(int);
3507 			*controlp = sbcreatecontrol(NULL, newlen,
3508 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3509 
3510 			fdp = (int *)
3511 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3512 			if ((error = fdallocn(td, 0, fdp, newfds))) {
3513 				FILEDESC_XUNLOCK(fdesc);
3514 				unp_freerights(fdep, newfds);
3515 				m_freem(*controlp);
3516 				*controlp = NULL;
3517 				goto next;
3518 			}
3519 			for (int i = 0; i < newfds; i++, fdp++) {
3520 				struct file *fp;
3521 
3522 				fp = fdep[i]->fde_file;
3523 				_finstall(fdesc, fp, *fdp, fdflags |
3524 				    (restrict_rights(fp, td) ?
3525 				    O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3526 				unp_externalize_fp(fp);
3527 			}
3528 
3529 			/*
3530 			 * The new type indicates that the mbuf data refers to
3531 			 * kernel resources that may need to be released before
3532 			 * the mbuf is freed.
3533 			 */
3534 			m_chtype(*controlp, MT_EXTCONTROL);
3535 			FILEDESC_XUNLOCK(fdesc);
3536 			free(fdep[0], M_FILECAPS);
3537 		} else {
3538 			/* We can just copy anything else across. */
3539 			if (error || controlp == NULL)
3540 				goto next;
3541 			*controlp = sbcreatecontrol(NULL, datalen,
3542 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3543 			bcopy(data,
3544 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3545 			    datalen);
3546 		}
3547 		controlp = &(*controlp)->m_next;
3548 
3549 next:
3550 		if (CMSG_SPACE(datalen) < clen) {
3551 			clen -= CMSG_SPACE(datalen);
3552 			cm = (struct cmsghdr *)
3553 			    ((caddr_t)cm + CMSG_SPACE(datalen));
3554 		} else {
3555 			clen = 0;
3556 			cm = NULL;
3557 		}
3558 	}
3559 
3560 	return (error);
3561 }
3562 
3563 static void
unp_zone_change(void * tag)3564 unp_zone_change(void *tag)
3565 {
3566 
3567 	uma_zone_set_max(unp_zone, maxsockets);
3568 }
3569 
3570 #ifdef INVARIANTS
3571 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3572 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3573 {
3574 	struct unpcb *unp;
3575 
3576 	unp = mem;
3577 
3578 	KASSERT(LIST_EMPTY(&unp->unp_refs),
3579 	    ("%s: unpcb %p has lingering refs", __func__, unp));
3580 	KASSERT(unp->unp_socket == NULL,
3581 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
3582 	KASSERT(unp->unp_vnode == NULL,
3583 	    ("%s: unpcb %p has vnode references", __func__, unp));
3584 	KASSERT(unp->unp_conn == NULL,
3585 	    ("%s: unpcb %p is still connected", __func__, unp));
3586 	KASSERT(unp->unp_addr == NULL,
3587 	    ("%s: unpcb %p has leaked addr", __func__, unp));
3588 }
3589 #endif
3590 
3591 static void
unp_init(void * arg __unused)3592 unp_init(void *arg __unused)
3593 {
3594 	uma_dtor dtor;
3595 
3596 #ifdef INVARIANTS
3597 	dtor = unp_zdtor;
3598 #else
3599 	dtor = NULL;
3600 #endif
3601 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3602 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
3603 	uma_zone_set_max(unp_zone, maxsockets);
3604 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3605 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3606 	    NULL, EVENTHANDLER_PRI_ANY);
3607 	LIST_INIT(&unp_dhead);
3608 	LIST_INIT(&unp_shead);
3609 	LIST_INIT(&unp_sphead);
3610 	SLIST_INIT(&unp_defers);
3611 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3612 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3613 	UNP_LINK_LOCK_INIT();
3614 	UNP_DEFERRED_LOCK_INIT();
3615 	unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3616 }
3617 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3618 
3619 static void
unp_internalize_cleanup_rights(struct mbuf * control)3620 unp_internalize_cleanup_rights(struct mbuf *control)
3621 {
3622 	struct cmsghdr *cp;
3623 	struct mbuf *m;
3624 	void *data;
3625 	socklen_t datalen;
3626 
3627 	for (m = control; m != NULL; m = m->m_next) {
3628 		cp = mtod(m, struct cmsghdr *);
3629 		if (cp->cmsg_level != SOL_SOCKET ||
3630 		    cp->cmsg_type != SCM_RIGHTS)
3631 			continue;
3632 		data = CMSG_DATA(cp);
3633 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3634 		unp_freerights(data, datalen / sizeof(struct filedesc *));
3635 	}
3636 }
3637 
3638 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3639 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3640 {
3641 	struct proc *p;
3642 	struct filedesc *fdesc;
3643 	struct bintime *bt;
3644 	struct cmsghdr *cm;
3645 	struct cmsgcred *cmcred;
3646 	struct mbuf *m;
3647 	struct filedescent *fde, **fdep, *fdev;
3648 	struct file *fp;
3649 	struct timeval *tv;
3650 	struct timespec *ts;
3651 	void *data;
3652 	socklen_t clen, datalen;
3653 	int i, j, error, *fdp, oldfds;
3654 	u_int newlen;
3655 
3656 	MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3657 	UNP_LINK_UNLOCK_ASSERT();
3658 
3659 	p = td->td_proc;
3660 	fdesc = p->p_fd;
3661 	error = 0;
3662 	*mc = MCHAIN_INITIALIZER(mc);
3663 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3664 	    data = CMSG_DATA(cm);
3665 
3666 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3667 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3668 	    (char *)cm + cm->cmsg_len >= (char *)data;
3669 
3670 	    clen -= min(CMSG_SPACE(datalen), clen),
3671 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3672 	    data = CMSG_DATA(cm)) {
3673 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
3674 		switch (cm->cmsg_type) {
3675 		case SCM_CREDS:
3676 			m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3677 			    SOL_SOCKET, M_WAITOK);
3678 			cmcred = (struct cmsgcred *)
3679 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3680 			cmcred->cmcred_pid = p->p_pid;
3681 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3682 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3683 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
3684 			_Static_assert(CMGROUP_MAX >= 1,
3685 			    "Room needed for the effective GID.");
3686 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups + 1,
3687 			    CMGROUP_MAX);
3688 			cmcred->cmcred_groups[0] = td->td_ucred->cr_gid;
3689 			for (i = 1; i < cmcred->cmcred_ngroups; i++)
3690 				cmcred->cmcred_groups[i] =
3691 				    td->td_ucred->cr_groups[i - 1];
3692 			break;
3693 
3694 		case SCM_RIGHTS:
3695 			oldfds = datalen / sizeof (int);
3696 			if (oldfds == 0)
3697 				continue;
3698 			/* On some machines sizeof pointer is bigger than
3699 			 * sizeof int, so we need to check if data fits into
3700 			 * single mbuf.  We could allocate several mbufs, and
3701 			 * unp_externalize() should even properly handle that.
3702 			 * But it is not worth to complicate the code for an
3703 			 * insane scenario of passing over 200 file descriptors
3704 			 * at once.
3705 			 */
3706 			newlen = oldfds * sizeof(fdep[0]);
3707 			if (CMSG_SPACE(newlen) > MCLBYTES) {
3708 				error = EMSGSIZE;
3709 				goto out;
3710 			}
3711 			/*
3712 			 * Check that all the FDs passed in refer to legal
3713 			 * files.  If not, reject the entire operation.
3714 			 */
3715 			fdp = data;
3716 			FILEDESC_SLOCK(fdesc);
3717 			for (i = 0; i < oldfds; i++, fdp++) {
3718 				fp = fget_noref(fdesc, *fdp);
3719 				if (fp == NULL) {
3720 					FILEDESC_SUNLOCK(fdesc);
3721 					error = EBADF;
3722 					goto out;
3723 				}
3724 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3725 					FILEDESC_SUNLOCK(fdesc);
3726 					error = EOPNOTSUPP;
3727 					goto out;
3728 				}
3729 			}
3730 
3731 			/*
3732 			 * Now replace the integer FDs with pointers to the
3733 			 * file structure and capability rights.
3734 			 */
3735 			m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3736 			    SOL_SOCKET, M_WAITOK);
3737 			fdp = data;
3738 			for (i = 0; i < oldfds; i++, fdp++) {
3739 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3740 					fdp = data;
3741 					for (j = 0; j < i; j++, fdp++) {
3742 						fdrop(fdesc->fd_ofiles[*fdp].
3743 						    fde_file, td);
3744 					}
3745 					FILEDESC_SUNLOCK(fdesc);
3746 					error = EBADF;
3747 					goto out;
3748 				}
3749 			}
3750 			fdp = data;
3751 			fdep = (struct filedescent **)
3752 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3753 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3754 			    M_WAITOK);
3755 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3756 				fde = &fdesc->fd_ofiles[*fdp];
3757 				fdep[i] = fdev;
3758 				fdep[i]->fde_file = fde->fde_file;
3759 				filecaps_copy(&fde->fde_caps,
3760 				    &fdep[i]->fde_caps, true);
3761 				unp_internalize_fp(fdep[i]->fde_file);
3762 			}
3763 			FILEDESC_SUNLOCK(fdesc);
3764 			break;
3765 
3766 		case SCM_TIMESTAMP:
3767 			m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3768 			    SOL_SOCKET, M_WAITOK);
3769 			tv = (struct timeval *)
3770 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3771 			microtime(tv);
3772 			break;
3773 
3774 		case SCM_BINTIME:
3775 			m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3776 			    SOL_SOCKET, M_WAITOK);
3777 			bt = (struct bintime *)
3778 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3779 			bintime(bt);
3780 			break;
3781 
3782 		case SCM_REALTIME:
3783 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3784 			    SOL_SOCKET, M_WAITOK);
3785 			ts = (struct timespec *)
3786 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3787 			nanotime(ts);
3788 			break;
3789 
3790 		case SCM_MONOTONIC:
3791 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3792 			    SOL_SOCKET, M_WAITOK);
3793 			ts = (struct timespec *)
3794 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3795 			nanouptime(ts);
3796 			break;
3797 
3798 		default:
3799 			error = EINVAL;
3800 			goto out;
3801 		}
3802 
3803 		mc_append(mc, m);
3804 	}
3805 	if (clen > 0)
3806 		error = EINVAL;
3807 
3808 out:
3809 	if (error != 0)
3810 		unp_internalize_cleanup_rights(mc_first(mc));
3811 	m_freem(control);
3812 	return (error);
3813 }
3814 
3815 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3816 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3817 {
3818 	struct mbuf *m, *n, *n_prev;
3819 	const struct cmsghdr *cm;
3820 	int ngroups, i, cmsgtype;
3821 	size_t ctrlsz;
3822 
3823 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3824 	if (mode & UNP_WANTCRED_ALWAYS) {
3825 		ctrlsz = SOCKCRED2SIZE(ngroups);
3826 		cmsgtype = SCM_CREDS2;
3827 	} else {
3828 		ctrlsz = SOCKCREDSIZE(ngroups);
3829 		cmsgtype = SCM_CREDS;
3830 	}
3831 
3832 	/* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3833 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3834 	if (m == NULL)
3835 		return;
3836 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3837 
3838 	if (mode & UNP_WANTCRED_ALWAYS) {
3839 		struct sockcred2 *sc;
3840 
3841 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3842 		sc->sc_version = 0;
3843 		sc->sc_pid = td->td_proc->p_pid;
3844 		sc->sc_uid = td->td_ucred->cr_ruid;
3845 		sc->sc_euid = td->td_ucred->cr_uid;
3846 		sc->sc_gid = td->td_ucred->cr_rgid;
3847 		sc->sc_egid = td->td_ucred->cr_gid;
3848 		sc->sc_ngroups = ngroups;
3849 		for (i = 0; i < sc->sc_ngroups; i++)
3850 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3851 	} else {
3852 		struct sockcred *sc;
3853 
3854 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3855 		sc->sc_uid = td->td_ucred->cr_ruid;
3856 		sc->sc_euid = td->td_ucred->cr_uid;
3857 		sc->sc_gid = td->td_ucred->cr_rgid;
3858 		sc->sc_egid = td->td_ucred->cr_gid;
3859 		sc->sc_ngroups = ngroups;
3860 		for (i = 0; i < sc->sc_ngroups; i++)
3861 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3862 	}
3863 
3864 	/*
3865 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3866 	 * created SCM_CREDS control message (struct sockcred) has another
3867 	 * format.
3868 	 */
3869 	if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3870 		STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3871 			cm = mtod(n, struct cmsghdr *);
3872     			if (cm->cmsg_level == SOL_SOCKET &&
3873 			    cm->cmsg_type == SCM_CREDS) {
3874 				mc_remove(mc, n);
3875 				m_free(n);
3876 			}
3877 		}
3878 
3879 	/* Prepend it to the head. */
3880 	mc_prepend(mc, m);
3881 }
3882 
3883 static struct unpcb *
fptounp(struct file * fp)3884 fptounp(struct file *fp)
3885 {
3886 	struct socket *so;
3887 
3888 	if (fp->f_type != DTYPE_SOCKET)
3889 		return (NULL);
3890 	if ((so = fp->f_data) == NULL)
3891 		return (NULL);
3892 	if (so->so_proto->pr_domain != &localdomain)
3893 		return (NULL);
3894 	return sotounpcb(so);
3895 }
3896 
3897 static void
unp_discard(struct file * fp)3898 unp_discard(struct file *fp)
3899 {
3900 	struct unp_defer *dr;
3901 
3902 	if (unp_externalize_fp(fp)) {
3903 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3904 		dr->ud_fp = fp;
3905 		UNP_DEFERRED_LOCK();
3906 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3907 		UNP_DEFERRED_UNLOCK();
3908 		atomic_add_int(&unp_defers_count, 1);
3909 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3910 	} else
3911 		closef_nothread(fp);
3912 }
3913 
3914 static void
unp_process_defers(void * arg __unused,int pending)3915 unp_process_defers(void *arg __unused, int pending)
3916 {
3917 	struct unp_defer *dr;
3918 	SLIST_HEAD(, unp_defer) drl;
3919 	int count;
3920 
3921 	SLIST_INIT(&drl);
3922 	for (;;) {
3923 		UNP_DEFERRED_LOCK();
3924 		if (SLIST_FIRST(&unp_defers) == NULL) {
3925 			UNP_DEFERRED_UNLOCK();
3926 			break;
3927 		}
3928 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
3929 		UNP_DEFERRED_UNLOCK();
3930 		count = 0;
3931 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
3932 			SLIST_REMOVE_HEAD(&drl, ud_link);
3933 			closef_nothread(dr->ud_fp);
3934 			free(dr, M_TEMP);
3935 			count++;
3936 		}
3937 		atomic_add_int(&unp_defers_count, -count);
3938 	}
3939 }
3940 
3941 static void
unp_internalize_fp(struct file * fp)3942 unp_internalize_fp(struct file *fp)
3943 {
3944 	struct unpcb *unp;
3945 
3946 	UNP_LINK_WLOCK();
3947 	if ((unp = fptounp(fp)) != NULL) {
3948 		unp->unp_file = fp;
3949 		unp->unp_msgcount++;
3950 	}
3951 	unp_rights++;
3952 	UNP_LINK_WUNLOCK();
3953 }
3954 
3955 static int
unp_externalize_fp(struct file * fp)3956 unp_externalize_fp(struct file *fp)
3957 {
3958 	struct unpcb *unp;
3959 	int ret;
3960 
3961 	UNP_LINK_WLOCK();
3962 	if ((unp = fptounp(fp)) != NULL) {
3963 		unp->unp_msgcount--;
3964 		ret = 1;
3965 	} else
3966 		ret = 0;
3967 	unp_rights--;
3968 	UNP_LINK_WUNLOCK();
3969 	return (ret);
3970 }
3971 
3972 /*
3973  * unp_defer indicates whether additional work has been defered for a future
3974  * pass through unp_gc().  It is thread local and does not require explicit
3975  * synchronization.
3976  */
3977 static int	unp_marked;
3978 
3979 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3980 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3981 {
3982 	struct unpcb *unp;
3983 	struct file *fp;
3984 	int i;
3985 
3986 	/*
3987 	 * This function can only be called from the gc task.
3988 	 */
3989 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3990 	    ("%s: not on gc callout", __func__));
3991 	UNP_LINK_LOCK_ASSERT();
3992 
3993 	for (i = 0; i < fdcount; i++) {
3994 		fp = fdep[i]->fde_file;
3995 		if ((unp = fptounp(fp)) == NULL)
3996 			continue;
3997 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3998 			continue;
3999 		unp->unp_gcrefs--;
4000 	}
4001 }
4002 
4003 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)4004 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
4005 {
4006 	struct unpcb *unp;
4007 	struct file *fp;
4008 	int i;
4009 
4010 	/*
4011 	 * This function can only be called from the gc task.
4012 	 */
4013 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4014 	    ("%s: not on gc callout", __func__));
4015 	UNP_LINK_LOCK_ASSERT();
4016 
4017 	for (i = 0; i < fdcount; i++) {
4018 		fp = fdep[i]->fde_file;
4019 		if ((unp = fptounp(fp)) == NULL)
4020 			continue;
4021 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4022 			continue;
4023 		unp->unp_gcrefs++;
4024 		unp_marked++;
4025 	}
4026 }
4027 
4028 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4029 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4030 {
4031 	struct sockbuf *sb;
4032 
4033 	SOCK_LOCK_ASSERT(so);
4034 
4035 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4036 		return;
4037 
4038 	SOCK_RECVBUF_LOCK(so);
4039 	switch (so->so_type) {
4040 	case SOCK_DGRAM:
4041 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4042 		unp_scan(so->so_rcv.uxdg_peeked, op);
4043 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4044 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4045 		break;
4046 	case SOCK_STREAM:
4047 	case SOCK_SEQPACKET:
4048 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4049 		break;
4050 	}
4051 	SOCK_RECVBUF_UNLOCK(so);
4052 }
4053 
4054 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4055 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4056 {
4057 	struct socket *so, *soa;
4058 
4059 	so = unp->unp_socket;
4060 	SOCK_LOCK(so);
4061 	if (SOLISTENING(so)) {
4062 		/*
4063 		 * Mark all sockets in our accept queue.
4064 		 */
4065 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4066 			unp_scan_socket(soa, op);
4067 	} else {
4068 		/*
4069 		 * Mark all sockets we reference with RIGHTS.
4070 		 */
4071 		unp_scan_socket(so, op);
4072 	}
4073 	SOCK_UNLOCK(so);
4074 }
4075 
4076 static int unp_recycled;
4077 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4078     "Number of unreachable sockets claimed by the garbage collector.");
4079 
4080 static int unp_taskcount;
4081 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4082     "Number of times the garbage collector has run.");
4083 
4084 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4085     "Number of active local sockets.");
4086 
4087 static void
unp_gc(__unused void * arg,int pending)4088 unp_gc(__unused void *arg, int pending)
4089 {
4090 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4091 				    NULL };
4092 	struct unp_head **head;
4093 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
4094 	struct file *f, **unref;
4095 	struct unpcb *unp, *unptmp;
4096 	int i, total, unp_unreachable;
4097 
4098 	LIST_INIT(&unp_deadhead);
4099 	unp_taskcount++;
4100 	UNP_LINK_RLOCK();
4101 	/*
4102 	 * First determine which sockets may be in cycles.
4103 	 */
4104 	unp_unreachable = 0;
4105 
4106 	for (head = heads; *head != NULL; head++)
4107 		LIST_FOREACH(unp, *head, unp_link) {
4108 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4109 			    ("%s: unp %p has unexpected gc flags 0x%x",
4110 			    __func__, unp, (unsigned int)unp->unp_gcflag));
4111 
4112 			f = unp->unp_file;
4113 
4114 			/*
4115 			 * Check for an unreachable socket potentially in a
4116 			 * cycle.  It must be in a queue as indicated by
4117 			 * msgcount, and this must equal the file reference
4118 			 * count.  Note that when msgcount is 0 the file is
4119 			 * NULL.
4120 			 */
4121 			if (f != NULL && unp->unp_msgcount != 0 &&
4122 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
4123 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4124 				unp->unp_gcflag |= UNPGC_DEAD;
4125 				unp->unp_gcrefs = unp->unp_msgcount;
4126 				unp_unreachable++;
4127 			}
4128 		}
4129 
4130 	/*
4131 	 * Scan all sockets previously marked as potentially being in a cycle
4132 	 * and remove the references each socket holds on any UNPGC_DEAD
4133 	 * sockets in its queue.  After this step, all remaining references on
4134 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
4135 	 */
4136 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4137 		unp_gc_scan(unp, unp_remove_dead_ref);
4138 
4139 	/*
4140 	 * If a socket still has a non-negative refcount, it cannot be in a
4141 	 * cycle.  In this case increment refcount of all children iteratively.
4142 	 * Stop the scan once we do a complete loop without discovering
4143 	 * a new reachable socket.
4144 	 */
4145 	do {
4146 		unp_marked = 0;
4147 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4148 			if (unp->unp_gcrefs > 0) {
4149 				unp->unp_gcflag &= ~UNPGC_DEAD;
4150 				LIST_REMOVE(unp, unp_dead);
4151 				KASSERT(unp_unreachable > 0,
4152 				    ("%s: unp_unreachable underflow.",
4153 				    __func__));
4154 				unp_unreachable--;
4155 				unp_gc_scan(unp, unp_restore_undead_ref);
4156 			}
4157 	} while (unp_marked);
4158 
4159 	UNP_LINK_RUNLOCK();
4160 
4161 	if (unp_unreachable == 0)
4162 		return;
4163 
4164 	/*
4165 	 * Allocate space for a local array of dead unpcbs.
4166 	 * TODO: can this path be simplified by instead using the local
4167 	 * dead list at unp_deadhead, after taking out references
4168 	 * on the file object and/or unpcb and dropping the link lock?
4169 	 */
4170 	unref = malloc(unp_unreachable * sizeof(struct file *),
4171 	    M_TEMP, M_WAITOK);
4172 
4173 	/*
4174 	 * Iterate looking for sockets which have been specifically marked
4175 	 * as unreachable and store them locally.
4176 	 */
4177 	UNP_LINK_RLOCK();
4178 	total = 0;
4179 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4180 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4181 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4182 		unp->unp_gcflag &= ~UNPGC_DEAD;
4183 		f = unp->unp_file;
4184 		if (unp->unp_msgcount == 0 || f == NULL ||
4185 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
4186 		    !fhold(f))
4187 			continue;
4188 		unref[total++] = f;
4189 		KASSERT(total <= unp_unreachable,
4190 		    ("%s: incorrect unreachable count.", __func__));
4191 	}
4192 	UNP_LINK_RUNLOCK();
4193 
4194 	/*
4195 	 * Now flush all sockets, free'ing rights.  This will free the
4196 	 * struct files associated with these sockets but leave each socket
4197 	 * with one remaining ref.
4198 	 */
4199 	for (i = 0; i < total; i++) {
4200 		struct socket *so;
4201 
4202 		so = unref[i]->f_data;
4203 		if (!SOLISTENING(so)) {
4204 			CURVNET_SET(so->so_vnet);
4205 			socantrcvmore(so);
4206 			unp_dispose(so);
4207 			CURVNET_RESTORE();
4208 		}
4209 	}
4210 
4211 	/*
4212 	 * And finally release the sockets so they can be reclaimed.
4213 	 */
4214 	for (i = 0; i < total; i++)
4215 		fdrop(unref[i], NULL);
4216 	unp_recycled += total;
4217 	free(unref, M_TEMP);
4218 }
4219 
4220 /*
4221  * Synchronize against unp_gc, which can trip over data as we are freeing it.
4222  */
4223 static void
unp_dispose(struct socket * so)4224 unp_dispose(struct socket *so)
4225 {
4226 	struct sockbuf *sb;
4227 	struct unpcb *unp;
4228 	struct mbuf *m;
4229 	int error __diagused;
4230 
4231 	MPASS(!SOLISTENING(so));
4232 
4233 	unp = sotounpcb(so);
4234 	UNP_LINK_WLOCK();
4235 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4236 	UNP_LINK_WUNLOCK();
4237 
4238 	/*
4239 	 * Grab our special mbufs before calling sbrelease().
4240 	 */
4241 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4242 	MPASS(!error);
4243 	SOCK_RECVBUF_LOCK(so);
4244 	switch (so->so_type) {
4245 	case SOCK_DGRAM:
4246 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4247 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4248 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4249 			/* Note: socket of sb may reconnect. */
4250 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4251 		}
4252 		sb = &so->so_rcv;
4253 		if (sb->uxdg_peeked != NULL) {
4254 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4255 			    m_stailqpkt);
4256 			sb->uxdg_peeked = NULL;
4257 		}
4258 		m = STAILQ_FIRST(&sb->uxdg_mb);
4259 		STAILQ_INIT(&sb->uxdg_mb);
4260 		break;
4261 	case SOCK_STREAM:
4262 	case SOCK_SEQPACKET:
4263 		sb = &so->so_rcv;
4264 		m = STAILQ_FIRST(&sb->uxst_mbq);
4265 		STAILQ_INIT(&sb->uxst_mbq);
4266 		sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4267 		/*
4268 		 * Trim M_NOTREADY buffers from the free list.  They are
4269 		 * referenced by the I/O thread.
4270 		 */
4271 		if (sb->uxst_fnrdy != NULL) {
4272 			struct mbuf *n, *prev;
4273 
4274 			while (m != NULL && m->m_flags & M_NOTREADY)
4275 				m = m->m_next;
4276 			for (prev = n = m; n != NULL; n = n->m_next) {
4277 				if (n->m_flags & M_NOTREADY)
4278 					prev->m_next = n->m_next;
4279 				else
4280 					prev = n;
4281 			}
4282 			sb->uxst_fnrdy = NULL;
4283 		}
4284 		break;
4285 	}
4286 	/*
4287 	 * Mark sb with SBS_CANTRCVMORE.  This is needed to prevent
4288 	 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4289 	 * We came here either through shutdown(2) or from the final sofree().
4290 	 * The sofree() case is simple as it guarantees that no more sends will
4291 	 * happen, however we can race with unp_disconnect() from our peer.
4292 	 * The shutdown(2) case is more exotic.  It would call into
4293 	 * unp_dispose() only if socket is SS_ISCONNECTED.  This is possible if
4294 	 * we did connect(2) on this socket and we also had it bound with
4295 	 * bind(2) and receive connections from other sockets.  Because
4296 	 * uipc_shutdown() violates POSIX (see comment there) this applies to
4297 	 * SOCK_DGRAM as well.  For SOCK_DGRAM this SBS_CANTRCVMORE will have
4298 	 * affect not only on the peer we connect(2)ed to, but also on all of
4299 	 * the peers who had connect(2)ed to us.  Their sends would end up
4300 	 * with ENOBUFS.
4301 	 */
4302 	sb->sb_state |= SBS_CANTRCVMORE;
4303 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4304 	    RLIM_INFINITY);
4305 	SOCK_RECVBUF_UNLOCK(so);
4306 	SOCK_IO_RECV_UNLOCK(so);
4307 
4308 	if (m != NULL) {
4309 		unp_scan(m, unp_freerights);
4310 		m_freemp(m);
4311 	}
4312 }
4313 
4314 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4315 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4316 {
4317 	struct mbuf *m;
4318 	struct cmsghdr *cm;
4319 	void *data;
4320 	socklen_t clen, datalen;
4321 
4322 	while (m0 != NULL) {
4323 		for (m = m0; m; m = m->m_next) {
4324 			if (m->m_type != MT_CONTROL)
4325 				continue;
4326 
4327 			cm = mtod(m, struct cmsghdr *);
4328 			clen = m->m_len;
4329 
4330 			while (cm != NULL) {
4331 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4332 					break;
4333 
4334 				data = CMSG_DATA(cm);
4335 				datalen = (caddr_t)cm + cm->cmsg_len
4336 				    - (caddr_t)data;
4337 
4338 				if (cm->cmsg_level == SOL_SOCKET &&
4339 				    cm->cmsg_type == SCM_RIGHTS) {
4340 					(*op)(data, datalen /
4341 					    sizeof(struct filedescent *));
4342 				}
4343 
4344 				if (CMSG_SPACE(datalen) < clen) {
4345 					clen -= CMSG_SPACE(datalen);
4346 					cm = (struct cmsghdr *)
4347 					    ((caddr_t)cm + CMSG_SPACE(datalen));
4348 				} else {
4349 					clen = 0;
4350 					cm = NULL;
4351 				}
4352 			}
4353 		}
4354 		m0 = m0->m_nextpkt;
4355 	}
4356 }
4357 
4358 /*
4359  * Definitions of protocols supported in the LOCAL domain.
4360  */
4361 static struct protosw streamproto = {
4362 	.pr_type =		SOCK_STREAM,
4363 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4364 	.pr_ctloutput =		&uipc_ctloutput,
4365 	.pr_abort = 		uipc_abort,
4366 	.pr_accept =		uipc_peeraddr,
4367 	.pr_attach =		uipc_attach,
4368 	.pr_bind =		uipc_bind,
4369 	.pr_bindat =		uipc_bindat,
4370 	.pr_connect =		uipc_connect,
4371 	.pr_connectat =		uipc_connectat,
4372 	.pr_connect2 =		uipc_connect2,
4373 	.pr_detach =		uipc_detach,
4374 	.pr_disconnect =	uipc_disconnect,
4375 	.pr_listen =		uipc_listen,
4376 	.pr_peeraddr =		uipc_peeraddr,
4377 	.pr_send =		uipc_sendfile,
4378 	.pr_sendfile_wait =	uipc_sendfile_wait,
4379 	.pr_ready =		uipc_ready,
4380 	.pr_sense =		uipc_sense,
4381 	.pr_shutdown =		uipc_shutdown,
4382 	.pr_sockaddr =		uipc_sockaddr,
4383 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4384 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4385 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4386 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4387 	.pr_close =		uipc_close,
4388 	.pr_chmod =		uipc_chmod,
4389 };
4390 
4391 static struct protosw dgramproto = {
4392 	.pr_type =		SOCK_DGRAM,
4393 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4394 	.pr_ctloutput =		&uipc_ctloutput,
4395 	.pr_abort = 		uipc_abort,
4396 	.pr_accept =		uipc_peeraddr,
4397 	.pr_attach =		uipc_attach,
4398 	.pr_bind =		uipc_bind,
4399 	.pr_bindat =		uipc_bindat,
4400 	.pr_connect =		uipc_connect,
4401 	.pr_connectat =		uipc_connectat,
4402 	.pr_connect2 =		uipc_connect2,
4403 	.pr_detach =		uipc_detach,
4404 	.pr_disconnect =	uipc_disconnect,
4405 	.pr_peeraddr =		uipc_peeraddr,
4406 	.pr_sosend =		uipc_sosend_dgram,
4407 	.pr_sense =		uipc_sense,
4408 	.pr_shutdown =		uipc_shutdown,
4409 	.pr_sockaddr =		uipc_sockaddr,
4410 	.pr_soreceive =		uipc_soreceive_dgram,
4411 	.pr_close =		uipc_close,
4412 	.pr_chmod =		uipc_chmod,
4413 };
4414 
4415 static struct protosw seqpacketproto = {
4416 	.pr_type =		SOCK_SEQPACKET,
4417 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4418 	.pr_ctloutput =		&uipc_ctloutput,
4419 	.pr_abort =		uipc_abort,
4420 	.pr_accept =		uipc_peeraddr,
4421 	.pr_attach =		uipc_attach,
4422 	.pr_bind =		uipc_bind,
4423 	.pr_bindat =		uipc_bindat,
4424 	.pr_connect =		uipc_connect,
4425 	.pr_connectat =		uipc_connectat,
4426 	.pr_connect2 =		uipc_connect2,
4427 	.pr_detach =		uipc_detach,
4428 	.pr_disconnect =	uipc_disconnect,
4429 	.pr_listen =		uipc_listen,
4430 	.pr_peeraddr =		uipc_peeraddr,
4431 	.pr_sense =		uipc_sense,
4432 	.pr_shutdown =		uipc_shutdown,
4433 	.pr_sockaddr =		uipc_sockaddr,
4434 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4435 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4436 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4437 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4438 	.pr_close =		uipc_close,
4439 	.pr_chmod =		uipc_chmod,
4440 };
4441 
4442 static struct domain localdomain = {
4443 	.dom_family =		AF_LOCAL,
4444 	.dom_name =		"local",
4445 	.dom_nprotosw =		3,
4446 	.dom_protosw =		{
4447 		&streamproto,
4448 		&dgramproto,
4449 		&seqpacketproto,
4450 	}
4451 };
4452 DOMAIN_SET(local);
4453 
4454 /*
4455  * A helper function called by VFS before socket-type vnode reclamation.
4456  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4457  * use count.
4458  */
4459 void
vfs_unp_reclaim(struct vnode * vp)4460 vfs_unp_reclaim(struct vnode *vp)
4461 {
4462 	struct unpcb *unp;
4463 	int active;
4464 	struct mtx *vplock;
4465 
4466 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4467 	KASSERT(vp->v_type == VSOCK,
4468 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4469 
4470 	active = 0;
4471 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4472 	mtx_lock(vplock);
4473 	VOP_UNP_CONNECT(vp, &unp);
4474 	if (unp == NULL)
4475 		goto done;
4476 	UNP_PCB_LOCK(unp);
4477 	if (unp->unp_vnode == vp) {
4478 		VOP_UNP_DETACH(vp);
4479 		unp->unp_vnode = NULL;
4480 		active = 1;
4481 	}
4482 	UNP_PCB_UNLOCK(unp);
4483  done:
4484 	mtx_unlock(vplock);
4485 	if (active)
4486 		vunref(vp);
4487 }
4488 
4489 #ifdef DDB
4490 static void
db_print_indent(int indent)4491 db_print_indent(int indent)
4492 {
4493 	int i;
4494 
4495 	for (i = 0; i < indent; i++)
4496 		db_printf(" ");
4497 }
4498 
4499 static void
db_print_unpflags(int unp_flags)4500 db_print_unpflags(int unp_flags)
4501 {
4502 	int comma;
4503 
4504 	comma = 0;
4505 	if (unp_flags & UNP_HAVEPC) {
4506 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4507 		comma = 1;
4508 	}
4509 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
4510 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4511 		comma = 1;
4512 	}
4513 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
4514 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4515 		comma = 1;
4516 	}
4517 	if (unp_flags & UNP_CONNECTING) {
4518 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4519 		comma = 1;
4520 	}
4521 	if (unp_flags & UNP_BINDING) {
4522 		db_printf("%sUNP_BINDING", comma ? ", " : "");
4523 		comma = 1;
4524 	}
4525 }
4526 
4527 static void
db_print_xucred(int indent,struct xucred * xu)4528 db_print_xucred(int indent, struct xucred *xu)
4529 {
4530 	int comma, i;
4531 
4532 	db_print_indent(indent);
4533 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
4534 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4535 	db_print_indent(indent);
4536 	db_printf("cr_groups: ");
4537 	comma = 0;
4538 	for (i = 0; i < xu->cr_ngroups; i++) {
4539 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4540 		comma = 1;
4541 	}
4542 	db_printf("\n");
4543 }
4544 
4545 static void
db_print_unprefs(int indent,struct unp_head * uh)4546 db_print_unprefs(int indent, struct unp_head *uh)
4547 {
4548 	struct unpcb *unp;
4549 	int counter;
4550 
4551 	counter = 0;
4552 	LIST_FOREACH(unp, uh, unp_reflink) {
4553 		if (counter % 4 == 0)
4554 			db_print_indent(indent);
4555 		db_printf("%p  ", unp);
4556 		if (counter % 4 == 3)
4557 			db_printf("\n");
4558 		counter++;
4559 	}
4560 	if (counter != 0 && counter % 4 != 0)
4561 		db_printf("\n");
4562 }
4563 
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4564 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4565 {
4566 	struct unpcb *unp;
4567 
4568         if (!have_addr) {
4569                 db_printf("usage: show unpcb <addr>\n");
4570                 return;
4571         }
4572         unp = (struct unpcb *)addr;
4573 
4574 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
4575 	    unp->unp_vnode);
4576 
4577 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4578 	    unp->unp_conn);
4579 
4580 	db_printf("unp_refs:\n");
4581 	db_print_unprefs(2, &unp->unp_refs);
4582 
4583 	/* XXXRW: Would be nice to print the full address, if any. */
4584 	db_printf("unp_addr: %p\n", unp->unp_addr);
4585 
4586 	db_printf("unp_gencnt: %llu\n",
4587 	    (unsigned long long)unp->unp_gencnt);
4588 
4589 	db_printf("unp_flags: %x (", unp->unp_flags);
4590 	db_print_unpflags(unp->unp_flags);
4591 	db_printf(")\n");
4592 
4593 	db_printf("unp_peercred:\n");
4594 	db_print_xucred(2, &unp->unp_peercred);
4595 
4596 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
4597 }
4598 #endif
4599