xref: /freebsd/sys/netinet/udp_usrreq.c (revision 08e638c089ab57531f08994d03c9dde54c4744f9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_inet6.h"
42 #include "opt_ipsec.h"
43 #include "opt_route.h"
44 #include "opt_rss.h"
45 
46 #include <sys/param.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/protosw.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/systm.h>
65 
66 #include <vm/uma.h>
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/route.h>
71 #include <net/route/nhop.h>
72 #include <net/rss_config.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip.h>
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #endif
84 #include <netinet/ip_icmp.h>
85 #include <netinet/icmp_var.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_options.h>
88 #ifdef INET6
89 #include <netinet6/ip6_var.h>
90 #endif
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/udplite.h>
94 #include <netinet/in_rss.h>
95 
96 #include <netipsec/ipsec_support.h>
97 
98 #include <machine/in_cksum.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 /*
103  * UDP and UDP-Lite protocols implementation.
104  * Per RFC 768, August, 1980.
105  * Per RFC 3828, July, 2004.
106  */
107 
108 VNET_DEFINE(int, udp_bind_all_fibs) = 1;
109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
110     &VNET_NAME(udp_bind_all_fibs), 0,
111     "Bound sockets receive traffic from all FIBs");
112 
113 /*
114  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
115  * removes the only data integrity mechanism for packets and malformed
116  * packets that would otherwise be discarded due to bad checksums, and may
117  * cause problems (especially for NFS data blocks).
118  */
119 VNET_DEFINE(int, udp_cksum) = 1;
120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
121     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
122 
123 VNET_DEFINE(int, udp_log_in_vain) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
126 
127 VNET_DEFINE(int, udp_blackhole) = 0;
128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
129     &VNET_NAME(udp_blackhole), 0,
130     "Do not send port unreachables for refused connects");
131 VNET_DEFINE(bool, udp_blackhole_local) = false;
132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
133     CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
134     "Enforce net.inet.udp.blackhole for locally originated packets");
135 
136 u_long	udp_sendspace = 9216;		/* really max datagram size */
137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
138     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
139 
140 u_long	udp_recvspace = 40 * (1024 +
141 #ifdef INET6
142 				      sizeof(struct sockaddr_in6)
143 #else
144 				      sizeof(struct sockaddr_in)
145 #endif
146 				      );	/* 40 1K datagrams */
147 
148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
149     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
150 
151 VNET_DEFINE(struct inpcbinfo, udbinfo);
152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
153 
154 #ifndef UDBHASHSIZE
155 #define	UDBHASHSIZE	128
156 #endif
157 
158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
159 VNET_PCPUSTAT_SYSINIT(udpstat);
160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
161     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
162 
163 #ifdef VIMAGE
164 VNET_PCPUSTAT_SYSUNINIT(udpstat);
165 #endif /* VIMAGE */
166 #ifdef INET
167 static void	udp_detach(struct socket *so);
168 #endif
169 
170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash");
171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb",
172     "udplite", "udplitehash");
173 
174 static void
udp_vnet_init(void * arg __unused)175 udp_vnet_init(void *arg __unused)
176 {
177 
178 	/*
179 	 * For now default to 2-tuple UDP hashing - until the fragment
180 	 * reassembly code can also update the flowid.
181 	 *
182 	 * Once we can calculate the flowid that way and re-establish
183 	 * a 4-tuple, flip this to 4-tuple.
184 	 */
185 	in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE);
186 	/* Additional pcbinfo for UDP-Lite */
187 	in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE,
188 	    UDBHASHSIZE);
189 }
190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
191     udp_vnet_init, NULL);
192 
193 /*
194  * Kernel module interface for updating udpstat.  The argument is an index
195  * into udpstat treated as an array of u_long.  While this encodes the
196  * general layout of udpstat into the caller, it doesn't encode its location,
197  * so that future changes to add, for example, per-CPU stats support won't
198  * cause binary compatibility problems for kernel modules.
199  */
200 void
kmod_udpstat_inc(int statnum)201 kmod_udpstat_inc(int statnum)
202 {
203 
204 	counter_u64_add(VNET(udpstat)[statnum], 1);
205 }
206 
207 #ifdef VIMAGE
208 static void
udp_destroy(void * unused __unused)209 udp_destroy(void *unused __unused)
210 {
211 
212 	in_pcbinfo_destroy(&V_udbinfo);
213 	in_pcbinfo_destroy(&V_ulitecbinfo);
214 }
215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
216 #endif
217 
218 #ifdef INET
219 /*
220  * Subroutine of udp_input(), which appends the provided mbuf chain to the
221  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
222  * contains the source address.  If the socket ends up being an IPv6 socket,
223  * udp_append() will convert to a sockaddr_in6 before passing the address
224  * into the socket code.
225  *
226  * In the normal case udp_append() will return 0, indicating that you
227  * must unlock the inp. However if a tunneling protocol is in place we increment
228  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
229  * then decrement the reference count. If the inp_rele returns 1, indicating the
230  * inp is gone, we return that to the caller to tell them *not* to unlock
231  * the inp. In the case of multi-cast this will cause the distribution
232  * to stop (though most tunneling protocols known currently do *not* use
233  * multicast).
234  */
235 static int
udp_append(struct inpcb * inp,struct ip * ip,struct mbuf * n,int off,struct sockaddr_in * udp_in)236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
237     struct sockaddr_in *udp_in)
238 {
239 	struct sockaddr *append_sa;
240 	struct socket *so;
241 	struct mbuf *tmpopts, *opts = NULL;
242 #ifdef INET6
243 	struct sockaddr_in6 udp_in6;
244 #endif
245 	struct udpcb *up;
246 	bool filtered;
247 
248 	INP_LOCK_ASSERT(inp);
249 
250 	/*
251 	 * Engage the tunneling protocol.
252 	 */
253 	up = intoudpcb(inp);
254 	if (up->u_tun_func != NULL) {
255 		in_pcbref(inp);
256 		INP_RUNLOCK(inp);
257 		filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
258 		    up->u_tun_ctx);
259 		INP_RLOCK(inp);
260 		if (filtered)
261 			return (in_pcbrele_rlocked(inp));
262 	}
263 
264 	off += sizeof(struct udphdr);
265 
266 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
267 	/* Check AH/ESP integrity. */
268 	if (IPSEC_ENABLED(ipv4) &&
269 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
270 		m_freem(n);
271 		return (0);
272 	}
273 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
274 		if (IPSEC_ENABLED(ipv4) &&
275 		    UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0)
276 			return (0);	/* Consumed. */
277 	}
278 #endif /* IPSEC */
279 #ifdef MAC
280 	if (mac_inpcb_check_deliver(inp, n) != 0) {
281 		m_freem(n);
282 		return (0);
283 	}
284 #endif /* MAC */
285 	if (inp->inp_flags & INP_CONTROLOPTS ||
286 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
287 #ifdef INET6
288 		if (inp->inp_vflag & INP_IPV6)
289 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
290 		else
291 #endif /* INET6 */
292 			ip_savecontrol(inp, &opts, ip, n);
293 	}
294 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
295 		tmpopts = sbcreatecontrol(&udp_in[1],
296 		    sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP,
297 		    M_NOWAIT);
298 		if (tmpopts) {
299 			if (opts) {
300 				tmpopts->m_next = opts;
301 				opts = tmpopts;
302 			} else
303 				opts = tmpopts;
304 		}
305 	}
306 #ifdef INET6
307 	if (inp->inp_vflag & INP_IPV6) {
308 		bzero(&udp_in6, sizeof(udp_in6));
309 		udp_in6.sin6_len = sizeof(udp_in6);
310 		udp_in6.sin6_family = AF_INET6;
311 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
312 		append_sa = (struct sockaddr *)&udp_in6;
313 	} else
314 #endif /* INET6 */
315 		append_sa = (struct sockaddr *)&udp_in[0];
316 	m_adj(n, off);
317 
318 	so = inp->inp_socket;
319 	SOCKBUF_LOCK(&so->so_rcv);
320 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
321 		soroverflow_locked(so);
322 		m_freem(n);
323 		if (opts)
324 			m_freem(opts);
325 		UDPSTAT_INC(udps_fullsock);
326 	} else
327 		sorwakeup_locked(so);
328 	return (0);
329 }
330 
331 static bool
udp_multi_match(const struct inpcb * inp,void * v)332 udp_multi_match(const struct inpcb *inp, void *v)
333 {
334 	struct ip *ip = v;
335 	struct udphdr *uh = (struct udphdr *)(ip + 1);
336 
337 	if (inp->inp_lport != uh->uh_dport)
338 		return (false);
339 #ifdef INET6
340 	if ((inp->inp_vflag & INP_IPV4) == 0)
341 		return (false);
342 #endif
343 	if (inp->inp_laddr.s_addr != INADDR_ANY &&
344 	    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
345 		return (false);
346 	if (inp->inp_faddr.s_addr != INADDR_ANY &&
347 	    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
348 		return (false);
349 	if (inp->inp_fport != 0 &&
350 	    inp->inp_fport != uh->uh_sport)
351 		return (false);
352 
353 	return (true);
354 }
355 
356 static int
udp_multi_input(struct mbuf * m,int proto,struct sockaddr_in * udp_in)357 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
358 {
359 	struct ip *ip = mtod(m, struct ip *);
360 	struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
361 	    INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
362 #ifdef KDTRACE_HOOKS
363 	struct udphdr *uh = (struct udphdr *)(ip + 1);
364 #endif
365 	struct inpcb *inp;
366 	struct mbuf *n;
367 	int appends = 0, fib;
368 
369 	MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
370 
371 	fib = M_GETFIB(m);
372 
373 	while ((inp = inp_next(&inpi)) != NULL) {
374 		/*
375 		 * XXXRW: Because we weren't holding either the inpcb
376 		 * or the hash lock when we checked for a match
377 		 * before, we should probably recheck now that the
378 		 * inpcb lock is held.
379 		 */
380 
381 		if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum)
382 			/*
383 			 * Sockets bound to a specific FIB can only receive
384 			 * packets from that FIB.
385 			 */
386 			continue;
387 
388 		/*
389 		 * Handle socket delivery policy for any-source
390 		 * and source-specific multicast. [RFC3678]
391 		 */
392 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
393 			struct ip_moptions	*imo;
394 			struct sockaddr_in	 group;
395 			int			 blocked;
396 
397 			imo = inp->inp_moptions;
398 			if (imo == NULL)
399 				continue;
400 			bzero(&group, sizeof(struct sockaddr_in));
401 			group.sin_len = sizeof(struct sockaddr_in);
402 			group.sin_family = AF_INET;
403 			group.sin_addr = ip->ip_dst;
404 
405 			blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
406 				(struct sockaddr *)&group,
407 				(struct sockaddr *)&udp_in[0]);
408 			if (blocked != MCAST_PASS) {
409 				if (blocked == MCAST_NOTGMEMBER)
410 					IPSTAT_INC(ips_notmember);
411 				if (blocked == MCAST_NOTSMEMBER ||
412 				    blocked == MCAST_MUTED)
413 					UDPSTAT_INC(udps_filtermcast);
414 				continue;
415 			}
416 		}
417 		if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
418 			if (proto == IPPROTO_UDPLITE)
419 				UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
420 			else
421 				UDP_PROBE(receive, NULL, inp, ip, inp, uh);
422 			if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
423 				break;
424 			} else
425 				appends++;
426 		}
427 		/*
428 		 * Don't look for additional matches if this one does
429 		 * not have either the SO_REUSEPORT or SO_REUSEADDR
430 		 * socket options set.  This heuristic avoids
431 		 * searching through all pcbs in the common case of a
432 		 * non-shared port.  It assumes that an application
433 		 * will never clear these options after setting them.
434 		 */
435 		if ((inp->inp_socket->so_options &
436 		    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
437 			INP_RUNLOCK(inp);
438 			break;
439 		}
440 	}
441 
442 	if (appends == 0) {
443 		/*
444 		 * No matching pcb found; discard datagram.  (No need
445 		 * to send an ICMP Port Unreachable for a broadcast
446 		 * or multicast datgram.)
447 		 */
448 		UDPSTAT_INC(udps_noport);
449 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
450 			UDPSTAT_INC(udps_noportmcast);
451 		else
452 			UDPSTAT_INC(udps_noportbcast);
453 	}
454 	m_freem(m);
455 
456 	return (IPPROTO_DONE);
457 }
458 
459 static int
udp_input(struct mbuf ** mp,int * offp,int proto)460 udp_input(struct mbuf **mp, int *offp, int proto)
461 {
462 	struct ip *ip;
463 	struct udphdr *uh;
464 	struct ifnet *ifp;
465 	struct inpcb *inp;
466 	uint16_t len, ip_len;
467 	struct inpcbinfo *pcbinfo;
468 	struct sockaddr_in udp_in[2];
469 	struct mbuf *m;
470 	struct m_tag *fwd_tag;
471 	int cscov_partial, iphlen, lookupflags;
472 
473 	m = *mp;
474 	iphlen = *offp;
475 	ifp = m->m_pkthdr.rcvif;
476 	*mp = NULL;
477 	UDPSTAT_INC(udps_ipackets);
478 
479 	/*
480 	 * Strip IP options, if any; should skip this, make available to
481 	 * user, and use on returned packets, but we don't yet have a way to
482 	 * check the checksum with options still present.
483 	 */
484 	if (iphlen > sizeof (struct ip)) {
485 		ip_stripoptions(m);
486 		iphlen = sizeof(struct ip);
487 	}
488 
489 	/*
490 	 * Get IP and UDP header together in first mbuf.
491 	 */
492 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
493 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
494 			UDPSTAT_INC(udps_hdrops);
495 			return (IPPROTO_DONE);
496 		}
497 	}
498 	ip = mtod(m, struct ip *);
499 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
500 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
501 
502 	/*
503 	 * Destination port of 0 is illegal, based on RFC768.
504 	 */
505 	if (uh->uh_dport == 0)
506 		goto badunlocked;
507 
508 	/*
509 	 * Construct sockaddr format source address.  Stuff source address
510 	 * and datagram in user buffer.
511 	 */
512 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
513 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
514 	udp_in[0].sin_family = AF_INET;
515 	udp_in[0].sin_port = uh->uh_sport;
516 	udp_in[0].sin_addr = ip->ip_src;
517 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
518 	udp_in[1].sin_family = AF_INET;
519 	udp_in[1].sin_port = uh->uh_dport;
520 	udp_in[1].sin_addr = ip->ip_dst;
521 
522 	/*
523 	 * Make mbuf data length reflect UDP length.  If not enough data to
524 	 * reflect UDP length, drop.
525 	 */
526 	len = ntohs((u_short)uh->uh_ulen);
527 	ip_len = ntohs(ip->ip_len) - iphlen;
528 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
529 		/* Zero means checksum over the complete packet. */
530 		if (len == 0)
531 			len = ip_len;
532 		cscov_partial = 0;
533 	}
534 	if (ip_len != len) {
535 		if (len > ip_len || len < sizeof(struct udphdr)) {
536 			UDPSTAT_INC(udps_badlen);
537 			goto badunlocked;
538 		}
539 		if (proto == IPPROTO_UDP)
540 			m_adj(m, len - ip_len);
541 	}
542 
543 	/*
544 	 * Checksum extended UDP header and data.
545 	 */
546 	if (uh->uh_sum) {
547 		u_short uh_sum;
548 
549 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
550 		    !cscov_partial) {
551 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
552 				uh_sum = m->m_pkthdr.csum_data;
553 			else
554 				uh_sum = in_pseudo(ip->ip_src.s_addr,
555 				    ip->ip_dst.s_addr, htonl((u_short)len +
556 				    m->m_pkthdr.csum_data + proto));
557 			uh_sum ^= 0xffff;
558 		} else {
559 			char b[offsetof(struct ipovly, ih_src)];
560 			struct ipovly *ipov = (struct ipovly *)ip;
561 
562 			memcpy(b, ipov, sizeof(b));
563 			bzero(ipov, sizeof(ipov->ih_x1));
564 			ipov->ih_len = (proto == IPPROTO_UDP) ?
565 			    uh->uh_ulen : htons(ip_len);
566 			uh_sum = in_cksum(m, len + sizeof (struct ip));
567 			memcpy(ipov, b, sizeof(b));
568 		}
569 		if (uh_sum) {
570 			UDPSTAT_INC(udps_badsum);
571 			m_freem(m);
572 			return (IPPROTO_DONE);
573 		}
574 	} else {
575 		if (proto == IPPROTO_UDP) {
576 			UDPSTAT_INC(udps_nosum);
577 		} else {
578 			/* UDPLite requires a checksum */
579 			/* XXX: What is the right UDPLite MIB counter here? */
580 			m_freem(m);
581 			return (IPPROTO_DONE);
582 		}
583 	}
584 
585 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
586 	    in_broadcast(ip->ip_dst, ifp))
587 		return (udp_multi_input(m, proto, udp_in));
588 
589 	pcbinfo = udp_get_inpcbinfo(proto);
590 
591 	/*
592 	 * Locate pcb for datagram.
593 	 */
594 	lookupflags = INPLOOKUP_RLOCKPCB |
595 	    (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
596 
597 	/*
598 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
599 	 */
600 	if ((m->m_flags & M_IP_NEXTHOP) &&
601 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
602 		struct sockaddr_in *next_hop;
603 
604 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
605 
606 		/*
607 		 * Transparently forwarded. Pretend to be the destination.
608 		 * Already got one like this?
609 		 */
610 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
611 		    ip->ip_dst, uh->uh_dport, lookupflags, ifp, m);
612 		if (!inp) {
613 			/*
614 			 * It's new.  Try to find the ambushing socket.
615 			 * Because we've rewritten the destination address,
616 			 * any hardware-generated hash is ignored.
617 			 */
618 			inp = in_pcblookup(pcbinfo, ip->ip_src,
619 			    uh->uh_sport, next_hop->sin_addr,
620 			    next_hop->sin_port ? htons(next_hop->sin_port) :
621 			    uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags,
622 			    ifp);
623 		}
624 		/* Remove the tag from the packet. We don't need it anymore. */
625 		m_tag_delete(m, fwd_tag);
626 		m->m_flags &= ~M_IP_NEXTHOP;
627 	} else
628 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
629 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
630 		    lookupflags, ifp, m);
631 	if (inp == NULL) {
632 		if (V_udp_log_in_vain) {
633 			char src[INET_ADDRSTRLEN];
634 			char dst[INET_ADDRSTRLEN];
635 
636 			log(LOG_INFO,
637 			    "Connection attempt to UDP %s:%d from %s:%d\n",
638 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
639 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
640 		}
641 		if (proto == IPPROTO_UDPLITE)
642 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
643 		else
644 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
645 		UDPSTAT_INC(udps_noport);
646 		if (m->m_flags & (M_BCAST | M_MCAST)) {
647 			UDPSTAT_INC(udps_noportbcast);
648 			goto badunlocked;
649 		}
650 		if (V_udp_blackhole && (V_udp_blackhole_local ||
651 		    !in_localip(ip->ip_src)))
652 			goto badunlocked;
653 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
654 			goto badunlocked;
655 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
656 		return (IPPROTO_DONE);
657 	}
658 
659 	/*
660 	 * Check the minimum TTL for socket.
661 	 */
662 	INP_RLOCK_ASSERT(inp);
663 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
664 		if (proto == IPPROTO_UDPLITE)
665 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
666 		else
667 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
668 		INP_RUNLOCK(inp);
669 		m_freem(m);
670 		return (IPPROTO_DONE);
671 	}
672 	if (cscov_partial) {
673 		struct udpcb *up;
674 
675 		up = intoudpcb(inp);
676 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
677 			INP_RUNLOCK(inp);
678 			m_freem(m);
679 			return (IPPROTO_DONE);
680 		}
681 	}
682 
683 	if (proto == IPPROTO_UDPLITE)
684 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
685 	else
686 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
687 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
688 		INP_RUNLOCK(inp);
689 	return (IPPROTO_DONE);
690 
691 badunlocked:
692 	m_freem(m);
693 	return (IPPROTO_DONE);
694 }
695 #endif /* INET */
696 
697 /*
698  * Notify a udp user of an asynchronous error; just wake up so that they can
699  * collect error status.
700  */
701 struct inpcb *
udp_notify(struct inpcb * inp,int errno)702 udp_notify(struct inpcb *inp, int errno)
703 {
704 
705 	INP_WLOCK_ASSERT(inp);
706 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
707 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
708 		NH_FREE(inp->inp_route.ro_nh);
709 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
710 	}
711 
712 	inp->inp_socket->so_error = errno;
713 	sorwakeup(inp->inp_socket);
714 	sowwakeup(inp->inp_socket);
715 	return (inp);
716 }
717 
718 #ifdef INET
719 static void
udp_common_ctlinput(struct icmp * icmp,struct inpcbinfo * pcbinfo)720 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo)
721 {
722 	struct ip *ip = &icmp->icmp_ip;
723 	struct udphdr *uh;
724 	struct inpcb *inp;
725 
726 	if (icmp_errmap(icmp) == 0)
727 		return;
728 
729 	uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
730 	inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src,
731 	    uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
732 	if (inp != NULL) {
733 		INP_WLOCK_ASSERT(inp);
734 		if (inp->inp_socket != NULL)
735 			udp_notify(inp, icmp_errmap(icmp));
736 		INP_WUNLOCK(inp);
737 	} else {
738 		inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport,
739 		    ip->ip_src, uh->uh_sport,
740 		    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
741 		if (inp != NULL) {
742 			struct udpcb *up;
743 			udp_tun_icmp_t *func;
744 
745 			up = intoudpcb(inp);
746 			func = up->u_icmp_func;
747 			INP_RUNLOCK(inp);
748 			if (func != NULL)
749 				func(icmp);
750 		}
751 	}
752 }
753 
754 static void
udp_ctlinput(struct icmp * icmp)755 udp_ctlinput(struct icmp *icmp)
756 {
757 
758 	return (udp_common_ctlinput(icmp, &V_udbinfo));
759 }
760 
761 static void
udplite_ctlinput(struct icmp * icmp)762 udplite_ctlinput(struct icmp *icmp)
763 {
764 
765 	return (udp_common_ctlinput(icmp, &V_ulitecbinfo));
766 }
767 #endif /* INET */
768 
769 static int
udp_pcblist(SYSCTL_HANDLER_ARGS)770 udp_pcblist(SYSCTL_HANDLER_ARGS)
771 {
772 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
773 	    INPLOOKUP_RLOCKPCB);
774 	struct xinpgen xig;
775 	struct inpcb *inp;
776 	int error;
777 
778 	if (req->newptr != 0)
779 		return (EPERM);
780 
781 	if (req->oldptr == 0) {
782 		int n;
783 
784 		n = V_udbinfo.ipi_count;
785 		n += imax(n / 8, 10);
786 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
787 		return (0);
788 	}
789 
790 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
791 		return (error);
792 
793 	bzero(&xig, sizeof(xig));
794 	xig.xig_len = sizeof xig;
795 	xig.xig_count = V_udbinfo.ipi_count;
796 	xig.xig_gen = V_udbinfo.ipi_gencnt;
797 	xig.xig_sogen = so_gencnt;
798 	error = SYSCTL_OUT(req, &xig, sizeof xig);
799 	if (error)
800 		return (error);
801 
802 	while ((inp = inp_next(&inpi)) != NULL) {
803 		if (inp->inp_gencnt <= xig.xig_gen &&
804 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
805 			struct xinpcb xi;
806 
807 			in_pcbtoxinpcb(inp, &xi);
808 			error = SYSCTL_OUT(req, &xi, sizeof xi);
809 			if (error) {
810 				INP_RUNLOCK(inp);
811 				break;
812 			}
813 		}
814 	}
815 
816 	if (!error) {
817 		/*
818 		 * Give the user an updated idea of our state.  If the
819 		 * generation differs from what we told her before, she knows
820 		 * that something happened while we were processing this
821 		 * request, and it might be necessary to retry.
822 		 */
823 		xig.xig_gen = V_udbinfo.ipi_gencnt;
824 		xig.xig_sogen = so_gencnt;
825 		xig.xig_count = V_udbinfo.ipi_count;
826 		error = SYSCTL_OUT(req, &xig, sizeof xig);
827 	}
828 
829 	return (error);
830 }
831 
832 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
833     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
834     udp_pcblist, "S,xinpcb",
835     "List of active UDP sockets");
836 
837 #ifdef INET
838 static int
udp_getcred(SYSCTL_HANDLER_ARGS)839 udp_getcred(SYSCTL_HANDLER_ARGS)
840 {
841 	struct xucred xuc;
842 	struct sockaddr_in addrs[2];
843 	struct epoch_tracker et;
844 	struct inpcb *inp;
845 	int error;
846 
847 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
848 	if (error)
849 		return (error);
850 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
851 	if (error)
852 		return (error);
853 	NET_EPOCH_ENTER(et);
854 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
855 	    addrs[0].sin_addr, addrs[0].sin_port,
856 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
857 	NET_EPOCH_EXIT(et);
858 	if (inp != NULL) {
859 		INP_RLOCK_ASSERT(inp);
860 		if (inp->inp_socket == NULL)
861 			error = ENOENT;
862 		if (error == 0)
863 			error = cr_canseeinpcb(req->td->td_ucred, inp);
864 		if (error == 0)
865 			cru2x(inp->inp_cred, &xuc);
866 		INP_RUNLOCK(inp);
867 	} else
868 		error = ENOENT;
869 	if (error == 0)
870 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
871 	return (error);
872 }
873 
874 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
875     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
876     0, 0, udp_getcred, "S,xucred",
877     "Get the xucred of a UDP connection");
878 #endif /* INET */
879 
880 int
udp_ctloutput(struct socket * so,struct sockopt * sopt)881 udp_ctloutput(struct socket *so, struct sockopt *sopt)
882 {
883 	struct inpcb *inp;
884 	struct udpcb *up;
885 	int isudplite, error, optval;
886 
887 	error = 0;
888 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
889 	inp = sotoinpcb(so);
890 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
891 	INP_WLOCK(inp);
892 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
893 #ifdef INET6
894 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
895 			INP_WUNLOCK(inp);
896 			error = ip6_ctloutput(so, sopt);
897 		}
898 #endif
899 #if defined(INET) && defined(INET6)
900 		else
901 #endif
902 #ifdef INET
903 		{
904 			INP_WUNLOCK(inp);
905 			error = ip_ctloutput(so, sopt);
906 		}
907 #endif
908 		return (error);
909 	}
910 
911 	switch (sopt->sopt_dir) {
912 	case SOPT_SET:
913 		switch (sopt->sopt_name) {
914 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
915 #if defined(INET) || defined(INET6)
916 		case UDP_ENCAP:
917 #ifdef INET
918 			if (INP_SOCKAF(so) == AF_INET) {
919 				if (!IPSEC_ENABLED(ipv4)) {
920 					INP_WUNLOCK(inp);
921 					return (ENOPROTOOPT);
922 				}
923 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
924 				break;
925 			}
926 #endif /* INET */
927 #ifdef INET6
928 			if (INP_SOCKAF(so) == AF_INET6) {
929 				if (!IPSEC_ENABLED(ipv6)) {
930 					INP_WUNLOCK(inp);
931 					return (ENOPROTOOPT);
932 				}
933 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
934 				break;
935 			}
936 #endif /* INET6 */
937 			INP_WUNLOCK(inp);
938 			return (EINVAL);
939 #endif /* INET || INET6 */
940 
941 #endif /* IPSEC */
942 		case UDPLITE_SEND_CSCOV:
943 		case UDPLITE_RECV_CSCOV:
944 			if (!isudplite) {
945 				INP_WUNLOCK(inp);
946 				error = ENOPROTOOPT;
947 				break;
948 			}
949 			INP_WUNLOCK(inp);
950 			error = sooptcopyin(sopt, &optval, sizeof(optval),
951 			    sizeof(optval));
952 			if (error != 0)
953 				break;
954 			inp = sotoinpcb(so);
955 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
956 			INP_WLOCK(inp);
957 			up = intoudpcb(inp);
958 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
959 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
960 				INP_WUNLOCK(inp);
961 				error = EINVAL;
962 				break;
963 			}
964 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
965 				up->u_txcslen = optval;
966 			else
967 				up->u_rxcslen = optval;
968 			INP_WUNLOCK(inp);
969 			break;
970 		default:
971 			INP_WUNLOCK(inp);
972 			error = ENOPROTOOPT;
973 			break;
974 		}
975 		break;
976 	case SOPT_GET:
977 		switch (sopt->sopt_name) {
978 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
979 #if defined(INET) || defined(INET6)
980 		case UDP_ENCAP:
981 #ifdef INET
982 			if (INP_SOCKAF(so) == AF_INET) {
983 				if (!IPSEC_ENABLED(ipv4)) {
984 					INP_WUNLOCK(inp);
985 					return (ENOPROTOOPT);
986 				}
987 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
988 				break;
989 			}
990 #endif /* INET */
991 #ifdef INET6
992 			if (INP_SOCKAF(so) == AF_INET6) {
993 				if (!IPSEC_ENABLED(ipv6)) {
994 					INP_WUNLOCK(inp);
995 					return (ENOPROTOOPT);
996 				}
997 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
998 				break;
999 			}
1000 #endif /* INET6 */
1001 			INP_WUNLOCK(inp);
1002 			return (EINVAL);
1003 #endif /* INET || INET6 */
1004 
1005 #endif /* IPSEC */
1006 		case UDPLITE_SEND_CSCOV:
1007 		case UDPLITE_RECV_CSCOV:
1008 			if (!isudplite) {
1009 				INP_WUNLOCK(inp);
1010 				error = ENOPROTOOPT;
1011 				break;
1012 			}
1013 			up = intoudpcb(inp);
1014 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1015 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1016 				optval = up->u_txcslen;
1017 			else
1018 				optval = up->u_rxcslen;
1019 			INP_WUNLOCK(inp);
1020 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1021 			break;
1022 		default:
1023 			INP_WUNLOCK(inp);
1024 			error = ENOPROTOOPT;
1025 			break;
1026 		}
1027 		break;
1028 	}
1029 	return (error);
1030 }
1031 
1032 #ifdef INET
1033 #ifdef INET6
1034 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1035 static int
udp_v4mapped_pktinfo(struct cmsghdr * cm,struct sockaddr_in * src,struct inpcb * inp,int flags)1036 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1037     struct inpcb *inp, int flags)
1038 {
1039 	struct ifnet *ifp;
1040 	struct in6_pktinfo *pktinfo;
1041 	struct in_addr ia;
1042 
1043 	if ((flags & PRUS_IPV6) == 0)
1044 		return (0);
1045 
1046 	if (cm->cmsg_level != IPPROTO_IPV6)
1047 		return (0);
1048 
1049 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1050 	    cm->cmsg_type != IPV6_PKTINFO)
1051 		return (0);
1052 
1053 	if (cm->cmsg_len !=
1054 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1055 		return (EINVAL);
1056 
1057 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1058 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1059 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1060 		return (EINVAL);
1061 
1062 	/* Validate the interface index if specified. */
1063 	if (pktinfo->ipi6_ifindex) {
1064 		struct epoch_tracker et;
1065 
1066 		NET_EPOCH_ENTER(et);
1067 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1068 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
1069 		if (ifp == NULL)
1070 			return (ENXIO);
1071 	} else
1072 		ifp = NULL;
1073 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1074 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1075 		if (in_ifhasaddr(ifp, ia) == 0)
1076 			return (EADDRNOTAVAIL);
1077 	}
1078 
1079 	bzero(src, sizeof(*src));
1080 	src->sin_family = AF_INET;
1081 	src->sin_len = sizeof(*src);
1082 	src->sin_port = inp->inp_lport;
1083 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1084 
1085 	return (0);
1086 }
1087 #endif	/* INET6 */
1088 
1089 int
udp_send(struct socket * so,int flags,struct mbuf * m,struct sockaddr * addr,struct mbuf * control,struct thread * td)1090 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1091     struct mbuf *control, struct thread *td)
1092 {
1093 	struct inpcb *inp;
1094 	struct udpiphdr *ui;
1095 	int len, error = 0;
1096 	struct in_addr faddr, laddr;
1097 	struct cmsghdr *cm;
1098 	struct inpcbinfo *pcbinfo;
1099 	struct sockaddr_in *sin, src;
1100 	struct epoch_tracker et;
1101 	int cscov_partial = 0;
1102 	int ipflags = 0;
1103 	u_short fport, lport;
1104 	u_char tos, vflagsav;
1105 	uint8_t pr;
1106 	uint16_t cscov = 0;
1107 	uint32_t flowid = 0;
1108 	uint8_t flowtype = M_HASHTYPE_NONE;
1109 	bool use_cached_route;
1110 
1111 	inp = sotoinpcb(so);
1112 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1113 
1114 	if (addr != NULL) {
1115 		if (addr->sa_family != AF_INET)
1116 			error = EAFNOSUPPORT;
1117 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1118 			error = EINVAL;
1119 		if (__predict_false(error != 0)) {
1120 			m_freem(control);
1121 			m_freem(m);
1122 			return (error);
1123 		}
1124 	}
1125 
1126 	len = m->m_pkthdr.len;
1127 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1128 		if (control)
1129 			m_freem(control);
1130 		m_freem(m);
1131 		return (EMSGSIZE);
1132 	}
1133 
1134 	src.sin_family = 0;
1135 	sin = (struct sockaddr_in *)addr;
1136 
1137 	/*
1138 	 * udp_send() may need to temporarily bind or connect the current
1139 	 * inpcb.  As such, we don't know up front whether we will need the
1140 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1141 	 * front before acquiring any locks.
1142 	 *
1143 	 * We will need network epoch in either case, to safely lookup into
1144 	 * pcb hash.
1145 	 */
1146 	use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0);
1147 	if (use_cached_route || (flags & PRUS_IPV6) != 0)
1148 		INP_WLOCK(inp);
1149 	else
1150 		INP_RLOCK(inp);
1151 	NET_EPOCH_ENTER(et);
1152 	tos = inp->inp_ip_tos;
1153 	if (control != NULL) {
1154 		/*
1155 		 * XXX: Currently, we assume all the optional information is
1156 		 * stored in a single mbuf.
1157 		 */
1158 		if (control->m_next) {
1159 			m_freem(control);
1160 			error = EINVAL;
1161 			goto release;
1162 		}
1163 		for (; control->m_len > 0;
1164 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1165 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1166 			cm = mtod(control, struct cmsghdr *);
1167 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1168 			    || cm->cmsg_len > control->m_len) {
1169 				error = EINVAL;
1170 				break;
1171 			}
1172 #ifdef INET6
1173 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1174 			if (error != 0)
1175 				break;
1176 #endif
1177 			if (cm->cmsg_level != IPPROTO_IP)
1178 				continue;
1179 
1180 			switch (cm->cmsg_type) {
1181 			case IP_SENDSRCADDR:
1182 				if (cm->cmsg_len !=
1183 				    CMSG_LEN(sizeof(struct in_addr))) {
1184 					error = EINVAL;
1185 					break;
1186 				}
1187 				bzero(&src, sizeof(src));
1188 				src.sin_family = AF_INET;
1189 				src.sin_len = sizeof(src);
1190 				src.sin_port = inp->inp_lport;
1191 				src.sin_addr =
1192 				    *(struct in_addr *)CMSG_DATA(cm);
1193 				break;
1194 
1195 			case IP_TOS:
1196 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1197 					error = EINVAL;
1198 					break;
1199 				}
1200 				tos = *(u_char *)CMSG_DATA(cm);
1201 				break;
1202 
1203 			case IP_FLOWID:
1204 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1205 					error = EINVAL;
1206 					break;
1207 				}
1208 				flowid = *(uint32_t *) CMSG_DATA(cm);
1209 				break;
1210 
1211 			case IP_FLOWTYPE:
1212 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1213 					error = EINVAL;
1214 					break;
1215 				}
1216 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1217 				break;
1218 
1219 #ifdef	RSS
1220 			case IP_RSSBUCKETID:
1221 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1222 					error = EINVAL;
1223 					break;
1224 				}
1225 				/* This is just a placeholder for now */
1226 				break;
1227 #endif	/* RSS */
1228 			default:
1229 				error = ENOPROTOOPT;
1230 				break;
1231 			}
1232 			if (error)
1233 				break;
1234 		}
1235 		m_freem(control);
1236 		control = NULL;
1237 	}
1238 	if (error)
1239 		goto release;
1240 
1241 	pr = inp->inp_socket->so_proto->pr_protocol;
1242 	pcbinfo = udp_get_inpcbinfo(pr);
1243 
1244 	/*
1245 	 * If the IP_SENDSRCADDR control message was specified, override the
1246 	 * source address for this datagram.  Its use is invalidated if the
1247 	 * address thus specified is incomplete or clobbers other inpcbs.
1248 	 */
1249 	laddr = inp->inp_laddr;
1250 	lport = inp->inp_lport;
1251 	if (src.sin_family == AF_INET) {
1252 		if ((lport == 0) ||
1253 		    (laddr.s_addr == INADDR_ANY &&
1254 		     src.sin_addr.s_addr == INADDR_ANY)) {
1255 			error = EINVAL;
1256 			goto release;
1257 		}
1258 		if ((flags & PRUS_IPV6) != 0) {
1259 			vflagsav = inp->inp_vflag;
1260 			inp->inp_vflag |= INP_IPV4;
1261 			inp->inp_vflag &= ~INP_IPV6;
1262 		}
1263 		INP_HASH_WLOCK(pcbinfo);
1264 		error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport,
1265 		    V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred);
1266 		INP_HASH_WUNLOCK(pcbinfo);
1267 		if ((flags & PRUS_IPV6) != 0)
1268 			inp->inp_vflag = vflagsav;
1269 		if (error)
1270 			goto release;
1271 	}
1272 
1273 	/*
1274 	 * If a UDP socket has been connected, then a local address/port will
1275 	 * have been selected and bound.
1276 	 *
1277 	 * If a UDP socket has not been connected to, then an explicit
1278 	 * destination address must be used, in which case a local
1279 	 * address/port may not have been selected and bound.
1280 	 */
1281 	if (sin != NULL) {
1282 		INP_LOCK_ASSERT(inp);
1283 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1284 			error = EISCONN;
1285 			goto release;
1286 		}
1287 
1288 		/*
1289 		 * Jail may rewrite the destination address, so let it do
1290 		 * that before we use it.
1291 		 */
1292 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1293 		if (error)
1294 			goto release;
1295 
1296 		/*
1297 		 * If a local address or port hasn't yet been selected, or if
1298 		 * the destination address needs to be rewritten due to using
1299 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1300 		 * to do the heavy lifting.  Once a port is selected, we
1301 		 * commit the binding back to the socket; we also commit the
1302 		 * binding of the address if in jail.
1303 		 *
1304 		 * If we already have a valid binding and we're not
1305 		 * requesting a destination address rewrite, use a fast path.
1306 		 */
1307 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1308 		    inp->inp_lport == 0 ||
1309 		    sin->sin_addr.s_addr == INADDR_ANY ||
1310 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1311 			if ((flags & PRUS_IPV6) != 0) {
1312 				vflagsav = inp->inp_vflag;
1313 				inp->inp_vflag |= INP_IPV4;
1314 				inp->inp_vflag &= ~INP_IPV6;
1315 			}
1316 			INP_HASH_WLOCK(pcbinfo);
1317 			error = in_pcbconnect_setup(inp, sin, &laddr.s_addr,
1318 			    &lport, &faddr.s_addr, &fport, td->td_ucred);
1319 			if ((flags & PRUS_IPV6) != 0)
1320 				inp->inp_vflag = vflagsav;
1321 			if (error) {
1322 				INP_HASH_WUNLOCK(pcbinfo);
1323 				goto release;
1324 			}
1325 
1326 			/*
1327 			 * XXXRW: Why not commit the port if the address is
1328 			 * !INADDR_ANY?
1329 			 */
1330 			/* Commit the local port if newly assigned. */
1331 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1332 			    inp->inp_lport == 0) {
1333 				INP_WLOCK_ASSERT(inp);
1334 				/*
1335 				 * Remember addr if jailed, to prevent
1336 				 * rebinding.
1337 				 */
1338 				if (prison_flag(td->td_ucred, PR_IP4))
1339 					inp->inp_laddr = laddr;
1340 				inp->inp_lport = lport;
1341 				error = in_pcbinshash(inp);
1342 				INP_HASH_WUNLOCK(pcbinfo);
1343 				if (error != 0) {
1344 					inp->inp_lport = 0;
1345 					error = EAGAIN;
1346 					goto release;
1347 				}
1348 				inp->inp_flags |= INP_ANONPORT;
1349 			} else
1350 				INP_HASH_WUNLOCK(pcbinfo);
1351 		} else {
1352 			faddr = sin->sin_addr;
1353 			fport = sin->sin_port;
1354 		}
1355 	} else {
1356 		INP_LOCK_ASSERT(inp);
1357 		faddr = inp->inp_faddr;
1358 		fport = inp->inp_fport;
1359 		if (faddr.s_addr == INADDR_ANY) {
1360 			error = ENOTCONN;
1361 			goto release;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1367 	 * link-layer headers.  Immediate slide the data pointer back forward
1368 	 * since we won't use that space at this layer.
1369 	 */
1370 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1371 	if (m == NULL) {
1372 		error = ENOBUFS;
1373 		goto release;
1374 	}
1375 	m->m_data += max_linkhdr;
1376 	m->m_len -= max_linkhdr;
1377 	m->m_pkthdr.len -= max_linkhdr;
1378 
1379 	/*
1380 	 * Fill in mbuf with extended UDP header and addresses and length put
1381 	 * into network format.
1382 	 */
1383 	ui = mtod(m, struct udpiphdr *);
1384 	/*
1385 	 * Filling only those fields of udpiphdr that participate in the
1386 	 * checksum calculation. The rest must be zeroed and will be filled
1387 	 * later.
1388 	 */
1389 	bzero(ui->ui_x1, sizeof(ui->ui_x1));
1390 	ui->ui_pr = pr;
1391 	ui->ui_src = laddr;
1392 	ui->ui_dst = faddr;
1393 	ui->ui_sport = lport;
1394 	ui->ui_dport = fport;
1395 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1396 	if (pr == IPPROTO_UDPLITE) {
1397 		struct udpcb *up;
1398 		uint16_t plen;
1399 
1400 		up = intoudpcb(inp);
1401 		cscov = up->u_txcslen;
1402 		plen = (u_short)len + sizeof(struct udphdr);
1403 		if (cscov >= plen)
1404 			cscov = 0;
1405 		ui->ui_len = htons(plen);
1406 		ui->ui_ulen = htons(cscov);
1407 		/*
1408 		 * For UDP-Lite, checksum coverage length of zero means
1409 		 * the entire UDPLite packet is covered by the checksum.
1410 		 */
1411 		cscov_partial = (cscov == 0) ? 0 : 1;
1412 	}
1413 
1414 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1415 		ipflags |= IP_ROUTETOIF;
1416 	if (inp->inp_socket->so_options & SO_BROADCAST)
1417 		ipflags |= IP_ALLOWBROADCAST;
1418 	if (inp->inp_flags & INP_ONESBCAST)
1419 		ipflags |= IP_SENDONES;
1420 
1421 #ifdef MAC
1422 	mac_inpcb_create_mbuf(inp, m);
1423 #endif
1424 
1425 	/*
1426 	 * Set up checksum and output datagram.
1427 	 */
1428 	ui->ui_sum = 0;
1429 	if (pr == IPPROTO_UDPLITE) {
1430 		if (inp->inp_flags & INP_ONESBCAST)
1431 			faddr.s_addr = INADDR_BROADCAST;
1432 		if (cscov_partial) {
1433 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1434 				ui->ui_sum = 0xffff;
1435 		} else {
1436 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1437 				ui->ui_sum = 0xffff;
1438 		}
1439 	} else if (V_udp_cksum) {
1440 		if (inp->inp_flags & INP_ONESBCAST)
1441 			faddr.s_addr = INADDR_BROADCAST;
1442 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1443 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1444 		m->m_pkthdr.csum_flags = CSUM_UDP;
1445 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1446 	}
1447 	/*
1448 	 * After finishing the checksum computation, fill the remaining fields
1449 	 * of udpiphdr.
1450 	 */
1451 	((struct ip *)ui)->ip_v = IPVERSION;
1452 	((struct ip *)ui)->ip_tos = tos;
1453 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1454 	if (inp->inp_flags & INP_DONTFRAG)
1455 		((struct ip *)ui)->ip_off |= htons(IP_DF);
1456 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;
1457 	UDPSTAT_INC(udps_opackets);
1458 
1459 	/*
1460 	 * Setup flowid / RSS information for outbound socket.
1461 	 *
1462 	 * Once the UDP code decides to set a flowid some other way,
1463 	 * this allows the flowid to be overridden by userland.
1464 	 */
1465 	if (flowtype != M_HASHTYPE_NONE) {
1466 		m->m_pkthdr.flowid = flowid;
1467 		M_HASHTYPE_SET(m, flowtype);
1468 	}
1469 #if defined(ROUTE_MPATH) || defined(RSS)
1470 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1471 		uint32_t hash_val, hash_type;
1472 
1473 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1474 		    lport, fport, pr, &hash_type);
1475 		m->m_pkthdr.flowid = hash_val;
1476 		M_HASHTYPE_SET(m, hash_type);
1477 	}
1478 
1479 	/*
1480 	 * Don't override with the inp cached flowid value.
1481 	 *
1482 	 * Depending upon the kind of send being done, the inp
1483 	 * flowid/flowtype values may actually not be appropriate
1484 	 * for this particular socket send.
1485 	 *
1486 	 * We should either leave the flowid at zero (which is what is
1487 	 * currently done) or set it to some software generated
1488 	 * hash value based on the packet contents.
1489 	 */
1490 	ipflags |= IP_NODEFAULTFLOWID;
1491 #endif	/* RSS */
1492 
1493 	if (pr == IPPROTO_UDPLITE)
1494 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1495 	else
1496 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1497 	error = ip_output(m, inp->inp_options,
1498 	    use_cached_route ? &inp->inp_route : NULL, ipflags,
1499 	    inp->inp_moptions, inp);
1500 	INP_UNLOCK(inp);
1501 	NET_EPOCH_EXIT(et);
1502 	return (error);
1503 
1504 release:
1505 	INP_UNLOCK(inp);
1506 	NET_EPOCH_EXIT(et);
1507 	m_freem(m);
1508 	return (error);
1509 }
1510 
1511 void
udp_abort(struct socket * so)1512 udp_abort(struct socket *so)
1513 {
1514 	struct inpcb *inp;
1515 	struct inpcbinfo *pcbinfo;
1516 
1517 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1518 	inp = sotoinpcb(so);
1519 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1520 	INP_WLOCK(inp);
1521 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1522 		INP_HASH_WLOCK(pcbinfo);
1523 		in_pcbdisconnect(inp);
1524 		INP_HASH_WUNLOCK(pcbinfo);
1525 		soisdisconnected(so);
1526 	}
1527 	INP_WUNLOCK(inp);
1528 }
1529 
1530 static int
udp_attach(struct socket * so,int proto,struct thread * td)1531 udp_attach(struct socket *so, int proto, struct thread *td)
1532 {
1533 	static uint32_t udp_flowid;
1534 	struct inpcbinfo *pcbinfo;
1535 	struct inpcb *inp;
1536 	struct udpcb *up;
1537 	int error;
1538 
1539 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1540 	inp = sotoinpcb(so);
1541 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1542 	error = soreserve(so, udp_sendspace, udp_recvspace);
1543 	if (error)
1544 		return (error);
1545 	error = in_pcballoc(so, pcbinfo);
1546 	if (error)
1547 		return (error);
1548 
1549 	inp = sotoinpcb(so);
1550 	inp->inp_ip_ttl = V_ip_defttl;
1551 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1552 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1553 	up = intoudpcb(inp);
1554 	bzero(&up->u_start_zero, u_zero_size);
1555 	INP_WUNLOCK(inp);
1556 
1557 	return (0);
1558 }
1559 #endif /* INET */
1560 
1561 int
udp_set_kernel_tunneling(struct socket * so,udp_tun_func_t f,udp_tun_icmp_t i,void * ctx)1562 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1563 {
1564 	struct inpcb *inp;
1565 	struct udpcb *up;
1566 
1567 	KASSERT(so->so_type == SOCK_DGRAM,
1568 	    ("udp_set_kernel_tunneling: !dgram"));
1569 	inp = sotoinpcb(so);
1570 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1571 	INP_WLOCK(inp);
1572 	up = intoudpcb(inp);
1573 	if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) ||
1574 	    (up->u_icmp_func != NULL))) {
1575 		INP_WUNLOCK(inp);
1576 		return (EBUSY);
1577 	}
1578 	up->u_tun_func = f;
1579 	up->u_icmp_func = i;
1580 	up->u_tun_ctx = ctx;
1581 	INP_WUNLOCK(inp);
1582 	return (0);
1583 }
1584 
1585 #ifdef INET
1586 static int
udp_bind(struct socket * so,struct sockaddr * nam,struct thread * td)1587 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1588 {
1589 	struct inpcb *inp;
1590 	struct inpcbinfo *pcbinfo;
1591 	struct sockaddr_in *sinp;
1592 	int error;
1593 
1594 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1595 	inp = sotoinpcb(so);
1596 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1597 
1598 	sinp = (struct sockaddr_in *)nam;
1599 	if (nam->sa_family != AF_INET) {
1600 		/*
1601 		 * Preserve compatibility with old programs.
1602 		 */
1603 		if (nam->sa_family != AF_UNSPEC ||
1604 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1605 		    sinp->sin_addr.s_addr != INADDR_ANY)
1606 			return (EAFNOSUPPORT);
1607 		nam->sa_family = AF_INET;
1608 	}
1609 	if (nam->sa_len != sizeof(struct sockaddr_in))
1610 		return (EINVAL);
1611 
1612 	INP_WLOCK(inp);
1613 	INP_HASH_WLOCK(pcbinfo);
1614 	error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB,
1615 	    td->td_ucred);
1616 	INP_HASH_WUNLOCK(pcbinfo);
1617 	INP_WUNLOCK(inp);
1618 	return (error);
1619 }
1620 
1621 static void
udp_close(struct socket * so)1622 udp_close(struct socket *so)
1623 {
1624 	struct inpcb *inp;
1625 	struct inpcbinfo *pcbinfo;
1626 
1627 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1628 	inp = sotoinpcb(so);
1629 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1630 	INP_WLOCK(inp);
1631 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1632 		INP_HASH_WLOCK(pcbinfo);
1633 		in_pcbdisconnect(inp);
1634 		INP_HASH_WUNLOCK(pcbinfo);
1635 		soisdisconnected(so);
1636 	}
1637 	INP_WUNLOCK(inp);
1638 }
1639 
1640 static int
udp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)1641 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1642 {
1643 	struct epoch_tracker et;
1644 	struct inpcb *inp;
1645 	struct inpcbinfo *pcbinfo;
1646 	struct sockaddr_in *sin;
1647 	int error;
1648 
1649 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1650 	inp = sotoinpcb(so);
1651 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1652 
1653 	sin = (struct sockaddr_in *)nam;
1654 	if (sin->sin_family != AF_INET)
1655 		return (EAFNOSUPPORT);
1656 	if (sin->sin_len != sizeof(*sin))
1657 		return (EINVAL);
1658 
1659 	INP_WLOCK(inp);
1660 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1661 		INP_WUNLOCK(inp);
1662 		return (EISCONN);
1663 	}
1664 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1665 	if (error != 0) {
1666 		INP_WUNLOCK(inp);
1667 		return (error);
1668 	}
1669 	NET_EPOCH_ENTER(et);
1670 	INP_HASH_WLOCK(pcbinfo);
1671 	error = in_pcbconnect(inp, sin, td->td_ucred);
1672 	INP_HASH_WUNLOCK(pcbinfo);
1673 	NET_EPOCH_EXIT(et);
1674 	if (error == 0)
1675 		soisconnected(so);
1676 	INP_WUNLOCK(inp);
1677 	return (error);
1678 }
1679 
1680 static void
udp_detach(struct socket * so)1681 udp_detach(struct socket *so)
1682 {
1683 	struct inpcb *inp;
1684 
1685 	inp = sotoinpcb(so);
1686 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1687 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1688 	    ("udp_detach: not disconnected"));
1689 	INP_WLOCK(inp);
1690 	in_pcbfree(inp);
1691 }
1692 
1693 int
udp_disconnect(struct socket * so)1694 udp_disconnect(struct socket *so)
1695 {
1696 	struct inpcb *inp;
1697 	struct inpcbinfo *pcbinfo;
1698 
1699 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1700 	inp = sotoinpcb(so);
1701 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1702 	INP_WLOCK(inp);
1703 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1704 		INP_WUNLOCK(inp);
1705 		return (ENOTCONN);
1706 	}
1707 	INP_HASH_WLOCK(pcbinfo);
1708 	in_pcbdisconnect(inp);
1709 	INP_HASH_WUNLOCK(pcbinfo);
1710 	SOCK_LOCK(so);
1711 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1712 	SOCK_UNLOCK(so);
1713 	INP_WUNLOCK(inp);
1714 	return (0);
1715 }
1716 #endif /* INET */
1717 
1718 int
udp_shutdown(struct socket * so,enum shutdown_how how)1719 udp_shutdown(struct socket *so, enum shutdown_how how)
1720 {
1721 	int error;
1722 
1723 	SOCK_LOCK(so);
1724 	if (!(so->so_state & SS_ISCONNECTED))
1725 		/*
1726 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1727 		 * invoked on a datagram sockets, however historically we would
1728 		 * actually tear socket down.  This is known to be leveraged by
1729 		 * some applications to unblock process waiting in recv(2) by
1730 		 * other process that it shares that socket with.  Try to meet
1731 		 * both backward-compatibility and POSIX requirements by forcing
1732 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1733 		 *
1734 		 * XXXGL: it remains unknown what applications expect this
1735 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1736 		 * both.  See: D10351, D3039.
1737 		 */
1738 		error = ENOTCONN;
1739 	else
1740 		error = 0;
1741 	SOCK_UNLOCK(so);
1742 
1743 	switch (how) {
1744 	case SHUT_RD:
1745 		sorflush(so);
1746 		break;
1747 	case SHUT_RDWR:
1748 		sorflush(so);
1749 		/* FALLTHROUGH */
1750 	case SHUT_WR:
1751 		socantsendmore(so);
1752 	}
1753 
1754 	return (error);
1755 }
1756 
1757 #ifdef INET
1758 #define	UDP_PROTOSW							\
1759 	.pr_type =		SOCK_DGRAM,				\
1760 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH,	\
1761 	.pr_ctloutput =		udp_ctloutput,				\
1762 	.pr_abort =		udp_abort,				\
1763 	.pr_attach =		udp_attach,				\
1764 	.pr_bind =		udp_bind,				\
1765 	.pr_connect =		udp_connect,				\
1766 	.pr_control =		in_control,				\
1767 	.pr_detach =		udp_detach,				\
1768 	.pr_disconnect =	udp_disconnect,				\
1769 	.pr_peeraddr =		in_getpeeraddr,				\
1770 	.pr_send =		udp_send,				\
1771 	.pr_soreceive =		soreceive_dgram,			\
1772 	.pr_sosend =		sosend_dgram,				\
1773 	.pr_shutdown =		udp_shutdown,				\
1774 	.pr_sockaddr =		in_getsockaddr,				\
1775 	.pr_sosetlabel =	in_pcbsosetlabel,			\
1776 	.pr_close =		udp_close
1777 
1778 struct protosw udp_protosw = {
1779 	.pr_protocol =		IPPROTO_UDP,
1780 	UDP_PROTOSW
1781 };
1782 
1783 struct protosw udplite_protosw = {
1784 	.pr_protocol =		IPPROTO_UDPLITE,
1785 	UDP_PROTOSW
1786 };
1787 
1788 static void
udp_init(void * arg __unused)1789 udp_init(void *arg __unused)
1790 {
1791 
1792 	IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput);
1793 	IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput);
1794 }
1795 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
1796 #endif /* INET */
1797