xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DerivedTypes.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "x86-selectiondag-info"
26 
27 static cl::opt<bool>
28     UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
29                      cl::desc("Use fast short rep mov in memcpy lowering"));
30 
isBaseRegConflictPossible(SelectionDAG & DAG,ArrayRef<MCPhysReg> ClobberSet) const31 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
32     SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
33   // We cannot use TRI->hasBasePointer() until *after* we select all basic
34   // blocks.  Legalization may introduce new stack temporaries with large
35   // alignment requirements.  Fall back to generic code if there are any
36   // dynamic stack adjustments (hopefully rare) and the base pointer would
37   // conflict if we had to use it.
38   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
39   if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
40     return false;
41 
42   const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
43       DAG.getSubtarget().getRegisterInfo());
44   return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
45 }
46 
EmitTargetCodeForMemset(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Val,SDValue Size,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo) const47 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
48     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
49     SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
50     MachinePointerInfo DstPtrInfo) const {
51   // If to a segment-relative address space, use the default lowering.
52   if (DstPtrInfo.getAddrSpace() >= 256)
53     return SDValue();
54 
55   // If the base register might conflict with our physical registers, bail out.
56   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
57                                   X86::ECX, X86::EAX, X86::EDI};
58   if (isBaseRegConflictPossible(DAG, ClobberSet))
59     return SDValue();
60 
61   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
62   const X86Subtarget &Subtarget =
63       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
64 
65   // If not DWORD aligned or size is more than the threshold, call the library.
66   // The libc version is likely to be faster for these cases. It can use the
67   // address value and run time information about the CPU.
68   if (Alignment < Align(4) || !ConstantSize ||
69       ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
70     return SDValue();
71 
72   uint64_t SizeVal = ConstantSize->getZExtValue();
73   SDValue InGlue;
74   EVT AVT;
75   SDValue Count;
76   unsigned BytesLeft = 0;
77   if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
78     unsigned ValReg;
79     uint64_t Val = ValC->getZExtValue() & 255;
80 
81     // If the value is a constant, then we can potentially use larger sets.
82     if (Alignment >= Align(4)) {
83       // DWORD aligned
84       AVT = MVT::i32;
85       ValReg = X86::EAX;
86       Val = (Val << 8)  | Val;
87       Val = (Val << 16) | Val;
88       if (Subtarget.is64Bit() && Alignment >= Align(8)) { // QWORD aligned
89         AVT = MVT::i64;
90         ValReg = X86::RAX;
91         Val = (Val << 32) | Val;
92       }
93     } else if (Alignment == Align(2)) {
94       // WORD aligned
95       AVT = MVT::i16;
96       ValReg = X86::AX;
97       Val = (Val << 8) | Val;
98     } else {
99       // Byte aligned
100       AVT = MVT::i8;
101       ValReg = X86::AL;
102       Count = DAG.getIntPtrConstant(SizeVal, dl);
103     }
104 
105     if (AVT.bitsGT(MVT::i8)) {
106       unsigned UBytes = AVT.getSizeInBits() / 8;
107       Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
108       BytesLeft = SizeVal % UBytes;
109     }
110 
111     Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
112                              InGlue);
113     InGlue = Chain.getValue(1);
114   } else {
115     AVT = MVT::i8;
116     Count  = DAG.getIntPtrConstant(SizeVal, dl);
117     Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue);
118     InGlue = Chain.getValue(1);
119   }
120 
121   bool Use64BitRegs = Subtarget.isTarget64BitLP64();
122   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
123                            Count, InGlue);
124   InGlue = Chain.getValue(1);
125   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
126                            Dst, InGlue);
127   InGlue = Chain.getValue(1);
128 
129   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
130   SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
131   SDValue RepStos = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
132 
133   /// RepStos can process the whole length.
134   if (BytesLeft == 0)
135     return RepStos;
136 
137   // Handle the last 1 - 7 bytes.
138   SmallVector<SDValue, 4> Results;
139   Results.push_back(RepStos);
140   unsigned Offset = SizeVal - BytesLeft;
141   EVT AddrVT = Dst.getValueType();
142   EVT SizeVT = Size.getValueType();
143 
144   Results.push_back(
145       DAG.getMemset(Chain, dl,
146                     DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
147                                 DAG.getConstant(Offset, dl, AddrVT)),
148                     Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
149                     isVolatile, AlwaysInline,
150                     /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
151 
152   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
153 }
154 
155 /// Emit a single REP MOVS{B,W,D,Q} instruction.
emitRepmovs(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,MVT AVT)156 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
157                            const SDLoc &dl, SDValue Chain, SDValue Dst,
158                            SDValue Src, SDValue Size, MVT AVT) {
159   const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
160   const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
161   const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
162   const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
163 
164   SDValue InGlue;
165   Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
166   InGlue = Chain.getValue(1);
167   Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
168   InGlue = Chain.getValue(1);
169   Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue);
170   InGlue = Chain.getValue(1);
171 
172   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
173   SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
174   return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
175 }
176 
177 /// Emit a single REP MOVSB instruction for a particular constant size.
emitRepmovsB(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)178 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
179                             const SDLoc &dl, SDValue Chain, SDValue Dst,
180                             SDValue Src, uint64_t Size) {
181   return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
182                      DAG.getIntPtrConstant(Size, dl), MVT::i8);
183 }
184 
185 /// Returns the best type to use with repmovs depending on alignment.
getOptimalRepmovsType(const X86Subtarget & Subtarget,Align Alignment)186 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
187                                  Align Alignment) {
188   uint64_t Align = Alignment.value();
189   assert((Align != 0) && "Align is normalized");
190   assert(isPowerOf2_64(Align) && "Align is a power of 2");
191   switch (Align) {
192   case 1:
193     return MVT::i8;
194   case 2:
195     return MVT::i16;
196   case 4:
197     return MVT::i32;
198   default:
199     return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
200   }
201 }
202 
203 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
204 /// a constant size memory copy. In some cases where we know REP MOVS is
205 /// inefficient we return an empty SDValue so the calling code can either
206 /// generate a load/store sequence or call the runtime memcpy function.
emitConstantSizeRepmov(SelectionDAG & DAG,const X86Subtarget & Subtarget,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,EVT SizeVT,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)207 static SDValue emitConstantSizeRepmov(
208     SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
209     SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
210     Align Alignment, bool isVolatile, bool AlwaysInline,
211     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
212 
213   /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
214   /// efficient.
215   if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
216     return SDValue();
217 
218   /// If we have enhanced repmovs we use it.
219   if (Subtarget.hasERMSB())
220     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
221 
222   assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
223   /// We assume runtime memcpy will do a better job for unaligned copies when
224   /// ERMS is not present.
225   if (!AlwaysInline && (Alignment.value() & 3) != 0)
226     return SDValue();
227 
228   const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment);
229   const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
230   const uint64_t BlockCount = Size / BlockBytes;
231   const uint64_t BytesLeft = Size % BlockBytes;
232   SDValue RepMovs =
233       emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
234                   DAG.getIntPtrConstant(BlockCount, dl), BlockType);
235 
236   /// RepMov can process the whole length.
237   if (BytesLeft == 0)
238     return RepMovs;
239 
240   assert(BytesLeft && "We have leftover at this point");
241 
242   /// In case we optimize for size we use repmovsb even if it's less efficient
243   /// so we can save the loads/stores of the leftover.
244   if (DAG.getMachineFunction().getFunction().hasMinSize())
245     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
246 
247   // Handle the last 1 - 7 bytes.
248   SmallVector<SDValue, 4> Results;
249   Results.push_back(RepMovs);
250   unsigned Offset = Size - BytesLeft;
251   EVT DstVT = Dst.getValueType();
252   EVT SrcVT = Src.getValueType();
253   Results.push_back(DAG.getMemcpy(
254       Chain, dl,
255       DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
256       DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
257       DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile,
258       /*AlwaysInline*/ true, /*CI=*/nullptr, std::nullopt,
259       DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
260   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
261 }
262 
EmitTargetCodeForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const263 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
264     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
265     SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
266     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
267   // If to a segment-relative address space, use the default lowering.
268   if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
269     return SDValue();
270 
271   // If the base registers conflict with our physical registers, use the default
272   // lowering.
273   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
274                                   X86::ECX, X86::ESI, X86::EDI};
275   if (isBaseRegConflictPossible(DAG, ClobberSet))
276     return SDValue();
277 
278   const X86Subtarget &Subtarget =
279       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
280 
281   // If enabled and available, use fast short rep mov.
282   if (UseFSRMForMemcpy && Subtarget.hasFSRM())
283     return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
284 
285   /// Handle constant sizes,
286   if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
287     return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
288                                   ConstantSize->getZExtValue(),
289                                   Size.getValueType(), Alignment, isVolatile,
290                                   AlwaysInline, DstPtrInfo, SrcPtrInfo);
291 
292   return SDValue();
293 }
294