xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //
14 //   for (int i = 0; i < N; ++i)
15 //     for (int j = 0; j < M; ++j)
16 //       f(A[i*M+j]);
17 //
18 // into one loop:
19 //
20 //   for (int i = 0; i < (N*M); ++i)
21 //     f(A[i]);
22 //
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
27 //
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
32 //
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
35 //
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
53 
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/LoopVersioning.h"
74 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
75 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
76 #include <optional>
77 
78 using namespace llvm;
79 using namespace llvm::PatternMatch;
80 
81 #define DEBUG_TYPE "loop-flatten"
82 
83 STATISTIC(NumFlattened, "Number of loops flattened");
84 
85 static cl::opt<unsigned> RepeatedInstructionThreshold(
86     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
87     cl::desc("Limit on the cost of instructions that can be repeated due to "
88              "loop flattening"));
89 
90 static cl::opt<bool>
91     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
92                      cl::init(false),
93                      cl::desc("Assume that the product of the two iteration "
94                               "trip counts will never overflow"));
95 
96 static cl::opt<bool>
97     WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
98             cl::desc("Widen the loop induction variables, if possible, so "
99                      "overflow checks won't reject flattening"));
100 
101 static cl::opt<bool>
102     VersionLoops("loop-flatten-version-loops", cl::Hidden, cl::init(true),
103                  cl::desc("Version loops if flattened loop could overflow"));
104 
105 namespace {
106 // We require all uses of both induction variables to match this pattern:
107 //
108 //   (OuterPHI * InnerTripCount) + InnerPHI
109 //
110 // I.e., it needs to be a linear expression of the induction variables and the
111 // inner loop trip count. We keep track of all different expressions on which
112 // checks will be performed in this bookkeeping struct.
113 //
114 struct FlattenInfo {
115   Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
116   Loop *InnerLoop = nullptr;
117 
118   PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
119   PHINode *OuterInductionPHI = nullptr; // induction variables, which are
120                                         // expected to start at zero and
121                                         // increment by one on each loop.
122 
123   Value *InnerTripCount = nullptr; // The product of these two tripcounts
124   Value *OuterTripCount = nullptr; // will be the new flattened loop
125                                    // tripcount. Also used to recognise a
126                                    // linear expression that will be replaced.
127 
128   SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
129                                          // of the form i*M+j that will be
130                                          // replaced.
131 
132   BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
133   BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
134   BranchInst *InnerBranch = nullptr;         // are safe to ignore.
135 
136   BranchInst *OuterBranch = nullptr; // The instruction that needs to be
137                                      // updated with new tripcount.
138 
139   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
140 
141   bool Widened = false; // Whether this holds the flatten info before or after
142                         // widening.
143 
144   PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
145   PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
146                                               // has been applied. Used to skip
147                                               // checks on phi nodes.
148 
149   Value *NewTripCount = nullptr; // The tripcount of the flattened loop.
150 
FlattenInfo__anonb899e5fb0111::FlattenInfo151   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
152 
isNarrowInductionPhi__anonb899e5fb0111::FlattenInfo153   bool isNarrowInductionPhi(PHINode *Phi) {
154     // This can't be the narrow phi if we haven't widened the IV first.
155     if (!Widened)
156       return false;
157     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
158   }
isInnerLoopIncrement__anonb899e5fb0111::FlattenInfo159   bool isInnerLoopIncrement(User *U) {
160     return InnerIncrement == U;
161   }
isOuterLoopIncrement__anonb899e5fb0111::FlattenInfo162   bool isOuterLoopIncrement(User *U) {
163     return OuterIncrement == U;
164   }
isInnerLoopTest__anonb899e5fb0111::FlattenInfo165   bool isInnerLoopTest(User *U) {
166     return InnerBranch->getCondition() == U;
167   }
168 
checkOuterInductionPhiUsers__anonb899e5fb0111::FlattenInfo169   bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
170     for (User *U : OuterInductionPHI->users()) {
171       if (isOuterLoopIncrement(U))
172         continue;
173 
174       auto IsValidOuterPHIUses = [&] (User *U) -> bool {
175         LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
176         if (!ValidOuterPHIUses.count(U)) {
177           LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
178           return false;
179         }
180         LLVM_DEBUG(dbgs() << "Use is optimisable\n");
181         return true;
182       };
183 
184       if (auto *V = dyn_cast<TruncInst>(U)) {
185         for (auto *K : V->users()) {
186           if (!IsValidOuterPHIUses(K))
187             return false;
188         }
189         continue;
190       }
191 
192       if (!IsValidOuterPHIUses(U))
193         return false;
194     }
195     return true;
196   }
197 
matchLinearIVUser__anonb899e5fb0111::FlattenInfo198   bool matchLinearIVUser(User *U, Value *InnerTripCount,
199                          SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
200     LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
201     Value *MatchedMul = nullptr;
202     Value *MatchedItCount = nullptr;
203 
204     bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
205                                   m_Value(MatchedMul))) &&
206                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
207                                            m_Value(MatchedItCount)));
208 
209     // Matches the same pattern as above, except it also looks for truncs
210     // on the phi, which can be the result of widening the induction variables.
211     bool IsAddTrunc =
212         match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
213                          m_Value(MatchedMul))) &&
214         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
215                                   m_Value(MatchedItCount)));
216 
217     // Matches the pattern ptr+i*M+j, with the two additions being done via GEP.
218     bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)),
219                                 m_Specific(InnerInductionPHI))) &&
220                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
221                                            m_Value(MatchedItCount)));
222 
223     if (!MatchedItCount)
224       return false;
225 
226     LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
227     LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
228 
229     // The mul should not have any other uses. Widening may leave trivially dead
230     // uses, which can be ignored.
231     if (count_if(MatchedMul->users(), [](User *U) {
232           return !isInstructionTriviallyDead(cast<Instruction>(U));
233         }) > 1) {
234       LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
235       return false;
236     }
237 
238     // Look through extends if the IV has been widened. Don't look through
239     // extends if we already looked through a trunc.
240     if (Widened && (IsAdd || IsGEP) &&
241         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
242       assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
243              "Unexpected type mismatch in types after widening");
244       MatchedItCount = isa<SExtInst>(MatchedItCount)
245                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
246                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
247     }
248 
249     LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
250                InnerTripCount->dump());
251 
252     if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) {
253       LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
254       ValidOuterPHIUses.insert(MatchedMul);
255       LinearIVUses.insert(U);
256       return true;
257     }
258 
259     LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
260     return false;
261   }
262 
checkInnerInductionPhiUsers__anonb899e5fb0111::FlattenInfo263   bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
264     Value *SExtInnerTripCount = InnerTripCount;
265     if (Widened &&
266         (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
267       SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
268 
269     for (User *U : InnerInductionPHI->users()) {
270       LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
271       if (isInnerLoopIncrement(U)) {
272         LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
273         continue;
274       }
275 
276       // After widening the IVs, a trunc instruction might have been introduced,
277       // so look through truncs.
278       if (isa<TruncInst>(U)) {
279         if (!U->hasOneUse())
280           return false;
281         U = *U->user_begin();
282       }
283 
284       // If the use is in the compare (which is also the condition of the inner
285       // branch) then the compare has been altered by another transformation e.g
286       // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
287       // a constant. Ignore this use as the compare gets removed later anyway.
288       if (isInnerLoopTest(U)) {
289         LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
290         continue;
291       }
292 
293       if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
294         LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
295         return false;
296       }
297       LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
298     }
299     return true;
300   }
301 };
302 } // namespace
303 
304 static bool
setLoopComponents(Value * & TC,Value * & TripCount,BinaryOperator * & Increment,SmallPtrSetImpl<Instruction * > & IterationInstructions)305 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
306                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
307   TripCount = TC;
308   IterationInstructions.insert(Increment);
309   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
310   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
311   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
312   return true;
313 }
314 
315 // Given the RHS of the loop latch compare instruction, verify with SCEV
316 // that this is indeed the loop tripcount.
317 // TODO: This used to be a straightforward check but has grown to be quite
318 // complicated now. It is therefore worth revisiting what the additional
319 // benefits are of this (compared to relying on canonical loops and pattern
320 // matching).
verifyTripCount(Value * RHS,Loop * L,SmallPtrSetImpl<Instruction * > & IterationInstructions,PHINode * & InductionPHI,Value * & TripCount,BinaryOperator * & Increment,BranchInst * & BackBranch,ScalarEvolution * SE,bool IsWidened)321 static bool verifyTripCount(Value *RHS, Loop *L,
322      SmallPtrSetImpl<Instruction *> &IterationInstructions,
323     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
324     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
325   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
326   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
327     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
328     return false;
329   }
330 
331   // Evaluating in the trip count's type can not overflow here as the overflow
332   // checks are performed in checkOverflow, but are first tried to avoid by
333   // widening the IV.
334   const SCEV *SCEVTripCount =
335     SE->getTripCountFromExitCount(BackedgeTakenCount,
336                                   BackedgeTakenCount->getType(), L);
337 
338   const SCEV *SCEVRHS = SE->getSCEV(RHS);
339   if (SCEVRHS == SCEVTripCount)
340     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
341   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
342   if (ConstantRHS) {
343     const SCEV *BackedgeTCExt = nullptr;
344     if (IsWidened) {
345       const SCEV *SCEVTripCountExt;
346       // Find the extended backedge taken count and extended trip count using
347       // SCEV. One of these should now match the RHS of the compare.
348       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
349       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt,
350                                                        RHS->getType(), L);
351       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
352         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
353         return false;
354       }
355     }
356     // If the RHS of the compare is equal to the backedge taken count we need
357     // to add one to get the trip count.
358     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
359       Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(),
360                                        ConstantRHS->getValue() + 1);
361       return setLoopComponents(NewRHS, TripCount, Increment,
362                                IterationInstructions);
363     }
364     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
365   }
366   // If the RHS isn't a constant then check that the reason it doesn't match
367   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
368   // (and take the trip count to be the RHS).
369   if (!IsWidened) {
370     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
371     return false;
372   }
373   auto *TripCountInst = dyn_cast<Instruction>(RHS);
374   if (!TripCountInst) {
375     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
376     return false;
377   }
378   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
379       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
380     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
381     return false;
382   }
383   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
384 }
385 
386 // Finds the induction variable, increment and trip count for a simple loop that
387 // we can flatten.
findLoopComponents(Loop * L,SmallPtrSetImpl<Instruction * > & IterationInstructions,PHINode * & InductionPHI,Value * & TripCount,BinaryOperator * & Increment,BranchInst * & BackBranch,ScalarEvolution * SE,bool IsWidened)388 static bool findLoopComponents(
389     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
390     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
391     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
392   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
393 
394   if (!L->isLoopSimplifyForm()) {
395     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
396     return false;
397   }
398 
399   // Currently, to simplify the implementation, the Loop induction variable must
400   // start at zero and increment with a step size of one.
401   if (!L->isCanonical(*SE)) {
402     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
403     return false;
404   }
405 
406   // There must be exactly one exiting block, and it must be the same at the
407   // latch.
408   BasicBlock *Latch = L->getLoopLatch();
409   if (L->getExitingBlock() != Latch) {
410     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
411     return false;
412   }
413 
414   // Find the induction PHI. If there is no induction PHI, we can't do the
415   // transformation. TODO: could other variables trigger this? Do we have to
416   // search for the best one?
417   InductionPHI = L->getInductionVariable(*SE);
418   if (!InductionPHI) {
419     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
420     return false;
421   }
422   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
423 
424   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
425   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
426     if (ContinueOnTrue)
427       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
428     else
429       return Pred == CmpInst::ICMP_EQ;
430   };
431 
432   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
433   // back branch of the latch is conditional.
434   ICmpInst *Compare = L->getLatchCmpInst();
435   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
436       Compare->hasNUsesOrMore(2)) {
437     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
438     return false;
439   }
440   BackBranch = cast<BranchInst>(Latch->getTerminator());
441   IterationInstructions.insert(BackBranch);
442   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
443   IterationInstructions.insert(Compare);
444   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
445 
446   // Find increment and trip count.
447   // There are exactly 2 incoming values to the induction phi; one from the
448   // pre-header and one from the latch. The incoming latch value is the
449   // increment variable.
450   Increment =
451       cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
452   if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
453       !Increment->hasNUses(1)) {
454     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
455     return false;
456   }
457   // The trip count is the RHS of the compare. If this doesn't match the trip
458   // count computed by SCEV then this is because the trip count variable
459   // has been widened so the types don't match, or because it is a constant and
460   // another transformation has changed the compare (e.g. icmp ult %inc,
461   // tripcount -> icmp ult %j, tripcount-1), or both.
462   Value *RHS = Compare->getOperand(1);
463 
464   return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
465                          Increment, BackBranch, SE, IsWidened);
466 }
467 
checkPHIs(FlattenInfo & FI,const TargetTransformInfo * TTI)468 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
469   // All PHIs in the inner and outer headers must either be:
470   // - The induction PHI, which we are going to rewrite as one induction in
471   //   the new loop. This is already checked by findLoopComponents.
472   // - An outer header PHI with all incoming values from outside the loop.
473   //   LoopSimplify guarantees we have a pre-header, so we don't need to
474   //   worry about that here.
475   // - Pairs of PHIs in the inner and outer headers, which implement a
476   //   loop-carried dependency that will still be valid in the new loop. To
477   //   be valid, this variable must be modified only in the inner loop.
478 
479   // The set of PHI nodes in the outer loop header that we know will still be
480   // valid after the transformation. These will not need to be modified (with
481   // the exception of the induction variable), but we do need to check that
482   // there are no unsafe PHI nodes.
483   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
484   SafeOuterPHIs.insert(FI.OuterInductionPHI);
485 
486   // Check that all PHI nodes in the inner loop header match one of the valid
487   // patterns.
488   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
489     // The induction PHIs break these rules, and that's OK because we treat
490     // them specially when doing the transformation.
491     if (&InnerPHI == FI.InnerInductionPHI)
492       continue;
493     if (FI.isNarrowInductionPhi(&InnerPHI))
494       continue;
495 
496     // Each inner loop PHI node must have two incoming values/blocks - one
497     // from the pre-header, and one from the latch.
498     assert(InnerPHI.getNumIncomingValues() == 2);
499     Value *PreHeaderValue =
500         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
501     Value *LatchValue =
502         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
503 
504     // The incoming value from the outer loop must be the PHI node in the
505     // outer loop header, with no modifications made in the top of the outer
506     // loop.
507     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
508     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
509       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
510       return false;
511     }
512 
513     // The other incoming value must come from the inner loop, without any
514     // modifications in the tail end of the outer loop. We are in LCSSA form,
515     // so this will actually be a PHI in the inner loop's exit block, which
516     // only uses values from inside the inner loop.
517     PHINode *LCSSAPHI = dyn_cast<PHINode>(
518         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
519     if (!LCSSAPHI) {
520       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
521       return false;
522     }
523 
524     // The value used by the LCSSA PHI must be the same one that the inner
525     // loop's PHI uses.
526     if (LCSSAPHI->hasConstantValue() != LatchValue) {
527       LLVM_DEBUG(
528           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
529       return false;
530     }
531 
532     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
533     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
534     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
535     SafeOuterPHIs.insert(OuterPHI);
536     FI.InnerPHIsToTransform.insert(&InnerPHI);
537   }
538 
539   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
540     if (FI.isNarrowInductionPhi(&OuterPHI))
541       continue;
542     if (!SafeOuterPHIs.count(&OuterPHI)) {
543       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
544       return false;
545     }
546   }
547 
548   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
549   return true;
550 }
551 
552 static bool
checkOuterLoopInsts(FlattenInfo & FI,SmallPtrSetImpl<Instruction * > & IterationInstructions,const TargetTransformInfo * TTI)553 checkOuterLoopInsts(FlattenInfo &FI,
554                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
555                     const TargetTransformInfo *TTI) {
556   // Check for instructions in the outer but not inner loop. If any of these
557   // have side-effects then this transformation is not legal, and if there is
558   // a significant amount of code here which can't be optimised out that it's
559   // not profitable (as these instructions would get executed for each
560   // iteration of the inner loop).
561   InstructionCost RepeatedInstrCost = 0;
562   for (auto *B : FI.OuterLoop->getBlocks()) {
563     if (FI.InnerLoop->contains(B))
564       continue;
565 
566     for (auto &I : *B) {
567       if (!isa<PHINode>(&I) && !I.isTerminator() &&
568           !isSafeToSpeculativelyExecute(&I)) {
569         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
570                              "side effects: ";
571                    I.dump());
572         return false;
573       }
574       // The execution count of the outer loop's iteration instructions
575       // (increment, compare and branch) will be increased, but the
576       // equivalent instructions will be removed from the inner loop, so
577       // they make a net difference of zero.
578       if (IterationInstructions.count(&I))
579         continue;
580       // The unconditional branch to the inner loop's header will turn into
581       // a fall-through, so adds no cost.
582       BranchInst *Br = dyn_cast<BranchInst>(&I);
583       if (Br && Br->isUnconditional() &&
584           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
585         continue;
586       // Multiplies of the outer iteration variable and inner iteration
587       // count will be optimised out.
588       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
589                             m_Specific(FI.InnerTripCount))))
590         continue;
591       InstructionCost Cost =
592           TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
593       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
594       RepeatedInstrCost += Cost;
595     }
596   }
597 
598   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
599                     << RepeatedInstrCost << "\n");
600   // Bail out if flattening the loops would cause instructions in the outer
601   // loop but not in the inner loop to be executed extra times.
602   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
603     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
604     return false;
605   }
606 
607   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
608   return true;
609 }
610 
611 
612 
613 // We require all uses of both induction variables to match this pattern:
614 //
615 //   (OuterPHI * InnerTripCount) + InnerPHI
616 //
617 // Any uses of the induction variables not matching that pattern would
618 // require a div/mod to reconstruct in the flattened loop, so the
619 // transformation wouldn't be profitable.
checkIVUsers(FlattenInfo & FI)620 static bool checkIVUsers(FlattenInfo &FI) {
621   // Check that all uses of the inner loop's induction variable match the
622   // expected pattern, recording the uses of the outer IV.
623   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
624   if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
625     return false;
626 
627   // Check that there are no uses of the outer IV other than the ones found
628   // as part of the pattern above.
629   if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
630     return false;
631 
632   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
633              dbgs() << "Found " << FI.LinearIVUses.size()
634                     << " value(s) that can be replaced:\n";
635              for (Value *V : FI.LinearIVUses) {
636                dbgs() << "  ";
637                V->dump();
638              });
639   return true;
640 }
641 
642 // Return an OverflowResult dependant on if overflow of the multiplication of
643 // InnerTripCount and OuterTripCount can be assumed not to happen.
checkOverflow(FlattenInfo & FI,DominatorTree * DT,AssumptionCache * AC)644 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
645                                     AssumptionCache *AC) {
646   Function *F = FI.OuterLoop->getHeader()->getParent();
647   const DataLayout &DL = F->getDataLayout();
648 
649   // For debugging/testing.
650   if (AssumeNoOverflow)
651     return OverflowResult::NeverOverflows;
652 
653   // Check if the multiply could not overflow due to known ranges of the
654   // input values.
655   OverflowResult OR = computeOverflowForUnsignedMul(
656       FI.InnerTripCount, FI.OuterTripCount,
657       SimplifyQuery(DL, DT, AC,
658                     FI.OuterLoop->getLoopPreheader()->getTerminator()));
659   if (OR != OverflowResult::MayOverflow)
660     return OR;
661 
662   auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) {
663     for (Value *GEPUser : GEP->users()) {
664       auto *GEPUserInst = cast<Instruction>(GEPUser);
665       if (!isa<LoadInst>(GEPUserInst) &&
666           !(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1)))
667         continue;
668       if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop))
669         continue;
670       // The IV is used as the operand of a GEP which dominates the loop
671       // latch, and the IV is at least as wide as the address space of the
672       // GEP. In this case, the GEP would wrap around the address space
673       // before the IV increment wraps, which would be UB.
674       if (GEP->isInBounds() &&
675           GEPOperand->getType()->getIntegerBitWidth() >=
676               DL.getPointerTypeSizeInBits(GEP->getType())) {
677         LLVM_DEBUG(
678             dbgs() << "use of linear IV would be UB if overflow occurred: ";
679             GEP->dump());
680         return true;
681       }
682     }
683     return false;
684   };
685 
686   // Check if any IV user is, or is used by, a GEP that would cause UB if the
687   // multiply overflows.
688   for (Value *V : FI.LinearIVUses) {
689     if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
690       if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1)))
691         return OverflowResult::NeverOverflows;
692     for (Value *U : V->users())
693       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
694         if (CheckGEP(GEP, V))
695           return OverflowResult::NeverOverflows;
696   }
697 
698   return OverflowResult::MayOverflow;
699 }
700 
CanFlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI)701 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
702                                ScalarEvolution *SE, AssumptionCache *AC,
703                                const TargetTransformInfo *TTI) {
704   SmallPtrSet<Instruction *, 8> IterationInstructions;
705   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
706                           FI.InnerInductionPHI, FI.InnerTripCount,
707                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
708     return false;
709   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
710                           FI.OuterInductionPHI, FI.OuterTripCount,
711                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
712     return false;
713 
714   // Both of the loop trip count values must be invariant in the outer loop
715   // (non-instructions are all inherently invariant).
716   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
717     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
718     return false;
719   }
720   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
721     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
722     return false;
723   }
724 
725   if (!checkPHIs(FI, TTI))
726     return false;
727 
728   // FIXME: it should be possible to handle different types correctly.
729   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
730     return false;
731 
732   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
733     return false;
734 
735   // Find the values in the loop that can be replaced with the linearized
736   // induction variable, and check that there are no other uses of the inner
737   // or outer induction variable. If there were, we could still do this
738   // transformation, but we'd have to insert a div/mod to calculate the
739   // original IVs, so it wouldn't be profitable.
740   if (!checkIVUsers(FI))
741     return false;
742 
743   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
744   return true;
745 }
746 
DoFlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI,LPMUpdater * U,MemorySSAUpdater * MSSAU)747 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
748                               ScalarEvolution *SE, AssumptionCache *AC,
749                               const TargetTransformInfo *TTI, LPMUpdater *U,
750                               MemorySSAUpdater *MSSAU) {
751   Function *F = FI.OuterLoop->getHeader()->getParent();
752   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
753   {
754     using namespace ore;
755     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
756                               FI.InnerLoop->getHeader());
757     OptimizationRemarkEmitter ORE(F);
758     Remark << "Flattened into outer loop";
759     ORE.emit(Remark);
760   }
761 
762   if (!FI.NewTripCount) {
763     FI.NewTripCount = BinaryOperator::CreateMul(
764         FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
765         FI.OuterLoop->getLoopPreheader()->getTerminator()->getIterator());
766     LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
767                FI.NewTripCount->dump());
768   }
769 
770   // Fix up PHI nodes that take values from the inner loop back-edge, which
771   // we are about to remove.
772   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
773 
774   // The old Phi will be optimised away later, but for now we can't leave
775   // leave it in an invalid state, so are updating them too.
776   for (PHINode *PHI : FI.InnerPHIsToTransform)
777     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
778 
779   // Modify the trip count of the outer loop to be the product of the two
780   // trip counts.
781   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, FI.NewTripCount);
782 
783   // Replace the inner loop backedge with an unconditional branch to the exit.
784   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
785   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
786   Instruction *Term = InnerExitingBlock->getTerminator();
787   Instruction *BI = BranchInst::Create(InnerExitBlock, InnerExitingBlock);
788   BI->setDebugLoc(Term->getDebugLoc());
789   Term->eraseFromParent();
790 
791   // Update the DomTree and MemorySSA.
792   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
793   if (MSSAU)
794     MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
795 
796   // Replace all uses of the polynomial calculated from the two induction
797   // variables with the one new one.
798   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
799   for (Value *V : FI.LinearIVUses) {
800     Value *OuterValue = FI.OuterInductionPHI;
801     if (FI.Widened)
802       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
803                                        "flatten.trunciv");
804 
805     if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
806       // Replace the GEP with one that uses OuterValue as the offset.
807       auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0));
808       Value *Base = InnerGEP->getOperand(0);
809       // When the base of the GEP doesn't dominate the outer induction phi then
810       // we need to insert the new GEP where the old GEP was.
811       if (!DT->dominates(Base, &*Builder.GetInsertPoint()))
812         Builder.SetInsertPoint(cast<Instruction>(V));
813       OuterValue =
814           Builder.CreateGEP(GEP->getSourceElementType(), Base, OuterValue,
815                             "flatten." + V->getName(),
816                             GEP->isInBounds() && InnerGEP->isInBounds());
817     }
818 
819     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
820                OuterValue->dump());
821     V->replaceAllUsesWith(OuterValue);
822   }
823 
824   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
825   // deleted, and invalidate any outer loop information.
826   SE->forgetLoop(FI.OuterLoop);
827   SE->forgetBlockAndLoopDispositions();
828   if (U)
829     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
830   LI->erase(FI.InnerLoop);
831 
832   // Increment statistic value.
833   NumFlattened++;
834 
835   return true;
836 }
837 
CanWidenIV(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI)838 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
839                        ScalarEvolution *SE, AssumptionCache *AC,
840                        const TargetTransformInfo *TTI) {
841   if (!WidenIV) {
842     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
843     return false;
844   }
845 
846   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
847   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
848   auto &DL = M->getDataLayout();
849   auto *InnerType = FI.InnerInductionPHI->getType();
850   auto *OuterType = FI.OuterInductionPHI->getType();
851   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
852   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
853 
854   // If both induction types are less than the maximum legal integer width,
855   // promote both to the widest type available so we know calculating
856   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
857   if (InnerType != OuterType ||
858       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
859       MaxLegalType->getScalarSizeInBits() <
860           InnerType->getScalarSizeInBits() * 2) {
861     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
862     return false;
863   }
864 
865   SCEVExpander Rewriter(*SE, DL, "loopflatten");
866   SmallVector<WeakTrackingVH, 4> DeadInsts;
867   unsigned ElimExt = 0;
868   unsigned Widened = 0;
869 
870   auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
871     PHINode *WidePhi =
872         createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
873                      true /* HasGuards */, true /* UsePostIncrementRanges */);
874     if (!WidePhi)
875       return false;
876     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
877     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
878     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
879     return true;
880   };
881 
882   bool Deleted;
883   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
884     return false;
885   // Add the narrow phi to list, so that it will be adjusted later when the
886   // the transformation is performed.
887   if (!Deleted)
888     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
889 
890   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
891     return false;
892 
893   assert(Widened && "Widened IV expected");
894   FI.Widened = true;
895 
896   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
897   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
898   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
899 
900   // After widening, rediscover all the loop components.
901   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
902 }
903 
FlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI,LPMUpdater * U,MemorySSAUpdater * MSSAU,const LoopAccessInfo & LAI)904 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
905                             ScalarEvolution *SE, AssumptionCache *AC,
906                             const TargetTransformInfo *TTI, LPMUpdater *U,
907                             MemorySSAUpdater *MSSAU,
908                             const LoopAccessInfo &LAI) {
909   LLVM_DEBUG(
910       dbgs() << "Loop flattening running on outer loop "
911              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
912              << FI.InnerLoop->getHeader()->getName() << " in "
913              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
914 
915   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
916     return false;
917 
918   // Check if we can widen the induction variables to avoid overflow checks.
919   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
920 
921   // It can happen that after widening of the IV, flattening may not be
922   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
923   // that is the case.
924   // TODO: IV widening without performing the actual flattening transformation
925   // is not ideal. While this codegen change should not matter much, it is an
926   // unnecessary change which is better to avoid. It's unlikely this happens
927   // often, because if it's unprofitibale after widening, it should be
928   // unprofitabe before widening as checked in the first round of checks. But
929   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
930   // relaxed. Because this is making a code change (the IV widening, but not
931   // the flattening), we return true here.
932   if (FI.Widened && !CanFlatten)
933     return true;
934 
935   // If we have widened and can perform the transformation, do that here.
936   if (CanFlatten)
937     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
938 
939   // Otherwise, if we haven't widened the IV, check if the new iteration
940   // variable might overflow. In this case, we need to version the loop, and
941   // select the original version at runtime if the iteration space is too
942   // large.
943   OverflowResult OR = checkOverflow(FI, DT, AC);
944   if (OR == OverflowResult::AlwaysOverflowsHigh ||
945       OR == OverflowResult::AlwaysOverflowsLow) {
946     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
947     return false;
948   } else if (OR == OverflowResult::MayOverflow) {
949     Module *M = FI.OuterLoop->getHeader()->getParent()->getParent();
950     const DataLayout &DL = M->getDataLayout();
951     if (!VersionLoops) {
952       LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
953       return false;
954     } else if (!DL.isLegalInteger(
955                    FI.OuterTripCount->getType()->getScalarSizeInBits())) {
956       // If the trip count type isn't legal then it won't be possible to check
957       // for overflow using only a single multiply instruction, so don't
958       // flatten.
959       LLVM_DEBUG(
960           dbgs() << "Can't check overflow efficiently, not flattening\n");
961       return false;
962     }
963     LLVM_DEBUG(dbgs() << "Multiply might overflow, versioning loop\n");
964 
965     // Version the loop. The overflow check isn't a runtime pointer check, so we
966     // pass an empty list of runtime pointer checks, causing LoopVersioning to
967     // emit 'false' as the branch condition, and add our own check afterwards.
968     BasicBlock *CheckBlock = FI.OuterLoop->getLoopPreheader();
969     ArrayRef<RuntimePointerCheck> Checks(nullptr, nullptr);
970     LoopVersioning LVer(LAI, Checks, FI.OuterLoop, LI, DT, SE);
971     LVer.versionLoop();
972 
973     // Check for overflow by calculating the new tripcount using
974     // umul_with_overflow and then checking if it overflowed.
975     BranchInst *Br = cast<BranchInst>(CheckBlock->getTerminator());
976     assert(Br->isConditional() &&
977            "Expected LoopVersioning to generate a conditional branch");
978     assert(match(Br->getCondition(), m_Zero()) &&
979            "Expected branch condition to be false");
980     IRBuilder<> Builder(Br);
981     Function *F = Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow,
982                                             FI.OuterTripCount->getType());
983     Value *Call = Builder.CreateCall(F, {FI.OuterTripCount, FI.InnerTripCount},
984                                      "flatten.mul");
985     FI.NewTripCount = Builder.CreateExtractValue(Call, 0, "flatten.tripcount");
986     Value *Overflow = Builder.CreateExtractValue(Call, 1, "flatten.overflow");
987     Br->setCondition(Overflow);
988   } else {
989     LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
990   }
991 
992   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
993 }
994 
run(LoopNest & LN,LoopAnalysisManager & LAM,LoopStandardAnalysisResults & AR,LPMUpdater & U)995 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
996                                        LoopStandardAnalysisResults &AR,
997                                        LPMUpdater &U) {
998 
999   bool Changed = false;
1000 
1001   std::optional<MemorySSAUpdater> MSSAU;
1002   if (AR.MSSA) {
1003     MSSAU = MemorySSAUpdater(AR.MSSA);
1004     if (VerifyMemorySSA)
1005       AR.MSSA->verifyMemorySSA();
1006   }
1007 
1008   // The loop flattening pass requires loops to be
1009   // in simplified form, and also needs LCSSA. Running
1010   // this pass will simplify all loops that contain inner loops,
1011   // regardless of whether anything ends up being flattened.
1012   LoopAccessInfoManager LAIM(AR.SE, AR.AA, AR.DT, AR.LI, &AR.TTI, nullptr);
1013   for (Loop *InnerLoop : LN.getLoops()) {
1014     auto *OuterLoop = InnerLoop->getParentLoop();
1015     if (!OuterLoop)
1016       continue;
1017     FlattenInfo FI(OuterLoop, InnerLoop);
1018     Changed |=
1019         FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
1020                         MSSAU ? &*MSSAU : nullptr, LAIM.getInfo(*OuterLoop));
1021   }
1022 
1023   if (!Changed)
1024     return PreservedAnalyses::all();
1025 
1026   if (AR.MSSA && VerifyMemorySSA)
1027     AR.MSSA->verifyMemorySSA();
1028 
1029   auto PA = getLoopPassPreservedAnalyses();
1030   if (AR.MSSA)
1031     PA.preserve<MemorySSAAnalysis>();
1032   return PA;
1033 }
1034