xref: /linux/drivers/net/can/spi/mcp251x.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/clk.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/device.h>
29 #include <linux/ethtool.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio/driver.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/iopoll.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/netdevice.h>
38 #include <linux/platform_device.h>
39 #include <linux/property.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/slab.h>
42 #include <linux/spi/spi.h>
43 #include <linux/uaccess.h>
44 
45 /* SPI interface instruction set */
46 #define INSTRUCTION_WRITE	0x02
47 #define INSTRUCTION_READ	0x03
48 #define INSTRUCTION_BIT_MODIFY	0x05
49 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
50 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
51 #define INSTRUCTION_RESET	0xC0
52 #define RTS_TXB0		0x01
53 #define RTS_TXB1		0x02
54 #define RTS_TXB2		0x04
55 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
56 
57 /* MPC251x registers */
58 #define BFPCTRL			0x0c
59 #  define BFPCTRL_B0BFM		BIT(0)
60 #  define BFPCTRL_B1BFM		BIT(1)
61 #  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
62 #  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
63 #  define BFPCTRL_B0BFE		BIT(2)
64 #  define BFPCTRL_B1BFE		BIT(3)
65 #  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
66 #  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
67 #  define BFPCTRL_B0BFS		BIT(4)
68 #  define BFPCTRL_B1BFS		BIT(5)
69 #  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
70 #  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
71 #define TXRTSCTRL		0x0d
72 #  define TXRTSCTRL_B0RTSM	BIT(0)
73 #  define TXRTSCTRL_B1RTSM	BIT(1)
74 #  define TXRTSCTRL_B2RTSM	BIT(2)
75 #  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
76 #  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
77 #  define TXRTSCTRL_B0RTS	BIT(3)
78 #  define TXRTSCTRL_B1RTS	BIT(4)
79 #  define TXRTSCTRL_B2RTS	BIT(5)
80 #  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
81 #  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
82 #define CANSTAT	      0x0e
83 #define CANCTRL	      0x0f
84 #  define CANCTRL_REQOP_MASK	    0xe0
85 #  define CANCTRL_REQOP_CONF	    0x80
86 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
87 #  define CANCTRL_REQOP_LOOPBACK    0x40
88 #  define CANCTRL_REQOP_SLEEP	    0x20
89 #  define CANCTRL_REQOP_NORMAL	    0x00
90 #  define CANCTRL_OSM		    0x08
91 #  define CANCTRL_ABAT		    0x10
92 #define TEC	      0x1c
93 #define REC	      0x1d
94 #define CNF1	      0x2a
95 #  define CNF1_SJW_SHIFT   6
96 #define CNF2	      0x29
97 #  define CNF2_BTLMODE	   0x80
98 #  define CNF2_SAM         0x40
99 #  define CNF2_PS1_SHIFT   3
100 #define CNF3	      0x28
101 #  define CNF3_SOF	   0x08
102 #  define CNF3_WAKFIL	   0x04
103 #  define CNF3_PHSEG2_MASK 0x07
104 #define CANINTE	      0x2b
105 #  define CANINTE_MERRE 0x80
106 #  define CANINTE_WAKIE 0x40
107 #  define CANINTE_ERRIE 0x20
108 #  define CANINTE_TX2IE 0x10
109 #  define CANINTE_TX1IE 0x08
110 #  define CANINTE_TX0IE 0x04
111 #  define CANINTE_RX1IE 0x02
112 #  define CANINTE_RX0IE 0x01
113 #define CANINTF	      0x2c
114 #  define CANINTF_MERRF 0x80
115 #  define CANINTF_WAKIF 0x40
116 #  define CANINTF_ERRIF 0x20
117 #  define CANINTF_TX2IF 0x10
118 #  define CANINTF_TX1IF 0x08
119 #  define CANINTF_TX0IF 0x04
120 #  define CANINTF_RX1IF 0x02
121 #  define CANINTF_RX0IF 0x01
122 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
123 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
124 #  define CANINTF_ERR (CANINTF_ERRIF)
125 #define EFLG	      0x2d
126 #  define EFLG_EWARN	0x01
127 #  define EFLG_RXWAR	0x02
128 #  define EFLG_TXWAR	0x04
129 #  define EFLG_RXEP	0x08
130 #  define EFLG_TXEP	0x10
131 #  define EFLG_TXBO	0x20
132 #  define EFLG_RX0OVR	0x40
133 #  define EFLG_RX1OVR	0x80
134 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
135 #  define TXBCTRL_ABTF	0x40
136 #  define TXBCTRL_MLOA	0x20
137 #  define TXBCTRL_TXERR 0x10
138 #  define TXBCTRL_TXREQ 0x08
139 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
140 #  define SIDH_SHIFT    3
141 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
142 #  define SIDL_SID_MASK    7
143 #  define SIDL_SID_SHIFT   5
144 #  define SIDL_EXIDE_SHIFT 3
145 #  define SIDL_EID_SHIFT   16
146 #  define SIDL_EID_MASK    3
147 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
148 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
149 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
150 #  define DLC_RTR_SHIFT    6
151 #define TXBCTRL_OFF 0
152 #define TXBSIDH_OFF 1
153 #define TXBSIDL_OFF 2
154 #define TXBEID8_OFF 3
155 #define TXBEID0_OFF 4
156 #define TXBDLC_OFF  5
157 #define TXBDAT_OFF  6
158 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
159 #  define RXBCTRL_BUKT	0x04
160 #  define RXBCTRL_RXM0	0x20
161 #  define RXBCTRL_RXM1	0x40
162 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
163 #  define RXBSIDH_SHIFT 3
164 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
165 #  define RXBSIDL_IDE   0x08
166 #  define RXBSIDL_SRR   0x10
167 #  define RXBSIDL_EID   3
168 #  define RXBSIDL_SHIFT 5
169 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
170 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
171 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
172 #  define RXBDLC_LEN_MASK  0x0f
173 #  define RXBDLC_RTR       0x40
174 #define RXBCTRL_OFF 0
175 #define RXBSIDH_OFF 1
176 #define RXBSIDL_OFF 2
177 #define RXBEID8_OFF 3
178 #define RXBEID0_OFF 4
179 #define RXBDLC_OFF  5
180 #define RXBDAT_OFF  6
181 #define RXFSID(n) ((n < 3) ? 0 : 4)
182 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
183 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
184 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
185 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
186 #define RXMSIDH(n) ((n) * 4 + 0x20)
187 #define RXMSIDL(n) ((n) * 4 + 0x21)
188 #define RXMEID8(n) ((n) * 4 + 0x22)
189 #define RXMEID0(n) ((n) * 4 + 0x23)
190 
191 #define GET_BYTE(val, byte)			\
192 	(((val) >> ((byte) * 8)) & 0xff)
193 #define SET_BYTE(val, byte)			\
194 	(((val) & 0xff) << ((byte) * 8))
195 
196 /* Buffer size required for the largest SPI transfer (i.e., reading a
197  * frame)
198  */
199 #define CAN_FRAME_MAX_DATA_LEN	8
200 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
201 #define CAN_FRAME_MAX_BITS	128
202 
203 #define TX_ECHO_SKB_MAX	1
204 
205 #define MCP251X_OST_DELAY_MS	(5)
206 
207 #define DEVICE_NAME "mcp251x"
208 
209 static const struct can_bittiming_const mcp251x_bittiming_const = {
210 	.name = DEVICE_NAME,
211 	.tseg1_min = 3,
212 	.tseg1_max = 16,
213 	.tseg2_min = 2,
214 	.tseg2_max = 8,
215 	.sjw_max = 4,
216 	.brp_min = 1,
217 	.brp_max = 64,
218 	.brp_inc = 1,
219 };
220 
221 enum mcp251x_model {
222 	CAN_MCP251X_MCP2510	= 0x2510,
223 	CAN_MCP251X_MCP2515	= 0x2515,
224 	CAN_MCP251X_MCP25625	= 0x25625,
225 };
226 
227 struct mcp251x_priv {
228 	struct can_priv	   can;
229 	struct net_device *net;
230 	struct spi_device *spi;
231 	enum mcp251x_model model;
232 
233 	struct mutex mcp_lock; /* SPI device lock */
234 
235 	u8 *spi_tx_buf;
236 	u8 *spi_rx_buf;
237 
238 	struct sk_buff *tx_skb;
239 
240 	struct workqueue_struct *wq;
241 	struct work_struct tx_work;
242 	struct work_struct restart_work;
243 
244 	int force_quit;
245 	int after_suspend;
246 #define AFTER_SUSPEND_UP 1
247 #define AFTER_SUSPEND_DOWN 2
248 #define AFTER_SUSPEND_POWER 4
249 #define AFTER_SUSPEND_RESTART 8
250 	int restart_tx;
251 	bool tx_busy;
252 
253 	struct regulator *power;
254 	struct regulator *transceiver;
255 	struct clk *clk;
256 #ifdef CONFIG_GPIOLIB
257 	struct gpio_chip gpio;
258 	u8 reg_bfpctrl;
259 #endif
260 };
261 
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
264 { \
265 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 	return priv->model == CAN_MCP251X_MCP##_model; \
267 }
268 
269 MCP251X_IS(2510);
270 
mcp251x_clean(struct net_device * net)271 static void mcp251x_clean(struct net_device *net)
272 {
273 	struct mcp251x_priv *priv = netdev_priv(net);
274 
275 	if (priv->tx_skb || priv->tx_busy)
276 		net->stats.tx_errors++;
277 	dev_kfree_skb(priv->tx_skb);
278 	if (priv->tx_busy)
279 		can_free_echo_skb(priv->net, 0, NULL);
280 	priv->tx_skb = NULL;
281 	priv->tx_busy = false;
282 }
283 
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285  * registers via SPI is not really different conceptually than using
286  * normal I/O assembler instructions, although it's much more
287  * complicated from a practical POV. So it's not advisable to always
288  * check the return value of this function. Imagine that every
289  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290  * error();", it would be a great mess (well there are some situation
291  * when exception handling C++ like could be useful after all). So we
292  * just check that transfers are OK at the beginning of our
293  * conversation with the chip and to avoid doing really nasty things
294  * (like injecting bogus packets in the network stack).
295  */
mcp251x_spi_trans(struct spi_device * spi,int len)296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
297 {
298 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 	struct spi_transfer t = {
300 		.tx_buf = priv->spi_tx_buf,
301 		.rx_buf = priv->spi_rx_buf,
302 		.len = len,
303 		.cs_change = 0,
304 	};
305 	struct spi_message m;
306 	int ret;
307 
308 	spi_message_init(&m);
309 	spi_message_add_tail(&t, &m);
310 
311 	ret = spi_sync(spi, &m);
312 	if (ret)
313 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314 	return ret;
315 }
316 
mcp251x_spi_write(struct spi_device * spi,int len)317 static int mcp251x_spi_write(struct spi_device *spi, int len)
318 {
319 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 	int ret;
321 
322 	ret = spi_write(spi, priv->spi_tx_buf, len);
323 	if (ret)
324 		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
325 
326 	return ret;
327 }
328 
mcp251x_read_reg(struct spi_device * spi,u8 reg)329 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
330 {
331 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
332 	u8 val = 0;
333 
334 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
335 	priv->spi_tx_buf[1] = reg;
336 
337 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338 		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
339 	} else {
340 		mcp251x_spi_trans(spi, 3);
341 		val = priv->spi_rx_buf[2];
342 	}
343 
344 	return val;
345 }
346 
mcp251x_read_2regs(struct spi_device * spi,u8 reg,u8 * v1,u8 * v2)347 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
348 {
349 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
350 
351 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
352 	priv->spi_tx_buf[1] = reg;
353 
354 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
355 		u8 val[2] = { 0 };
356 
357 		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
358 		*v1 = val[0];
359 		*v2 = val[1];
360 	} else {
361 		mcp251x_spi_trans(spi, 4);
362 
363 		*v1 = priv->spi_rx_buf[2];
364 		*v2 = priv->spi_rx_buf[3];
365 	}
366 }
367 
mcp251x_write_reg(struct spi_device * spi,u8 reg,u8 val)368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
369 {
370 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
371 
372 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 	priv->spi_tx_buf[1] = reg;
374 	priv->spi_tx_buf[2] = val;
375 
376 	mcp251x_spi_write(spi, 3);
377 }
378 
mcp251x_write_2regs(struct spi_device * spi,u8 reg,u8 v1,u8 v2)379 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
380 {
381 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
382 
383 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384 	priv->spi_tx_buf[1] = reg;
385 	priv->spi_tx_buf[2] = v1;
386 	priv->spi_tx_buf[3] = v2;
387 
388 	mcp251x_spi_write(spi, 4);
389 }
390 
mcp251x_write_bits(struct spi_device * spi,u8 reg,u8 mask,u8 val)391 static int mcp251x_write_bits(struct spi_device *spi, u8 reg,
392 			      u8 mask, u8 val)
393 {
394 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
395 
396 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397 	priv->spi_tx_buf[1] = reg;
398 	priv->spi_tx_buf[2] = mask;
399 	priv->spi_tx_buf[3] = val;
400 
401 	return mcp251x_spi_write(spi, 4);
402 }
403 
mcp251x_read_stat(struct spi_device * spi)404 static u8 mcp251x_read_stat(struct spi_device *spi)
405 {
406 	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
407 }
408 
409 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410 	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411 			   delay_us, timeout_us)
412 
413 #ifdef CONFIG_GPIOLIB
414 enum {
415 	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
416 	MCP251X_GPIO_TX1RTS,
417 	MCP251X_GPIO_TX2RTS,
418 	MCP251X_GPIO_RX0BF,			/* outputs */
419 	MCP251X_GPIO_RX1BF,
420 };
421 
422 #define MCP251X_GPIO_INPUT_MASK \
423 	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424 #define MCP251X_GPIO_OUTPUT_MASK \
425 	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
426 
427 static const char * const mcp251x_gpio_names[] = {
428 	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
429 	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
430 	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
431 	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
432 	[MCP251X_GPIO_RX1BF] = "RX1BF",
433 };
434 
mcp251x_gpio_is_input(unsigned int offset)435 static inline bool mcp251x_gpio_is_input(unsigned int offset)
436 {
437 	return offset <= MCP251X_GPIO_TX2RTS;
438 }
439 
mcp251x_gpio_request(struct gpio_chip * chip,unsigned int offset)440 static int mcp251x_gpio_request(struct gpio_chip *chip,
441 				unsigned int offset)
442 {
443 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
444 	int ret;
445 	u8 val;
446 
447 	/* nothing to be done for inputs */
448 	if (mcp251x_gpio_is_input(offset))
449 		return 0;
450 
451 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
452 
453 	mutex_lock(&priv->mcp_lock);
454 	ret = mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
455 	mutex_unlock(&priv->mcp_lock);
456 	if (ret)
457 		return ret;
458 
459 	priv->reg_bfpctrl |= val;
460 
461 	return 0;
462 }
463 
mcp251x_gpio_free(struct gpio_chip * chip,unsigned int offset)464 static void mcp251x_gpio_free(struct gpio_chip *chip,
465 			      unsigned int offset)
466 {
467 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
468 	u8 val;
469 
470 	/* nothing to be done for inputs */
471 	if (mcp251x_gpio_is_input(offset))
472 		return;
473 
474 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
475 
476 	mutex_lock(&priv->mcp_lock);
477 	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
478 	mutex_unlock(&priv->mcp_lock);
479 
480 	priv->reg_bfpctrl &= ~val;
481 }
482 
mcp251x_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)483 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
484 				      unsigned int offset)
485 {
486 	if (mcp251x_gpio_is_input(offset))
487 		return GPIO_LINE_DIRECTION_IN;
488 
489 	return GPIO_LINE_DIRECTION_OUT;
490 }
491 
mcp251x_gpio_get(struct gpio_chip * chip,unsigned int offset)492 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
493 {
494 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
495 	u8 reg, mask, val;
496 
497 	if (mcp251x_gpio_is_input(offset)) {
498 		reg = TXRTSCTRL;
499 		mask = TXRTSCTRL_RTS(offset);
500 	} else {
501 		reg = BFPCTRL;
502 		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
503 	}
504 
505 	mutex_lock(&priv->mcp_lock);
506 	val = mcp251x_read_reg(priv->spi, reg);
507 	mutex_unlock(&priv->mcp_lock);
508 
509 	return !!(val & mask);
510 }
511 
mcp251x_gpio_get_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)512 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
513 				     unsigned long *maskp, unsigned long *bitsp)
514 {
515 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
516 	unsigned long bits = 0;
517 	u8 val;
518 
519 	mutex_lock(&priv->mcp_lock);
520 	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
521 		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
522 		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
523 		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
524 	}
525 	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
526 		val = mcp251x_read_reg(priv->spi, BFPCTRL);
527 		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
528 		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
529 	}
530 	mutex_unlock(&priv->mcp_lock);
531 
532 	bitsp[0] = bits;
533 	return 0;
534 }
535 
mcp251x_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)536 static int mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
537 			    int value)
538 {
539 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
540 	u8 mask, val;
541 	int ret;
542 
543 	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
544 	val = value ? mask : 0;
545 
546 	mutex_lock(&priv->mcp_lock);
547 	ret = mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
548 	mutex_unlock(&priv->mcp_lock);
549 	if (ret)
550 		return ret;
551 
552 	priv->reg_bfpctrl &= ~mask;
553 	priv->reg_bfpctrl |= val;
554 
555 	return 0;
556 }
557 
558 static int
mcp251x_gpio_set_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)559 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
560 			  unsigned long *maskp, unsigned long *bitsp)
561 {
562 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
563 	u8 mask, val;
564 	int ret;
565 
566 	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
567 	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
568 
569 	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
570 	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
571 
572 	if (!mask)
573 		return 0;
574 
575 	mutex_lock(&priv->mcp_lock);
576 	ret = mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
577 	mutex_unlock(&priv->mcp_lock);
578 	if (ret)
579 		return ret;
580 
581 	priv->reg_bfpctrl &= ~mask;
582 	priv->reg_bfpctrl |= val;
583 
584 	return 0;
585 }
586 
mcp251x_gpio_restore(struct spi_device * spi)587 static void mcp251x_gpio_restore(struct spi_device *spi)
588 {
589 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
590 
591 	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
592 }
593 
mcp251x_gpio_setup(struct mcp251x_priv * priv)594 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
595 {
596 	struct gpio_chip *gpio = &priv->gpio;
597 
598 	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
599 		return 0;
600 
601 	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
602 	gpio->label = priv->spi->modalias;
603 	gpio->parent = &priv->spi->dev;
604 	gpio->owner = THIS_MODULE;
605 	gpio->request = mcp251x_gpio_request;
606 	gpio->free = mcp251x_gpio_free;
607 	gpio->get_direction = mcp251x_gpio_get_direction;
608 	gpio->get = mcp251x_gpio_get;
609 	gpio->get_multiple = mcp251x_gpio_get_multiple;
610 	gpio->set_rv = mcp251x_gpio_set;
611 	gpio->set_multiple_rv = mcp251x_gpio_set_multiple;
612 	gpio->base = -1;
613 	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
614 	gpio->names = mcp251x_gpio_names;
615 	gpio->can_sleep = true;
616 
617 	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
618 }
619 #else
mcp251x_gpio_restore(struct spi_device * spi)620 static inline void mcp251x_gpio_restore(struct spi_device *spi)
621 {
622 }
623 
mcp251x_gpio_setup(struct mcp251x_priv * priv)624 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
625 {
626 	return 0;
627 }
628 #endif
629 
mcp251x_hw_tx_frame(struct spi_device * spi,u8 * buf,int len,int tx_buf_idx)630 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
631 				int len, int tx_buf_idx)
632 {
633 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
634 
635 	if (mcp251x_is_2510(spi)) {
636 		int i;
637 
638 		for (i = 1; i < TXBDAT_OFF + len; i++)
639 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
640 					  buf[i]);
641 	} else {
642 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
643 		mcp251x_spi_write(spi, TXBDAT_OFF + len);
644 	}
645 }
646 
mcp251x_hw_tx(struct spi_device * spi,struct can_frame * frame,int tx_buf_idx)647 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
648 			  int tx_buf_idx)
649 {
650 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
651 	u32 sid, eid, exide, rtr;
652 	u8 buf[SPI_TRANSFER_BUF_LEN];
653 
654 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
655 	if (exide)
656 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
657 	else
658 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
659 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
660 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
661 
662 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
663 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
664 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
665 		(exide << SIDL_EXIDE_SHIFT) |
666 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
667 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
668 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
669 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
670 	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
671 	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
672 
673 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
674 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
675 	mcp251x_spi_write(priv->spi, 1);
676 }
677 
mcp251x_hw_rx_frame(struct spi_device * spi,u8 * buf,int buf_idx)678 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
679 				int buf_idx)
680 {
681 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
682 
683 	if (mcp251x_is_2510(spi)) {
684 		int i, len;
685 
686 		for (i = 1; i < RXBDAT_OFF; i++)
687 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
688 
689 		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
690 		for (; i < (RXBDAT_OFF + len); i++)
691 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
692 	} else {
693 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
694 		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
695 			spi_write_then_read(spi, priv->spi_tx_buf, 1,
696 					    priv->spi_rx_buf,
697 					    SPI_TRANSFER_BUF_LEN);
698 			memcpy(buf + 1, priv->spi_rx_buf,
699 			       SPI_TRANSFER_BUF_LEN - 1);
700 		} else {
701 			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
702 			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
703 		}
704 	}
705 }
706 
mcp251x_hw_rx(struct spi_device * spi,int buf_idx)707 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
708 {
709 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
710 	struct sk_buff *skb;
711 	struct can_frame *frame;
712 	u8 buf[SPI_TRANSFER_BUF_LEN];
713 
714 	skb = alloc_can_skb(priv->net, &frame);
715 	if (!skb) {
716 		dev_err(&spi->dev, "cannot allocate RX skb\n");
717 		priv->net->stats.rx_dropped++;
718 		return;
719 	}
720 
721 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
722 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
723 		/* Extended ID format */
724 		frame->can_id = CAN_EFF_FLAG;
725 		frame->can_id |=
726 			/* Extended ID part */
727 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
728 			SET_BYTE(buf[RXBEID8_OFF], 1) |
729 			SET_BYTE(buf[RXBEID0_OFF], 0) |
730 			/* Standard ID part */
731 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
732 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
733 		/* Remote transmission request */
734 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
735 			frame->can_id |= CAN_RTR_FLAG;
736 	} else {
737 		/* Standard ID format */
738 		frame->can_id =
739 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
740 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
741 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
742 			frame->can_id |= CAN_RTR_FLAG;
743 	}
744 	/* Data length */
745 	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
746 	if (!(frame->can_id & CAN_RTR_FLAG)) {
747 		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
748 
749 		priv->net->stats.rx_bytes += frame->len;
750 	}
751 	priv->net->stats.rx_packets++;
752 
753 	netif_rx(skb);
754 }
755 
mcp251x_hw_sleep(struct spi_device * spi)756 static void mcp251x_hw_sleep(struct spi_device *spi)
757 {
758 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
759 }
760 
761 /* May only be called when device is sleeping! */
mcp251x_hw_wake(struct spi_device * spi)762 static int mcp251x_hw_wake(struct spi_device *spi)
763 {
764 	u8 value;
765 	int ret;
766 
767 	/* Force wakeup interrupt to wake device, but don't execute IST */
768 	disable_irq_nosync(spi->irq);
769 	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
770 
771 	/* Wait for oscillator startup timer after wake up */
772 	mdelay(MCP251X_OST_DELAY_MS);
773 
774 	/* Put device into config mode */
775 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
776 
777 	/* Wait for the device to enter config mode */
778 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
779 					     MCP251X_OST_DELAY_MS * 1000,
780 					     USEC_PER_SEC);
781 	if (ret) {
782 		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
783 		return ret;
784 	}
785 
786 	/* Disable and clear pending interrupts */
787 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
788 	enable_irq(spi->irq);
789 
790 	return 0;
791 }
792 
mcp251x_hard_start_xmit(struct sk_buff * skb,struct net_device * net)793 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
794 					   struct net_device *net)
795 {
796 	struct mcp251x_priv *priv = netdev_priv(net);
797 	struct spi_device *spi = priv->spi;
798 
799 	if (priv->tx_skb || priv->tx_busy) {
800 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
801 		return NETDEV_TX_BUSY;
802 	}
803 
804 	if (can_dev_dropped_skb(net, skb))
805 		return NETDEV_TX_OK;
806 
807 	netif_stop_queue(net);
808 	priv->tx_skb = skb;
809 	queue_work(priv->wq, &priv->tx_work);
810 
811 	return NETDEV_TX_OK;
812 }
813 
mcp251x_do_set_mode(struct net_device * net,enum can_mode mode)814 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
815 {
816 	struct mcp251x_priv *priv = netdev_priv(net);
817 
818 	switch (mode) {
819 	case CAN_MODE_START:
820 		mcp251x_clean(net);
821 		/* We have to delay work since SPI I/O may sleep */
822 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
823 		priv->restart_tx = 1;
824 		if (priv->can.restart_ms == 0)
825 			priv->after_suspend = AFTER_SUSPEND_RESTART;
826 		queue_work(priv->wq, &priv->restart_work);
827 		break;
828 	default:
829 		return -EOPNOTSUPP;
830 	}
831 
832 	return 0;
833 }
834 
mcp251x_set_normal_mode(struct spi_device * spi)835 static int mcp251x_set_normal_mode(struct spi_device *spi)
836 {
837 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
838 	u8 value;
839 	int ret;
840 
841 	/* Enable interrupts */
842 	mcp251x_write_reg(spi, CANINTE,
843 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
844 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
845 
846 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
847 		/* Put device into loopback mode */
848 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
849 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
850 		/* Put device into listen-only mode */
851 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
852 	} else {
853 		/* Put device into normal mode */
854 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
855 
856 		/* Wait for the device to enter normal mode */
857 		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
858 						     MCP251X_OST_DELAY_MS * 1000,
859 						     USEC_PER_SEC);
860 		if (ret) {
861 			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
862 			return ret;
863 		}
864 	}
865 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
866 	return 0;
867 }
868 
mcp251x_do_set_bittiming(struct net_device * net)869 static int mcp251x_do_set_bittiming(struct net_device *net)
870 {
871 	struct mcp251x_priv *priv = netdev_priv(net);
872 	struct can_bittiming *bt = &priv->can.bittiming;
873 	struct spi_device *spi = priv->spi;
874 
875 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
876 			  (bt->brp - 1));
877 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
878 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
879 			   CNF2_SAM : 0) |
880 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
881 			  (bt->prop_seg - 1));
882 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
883 			   (bt->phase_seg2 - 1));
884 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
885 		mcp251x_read_reg(spi, CNF1),
886 		mcp251x_read_reg(spi, CNF2),
887 		mcp251x_read_reg(spi, CNF3));
888 
889 	return 0;
890 }
891 
mcp251x_setup(struct net_device * net,struct spi_device * spi)892 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
893 {
894 	mcp251x_do_set_bittiming(net);
895 
896 	mcp251x_write_reg(spi, RXBCTRL(0),
897 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
898 	mcp251x_write_reg(spi, RXBCTRL(1),
899 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
900 	return 0;
901 }
902 
mcp251x_hw_reset(struct spi_device * spi)903 static int mcp251x_hw_reset(struct spi_device *spi)
904 {
905 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
906 	u8 value;
907 	int ret;
908 
909 	/* Wait for oscillator startup timer after power up */
910 	mdelay(MCP251X_OST_DELAY_MS);
911 
912 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
913 	ret = mcp251x_spi_write(spi, 1);
914 	if (ret)
915 		return ret;
916 
917 	/* Wait for oscillator startup timer after reset */
918 	mdelay(MCP251X_OST_DELAY_MS);
919 
920 	/* Wait for reset to finish */
921 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
922 					     MCP251X_OST_DELAY_MS * 1000,
923 					     USEC_PER_SEC);
924 	if (ret)
925 		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
926 	return ret;
927 }
928 
mcp251x_hw_probe(struct spi_device * spi)929 static int mcp251x_hw_probe(struct spi_device *spi)
930 {
931 	u8 ctrl;
932 	int ret;
933 
934 	ret = mcp251x_hw_reset(spi);
935 	if (ret)
936 		return ret;
937 
938 	ctrl = mcp251x_read_reg(spi, CANCTRL);
939 
940 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
941 
942 	/* Check for power up default value */
943 	if ((ctrl & 0x17) != 0x07)
944 		return -ENODEV;
945 
946 	return 0;
947 }
948 
mcp251x_power_enable(struct regulator * reg,int enable)949 static int mcp251x_power_enable(struct regulator *reg, int enable)
950 {
951 	if (IS_ERR_OR_NULL(reg))
952 		return 0;
953 
954 	if (enable)
955 		return regulator_enable(reg);
956 	else
957 		return regulator_disable(reg);
958 }
959 
mcp251x_stop(struct net_device * net)960 static int mcp251x_stop(struct net_device *net)
961 {
962 	struct mcp251x_priv *priv = netdev_priv(net);
963 	struct spi_device *spi = priv->spi;
964 
965 	close_candev(net);
966 
967 	priv->force_quit = 1;
968 	free_irq(spi->irq, priv);
969 
970 	mutex_lock(&priv->mcp_lock);
971 
972 	/* Disable and clear pending interrupts */
973 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
974 
975 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
976 	mcp251x_clean(net);
977 
978 	mcp251x_hw_sleep(spi);
979 
980 	mcp251x_power_enable(priv->transceiver, 0);
981 
982 	priv->can.state = CAN_STATE_STOPPED;
983 
984 	mutex_unlock(&priv->mcp_lock);
985 
986 	return 0;
987 }
988 
mcp251x_error_skb(struct net_device * net,int can_id,int data1)989 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
990 {
991 	struct sk_buff *skb;
992 	struct can_frame *frame;
993 
994 	skb = alloc_can_err_skb(net, &frame);
995 	if (skb) {
996 		frame->can_id |= can_id;
997 		frame->data[1] = data1;
998 		netif_rx(skb);
999 	} else {
1000 		netdev_err(net, "cannot allocate error skb\n");
1001 	}
1002 }
1003 
mcp251x_tx_work_handler(struct work_struct * ws)1004 static void mcp251x_tx_work_handler(struct work_struct *ws)
1005 {
1006 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1007 						 tx_work);
1008 	struct spi_device *spi = priv->spi;
1009 	struct net_device *net = priv->net;
1010 	struct can_frame *frame;
1011 
1012 	mutex_lock(&priv->mcp_lock);
1013 	if (priv->tx_skb) {
1014 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1015 			mcp251x_clean(net);
1016 		} else {
1017 			frame = (struct can_frame *)priv->tx_skb->data;
1018 
1019 			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1020 				frame->len = CAN_FRAME_MAX_DATA_LEN;
1021 			mcp251x_hw_tx(spi, frame, 0);
1022 			priv->tx_busy = true;
1023 			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1024 			priv->tx_skb = NULL;
1025 		}
1026 	}
1027 	mutex_unlock(&priv->mcp_lock);
1028 }
1029 
mcp251x_restart_work_handler(struct work_struct * ws)1030 static void mcp251x_restart_work_handler(struct work_struct *ws)
1031 {
1032 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1033 						 restart_work);
1034 	struct spi_device *spi = priv->spi;
1035 	struct net_device *net = priv->net;
1036 
1037 	mutex_lock(&priv->mcp_lock);
1038 	if (priv->after_suspend) {
1039 		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1040 			mcp251x_hw_reset(spi);
1041 			mcp251x_setup(net, spi);
1042 			mcp251x_gpio_restore(spi);
1043 		} else {
1044 			mcp251x_hw_wake(spi);
1045 		}
1046 		priv->force_quit = 0;
1047 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1048 			mcp251x_set_normal_mode(spi);
1049 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1050 			netif_device_attach(net);
1051 			mcp251x_clean(net);
1052 			mcp251x_set_normal_mode(spi);
1053 			netif_wake_queue(net);
1054 		} else {
1055 			mcp251x_hw_sleep(spi);
1056 		}
1057 		priv->after_suspend = 0;
1058 	}
1059 
1060 	if (priv->restart_tx) {
1061 		priv->restart_tx = 0;
1062 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1063 		mcp251x_clean(net);
1064 		netif_wake_queue(net);
1065 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1066 	}
1067 	mutex_unlock(&priv->mcp_lock);
1068 }
1069 
mcp251x_can_ist(int irq,void * dev_id)1070 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1071 {
1072 	struct mcp251x_priv *priv = dev_id;
1073 	struct spi_device *spi = priv->spi;
1074 	struct net_device *net = priv->net;
1075 
1076 	mutex_lock(&priv->mcp_lock);
1077 	while (!priv->force_quit) {
1078 		enum can_state new_state;
1079 		u8 intf, eflag;
1080 		u8 clear_intf = 0;
1081 		int can_id = 0, data1 = 0;
1082 
1083 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1084 
1085 		/* receive buffer 0 */
1086 		if (intf & CANINTF_RX0IF) {
1087 			mcp251x_hw_rx(spi, 0);
1088 			/* Free one buffer ASAP
1089 			 * (The MCP2515/25625 does this automatically.)
1090 			 */
1091 			if (mcp251x_is_2510(spi))
1092 				mcp251x_write_bits(spi, CANINTF,
1093 						   CANINTF_RX0IF, 0x00);
1094 
1095 			/* check if buffer 1 is already known to be full, no need to re-read */
1096 			if (!(intf & CANINTF_RX1IF)) {
1097 				u8 intf1, eflag1;
1098 
1099 				/* intf needs to be read again to avoid a race condition */
1100 				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1101 
1102 				/* combine flags from both operations for error handling */
1103 				intf |= intf1;
1104 				eflag |= eflag1;
1105 			}
1106 		}
1107 
1108 		/* receive buffer 1 */
1109 		if (intf & CANINTF_RX1IF) {
1110 			mcp251x_hw_rx(spi, 1);
1111 			/* The MCP2515/25625 does this automatically. */
1112 			if (mcp251x_is_2510(spi))
1113 				clear_intf |= CANINTF_RX1IF;
1114 		}
1115 
1116 		/* mask out flags we don't care about */
1117 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1118 
1119 		/* any error or tx interrupt we need to clear? */
1120 		if (intf & (CANINTF_ERR | CANINTF_TX))
1121 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1122 		if (clear_intf)
1123 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1124 
1125 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1126 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1127 
1128 		/* Update can state */
1129 		if (eflag & EFLG_TXBO) {
1130 			new_state = CAN_STATE_BUS_OFF;
1131 			can_id |= CAN_ERR_BUSOFF;
1132 		} else if (eflag & EFLG_TXEP) {
1133 			new_state = CAN_STATE_ERROR_PASSIVE;
1134 			can_id |= CAN_ERR_CRTL;
1135 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1136 		} else if (eflag & EFLG_RXEP) {
1137 			new_state = CAN_STATE_ERROR_PASSIVE;
1138 			can_id |= CAN_ERR_CRTL;
1139 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1140 		} else if (eflag & EFLG_TXWAR) {
1141 			new_state = CAN_STATE_ERROR_WARNING;
1142 			can_id |= CAN_ERR_CRTL;
1143 			data1 |= CAN_ERR_CRTL_TX_WARNING;
1144 		} else if (eflag & EFLG_RXWAR) {
1145 			new_state = CAN_STATE_ERROR_WARNING;
1146 			can_id |= CAN_ERR_CRTL;
1147 			data1 |= CAN_ERR_CRTL_RX_WARNING;
1148 		} else {
1149 			new_state = CAN_STATE_ERROR_ACTIVE;
1150 		}
1151 
1152 		/* Update can state statistics */
1153 		switch (priv->can.state) {
1154 		case CAN_STATE_ERROR_ACTIVE:
1155 			if (new_state >= CAN_STATE_ERROR_WARNING &&
1156 			    new_state <= CAN_STATE_BUS_OFF)
1157 				priv->can.can_stats.error_warning++;
1158 			fallthrough;
1159 		case CAN_STATE_ERROR_WARNING:
1160 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1161 			    new_state <= CAN_STATE_BUS_OFF)
1162 				priv->can.can_stats.error_passive++;
1163 			break;
1164 		default:
1165 			break;
1166 		}
1167 		priv->can.state = new_state;
1168 
1169 		if (intf & CANINTF_ERRIF) {
1170 			/* Handle overflow counters */
1171 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1172 				if (eflag & EFLG_RX0OVR) {
1173 					net->stats.rx_over_errors++;
1174 					net->stats.rx_errors++;
1175 				}
1176 				if (eflag & EFLG_RX1OVR) {
1177 					net->stats.rx_over_errors++;
1178 					net->stats.rx_errors++;
1179 				}
1180 				can_id |= CAN_ERR_CRTL;
1181 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1182 			}
1183 			mcp251x_error_skb(net, can_id, data1);
1184 		}
1185 
1186 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1187 			if (priv->can.restart_ms == 0) {
1188 				priv->force_quit = 1;
1189 				priv->can.can_stats.bus_off++;
1190 				can_bus_off(net);
1191 				mcp251x_hw_sleep(spi);
1192 				break;
1193 			}
1194 		}
1195 
1196 		if (intf == 0)
1197 			break;
1198 
1199 		if (intf & CANINTF_TX) {
1200 			if (priv->tx_busy) {
1201 				net->stats.tx_packets++;
1202 				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1203 									NULL);
1204 				priv->tx_busy = false;
1205 			}
1206 			netif_wake_queue(net);
1207 		}
1208 	}
1209 	mutex_unlock(&priv->mcp_lock);
1210 	return IRQ_HANDLED;
1211 }
1212 
mcp251x_open(struct net_device * net)1213 static int mcp251x_open(struct net_device *net)
1214 {
1215 	struct mcp251x_priv *priv = netdev_priv(net);
1216 	struct spi_device *spi = priv->spi;
1217 	unsigned long flags = 0;
1218 	int ret;
1219 
1220 	ret = open_candev(net);
1221 	if (ret) {
1222 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1223 		return ret;
1224 	}
1225 
1226 	mutex_lock(&priv->mcp_lock);
1227 	mcp251x_power_enable(priv->transceiver, 1);
1228 
1229 	priv->force_quit = 0;
1230 	priv->tx_skb = NULL;
1231 	priv->tx_busy = false;
1232 
1233 	if (!dev_fwnode(&spi->dev))
1234 		flags = IRQF_TRIGGER_FALLING;
1235 
1236 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1237 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1238 				   priv);
1239 	if (ret) {
1240 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1241 		goto out_close;
1242 	}
1243 
1244 	ret = mcp251x_hw_wake(spi);
1245 	if (ret)
1246 		goto out_free_irq;
1247 	ret = mcp251x_setup(net, spi);
1248 	if (ret)
1249 		goto out_free_irq;
1250 	ret = mcp251x_set_normal_mode(spi);
1251 	if (ret)
1252 		goto out_free_irq;
1253 
1254 	netif_wake_queue(net);
1255 	mutex_unlock(&priv->mcp_lock);
1256 
1257 	return 0;
1258 
1259 out_free_irq:
1260 	free_irq(spi->irq, priv);
1261 	mcp251x_hw_sleep(spi);
1262 out_close:
1263 	mcp251x_power_enable(priv->transceiver, 0);
1264 	close_candev(net);
1265 	mutex_unlock(&priv->mcp_lock);
1266 	return ret;
1267 }
1268 
1269 static const struct net_device_ops mcp251x_netdev_ops = {
1270 	.ndo_open = mcp251x_open,
1271 	.ndo_stop = mcp251x_stop,
1272 	.ndo_start_xmit = mcp251x_hard_start_xmit,
1273 	.ndo_change_mtu = can_change_mtu,
1274 };
1275 
1276 static const struct ethtool_ops mcp251x_ethtool_ops = {
1277 	.get_ts_info = ethtool_op_get_ts_info,
1278 };
1279 
1280 static const struct of_device_id mcp251x_of_match[] = {
1281 	{
1282 		.compatible	= "microchip,mcp2510",
1283 		.data		= (void *)CAN_MCP251X_MCP2510,
1284 	},
1285 	{
1286 		.compatible	= "microchip,mcp2515",
1287 		.data		= (void *)CAN_MCP251X_MCP2515,
1288 	},
1289 	{
1290 		.compatible	= "microchip,mcp25625",
1291 		.data		= (void *)CAN_MCP251X_MCP25625,
1292 	},
1293 	{ }
1294 };
1295 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1296 
1297 static const struct spi_device_id mcp251x_id_table[] = {
1298 	{
1299 		.name		= "mcp2510",
1300 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1301 	},
1302 	{
1303 		.name		= "mcp2515",
1304 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1305 	},
1306 	{
1307 		.name		= "mcp25625",
1308 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1309 	},
1310 	{ }
1311 };
1312 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1313 
mcp251x_can_probe(struct spi_device * spi)1314 static int mcp251x_can_probe(struct spi_device *spi)
1315 {
1316 	struct net_device *net;
1317 	struct mcp251x_priv *priv;
1318 	struct clk *clk;
1319 	u32 freq;
1320 	int ret;
1321 
1322 	clk = devm_clk_get_optional(&spi->dev, NULL);
1323 	if (IS_ERR(clk))
1324 		return PTR_ERR(clk);
1325 
1326 	freq = clk_get_rate(clk);
1327 	if (freq == 0)
1328 		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1329 
1330 	/* Sanity check */
1331 	if (freq < 1000000 || freq > 25000000)
1332 		return -ERANGE;
1333 
1334 	/* Allocate can/net device */
1335 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1336 	if (!net)
1337 		return -ENOMEM;
1338 
1339 	ret = clk_prepare_enable(clk);
1340 	if (ret)
1341 		goto out_free;
1342 
1343 	net->netdev_ops = &mcp251x_netdev_ops;
1344 	net->ethtool_ops = &mcp251x_ethtool_ops;
1345 	net->flags |= IFF_ECHO;
1346 
1347 	priv = netdev_priv(net);
1348 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1349 	priv->can.do_set_mode = mcp251x_do_set_mode;
1350 	priv->can.clock.freq = freq / 2;
1351 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1352 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1353 	priv->model = (enum mcp251x_model)(uintptr_t)spi_get_device_match_data(spi);
1354 	priv->net = net;
1355 	priv->clk = clk;
1356 
1357 	spi_set_drvdata(spi, priv);
1358 
1359 	/* Configure the SPI bus */
1360 	spi->bits_per_word = 8;
1361 	if (mcp251x_is_2510(spi))
1362 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1363 	else
1364 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1365 	ret = spi_setup(spi);
1366 	if (ret)
1367 		goto out_clk;
1368 
1369 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1370 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1371 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1372 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1373 		ret = -EPROBE_DEFER;
1374 		goto out_clk;
1375 	}
1376 
1377 	ret = mcp251x_power_enable(priv->power, 1);
1378 	if (ret)
1379 		goto out_clk;
1380 
1381 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1382 				   0);
1383 	if (!priv->wq) {
1384 		ret = -ENOMEM;
1385 		goto out_clk;
1386 	}
1387 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1388 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1389 
1390 	priv->spi = spi;
1391 	mutex_init(&priv->mcp_lock);
1392 
1393 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1394 					GFP_KERNEL);
1395 	if (!priv->spi_tx_buf) {
1396 		ret = -ENOMEM;
1397 		goto error_probe;
1398 	}
1399 
1400 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1401 					GFP_KERNEL);
1402 	if (!priv->spi_rx_buf) {
1403 		ret = -ENOMEM;
1404 		goto error_probe;
1405 	}
1406 
1407 	SET_NETDEV_DEV(net, &spi->dev);
1408 
1409 	/* Here is OK to not lock the MCP, no one knows about it yet */
1410 	ret = mcp251x_hw_probe(spi);
1411 	if (ret) {
1412 		if (ret == -ENODEV)
1413 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1414 				priv->model);
1415 		goto error_probe;
1416 	}
1417 
1418 	mcp251x_hw_sleep(spi);
1419 
1420 	ret = register_candev(net);
1421 	if (ret)
1422 		goto error_probe;
1423 
1424 	ret = mcp251x_gpio_setup(priv);
1425 	if (ret)
1426 		goto out_unregister_candev;
1427 
1428 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1429 	return 0;
1430 
1431 out_unregister_candev:
1432 	unregister_candev(net);
1433 
1434 error_probe:
1435 	destroy_workqueue(priv->wq);
1436 	priv->wq = NULL;
1437 	mcp251x_power_enable(priv->power, 0);
1438 
1439 out_clk:
1440 	clk_disable_unprepare(clk);
1441 
1442 out_free:
1443 	free_candev(net);
1444 
1445 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1446 	return ret;
1447 }
1448 
mcp251x_can_remove(struct spi_device * spi)1449 static void mcp251x_can_remove(struct spi_device *spi)
1450 {
1451 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1452 	struct net_device *net = priv->net;
1453 
1454 	unregister_candev(net);
1455 
1456 	mcp251x_power_enable(priv->power, 0);
1457 
1458 	destroy_workqueue(priv->wq);
1459 	priv->wq = NULL;
1460 
1461 	clk_disable_unprepare(priv->clk);
1462 
1463 	free_candev(net);
1464 }
1465 
mcp251x_can_suspend(struct device * dev)1466 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1467 {
1468 	struct spi_device *spi = to_spi_device(dev);
1469 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1470 	struct net_device *net = priv->net;
1471 
1472 	priv->force_quit = 1;
1473 	disable_irq(spi->irq);
1474 	/* Note: at this point neither IST nor workqueues are running.
1475 	 * open/stop cannot be called anyway so locking is not needed
1476 	 */
1477 	if (netif_running(net)) {
1478 		netif_device_detach(net);
1479 
1480 		mcp251x_hw_sleep(spi);
1481 		mcp251x_power_enable(priv->transceiver, 0);
1482 		priv->after_suspend = AFTER_SUSPEND_UP;
1483 	} else {
1484 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1485 	}
1486 
1487 	mcp251x_power_enable(priv->power, 0);
1488 	priv->after_suspend |= AFTER_SUSPEND_POWER;
1489 
1490 	return 0;
1491 }
1492 
mcp251x_can_resume(struct device * dev)1493 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1494 {
1495 	struct spi_device *spi = to_spi_device(dev);
1496 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1497 
1498 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1499 		mcp251x_power_enable(priv->power, 1);
1500 	if (priv->after_suspend & AFTER_SUSPEND_UP)
1501 		mcp251x_power_enable(priv->transceiver, 1);
1502 
1503 	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1504 		queue_work(priv->wq, &priv->restart_work);
1505 	else
1506 		priv->after_suspend = 0;
1507 
1508 	priv->force_quit = 0;
1509 	enable_irq(spi->irq);
1510 	return 0;
1511 }
1512 
1513 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1514 	mcp251x_can_resume);
1515 
1516 static struct spi_driver mcp251x_can_driver = {
1517 	.driver = {
1518 		.name = DEVICE_NAME,
1519 		.of_match_table = mcp251x_of_match,
1520 		.pm = &mcp251x_can_pm_ops,
1521 	},
1522 	.id_table = mcp251x_id_table,
1523 	.probe = mcp251x_can_probe,
1524 	.remove = mcp251x_can_remove,
1525 };
1526 module_spi_driver(mcp251x_can_driver);
1527 
1528 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1529 	      "Christian Pellegrin <chripell@evolware.org>");
1530 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1531 MODULE_LICENSE("GPL v2");
1532