1 /*
2 * refclock_chu - clock driver for Canadian CHU time/frequency station
3 */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7
8 #include "ntp_types.h"
9
10 #if defined(REFCLOCK) && defined(CLOCK_CHU)
11
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
17
18 #include <stdio.h>
19 #include <ctype.h>
20 #include <math.h>
21
22 #ifdef HAVE_AUDIO
23 #include "audio.h"
24 #endif /* HAVE_AUDIO */
25
26 #define ICOM 1 /* undefine to suppress ICOM code */
27
28 #ifdef ICOM
29 #include "icom.h"
30 #endif /* ICOM */
31 /*
32 * Audio CHU demodulator/decoder
33 *
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from Canadian time/frequency station CHU in
36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
37 * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
38 * ordinary shortwave receiver can be tuned manually to one of these
39 * frequencies or, in the case of ICOM receivers, the receiver can be
40 * tuned automatically as propagation conditions change throughout the
41 * day and season.
42 *
43 * The driver requires an audio codec or sound card with sampling rate 8
44 * kHz and mu-law companding. This is the same standard as used by the
45 * telephone industry and is supported by most hardware and operating
46 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
47 * implementation, only one audio driver and codec can be supported on a
48 * single machine.
49 *
50 * The driver can be compiled to use a Bell 103 compatible modem or
51 * modem chip to receive the radio signal and demodulate the data.
52 * Alternatively, the driver can be compiled to use the audio codec of
53 * the workstation or another with compatible audio drivers. In the
54 * latter case, the driver implements the modem using DSP routines, so
55 * the radio can be connected directly to either the microphone on line
56 * input port. In either case, the driver decodes the data using a
57 * maximum-likelihood technique which exploits the considerable degree
58 * of redundancy available to maximize accuracy and minimize errors.
59 *
60 * The CHU time broadcast includes an audio signal compatible with the
61 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
62 * consists of nine, ten-character bursts transmitted at 300 bps between
63 * seconds 31 and 39 of each minute. Each character consists of eight
64 * data bits plus one start bit and two stop bits to encode two hex
65 * digits. The burst data consist of five characters (ten hex digits)
66 * followed by a repeat of these characters. In format A, the characters
67 * are repeated in the same polarity; in format B, the characters are
68 * repeated in the opposite polarity.
69 *
70 * Format A bursts are sent at seconds 32 through 39 of the minute in
71 * hex digits (nibble swapped)
72 *
73 * 6dddhhmmss6dddhhmmss
74 *
75 * The first ten digits encode a frame marker (6) followed by the day
76 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
77 * format A bursts are sent during the third decade of seconds the tens
78 * digit of ss is always 3. The driver uses this to determine correct
79 * burst synchronization. These digits are then repeated with the same
80 * polarity.
81 *
82 * Format B bursts are sent at second 31 of the minute in hex digits
83 *
84 * xdyyyyttaaxdyyyyttaa
85 *
86 * The first ten digits encode a code (x described below) followed by
87 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
88 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
89 * digits are then repeated with inverted polarity.
90 *
91 * The x is coded
92 *
93 * 1 Sign of DUT (0 = +)
94 * 2 Leap second warning. One second will be added.
95 * 4 Leap second warning. One second will be subtracted.
96 * 8 Even parity bit for this nibble.
97 *
98 * By design, the last stop bit of the last character in the burst
99 * coincides with 0.5 second. Since characters have 11 bits and are
100 * transmitted at 300 bps, the last stop bit of the first character
101 * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
102 * UART, character interrupts can vary somewhere between the end of bit
103 * 9 and end of bit 11. These eccentricities can be corrected along with
104 * the radio propagation delay using fudge time 1.
105 *
106 * Debugging aids
107 *
108 * The timecode format used for debugging and data recording includes
109 * data helpful in diagnosing problems with the radio signal and serial
110 * connections. With debugging enabled (-d on the ntpd command line),
111 * the driver produces one line for each burst in two formats
112 * corresponding to format A and B.Each line begins with the format code
113 * chuA or chuB followed by the status code and signal level (0-9999).
114 * The remainder of the line is as follows.
115 *
116 * Following is format A:
117 *
118 * n b f s m code
119 *
120 * where n is the number of characters in the burst (0-10), b the burst
121 * distance (0-40), f the field alignment (-1, 0, 1), s the
122 * synchronization distance (0-16), m the burst number (2-9) and code
123 * the burst characters as received. Note that the hex digits in each
124 * character are reversed, so the burst
125 *
126 * 10 38 0 16 9 06851292930685129293
127 *
128 * is interpreted as containing 10 characters with burst distance 38,
129 * field alignment 0, synchronization distance 16 and burst number 9.
130 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
131 * second 39.
132 *
133 * Following is format B:
134 *
135 * n b s code
136 *
137 * where n is the number of characters in the burst (0-10), b the burst
138 * distance (0-40), s the synchronization distance (0-40) and code the
139 * burst characters as received. Note that the hex digits in each
140 * character are reversed and the last ten digits inverted, so the burst
141 *
142 * 10 40 1091891300ef6e76ec
143 *
144 * is interpreted as containing 10 characters with burst distance 40.
145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
146 * - UTC 31 seconds.
147 *
148 * Each line is preceeded by the code chuA or chuB, as appropriate. If
149 * the audio driver is compiled, the current gain (0-255) and relative
150 * signal level (0-9999) follow the code. The receiver volume control
151 * should be set so that the gain is somewhere near the middle of the
152 * range 0-255, which results in a signal level near 1000.
153 *
154 * In addition to the above, the reference timecode is updated and
155 * written to the clockstats file and debug score after the last burst
156 * received in the minute. The format is
157 *
158 * sq yyyy ddd hh:mm:ss l s dd t agc ident m b
159 *
160 * s '?' before first synchronized and ' ' after that
161 * q status code (see below)
162 * yyyy year
163 * ddd day of year
164 * hh:mm:ss time of day
165 * l leap second indicator (space, L or D)
166 * dst Canadian daylight code (opaque)
167 * t number of minutes since last synchronized
168 * agc audio gain (0 - 255)
169 * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
170 * m signal metric (0 - 100)
171 * b number of timecodes for the previous minute (0 - 59)
172 *
173 * Fudge factors
174 *
175 * For accuracies better than the low millisceconds, fudge time1 can be
176 * set to the radio propagation delay from CHU to the receiver. This can
177 * be done conviently using the minimuf program.
178 *
179 * Fudge flag4 causes the dubugging output described above to be
180 * recorded in the clockstats file. When the audio driver is compiled,
181 * fudge flag2 selects the audio input port, where 0 is the mike port
182 * (default) and 1 is the line-in port. It does not seem useful to
183 * select the compact disc player port. Fudge flag3 enables audio
184 * monitoring of the input signal. For this purpose, the monitor gain is
185 * set to a default value.
186 *
187 * The audio codec code is normally compiled in the driver if the
188 * architecture supports it (HAVE_AUDIO defined), but is used only if
189 * the link /dev/chu_audio is defined and valid. The serial port code is
190 * always compiled in the driver, but is used only if the autdio codec
191 * is not available and the link /dev/chu%d is defined and valid.
192 *
193 * The ICOM code is normally compiled in the driver if selected (ICOM
194 * defined), but is used only if the link /dev/icom%d is defined and
195 * valid and the mode keyword on the server configuration command
196 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
197 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
198 * if one. The C-IV trace is turned on if the debug level is greater
199 * than one.
200 *
201 * Alarm codes
202 *
203 * CEVNT_BADTIME invalid date or time
204 * CEVNT_PROP propagation failure - no stations heard
205 */
206 /*
207 * Interface definitions
208 */
209 #define SPEED232 B300 /* uart speed (300 baud) */
210 #define PRECISION (-10) /* precision assumed (about 1 ms) */
211 #define REFID "CHU" /* reference ID */
212 #define DEVICE "/dev/chu%d" /* device name and unit */
213 #define SPEED232 B300 /* UART speed (300 baud) */
214 #ifdef ICOM
215 #define TUNE .001 /* offset for narrow filter (MHz) */
216 #define DWELL 5 /* minutes in a dwell */
217 #define NCHAN 3 /* number of channels */
218 #define ISTAGE 3 /* number of integrator stages */
219 #endif /* ICOM */
220
221 #ifdef HAVE_AUDIO
222 /*
223 * Audio demodulator definitions
224 */
225 #define SECOND 8000 /* nominal sample rate (Hz) */
226 #define BAUD 300 /* modulation rate (bps) */
227 #define OFFSET 128 /* companded sample offset */
228 #define SIZE 256 /* decompanding table size */
229 #define MAXAMP 6000. /* maximum signal level */
230 #define MAXCLP 100 /* max clips above reference per s */
231 #define SPAN 800. /* min envelope span */
232 #define LIMIT 1000. /* soft limiter threshold */
233 #define AGAIN 6. /* baseband gain */
234 #define LAG 10 /* discriminator lag */
235 #define DEVICE_AUDIO "/dev/audio" /* device name */
236 #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
237 #define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */
238 #else
239 #define DESCRIPTION "CHU Modem Receiver" /* WRU */
240 #endif /* HAVE_AUDIO */
241
242 /*
243 * Decoder definitions
244 */
245 #define CHAR (11. / 300.) /* character time (s) */
246 #define BURST 11 /* max characters per burst */
247 #define MINCHARS 9 /* min characters per burst */
248 #define MINDIST 28 /* min burst distance (of 40) */
249 #define MINSYNC 8 /* min sync distance (of 16) */
250 #define MINSTAMP 20 /* min timestamps (of 60) */
251 #define MINMETRIC 50 /* min channel metric (of 160) */
252
253 /*
254 * The on-time synchronization point for the driver is the last stop bit
255 * of the first character 170 ms. The modem delay is 0.8 ms, while the
256 * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
257 * ms due to the codec and other causes was determined by calibrating to
258 * a PPS signal from a GPS receiver. The additional propagation delay
259 * specific to each receiver location can be programmed in the fudge
260 * time1.
261 *
262 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
263 * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
264 * offsets vary up to 0.3 ms due to ionospheric layer height variations.
265 * The processor load due to the driver is 0.4 percent.
266 */
267 #define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */
268
269 /*
270 * Status bits (status)
271 */
272 #define RUNT 0x0001 /* runt burst */
273 #define NOISE 0x0002 /* noise burst */
274 #define BFRAME 0x0004 /* invalid format B frame sync */
275 #define BFORMAT 0x0008 /* invalid format B data */
276 #define AFRAME 0x0010 /* invalid format A frame sync */
277 #define AFORMAT 0x0020 /* invalid format A data */
278 #define DECODE 0x0040 /* invalid data decode */
279 #define STAMP 0x0080 /* too few timestamps */
280 #define AVALID 0x0100 /* valid A frame */
281 #define BVALID 0x0200 /* valid B frame */
282 #define INSYNC 0x0400 /* clock synchronized */
283 #define METRIC 0x0800 /* one or more stations heard */
284
285 /*
286 * Alarm status bits (alarm)
287 *
288 * These alarms are set at the end of a minute in which at least one
289 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
290 * bits are set during the minute, FMTERR is raised if the AFORMAT or
291 * BFORMAT status bits are set, DECERR is raised if the DECODE status
292 * bit is set and TSPERR is raised if the STAMP status bit is set.
293 */
294 #define SYNERR 0x01 /* frame sync error */
295 #define FMTERR 0x02 /* data format error */
296 #define DECERR 0x04 /* data decoding error */
297 #define TSPERR 0x08 /* insufficient data */
298
299 #ifdef HAVE_AUDIO
300 /*
301 * Maximum-likelihood UART structure. There are eight of these
302 * corresponding to the number of phases.
303 */
304 struct surv {
305 l_fp cstamp; /* last bit timestamp */
306 double shift[12]; /* sample shift register */
307 double span; /* shift register envelope span */
308 double dist; /* sample distance */
309 int uart; /* decoded character */
310 };
311 #endif /* HAVE_AUDIO */
312
313 #ifdef ICOM
314 /*
315 * CHU station structure. There are three of these corresponding to the
316 * three frequencies.
317 */
318 struct xmtr {
319 double integ[ISTAGE]; /* circular integrator */
320 double metric; /* integrator sum */
321 int iptr; /* integrator pointer */
322 int probe; /* dwells since last probe */
323 };
324 #endif /* ICOM */
325
326 /*
327 * CHU unit control structure
328 */
329 struct chuunit {
330 u_char decode[20][16]; /* maximum-likelihood decoding matrix */
331 l_fp cstamp[BURST]; /* character timestamps */
332 l_fp tstamp[MAXSTAGE]; /* timestamp samples */
333 l_fp timestamp; /* current buffer timestamp */
334 l_fp laststamp; /* last buffer timestamp */
335 l_fp charstamp; /* character time as a l_fp */
336 int second; /* counts the seconds of the minute */
337 int errflg; /* error flags */
338 int status; /* status bits */
339 char ident[5]; /* station ID and channel */
340 #ifdef ICOM
341 int fd_icom; /* ICOM file descriptor */
342 int chan; /* radio channel */
343 int dwell; /* dwell cycle */
344 struct xmtr xmtr[NCHAN]; /* station metric */
345 #endif /* ICOM */
346
347 /*
348 * Character burst variables
349 */
350 int cbuf[BURST]; /* character buffer */
351 int ntstamp; /* number of timestamp samples */
352 int ndx; /* buffer start index */
353 int prevsec; /* previous burst second */
354 int burdist; /* burst distance */
355 int syndist; /* sync distance */
356 int burstcnt; /* format A bursts this minute */
357 double maxsignal; /* signal level (modem only) */
358 int gain; /* codec gain (modem only) */
359
360 /*
361 * Format particulars
362 */
363 int leap; /* leap/dut code */
364 int dut; /* UTC1 correction */
365 int tai; /* TAI - UTC correction */
366 int dst; /* Canadian DST code */
367
368 #ifdef HAVE_AUDIO
369 /*
370 * Audio codec variables
371 */
372 int fd_audio; /* audio port file descriptor */
373 double comp[SIZE]; /* decompanding table */
374 int port; /* codec port */
375 int mongain; /* codec monitor gain */
376 int clipcnt; /* sample clip count */
377 int seccnt; /* second interval counter */
378
379 /*
380 * Modem variables
381 */
382 l_fp tick; /* audio sample increment */
383 double bpf[9]; /* IIR bandpass filter */
384 double disc[LAG]; /* discriminator shift register */
385 double lpf[27]; /* FIR lowpass filter */
386 double monitor; /* audio monitor */
387 int discptr; /* discriminator pointer */
388
389 /*
390 * Maximum-likelihood UART variables
391 */
392 double baud; /* baud interval */
393 struct surv surv[8]; /* UART survivor structures */
394 int decptr; /* decode pointer */
395 int decpha; /* decode phase */
396 int dbrk; /* holdoff counter */
397 #endif /* HAVE_AUDIO */
398 };
399
400 /*
401 * Function prototypes
402 */
403 static int chu_start (int, struct peer *);
404 static void chu_shutdown (int, struct peer *);
405 static void chu_receive (struct recvbuf *);
406 static void chu_second (int, struct peer *);
407 static void chu_poll (int, struct peer *);
408
409 /*
410 * More function prototypes
411 */
412 static void chu_decode (struct peer *, int, l_fp);
413 static void chu_burst (struct peer *);
414 static void chu_clear (struct peer *);
415 static void chu_a (struct peer *, int);
416 static void chu_b (struct peer *, int);
417 static int chu_dist (int, int);
418 static double chu_major (struct peer *);
419 #ifdef HAVE_AUDIO
420 static void chu_uart (struct surv *, double);
421 static void chu_rf (struct peer *, double);
422 static void chu_gain (struct peer *);
423 static void chu_audio_receive (struct recvbuf *rbufp);
424 #endif /* HAVE_AUDIO */
425 #ifdef ICOM
426 static int chu_newchan (struct peer *, double);
427 #endif /* ICOM */
428 static void chu_serial_receive (struct recvbuf *rbufp);
429
430 /*
431 * Global variables
432 */
433 static char hexchar[] = "0123456789abcdef_*=";
434
435 #ifdef ICOM
436 /*
437 * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
438 * transmits on USB with carrier so we can use AM and the narrow SSB
439 * filter.
440 */
441 static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
442 #endif /* ICOM */
443
444 /*
445 * Transfer vector
446 */
447 struct refclock refclock_chu = {
448 chu_start, /* start up driver */
449 chu_shutdown, /* shut down driver */
450 chu_poll, /* transmit poll message */
451 noentry, /* not used (old chu_control) */
452 noentry, /* initialize driver (not used) */
453 noentry, /* not used (old chu_buginfo) */
454 chu_second /* housekeeping timer */
455 };
456
457
458 /*
459 * chu_start - open the devices and initialize data for processing
460 */
461 static int
chu_start(int unit,struct peer * peer)462 chu_start(
463 int unit, /* instance number (not used) */
464 struct peer *peer /* peer structure pointer */
465 )
466 {
467 struct chuunit *up;
468 struct refclockproc *pp;
469 char device[20]; /* device name */
470 int fd; /* file descriptor */
471 #ifdef ICOM
472 int temp;
473 #endif /* ICOM */
474 #ifdef HAVE_AUDIO
475 int fd_audio; /* audio port file descriptor */
476 int i; /* index */
477 double step; /* codec adjustment */
478
479 /*
480 * Open audio device. Don't complain if not there.
481 */
482 fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
483
484 #ifdef DEBUG
485 if (fd_audio >= 0 && debug)
486 audio_show();
487 #endif
488
489 /*
490 * If audio is unavailable, Open serial port in raw mode.
491 */
492 if (fd_audio >= 0) {
493 fd = fd_audio;
494 } else {
495 snprintf(device, sizeof(device), DEVICE, unit);
496 fd = refclock_open(&peer->srcadr, device, SPEED232, LDISC_RAW);
497 }
498 #else /* HAVE_AUDIO */
499
500 /*
501 * Open serial port in raw mode.
502 */
503 snprintf(device, sizeof(device), DEVICE, unit);
504 fd = refclock_open(&peer->srcadr, device, SPEED232, LDISC_RAW);
505 #endif /* HAVE_AUDIO */
506
507 if (fd < 0)
508 return (0);
509
510 /*
511 * Allocate and initialize unit structure
512 */
513 up = emalloc_zero(sizeof(*up));
514 pp = peer->procptr;
515 pp->unitptr = up;
516 pp->io.clock_recv = chu_receive;
517 pp->io.srcclock = peer;
518 pp->io.datalen = 0;
519 pp->io.fd = fd;
520 if (!io_addclock(&pp->io)) {
521 close(fd);
522 pp->io.fd = -1;
523 free(up);
524 pp->unitptr = NULL;
525 return (0);
526 }
527
528 /*
529 * Initialize miscellaneous variables
530 */
531 peer->precision = PRECISION;
532 pp->clockdesc = DESCRIPTION;
533 strlcpy(up->ident, "CHU", sizeof(up->ident));
534 memcpy(&pp->refid, up->ident, 4);
535 DTOLFP(CHAR, &up->charstamp);
536 #ifdef HAVE_AUDIO
537
538 /*
539 * The companded samples are encoded sign-magnitude. The table
540 * contains all the 256 values in the interest of speed. We do
541 * this even if the audio codec is not available. C'est la lazy.
542 */
543 up->fd_audio = fd_audio;
544 up->gain = 127;
545 up->comp[0] = up->comp[OFFSET] = 0.;
546 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
547 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
548 step = 2.;
549 for (i = 3; i < OFFSET; i++) {
550 up->comp[i] = up->comp[i - 1] + step;
551 up->comp[OFFSET + i] = -up->comp[i];
552 if (i % 16 == 0)
553 step *= 2.;
554 }
555 DTOLFP(1. / SECOND, &up->tick);
556 #endif /* HAVE_AUDIO */
557 #ifdef ICOM
558 temp = 0;
559 #ifdef DEBUG
560 if (debug > 1)
561 temp = P_TRACE;
562 #endif
563 if (peer->ttl > 0) {
564 if (peer->ttl & 0x80)
565 up->fd_icom = icom_init("/dev/icom", B1200,
566 temp);
567 else
568 up->fd_icom = icom_init("/dev/icom", B9600,
569 temp);
570 }
571 if (up->fd_icom > 0) {
572 if (chu_newchan(peer, 0) != 0) {
573 msyslog(LOG_NOTICE, "icom: radio not found");
574 close(up->fd_icom);
575 up->fd_icom = 0;
576 } else {
577 msyslog(LOG_NOTICE, "icom: autotune enabled");
578 }
579 }
580 #endif /* ICOM */
581 return (1);
582 }
583
584
585 /*
586 * chu_shutdown - shut down the clock
587 */
588 static void
chu_shutdown(int unit,struct peer * peer)589 chu_shutdown(
590 int unit, /* instance number (not used) */
591 struct peer *peer /* peer structure pointer */
592 )
593 {
594 struct chuunit *up;
595 struct refclockproc *pp;
596
597 pp = peer->procptr;
598 up = pp->unitptr;
599 if (up == NULL)
600 return;
601
602 io_closeclock(&pp->io);
603 #ifdef ICOM
604 if (up->fd_icom > 0)
605 close(up->fd_icom);
606 #endif /* ICOM */
607 free(up);
608 }
609
610
611 /*
612 * chu_receive - receive data from the audio or serial device
613 */
614 static void
chu_receive(struct recvbuf * rbufp)615 chu_receive(
616 struct recvbuf *rbufp /* receive buffer structure pointer */
617 )
618 {
619 #ifdef HAVE_AUDIO
620 struct chuunit *up;
621 struct refclockproc *pp;
622 struct peer *peer;
623
624 peer = rbufp->recv_peer;
625 pp = peer->procptr;
626 up = pp->unitptr;
627
628 /*
629 * If the audio codec is warmed up, the buffer contains codec
630 * samples which need to be demodulated and decoded into CHU
631 * characters using the software UART. Otherwise, the buffer
632 * contains CHU characters from the serial port, so the software
633 * UART is bypassed. In this case the CPU will probably run a
634 * few degrees cooler.
635 */
636 if (up->fd_audio > 0)
637 chu_audio_receive(rbufp);
638 else
639 chu_serial_receive(rbufp);
640 #else
641 chu_serial_receive(rbufp);
642 #endif /* HAVE_AUDIO */
643 }
644
645
646 #ifdef HAVE_AUDIO
647 /*
648 * chu_audio_receive - receive data from the audio device
649 */
650 static void
chu_audio_receive(struct recvbuf * rbufp)651 chu_audio_receive(
652 struct recvbuf *rbufp /* receive buffer structure pointer */
653 )
654 {
655 struct chuunit *up;
656 struct refclockproc *pp;
657 struct peer *peer;
658
659 double sample; /* codec sample */
660 u_char *dpt; /* buffer pointer */
661 int bufcnt; /* buffer counter */
662 l_fp ltemp; /* l_fp temp */
663
664 peer = rbufp->recv_peer;
665 pp = peer->procptr;
666 up = pp->unitptr;
667
668 /*
669 * Main loop - read until there ain't no more. Note codec
670 * samples are bit-inverted.
671 */
672 DTOLFP((double)rbufp->recv_length / SECOND, <emp);
673 L_SUB(&rbufp->recv_time, <emp);
674 up->timestamp = rbufp->recv_time;
675 dpt = rbufp->recv_buffer;
676 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
677 sample = up->comp[~*dpt++ & 0xff];
678
679 /*
680 * Clip noise spikes greater than MAXAMP. If no clips,
681 * increase the gain a tad; if the clips are too high,
682 * decrease a tad.
683 */
684 if (sample > MAXAMP) {
685 sample = MAXAMP;
686 up->clipcnt++;
687 } else if (sample < -MAXAMP) {
688 sample = -MAXAMP;
689 up->clipcnt++;
690 }
691 chu_rf(peer, sample);
692 L_ADD(&up->timestamp, &up->tick);
693
694 /*
695 * Once each second ride gain.
696 */
697 up->seccnt = (up->seccnt + 1) % SECOND;
698 if (up->seccnt == 0) {
699 chu_gain(peer);
700 }
701 }
702
703 /*
704 * Set the input port and monitor gain for the next buffer.
705 */
706 if (pp->sloppyclockflag & CLK_FLAG2)
707 up->port = 2;
708 else
709 up->port = 1;
710 if (pp->sloppyclockflag & CLK_FLAG3)
711 up->mongain = MONGAIN;
712 else
713 up->mongain = 0;
714 }
715
716
717 /*
718 * chu_rf - filter and demodulate the FSK signal
719 *
720 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
721 * and space 2025 Hz. It uses a bandpass filter followed by a soft
722 * limiter, FM discriminator and lowpass filter. A maximum-likelihood
723 * decoder samples the baseband signal at eight times the baud rate and
724 * detects the start bit of each character.
725 *
726 * The filters are built for speed, which explains the rather clumsy
727 * code. Hopefully, the compiler will efficiently implement the move-
728 * and-muiltiply-and-add operations.
729 */
730 static void
chu_rf(struct peer * peer,double sample)731 chu_rf(
732 struct peer *peer, /* peer structure pointer */
733 double sample /* analog sample */
734 )
735 {
736 struct refclockproc *pp;
737 struct chuunit *up;
738 struct surv *sp;
739
740 /*
741 * Local variables
742 */
743 double signal; /* bandpass signal */
744 double limit; /* limiter signal */
745 double disc; /* discriminator signal */
746 double lpf; /* lowpass signal */
747 double dist; /* UART signal distance */
748 int i, j;
749
750 pp = peer->procptr;
751 up = pp->unitptr;
752
753 /*
754 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
755 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
756 * phase delay 0.24 ms.
757 */
758 signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
759 signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
760 signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
761 signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
762 signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
763 signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
764 signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
765 signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
766 up->bpf[0] = sample - signal;
767 signal = up->bpf[0] * 6.176213e-03
768 + up->bpf[1] * 3.156599e-03
769 + up->bpf[2] * 7.567487e-03
770 + up->bpf[3] * 4.344580e-03
771 + up->bpf[4] * 1.190128e-02
772 + up->bpf[5] * 4.344580e-03
773 + up->bpf[6] * 7.567487e-03
774 + up->bpf[7] * 3.156599e-03
775 + up->bpf[8] * 6.176213e-03;
776
777 up->monitor = signal / 4.; /* note monitor after filter */
778
779 /*
780 * Soft limiter/discriminator. The 11-sample discriminator lag
781 * interval corresponds to three cycles of 2125 Hz, which
782 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
783 * Hz. The discriminator output varies +-0.5 interval for input
784 * frequency 2025-2225 Hz. However, we don't get to sample at
785 * this frequency, so the discriminator output is biased. Life
786 * at 8000 Hz sucks.
787 */
788 limit = signal;
789 if (limit > LIMIT)
790 limit = LIMIT;
791 else if (limit < -LIMIT)
792 limit = -LIMIT;
793 disc = up->disc[up->discptr] * -limit;
794 up->disc[up->discptr] = limit;
795 up->discptr = (up->discptr + 1 ) % LAG;
796 if (disc >= 0)
797 disc = SQRT(disc);
798 else
799 disc = -SQRT(-disc);
800
801 /*
802 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
803 */
804 lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
805 lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
806 lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
807 lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
808 lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
809 lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
810 lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
811 lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
812 lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
813 lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
814 lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
815 lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
816 lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
817 lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
818 lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
819 lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
820 lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
821 lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
822 lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
823 lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
824 lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
825 lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
826 lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
827 lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
828 lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
829 lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
830 lpf += up->lpf[0] = disc * 2.538771e-02;
831
832 /*
833 * Maximum-likelihood decoder. The UART updates each of the
834 * eight survivors and determines the span, slice level and
835 * tentative decoded character. Valid 11-bit characters are
836 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
837 * 1 (start bit) is space. When a valid character is found, the
838 * survivor with maximum distance determines the final decoded
839 * character.
840 */
841 up->baud += 1. / SECOND;
842 if (up->baud > 1. / (BAUD * 8.)) {
843 up->baud -= 1. / (BAUD * 8.);
844 up->decptr = (up->decptr + 1) % 8;
845 sp = &up->surv[up->decptr];
846 sp->cstamp = up->timestamp;
847 chu_uart(sp, -lpf * AGAIN);
848 if (up->dbrk > 0) {
849 up->dbrk--;
850 if (up->dbrk > 0)
851 return;
852
853 up->decpha = up->decptr;
854 }
855 if (up->decptr != up->decpha)
856 return;
857
858 dist = 0;
859 j = -1;
860 for (i = 0; i < 8; i++) {
861
862 /*
863 * The timestamp is taken at the last bit, so
864 * for correct decoding we reqire sufficient
865 * span and correct start bit and two stop bits.
866 */
867 if ((up->surv[i].uart & 0x601) != 0x600 ||
868 up->surv[i].span < SPAN)
869 continue;
870
871 if (up->surv[i].dist > dist) {
872 dist = up->surv[i].dist;
873 j = i;
874 }
875 }
876 if (j < 0)
877 return;
878
879 /*
880 * Process the character, then blank the decoder until
881 * the end of the next character.This sets the decoding
882 * phase of the entire burst from the phase of the first
883 * character.
884 */
885 up->maxsignal = up->surv[j].span;
886 chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
887 up->surv[j].cstamp);
888 up->dbrk = 88;
889 }
890 }
891
892
893 /*
894 * chu_uart - maximum-likelihood UART
895 *
896 * This routine updates a shift register holding the last 11 envelope
897 * samples. It then computes the slice level and span over these samples
898 * and determines the tentative data bits and distance. The calling
899 * program selects over the last eight survivors the one with maximum
900 * distance to determine the decoded character.
901 */
902 static void
chu_uart(struct surv * sp,double sample)903 chu_uart(
904 struct surv *sp, /* survivor structure pointer */
905 double sample /* baseband signal */
906 )
907 {
908 double es_max, es_min; /* max/min envelope */
909 double slice; /* slice level */
910 double dist; /* distance */
911 double dtemp;
912 int i;
913
914 /*
915 * Save the sample and shift right. At the same time, measure
916 * the maximum and minimum over all eleven samples.
917 */
918 es_max = -1e6;
919 es_min = 1e6;
920 sp->shift[0] = sample;
921 for (i = 11; i > 0; i--) {
922 sp->shift[i] = sp->shift[i - 1];
923 if (sp->shift[i] > es_max)
924 es_max = sp->shift[i];
925 if (sp->shift[i] < es_min)
926 es_min = sp->shift[i];
927 }
928
929 /*
930 * Determine the span as the maximum less the minimum and the
931 * slice level as the minimum plus a fraction of the span. Note
932 * the slight bias toward mark to correct for the modem tendency
933 * to make more mark than space errors. Compute the distance on
934 * the assumption the last two bits must be mark, the first
935 * space and the rest either mark or space.
936 */
937 sp->span = es_max - es_min;
938 slice = es_min + .45 * sp->span;
939 dist = 0;
940 sp->uart = 0;
941 for (i = 1; i < 12; i++) {
942 sp->uart <<= 1;
943 dtemp = sp->shift[i];
944 if (dtemp > slice)
945 sp->uart |= 0x1;
946 if (i == 1 || i == 2) {
947 dist += dtemp - es_min;
948 } else if (i == 11) {
949 dist += es_max - dtemp;
950 } else {
951 if (dtemp > slice)
952 dist += dtemp - es_min;
953 else
954 dist += es_max - dtemp;
955 }
956 }
957 sp->dist = dist / (11 * sp->span);
958 }
959 #endif /* HAVE_AUDIO */
960
961
962 /*
963 * chu_serial_receive - receive data from the serial device
964 */
965 static void
chu_serial_receive(struct recvbuf * rbufp)966 chu_serial_receive(
967 struct recvbuf *rbufp /* receive buffer structure pointer */
968 )
969 {
970 struct peer *peer;
971
972 u_char *dpt; /* receive buffer pointer */
973
974 peer = rbufp->recv_peer;
975
976 dpt = (u_char *)&rbufp->recv_space;
977 chu_decode(peer, *dpt, rbufp->recv_time);
978 }
979
980
981 /*
982 * chu_decode - decode the character data
983 */
984 static void
chu_decode(struct peer * peer,int hexhex,l_fp cstamp)985 chu_decode(
986 struct peer *peer, /* peer structure pointer */
987 int hexhex, /* data character */
988 l_fp cstamp /* data character timestamp */
989 )
990 {
991 struct refclockproc *pp;
992 struct chuunit *up;
993
994 l_fp tstmp; /* timestamp temp */
995 double dtemp;
996
997 pp = peer->procptr;
998 up = pp->unitptr;
999
1000 /*
1001 * If the interval since the last character is greater than the
1002 * longest burst, process the last burst and start a new one. If
1003 * the interval is less than this but greater than two
1004 * characters, consider this a noise burst and reject it.
1005 */
1006 tstmp = up->timestamp;
1007 if (L_ISZERO(&up->laststamp))
1008 up->laststamp = up->timestamp;
1009 L_SUB(&tstmp, &up->laststamp);
1010 up->laststamp = up->timestamp;
1011 LFPTOD(&tstmp, dtemp);
1012 if (dtemp > BURST * CHAR) {
1013 chu_burst(peer);
1014 up->ndx = 0;
1015 } else if (dtemp > 2.5 * CHAR) {
1016 up->ndx = 0;
1017 }
1018
1019 /*
1020 * Append the character to the current burst and append the
1021 * character timestamp to the timestamp list.
1022 */
1023 if (up->ndx < BURST) {
1024 up->cbuf[up->ndx] = hexhex & 0xff;
1025 up->cstamp[up->ndx] = cstamp;
1026 up->ndx++;
1027
1028 }
1029 }
1030
1031
1032 /*
1033 * chu_burst - search for valid burst format
1034 */
1035 static void
chu_burst(struct peer * peer)1036 chu_burst(
1037 struct peer *peer
1038 )
1039 {
1040 struct chuunit *up;
1041 struct refclockproc *pp;
1042
1043 int i;
1044
1045 pp = peer->procptr;
1046 up = pp->unitptr;
1047
1048 /*
1049 * Correlate a block of five characters with the next block of
1050 * five characters. The burst distance is defined as the number
1051 * of bits that match in the two blocks for format A and that
1052 * match the inverse for format B.
1053 */
1054 if (up->ndx < MINCHARS) {
1055 up->status |= RUNT;
1056 return;
1057 }
1058 up->burdist = 0;
1059 for (i = 0; i < 5 && i < up->ndx - 5; i++)
1060 up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1061
1062 /*
1063 * If the burst distance is at least MINDIST, this must be a
1064 * format A burst; if the value is not greater than -MINDIST, it
1065 * must be a format B burst. If the B burst is perfect, we
1066 * believe it; otherwise, it is a noise burst and of no use to
1067 * anybody.
1068 */
1069 if (up->burdist >= MINDIST) {
1070 chu_a(peer, up->ndx);
1071 } else if (up->burdist <= -MINDIST) {
1072 chu_b(peer, up->ndx);
1073 } else {
1074 up->status |= NOISE;
1075 return;
1076 }
1077
1078 /*
1079 * If this is a valid burst, wait a guard time of ten seconds to
1080 * allow for more bursts, then arm the poll update routine to
1081 * process the minute. Don't do this if this is called from the
1082 * timer interrupt routine.
1083 */
1084 if (peer->outdate != current_time)
1085 peer->nextdate = current_time + 10;
1086 }
1087
1088
1089 /*
1090 * chu_b - decode format B burst
1091 */
1092 static void
chu_b(struct peer * peer,int nchar)1093 chu_b(
1094 struct peer *peer,
1095 int nchar
1096 )
1097 {
1098 struct refclockproc *pp;
1099 struct chuunit *up;
1100
1101 u_char code[11]; /* decoded timecode */
1102 char tbuf[80]; /* trace buffer */
1103 char * p;
1104 size_t chars;
1105 size_t cb;
1106 int i;
1107
1108 pp = peer->procptr;
1109 up = pp->unitptr;
1110
1111 /*
1112 * In a format B burst, a character is considered valid only if
1113 * the first occurence matches the last occurence. The burst is
1114 * considered valid only if all characters are valid; that is,
1115 * only if the distance is 40. Note that once a valid frame has
1116 * been found errors are ignored.
1117 */
1118 snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
1119 up->status, up->maxsignal, nchar, -up->burdist);
1120 cb = sizeof(tbuf);
1121 p = tbuf;
1122 for (i = 0; i < nchar; i++) {
1123 chars = strlen(p);
1124 if (cb < chars + 1) {
1125 msyslog(LOG_ERR, "chu_b() fatal out buffer");
1126 exit(1);
1127 }
1128 cb -= chars;
1129 p += chars;
1130 snprintf(p, cb, "%02x", up->cbuf[i]);
1131 }
1132 if (pp->sloppyclockflag & CLK_FLAG4)
1133 record_clock_stats(&peer->srcadr, tbuf);
1134 #ifdef DEBUG
1135 if (debug)
1136 printf("%s\n", tbuf);
1137 #endif
1138 if (up->burdist > -40) {
1139 up->status |= BFRAME;
1140 return;
1141 }
1142
1143 /*
1144 * Convert the burst data to internal format. Don't bother with
1145 * the timestamps.
1146 */
1147 for (i = 0; i < 5; i++) {
1148 code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1149 code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1150 4) & 0xf];
1151 }
1152 if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1153 &pp->year, &up->tai, &up->dst) != 5) {
1154 up->status |= BFORMAT;
1155 return;
1156 }
1157 up->status |= BVALID;
1158 if (up->leap & 0x8)
1159 up->dut = -up->dut;
1160 }
1161
1162
1163 /*
1164 * chu_a - decode format A burst
1165 */
1166 static void
chu_a(struct peer * peer,int nchar)1167 chu_a(
1168 struct peer *peer,
1169 int nchar
1170 )
1171 {
1172 struct refclockproc *pp;
1173 struct chuunit *up;
1174
1175 char tbuf[80]; /* trace buffer */
1176 char * p;
1177 size_t chars;
1178 size_t cb;
1179 l_fp offset; /* timestamp offset */
1180 int val; /* distance */
1181 int temp;
1182 int i, j, k;
1183
1184 pp = peer->procptr;
1185 up = pp->unitptr;
1186
1187 /*
1188 * Determine correct burst phase. There are three cases
1189 * corresponding to in-phase, one character early or one
1190 * character late. These cases are distinguished by the position
1191 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1192 * positions 4 and 9. The correct phase is when the distance
1193 * relative to the framing digits is maximum. The burst is valid
1194 * only if the maximum distance is at least MINSYNC.
1195 */
1196 up->syndist = k = 0;
1197 // val = -16;
1198 for (i = -1; i < 2; i++) {
1199 temp = up->cbuf[i + 4] & 0xf;
1200 if (i >= 0)
1201 temp |= (up->cbuf[i] & 0xf) << 4;
1202 val = chu_dist(temp, 0x63);
1203 temp = (up->cbuf[i + 5] & 0xf) << 4;
1204 if (i + 9 < nchar)
1205 temp |= up->cbuf[i + 9] & 0xf;
1206 val += chu_dist(temp, 0x63);
1207 if (val > up->syndist) {
1208 up->syndist = val;
1209 k = i;
1210 }
1211 }
1212
1213 /*
1214 * Extract the second number; it must be in the range 2 through
1215 * 9 and the two repititions must be the same.
1216 */
1217 temp = (up->cbuf[k + 4] >> 4) & 0xf;
1218 if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
1219 ((up->cbuf[k + 9] >> 4) & 0xf))
1220 temp = 0;
1221 snprintf(tbuf, sizeof(tbuf),
1222 "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
1223 up->maxsignal, nchar, up->burdist, k, up->syndist,
1224 temp);
1225 cb = sizeof(tbuf);
1226 p = tbuf;
1227 for (i = 0; i < nchar; i++) {
1228 chars = strlen(p);
1229 if (cb < chars + 1) {
1230 msyslog(LOG_ERR, "chu_a() fatal out buffer");
1231 exit(1);
1232 }
1233 cb -= chars;
1234 p += chars;
1235 snprintf(p, cb, "%02x", up->cbuf[i]);
1236 }
1237 if (pp->sloppyclockflag & CLK_FLAG4)
1238 record_clock_stats(&peer->srcadr, tbuf);
1239 #ifdef DEBUG
1240 if (debug)
1241 printf("%s\n", tbuf);
1242 #endif
1243 if (up->syndist < MINSYNC) {
1244 up->status |= AFRAME;
1245 return;
1246 }
1247
1248 /*
1249 * A valid burst requires the first seconds number to match the
1250 * last seconds number. If so, the burst timestamps are
1251 * corrected to the current minute and saved for later
1252 * processing. In addition, the seconds decode is advanced from
1253 * the previous burst to the current one.
1254 */
1255 if (temp == 0) {
1256 up->status |= AFORMAT;
1257 } else {
1258 up->status |= AVALID;
1259 up->second = pp->second = 30 + temp;
1260 offset.l_ui = 30 + temp;
1261 offset.l_uf = 0;
1262 i = 0;
1263 if (k < 0)
1264 offset = up->charstamp;
1265 else if (k > 0)
1266 i = 1;
1267 for (; i < nchar && (i - 10) < k; i++) {
1268 up->tstamp[up->ntstamp] = up->cstamp[i];
1269 L_SUB(&up->tstamp[up->ntstamp], &offset);
1270 L_ADD(&offset, &up->charstamp);
1271 if (up->ntstamp < MAXSTAGE - 1)
1272 up->ntstamp++;
1273 }
1274 while (temp > up->prevsec) {
1275 for (j = 15; j > 0; j--) {
1276 up->decode[9][j] = up->decode[9][j - 1];
1277 up->decode[19][j] =
1278 up->decode[19][j - 1];
1279 }
1280 up->decode[9][j] = up->decode[19][j] = 0;
1281 up->prevsec++;
1282 }
1283 }
1284
1285 /*
1286 * Stash the data in the decoding matrix.
1287 */
1288 i = -(2 * k);
1289 for (j = 0; j < nchar; j++) {
1290 if (i < 0 || i > 18) {
1291 i += 2;
1292 continue;
1293 }
1294 up->decode[i][up->cbuf[j] & 0xf]++;
1295 i++;
1296 up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1297 i++;
1298 }
1299 up->burstcnt++;
1300 }
1301
1302
1303 /*
1304 * chu_poll - called by the transmit procedure
1305 */
1306 static void
chu_poll(int unit,struct peer * peer)1307 chu_poll(
1308 int unit,
1309 struct peer *peer /* peer structure pointer */
1310 )
1311 {
1312 struct refclockproc *pp;
1313
1314 pp = peer->procptr;
1315 pp->polls++;
1316 }
1317
1318
1319 /*
1320 * chu_second - process minute data
1321 */
1322 static void
chu_second(int unit,struct peer * peer)1323 chu_second(
1324 int unit,
1325 struct peer *peer /* peer structure pointer */
1326 )
1327 {
1328 struct refclockproc *pp;
1329 struct chuunit *up;
1330 l_fp offset;
1331 char synchar, qual, leapchar;
1332 int minset, i;
1333 double dtemp;
1334
1335 pp = peer->procptr;
1336 up = pp->unitptr;
1337
1338 /*
1339 * This routine is called once per minute to process the
1340 * accumulated burst data. We do a bit of fancy footwork so that
1341 * this doesn't run while burst data are being accumulated.
1342 */
1343 up->second = (up->second + 1) % 60;
1344 if (up->second != 0)
1345 return;
1346
1347 /*
1348 * Process the last burst, if still in the burst buffer.
1349 * If the minute contains a valid B frame with sufficient A
1350 * frame metric, it is considered valid. However, the timecode
1351 * is sent to clockstats even if invalid.
1352 */
1353 chu_burst(peer);
1354 minset = ((current_time - peer->update) + 30) / 60;
1355 dtemp = chu_major(peer);
1356 qual = 0;
1357 if (up->status & (BFRAME | AFRAME))
1358 qual |= SYNERR;
1359 if (up->status & (BFORMAT | AFORMAT))
1360 qual |= FMTERR;
1361 if (up->status & DECODE)
1362 qual |= DECERR;
1363 if (up->status & STAMP)
1364 qual |= TSPERR;
1365 if (up->status & BVALID && dtemp >= MINMETRIC)
1366 up->status |= INSYNC;
1367 synchar = leapchar = ' ';
1368 if (!(up->status & INSYNC)) {
1369 pp->leap = LEAP_NOTINSYNC;
1370 synchar = '?';
1371 } else if (up->leap & 0x2) {
1372 pp->leap = LEAP_ADDSECOND;
1373 leapchar = 'L';
1374 } else if (up->leap & 0x4) {
1375 pp->leap = LEAP_DELSECOND;
1376 leapchar = 'l';
1377 } else {
1378 pp->leap = LEAP_NOWARNING;
1379 }
1380 snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
1381 "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1382 synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1383 pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1384 up->ident, dtemp, up->ntstamp);
1385 pp->lencode = strlen(pp->a_lastcode);
1386
1387 /*
1388 * If in sync and the signal metric is above threshold, the
1389 * timecode is ipso fatso valid and can be selected to
1390 * discipline the clock.
1391 */
1392 if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
1393 dtemp > MINMETRIC) {
1394 if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1395 up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1396 up->errflg = CEVNT_BADTIME;
1397 } else {
1398 offset.l_uf = 0;
1399 for (i = 0; i < up->ntstamp; i++)
1400 refclock_process_offset(pp, offset,
1401 up->tstamp[i], PDELAY +
1402 pp->fudgetime1);
1403 pp->lastref = up->timestamp;
1404 refclock_receive(peer);
1405 }
1406 }
1407 if (dtemp > 0)
1408 record_clock_stats(&peer->srcadr, pp->a_lastcode);
1409 #ifdef DEBUG
1410 if (debug)
1411 printf("chu: timecode %d %s\n", pp->lencode,
1412 pp->a_lastcode);
1413 #endif
1414 #ifdef ICOM
1415 chu_newchan(peer, dtemp);
1416 #endif /* ICOM */
1417 chu_clear(peer);
1418 if (up->errflg)
1419 refclock_report(peer, up->errflg);
1420 up->errflg = 0;
1421 }
1422
1423
1424 /*
1425 * chu_major - majority decoder
1426 */
1427 static double
chu_major(struct peer * peer)1428 chu_major(
1429 struct peer *peer /* peer structure pointer */
1430 )
1431 {
1432 struct refclockproc *pp;
1433 struct chuunit *up;
1434
1435 u_char code[11]; /* decoded timecode */
1436 int metric; /* distance metric */
1437 int val1; /* maximum distance */
1438 int synchar; /* stray cat */
1439 int temp;
1440 int i, j, k;
1441
1442 pp = peer->procptr;
1443 up = pp->unitptr;
1444
1445 /*
1446 * Majority decoder. Each burst encodes two replications at each
1447 * digit position in the timecode. Each row of the decoding
1448 * matrix encodes the number of occurences of each digit found
1449 * at the corresponding position. The maximum over all
1450 * occurrences at each position is the distance for this
1451 * position and the corresponding digit is the maximum-
1452 * likelihood candidate. If the distance is not more than half
1453 * the total number of occurences, a majority has not been found
1454 * and the data are discarded. The decoding distance is defined
1455 * as the sum of the distances over the first nine digits. The
1456 * tenth digit varies over the seconds, so we don't count it.
1457 */
1458 metric = 0;
1459 for (i = 0; i < 9; i++) {
1460 val1 = 0;
1461 k = 0;
1462 for (j = 0; j < 16; j++) {
1463 temp = up->decode[i][j] + up->decode[i + 10][j];
1464 if (temp > val1) {
1465 val1 = temp;
1466 k = j;
1467 }
1468 }
1469 if (val1 <= up->burstcnt)
1470 up->status |= DECODE;
1471 metric += val1;
1472 code[i] = hexchar[k];
1473 }
1474
1475 /*
1476 * Compute the timecode timestamp from the days, hours and
1477 * minutes of the timecode. Use clocktime() for the aggregate
1478 * minutes and the minute offset computed from the burst
1479 * seconds. Note that this code relies on the filesystem time
1480 * for the years and does not use the years of the timecode.
1481 */
1482 if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1483 &pp->hour, &pp->minute) != 4)
1484 up->status |= DECODE;
1485 if (up->ntstamp < MINSTAMP)
1486 up->status |= STAMP;
1487 return (metric);
1488 }
1489
1490
1491 /*
1492 * chu_clear - clear decoding matrix
1493 */
1494 static void
chu_clear(struct peer * peer)1495 chu_clear(
1496 struct peer *peer /* peer structure pointer */
1497 )
1498 {
1499 struct refclockproc *pp;
1500 struct chuunit *up;
1501 int i, j;
1502
1503 pp = peer->procptr;
1504 up = pp->unitptr;
1505
1506 /*
1507 * Clear stuff for the minute.
1508 */
1509 up->ndx = up->prevsec = 0;
1510 up->burstcnt = up->ntstamp = 0;
1511 up->status &= INSYNC | METRIC;
1512 for (i = 0; i < 20; i++) {
1513 for (j = 0; j < 16; j++)
1514 up->decode[i][j] = 0;
1515 }
1516 }
1517
1518 #ifdef ICOM
1519 /*
1520 * chu_newchan - called once per minute to find the best channel;
1521 * returns zero on success, nonzero if ICOM error.
1522 */
1523 static int
chu_newchan(struct peer * peer,double met)1524 chu_newchan(
1525 struct peer *peer,
1526 double met
1527 )
1528 {
1529 struct chuunit *up;
1530 struct refclockproc *pp;
1531 struct xmtr *sp;
1532 int rval;
1533 double metric;
1534 int i;
1535
1536 pp = peer->procptr;
1537 up = pp->unitptr;
1538
1539 /*
1540 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1541 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1542 * dwells in each cycle. During the first dwell the radio is
1543 * tuned to one of the three channels to measure the channel
1544 * metric. The channel is selected as the one least recently
1545 * measured. During the remaining four dwells the radio is tuned
1546 * to the channel with the highest channel metric.
1547 */
1548 if (up->fd_icom <= 0)
1549 return (0);
1550
1551 /*
1552 * Update the current channel metric and age of all channels.
1553 * Scan all channels for the highest metric.
1554 */
1555 sp = &up->xmtr[up->chan];
1556 sp->metric -= sp->integ[sp->iptr];
1557 sp->integ[sp->iptr] = met;
1558 sp->metric += sp->integ[sp->iptr];
1559 sp->probe = 0;
1560 sp->iptr = (sp->iptr + 1) % ISTAGE;
1561 metric = 0;
1562 for (i = 0; i < NCHAN; i++) {
1563 up->xmtr[i].probe++;
1564 if (up->xmtr[i].metric > metric) {
1565 up->status |= METRIC;
1566 metric = up->xmtr[i].metric;
1567 up->chan = i;
1568 }
1569 }
1570
1571 /*
1572 * Start the next dwell. If the first dwell or no stations have
1573 * been heard, continue round-robin scan.
1574 */
1575 up->dwell = (up->dwell + 1) % DWELL;
1576 if (up->dwell == 0 || metric == 0) {
1577 rval = 0;
1578 for (i = 0; i < NCHAN; i++) {
1579 if (up->xmtr[i].probe > rval) {
1580 rval = up->xmtr[i].probe;
1581 up->chan = i;
1582 }
1583 }
1584 }
1585
1586 /* Retune the radio at each dwell in case somebody nudges the
1587 * tuning knob.
1588 */
1589 rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
1590 TUNE);
1591 snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
1592 memcpy(&pp->refid, up->ident, 4);
1593 memcpy(&peer->refid, up->ident, 4);
1594 if (metric == 0 && up->status & METRIC) {
1595 up->status &= ~METRIC;
1596 refclock_report(peer, CEVNT_PROP);
1597 }
1598 return (rval);
1599 }
1600 #endif /* ICOM */
1601
1602
1603 /*
1604 * chu_dist - determine the distance of two octet arguments
1605 */
1606 static int
chu_dist(int x,int y)1607 chu_dist(
1608 int x, /* an octet of bits */
1609 int y /* another octet of bits */
1610 )
1611 {
1612 int val; /* bit count */
1613 int temp;
1614 int i;
1615
1616 /*
1617 * The distance is determined as the weight of the exclusive OR
1618 * of the two arguments. The weight is determined by the number
1619 * of one bits in the result. Each one bit increases the weight,
1620 * while each zero bit decreases it.
1621 */
1622 temp = x ^ y;
1623 val = 0;
1624 for (i = 0; i < 8; i++) {
1625 if ((temp & 0x1) == 0)
1626 val++;
1627 else
1628 val--;
1629 temp >>= 1;
1630 }
1631 return (val);
1632 }
1633
1634
1635 #ifdef HAVE_AUDIO
1636 /*
1637 * chu_gain - adjust codec gain
1638 *
1639 * This routine is called at the end of each second. During the second
1640 * the number of signal clips above the MAXAMP threshold (6000). If
1641 * there are no clips, the gain is bumped up; if there are more than
1642 * MAXCLP clips (100), it is bumped down. The decoder is relatively
1643 * insensitive to amplitude, so this crudity works just peachy. The
1644 * routine also jiggles the input port and selectively mutes the
1645 */
1646 static void
chu_gain(struct peer * peer)1647 chu_gain(
1648 struct peer *peer /* peer structure pointer */
1649 )
1650 {
1651 struct refclockproc *pp;
1652 struct chuunit *up;
1653
1654 pp = peer->procptr;
1655 up = pp->unitptr;
1656
1657 /*
1658 * Apparently, the codec uses only the high order bits of the
1659 * gain control field. Thus, it may take awhile for changes to
1660 * wiggle the hardware bits.
1661 */
1662 if (up->clipcnt == 0) {
1663 up->gain += 4;
1664 if (up->gain > MAXGAIN)
1665 up->gain = MAXGAIN;
1666 } else if (up->clipcnt > MAXCLP) {
1667 up->gain -= 4;
1668 if (up->gain < 0)
1669 up->gain = 0;
1670 }
1671 audio_gain(up->gain, up->mongain, up->port);
1672 up->clipcnt = 0;
1673 }
1674 #endif /* HAVE_AUDIO */
1675
1676
1677 #else
1678 NONEMPTY_TRANSLATION_UNIT
1679 #endif /* REFCLOCK */
1680