1 /*-
2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61
62 #include <sys/cdefs.h>
63 #include "opt_quota.h"
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/capsicum.h>
70 #include <sys/conf.h>
71 #include <sys/fcntl.h>
72 #include <sys/file.h>
73 #include <sys/filedesc.h>
74 #include <sys/gsb_crc32.h>
75 #include <sys/kernel.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/proc.h>
79 #include <sys/stat.h>
80 #include <sys/syscallsubr.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/taskqueue.h>
84 #include <sys/vnode.h>
85
86 #include <security/audit/audit.h>
87
88 #include <geom/geom.h>
89 #include <geom/geom_vfs.h>
90
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/extattr.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/ufs_extern.h>
96 #include <ufs/ufs/ufsmount.h>
97
98 #include <ufs/ffs/fs.h>
99 #include <ufs/ffs/ffs_extern.h>
100 #include <ufs/ffs/softdep.h>
101
102 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg,
103 ufs2_daddr_t bpref, int size, int rsize);
104
105 static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
106 int);
107 static ufs2_daddr_t
108 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
109 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
110 struct vnode *, ufs2_daddr_t, long, ino_t,
111 struct workhead *);
112 #ifdef INVARIANTS
113 static int ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long);
114 #endif
115 static void ffs_checkcgintegrity(struct fs *, uint64_t, int);
116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t,
117 int);
118 static ino_t ffs_dirpref(struct inode *);
119 static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t,
120 int, int);
121 static ufs2_daddr_t ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t,
122 int, int, allocfcn_t *);
123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
124 int);
125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
128 static void ffs_ckhash_cg(struct buf *);
129
130 /*
131 * Allocate a block in the filesystem.
132 *
133 * The size of the requested block is given, which must be some
134 * multiple of fs_fsize and <= fs_bsize.
135 * A preference may be optionally specified. If a preference is given
136 * the following hierarchy is used to allocate a block:
137 * 1) allocate the requested block.
138 * 2) allocate a rotationally optimal block in the same cylinder.
139 * 3) allocate a block in the same cylinder group.
140 * 4) quadratically rehash into other cylinder groups, until an
141 * available block is located.
142 * If no block preference is given the following hierarchy is used
143 * to allocate a block:
144 * 1) allocate a block in the cylinder group that contains the
145 * inode for the file.
146 * 2) quadratically rehash into other cylinder groups, until an
147 * available block is located.
148 */
149 int
ffs_alloc(struct inode * ip,ufs2_daddr_t lbn,ufs2_daddr_t bpref,int size,int flags,struct ucred * cred,ufs2_daddr_t * bnp)150 ffs_alloc(struct inode *ip,
151 ufs2_daddr_t lbn,
152 ufs2_daddr_t bpref,
153 int size,
154 int flags,
155 struct ucred *cred,
156 ufs2_daddr_t *bnp)
157 {
158 struct fs *fs;
159 struct ufsmount *ump;
160 ufs2_daddr_t bno;
161 uint64_t cg, reclaimed;
162 int64_t delta;
163 #ifdef QUOTA
164 int error;
165 #endif
166
167 *bnp = 0;
168 ump = ITOUMP(ip);
169 fs = ump->um_fs;
170 mtx_assert(UFS_MTX(ump), MA_OWNED);
171 #ifdef INVARIANTS
172 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
174 devtoname(ump->um_dev), (long)fs->fs_bsize, size,
175 fs->fs_fsmnt);
176 panic("ffs_alloc: bad size");
177 }
178 if (cred == NOCRED)
179 panic("ffs_alloc: missing credential");
180 #endif /* INVARIANTS */
181 reclaimed = 0;
182 retry:
183 #ifdef QUOTA
184 UFS_UNLOCK(ump);
185 error = chkdq(ip, btodb(size), cred, 0);
186 if (error)
187 return (error);
188 UFS_LOCK(ump);
189 #endif
190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
191 goto nospace;
192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
194 goto nospace;
195 if (bpref >= fs->fs_size)
196 bpref = 0;
197 if (bpref == 0)
198 cg = ino_to_cg(fs, ip->i_number);
199 else
200 cg = dtog(fs, bpref);
201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
202 if (bno > 0) {
203 delta = btodb(size);
204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
205 if (flags & IO_EXT)
206 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
207 else
208 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
209 *bnp = bno;
210 return (0);
211 }
212 nospace:
213 #ifdef QUOTA
214 UFS_UNLOCK(ump);
215 /*
216 * Restore user's disk quota because allocation failed.
217 */
218 (void) chkdq(ip, -btodb(size), cred, FORCE);
219 UFS_LOCK(ump);
220 #endif
221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
222 reclaimed = 1;
223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
224 goto retry;
225 }
226 if (ffs_fsfail_cleanup_locked(ump, 0)) {
227 UFS_UNLOCK(ump);
228 return (ENXIO);
229 }
230 if (reclaimed > 0 &&
231 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
232 UFS_UNLOCK(ump);
233 ffs_fserr(fs, ip->i_number, "filesystem full");
234 uprintf("\n%s: write failed, filesystem is full\n",
235 fs->fs_fsmnt);
236 } else {
237 UFS_UNLOCK(ump);
238 }
239 return (ENOSPC);
240 }
241
242 /*
243 * Reallocate a fragment to a bigger size
244 *
245 * The number and size of the old block is given, and a preference
246 * and new size is also specified. The allocator attempts to extend
247 * the original block. Failing that, the regular block allocator is
248 * invoked to get an appropriate block.
249 */
250 int
ffs_realloccg(struct inode * ip,ufs2_daddr_t lbprev,ufs2_daddr_t bprev,ufs2_daddr_t bpref,int osize,int nsize,int flags,struct ucred * cred,struct buf ** bpp)251 ffs_realloccg(struct inode *ip,
252 ufs2_daddr_t lbprev,
253 ufs2_daddr_t bprev,
254 ufs2_daddr_t bpref,
255 int osize,
256 int nsize,
257 int flags,
258 struct ucred *cred,
259 struct buf **bpp)
260 {
261 struct vnode *vp;
262 struct fs *fs;
263 struct buf *bp;
264 struct ufsmount *ump;
265 uint64_t cg, request, reclaimed;
266 int error, gbflags;
267 ufs2_daddr_t bno;
268 int64_t delta;
269
270 vp = ITOV(ip);
271 ump = ITOUMP(ip);
272 fs = ump->um_fs;
273 bp = NULL;
274 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
275 #ifdef WITNESS
276 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
277 #endif
278
279 mtx_assert(UFS_MTX(ump), MA_OWNED);
280 #ifdef INVARIANTS
281 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
282 panic("ffs_realloccg: allocation on suspended filesystem");
283 if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
284 (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
285 printf(
286 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
287 devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
288 nsize, fs->fs_fsmnt);
289 panic("ffs_realloccg: bad size");
290 }
291 if (cred == NOCRED)
292 panic("ffs_realloccg: missing credential");
293 #endif /* INVARIANTS */
294 reclaimed = 0;
295 retry:
296 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
297 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
298 goto nospace;
299 }
300 if (bprev == 0) {
301 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
302 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
303 fs->fs_fsmnt);
304 panic("ffs_realloccg: bad bprev");
305 }
306 UFS_UNLOCK(ump);
307 /*
308 * Allocate the extra space in the buffer.
309 */
310 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
311 if (error) {
312 return (error);
313 }
314
315 if (bp->b_blkno == bp->b_lblkno) {
316 if (lbprev >= UFS_NDADDR)
317 panic("ffs_realloccg: lbprev out of range");
318 bp->b_blkno = fsbtodb(fs, bprev);
319 }
320
321 #ifdef QUOTA
322 error = chkdq(ip, btodb(nsize - osize), cred, 0);
323 if (error) {
324 brelse(bp);
325 return (error);
326 }
327 #endif
328 /*
329 * Check for extension in the existing location.
330 */
331 *bpp = NULL;
332 cg = dtog(fs, bprev);
333 UFS_LOCK(ump);
334 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
335 if (bno) {
336 if (bp->b_blkno != fsbtodb(fs, bno))
337 panic("ffs_realloccg: bad blockno");
338 delta = btodb(nsize - osize);
339 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
340 if (flags & IO_EXT)
341 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
342 else
343 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
344 allocbuf(bp, nsize);
345 bp->b_flags |= B_DONE;
346 vfs_bio_bzero_buf(bp, osize, nsize - osize);
347 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
348 vfs_bio_set_valid(bp, osize, nsize - osize);
349 *bpp = bp;
350 return (0);
351 }
352 /*
353 * Allocate a new disk location.
354 */
355 if (bpref >= fs->fs_size)
356 bpref = 0;
357 switch ((int)fs->fs_optim) {
358 case FS_OPTSPACE:
359 /*
360 * Allocate an exact sized fragment. Although this makes
361 * best use of space, we will waste time relocating it if
362 * the file continues to grow. If the fragmentation is
363 * less than half of the minimum free reserve, we choose
364 * to begin optimizing for time.
365 */
366 request = nsize;
367 if (fs->fs_minfree <= 5 ||
368 fs->fs_cstotal.cs_nffree >
369 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
370 break;
371 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
372 fs->fs_fsmnt);
373 fs->fs_optim = FS_OPTTIME;
374 break;
375 case FS_OPTTIME:
376 /*
377 * At this point we have discovered a file that is trying to
378 * grow a small fragment to a larger fragment. To save time,
379 * we allocate a full sized block, then free the unused portion.
380 * If the file continues to grow, the `ffs_fragextend' call
381 * above will be able to grow it in place without further
382 * copying. If aberrant programs cause disk fragmentation to
383 * grow within 2% of the free reserve, we choose to begin
384 * optimizing for space.
385 */
386 request = fs->fs_bsize;
387 if (fs->fs_cstotal.cs_nffree <
388 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
389 break;
390 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
391 fs->fs_fsmnt);
392 fs->fs_optim = FS_OPTSPACE;
393 break;
394 default:
395 printf("dev = %s, optim = %ld, fs = %s\n",
396 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
397 panic("ffs_realloccg: bad optim");
398 /* NOTREACHED */
399 }
400 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
401 if (bno > 0) {
402 bp->b_blkno = fsbtodb(fs, bno);
403 if (!DOINGSOFTDEP(vp))
404 /*
405 * The usual case is that a smaller fragment that
406 * was just allocated has been replaced with a bigger
407 * fragment or a full-size block. If it is marked as
408 * B_DELWRI, the current contents have not been written
409 * to disk. It is possible that the block was written
410 * earlier, but very uncommon. If the block has never
411 * been written, there is no need to send a BIO_DELETE
412 * for it when it is freed. The gain from avoiding the
413 * TRIMs for the common case of unwritten blocks far
414 * exceeds the cost of the write amplification for the
415 * uncommon case of failing to send a TRIM for a block
416 * that had been written.
417 */
418 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
419 ip->i_number, vp->v_type, NULL,
420 (bp->b_flags & B_DELWRI) != 0 ?
421 NOTRIM_KEY : SINGLETON_KEY);
422 delta = btodb(nsize - osize);
423 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
424 if (flags & IO_EXT)
425 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
426 else
427 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
428 allocbuf(bp, nsize);
429 bp->b_flags |= B_DONE;
430 vfs_bio_bzero_buf(bp, osize, nsize - osize);
431 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
432 vfs_bio_set_valid(bp, osize, nsize - osize);
433 *bpp = bp;
434 return (0);
435 }
436 #ifdef QUOTA
437 UFS_UNLOCK(ump);
438 /*
439 * Restore user's disk quota because allocation failed.
440 */
441 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
442 UFS_LOCK(ump);
443 #endif
444 nospace:
445 /*
446 * no space available
447 */
448 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
449 reclaimed = 1;
450 UFS_UNLOCK(ump);
451 if (bp) {
452 brelse(bp);
453 bp = NULL;
454 }
455 UFS_LOCK(ump);
456 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
457 goto retry;
458 }
459 if (bp)
460 brelse(bp);
461 if (ffs_fsfail_cleanup_locked(ump, 0)) {
462 UFS_UNLOCK(ump);
463 return (ENXIO);
464 }
465 if (reclaimed > 0 &&
466 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
467 UFS_UNLOCK(ump);
468 ffs_fserr(fs, ip->i_number, "filesystem full");
469 uprintf("\n%s: write failed, filesystem is full\n",
470 fs->fs_fsmnt);
471 } else {
472 UFS_UNLOCK(ump);
473 }
474 return (ENOSPC);
475 }
476
477 /*
478 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
479 *
480 * The vnode and an array of buffer pointers for a range of sequential
481 * logical blocks to be made contiguous is given. The allocator attempts
482 * to find a range of sequential blocks starting as close as possible
483 * from the end of the allocation for the logical block immediately
484 * preceding the current range. If successful, the physical block numbers
485 * in the buffer pointers and in the inode are changed to reflect the new
486 * allocation. If unsuccessful, the allocation is left unchanged. The
487 * success in doing the reallocation is returned. Note that the error
488 * return is not reflected back to the user. Rather the previous block
489 * allocation will be used.
490 */
491
492 SYSCTL_DECL(_vfs_ffs);
493
494 static int doasyncfree = 1;
495 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
496 "do not force synchronous writes when blocks are reallocated");
497
498 static int doreallocblks = 1;
499 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
500 "enable block reallocation");
501
502 static int dotrimcons = 1;
503 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
504 "enable BIO_DELETE / TRIM consolidation");
505
506 static int maxclustersearch = 10;
507 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
508 0, "max number of cylinder group to search for contigous blocks");
509
510 #ifdef DIAGNOSTIC
511 static int prtrealloc = 0;
512 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
513 "print out FFS filesystem block reallocation operations");
514 #endif
515
516 int
ffs_reallocblks(struct vop_reallocblks_args * ap)517 ffs_reallocblks(
518 struct vop_reallocblks_args /* {
519 struct vnode *a_vp;
520 struct cluster_save *a_buflist;
521 } */ *ap)
522 {
523 struct ufsmount *ump;
524 int error;
525
526 /*
527 * We used to skip reallocating the blocks of a file into a
528 * contiguous sequence if the underlying flash device requested
529 * BIO_DELETE notifications, because devices that benefit from
530 * BIO_DELETE also benefit from not moving the data. However,
531 * the destination for the data is usually moved before the data
532 * is written to the initially allocated location, so we rarely
533 * suffer the penalty of extra writes. With the addition of the
534 * consolidation of contiguous blocks into single BIO_DELETE
535 * operations, having fewer but larger contiguous blocks reduces
536 * the number of (slow and expensive) BIO_DELETE operations. So
537 * when doing BIO_DELETE consolidation, we do block reallocation.
538 *
539 * Skip if reallocblks has been disabled globally.
540 */
541 ump = ap->a_vp->v_mount->mnt_data;
542 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
543 doreallocblks == 0)
544 return (ENOSPC);
545
546 /*
547 * We can't wait in softdep prealloc as it may fsync and recurse
548 * here. Instead we simply fail to reallocate blocks if this
549 * rare condition arises.
550 */
551 if (DOINGSUJ(ap->a_vp))
552 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
553 return (ENOSPC);
554 vn_seqc_write_begin(ap->a_vp);
555 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
556 ffs_reallocblks_ufs2(ap);
557 vn_seqc_write_end(ap->a_vp);
558 return (error);
559 }
560
561 static int
ffs_reallocblks_ufs1(struct vop_reallocblks_args * ap)562 ffs_reallocblks_ufs1(
563 struct vop_reallocblks_args /* {
564 struct vnode *a_vp;
565 struct cluster_save *a_buflist;
566 } */ *ap)
567 {
568 struct fs *fs;
569 struct inode *ip;
570 struct vnode *vp;
571 struct buf *sbp, *ebp, *bp;
572 ufs1_daddr_t *bap, *sbap, *ebap;
573 struct cluster_save *buflist;
574 struct ufsmount *ump;
575 ufs_lbn_t start_lbn, end_lbn;
576 ufs1_daddr_t soff, newblk, blkno;
577 ufs2_daddr_t pref;
578 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
579 int i, cg, len, start_lvl, end_lvl, ssize;
580
581 vp = ap->a_vp;
582 ip = VTOI(vp);
583 ump = ITOUMP(ip);
584 fs = ump->um_fs;
585 /*
586 * If we are not tracking block clusters or if we have less than 4%
587 * free blocks left, then do not attempt to cluster. Running with
588 * less than 5% free block reserve is not recommended and those that
589 * choose to do so do not expect to have good file layout.
590 */
591 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
592 return (ENOSPC);
593 buflist = ap->a_buflist;
594 len = buflist->bs_nchildren;
595 start_lbn = buflist->bs_children[0]->b_lblkno;
596 end_lbn = start_lbn + len - 1;
597 #ifdef INVARIANTS
598 for (i = 0; i < len; i++)
599 if (!ffs_checkfreeblk(ip,
600 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
601 panic("ffs_reallocblks: unallocated block 1");
602 for (i = 1; i < len; i++)
603 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
604 panic("ffs_reallocblks: non-logical cluster");
605 blkno = buflist->bs_children[0]->b_blkno;
606 ssize = fsbtodb(fs, fs->fs_frag);
607 for (i = 1; i < len - 1; i++)
608 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
609 panic("ffs_reallocblks: non-physical cluster %d", i);
610 #endif
611 /*
612 * If the cluster crosses the boundary for the first indirect
613 * block, leave space for the indirect block. Indirect blocks
614 * are initially laid out in a position after the last direct
615 * block. Block reallocation would usually destroy locality by
616 * moving the indirect block out of the way to make room for
617 * data blocks if we didn't compensate here. We should also do
618 * this for other indirect block boundaries, but it is only
619 * important for the first one.
620 */
621 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
622 return (ENOSPC);
623 /*
624 * If the latest allocation is in a new cylinder group, assume that
625 * the filesystem has decided to move and do not force it back to
626 * the previous cylinder group.
627 */
628 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
629 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
630 return (ENOSPC);
631 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
632 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
633 return (ENOSPC);
634 /*
635 * Get the starting offset and block map for the first block.
636 */
637 if (start_lvl == 0) {
638 sbap = &ip->i_din1->di_db[0];
639 soff = start_lbn;
640 } else {
641 idp = &start_ap[start_lvl - 1];
642 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
643 brelse(sbp);
644 return (ENOSPC);
645 }
646 sbap = (ufs1_daddr_t *)sbp->b_data;
647 soff = idp->in_off;
648 }
649 /*
650 * If the block range spans two block maps, get the second map.
651 */
652 ebap = NULL;
653 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
654 ssize = len;
655 } else {
656 #ifdef INVARIANTS
657 if (start_lvl > 0 &&
658 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
659 panic("ffs_reallocblk: start == end");
660 #endif
661 ssize = len - (idp->in_off + 1);
662 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
663 goto fail;
664 ebap = (ufs1_daddr_t *)ebp->b_data;
665 }
666 /*
667 * Find the preferred location for the cluster. If we have not
668 * previously failed at this endeavor, then follow our standard
669 * preference calculation. If we have failed at it, then pick up
670 * where we last ended our search.
671 */
672 UFS_LOCK(ump);
673 if (ip->i_nextclustercg == -1)
674 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
675 else
676 pref = cgdata(fs, ip->i_nextclustercg);
677 /*
678 * Search the block map looking for an allocation of the desired size.
679 * To avoid wasting too much time, we limit the number of cylinder
680 * groups that we will search.
681 */
682 cg = dtog(fs, pref);
683 MPASS(cg < fs->fs_ncg);
684 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
685 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
686 break;
687 cg += 1;
688 if (cg >= fs->fs_ncg)
689 cg = 0;
690 }
691 /*
692 * If we have failed in our search, record where we gave up for
693 * next time. Otherwise, fall back to our usual search citerion.
694 */
695 if (newblk == 0) {
696 ip->i_nextclustercg = cg;
697 UFS_UNLOCK(ump);
698 goto fail;
699 }
700 ip->i_nextclustercg = -1;
701 /*
702 * We have found a new contiguous block.
703 *
704 * First we have to replace the old block pointers with the new
705 * block pointers in the inode and indirect blocks associated
706 * with the file.
707 */
708 #ifdef DIAGNOSTIC
709 if (prtrealloc)
710 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
711 (uintmax_t)ip->i_number,
712 (intmax_t)start_lbn, (intmax_t)end_lbn);
713 #endif
714 blkno = newblk;
715 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
716 if (i == ssize) {
717 bap = ebap;
718 soff = -i;
719 }
720 #ifdef INVARIANTS
721 if (!ffs_checkfreeblk(ip,
722 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
723 panic("ffs_reallocblks: unallocated block 2");
724 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
725 panic("ffs_reallocblks: alloc mismatch");
726 #endif
727 #ifdef DIAGNOSTIC
728 if (prtrealloc)
729 printf(" %d,", *bap);
730 #endif
731 if (DOINGSOFTDEP(vp)) {
732 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
733 softdep_setup_allocdirect(ip, start_lbn + i,
734 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
735 buflist->bs_children[i]);
736 else
737 softdep_setup_allocindir_page(ip, start_lbn + i,
738 i < ssize ? sbp : ebp, soff + i, blkno,
739 *bap, buflist->bs_children[i]);
740 }
741 *bap++ = blkno;
742 }
743 /*
744 * Next we must write out the modified inode and indirect blocks.
745 * For strict correctness, the writes should be synchronous since
746 * the old block values may have been written to disk. In practise
747 * they are almost never written, but if we are concerned about
748 * strict correctness, the `doasyncfree' flag should be set to zero.
749 *
750 * The test on `doasyncfree' should be changed to test a flag
751 * that shows whether the associated buffers and inodes have
752 * been written. The flag should be set when the cluster is
753 * started and cleared whenever the buffer or inode is flushed.
754 * We can then check below to see if it is set, and do the
755 * synchronous write only when it has been cleared.
756 */
757 if (sbap != &ip->i_din1->di_db[0]) {
758 if (doasyncfree)
759 bdwrite(sbp);
760 else
761 bwrite(sbp);
762 } else {
763 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
764 if (!doasyncfree)
765 ffs_update(vp, 1);
766 }
767 if (ssize < len) {
768 if (doasyncfree)
769 bdwrite(ebp);
770 else
771 bwrite(ebp);
772 }
773 /*
774 * Last, free the old blocks and assign the new blocks to the buffers.
775 */
776 #ifdef DIAGNOSTIC
777 if (prtrealloc)
778 printf("\n\tnew:");
779 #endif
780 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
781 bp = buflist->bs_children[i];
782 if (!DOINGSOFTDEP(vp))
783 /*
784 * The usual case is that a set of N-contiguous blocks
785 * that was just allocated has been replaced with a
786 * set of N+1-contiguous blocks. If they are marked as
787 * B_DELWRI, the current contents have not been written
788 * to disk. It is possible that the blocks were written
789 * earlier, but very uncommon. If the blocks have never
790 * been written, there is no need to send a BIO_DELETE
791 * for them when they are freed. The gain from avoiding
792 * the TRIMs for the common case of unwritten blocks
793 * far exceeds the cost of the write amplification for
794 * the uncommon case of failing to send a TRIM for the
795 * blocks that had been written.
796 */
797 ffs_blkfree(ump, fs, ump->um_devvp,
798 dbtofsb(fs, bp->b_blkno),
799 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
800 (bp->b_flags & B_DELWRI) != 0 ?
801 NOTRIM_KEY : SINGLETON_KEY);
802 bp->b_blkno = fsbtodb(fs, blkno);
803 #ifdef INVARIANTS
804 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
805 fs->fs_bsize))
806 panic("ffs_reallocblks: unallocated block 3");
807 #endif
808 #ifdef DIAGNOSTIC
809 if (prtrealloc)
810 printf(" %d,", blkno);
811 #endif
812 }
813 #ifdef DIAGNOSTIC
814 if (prtrealloc) {
815 prtrealloc--;
816 printf("\n");
817 }
818 #endif
819 return (0);
820
821 fail:
822 if (ssize < len)
823 brelse(ebp);
824 if (sbap != &ip->i_din1->di_db[0])
825 brelse(sbp);
826 return (ENOSPC);
827 }
828
829 static int
ffs_reallocblks_ufs2(struct vop_reallocblks_args * ap)830 ffs_reallocblks_ufs2(
831 struct vop_reallocblks_args /* {
832 struct vnode *a_vp;
833 struct cluster_save *a_buflist;
834 } */ *ap)
835 {
836 struct fs *fs;
837 struct inode *ip;
838 struct vnode *vp;
839 struct buf *sbp, *ebp, *bp;
840 ufs2_daddr_t *bap, *sbap, *ebap;
841 struct cluster_save *buflist;
842 struct ufsmount *ump;
843 ufs_lbn_t start_lbn, end_lbn;
844 ufs2_daddr_t soff, newblk, blkno, pref;
845 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
846 int i, cg, len, start_lvl, end_lvl, ssize;
847
848 vp = ap->a_vp;
849 ip = VTOI(vp);
850 ump = ITOUMP(ip);
851 fs = ump->um_fs;
852 /*
853 * If we are not tracking block clusters or if we have less than 4%
854 * free blocks left, then do not attempt to cluster. Running with
855 * less than 5% free block reserve is not recommended and those that
856 * choose to do so do not expect to have good file layout.
857 */
858 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
859 return (ENOSPC);
860 buflist = ap->a_buflist;
861 len = buflist->bs_nchildren;
862 start_lbn = buflist->bs_children[0]->b_lblkno;
863 end_lbn = start_lbn + len - 1;
864 #ifdef INVARIANTS
865 for (i = 0; i < len; i++)
866 if (!ffs_checkfreeblk(ip,
867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
868 panic("ffs_reallocblks: unallocated block 1");
869 for (i = 1; i < len; i++)
870 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
871 panic("ffs_reallocblks: non-logical cluster");
872 blkno = buflist->bs_children[0]->b_blkno;
873 ssize = fsbtodb(fs, fs->fs_frag);
874 for (i = 1; i < len - 1; i++)
875 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
876 panic("ffs_reallocblks: non-physical cluster %d", i);
877 #endif
878 /*
879 * If the cluster crosses the boundary for the first indirect
880 * block, do not move anything in it. Indirect blocks are
881 * usually initially laid out in a position between the data
882 * blocks. Block reallocation would usually destroy locality by
883 * moving the indirect block out of the way to make room for
884 * data blocks if we didn't compensate here. We should also do
885 * this for other indirect block boundaries, but it is only
886 * important for the first one.
887 */
888 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
889 return (ENOSPC);
890 /*
891 * If the latest allocation is in a new cylinder group, assume that
892 * the filesystem has decided to move and do not force it back to
893 * the previous cylinder group.
894 */
895 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
896 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
897 return (ENOSPC);
898 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
899 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
900 return (ENOSPC);
901 /*
902 * Get the starting offset and block map for the first block.
903 */
904 if (start_lvl == 0) {
905 sbap = &ip->i_din2->di_db[0];
906 soff = start_lbn;
907 } else {
908 idp = &start_ap[start_lvl - 1];
909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
910 brelse(sbp);
911 return (ENOSPC);
912 }
913 sbap = (ufs2_daddr_t *)sbp->b_data;
914 soff = idp->in_off;
915 }
916 /*
917 * If the block range spans two block maps, get the second map.
918 */
919 ebap = NULL;
920 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
921 ssize = len;
922 } else {
923 #ifdef INVARIANTS
924 if (start_lvl > 0 &&
925 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
926 panic("ffs_reallocblk: start == end");
927 #endif
928 ssize = len - (idp->in_off + 1);
929 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
930 goto fail;
931 ebap = (ufs2_daddr_t *)ebp->b_data;
932 }
933 /*
934 * Find the preferred location for the cluster. If we have not
935 * previously failed at this endeavor, then follow our standard
936 * preference calculation. If we have failed at it, then pick up
937 * where we last ended our search.
938 */
939 UFS_LOCK(ump);
940 if (ip->i_nextclustercg == -1)
941 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
942 else
943 pref = cgdata(fs, ip->i_nextclustercg);
944 /*
945 * Search the block map looking for an allocation of the desired size.
946 * To avoid wasting too much time, we limit the number of cylinder
947 * groups that we will search.
948 */
949 cg = dtog(fs, pref);
950 MPASS(cg < fs->fs_ncg);
951 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
952 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
953 break;
954 cg += 1;
955 if (cg >= fs->fs_ncg)
956 cg = 0;
957 }
958 /*
959 * If we have failed in our search, record where we gave up for
960 * next time. Otherwise, fall back to our usual search citerion.
961 */
962 if (newblk == 0) {
963 ip->i_nextclustercg = cg;
964 UFS_UNLOCK(ump);
965 goto fail;
966 }
967 ip->i_nextclustercg = -1;
968 /*
969 * We have found a new contiguous block.
970 *
971 * First we have to replace the old block pointers with the new
972 * block pointers in the inode and indirect blocks associated
973 * with the file.
974 */
975 #ifdef DIAGNOSTIC
976 if (prtrealloc)
977 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
978 (intmax_t)start_lbn, (intmax_t)end_lbn);
979 #endif
980 blkno = newblk;
981 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
982 if (i == ssize) {
983 bap = ebap;
984 soff = -i;
985 }
986 #ifdef INVARIANTS
987 if (!ffs_checkfreeblk(ip,
988 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
989 panic("ffs_reallocblks: unallocated block 2");
990 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
991 panic("ffs_reallocblks: alloc mismatch");
992 #endif
993 #ifdef DIAGNOSTIC
994 if (prtrealloc)
995 printf(" %jd,", (intmax_t)*bap);
996 #endif
997 if (DOINGSOFTDEP(vp)) {
998 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
999 softdep_setup_allocdirect(ip, start_lbn + i,
1000 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1001 buflist->bs_children[i]);
1002 else
1003 softdep_setup_allocindir_page(ip, start_lbn + i,
1004 i < ssize ? sbp : ebp, soff + i, blkno,
1005 *bap, buflist->bs_children[i]);
1006 }
1007 *bap++ = blkno;
1008 }
1009 /*
1010 * Next we must write out the modified inode and indirect blocks.
1011 * For strict correctness, the writes should be synchronous since
1012 * the old block values may have been written to disk. In practise
1013 * they are almost never written, but if we are concerned about
1014 * strict correctness, the `doasyncfree' flag should be set to zero.
1015 *
1016 * The test on `doasyncfree' should be changed to test a flag
1017 * that shows whether the associated buffers and inodes have
1018 * been written. The flag should be set when the cluster is
1019 * started and cleared whenever the buffer or inode is flushed.
1020 * We can then check below to see if it is set, and do the
1021 * synchronous write only when it has been cleared.
1022 */
1023 if (sbap != &ip->i_din2->di_db[0]) {
1024 if (doasyncfree)
1025 bdwrite(sbp);
1026 else
1027 bwrite(sbp);
1028 } else {
1029 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1030 if (!doasyncfree)
1031 ffs_update(vp, 1);
1032 }
1033 if (ssize < len) {
1034 if (doasyncfree)
1035 bdwrite(ebp);
1036 else
1037 bwrite(ebp);
1038 }
1039 /*
1040 * Last, free the old blocks and assign the new blocks to the buffers.
1041 */
1042 #ifdef DIAGNOSTIC
1043 if (prtrealloc)
1044 printf("\n\tnew:");
1045 #endif
1046 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1047 bp = buflist->bs_children[i];
1048 if (!DOINGSOFTDEP(vp))
1049 /*
1050 * The usual case is that a set of N-contiguous blocks
1051 * that was just allocated has been replaced with a
1052 * set of N+1-contiguous blocks. If they are marked as
1053 * B_DELWRI, the current contents have not been written
1054 * to disk. It is possible that the blocks were written
1055 * earlier, but very uncommon. If the blocks have never
1056 * been written, there is no need to send a BIO_DELETE
1057 * for them when they are freed. The gain from avoiding
1058 * the TRIMs for the common case of unwritten blocks
1059 * far exceeds the cost of the write amplification for
1060 * the uncommon case of failing to send a TRIM for the
1061 * blocks that had been written.
1062 */
1063 ffs_blkfree(ump, fs, ump->um_devvp,
1064 dbtofsb(fs, bp->b_blkno),
1065 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1066 (bp->b_flags & B_DELWRI) != 0 ?
1067 NOTRIM_KEY : SINGLETON_KEY);
1068 bp->b_blkno = fsbtodb(fs, blkno);
1069 #ifdef INVARIANTS
1070 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
1071 fs->fs_bsize))
1072 panic("ffs_reallocblks: unallocated block 3");
1073 #endif
1074 #ifdef DIAGNOSTIC
1075 if (prtrealloc)
1076 printf(" %jd,", (intmax_t)blkno);
1077 #endif
1078 }
1079 #ifdef DIAGNOSTIC
1080 if (prtrealloc) {
1081 prtrealloc--;
1082 printf("\n");
1083 }
1084 #endif
1085 return (0);
1086
1087 fail:
1088 if (ssize < len)
1089 brelse(ebp);
1090 if (sbap != &ip->i_din2->di_db[0])
1091 brelse(sbp);
1092 return (ENOSPC);
1093 }
1094
1095 /*
1096 * Allocate an inode in the filesystem.
1097 *
1098 * If allocating a directory, use ffs_dirpref to select the inode.
1099 * If allocating in a directory, the following hierarchy is followed:
1100 * 1) allocate the preferred inode.
1101 * 2) allocate an inode in the same cylinder group.
1102 * 3) quadratically rehash into other cylinder groups, until an
1103 * available inode is located.
1104 * If no inode preference is given the following hierarchy is used
1105 * to allocate an inode:
1106 * 1) allocate an inode in cylinder group 0.
1107 * 2) quadratically rehash into other cylinder groups, until an
1108 * available inode is located.
1109 */
1110 int
ffs_valloc(struct vnode * pvp,int mode,struct ucred * cred,struct vnode ** vpp)1111 ffs_valloc(struct vnode *pvp,
1112 int mode,
1113 struct ucred *cred,
1114 struct vnode **vpp)
1115 {
1116 struct inode *pip;
1117 struct fs *fs;
1118 struct inode *ip;
1119 struct timespec ts;
1120 struct ufsmount *ump;
1121 ino_t ino, ipref;
1122 uint64_t cg;
1123 int error, reclaimed;
1124
1125 *vpp = NULL;
1126 pip = VTOI(pvp);
1127 ump = ITOUMP(pip);
1128 fs = ump->um_fs;
1129
1130 UFS_LOCK(ump);
1131 reclaimed = 0;
1132 retry:
1133 if (fs->fs_cstotal.cs_nifree == 0)
1134 goto noinodes;
1135
1136 if ((mode & IFMT) == IFDIR)
1137 ipref = ffs_dirpref(pip);
1138 else
1139 ipref = pip->i_number;
1140 if (ipref >= fs->fs_ncg * fs->fs_ipg)
1141 ipref = 0;
1142 cg = ino_to_cg(fs, ipref);
1143 /*
1144 * Track number of dirs created one after another
1145 * in a same cg without intervening by files.
1146 */
1147 if ((mode & IFMT) == IFDIR) {
1148 if (fs->fs_contigdirs[cg] < 255)
1149 fs->fs_contigdirs[cg]++;
1150 } else {
1151 if (fs->fs_contigdirs[cg] > 0)
1152 fs->fs_contigdirs[cg]--;
1153 }
1154 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1155 (allocfcn_t *)ffs_nodealloccg);
1156 if (ino == 0)
1157 goto noinodes;
1158 /*
1159 * Get rid of the cached old vnode, force allocation of a new vnode
1160 * for this inode. If this fails, release the allocated ino and
1161 * return the error.
1162 */
1163 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1164 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1165 ffs_vfree(pvp, ino, mode);
1166 return (error);
1167 }
1168 /*
1169 * We got an inode, so check mode and panic if it is already allocated.
1170 */
1171 ip = VTOI(*vpp);
1172 if (ip->i_mode) {
1173 printf("mode = 0%o, inum = %ju, fs = %s\n",
1174 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1175 panic("ffs_valloc: dup alloc");
1176 }
1177 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1178 printf("free inode %s/%ju had %ld blocks\n",
1179 fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks));
1180 DIP_SET(ip, i_blocks, 0);
1181 }
1182 ip->i_flags = 0;
1183 DIP_SET(ip, i_flags, 0);
1184 if ((mode & IFMT) == IFDIR)
1185 DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1);
1186 /*
1187 * Set up a new generation number for this inode.
1188 */
1189 while (ip->i_gen == 0 || ++ip->i_gen == 0)
1190 ip->i_gen = arc4random();
1191 DIP_SET(ip, i_gen, ip->i_gen);
1192 if (fs->fs_magic == FS_UFS2_MAGIC) {
1193 vfs_timestamp(&ts);
1194 ip->i_din2->di_birthtime = ts.tv_sec;
1195 ip->i_din2->di_birthnsec = ts.tv_nsec;
1196 }
1197 ip->i_flag = 0;
1198 (*vpp)->v_vflag = 0;
1199 (*vpp)->v_type = VNON;
1200 if (fs->fs_magic == FS_UFS2_MAGIC) {
1201 (*vpp)->v_op = &ffs_vnodeops2;
1202 UFS_INODE_SET_FLAG(ip, IN_UFS2);
1203 } else {
1204 (*vpp)->v_op = &ffs_vnodeops1;
1205 }
1206 return (0);
1207 noinodes:
1208 if (reclaimed == 0) {
1209 reclaimed = 1;
1210 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1211 goto retry;
1212 }
1213 if (ffs_fsfail_cleanup_locked(ump, 0)) {
1214 UFS_UNLOCK(ump);
1215 return (ENXIO);
1216 }
1217 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1218 UFS_UNLOCK(ump);
1219 ffs_fserr(fs, pip->i_number, "out of inodes");
1220 uprintf("\n%s: create/symlink failed, no inodes free\n",
1221 fs->fs_fsmnt);
1222 } else {
1223 UFS_UNLOCK(ump);
1224 }
1225 return (ENOSPC);
1226 }
1227
1228 /*
1229 * Find a cylinder group to place a directory.
1230 *
1231 * The policy implemented by this algorithm is to allocate a
1232 * directory inode in the same cylinder group as its parent
1233 * directory, but also to reserve space for its files inodes
1234 * and data. Restrict the number of directories which may be
1235 * allocated one after another in the same cylinder group
1236 * without intervening allocation of files.
1237 *
1238 * If we allocate a first level directory then force allocation
1239 * in another cylinder group.
1240 */
1241 static ino_t
ffs_dirpref(struct inode * pip)1242 ffs_dirpref(struct inode *pip)
1243 {
1244 struct fs *fs;
1245 int cg, prefcg, curcg, dirsize, cgsize;
1246 int depth, range, start, end, numdirs, power, numerator, denominator;
1247 uint64_t avgifree, avgbfree, avgndir, curdirsize;
1248 uint64_t minifree, minbfree, maxndir;
1249 uint64_t maxcontigdirs;
1250
1251 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1252 fs = ITOFS(pip);
1253
1254 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1255 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1256 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1257
1258 /*
1259 * Select a preferred cylinder group to place a new directory.
1260 * If we are near the root of the filesystem we aim to spread
1261 * them out as much as possible. As we descend deeper from the
1262 * root we cluster them closer together around their parent as
1263 * we expect them to be more closely interactive. Higher-level
1264 * directories like usr/src/sys and usr/src/bin should be
1265 * separated while the directories in these areas are more
1266 * likely to be accessed together so should be closer.
1267 *
1268 * We pick a range of cylinder groups around the cylinder group
1269 * of the directory in which we are being created. The size of
1270 * the range for our search is based on our depth from the root
1271 * of our filesystem. We then probe that range based on how many
1272 * directories are already present. The first new directory is at
1273 * 1/2 (middle) of the range; the second is in the first 1/4 of the
1274 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc.
1275 */
1276 depth = DIP(pip, i_dirdepth);
1277 range = fs->fs_ncg / (1 << depth);
1278 curcg = ino_to_cg(fs, pip->i_number);
1279 start = curcg - (range / 2);
1280 if (start < 0)
1281 start += fs->fs_ncg;
1282 end = curcg + (range / 2);
1283 if (end >= fs->fs_ncg)
1284 end -= fs->fs_ncg;
1285 numdirs = pip->i_effnlink - 1;
1286 power = fls(numdirs);
1287 numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1;
1288 denominator = 1 << power;
1289 prefcg = (curcg - (range / 2) + (range * numerator / denominator));
1290 if (prefcg < 0)
1291 prefcg += fs->fs_ncg;
1292 if (prefcg >= fs->fs_ncg)
1293 prefcg -= fs->fs_ncg;
1294 /*
1295 * If this filesystem is not tracking directory depths,
1296 * revert to the old algorithm.
1297 */
1298 if (depth == 0 && pip->i_number != UFS_ROOTINO)
1299 prefcg = curcg;
1300
1301 /*
1302 * Count various limits which used for
1303 * optimal allocation of a directory inode.
1304 */
1305 maxndir = min(avgndir + (1 << depth), fs->fs_ipg);
1306 minifree = avgifree - avgifree / 4;
1307 if (minifree < 1)
1308 minifree = 1;
1309 minbfree = avgbfree - avgbfree / 4;
1310 if (minbfree < 1)
1311 minbfree = 1;
1312 cgsize = fs->fs_fsize * fs->fs_fpg;
1313 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1314 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1315 if (dirsize < curdirsize)
1316 dirsize = curdirsize;
1317 if (dirsize <= 0)
1318 maxcontigdirs = 0; /* dirsize overflowed */
1319 else
1320 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1321 if (fs->fs_avgfpdir > 0)
1322 maxcontigdirs = min(maxcontigdirs,
1323 fs->fs_ipg / fs->fs_avgfpdir);
1324 if (maxcontigdirs == 0)
1325 maxcontigdirs = 1;
1326
1327 /*
1328 * Limit number of dirs in one cg and reserve space for
1329 * regular files, but only if we have no deficit in
1330 * inodes or space.
1331 *
1332 * We are trying to find a suitable cylinder group nearby
1333 * our preferred cylinder group to place a new directory.
1334 * We scan from our preferred cylinder group forward looking
1335 * for a cylinder group that meets our criterion. If we get
1336 * to the final cylinder group and do not find anything,
1337 * we start scanning forwards from the beginning of the
1338 * filesystem. While it might seem sensible to start scanning
1339 * backwards or even to alternate looking forward and backward,
1340 * this approach fails badly when the filesystem is nearly full.
1341 * Specifically, we first search all the areas that have no space
1342 * and finally try the one preceding that. We repeat this on
1343 * every request and in the case of the final block end up
1344 * searching the entire filesystem. By jumping to the front
1345 * of the filesystem, our future forward searches always look
1346 * in new cylinder groups so finds every possible block after
1347 * one pass over the filesystem.
1348 */
1349 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1350 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1351 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1352 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1353 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1354 return ((ino_t)(fs->fs_ipg * cg));
1355 }
1356 for (cg = 0; cg < prefcg; cg++)
1357 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1358 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1359 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1360 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1361 return ((ino_t)(fs->fs_ipg * cg));
1362 }
1363 /*
1364 * This is a backstop when we have deficit in space.
1365 */
1366 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1367 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1368 return ((ino_t)(fs->fs_ipg * cg));
1369 for (cg = 0; cg < prefcg; cg++)
1370 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1371 break;
1372 return ((ino_t)(fs->fs_ipg * cg));
1373 }
1374
1375 /*
1376 * Select the desired position for the next block in a file. The file is
1377 * logically divided into sections. The first section is composed of the
1378 * direct blocks and the next fs_maxbpg blocks. Each additional section
1379 * contains fs_maxbpg blocks.
1380 *
1381 * If no blocks have been allocated in the first section, the policy is to
1382 * request a block in the same cylinder group as the inode that describes
1383 * the file. The first indirect is allocated immediately following the last
1384 * direct block and the data blocks for the first indirect immediately
1385 * follow it.
1386 *
1387 * If no blocks have been allocated in any other section, the indirect
1388 * block(s) are allocated in the same cylinder group as its inode in an
1389 * area reserved immediately following the inode blocks. The policy for
1390 * the data blocks is to place them in a cylinder group with a greater than
1391 * average number of free blocks. An appropriate cylinder group is found
1392 * by using a rotor that sweeps the cylinder groups. When a new group of
1393 * blocks is needed, the sweep begins in the cylinder group following the
1394 * cylinder group from which the previous allocation was made. The sweep
1395 * continues until a cylinder group with greater than the average number
1396 * of free blocks is found. If the allocation is for the first block in an
1397 * indirect block or the previous block is a hole, then the information on
1398 * the previous allocation is unavailable; here a best guess is made based
1399 * on the logical block number being allocated.
1400 *
1401 * If a section is already partially allocated, the policy is to
1402 * allocate blocks contiguously within the section if possible.
1403 */
1404 ufs2_daddr_t
ffs_blkpref_ufs1(struct inode * ip,ufs_lbn_t lbn,int indx,ufs1_daddr_t * bap)1405 ffs_blkpref_ufs1(struct inode *ip,
1406 ufs_lbn_t lbn,
1407 int indx,
1408 ufs1_daddr_t *bap)
1409 {
1410 struct fs *fs;
1411 uint64_t cg, inocg;
1412 uint64_t avgbfree, startcg;
1413 ufs2_daddr_t pref, prevbn;
1414
1415 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1416 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1417 fs = ITOFS(ip);
1418 /*
1419 * Allocation of indirect blocks is indicated by passing negative
1420 * values in indx: -1 for single indirect, -2 for double indirect,
1421 * -3 for triple indirect. As noted below, we attempt to allocate
1422 * the first indirect inline with the file data. For all later
1423 * indirect blocks, the data is often allocated in other cylinder
1424 * groups. However to speed random file access and to speed up
1425 * fsck, the filesystem reserves the first fs_metaspace blocks
1426 * (typically half of fs_minfree) of the data area of each cylinder
1427 * group to hold these later indirect blocks.
1428 */
1429 inocg = ino_to_cg(fs, ip->i_number);
1430 if (indx < 0) {
1431 /*
1432 * Our preference for indirect blocks is the zone at the
1433 * beginning of the inode's cylinder group data area that
1434 * we try to reserve for indirect blocks.
1435 */
1436 pref = cgmeta(fs, inocg);
1437 /*
1438 * If we are allocating the first indirect block, try to
1439 * place it immediately following the last direct block.
1440 */
1441 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1442 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) {
1443 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1444 if (dtog(fs, pref) >= fs->fs_ncg)
1445 pref = 0;
1446 }
1447 return (pref);
1448 }
1449 /*
1450 * If we are allocating the first data block in the first indirect
1451 * block and the indirect has been allocated in the data block area,
1452 * try to place it immediately following the indirect block.
1453 */
1454 if (lbn == UFS_NDADDR) {
1455 pref = ip->i_din1->di_ib[0];
1456 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1457 pref < cgbase(fs, inocg + 1)) {
1458 if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1459 return (0);
1460 return (pref + fs->fs_frag);
1461 }
1462 }
1463 /*
1464 * If we are at the beginning of a file, or we have already allocated
1465 * the maximum number of blocks per cylinder group, or we do not
1466 * have a block allocated immediately preceding us, then we need
1467 * to decide where to start allocating new blocks.
1468 */
1469 if (indx == 0) {
1470 prevbn = 0;
1471 } else {
1472 prevbn = bap[indx - 1];
1473 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1474 fs->fs_bsize) != 0)
1475 prevbn = 0;
1476 }
1477 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1478 /*
1479 * If we are allocating a directory data block, we want
1480 * to place it in the metadata area.
1481 */
1482 if ((ip->i_mode & IFMT) == IFDIR)
1483 return (cgmeta(fs, inocg));
1484 /*
1485 * Until we fill all the direct and all the first indirect's
1486 * blocks, we try to allocate in the data area of the inode's
1487 * cylinder group.
1488 */
1489 if (lbn < UFS_NDADDR + NINDIR(fs))
1490 return (cgdata(fs, inocg));
1491 /*
1492 * Find a cylinder with greater than average number of
1493 * unused data blocks.
1494 */
1495 if (indx == 0 || prevbn == 0)
1496 startcg = inocg + lbn / fs->fs_maxbpg;
1497 else
1498 startcg = dtog(fs, prevbn) + 1;
1499 startcg %= fs->fs_ncg;
1500 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1501 for (cg = startcg; cg < fs->fs_ncg; cg++)
1502 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1503 fs->fs_cgrotor = cg;
1504 return (cgdata(fs, cg));
1505 }
1506 for (cg = 0; cg < startcg; cg++)
1507 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1508 fs->fs_cgrotor = cg;
1509 return (cgdata(fs, cg));
1510 }
1511 return (0);
1512 }
1513 /*
1514 * Otherwise, we just always try to lay things out contiguously.
1515 */
1516 if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1517 return (0);
1518 return (prevbn + fs->fs_frag);
1519 }
1520
1521 /*
1522 * Same as above, but for UFS2
1523 */
1524 ufs2_daddr_t
ffs_blkpref_ufs2(struct inode * ip,ufs_lbn_t lbn,int indx,ufs2_daddr_t * bap)1525 ffs_blkpref_ufs2(struct inode *ip,
1526 ufs_lbn_t lbn,
1527 int indx,
1528 ufs2_daddr_t *bap)
1529 {
1530 struct fs *fs;
1531 uint64_t cg, inocg;
1532 uint64_t avgbfree, startcg;
1533 ufs2_daddr_t pref, prevbn;
1534
1535 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1536 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1537 fs = ITOFS(ip);
1538 /*
1539 * Allocation of indirect blocks is indicated by passing negative
1540 * values in indx: -1 for single indirect, -2 for double indirect,
1541 * -3 for triple indirect. As noted below, we attempt to allocate
1542 * the first indirect inline with the file data. For all later
1543 * indirect blocks, the data is often allocated in other cylinder
1544 * groups. However to speed random file access and to speed up
1545 * fsck, the filesystem reserves the first fs_metaspace blocks
1546 * (typically half of fs_minfree) of the data area of each cylinder
1547 * group to hold these later indirect blocks.
1548 */
1549 inocg = ino_to_cg(fs, ip->i_number);
1550 if (indx < 0) {
1551 /*
1552 * Our preference for indirect blocks is the zone at the
1553 * beginning of the inode's cylinder group data area that
1554 * we try to reserve for indirect blocks.
1555 */
1556 pref = cgmeta(fs, inocg);
1557 /*
1558 * If we are allocating the first indirect block, try to
1559 * place it immediately following the last direct block.
1560 */
1561 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1562 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) {
1563 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1564 if (dtog(fs, pref) >= fs->fs_ncg)
1565 pref = 0;
1566 }
1567 return (pref);
1568 }
1569 /*
1570 * If we are allocating the first data block in the first indirect
1571 * block and the indirect has been allocated in the data block area,
1572 * try to place it immediately following the indirect block.
1573 */
1574 if (lbn == UFS_NDADDR) {
1575 pref = ip->i_din2->di_ib[0];
1576 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1577 pref < cgbase(fs, inocg + 1)) {
1578 if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1579 return (0);
1580 return (pref + fs->fs_frag);
1581 }
1582 }
1583 /*
1584 * If we are at the beginning of a file, or we have already allocated
1585 * the maximum number of blocks per cylinder group, or we do not
1586 * have a block allocated immediately preceding us, then we need
1587 * to decide where to start allocating new blocks.
1588 */
1589 if (indx == 0) {
1590 prevbn = 0;
1591 } else {
1592 prevbn = bap[indx - 1];
1593 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1594 fs->fs_bsize) != 0)
1595 prevbn = 0;
1596 }
1597 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1598 /*
1599 * If we are allocating a directory data block, we want
1600 * to place it in the metadata area.
1601 */
1602 if ((ip->i_mode & IFMT) == IFDIR)
1603 return (cgmeta(fs, inocg));
1604 /*
1605 * Until we fill all the direct and all the first indirect's
1606 * blocks, we try to allocate in the data area of the inode's
1607 * cylinder group.
1608 */
1609 if (lbn < UFS_NDADDR + NINDIR(fs))
1610 return (cgdata(fs, inocg));
1611 /*
1612 * Find a cylinder with greater than average number of
1613 * unused data blocks.
1614 */
1615 if (indx == 0 || prevbn == 0)
1616 startcg = inocg + lbn / fs->fs_maxbpg;
1617 else
1618 startcg = dtog(fs, prevbn) + 1;
1619 startcg %= fs->fs_ncg;
1620 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1621 for (cg = startcg; cg < fs->fs_ncg; cg++)
1622 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1623 fs->fs_cgrotor = cg;
1624 return (cgdata(fs, cg));
1625 }
1626 for (cg = 0; cg < startcg; cg++)
1627 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1628 fs->fs_cgrotor = cg;
1629 return (cgdata(fs, cg));
1630 }
1631 return (0);
1632 }
1633 /*
1634 * Otherwise, we just always try to lay things out contiguously.
1635 */
1636 if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1637 return (0);
1638 return (prevbn + fs->fs_frag);
1639 }
1640
1641 /*
1642 * Implement the cylinder overflow algorithm.
1643 *
1644 * The policy implemented by this algorithm is:
1645 * 1) allocate the block in its requested cylinder group.
1646 * 2) quadratically rehash on the cylinder group number.
1647 * 3) brute force search for a free block.
1648 *
1649 * Must be called with the UFS lock held. Will release the lock on success
1650 * and return with it held on failure.
1651 */
1652 /*VARARGS5*/
1653 static ufs2_daddr_t
ffs_hashalloc(struct inode * ip,uint64_t cg,ufs2_daddr_t pref,int size,int rsize,allocfcn_t * allocator)1654 ffs_hashalloc(struct inode *ip,
1655 uint64_t cg,
1656 ufs2_daddr_t pref,
1657 int size, /* Search size for data blocks, mode for inodes */
1658 int rsize, /* Real allocated size. */
1659 allocfcn_t *allocator)
1660 {
1661 struct fs *fs;
1662 ufs2_daddr_t result;
1663 uint64_t i, icg = cg;
1664
1665 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1666 #ifdef INVARIANTS
1667 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1668 panic("ffs_hashalloc: allocation on suspended filesystem");
1669 #endif
1670 fs = ITOFS(ip);
1671 /*
1672 * 1: preferred cylinder group
1673 */
1674 result = (*allocator)(ip, cg, pref, size, rsize);
1675 if (result)
1676 return (result);
1677 /*
1678 * 2: quadratic rehash
1679 */
1680 for (i = 1; i < fs->fs_ncg; i *= 2) {
1681 cg += i;
1682 if (cg >= fs->fs_ncg)
1683 cg -= fs->fs_ncg;
1684 result = (*allocator)(ip, cg, 0, size, rsize);
1685 if (result)
1686 return (result);
1687 }
1688 /*
1689 * 3: brute force search
1690 * Note that we start at i == 2, since 0 was checked initially,
1691 * and 1 is always checked in the quadratic rehash.
1692 */
1693 cg = (icg + 2) % fs->fs_ncg;
1694 for (i = 2; i < fs->fs_ncg; i++) {
1695 result = (*allocator)(ip, cg, 0, size, rsize);
1696 if (result)
1697 return (result);
1698 cg++;
1699 if (cg == fs->fs_ncg)
1700 cg = 0;
1701 }
1702 return (0);
1703 }
1704
1705 /*
1706 * Determine whether a fragment can be extended.
1707 *
1708 * Check to see if the necessary fragments are available, and
1709 * if they are, allocate them.
1710 */
1711 static ufs2_daddr_t
ffs_fragextend(struct inode * ip,uint64_t cg,ufs2_daddr_t bprev,int osize,int nsize)1712 ffs_fragextend(struct inode *ip,
1713 uint64_t cg,
1714 ufs2_daddr_t bprev,
1715 int osize,
1716 int nsize)
1717 {
1718 struct fs *fs;
1719 struct cg *cgp;
1720 struct buf *bp;
1721 struct ufsmount *ump;
1722 int nffree;
1723 long bno;
1724 int frags, bbase;
1725 int i, error;
1726 uint8_t *blksfree;
1727
1728 ump = ITOUMP(ip);
1729 fs = ump->um_fs;
1730 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1731 return (0);
1732 frags = numfrags(fs, nsize);
1733 bbase = fragnum(fs, bprev);
1734 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1735 /* cannot extend across a block boundary */
1736 return (0);
1737 }
1738 UFS_UNLOCK(ump);
1739 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1740 ffs_checkcgintegrity(fs, cg, error);
1741 goto fail;
1742 }
1743 bno = dtogd(fs, bprev);
1744 blksfree = cg_blksfree(cgp);
1745 for (i = numfrags(fs, osize); i < frags; i++)
1746 if (isclr(blksfree, bno + i))
1747 goto fail;
1748 /*
1749 * the current fragment can be extended
1750 * deduct the count on fragment being extended into
1751 * increase the count on the remaining fragment (if any)
1752 * allocate the extended piece
1753 */
1754 for (i = frags; i < fs->fs_frag - bbase; i++)
1755 if (isclr(blksfree, bno + i))
1756 break;
1757 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1758 if (i != frags)
1759 cgp->cg_frsum[i - frags]++;
1760 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1761 clrbit(blksfree, bno + i);
1762 cgp->cg_cs.cs_nffree--;
1763 nffree++;
1764 }
1765 UFS_LOCK(ump);
1766 fs->fs_cstotal.cs_nffree -= nffree;
1767 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1768 fs->fs_fmod = 1;
1769 ACTIVECLEAR(fs, cg);
1770 UFS_UNLOCK(ump);
1771 if (DOINGSOFTDEP(ITOV(ip)))
1772 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1773 frags, numfrags(fs, osize));
1774 bdwrite(bp);
1775 return (bprev);
1776
1777 fail:
1778 brelse(bp);
1779 UFS_LOCK(ump);
1780 return (0);
1781
1782 }
1783
1784 /*
1785 * Determine whether a block can be allocated.
1786 *
1787 * Check to see if a block of the appropriate size is available,
1788 * and if it is, allocate it.
1789 */
1790 static ufs2_daddr_t
ffs_alloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int size,int rsize)1791 ffs_alloccg(struct inode *ip,
1792 uint64_t cg,
1793 ufs2_daddr_t bpref,
1794 int size,
1795 int rsize)
1796 {
1797 struct fs *fs;
1798 struct cg *cgp;
1799 struct buf *bp;
1800 struct ufsmount *ump;
1801 ufs1_daddr_t bno;
1802 ufs2_daddr_t blkno;
1803 int i, allocsiz, error, frags;
1804 uint8_t *blksfree;
1805
1806 ump = ITOUMP(ip);
1807 fs = ump->um_fs;
1808 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1809 return (0);
1810 UFS_UNLOCK(ump);
1811 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1812 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1813 ffs_checkcgintegrity(fs, cg, error);
1814 goto fail;
1815 }
1816 if (size == fs->fs_bsize) {
1817 UFS_LOCK(ump);
1818 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1819 ACTIVECLEAR(fs, cg);
1820 UFS_UNLOCK(ump);
1821 bdwrite(bp);
1822 return (blkno);
1823 }
1824 /*
1825 * check to see if any fragments are already available
1826 * allocsiz is the size which will be allocated, hacking
1827 * it down to a smaller size if necessary
1828 */
1829 blksfree = cg_blksfree(cgp);
1830 frags = numfrags(fs, size);
1831 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1832 if (cgp->cg_frsum[allocsiz] != 0)
1833 break;
1834 if (allocsiz == fs->fs_frag) {
1835 /*
1836 * no fragments were available, so a block will be
1837 * allocated, and hacked up
1838 */
1839 if (cgp->cg_cs.cs_nbfree == 0)
1840 goto fail;
1841 UFS_LOCK(ump);
1842 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1843 ACTIVECLEAR(fs, cg);
1844 UFS_UNLOCK(ump);
1845 bdwrite(bp);
1846 return (blkno);
1847 }
1848 KASSERT(size == rsize,
1849 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1850 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1851 if (bno < 0)
1852 goto fail;
1853 for (i = 0; i < frags; i++)
1854 clrbit(blksfree, bno + i);
1855 cgp->cg_cs.cs_nffree -= frags;
1856 cgp->cg_frsum[allocsiz]--;
1857 if (frags != allocsiz)
1858 cgp->cg_frsum[allocsiz - frags]++;
1859 UFS_LOCK(ump);
1860 fs->fs_cstotal.cs_nffree -= frags;
1861 fs->fs_cs(fs, cg).cs_nffree -= frags;
1862 fs->fs_fmod = 1;
1863 blkno = cgbase(fs, cg) + bno;
1864 ACTIVECLEAR(fs, cg);
1865 UFS_UNLOCK(ump);
1866 if (DOINGSOFTDEP(ITOV(ip)))
1867 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1868 bdwrite(bp);
1869 return (blkno);
1870
1871 fail:
1872 brelse(bp);
1873 UFS_LOCK(ump);
1874 return (0);
1875 }
1876
1877 /*
1878 * Allocate a block in a cylinder group.
1879 *
1880 * This algorithm implements the following policy:
1881 * 1) allocate the requested block.
1882 * 2) allocate a rotationally optimal block in the same cylinder.
1883 * 3) allocate the next available block on the block rotor for the
1884 * specified cylinder group.
1885 * Note that this routine only allocates fs_bsize blocks; these
1886 * blocks may be fragmented by the routine that allocates them.
1887 */
1888 static ufs2_daddr_t
ffs_alloccgblk(struct inode * ip,struct buf * bp,ufs2_daddr_t bpref,int size)1889 ffs_alloccgblk(struct inode *ip,
1890 struct buf *bp,
1891 ufs2_daddr_t bpref,
1892 int size)
1893 {
1894 struct fs *fs;
1895 struct cg *cgp;
1896 struct ufsmount *ump;
1897 ufs1_daddr_t bno;
1898 ufs2_daddr_t blkno;
1899 uint8_t *blksfree;
1900 int i, cgbpref;
1901
1902 ump = ITOUMP(ip);
1903 fs = ump->um_fs;
1904 mtx_assert(UFS_MTX(ump), MA_OWNED);
1905 cgp = (struct cg *)bp->b_data;
1906 blksfree = cg_blksfree(cgp);
1907 if (bpref == 0) {
1908 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1909 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1910 /* map bpref to correct zone in this cg */
1911 if (bpref < cgdata(fs, cgbpref))
1912 bpref = cgmeta(fs, cgp->cg_cgx);
1913 else
1914 bpref = cgdata(fs, cgp->cg_cgx);
1915 }
1916 /*
1917 * if the requested block is available, use it
1918 */
1919 bno = dtogd(fs, blknum(fs, bpref));
1920 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1921 goto gotit;
1922 /*
1923 * Take the next available block in this cylinder group.
1924 */
1925 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1926 if (bno < 0)
1927 return (0);
1928 /* Update cg_rotor only if allocated from the data zone */
1929 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1930 cgp->cg_rotor = bno;
1931 gotit:
1932 blkno = fragstoblks(fs, bno);
1933 ffs_clrblock(fs, blksfree, (long)blkno);
1934 ffs_clusteracct(fs, cgp, blkno, -1);
1935 cgp->cg_cs.cs_nbfree--;
1936 fs->fs_cstotal.cs_nbfree--;
1937 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1938 fs->fs_fmod = 1;
1939 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1940 /*
1941 * If the caller didn't want the whole block free the frags here.
1942 */
1943 size = numfrags(fs, size);
1944 if (size != fs->fs_frag) {
1945 bno = dtogd(fs, blkno);
1946 for (i = size; i < fs->fs_frag; i++)
1947 setbit(blksfree, bno + i);
1948 i = fs->fs_frag - size;
1949 cgp->cg_cs.cs_nffree += i;
1950 fs->fs_cstotal.cs_nffree += i;
1951 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1952 fs->fs_fmod = 1;
1953 cgp->cg_frsum[i]++;
1954 }
1955 /* XXX Fixme. */
1956 UFS_UNLOCK(ump);
1957 if (DOINGSOFTDEP(ITOV(ip)))
1958 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1959 UFS_LOCK(ump);
1960 return (blkno);
1961 }
1962
1963 /*
1964 * Determine whether a cluster can be allocated.
1965 *
1966 * We do not currently check for optimal rotational layout if there
1967 * are multiple choices in the same cylinder group. Instead we just
1968 * take the first one that we find following bpref.
1969 */
1970 static ufs2_daddr_t
ffs_clusteralloc(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int len)1971 ffs_clusteralloc(struct inode *ip,
1972 uint64_t cg,
1973 ufs2_daddr_t bpref,
1974 int len)
1975 {
1976 struct fs *fs;
1977 struct cg *cgp;
1978 struct buf *bp;
1979 struct ufsmount *ump;
1980 int i, run, bit, map, got, error;
1981 ufs2_daddr_t bno;
1982 uint8_t *mapp;
1983 int32_t *lp;
1984 uint8_t *blksfree;
1985
1986 ump = ITOUMP(ip);
1987 fs = ump->um_fs;
1988 MPASS(cg < fs->fs_ncg);
1989 if (fs->fs_maxcluster[cg] < len)
1990 return (0);
1991 UFS_UNLOCK(ump);
1992 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1993 ffs_checkcgintegrity(fs, cg, error);
1994 UFS_LOCK(ump);
1995 return (0);
1996 }
1997 /*
1998 * Check to see if a cluster of the needed size (or bigger) is
1999 * available in this cylinder group.
2000 */
2001 lp = &cg_clustersum(cgp)[len];
2002 for (i = len; i <= fs->fs_contigsumsize; i++)
2003 if (*lp++ > 0)
2004 break;
2005 if (i > fs->fs_contigsumsize) {
2006 /*
2007 * This is the first time looking for a cluster in this
2008 * cylinder group. Update the cluster summary information
2009 * to reflect the true maximum sized cluster so that
2010 * future cluster allocation requests can avoid reading
2011 * the cylinder group map only to find no clusters.
2012 */
2013 lp = &cg_clustersum(cgp)[len - 1];
2014 for (i = len - 1; i > 0; i--)
2015 if (*lp-- > 0)
2016 break;
2017 UFS_LOCK(ump);
2018 fs->fs_maxcluster[cg] = i;
2019 brelse(bp);
2020 return (0);
2021 }
2022 /*
2023 * Search the cluster map to find a big enough cluster.
2024 * We take the first one that we find, even if it is larger
2025 * than we need as we prefer to get one close to the previous
2026 * block allocation. We do not search before the current
2027 * preference point as we do not want to allocate a block
2028 * that is allocated before the previous one (as we will
2029 * then have to wait for another pass of the elevator
2030 * algorithm before it will be read). We prefer to fail and
2031 * be recalled to try an allocation in the next cylinder group.
2032 */
2033 if (dtog(fs, bpref) != cg)
2034 bpref = cgdata(fs, cg);
2035 else
2036 bpref = blknum(fs, bpref);
2037 bpref = fragstoblks(fs, dtogd(fs, bpref));
2038 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
2039 map = *mapp++;
2040 bit = 1 << (bpref % NBBY);
2041 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
2042 if ((map & bit) == 0) {
2043 run = 0;
2044 } else {
2045 run++;
2046 if (run == len)
2047 break;
2048 }
2049 if ((got & (NBBY - 1)) != (NBBY - 1)) {
2050 bit <<= 1;
2051 } else {
2052 map = *mapp++;
2053 bit = 1;
2054 }
2055 }
2056 if (got >= cgp->cg_nclusterblks) {
2057 UFS_LOCK(ump);
2058 brelse(bp);
2059 return (0);
2060 }
2061 /*
2062 * Allocate the cluster that we have found.
2063 */
2064 blksfree = cg_blksfree(cgp);
2065 for (i = 1; i <= len; i++)
2066 if (!ffs_isblock(fs, blksfree, got - run + i))
2067 panic("ffs_clusteralloc: map mismatch");
2068 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2069 if (dtog(fs, bno) != cg)
2070 panic("ffs_clusteralloc: allocated out of group");
2071 len = blkstofrags(fs, len);
2072 UFS_LOCK(ump);
2073 for (i = 0; i < len; i += fs->fs_frag)
2074 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2075 panic("ffs_clusteralloc: lost block");
2076 ACTIVECLEAR(fs, cg);
2077 UFS_UNLOCK(ump);
2078 bdwrite(bp);
2079 return (bno);
2080 }
2081
2082 static inline struct buf *
getinobuf(struct inode * ip,uint64_t cg,uint32_t cginoblk,int gbflags)2083 getinobuf(struct inode *ip,
2084 uint64_t cg,
2085 uint32_t cginoblk,
2086 int gbflags)
2087 {
2088 struct fs *fs;
2089
2090 fs = ITOFS(ip);
2091 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2092 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2093 gbflags));
2094 }
2095
2096 /*
2097 * Synchronous inode initialization is needed only when barrier writes do not
2098 * work as advertised, and will impose a heavy cost on file creation in a newly
2099 * created filesystem.
2100 */
2101 static int doasyncinodeinit = 1;
2102 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2103 &doasyncinodeinit, 0,
2104 "Perform inode block initialization using asynchronous writes");
2105
2106 /*
2107 * Determine whether an inode can be allocated.
2108 *
2109 * Check to see if an inode is available, and if it is,
2110 * allocate it using the following policy:
2111 * 1) allocate the requested inode.
2112 * 2) allocate the next available inode after the requested
2113 * inode in the specified cylinder group.
2114 */
2115 static ufs2_daddr_t
ffs_nodealloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t ipref,int mode,int unused)2116 ffs_nodealloccg(struct inode *ip,
2117 uint64_t cg,
2118 ufs2_daddr_t ipref,
2119 int mode,
2120 int unused)
2121 {
2122 struct fs *fs;
2123 struct cg *cgp;
2124 struct buf *bp, *ibp;
2125 struct ufsmount *ump;
2126 uint8_t *inosused, *loc;
2127 struct ufs2_dinode *dp2;
2128 int error, start, len, i;
2129 uint32_t old_initediblk;
2130
2131 ump = ITOUMP(ip);
2132 fs = ump->um_fs;
2133 check_nifree:
2134 if (fs->fs_cs(fs, cg).cs_nifree == 0)
2135 return (0);
2136 UFS_UNLOCK(ump);
2137 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2138 ffs_checkcgintegrity(fs, cg, error);
2139 UFS_LOCK(ump);
2140 return (0);
2141 }
2142 restart:
2143 if (cgp->cg_cs.cs_nifree == 0) {
2144 brelse(bp);
2145 UFS_LOCK(ump);
2146 return (0);
2147 }
2148 inosused = cg_inosused(cgp);
2149 if (ipref) {
2150 ipref %= fs->fs_ipg;
2151 if (isclr(inosused, ipref))
2152 goto gotit;
2153 }
2154 start = cgp->cg_irotor / NBBY;
2155 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2156 loc = memcchr(&inosused[start], 0xff, len);
2157 if (loc == NULL) {
2158 len = start + 1;
2159 start = 0;
2160 loc = memcchr(&inosused[start], 0xff, len);
2161 if (loc == NULL) {
2162 printf("cg = %ju, irotor = %ld, fs = %s\n",
2163 (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2164 panic("ffs_nodealloccg: map corrupted");
2165 /* NOTREACHED */
2166 }
2167 }
2168 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2169 gotit:
2170 /*
2171 * Check to see if we need to initialize more inodes.
2172 */
2173 if (fs->fs_magic == FS_UFS2_MAGIC &&
2174 ipref + INOPB(fs) > cgp->cg_initediblk &&
2175 cgp->cg_initediblk < cgp->cg_niblk) {
2176 old_initediblk = cgp->cg_initediblk;
2177
2178 /*
2179 * Free the cylinder group lock before writing the
2180 * initialized inode block. Entering the
2181 * babarrierwrite() with the cylinder group lock
2182 * causes lock order violation between the lock and
2183 * snaplk.
2184 *
2185 * Another thread can decide to initialize the same
2186 * inode block, but whichever thread first gets the
2187 * cylinder group lock after writing the newly
2188 * allocated inode block will update it and the other
2189 * will realize that it has lost and leave the
2190 * cylinder group unchanged.
2191 */
2192 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2193 brelse(bp);
2194 if (ibp == NULL) {
2195 /*
2196 * The inode block buffer is already owned by
2197 * another thread, which must initialize it.
2198 * Wait on the buffer to allow another thread
2199 * to finish the updates, with dropped cg
2200 * buffer lock, then retry.
2201 */
2202 ibp = getinobuf(ip, cg, old_initediblk, 0);
2203 brelse(ibp);
2204 UFS_LOCK(ump);
2205 goto check_nifree;
2206 }
2207 bzero(ibp->b_data, (int)fs->fs_bsize);
2208 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2209 for (i = 0; i < INOPB(fs); i++) {
2210 while (dp2->di_gen == 0)
2211 dp2->di_gen = arc4random();
2212 dp2++;
2213 }
2214
2215 /*
2216 * Rather than adding a soft updates dependency to ensure
2217 * that the new inode block is written before it is claimed
2218 * by the cylinder group map, we just do a barrier write
2219 * here. The barrier write will ensure that the inode block
2220 * gets written before the updated cylinder group map can be
2221 * written. The barrier write should only slow down bulk
2222 * loading of newly created filesystems.
2223 */
2224 if (doasyncinodeinit)
2225 babarrierwrite(ibp);
2226 else
2227 bwrite(ibp);
2228
2229 /*
2230 * After the inode block is written, try to update the
2231 * cg initediblk pointer. If another thread beat us
2232 * to it, then leave it unchanged as the other thread
2233 * has already set it correctly.
2234 */
2235 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2236 UFS_LOCK(ump);
2237 ACTIVECLEAR(fs, cg);
2238 UFS_UNLOCK(ump);
2239 if (error != 0)
2240 return (error);
2241 if (cgp->cg_initediblk == old_initediblk)
2242 cgp->cg_initediblk += INOPB(fs);
2243 goto restart;
2244 }
2245 cgp->cg_irotor = ipref;
2246 UFS_LOCK(ump);
2247 ACTIVECLEAR(fs, cg);
2248 setbit(inosused, ipref);
2249 cgp->cg_cs.cs_nifree--;
2250 fs->fs_cstotal.cs_nifree--;
2251 fs->fs_cs(fs, cg).cs_nifree--;
2252 fs->fs_fmod = 1;
2253 if ((mode & IFMT) == IFDIR) {
2254 cgp->cg_cs.cs_ndir++;
2255 fs->fs_cstotal.cs_ndir++;
2256 fs->fs_cs(fs, cg).cs_ndir++;
2257 }
2258 UFS_UNLOCK(ump);
2259 if (DOINGSOFTDEP(ITOV(ip)))
2260 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2261 bdwrite(bp);
2262 return ((ino_t)(cg * fs->fs_ipg + ipref));
2263 }
2264
2265 /*
2266 * Free a block or fragment.
2267 *
2268 * The specified block or fragment is placed back in the
2269 * free map. If a fragment is deallocated, a possible
2270 * block reassembly is checked.
2271 */
2272 static void
ffs_blkfree_cg(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,struct workhead * dephd)2273 ffs_blkfree_cg(struct ufsmount *ump,
2274 struct fs *fs,
2275 struct vnode *devvp,
2276 ufs2_daddr_t bno,
2277 long size,
2278 ino_t inum,
2279 struct workhead *dephd)
2280 {
2281 struct mount *mp;
2282 struct cg *cgp;
2283 struct buf *bp;
2284 daddr_t dbn;
2285 ufs1_daddr_t fragno, cgbno;
2286 int i, blk, frags, bbase, error;
2287 uint64_t cg;
2288 uint8_t *blksfree;
2289 struct cdev *dev;
2290
2291 cg = dtog(fs, bno);
2292 if (devvp->v_type == VREG) {
2293 /* devvp is a snapshot */
2294 MPASS(devvp->v_mount->mnt_data == ump);
2295 dev = ump->um_devvp->v_rdev;
2296 } else if (devvp->v_type == VCHR) {
2297 /*
2298 * devvp is a normal disk device
2299 * XXXKIB: devvp is not locked there, v_rdev access depends on
2300 * busy mount, which prevents mntfs devvp from reclamation.
2301 */
2302 dev = devvp->v_rdev;
2303 } else
2304 return;
2305 #ifdef INVARIANTS
2306 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2307 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2308 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2309 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2310 size, fs->fs_fsmnt);
2311 panic("ffs_blkfree_cg: invalid size");
2312 }
2313 #endif
2314 if ((uint64_t)bno >= fs->fs_size) {
2315 printf("bad block %jd, ino %ju\n", (intmax_t)bno,
2316 (intmax_t)inum);
2317 ffs_fserr(fs, inum, "bad block");
2318 return;
2319 }
2320 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2321 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2322 return;
2323 /*
2324 * Would like to just downgrade to read-only. Until that
2325 * capability is available, just toss the cylinder group
2326 * update and mark the filesystem as needing to run fsck.
2327 */
2328 fs->fs_flags |= FS_NEEDSFSCK;
2329 if (devvp->v_type == VREG)
2330 dbn = fragstoblks(fs, cgtod(fs, cg));
2331 else
2332 dbn = fsbtodb(fs, cgtod(fs, cg));
2333 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2334 KASSERT(error == 0, ("getblkx failed"));
2335 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2336 numfrags(fs, size), dephd, true);
2337 bp->b_flags |= B_RELBUF | B_NOCACHE;
2338 bp->b_flags &= ~B_CACHE;
2339 bawrite(bp);
2340 return;
2341 }
2342 cgbno = dtogd(fs, bno);
2343 blksfree = cg_blksfree(cgp);
2344 UFS_LOCK(ump);
2345 if (size == fs->fs_bsize) {
2346 fragno = fragstoblks(fs, cgbno);
2347 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2348 if (devvp->v_type == VREG) {
2349 UFS_UNLOCK(ump);
2350 /* devvp is a snapshot */
2351 brelse(bp);
2352 return;
2353 }
2354 printf("dev = %s, block = %jd, fs = %s\n",
2355 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2356 panic("ffs_blkfree_cg: freeing free block");
2357 }
2358 ffs_setblock(fs, blksfree, fragno);
2359 ffs_clusteracct(fs, cgp, fragno, 1);
2360 cgp->cg_cs.cs_nbfree++;
2361 fs->fs_cstotal.cs_nbfree++;
2362 fs->fs_cs(fs, cg).cs_nbfree++;
2363 } else {
2364 bbase = cgbno - fragnum(fs, cgbno);
2365 /*
2366 * decrement the counts associated with the old frags
2367 */
2368 blk = blkmap(fs, blksfree, bbase);
2369 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2370 /*
2371 * deallocate the fragment
2372 */
2373 frags = numfrags(fs, size);
2374 for (i = 0; i < frags; i++) {
2375 if (isset(blksfree, cgbno + i)) {
2376 printf("dev = %s, block = %jd, fs = %s\n",
2377 devtoname(dev), (intmax_t)(bno + i),
2378 fs->fs_fsmnt);
2379 panic("ffs_blkfree_cg: freeing free frag");
2380 }
2381 setbit(blksfree, cgbno + i);
2382 }
2383 cgp->cg_cs.cs_nffree += i;
2384 fs->fs_cstotal.cs_nffree += i;
2385 fs->fs_cs(fs, cg).cs_nffree += i;
2386 /*
2387 * add back in counts associated with the new frags
2388 */
2389 blk = blkmap(fs, blksfree, bbase);
2390 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2391 /*
2392 * if a complete block has been reassembled, account for it
2393 */
2394 fragno = fragstoblks(fs, bbase);
2395 if (ffs_isblock(fs, blksfree, fragno)) {
2396 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2397 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2398 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2399 ffs_clusteracct(fs, cgp, fragno, 1);
2400 cgp->cg_cs.cs_nbfree++;
2401 fs->fs_cstotal.cs_nbfree++;
2402 fs->fs_cs(fs, cg).cs_nbfree++;
2403 }
2404 }
2405 fs->fs_fmod = 1;
2406 ACTIVECLEAR(fs, cg);
2407 UFS_UNLOCK(ump);
2408 mp = UFSTOVFS(ump);
2409 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2410 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2411 numfrags(fs, size), dephd, false);
2412 bdwrite(bp);
2413 }
2414
2415 /*
2416 * Structures and routines associated with trim management.
2417 *
2418 * The following requests are passed to trim_lookup to indicate
2419 * the actions that should be taken.
2420 */
2421 #define NEW 1 /* if found, error else allocate and hash it */
2422 #define OLD 2 /* if not found, error, else return it */
2423 #define REPLACE 3 /* if not found, error else unhash and reallocate it */
2424 #define DONE 4 /* if not found, error else unhash and return it */
2425 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */
2426
2427 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2428
2429 #define TRIMLIST_HASH(ump, key) \
2430 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2431
2432 /*
2433 * These structures describe each of the block free requests aggregated
2434 * together to make up a trim request.
2435 */
2436 struct trim_blkreq {
2437 TAILQ_ENTRY(trim_blkreq) blkreqlist;
2438 ufs2_daddr_t bno;
2439 long size;
2440 struct workhead *pdephd;
2441 struct workhead dephd;
2442 };
2443
2444 /*
2445 * Description of a trim request.
2446 */
2447 struct ffs_blkfree_trim_params {
2448 TAILQ_HEAD(, trim_blkreq) blklist;
2449 LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2450 struct task task;
2451 struct ufsmount *ump;
2452 struct vnode *devvp;
2453 ino_t inum;
2454 ufs2_daddr_t bno;
2455 long size;
2456 long key;
2457 };
2458
2459 static void ffs_blkfree_trim_completed(struct buf *);
2460 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
2461 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2462 struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int);
2463 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2464
2465 /*
2466 * Called on trim completion to start a task to free the associated block(s).
2467 */
2468 static void
ffs_blkfree_trim_completed(struct buf * bp)2469 ffs_blkfree_trim_completed(struct buf *bp)
2470 {
2471 struct ffs_blkfree_trim_params *tp;
2472
2473 tp = bp->b_fsprivate1;
2474 free(bp, M_TRIM);
2475 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2476 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2477 }
2478
2479 /*
2480 * Trim completion task that free associated block(s).
2481 */
2482 static void
ffs_blkfree_trim_task(void * ctx,int pending)2483 ffs_blkfree_trim_task(void *ctx, int pending)
2484 {
2485 struct ffs_blkfree_trim_params *tp;
2486 struct trim_blkreq *blkelm;
2487 struct ufsmount *ump;
2488
2489 tp = ctx;
2490 ump = tp->ump;
2491 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2492 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2493 blkelm->size, tp->inum, blkelm->pdephd);
2494 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2495 free(blkelm, M_TRIM);
2496 }
2497 vn_finished_secondary_write(UFSTOVFS(ump));
2498 UFS_LOCK(ump);
2499 ump->um_trim_inflight -= 1;
2500 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2501 UFS_UNLOCK(ump);
2502 free(tp, M_TRIM);
2503 }
2504
2505 /*
2506 * Lookup a trim request by inode number.
2507 * Allocate if requested (NEW, REPLACE, SINGLE).
2508 */
2509 static struct ffs_blkfree_trim_params *
trim_lookup(struct ufsmount * ump,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,uint64_t key,int alloctype)2510 trim_lookup(struct ufsmount *ump,
2511 struct vnode *devvp,
2512 ufs2_daddr_t bno,
2513 long size,
2514 ino_t inum,
2515 uint64_t key,
2516 int alloctype)
2517 {
2518 struct trimlist_hashhead *tphashhead;
2519 struct ffs_blkfree_trim_params *tp, *ntp;
2520
2521 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2522 if (alloctype != SINGLE) {
2523 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2524 UFS_LOCK(ump);
2525 tphashhead = TRIMLIST_HASH(ump, key);
2526 LIST_FOREACH(tp, tphashhead, hashlist)
2527 if (key == tp->key)
2528 break;
2529 }
2530 switch (alloctype) {
2531 case NEW:
2532 KASSERT(tp == NULL, ("trim_lookup: found trim"));
2533 break;
2534 case OLD:
2535 KASSERT(tp != NULL,
2536 ("trim_lookup: missing call to ffs_blkrelease_start()"));
2537 UFS_UNLOCK(ump);
2538 free(ntp, M_TRIM);
2539 return (tp);
2540 case REPLACE:
2541 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2542 LIST_REMOVE(tp, hashlist);
2543 /* tp will be freed by caller */
2544 break;
2545 case DONE:
2546 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2547 LIST_REMOVE(tp, hashlist);
2548 UFS_UNLOCK(ump);
2549 free(ntp, M_TRIM);
2550 return (tp);
2551 }
2552 TAILQ_INIT(&ntp->blklist);
2553 ntp->ump = ump;
2554 ntp->devvp = devvp;
2555 ntp->bno = bno;
2556 ntp->size = size;
2557 ntp->inum = inum;
2558 ntp->key = key;
2559 if (alloctype != SINGLE) {
2560 LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2561 UFS_UNLOCK(ump);
2562 }
2563 return (ntp);
2564 }
2565
2566 /*
2567 * Dispatch a trim request.
2568 */
2569 static void
ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params * tp)2570 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2571 {
2572 struct ufsmount *ump;
2573 struct mount *mp;
2574 struct buf *bp;
2575
2576 /*
2577 * Postpone the set of the free bit in the cg bitmap until the
2578 * BIO_DELETE is completed. Otherwise, due to disk queue
2579 * reordering, TRIM might be issued after we reuse the block
2580 * and write some new data into it.
2581 */
2582 ump = tp->ump;
2583 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2584 bp->b_iocmd = BIO_DELETE;
2585 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2586 bp->b_iodone = ffs_blkfree_trim_completed;
2587 bp->b_bcount = tp->size;
2588 bp->b_fsprivate1 = tp;
2589 UFS_LOCK(ump);
2590 ump->um_trim_total += 1;
2591 ump->um_trim_inflight += 1;
2592 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2593 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2594 UFS_UNLOCK(ump);
2595
2596 mp = UFSTOVFS(ump);
2597 vn_start_secondary_write(NULL, &mp, 0);
2598 g_vfs_strategy(ump->um_bo, bp);
2599 }
2600
2601 /*
2602 * Allocate a new key to use to identify a range of blocks.
2603 */
2604 uint64_t
ffs_blkrelease_start(struct ufsmount * ump,struct vnode * devvp,ino_t inum)2605 ffs_blkrelease_start(struct ufsmount *ump,
2606 struct vnode *devvp,
2607 ino_t inum)
2608 {
2609 static u_long masterkey;
2610 uint64_t key;
2611
2612 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2613 return (SINGLETON_KEY);
2614 do {
2615 key = atomic_fetchadd_long(&masterkey, 1);
2616 } while (key < FIRST_VALID_KEY);
2617 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2618 return (key);
2619 }
2620
2621 /*
2622 * Deallocate a key that has been used to identify a range of blocks.
2623 */
2624 void
ffs_blkrelease_finish(struct ufsmount * ump,uint64_t key)2625 ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key)
2626 {
2627 struct ffs_blkfree_trim_params *tp;
2628
2629 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2630 return;
2631 /*
2632 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2633 * a file deletion is active, specifically after a call
2634 * to ffs_blkrelease_start() but before the call to
2635 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2636 * have handed out SINGLETON_KEY rather than starting a
2637 * collection sequence. Thus if we get a SINGLETON_KEY
2638 * passed to ffs_blkrelease_finish(), we just return rather
2639 * than trying to finish the nonexistent sequence.
2640 */
2641 if (key == SINGLETON_KEY) {
2642 #ifdef INVARIANTS
2643 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2644 ump->um_mountp->mnt_stat.f_mntonname);
2645 #endif
2646 return;
2647 }
2648 /*
2649 * We are done with sending blocks using this key. Look up the key
2650 * using the DONE alloctype (in tp) to request that it be unhashed
2651 * as we will not be adding to it. If the key has never been used,
2652 * tp->size will be zero, so we can just free tp. Otherwise the call
2653 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2654 * tp to be issued (and then tp to be freed).
2655 */
2656 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2657 if (tp->size == 0)
2658 free(tp, M_TRIM);
2659 else
2660 ffs_blkfree_sendtrim(tp);
2661 }
2662
2663 /*
2664 * Setup to free a block or fragment.
2665 *
2666 * Check for snapshots that might want to claim the block.
2667 * If trims are requested, prepare a trim request. Attempt to
2668 * aggregate consecutive blocks into a single trim request.
2669 */
2670 void
ffs_blkfree(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,__enum_uint8 (vtype)vtype,struct workhead * dephd,uint64_t key)2671 ffs_blkfree(struct ufsmount *ump,
2672 struct fs *fs,
2673 struct vnode *devvp,
2674 ufs2_daddr_t bno,
2675 long size,
2676 ino_t inum,
2677 __enum_uint8(vtype) vtype,
2678 struct workhead *dephd,
2679 uint64_t key)
2680 {
2681 struct ffs_blkfree_trim_params *tp, *ntp;
2682 struct trim_blkreq *blkelm;
2683
2684 /*
2685 * Check to see if a snapshot wants to claim the block.
2686 * Check that devvp is a normal disk device, not a snapshot,
2687 * it has a snapshot(s) associated with it, and one of the
2688 * snapshots wants to claim the block.
2689 */
2690 if (devvp->v_type == VCHR &&
2691 (devvp->v_vflag & VV_COPYONWRITE) &&
2692 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2693 return;
2694 }
2695 /*
2696 * Nothing to delay if TRIM is not required for this block or TRIM
2697 * is disabled or the operation is performed on a snapshot.
2698 */
2699 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2700 devvp->v_type == VREG) {
2701 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2702 return;
2703 }
2704 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2705 blkelm->bno = bno;
2706 blkelm->size = size;
2707 if (dephd == NULL) {
2708 blkelm->pdephd = NULL;
2709 } else {
2710 LIST_INIT(&blkelm->dephd);
2711 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2712 blkelm->pdephd = &blkelm->dephd;
2713 }
2714 if (key == SINGLETON_KEY) {
2715 /*
2716 * Just a single non-contiguous piece. Use the SINGLE
2717 * alloctype to return a trim request that will not be
2718 * hashed for future lookup.
2719 */
2720 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2721 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2722 ffs_blkfree_sendtrim(tp);
2723 return;
2724 }
2725 /*
2726 * The callers of this function are not tracking whether or not
2727 * the blocks are contiguous. They are just saying that they
2728 * are freeing a set of blocks. It is this code that determines
2729 * the pieces of that range that are actually contiguous.
2730 *
2731 * Calling ffs_blkrelease_start() will have created an entry
2732 * that we will use.
2733 */
2734 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2735 if (tp->size == 0) {
2736 /*
2737 * First block of a potential range, set block and size
2738 * for the trim block.
2739 */
2740 tp->bno = bno;
2741 tp->size = size;
2742 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2743 return;
2744 }
2745 /*
2746 * If this block is a continuation of the range (either
2747 * follows at the end or preceeds in the front) then we
2748 * add it to the front or back of the list and return.
2749 *
2750 * If it is not a continuation of the trim that we were
2751 * building, using the REPLACE alloctype, we request that
2752 * the old trim request (still in tp) be unhashed and a
2753 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2754 * call causes the block range described by tp to be issued
2755 * (and then tp to be freed).
2756 */
2757 if (bno + numfrags(fs, size) == tp->bno) {
2758 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2759 tp->bno = bno;
2760 tp->size += size;
2761 return;
2762 } else if (bno == tp->bno + numfrags(fs, tp->size)) {
2763 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2764 tp->size += size;
2765 return;
2766 }
2767 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2768 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2769 ffs_blkfree_sendtrim(tp);
2770 }
2771
2772 #ifdef INVARIANTS
2773 /*
2774 * Verify allocation of a block or fragment.
2775 * Return 1 if block or fragment is free.
2776 */
2777 static int
ffs_checkfreeblk(struct inode * ip,ufs2_daddr_t bno,long size)2778 ffs_checkfreeblk(struct inode *ip,
2779 ufs2_daddr_t bno,
2780 long size)
2781 {
2782 struct fs *fs;
2783 struct cg *cgp;
2784 struct buf *bp;
2785 ufs1_daddr_t cgbno;
2786 int i, frags, blkalloced;
2787 uint8_t *blksfree;
2788
2789 fs = ITOFS(ip);
2790 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2791 printf("bsize = %ld, size = %ld, fs = %s\n",
2792 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2793 panic("ffs_checkfreeblk: bad size");
2794 }
2795 if ((uint64_t)bno >= fs->fs_size)
2796 panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno);
2797 if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0)
2798 return (0);
2799 blksfree = cg_blksfree(cgp);
2800 cgbno = dtogd(fs, bno);
2801 if (size == fs->fs_bsize) {
2802 blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2803 } else {
2804 frags = numfrags(fs, size);
2805 for (blkalloced = 0, i = 0; i < frags; i++)
2806 if (isset(blksfree, cgbno + i))
2807 blkalloced++;
2808 if (blkalloced != 0 && blkalloced != frags)
2809 panic("ffs_checkfreeblk: partially free fragment");
2810 }
2811 brelse(bp);
2812 return (blkalloced == 0);
2813 }
2814 #endif /* INVARIANTS */
2815
2816 /*
2817 * Free an inode.
2818 */
2819 int
ffs_vfree(struct vnode * pvp,ino_t ino,int mode)2820 ffs_vfree(struct vnode *pvp,
2821 ino_t ino,
2822 int mode)
2823 {
2824 struct ufsmount *ump;
2825
2826 if (DOINGSOFTDEP(pvp)) {
2827 softdep_freefile(pvp, ino, mode);
2828 return (0);
2829 }
2830 ump = VFSTOUFS(pvp->v_mount);
2831 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2832 }
2833
2834 /*
2835 * Do the actual free operation.
2836 * The specified inode is placed back in the free map.
2837 */
2838 int
ffs_freefile(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ino_t ino,int mode,struct workhead * wkhd)2839 ffs_freefile(struct ufsmount *ump,
2840 struct fs *fs,
2841 struct vnode *devvp,
2842 ino_t ino,
2843 int mode,
2844 struct workhead *wkhd)
2845 {
2846 struct cg *cgp;
2847 struct buf *bp;
2848 daddr_t dbn;
2849 int error;
2850 uint64_t cg;
2851 uint8_t *inosused;
2852 struct cdev *dev;
2853 ino_t cgino;
2854
2855 cg = ino_to_cg(fs, ino);
2856 if (devvp->v_type == VREG) {
2857 /* devvp is a snapshot */
2858 MPASS(devvp->v_mount->mnt_data == ump);
2859 dev = ump->um_devvp->v_rdev;
2860 } else if (devvp->v_type == VCHR) {
2861 /* devvp is a normal disk device */
2862 dev = devvp->v_rdev;
2863 } else {
2864 bp = NULL;
2865 return (0);
2866 }
2867 if (ino >= fs->fs_ipg * fs->fs_ncg)
2868 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2869 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2870 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2871 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2872 return (error);
2873 /*
2874 * Would like to just downgrade to read-only. Until that
2875 * capability is available, just toss the cylinder group
2876 * update and mark the filesystem as needing to run fsck.
2877 */
2878 fs->fs_flags |= FS_NEEDSFSCK;
2879 if (devvp->v_type == VREG)
2880 dbn = fragstoblks(fs, cgtod(fs, cg));
2881 else
2882 dbn = fsbtodb(fs, cgtod(fs, cg));
2883 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2884 KASSERT(error == 0, ("getblkx failed"));
2885 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true);
2886 bp->b_flags |= B_RELBUF | B_NOCACHE;
2887 bp->b_flags &= ~B_CACHE;
2888 bawrite(bp);
2889 return (error);
2890 }
2891 inosused = cg_inosused(cgp);
2892 cgino = ino % fs->fs_ipg;
2893 if (isclr(inosused, cgino)) {
2894 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2895 (uintmax_t)ino, fs->fs_fsmnt);
2896 if (fs->fs_ronly == 0)
2897 panic("ffs_freefile: freeing free inode");
2898 }
2899 clrbit(inosused, cgino);
2900 if (cgino < cgp->cg_irotor)
2901 cgp->cg_irotor = cgino;
2902 cgp->cg_cs.cs_nifree++;
2903 UFS_LOCK(ump);
2904 fs->fs_cstotal.cs_nifree++;
2905 fs->fs_cs(fs, cg).cs_nifree++;
2906 if ((mode & IFMT) == IFDIR) {
2907 cgp->cg_cs.cs_ndir--;
2908 fs->fs_cstotal.cs_ndir--;
2909 fs->fs_cs(fs, cg).cs_ndir--;
2910 }
2911 fs->fs_fmod = 1;
2912 ACTIVECLEAR(fs, cg);
2913 UFS_UNLOCK(ump);
2914 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2915 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false);
2916 bdwrite(bp);
2917 return (0);
2918 }
2919
2920 /*
2921 * Check to see if a file is free.
2922 * Used to check for allocated files in snapshots.
2923 * Return 1 if file is free.
2924 */
2925 int
ffs_checkfreefile(struct fs * fs,struct vnode * devvp,ino_t ino)2926 ffs_checkfreefile(struct fs *fs,
2927 struct vnode *devvp,
2928 ino_t ino)
2929 {
2930 struct cg *cgp;
2931 struct buf *bp;
2932 int ret, error;
2933 uint64_t cg;
2934 uint8_t *inosused;
2935
2936 cg = ino_to_cg(fs, ino);
2937 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2938 return (1);
2939 if (ino >= fs->fs_ipg * fs->fs_ncg)
2940 return (1);
2941 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2942 return (1);
2943 inosused = cg_inosused(cgp);
2944 ino %= fs->fs_ipg;
2945 ret = isclr(inosused, ino);
2946 brelse(bp);
2947 return (ret);
2948 }
2949
2950 /*
2951 * Find a block of the specified size in the specified cylinder group.
2952 *
2953 * It is a panic if a request is made to find a block if none are
2954 * available.
2955 */
2956 static ufs1_daddr_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,ufs2_daddr_t bpref,int allocsiz)2957 ffs_mapsearch(struct fs *fs,
2958 struct cg *cgp,
2959 ufs2_daddr_t bpref,
2960 int allocsiz)
2961 {
2962 ufs1_daddr_t bno;
2963 int start, len, loc, i;
2964 int blk, field, subfield, pos;
2965 uint8_t *blksfree;
2966
2967 /*
2968 * find the fragment by searching through the free block
2969 * map for an appropriate bit pattern
2970 */
2971 if (bpref)
2972 start = dtogd(fs, bpref) / NBBY;
2973 else
2974 start = cgp->cg_frotor / NBBY;
2975 blksfree = cg_blksfree(cgp);
2976 len = howmany(fs->fs_fpg, NBBY) - start;
2977 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start],
2978 fragtbl[fs->fs_frag],
2979 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2980 if (loc == 0) {
2981 len = start + 1;
2982 start = 0;
2983 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0],
2984 fragtbl[fs->fs_frag],
2985 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2986 if (loc == 0) {
2987 printf("start = %d, len = %d, fs = %s\n",
2988 start, len, fs->fs_fsmnt);
2989 panic("ffs_alloccg: map corrupted");
2990 /* NOTREACHED */
2991 }
2992 }
2993 bno = (start + len - loc) * NBBY;
2994 cgp->cg_frotor = bno;
2995 /*
2996 * found the byte in the map
2997 * sift through the bits to find the selected frag
2998 */
2999 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
3000 blk = blkmap(fs, blksfree, bno);
3001 blk <<= 1;
3002 field = around[allocsiz];
3003 subfield = inside[allocsiz];
3004 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
3005 if ((blk & field) == subfield)
3006 return (bno + pos);
3007 field <<= 1;
3008 subfield <<= 1;
3009 }
3010 }
3011 printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt);
3012 panic("ffs_alloccg: block not in map");
3013 return (-1);
3014 }
3015
3016 /*
3017 * Fetch and verify a cylinder group.
3018 */
3019 int
ffs_getcg(struct fs * fs,struct vnode * devvp,uint64_t cg,int flags,struct buf ** bpp,struct cg ** cgpp)3020 ffs_getcg(struct fs *fs,
3021 struct vnode *devvp,
3022 uint64_t cg,
3023 int flags,
3024 struct buf **bpp,
3025 struct cg **cgpp)
3026 {
3027 struct buf *bp;
3028 struct cg *cgp;
3029 struct mount *mp;
3030 const struct statfs *sfs;
3031 daddr_t blkno;
3032 int error;
3033
3034 *bpp = NULL;
3035 *cgpp = NULL;
3036 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3037 flags |= GB_CKHASH;
3038 if (devvp->v_type == VCHR) {
3039 blkno = fsbtodb(fs, cgtod(fs, cg));
3040 mp = devvp->v_rdev->si_mountpt;
3041 } else {
3042 blkno = fragstoblks(fs, cgtod(fs, cg));
3043 mp = devvp->v_mount;
3044 }
3045 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
3046 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
3047 if (error != 0)
3048 return (error);
3049 cgp = (struct cg *)bp->b_data;
3050 if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3051 (bp->b_flags & B_CKHASH) != 0 &&
3052 cgp->cg_ckhash != bp->b_ckhash) {
3053 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3054 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3055 sfs = &mp->mnt_stat;
3056 printf("UFS %s%s (%s) cylinder checkhash failed: "
3057 "cg %ju, cgp: 0x%x != bp: 0x%jx\n",
3058 devvp->v_type == VCHR ? "" : "snapshot of ",
3059 sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg,
3060 cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3061 }
3062 bp->b_flags &= ~B_CKHASH;
3063 bp->b_flags |= B_INVAL | B_NOCACHE;
3064 brelse(bp);
3065 return (EINTEGRITY);
3066 }
3067 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3068 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3069 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3070 sfs = &mp->mnt_stat;
3071 printf("UFS %s%s (%s)",
3072 devvp->v_type == VCHR ? "" : "snapshot of ",
3073 sfs->f_mntfromname, sfs->f_mntonname);
3074 if (!cg_chkmagic(cgp))
3075 printf(" cg %ju: bad magic number 0x%x should "
3076 "be 0x%x\n", (intmax_t)cg, cgp->cg_magic,
3077 CG_MAGIC);
3078 else
3079 printf(": wrong cylinder group cg %ju != "
3080 "cgx %u\n", (intmax_t)cg, cgp->cg_cgx);
3081 }
3082 bp->b_flags &= ~B_CKHASH;
3083 bp->b_flags |= B_INVAL | B_NOCACHE;
3084 brelse(bp);
3085 return (EINTEGRITY);
3086 }
3087 bp->b_flags &= ~B_CKHASH;
3088 bp->b_xflags |= BX_BKGRDWRITE;
3089 /*
3090 * If we are using check hashes on the cylinder group then we want
3091 * to limit changing the cylinder group time to when we are actually
3092 * going to write it to disk so that its check hash remains correct
3093 * in memory. If the CK_CYLGRP flag is set the time is updated in
3094 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3095 * update the time here as we have done historically.
3096 */
3097 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3098 bp->b_xflags |= BX_CYLGRP;
3099 else
3100 cgp->cg_old_time = cgp->cg_time = time_second;
3101 *bpp = bp;
3102 *cgpp = cgp;
3103 return (0);
3104 }
3105
3106 static void
ffs_ckhash_cg(struct buf * bp)3107 ffs_ckhash_cg(struct buf *bp)
3108 {
3109 uint32_t ckhash;
3110 struct cg *cgp;
3111
3112 cgp = (struct cg *)bp->b_data;
3113 ckhash = cgp->cg_ckhash;
3114 cgp->cg_ckhash = 0;
3115 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3116 cgp->cg_ckhash = ckhash;
3117 }
3118
3119 /*
3120 * Called when a cylinder group read has failed. If an integrity check
3121 * is the cause of failure then the cylinder group will not be usable
3122 * until the filesystem has been unmounted and fsck has been run to
3123 * repair it. To avoid future attempts to allocate resources from the
3124 * cylinder group, its available resources are set to zero in the
3125 * superblock summary information. Since it will appear to have no
3126 * resources available, no further calls will be made to allocate
3127 * resources from it. When resources are freed to the cylinder group
3128 * the resource free routines will find the cylinder group unusable so
3129 * the resource will simply be discarded and thus will not show up in
3130 * the superblock summary information until they are recovered by fsck.
3131 */
3132 static void
ffs_checkcgintegrity(struct fs * fs,uint64_t cg,int error)3133 ffs_checkcgintegrity(struct fs *fs,
3134 uint64_t cg,
3135 int error)
3136 {
3137
3138 if (error != EINTEGRITY)
3139 return;
3140 fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree;
3141 fs->fs_cs(fs, cg).cs_nffree = 0;
3142 fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree;
3143 fs->fs_cs(fs, cg).cs_nbfree = 0;
3144 fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree;
3145 fs->fs_cs(fs, cg).cs_nifree = 0;
3146 fs->fs_maxcluster[cg] = 0;
3147 fs->fs_flags |= FS_NEEDSFSCK;
3148 fs->fs_fmod = 1;
3149 }
3150
3151 /*
3152 * Fserr prints the name of a filesystem with an error diagnostic.
3153 *
3154 * The form of the error message is:
3155 * fs: error message
3156 */
3157 void
ffs_fserr(struct fs * fs,ino_t inum,char * cp)3158 ffs_fserr(struct fs *fs,
3159 ino_t inum,
3160 char *cp)
3161 {
3162 struct thread *td = curthread; /* XXX */
3163 struct proc *p = td->td_proc;
3164
3165 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3166 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3167 fs->fs_fsmnt, cp);
3168 }
3169
3170 /*
3171 * This function provides the capability for the fsck program to
3172 * update an active filesystem. Sixteen operations are provided:
3173 *
3174 * adjrefcnt(inode, amt) - adjusts the reference count on the
3175 * specified inode by the specified amount. Under normal
3176 * operation the count should always go down. Decrementing
3177 * the count to zero will cause the inode to be freed.
3178 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3179 * inode by the specified amount.
3180 * adjdepth(inode, amt) - adjust the depth of the specified directory
3181 * inode by the specified amount.
3182 * setsize(inode, size) - set the size of the inode to the
3183 * specified size.
3184 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3185 * adjust the superblock summary.
3186 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3187 * are marked as free. Inodes should never have to be marked
3188 * as in use.
3189 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3190 * are marked as free. Inodes should never have to be marked
3191 * as in use.
3192 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3193 * are marked as free. Blocks should never have to be marked
3194 * as in use.
3195 * setflags(flags, set/clear) - the fs_flags field has the specified
3196 * flags set (second parameter +1) or cleared (second parameter -1).
3197 * setcwd(dirinode) - set the current directory to dirinode in the
3198 * filesystem associated with the snapshot.
3199 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3200 * in the current directory is oldvalue then change it to newvalue.
3201 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3202 * with nameptr in the current directory is oldvalue then unlink it.
3203 */
3204
3205 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3206
3207 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3208 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3209 0, 0, sysctl_ffs_fsck, "S,fsck",
3210 "Adjust Inode Reference Count");
3211
3212 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3213 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3214 "Adjust Inode Used Blocks Count");
3215
3216 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth,
3217 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3218 "Adjust Directory Inode Depth");
3219
3220 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3221 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3222 "Set the inode size");
3223
3224 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3225 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3226 "Adjust number of directories");
3227
3228 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3229 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3230 "Adjust number of free blocks");
3231
3232 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3233 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3234 "Adjust number of free inodes");
3235
3236 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3237 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3238 "Adjust number of free frags");
3239
3240 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3241 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3242 "Adjust number of free clusters");
3243
3244 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3245 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3246 "Free Range of Directory Inodes");
3247
3248 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3249 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3250 "Free Range of File Inodes");
3251
3252 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3253 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3254 "Free Range of Blocks");
3255
3256 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3257 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3258 "Change Filesystem Flags");
3259
3260 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3261 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3262 "Set Current Working Directory");
3263
3264 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3265 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3266 "Change Value of .. Entry");
3267
3268 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3269 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3270 "Unlink a Duplicate Name");
3271
3272 #ifdef DIAGNOSTIC
3273 static int fsckcmds = 0;
3274 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3275 "print out fsck_ffs-based filesystem update commands");
3276 #endif /* DIAGNOSTIC */
3277
3278 static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)3279 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3280 {
3281 struct thread *td = curthread;
3282 struct fsck_cmd cmd;
3283 struct ufsmount *ump;
3284 struct vnode *vp, *dvp, *fdvp;
3285 struct inode *ip, *dp;
3286 struct mount *mp;
3287 struct fs *fs;
3288 struct pwd *pwd;
3289 ufs2_daddr_t blkno;
3290 long blkcnt, blksize;
3291 uint64_t key;
3292 struct file *fp;
3293 cap_rights_t rights;
3294 int filetype, error;
3295
3296 if (req->newptr == NULL || req->newlen > sizeof(cmd))
3297 return (EBADRPC);
3298 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3299 return (error);
3300 if (cmd.version != FFS_CMD_VERSION)
3301 return (ERPCMISMATCH);
3302 if ((error = getvnode(td, cmd.handle,
3303 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3304 return (error);
3305 vp = fp->f_vnode;
3306 if (vp->v_type != VREG && vp->v_type != VDIR) {
3307 fdrop(fp, td);
3308 return (EINVAL);
3309 }
3310 vn_start_write(vp, &mp, V_WAIT);
3311 if (mp == NULL ||
3312 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3313 vn_finished_write(mp);
3314 fdrop(fp, td);
3315 return (EINVAL);
3316 }
3317 ump = VFSTOUFS(mp);
3318 if (mp->mnt_flag & MNT_RDONLY) {
3319 vn_finished_write(mp);
3320 fdrop(fp, td);
3321 return (EROFS);
3322 }
3323 fs = ump->um_fs;
3324 filetype = IFREG;
3325
3326 switch (oidp->oid_number) {
3327 case FFS_SET_FLAGS:
3328 #ifdef DIAGNOSTIC
3329 if (fsckcmds)
3330 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3331 cmd.size > 0 ? "set" : "clear");
3332 #endif /* DIAGNOSTIC */
3333 if (cmd.size > 0)
3334 fs->fs_flags |= (long)cmd.value;
3335 else
3336 fs->fs_flags &= ~(long)cmd.value;
3337 break;
3338
3339 case FFS_ADJ_REFCNT:
3340 #ifdef DIAGNOSTIC
3341 if (fsckcmds) {
3342 printf("%s: adjust inode %jd link count by %jd\n",
3343 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3344 (intmax_t)cmd.size);
3345 }
3346 #endif /* DIAGNOSTIC */
3347 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3348 break;
3349 ip = VTOI(vp);
3350 ip->i_nlink += cmd.size;
3351 DIP_SET_NLINK(ip, ip->i_nlink);
3352 ip->i_effnlink += cmd.size;
3353 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3354 error = ffs_update(vp, 1);
3355 if (DOINGSOFTDEP(vp))
3356 softdep_change_linkcnt(ip);
3357 vput(vp);
3358 break;
3359
3360 case FFS_ADJ_BLKCNT:
3361 #ifdef DIAGNOSTIC
3362 if (fsckcmds) {
3363 printf("%s: adjust inode %jd block count by %jd\n",
3364 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3365 (intmax_t)cmd.size);
3366 }
3367 #endif /* DIAGNOSTIC */
3368 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3369 break;
3370 ip = VTOI(vp);
3371 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3372 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3373 error = ffs_update(vp, 1);
3374 vput(vp);
3375 break;
3376
3377 case FFS_ADJ_DEPTH:
3378 #ifdef DIAGNOSTIC
3379 if (fsckcmds) {
3380 printf("%s: adjust directory inode %jd depth by %jd\n",
3381 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3382 (intmax_t)cmd.size);
3383 }
3384 #endif /* DIAGNOSTIC */
3385 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3386 break;
3387 if (vp->v_type != VDIR) {
3388 vput(vp);
3389 error = ENOTDIR;
3390 break;
3391 }
3392 ip = VTOI(vp);
3393 DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size);
3394 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3395 error = ffs_update(vp, 1);
3396 vput(vp);
3397 break;
3398
3399 case FFS_SET_SIZE:
3400 #ifdef DIAGNOSTIC
3401 if (fsckcmds) {
3402 printf("%s: set inode %jd size to %jd\n",
3403 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3404 (intmax_t)cmd.size);
3405 }
3406 #endif /* DIAGNOSTIC */
3407 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3408 break;
3409 ip = VTOI(vp);
3410 DIP_SET(ip, i_size, cmd.size);
3411 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3412 error = ffs_update(vp, 1);
3413 vput(vp);
3414 break;
3415
3416 case FFS_DIR_FREE:
3417 filetype = IFDIR;
3418 /* fall through */
3419
3420 case FFS_FILE_FREE:
3421 #ifdef DIAGNOSTIC
3422 if (fsckcmds) {
3423 if (cmd.size == 1)
3424 printf("%s: free %s inode %ju\n",
3425 mp->mnt_stat.f_mntonname,
3426 filetype == IFDIR ? "directory" : "file",
3427 (uintmax_t)cmd.value);
3428 else
3429 printf("%s: free %s inodes %ju-%ju\n",
3430 mp->mnt_stat.f_mntonname,
3431 filetype == IFDIR ? "directory" : "file",
3432 (uintmax_t)cmd.value,
3433 (uintmax_t)(cmd.value + cmd.size - 1));
3434 }
3435 #endif /* DIAGNOSTIC */
3436 while (cmd.size > 0) {
3437 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3438 cmd.value, filetype, NULL)))
3439 break;
3440 cmd.size -= 1;
3441 cmd.value += 1;
3442 }
3443 break;
3444
3445 case FFS_BLK_FREE:
3446 #ifdef DIAGNOSTIC
3447 if (fsckcmds) {
3448 if (cmd.size == 1)
3449 printf("%s: free block %jd\n",
3450 mp->mnt_stat.f_mntonname,
3451 (intmax_t)cmd.value);
3452 else
3453 printf("%s: free blocks %jd-%jd\n",
3454 mp->mnt_stat.f_mntonname,
3455 (intmax_t)cmd.value,
3456 (intmax_t)cmd.value + cmd.size - 1);
3457 }
3458 #endif /* DIAGNOSTIC */
3459 blkno = cmd.value;
3460 blkcnt = cmd.size;
3461 blksize = fs->fs_frag - (blkno % fs->fs_frag);
3462 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3463 while (blkcnt > 0) {
3464 if (blkcnt < blksize)
3465 blksize = blkcnt;
3466 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3467 blksize * fs->fs_fsize, UFS_ROOTINO,
3468 VDIR, NULL, key);
3469 blkno += blksize;
3470 blkcnt -= blksize;
3471 blksize = fs->fs_frag;
3472 }
3473 ffs_blkrelease_finish(ump, key);
3474 break;
3475
3476 /*
3477 * Adjust superblock summaries. fsck(8) is expected to
3478 * submit deltas when necessary.
3479 */
3480 case FFS_ADJ_NDIR:
3481 #ifdef DIAGNOSTIC
3482 if (fsckcmds) {
3483 printf("%s: adjust number of directories by %jd\n",
3484 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3485 }
3486 #endif /* DIAGNOSTIC */
3487 fs->fs_cstotal.cs_ndir += cmd.value;
3488 break;
3489
3490 case FFS_ADJ_NBFREE:
3491 #ifdef DIAGNOSTIC
3492 if (fsckcmds) {
3493 printf("%s: adjust number of free blocks by %+jd\n",
3494 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3495 }
3496 #endif /* DIAGNOSTIC */
3497 fs->fs_cstotal.cs_nbfree += cmd.value;
3498 break;
3499
3500 case FFS_ADJ_NIFREE:
3501 #ifdef DIAGNOSTIC
3502 if (fsckcmds) {
3503 printf("%s: adjust number of free inodes by %+jd\n",
3504 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3505 }
3506 #endif /* DIAGNOSTIC */
3507 fs->fs_cstotal.cs_nifree += cmd.value;
3508 break;
3509
3510 case FFS_ADJ_NFFREE:
3511 #ifdef DIAGNOSTIC
3512 if (fsckcmds) {
3513 printf("%s: adjust number of free frags by %+jd\n",
3514 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3515 }
3516 #endif /* DIAGNOSTIC */
3517 fs->fs_cstotal.cs_nffree += cmd.value;
3518 break;
3519
3520 case FFS_ADJ_NUMCLUSTERS:
3521 #ifdef DIAGNOSTIC
3522 if (fsckcmds) {
3523 printf("%s: adjust number of free clusters by %+jd\n",
3524 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3525 }
3526 #endif /* DIAGNOSTIC */
3527 fs->fs_cstotal.cs_numclusters += cmd.value;
3528 break;
3529
3530 case FFS_SET_CWD:
3531 #ifdef DIAGNOSTIC
3532 if (fsckcmds) {
3533 printf("%s: set current directory to inode %jd\n",
3534 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3535 }
3536 #endif /* DIAGNOSTIC */
3537 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3538 break;
3539 AUDIT_ARG_VNODE1(vp);
3540 if ((error = change_dir(vp, td)) != 0) {
3541 vput(vp);
3542 break;
3543 }
3544 VOP_UNLOCK(vp);
3545 pwd_chdir(td, vp);
3546 break;
3547
3548 case FFS_SET_DOTDOT:
3549 #ifdef DIAGNOSTIC
3550 if (fsckcmds) {
3551 printf("%s: change .. in cwd from %jd to %jd\n",
3552 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3553 (intmax_t)cmd.size);
3554 }
3555 #endif /* DIAGNOSTIC */
3556 /*
3557 * First we have to get and lock the parent directory
3558 * to which ".." points.
3559 */
3560 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3561 if (error)
3562 break;
3563 /*
3564 * Now we get and lock the child directory containing "..".
3565 */
3566 pwd = pwd_hold(td);
3567 dvp = pwd->pwd_cdir;
3568 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3569 vput(fdvp);
3570 pwd_drop(pwd);
3571 break;
3572 }
3573 dp = VTOI(dvp);
3574 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */
3575 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3576 DT_DIR, 0);
3577 cache_purge(fdvp);
3578 cache_purge(dvp);
3579 vput(dvp);
3580 vput(fdvp);
3581 pwd_drop(pwd);
3582 break;
3583
3584 case FFS_UNLINK:
3585 #ifdef DIAGNOSTIC
3586 if (fsckcmds) {
3587 char buf[32];
3588
3589 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3590 strncpy(buf, "Name_too_long", 32);
3591 printf("%s: unlink %s (inode %jd)\n",
3592 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3593 }
3594 #endif /* DIAGNOSTIC */
3595 /*
3596 * kern_funlinkat will do its own start/finish writes and
3597 * they do not nest, so drop ours here. Setting mp == NULL
3598 * indicates that vn_finished_write is not needed down below.
3599 */
3600 vn_finished_write(mp);
3601 mp = NULL;
3602 error = kern_funlinkat(td, AT_FDCWD,
3603 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3604 0, (ino_t)cmd.size);
3605 break;
3606
3607 default:
3608 #ifdef DIAGNOSTIC
3609 if (fsckcmds) {
3610 printf("Invalid request %d from fsck\n",
3611 oidp->oid_number);
3612 }
3613 #endif /* DIAGNOSTIC */
3614 error = EINVAL;
3615 break;
3616 }
3617 fdrop(fp, td);
3618 vn_finished_write(mp);
3619 return (error);
3620 }
3621