1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45 /*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring descriptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 * for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 * GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 * convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81 #include <sys/cdefs.h>
82 #include "opt_ti.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95
96 #include <net/if.h>
97 #include <net/if_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/if_vlan_var.h>
104
105 #include <net/bpf.h>
106
107 #include <netinet/in_systm.h>
108 #include <netinet/in.h>
109 #include <netinet/ip.h>
110
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115
116 #ifdef TI_SF_BUF_JUMBO
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128
129 #include <sys/sysctl.h>
130
131 #define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
132 /*
133 * We can only turn on header splitting if we're using extended receive
134 * BDs.
135 */
136 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139
140 typedef enum {
141 TI_SWAP_HTON,
142 TI_SWAP_NTOH
143 } ti_swap_type;
144
145 /*
146 * Various supported device vendors/types and their names.
147 */
148
149 static const struct ti_type ti_devs[] = {
150 { ALT_VENDORID, ALT_DEVICEID_ACENIC,
151 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152 { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
153 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
154 { TC_VENDORID, TC_DEVICEID_3C985,
155 "3Com 3c985-SX Gigabit Ethernet" },
156 { NG_VENDORID, NG_DEVICEID_GA620,
157 "Netgear GA620 1000baseSX Gigabit Ethernet" },
158 { NG_VENDORID, NG_DEVICEID_GA620T,
159 "Netgear GA620 1000baseT Gigabit Ethernet" },
160 { SGI_VENDORID, SGI_DEVICEID_TIGON,
161 "Silicon Graphics Gigabit Ethernet" },
162 { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163 "Farallon PN9000SX Gigabit Ethernet" },
164 { 0, 0, NULL }
165 };
166
167 static d_open_t ti_open;
168 static d_close_t ti_close;
169 static d_ioctl_t ti_ioctl2;
170
171 static struct cdevsw ti_cdevsw = {
172 .d_version = D_VERSION,
173 .d_flags = 0,
174 .d_open = ti_open,
175 .d_close = ti_close,
176 .d_ioctl = ti_ioctl2,
177 .d_name = "ti",
178 };
179
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185
186 static int ti_encap(struct ti_softc *, struct mbuf **);
187
188 static void ti_intr(void *);
189 static void ti_start(if_t);
190 static void ti_start_locked(if_t);
191 static int ti_ioctl(if_t, u_long, caddr_t);
192 static uint64_t ti_get_counter(if_t, ift_counter);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(if_t);
200 static int ti_ifmedia_upd_locked(struct ti_softc *);
201 static void ti_ifmedia_sts(if_t, struct ifmediareq *);
202
203 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204 static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206
207 static u_int ti_add_mcast(void *, struct sockaddr_dl *, u_int);
208 static u_int ti_del_mcast(void *, struct sockaddr_dl *, u_int);
209 static void ti_setmulti(struct ti_softc *);
210
211 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215 int);
216 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217 int, int, int);
218 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219 static void ti_loadfw(struct ti_softc *);
220 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222 static void ti_handle_events(struct ti_softc *);
223 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224 static int ti_dma_alloc(struct ti_softc *);
225 static void ti_dma_free(struct ti_softc *);
226 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229 bus_dmamap_t, bus_addr_t *);
230 static int ti_newbuf_std(struct ti_softc *, int);
231 static int ti_newbuf_mini(struct ti_softc *, int);
232 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233 static int ti_init_rx_ring_std(struct ti_softc *);
234 static void ti_free_rx_ring_std(struct ti_softc *);
235 static int ti_init_rx_ring_jumbo(struct ti_softc *);
236 static void ti_free_rx_ring_jumbo(struct ti_softc *);
237 static int ti_init_rx_ring_mini(struct ti_softc *);
238 static void ti_free_rx_ring_mini(struct ti_softc *);
239 static void ti_free_tx_ring(struct ti_softc *);
240 static int ti_init_tx_ring(struct ti_softc *);
241 static void ti_discard_std(struct ti_softc *, int);
242 #ifndef TI_SF_BUF_JUMBO
243 static void ti_discard_jumbo(struct ti_softc *, int);
244 #endif
245 static void ti_discard_mini(struct ti_softc *, int);
246
247 static int ti_64bitslot_war(struct ti_softc *);
248 static int ti_chipinit(struct ti_softc *);
249 static int ti_gibinit(struct ti_softc *);
250
251 #ifdef TI_JUMBO_HDRSPLIT
252 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253 int idx);
254 #endif /* TI_JUMBO_HDRSPLIT */
255
256 static void ti_sysctl_node(struct ti_softc *);
257
258 static device_method_t ti_methods[] = {
259 /* Device interface */
260 DEVMETHOD(device_probe, ti_probe),
261 DEVMETHOD(device_attach, ti_attach),
262 DEVMETHOD(device_detach, ti_detach),
263 DEVMETHOD(device_shutdown, ti_shutdown),
264 { 0, 0 }
265 };
266
267 static driver_t ti_driver = {
268 "ti",
269 ti_methods,
270 sizeof(struct ti_softc)
271 };
272
273 DRIVER_MODULE(ti, pci, ti_driver, 0, 0);
274 MODULE_DEPEND(ti, pci, 1, 1, 1);
275 MODULE_DEPEND(ti, ether, 1, 1, 1);
276
277 /*
278 * Send an instruction or address to the EEPROM, check for ACK.
279 */
280 static uint32_t
ti_eeprom_putbyte(struct ti_softc * sc,int byte)281 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
282 {
283 int i, ack = 0;
284
285 /*
286 * Make sure we're in TX mode.
287 */
288 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
289
290 /*
291 * Feed in each bit and stobe the clock.
292 */
293 for (i = 0x80; i; i >>= 1) {
294 if (byte & i) {
295 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
296 } else {
297 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298 }
299 DELAY(1);
300 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
301 DELAY(1);
302 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303 }
304
305 /*
306 * Turn off TX mode.
307 */
308 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
309
310 /*
311 * Check for ack.
312 */
313 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
314 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316
317 return (ack);
318 }
319
320 /*
321 * Read a byte of data stored in the EEPROM at address 'addr.'
322 * We have to send two address bytes since the EEPROM can hold
323 * more than 256 bytes of data.
324 */
325 static uint8_t
ti_eeprom_getbyte(struct ti_softc * sc,int addr,uint8_t * dest)326 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
327 {
328 int i;
329 uint8_t byte = 0;
330
331 EEPROM_START;
332
333 /*
334 * Send write control code to EEPROM.
335 */
336 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
337 device_printf(sc->ti_dev,
338 "failed to send write command, status: %x\n",
339 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
340 return (1);
341 }
342
343 /*
344 * Send first byte of address of byte we want to read.
345 */
346 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
347 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
348 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
349 return (1);
350 }
351 /*
352 * Send second byte address of byte we want to read.
353 */
354 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
355 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
356 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
357 return (1);
358 }
359
360 EEPROM_STOP;
361 EEPROM_START;
362 /*
363 * Send read control code to EEPROM.
364 */
365 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
366 device_printf(sc->ti_dev,
367 "failed to send read command, status: %x\n",
368 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
369 return (1);
370 }
371
372 /*
373 * Start reading bits from EEPROM.
374 */
375 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
376 for (i = 0x80; i; i >>= 1) {
377 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378 DELAY(1);
379 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
380 byte |= i;
381 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
382 DELAY(1);
383 }
384
385 EEPROM_STOP;
386
387 /*
388 * No ACK generated for read, so just return byte.
389 */
390
391 *dest = byte;
392
393 return (0);
394 }
395
396 /*
397 * Read a sequence of bytes from the EEPROM.
398 */
399 static int
ti_read_eeprom(struct ti_softc * sc,caddr_t dest,int off,int cnt)400 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
401 {
402 int err = 0, i;
403 uint8_t byte = 0;
404
405 for (i = 0; i < cnt; i++) {
406 err = ti_eeprom_getbyte(sc, off + i, &byte);
407 if (err)
408 break;
409 *(dest + i) = byte;
410 }
411
412 return (err ? 1 : 0);
413 }
414
415 /*
416 * NIC memory read function.
417 * Can be used to copy data from NIC local memory.
418 */
419 static void
ti_mem_read(struct ti_softc * sc,uint32_t addr,uint32_t len,void * buf)420 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
421 {
422 int segptr, segsize, cnt;
423 char *ptr;
424
425 segptr = addr;
426 cnt = len;
427 ptr = buf;
428
429 while (cnt) {
430 if (cnt < TI_WINLEN)
431 segsize = cnt;
432 else
433 segsize = TI_WINLEN - (segptr % TI_WINLEN);
434 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
435 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
436 TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
437 segsize / 4);
438 ptr += segsize;
439 segptr += segsize;
440 cnt -= segsize;
441 }
442 }
443
444 /*
445 * NIC memory write function.
446 * Can be used to copy data into NIC local memory.
447 */
448 static void
ti_mem_write(struct ti_softc * sc,uint32_t addr,uint32_t len,void * buf)449 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
450 {
451 int segptr, segsize, cnt;
452 char *ptr;
453
454 segptr = addr;
455 cnt = len;
456 ptr = buf;
457
458 while (cnt) {
459 if (cnt < TI_WINLEN)
460 segsize = cnt;
461 else
462 segsize = TI_WINLEN - (segptr % TI_WINLEN);
463 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
464 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
465 TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
466 segsize / 4);
467 ptr += segsize;
468 segptr += segsize;
469 cnt -= segsize;
470 }
471 }
472
473 /*
474 * NIC memory read function.
475 * Can be used to clear a section of NIC local memory.
476 */
477 static void
ti_mem_zero(struct ti_softc * sc,uint32_t addr,uint32_t len)478 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
479 {
480 int segptr, segsize, cnt;
481
482 segptr = addr;
483 cnt = len;
484
485 while (cnt) {
486 if (cnt < TI_WINLEN)
487 segsize = cnt;
488 else
489 segsize = TI_WINLEN - (segptr % TI_WINLEN);
490 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
491 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
492 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
493 segptr += segsize;
494 cnt -= segsize;
495 }
496 }
497
498 static int
ti_copy_mem(struct ti_softc * sc,uint32_t tigon_addr,uint32_t len,caddr_t buf,int useraddr,int readdata)499 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
500 caddr_t buf, int useraddr, int readdata)
501 {
502 int segptr, segsize, cnt;
503 caddr_t ptr;
504 uint32_t origwin;
505 int error, resid, segresid;
506 int first_pass;
507
508 TI_LOCK_ASSERT(sc);
509
510 error = 0;
511
512 /*
513 * At the moment, we don't handle non-aligned cases, we just bail.
514 * If this proves to be a problem, it will be fixed.
515 */
516 if (readdata == 0 && (tigon_addr & 0x3) != 0) {
517 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
518 "word-aligned\n", __func__, tigon_addr);
519 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
520 "yet supported\n", __func__);
521 return (EINVAL);
522 }
523
524 segptr = tigon_addr & ~0x3;
525 segresid = tigon_addr - segptr;
526
527 /*
528 * This is the non-aligned amount left over that we'll need to
529 * copy.
530 */
531 resid = len & 0x3;
532
533 /* Add in the left over amount at the front of the buffer */
534 resid += segresid;
535
536 cnt = len & ~0x3;
537 /*
538 * If resid + segresid is >= 4, add multiples of 4 to the count and
539 * decrease the residual by that much.
540 */
541 cnt += resid & ~0x3;
542 resid -= resid & ~0x3;
543
544 ptr = buf;
545
546 first_pass = 1;
547
548 /*
549 * Save the old window base value.
550 */
551 origwin = CSR_READ_4(sc, TI_WINBASE);
552
553 while (cnt != 0 && error == 0) {
554 bus_size_t ti_offset;
555
556 if (cnt < TI_WINLEN)
557 segsize = cnt;
558 else
559 segsize = TI_WINLEN - (segptr % TI_WINLEN);
560 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
561
562 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
563
564 if (readdata) {
565 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
566 ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
567 if (useraddr) {
568 /*
569 * Yeah, this is a little on the kludgy
570 * side, but at least this code is only
571 * used for debugging.
572 */
573 ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
574 segsize, TI_SWAP_NTOH);
575
576 TI_UNLOCK(sc);
577 if (first_pass) {
578 error = copyout(
579 &sc->ti_membuf2[segresid], ptr,
580 segsize - segresid);
581 first_pass = 0;
582 } else
583 error = copyout(sc->ti_membuf2, ptr,
584 segsize);
585 TI_LOCK(sc);
586 } else {
587 if (first_pass) {
588 ti_bcopy_swap(sc->ti_membuf,
589 sc->ti_membuf2, segsize,
590 TI_SWAP_NTOH);
591 TI_UNLOCK(sc);
592 bcopy(&sc->ti_membuf2[segresid], ptr,
593 segsize - segresid);
594 TI_LOCK(sc);
595 first_pass = 0;
596 } else
597 ti_bcopy_swap(sc->ti_membuf, ptr,
598 segsize, TI_SWAP_NTOH);
599 }
600
601 } else {
602 if (useraddr) {
603 TI_UNLOCK(sc);
604 error = copyin(ptr, sc->ti_membuf2, segsize);
605 TI_LOCK(sc);
606 ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607 segsize, TI_SWAP_HTON);
608 } else
609 ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610 TI_SWAP_HTON);
611
612 if (error == 0) {
613 bus_space_write_region_4(sc->ti_btag,
614 sc->ti_bhandle, ti_offset,
615 (uint32_t *)sc->ti_membuf, segsize >> 2);
616 }
617 }
618 segptr += segsize;
619 ptr += segsize;
620 cnt -= segsize;
621 }
622
623 /*
624 * Handle leftover, non-word-aligned bytes.
625 */
626 if (resid != 0 && error == 0) {
627 uint32_t tmpval, tmpval2;
628 bus_size_t ti_offset;
629
630 /*
631 * Set the segment pointer.
632 */
633 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
634
635 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
636
637 /*
638 * First, grab whatever is in our source/destination.
639 * We'll obviously need this for reads, but also for
640 * writes, since we'll be doing read/modify/write.
641 */
642 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
643 ti_offset, &tmpval, 1);
644
645 /*
646 * Next, translate this from little-endian to big-endian
647 * (at least on i386 boxes).
648 */
649 tmpval2 = ntohl(tmpval);
650
651 if (readdata) {
652 /*
653 * If we're reading, just copy the leftover number
654 * of bytes from the host byte order buffer to
655 * the user's buffer.
656 */
657 if (useraddr) {
658 TI_UNLOCK(sc);
659 error = copyout(&tmpval2, ptr, resid);
660 TI_LOCK(sc);
661 } else
662 bcopy(&tmpval2, ptr, resid);
663 } else {
664 /*
665 * If we're writing, first copy the bytes to be
666 * written into the network byte order buffer,
667 * leaving the rest of the buffer with whatever was
668 * originally in there. Then, swap the bytes
669 * around into host order and write them out.
670 *
671 * XXX KDM the read side of this has been verified
672 * to work, but the write side of it has not been
673 * verified. So user beware.
674 */
675 if (useraddr) {
676 TI_UNLOCK(sc);
677 error = copyin(ptr, &tmpval2, resid);
678 TI_LOCK(sc);
679 } else
680 bcopy(ptr, &tmpval2, resid);
681
682 if (error == 0) {
683 tmpval = htonl(tmpval2);
684 bus_space_write_region_4(sc->ti_btag,
685 sc->ti_bhandle, ti_offset, &tmpval, 1);
686 }
687 }
688 }
689
690 CSR_WRITE_4(sc, TI_WINBASE, origwin);
691
692 return (error);
693 }
694
695 static int
ti_copy_scratch(struct ti_softc * sc,uint32_t tigon_addr,uint32_t len,caddr_t buf,int useraddr,int readdata,int cpu)696 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
697 caddr_t buf, int useraddr, int readdata, int cpu)
698 {
699 uint32_t segptr;
700 int cnt, error;
701 uint32_t tmpval, tmpval2;
702 caddr_t ptr;
703
704 TI_LOCK_ASSERT(sc);
705
706 /*
707 * At the moment, we don't handle non-aligned cases, we just bail.
708 * If this proves to be a problem, it will be fixed.
709 */
710 if (tigon_addr & 0x3) {
711 device_printf(sc->ti_dev, "%s: tigon address %#x "
712 "isn't word-aligned\n", __func__, tigon_addr);
713 return (EINVAL);
714 }
715
716 if (len & 0x3) {
717 device_printf(sc->ti_dev, "%s: transfer length %d "
718 "isn't word-aligned\n", __func__, len);
719 return (EINVAL);
720 }
721
722 segptr = tigon_addr;
723 cnt = len;
724 ptr = buf;
725
726 while (cnt && error == 0) {
727 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
728
729 if (readdata) {
730 tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
731
732 tmpval = ntohl(tmpval2);
733
734 /*
735 * Note: I've used this debugging interface
736 * extensively with Alteon's 12.3.15 firmware,
737 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
738 *
739 * When you compile the firmware without
740 * optimization, which is necessary sometimes in
741 * order to properly step through it, you sometimes
742 * read out a bogus value of 0xc0017c instead of
743 * whatever was supposed to be in that scratchpad
744 * location. That value is on the stack somewhere,
745 * but I've never been able to figure out what was
746 * causing the problem.
747 *
748 * The address seems to pop up in random places,
749 * often not in the same place on two subsequent
750 * reads.
751 *
752 * In any case, the underlying data doesn't seem
753 * to be affected, just the value read out.
754 *
755 * KDM, 3/7/2000
756 */
757
758 if (tmpval2 == 0xc0017c)
759 device_printf(sc->ti_dev, "found 0xc0017c at "
760 "%#x (tmpval2)\n", segptr);
761
762 if (tmpval == 0xc0017c)
763 device_printf(sc->ti_dev, "found 0xc0017c at "
764 "%#x (tmpval)\n", segptr);
765
766 if (useraddr)
767 error = copyout(&tmpval, ptr, 4);
768 else
769 bcopy(&tmpval, ptr, 4);
770 } else {
771 if (useraddr)
772 error = copyin(ptr, &tmpval2, 4);
773 else
774 bcopy(ptr, &tmpval2, 4);
775
776 if (error == 0) {
777 tmpval = htonl(tmpval2);
778 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu),
779 tmpval);
780 }
781 }
782
783 cnt -= 4;
784 segptr += 4;
785 ptr += 4;
786 }
787
788 return (error);
789 }
790
791 static int
ti_bcopy_swap(const void * src,void * dst,size_t len,ti_swap_type swap_type)792 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
793 {
794 const uint8_t *tmpsrc;
795 uint8_t *tmpdst;
796 size_t tmplen;
797
798 if (len & 0x3) {
799 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
800 return (-1);
801 }
802
803 tmpsrc = src;
804 tmpdst = dst;
805 tmplen = len;
806
807 while (tmplen) {
808 if (swap_type == TI_SWAP_NTOH)
809 *(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
810 else
811 *(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
812 tmpsrc += 4;
813 tmpdst += 4;
814 tmplen -= 4;
815 }
816
817 return (0);
818 }
819
820 /*
821 * Load firmware image into the NIC. Check that the firmware revision
822 * is acceptable and see if we want the firmware for the Tigon 1 or
823 * Tigon 2.
824 */
825 static void
ti_loadfw(struct ti_softc * sc)826 ti_loadfw(struct ti_softc *sc)
827 {
828
829 TI_LOCK_ASSERT(sc);
830
831 switch (sc->ti_hwrev) {
832 case TI_HWREV_TIGON:
833 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
834 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
835 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
836 device_printf(sc->ti_dev, "firmware revision mismatch; "
837 "want %d.%d.%d, got %d.%d.%d\n",
838 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
839 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
840 tigonFwReleaseMinor, tigonFwReleaseFix);
841 return;
842 }
843 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
844 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
845 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
846 tigonFwRodata);
847 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
848 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
849 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
850 break;
851 case TI_HWREV_TIGON_II:
852 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
853 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
854 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
855 device_printf(sc->ti_dev, "firmware revision mismatch; "
856 "want %d.%d.%d, got %d.%d.%d\n",
857 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
858 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
859 tigon2FwReleaseMinor, tigon2FwReleaseFix);
860 return;
861 }
862 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
863 tigon2FwText);
864 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
865 tigon2FwData);
866 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
867 tigon2FwRodata);
868 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
869 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
870 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
871 break;
872 default:
873 device_printf(sc->ti_dev,
874 "can't load firmware: unknown hardware rev\n");
875 break;
876 }
877 }
878
879 /*
880 * Send the NIC a command via the command ring.
881 */
882 static void
ti_cmd(struct ti_softc * sc,struct ti_cmd_desc * cmd)883 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
884 {
885 int index;
886
887 index = sc->ti_cmd_saved_prodidx;
888 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
889 TI_INC(index, TI_CMD_RING_CNT);
890 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
891 sc->ti_cmd_saved_prodidx = index;
892 }
893
894 /*
895 * Send the NIC an extended command. The 'len' parameter specifies the
896 * number of command slots to include after the initial command.
897 */
898 static void
ti_cmd_ext(struct ti_softc * sc,struct ti_cmd_desc * cmd,caddr_t arg,int len)899 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
900 {
901 int index;
902 int i;
903
904 index = sc->ti_cmd_saved_prodidx;
905 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
906 TI_INC(index, TI_CMD_RING_CNT);
907 for (i = 0; i < len; i++) {
908 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
909 *(uint32_t *)(&arg[i * 4]));
910 TI_INC(index, TI_CMD_RING_CNT);
911 }
912 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
913 sc->ti_cmd_saved_prodidx = index;
914 }
915
916 /*
917 * Handle events that have triggered interrupts.
918 */
919 static void
ti_handle_events(struct ti_softc * sc)920 ti_handle_events(struct ti_softc *sc)
921 {
922 struct ti_event_desc *e;
923
924 if (sc->ti_rdata.ti_event_ring == NULL)
925 return;
926
927 bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
928 sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
929 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
930 e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
931 switch (TI_EVENT_EVENT(e)) {
932 case TI_EV_LINKSTAT_CHANGED:
933 sc->ti_linkstat = TI_EVENT_CODE(e);
934 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
935 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936 if_setbaudrate(sc->ti_ifp, IF_Mbps(100));
937 if (bootverbose)
938 device_printf(sc->ti_dev,
939 "10/100 link up\n");
940 } else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
941 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
942 if_setbaudrate(sc->ti_ifp, IF_Gbps(1UL));
943 if (bootverbose)
944 device_printf(sc->ti_dev,
945 "gigabit link up\n");
946 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
947 if_link_state_change(sc->ti_ifp,
948 LINK_STATE_DOWN);
949 if_setbaudrate(sc->ti_ifp, 0);
950 if (bootverbose)
951 device_printf(sc->ti_dev,
952 "link down\n");
953 }
954 break;
955 case TI_EV_ERROR:
956 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
957 device_printf(sc->ti_dev, "invalid command\n");
958 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
959 device_printf(sc->ti_dev, "unknown command\n");
960 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
961 device_printf(sc->ti_dev, "bad config data\n");
962 break;
963 case TI_EV_FIRMWARE_UP:
964 ti_init2(sc);
965 break;
966 case TI_EV_STATS_UPDATED:
967 case TI_EV_RESET_JUMBO_RING:
968 case TI_EV_MCAST_UPDATED:
969 /* Who cares. */
970 break;
971 default:
972 device_printf(sc->ti_dev, "unknown event: %d\n",
973 TI_EVENT_EVENT(e));
974 break;
975 }
976 /* Advance the consumer index. */
977 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
978 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
979 }
980 bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
981 sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
982 }
983
984 struct ti_dmamap_arg {
985 bus_addr_t ti_busaddr;
986 };
987
988 static void
ti_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)989 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
990 {
991 struct ti_dmamap_arg *ctx;
992
993 if (error)
994 return;
995
996 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
997
998 ctx = arg;
999 ctx->ti_busaddr = segs->ds_addr;
1000 }
1001
1002 static int
ti_dma_ring_alloc(struct ti_softc * sc,bus_size_t alignment,bus_size_t maxsize,bus_dma_tag_t * tag,uint8_t ** ring,bus_dmamap_t * map,bus_addr_t * paddr,const char * msg)1003 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1004 bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1005 const char *msg)
1006 {
1007 struct ti_dmamap_arg ctx;
1008 int error;
1009
1010 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1011 alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1012 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1013 if (error != 0) {
1014 device_printf(sc->ti_dev,
1015 "could not create %s dma tag\n", msg);
1016 return (error);
1017 }
1018 /* Allocate DMA'able memory for ring. */
1019 error = bus_dmamem_alloc(*tag, (void **)ring,
1020 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1021 if (error != 0) {
1022 device_printf(sc->ti_dev,
1023 "could not allocate DMA'able memory for %s\n", msg);
1024 return (error);
1025 }
1026 /* Load the address of the ring. */
1027 ctx.ti_busaddr = 0;
1028 error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1029 &ctx, BUS_DMA_NOWAIT);
1030 if (error != 0) {
1031 device_printf(sc->ti_dev,
1032 "could not load DMA'able memory for %s\n", msg);
1033 return (error);
1034 }
1035 *paddr = ctx.ti_busaddr;
1036 return (0);
1037 }
1038
1039 static void
ti_dma_ring_free(struct ti_softc * sc,bus_dma_tag_t * tag,uint8_t ** ring,bus_dmamap_t map,bus_addr_t * paddr)1040 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1041 bus_dmamap_t map, bus_addr_t *paddr)
1042 {
1043
1044 if (*paddr != 0) {
1045 bus_dmamap_unload(*tag, map);
1046 *paddr = 0;
1047 }
1048 if (*ring != NULL) {
1049 bus_dmamem_free(*tag, *ring, map);
1050 *ring = NULL;
1051 }
1052 if (*tag) {
1053 bus_dma_tag_destroy(*tag);
1054 *tag = NULL;
1055 }
1056 }
1057
1058 static int
ti_dma_alloc(struct ti_softc * sc)1059 ti_dma_alloc(struct ti_softc *sc)
1060 {
1061 bus_addr_t lowaddr;
1062 int i, error;
1063
1064 lowaddr = BUS_SPACE_MAXADDR;
1065 if (sc->ti_dac == 0)
1066 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1067
1068 error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1069 BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1070 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1071 &sc->ti_cdata.ti_parent_tag);
1072 if (error != 0) {
1073 device_printf(sc->ti_dev,
1074 "could not allocate parent dma tag\n");
1075 return (ENOMEM);
1076 }
1077
1078 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1079 &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1080 &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1081 if (error)
1082 return (error);
1083
1084 /* Producer/consumer status */
1085 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1086 &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1087 &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1088 "event ring");
1089 if (error)
1090 return (error);
1091
1092 /* Event ring */
1093 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1094 &sc->ti_cdata.ti_event_ring_tag,
1095 (uint8_t **)&sc->ti_rdata.ti_event_ring,
1096 &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1097 "event ring");
1098 if (error)
1099 return (error);
1100
1101 /* Command ring lives in shared memory so no need to create DMA area. */
1102
1103 /* Standard RX ring */
1104 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1105 &sc->ti_cdata.ti_rx_std_ring_tag,
1106 (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1107 &sc->ti_cdata.ti_rx_std_ring_map,
1108 &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1109 if (error)
1110 return (error);
1111
1112 /* Jumbo RX ring */
1113 error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1114 &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1115 (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1116 &sc->ti_cdata.ti_rx_jumbo_ring_map,
1117 &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1118 if (error)
1119 return (error);
1120
1121 /* RX return ring */
1122 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1123 &sc->ti_cdata.ti_rx_return_ring_tag,
1124 (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1125 &sc->ti_cdata.ti_rx_return_ring_map,
1126 &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1127 if (error)
1128 return (error);
1129
1130 /* Create DMA tag for standard RX mbufs. */
1131 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1132 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1133 MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1134 if (error) {
1135 device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1136 return (error);
1137 }
1138
1139 /* Create DMA tag for jumbo RX mbufs. */
1140 #ifdef TI_SF_BUF_JUMBO
1141 /*
1142 * The VM system will take care of providing aligned pages. Alignment
1143 * is set to 1 here so that busdma resources won't be wasted.
1144 */
1145 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1146 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1147 PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1148 #else
1149 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1150 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1151 MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1152 #endif
1153 if (error) {
1154 device_printf(sc->ti_dev,
1155 "could not allocate jumbo RX dma tag\n");
1156 return (error);
1157 }
1158
1159 /* Create DMA tag for TX mbufs. */
1160 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1161 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1162 MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1163 &sc->ti_cdata.ti_tx_tag);
1164 if (error) {
1165 device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1166 return (ENOMEM);
1167 }
1168
1169 /* Create DMA maps for RX buffers. */
1170 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1171 error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1172 &sc->ti_cdata.ti_rx_std_maps[i]);
1173 if (error) {
1174 device_printf(sc->ti_dev,
1175 "could not create DMA map for RX\n");
1176 return (error);
1177 }
1178 }
1179 error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1180 &sc->ti_cdata.ti_rx_std_sparemap);
1181 if (error) {
1182 device_printf(sc->ti_dev,
1183 "could not create spare DMA map for RX\n");
1184 return (error);
1185 }
1186
1187 /* Create DMA maps for jumbo RX buffers. */
1188 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1189 error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1190 &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1191 if (error) {
1192 device_printf(sc->ti_dev,
1193 "could not create DMA map for jumbo RX\n");
1194 return (error);
1195 }
1196 }
1197 error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1198 &sc->ti_cdata.ti_rx_jumbo_sparemap);
1199 if (error) {
1200 device_printf(sc->ti_dev,
1201 "could not create spare DMA map for jumbo RX\n");
1202 return (error);
1203 }
1204
1205 /* Create DMA maps for TX buffers. */
1206 for (i = 0; i < TI_TX_RING_CNT; i++) {
1207 error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1208 &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1209 if (error) {
1210 device_printf(sc->ti_dev,
1211 "could not create DMA map for TX\n");
1212 return (ENOMEM);
1213 }
1214 }
1215
1216 /* Mini ring and TX ring is not available on Tigon 1. */
1217 if (sc->ti_hwrev == TI_HWREV_TIGON)
1218 return (0);
1219
1220 /* TX ring */
1221 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1222 &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1223 &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1224 "TX ring");
1225 if (error)
1226 return (error);
1227
1228 /* Mini RX ring */
1229 error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1230 &sc->ti_cdata.ti_rx_mini_ring_tag,
1231 (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1232 &sc->ti_cdata.ti_rx_mini_ring_map,
1233 &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1234 if (error)
1235 return (error);
1236
1237 /* Create DMA tag for mini RX mbufs. */
1238 error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1239 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1240 MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1241 if (error) {
1242 device_printf(sc->ti_dev,
1243 "could not allocate mini RX dma tag\n");
1244 return (error);
1245 }
1246
1247 /* Create DMA maps for mini RX buffers. */
1248 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1249 error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1250 &sc->ti_cdata.ti_rx_mini_maps[i]);
1251 if (error) {
1252 device_printf(sc->ti_dev,
1253 "could not create DMA map for mini RX\n");
1254 return (error);
1255 }
1256 }
1257 error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1258 &sc->ti_cdata.ti_rx_mini_sparemap);
1259 if (error) {
1260 device_printf(sc->ti_dev,
1261 "could not create spare DMA map for mini RX\n");
1262 return (error);
1263 }
1264
1265 return (0);
1266 }
1267
1268 static void
ti_dma_free(struct ti_softc * sc)1269 ti_dma_free(struct ti_softc *sc)
1270 {
1271 int i;
1272
1273 /* Destroy DMA maps for RX buffers. */
1274 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1275 if (sc->ti_cdata.ti_rx_std_maps[i]) {
1276 bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1277 sc->ti_cdata.ti_rx_std_maps[i]);
1278 sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1279 }
1280 }
1281 if (sc->ti_cdata.ti_rx_std_sparemap) {
1282 bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1283 sc->ti_cdata.ti_rx_std_sparemap);
1284 sc->ti_cdata.ti_rx_std_sparemap = NULL;
1285 }
1286 if (sc->ti_cdata.ti_rx_std_tag) {
1287 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1288 sc->ti_cdata.ti_rx_std_tag = NULL;
1289 }
1290
1291 /* Destroy DMA maps for jumbo RX buffers. */
1292 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1293 if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1294 bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1295 sc->ti_cdata.ti_rx_jumbo_maps[i]);
1296 sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1297 }
1298 }
1299 if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1300 bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1301 sc->ti_cdata.ti_rx_jumbo_sparemap);
1302 sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1303 }
1304 if (sc->ti_cdata.ti_rx_jumbo_tag) {
1305 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1306 sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1307 }
1308
1309 /* Destroy DMA maps for mini RX buffers. */
1310 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1311 if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1312 bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1313 sc->ti_cdata.ti_rx_mini_maps[i]);
1314 sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1315 }
1316 }
1317 if (sc->ti_cdata.ti_rx_mini_sparemap) {
1318 bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1319 sc->ti_cdata.ti_rx_mini_sparemap);
1320 sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1321 }
1322 if (sc->ti_cdata.ti_rx_mini_tag) {
1323 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1324 sc->ti_cdata.ti_rx_mini_tag = NULL;
1325 }
1326
1327 /* Destroy DMA maps for TX buffers. */
1328 for (i = 0; i < TI_TX_RING_CNT; i++) {
1329 if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1330 bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1331 sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1332 sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1333 }
1334 }
1335 if (sc->ti_cdata.ti_tx_tag) {
1336 bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1337 sc->ti_cdata.ti_tx_tag = NULL;
1338 }
1339
1340 /* Destroy standard RX ring. */
1341 ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1342 (void *)&sc->ti_rdata.ti_rx_std_ring,
1343 sc->ti_cdata.ti_rx_std_ring_map,
1344 &sc->ti_rdata.ti_rx_std_ring_paddr);
1345 /* Destroy jumbo RX ring. */
1346 ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1347 (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1348 sc->ti_cdata.ti_rx_jumbo_ring_map,
1349 &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1350 /* Destroy mini RX ring. */
1351 ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1352 (void *)&sc->ti_rdata.ti_rx_mini_ring,
1353 sc->ti_cdata.ti_rx_mini_ring_map,
1354 &sc->ti_rdata.ti_rx_mini_ring_paddr);
1355 /* Destroy RX return ring. */
1356 ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1357 (void *)&sc->ti_rdata.ti_rx_return_ring,
1358 sc->ti_cdata.ti_rx_return_ring_map,
1359 &sc->ti_rdata.ti_rx_return_ring_paddr);
1360 /* Destroy TX ring. */
1361 ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1362 (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1363 &sc->ti_rdata.ti_tx_ring_paddr);
1364 /* Destroy status block. */
1365 ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1366 (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1367 &sc->ti_rdata.ti_status_paddr);
1368 /* Destroy event ring. */
1369 ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1370 (void *)&sc->ti_rdata.ti_event_ring,
1371 sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1372 /* Destroy GIB */
1373 ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1374 (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1375 &sc->ti_rdata.ti_info_paddr);
1376
1377 /* Destroy the parent tag. */
1378 if (sc->ti_cdata.ti_parent_tag) {
1379 bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1380 sc->ti_cdata.ti_parent_tag = NULL;
1381 }
1382 }
1383
1384 /*
1385 * Intialize a standard receive ring descriptor.
1386 */
1387 static int
ti_newbuf_std(struct ti_softc * sc,int i)1388 ti_newbuf_std(struct ti_softc *sc, int i)
1389 {
1390 bus_dmamap_t map;
1391 bus_dma_segment_t segs[1];
1392 struct mbuf *m;
1393 struct ti_rx_desc *r;
1394 int error, nsegs;
1395
1396 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1397 if (m == NULL)
1398 return (ENOBUFS);
1399 m->m_len = m->m_pkthdr.len = MCLBYTES;
1400 m_adj(m, ETHER_ALIGN);
1401
1402 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1403 sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1404 if (error != 0) {
1405 m_freem(m);
1406 return (error);
1407 }
1408 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1409
1410 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1411 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1412 sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1413 bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1414 sc->ti_cdata.ti_rx_std_maps[i]);
1415 }
1416
1417 map = sc->ti_cdata.ti_rx_std_maps[i];
1418 sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1419 sc->ti_cdata.ti_rx_std_sparemap = map;
1420 sc->ti_cdata.ti_rx_std_chain[i] = m;
1421
1422 r = &sc->ti_rdata.ti_rx_std_ring[i];
1423 ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1424 r->ti_len = segs[0].ds_len;
1425 r->ti_type = TI_BDTYPE_RECV_BD;
1426 r->ti_flags = 0;
1427 r->ti_vlan_tag = 0;
1428 r->ti_tcp_udp_cksum = 0;
1429 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1430 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1431 r->ti_idx = i;
1432
1433 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1434 sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1435 return (0);
1436 }
1437
1438 /*
1439 * Intialize a mini receive ring descriptor. This only applies to
1440 * the Tigon 2.
1441 */
1442 static int
ti_newbuf_mini(struct ti_softc * sc,int i)1443 ti_newbuf_mini(struct ti_softc *sc, int i)
1444 {
1445 bus_dmamap_t map;
1446 bus_dma_segment_t segs[1];
1447 struct mbuf *m;
1448 struct ti_rx_desc *r;
1449 int error, nsegs;
1450
1451 MGETHDR(m, M_NOWAIT, MT_DATA);
1452 if (m == NULL)
1453 return (ENOBUFS);
1454 m->m_len = m->m_pkthdr.len = MHLEN;
1455 m_adj(m, ETHER_ALIGN);
1456
1457 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1458 sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1459 if (error != 0) {
1460 m_freem(m);
1461 return (error);
1462 }
1463 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1464
1465 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1466 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1467 sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1468 bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1469 sc->ti_cdata.ti_rx_mini_maps[i]);
1470 }
1471
1472 map = sc->ti_cdata.ti_rx_mini_maps[i];
1473 sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1474 sc->ti_cdata.ti_rx_mini_sparemap = map;
1475 sc->ti_cdata.ti_rx_mini_chain[i] = m;
1476
1477 r = &sc->ti_rdata.ti_rx_mini_ring[i];
1478 ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1479 r->ti_len = segs[0].ds_len;
1480 r->ti_type = TI_BDTYPE_RECV_BD;
1481 r->ti_flags = TI_BDFLAG_MINI_RING;
1482 r->ti_vlan_tag = 0;
1483 r->ti_tcp_udp_cksum = 0;
1484 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1485 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1486 r->ti_idx = i;
1487
1488 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1489 sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1490 return (0);
1491 }
1492
1493 #ifndef TI_SF_BUF_JUMBO
1494
1495 /*
1496 * Initialize a jumbo receive ring descriptor. This allocates
1497 * a jumbo buffer from the pool managed internally by the driver.
1498 */
1499 static int
ti_newbuf_jumbo(struct ti_softc * sc,int i,struct mbuf * dummy)1500 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1501 {
1502 bus_dmamap_t map;
1503 bus_dma_segment_t segs[1];
1504 struct mbuf *m;
1505 struct ti_rx_desc *r;
1506 int error, nsegs;
1507
1508 (void)dummy;
1509
1510 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1511 if (m == NULL)
1512 return (ENOBUFS);
1513 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1514 m_adj(m, ETHER_ALIGN);
1515
1516 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1517 sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1518 if (error != 0) {
1519 m_freem(m);
1520 return (error);
1521 }
1522 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1523
1524 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1525 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1526 sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1527 bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1528 sc->ti_cdata.ti_rx_jumbo_maps[i]);
1529 }
1530
1531 map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1532 sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1533 sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1534 sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1535
1536 r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1537 ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1538 r->ti_len = segs[0].ds_len;
1539 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1540 r->ti_flags = TI_BDFLAG_JUMBO_RING;
1541 r->ti_vlan_tag = 0;
1542 r->ti_tcp_udp_cksum = 0;
1543 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1544 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1545 r->ti_idx = i;
1546
1547 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1548 sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1549 return (0);
1550 }
1551
1552 #else
1553
1554 #if (PAGE_SIZE == 4096)
1555 #define NPAYLOAD 2
1556 #else
1557 #define NPAYLOAD 1
1558 #endif
1559
1560 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1561 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1562 #define NFS_HDR_LEN (UDP_HDR_LEN)
1563 static int HDR_LEN = TCP_HDR_LEN;
1564
1565 /*
1566 * Initialize a jumbo receive ring descriptor. This allocates
1567 * a jumbo buffer from the pool managed internally by the driver.
1568 */
1569 static int
ti_newbuf_jumbo(struct ti_softc * sc,int idx,struct mbuf * m_old)1570 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1571 {
1572 bus_dmamap_t map;
1573 struct mbuf *cur, *m_new = NULL;
1574 struct mbuf *m[3] = {NULL, NULL, NULL};
1575 struct ti_rx_desc_ext *r;
1576 vm_page_t frame;
1577 /* 1 extra buf to make nobufs easy*/
1578 struct sf_buf *sf[3] = {NULL, NULL, NULL};
1579 int i;
1580 bus_dma_segment_t segs[4];
1581 int nsegs;
1582
1583 if (m_old != NULL) {
1584 m_new = m_old;
1585 cur = m_old->m_next;
1586 for (i = 0; i <= NPAYLOAD; i++){
1587 m[i] = cur;
1588 cur = cur->m_next;
1589 }
1590 } else {
1591 /* Allocate the mbufs. */
1592 MGETHDR(m_new, M_NOWAIT, MT_DATA);
1593 if (m_new == NULL) {
1594 device_printf(sc->ti_dev, "mbuf allocation failed "
1595 "-- packet dropped!\n");
1596 goto nobufs;
1597 }
1598 MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1599 if (m[NPAYLOAD] == NULL) {
1600 device_printf(sc->ti_dev, "cluster mbuf allocation "
1601 "failed -- packet dropped!\n");
1602 goto nobufs;
1603 }
1604 if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1605 device_printf(sc->ti_dev, "mbuf allocation failed "
1606 "-- packet dropped!\n");
1607 goto nobufs;
1608 }
1609 m[NPAYLOAD]->m_len = MCLBYTES;
1610
1611 for (i = 0; i < NPAYLOAD; i++){
1612 MGET(m[i], M_NOWAIT, MT_DATA);
1613 if (m[i] == NULL) {
1614 device_printf(sc->ti_dev, "mbuf allocation "
1615 "failed -- packet dropped!\n");
1616 goto nobufs;
1617 }
1618 frame = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1619 VM_ALLOC_WIRED);
1620 if (frame == NULL) {
1621 device_printf(sc->ti_dev, "buffer allocation "
1622 "failed -- packet dropped!\n");
1623 printf(" index %d page %d\n", idx, i);
1624 goto nobufs;
1625 }
1626 sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1627 if (sf[i] == NULL) {
1628 vm_page_unwire_noq(frame);
1629 vm_page_free(frame);
1630 device_printf(sc->ti_dev, "buffer allocation "
1631 "failed -- packet dropped!\n");
1632 printf(" index %d page %d\n", idx, i);
1633 goto nobufs;
1634 }
1635 }
1636 for (i = 0; i < NPAYLOAD; i++){
1637 /* Attach the buffer to the mbuf. */
1638 m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1639 m[i]->m_len = PAGE_SIZE;
1640 MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1641 sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1642 0, EXT_DISPOSABLE);
1643 m[i]->m_next = m[i+1];
1644 }
1645 /* link the buffers to the header */
1646 m_new->m_next = m[0];
1647 m_new->m_data += ETHER_ALIGN;
1648 if (sc->ti_hdrsplit)
1649 m_new->m_len = MHLEN - ETHER_ALIGN;
1650 else
1651 m_new->m_len = HDR_LEN;
1652 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1653 }
1654
1655 /* Set up the descriptor. */
1656 r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1657 sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1658 map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1659 if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1660 segs, &nsegs, 0))
1661 return (ENOBUFS);
1662 if ((nsegs < 1) || (nsegs > 4))
1663 return (ENOBUFS);
1664 ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1665 r->ti_len0 = m_new->m_len;
1666
1667 ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1668 r->ti_len1 = PAGE_SIZE;
1669
1670 ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1671 r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1672
1673 if (PAGE_SIZE == 4096) {
1674 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1675 r->ti_len3 = MCLBYTES;
1676 } else {
1677 r->ti_len3 = 0;
1678 }
1679 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1680
1681 r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1682
1683 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1684 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1685
1686 r->ti_idx = idx;
1687
1688 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1689 return (0);
1690
1691 nobufs:
1692
1693 /*
1694 * Warning! :
1695 * This can only be called before the mbufs are strung together.
1696 * If the mbufs are strung together, m_freem() will free the chain,
1697 * so that the later mbufs will be freed multiple times.
1698 */
1699 if (m_new)
1700 m_freem(m_new);
1701
1702 for (i = 0; i < 3; i++) {
1703 if (m[i])
1704 m_freem(m[i]);
1705 if (sf[i])
1706 sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1707 }
1708 return (ENOBUFS);
1709 }
1710 #endif
1711
1712 /*
1713 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1714 * that's 1MB or memory, which is a lot. For now, we fill only the first
1715 * 256 ring entries and hope that our CPU is fast enough to keep up with
1716 * the NIC.
1717 */
1718 static int
ti_init_rx_ring_std(struct ti_softc * sc)1719 ti_init_rx_ring_std(struct ti_softc *sc)
1720 {
1721 int i;
1722 struct ti_cmd_desc cmd;
1723
1724 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1725 if (ti_newbuf_std(sc, i) != 0)
1726 return (ENOBUFS);
1727 }
1728
1729 sc->ti_std = TI_STD_RX_RING_CNT - 1;
1730 TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1731
1732 return (0);
1733 }
1734
1735 static void
ti_free_rx_ring_std(struct ti_softc * sc)1736 ti_free_rx_ring_std(struct ti_softc *sc)
1737 {
1738 bus_dmamap_t map;
1739 int i;
1740
1741 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1742 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1743 map = sc->ti_cdata.ti_rx_std_maps[i];
1744 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1745 BUS_DMASYNC_POSTREAD);
1746 bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1747 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1748 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1749 }
1750 }
1751 bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1752 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1753 sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1754 }
1755
1756 static int
ti_init_rx_ring_jumbo(struct ti_softc * sc)1757 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1758 {
1759 struct ti_cmd_desc cmd;
1760 int i;
1761
1762 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1763 if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1764 return (ENOBUFS);
1765 }
1766
1767 sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1768 TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1769
1770 return (0);
1771 }
1772
1773 static void
ti_free_rx_ring_jumbo(struct ti_softc * sc)1774 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1775 {
1776 bus_dmamap_t map;
1777 int i;
1778
1779 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1780 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1781 map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1782 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1783 BUS_DMASYNC_POSTREAD);
1784 bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1785 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1786 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1787 }
1788 }
1789 bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1790 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1791 sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1792 }
1793
1794 static int
ti_init_rx_ring_mini(struct ti_softc * sc)1795 ti_init_rx_ring_mini(struct ti_softc *sc)
1796 {
1797 int i;
1798
1799 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1800 if (ti_newbuf_mini(sc, i) != 0)
1801 return (ENOBUFS);
1802 }
1803
1804 sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1805 TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1806
1807 return (0);
1808 }
1809
1810 static void
ti_free_rx_ring_mini(struct ti_softc * sc)1811 ti_free_rx_ring_mini(struct ti_softc *sc)
1812 {
1813 bus_dmamap_t map;
1814 int i;
1815
1816 if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1817 return;
1818
1819 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1820 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1821 map = sc->ti_cdata.ti_rx_mini_maps[i];
1822 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1823 BUS_DMASYNC_POSTREAD);
1824 bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1825 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1826 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1827 }
1828 }
1829 bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1830 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1831 sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1832 }
1833
1834 static void
ti_free_tx_ring(struct ti_softc * sc)1835 ti_free_tx_ring(struct ti_softc *sc)
1836 {
1837 struct ti_txdesc *txd;
1838 int i;
1839
1840 if (sc->ti_rdata.ti_tx_ring == NULL)
1841 return;
1842
1843 for (i = 0; i < TI_TX_RING_CNT; i++) {
1844 txd = &sc->ti_cdata.ti_txdesc[i];
1845 if (txd->tx_m != NULL) {
1846 bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1847 BUS_DMASYNC_POSTWRITE);
1848 bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1849 txd->tx_dmamap);
1850 m_freem(txd->tx_m);
1851 txd->tx_m = NULL;
1852 }
1853 }
1854 bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1855 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1856 sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1857 }
1858
1859 static int
ti_init_tx_ring(struct ti_softc * sc)1860 ti_init_tx_ring(struct ti_softc *sc)
1861 {
1862 struct ti_txdesc *txd;
1863 int i;
1864
1865 STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1866 STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1867 for (i = 0; i < TI_TX_RING_CNT; i++) {
1868 txd = &sc->ti_cdata.ti_txdesc[i];
1869 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1870 }
1871 sc->ti_txcnt = 0;
1872 sc->ti_tx_saved_considx = 0;
1873 sc->ti_tx_saved_prodidx = 0;
1874 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1875 return (0);
1876 }
1877
1878 /*
1879 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1880 * but we have to support the old way too so that Tigon 1 cards will
1881 * work.
1882 */
1883 static u_int
ti_add_mcast(void * arg,struct sockaddr_dl * sdl,u_int count)1884 ti_add_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1885 {
1886 struct ti_softc *sc = arg;
1887 struct ti_cmd_desc cmd;
1888 uint16_t *m;
1889 uint32_t ext[2] = {0, 0};
1890
1891 m = (uint16_t *)LLADDR(sdl);
1892
1893 switch (sc->ti_hwrev) {
1894 case TI_HWREV_TIGON:
1895 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1896 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1897 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1898 break;
1899 case TI_HWREV_TIGON_II:
1900 ext[0] = htons(m[0]);
1901 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1902 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1903 break;
1904 default:
1905 device_printf(sc->ti_dev, "unknown hwrev\n");
1906 return (0);
1907 }
1908 return (1);
1909 }
1910
1911 static u_int
ti_del_mcast(void * arg,struct sockaddr_dl * sdl,u_int count)1912 ti_del_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1913 {
1914 struct ti_softc *sc = arg;
1915 struct ti_cmd_desc cmd;
1916 uint16_t *m;
1917 uint32_t ext[2] = {0, 0};
1918
1919 m = (uint16_t *)LLADDR(sdl);
1920
1921 switch (sc->ti_hwrev) {
1922 case TI_HWREV_TIGON:
1923 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1924 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1925 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1926 break;
1927 case TI_HWREV_TIGON_II:
1928 ext[0] = htons(m[0]);
1929 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1930 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1931 break;
1932 default:
1933 device_printf(sc->ti_dev, "unknown hwrev\n");
1934 return (0);
1935 }
1936
1937 return (1);
1938 }
1939
1940 /*
1941 * Configure the Tigon's multicast address filter.
1942 *
1943 * The actual multicast table management is a bit of a pain, thanks to
1944 * slight brain damage on the part of both Alteon and us. With our
1945 * multicast code, we are only alerted when the multicast address table
1946 * changes and at that point we only have the current list of addresses:
1947 * we only know the current state, not the previous state, so we don't
1948 * actually know what addresses were removed or added. The firmware has
1949 * state, but we can't get our grubby mits on it, and there is no 'delete
1950 * all multicast addresses' command. Hence, we have to maintain our own
1951 * state so we know what addresses have been programmed into the NIC at
1952 * any given time.
1953 */
1954 static void
ti_setmulti(struct ti_softc * sc)1955 ti_setmulti(struct ti_softc *sc)
1956 {
1957 if_t ifp;
1958 struct ti_cmd_desc cmd;
1959 uint32_t intrs;
1960
1961 TI_LOCK_ASSERT(sc);
1962
1963 ifp = sc->ti_ifp;
1964
1965 if (if_getflags(ifp) & IFF_ALLMULTI) {
1966 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1967 return;
1968 } else {
1969 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1970 }
1971
1972 /* Disable interrupts. */
1973 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1974 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1975
1976 /* First, zot all the existing filters. */
1977 if_foreach_llmaddr(ifp, ti_del_mcast, sc);
1978
1979 /* Now program new ones. */
1980 if_foreach_llmaddr(ifp, ti_add_mcast, sc);
1981
1982 /* Re-enable interrupts. */
1983 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1984 }
1985
1986 /*
1987 * Check to see if the BIOS has configured us for a 64 bit slot when
1988 * we aren't actually in one. If we detect this condition, we can work
1989 * around it on the Tigon 2 by setting a bit in the PCI state register,
1990 * but for the Tigon 1 we must give up and abort the interface attach.
1991 */
1992 static int
ti_64bitslot_war(struct ti_softc * sc)1993 ti_64bitslot_war(struct ti_softc *sc)
1994 {
1995
1996 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1997 CSR_WRITE_4(sc, 0x600, 0);
1998 CSR_WRITE_4(sc, 0x604, 0);
1999 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2000 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2001 if (sc->ti_hwrev == TI_HWREV_TIGON)
2002 return (EINVAL);
2003 else {
2004 TI_SETBIT(sc, TI_PCI_STATE,
2005 TI_PCISTATE_32BIT_BUS);
2006 return (0);
2007 }
2008 }
2009 }
2010
2011 return (0);
2012 }
2013
2014 /*
2015 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2016 * self-test results.
2017 */
2018 static int
ti_chipinit(struct ti_softc * sc)2019 ti_chipinit(struct ti_softc *sc)
2020 {
2021 uint32_t cacheline;
2022 uint32_t pci_writemax = 0;
2023 uint32_t hdrsplit;
2024
2025 /* Initialize link to down state. */
2026 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2027
2028 /* Set endianness before we access any non-PCI registers. */
2029 #if 0 && BYTE_ORDER == BIG_ENDIAN
2030 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2031 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2032 #else
2033 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2034 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2035 #endif
2036
2037 /* Check the ROM failed bit to see if self-tests passed. */
2038 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2039 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2040 return (ENODEV);
2041 }
2042
2043 /* Halt the CPU. */
2044 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2045
2046 /* Figure out the hardware revision. */
2047 switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2048 case TI_REV_TIGON_I:
2049 sc->ti_hwrev = TI_HWREV_TIGON;
2050 break;
2051 case TI_REV_TIGON_II:
2052 sc->ti_hwrev = TI_HWREV_TIGON_II;
2053 break;
2054 default:
2055 device_printf(sc->ti_dev, "unsupported chip revision\n");
2056 return (ENODEV);
2057 }
2058
2059 /* Do special setup for Tigon 2. */
2060 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2061 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2062 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2063 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2064 }
2065
2066 /*
2067 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2068 * can't do header splitting.
2069 */
2070 #ifdef TI_JUMBO_HDRSPLIT
2071 if (sc->ti_hwrev != TI_HWREV_TIGON)
2072 sc->ti_hdrsplit = 1;
2073 else
2074 device_printf(sc->ti_dev,
2075 "can't do header splitting on a Tigon I board\n");
2076 #endif /* TI_JUMBO_HDRSPLIT */
2077
2078 /* Set up the PCI state register. */
2079 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2080 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2081 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2082 }
2083
2084 /* Clear the read/write max DMA parameters. */
2085 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2086 TI_PCISTATE_READ_MAXDMA));
2087
2088 /* Get cache line size. */
2089 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2090
2091 /*
2092 * If the system has set enabled the PCI memory write
2093 * and invalidate command in the command register, set
2094 * the write max parameter accordingly. This is necessary
2095 * to use MWI with the Tigon 2.
2096 */
2097 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2098 switch (cacheline) {
2099 case 1:
2100 case 4:
2101 case 8:
2102 case 16:
2103 case 32:
2104 case 64:
2105 break;
2106 default:
2107 /* Disable PCI memory write and invalidate. */
2108 if (bootverbose)
2109 device_printf(sc->ti_dev, "cache line size %d"
2110 " not supported; disabling PCI MWI\n",
2111 cacheline);
2112 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2113 TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2114 break;
2115 }
2116 }
2117
2118 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2119
2120 /* This sets the min dma param all the way up (0xff). */
2121 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2122
2123 if (sc->ti_hdrsplit)
2124 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2125 else
2126 hdrsplit = 0;
2127
2128 /* Configure DMA variables. */
2129 #if BYTE_ORDER == BIG_ENDIAN
2130 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2131 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2132 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2133 TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2134 #else /* BYTE_ORDER */
2135 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2136 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2137 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2138 #endif /* BYTE_ORDER */
2139
2140 /*
2141 * Only allow 1 DMA channel to be active at a time.
2142 * I don't think this is a good idea, but without it
2143 * the firmware racks up lots of nicDmaReadRingFull
2144 * errors. This is not compatible with hardware checksums.
2145 */
2146 if ((if_getcapenable(sc->ti_ifp) & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2147 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2148
2149 /* Recommended settings from Tigon manual. */
2150 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2151 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2152
2153 if (ti_64bitslot_war(sc)) {
2154 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2155 "but we aren't");
2156 return (EINVAL);
2157 }
2158
2159 return (0);
2160 }
2161
2162 /*
2163 * Initialize the general information block and firmware, and
2164 * start the CPU(s) running.
2165 */
2166 static int
ti_gibinit(struct ti_softc * sc)2167 ti_gibinit(struct ti_softc *sc)
2168 {
2169 if_t ifp;
2170 struct ti_rcb *rcb;
2171 int i;
2172
2173 TI_LOCK_ASSERT(sc);
2174
2175 ifp = sc->ti_ifp;
2176
2177 /* Disable interrupts for now. */
2178 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2179
2180 /* Tell the chip where to find the general information block. */
2181 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2182 (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2183 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2184 sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2185
2186 /* Load the firmware into SRAM. */
2187 ti_loadfw(sc);
2188
2189 /* Set up the contents of the general info and ring control blocks. */
2190
2191 /* Set up the event ring and producer pointer. */
2192 bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2193 rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2194 ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2195 rcb->ti_flags = 0;
2196 ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2197 sc->ti_rdata.ti_status_paddr +
2198 offsetof(struct ti_status, ti_ev_prodidx_r));
2199 sc->ti_ev_prodidx.ti_idx = 0;
2200 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2201 sc->ti_ev_saved_considx = 0;
2202
2203 /* Set up the command ring and producer mailbox. */
2204 rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2205 ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2206 rcb->ti_flags = 0;
2207 rcb->ti_max_len = 0;
2208 for (i = 0; i < TI_CMD_RING_CNT; i++) {
2209 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2210 }
2211 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2212 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2213 sc->ti_cmd_saved_prodidx = 0;
2214
2215 /*
2216 * Assign the address of the stats refresh buffer.
2217 * We re-use the current stats buffer for this to
2218 * conserve memory.
2219 */
2220 bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2221 ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2222 sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2223
2224 /* Set up the standard receive ring. */
2225 rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2226 ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2227 rcb->ti_max_len = TI_FRAMELEN;
2228 rcb->ti_flags = 0;
2229 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2230 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2231 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2232 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2233 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2234
2235 /* Set up the jumbo receive ring. */
2236 rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2237 ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2238
2239 #ifndef TI_SF_BUF_JUMBO
2240 rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2241 rcb->ti_flags = 0;
2242 #else
2243 rcb->ti_max_len = PAGE_SIZE;
2244 rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2245 #endif
2246 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2247 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2248 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2249 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2250 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2251
2252 /*
2253 * Set up the mini ring. Only activated on the
2254 * Tigon 2 but the slot in the config block is
2255 * still there on the Tigon 1.
2256 */
2257 rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2258 ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2259 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2260 if (sc->ti_hwrev == TI_HWREV_TIGON)
2261 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2262 else
2263 rcb->ti_flags = 0;
2264 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2265 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2266 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2267 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2268 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2269
2270 /*
2271 * Set up the receive return ring.
2272 */
2273 rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2274 ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2275 rcb->ti_flags = 0;
2276 rcb->ti_max_len = TI_RETURN_RING_CNT;
2277 ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2278 sc->ti_rdata.ti_status_paddr +
2279 offsetof(struct ti_status, ti_return_prodidx_r));
2280
2281 /*
2282 * Set up the tx ring. Note: for the Tigon 2, we have the option
2283 * of putting the transmit ring in the host's address space and
2284 * letting the chip DMA it instead of leaving the ring in the NIC's
2285 * memory and accessing it through the shared memory region. We
2286 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2287 * so we have to revert to the shared memory scheme if we detect
2288 * a Tigon 1 chip.
2289 */
2290 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2291 if (sc->ti_rdata.ti_tx_ring != NULL)
2292 bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2293 rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2294 if (sc->ti_hwrev == TI_HWREV_TIGON)
2295 rcb->ti_flags = 0;
2296 else
2297 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2298 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2299 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2300 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2301 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2302 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2303 rcb->ti_max_len = TI_TX_RING_CNT;
2304 if (sc->ti_hwrev == TI_HWREV_TIGON)
2305 ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2306 else
2307 ti_hostaddr64(&rcb->ti_hostaddr,
2308 sc->ti_rdata.ti_tx_ring_paddr);
2309 ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2310 sc->ti_rdata.ti_status_paddr +
2311 offsetof(struct ti_status, ti_tx_considx_r));
2312
2313 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2314 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2315 bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2316 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2317 bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2318 sc->ti_cdata.ti_event_ring_map,
2319 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2320 if (sc->ti_rdata.ti_tx_ring != NULL)
2321 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2322 sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2323
2324 /* Set up tunables */
2325 #if 0
2326 if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2327 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2328 (sc->ti_rx_coal_ticks / 10));
2329 else
2330 #endif
2331 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2332 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2333 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2334 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2335 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2336 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2337
2338 /* Turn interrupts on. */
2339 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2340 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2341
2342 /* Start CPU. */
2343 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2344
2345 return (0);
2346 }
2347
2348 /*
2349 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2350 * against our list and return its name if we find a match.
2351 */
2352 static int
ti_probe(device_t dev)2353 ti_probe(device_t dev)
2354 {
2355 const struct ti_type *t;
2356
2357 t = ti_devs;
2358
2359 while (t->ti_name != NULL) {
2360 if ((pci_get_vendor(dev) == t->ti_vid) &&
2361 (pci_get_device(dev) == t->ti_did)) {
2362 device_set_desc(dev, t->ti_name);
2363 return (BUS_PROBE_DEFAULT);
2364 }
2365 t++;
2366 }
2367
2368 return (ENXIO);
2369 }
2370
2371 static int
ti_attach(device_t dev)2372 ti_attach(device_t dev)
2373 {
2374 if_t ifp;
2375 struct ti_softc *sc;
2376 int error = 0, rid;
2377 u_char eaddr[6];
2378
2379 sc = device_get_softc(dev);
2380 sc->ti_dev = dev;
2381
2382 mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2383 MTX_DEF);
2384 callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2385 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2386 ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2387 if_sethwassist(ifp, TI_CSUM_FEATURES);
2388 if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
2389 if_setcapenable(ifp, if_getcapabilities(sc->ti_ifp));
2390
2391 /*
2392 * Map control/status registers.
2393 */
2394 pci_enable_busmaster(dev);
2395
2396 rid = PCIR_BAR(0);
2397 sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2398 RF_ACTIVE);
2399
2400 if (sc->ti_res == NULL) {
2401 device_printf(dev, "couldn't map memory\n");
2402 error = ENXIO;
2403 goto fail;
2404 }
2405
2406 sc->ti_btag = rman_get_bustag(sc->ti_res);
2407 sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2408
2409 /* Allocate interrupt */
2410 rid = 0;
2411
2412 sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2413 RF_SHAREABLE | RF_ACTIVE);
2414
2415 if (sc->ti_irq == NULL) {
2416 device_printf(dev, "couldn't map interrupt\n");
2417 error = ENXIO;
2418 goto fail;
2419 }
2420
2421 if (ti_chipinit(sc)) {
2422 device_printf(dev, "chip initialization failed\n");
2423 error = ENXIO;
2424 goto fail;
2425 }
2426
2427 /* Zero out the NIC's on-board SRAM. */
2428 ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2429
2430 /* Init again -- zeroing memory may have clobbered some registers. */
2431 if (ti_chipinit(sc)) {
2432 device_printf(dev, "chip initialization failed\n");
2433 error = ENXIO;
2434 goto fail;
2435 }
2436
2437 /*
2438 * Get station address from the EEPROM. Note: the manual states
2439 * that the MAC address is at offset 0x8c, however the data is
2440 * stored as two longwords (since that's how it's loaded into
2441 * the NIC). This means the MAC address is actually preceded
2442 * by two zero bytes. We need to skip over those.
2443 */
2444 if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2445 device_printf(dev, "failed to read station address\n");
2446 error = ENXIO;
2447 goto fail;
2448 }
2449
2450 /* Allocate working area for memory dump. */
2451 sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2452 sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2453 M_NOWAIT);
2454 if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2455 device_printf(dev, "cannot allocate memory buffer\n");
2456 error = ENOMEM;
2457 goto fail;
2458 }
2459 if ((error = ti_dma_alloc(sc)) != 0)
2460 goto fail;
2461
2462 /*
2463 * We really need a better way to tell a 1000baseTX card
2464 * from a 1000baseSX one, since in theory there could be
2465 * OEMed 1000baseTX cards from lame vendors who aren't
2466 * clever enough to change the PCI ID. For the moment
2467 * though, the AceNIC is the only copper card available.
2468 */
2469 if (pci_get_vendor(dev) == ALT_VENDORID &&
2470 pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2471 sc->ti_copper = 1;
2472 /* Ok, it's not the only copper card available. */
2473 if (pci_get_vendor(dev) == NG_VENDORID &&
2474 pci_get_device(dev) == NG_DEVICEID_GA620T)
2475 sc->ti_copper = 1;
2476
2477 /* Set default tunable values. */
2478 ti_sysctl_node(sc);
2479
2480 /* Set up ifnet structure */
2481 if_setsoftc(ifp, sc);
2482 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2483 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2484 if_setioctlfn(ifp, ti_ioctl);
2485 if_setstartfn(ifp, ti_start);
2486 if_setinitfn(ifp, ti_init);
2487 if_setgetcounterfn(ifp, ti_get_counter);
2488 if_setbaudrate(ifp, IF_Gbps(1UL));
2489 if_setsendqlen(ifp, TI_TX_RING_CNT - 1);
2490 if_setsendqready(ifp);
2491
2492 /* Set up ifmedia support. */
2493 if (sc->ti_copper) {
2494 /*
2495 * Copper cards allow manual 10/100 mode selection,
2496 * but not manual 1000baseTX mode selection. Why?
2497 * Because currently there's no way to specify the
2498 * master/slave setting through the firmware interface,
2499 * so Alteon decided to just bag it and handle it
2500 * via autonegotiation.
2501 */
2502 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2503 ifmedia_add(&sc->ifmedia,
2504 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2505 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2506 ifmedia_add(&sc->ifmedia,
2507 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2508 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2509 ifmedia_add(&sc->ifmedia,
2510 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2511 } else {
2512 /* Fiber cards don't support 10/100 modes. */
2513 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2514 ifmedia_add(&sc->ifmedia,
2515 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2516 }
2517 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2518 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2519
2520 /*
2521 * We're assuming here that card initialization is a sequential
2522 * thing. If it isn't, multiple cards probing at the same time
2523 * could stomp on the list of softcs here.
2524 */
2525
2526 /* Register the device */
2527 sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2528 GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2529 sc->dev->si_drv1 = sc;
2530
2531 /*
2532 * Call MI attach routine.
2533 */
2534 ether_ifattach(ifp, eaddr);
2535
2536 /* VLAN capability setup. */
2537 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2538 IFCAP_VLAN_HWTAGGING, 0);
2539 if_setcapenable(ifp, if_getcapabilities(ifp));
2540 /* Tell the upper layer we support VLAN over-sized frames. */
2541 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2542
2543 /* Driver supports link state tracking. */
2544 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
2545 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
2546
2547 /* Hook interrupt last to avoid having to lock softc */
2548 error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2549 NULL, ti_intr, sc, &sc->ti_intrhand);
2550
2551 if (error) {
2552 device_printf(dev, "couldn't set up irq\n");
2553 goto fail;
2554 }
2555
2556 fail:
2557 if (error)
2558 ti_detach(dev);
2559
2560 return (error);
2561 }
2562
2563 /*
2564 * Shutdown hardware and free up resources. This can be called any
2565 * time after the mutex has been initialized. It is called in both
2566 * the error case in attach and the normal detach case so it needs
2567 * to be careful about only freeing resources that have actually been
2568 * allocated.
2569 */
2570 static int
ti_detach(device_t dev)2571 ti_detach(device_t dev)
2572 {
2573 struct ti_softc *sc;
2574 if_t ifp;
2575
2576 sc = device_get_softc(dev);
2577 if (sc->dev)
2578 destroy_dev(sc->dev);
2579 KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2580 ifp = sc->ti_ifp;
2581 if (device_is_attached(dev)) {
2582 ether_ifdetach(ifp);
2583 TI_LOCK(sc);
2584 ti_stop(sc);
2585 TI_UNLOCK(sc);
2586 }
2587
2588 /* These should only be active if attach succeeded */
2589 callout_drain(&sc->ti_watchdog);
2590 bus_generic_detach(dev);
2591 ti_dma_free(sc);
2592 ifmedia_removeall(&sc->ifmedia);
2593
2594 if (sc->ti_intrhand)
2595 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2596 if (sc->ti_irq)
2597 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2598 if (sc->ti_res) {
2599 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2600 sc->ti_res);
2601 }
2602 if (ifp)
2603 if_free(ifp);
2604 if (sc->ti_membuf)
2605 free(sc->ti_membuf, M_DEVBUF);
2606 if (sc->ti_membuf2)
2607 free(sc->ti_membuf2, M_DEVBUF);
2608
2609 mtx_destroy(&sc->ti_mtx);
2610
2611 return (0);
2612 }
2613
2614 #ifdef TI_JUMBO_HDRSPLIT
2615 /*
2616 * If hdr_len is 0, that means that header splitting wasn't done on
2617 * this packet for some reason. The two most likely reasons are that
2618 * the protocol isn't a supported protocol for splitting, or this
2619 * packet had a fragment offset that wasn't 0.
2620 *
2621 * The header length, if it is non-zero, will always be the length of
2622 * the headers on the packet, but that length could be longer than the
2623 * first mbuf. So we take the minimum of the two as the actual
2624 * length.
2625 */
2626 static __inline void
ti_hdr_split(struct mbuf * top,int hdr_len,int pkt_len,int idx)2627 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2628 {
2629 int i = 0;
2630 int lengths[4] = {0, 0, 0, 0};
2631 struct mbuf *m, *mp;
2632
2633 if (hdr_len != 0)
2634 top->m_len = min(hdr_len, top->m_len);
2635 pkt_len -= top->m_len;
2636 lengths[i++] = top->m_len;
2637
2638 mp = top;
2639 for (m = top->m_next; m && pkt_len; m = m->m_next) {
2640 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2641 pkt_len -= m->m_len;
2642 lengths[i++] = m->m_len;
2643 mp = m;
2644 }
2645
2646 #if 0
2647 if (hdr_len != 0)
2648 printf("got split packet: ");
2649 else
2650 printf("got non-split packet: ");
2651
2652 printf("%d,%d,%d,%d = %d\n", lengths[0],
2653 lengths[1], lengths[2], lengths[3],
2654 lengths[0] + lengths[1] + lengths[2] +
2655 lengths[3]);
2656 #endif
2657
2658 if (pkt_len)
2659 panic("header splitting didn't");
2660
2661 if (m) {
2662 m_freem(m);
2663 mp->m_next = NULL;
2664 }
2665 if (mp->m_next != NULL)
2666 panic("ti_hdr_split: last mbuf in chain should be null");
2667 }
2668 #endif /* TI_JUMBO_HDRSPLIT */
2669
2670 static void
ti_discard_std(struct ti_softc * sc,int i)2671 ti_discard_std(struct ti_softc *sc, int i)
2672 {
2673
2674 struct ti_rx_desc *r;
2675
2676 r = &sc->ti_rdata.ti_rx_std_ring[i];
2677 r->ti_len = MCLBYTES - ETHER_ALIGN;
2678 r->ti_type = TI_BDTYPE_RECV_BD;
2679 r->ti_flags = 0;
2680 r->ti_vlan_tag = 0;
2681 r->ti_tcp_udp_cksum = 0;
2682 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2683 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2684 r->ti_idx = i;
2685 }
2686
2687 static void
ti_discard_mini(struct ti_softc * sc,int i)2688 ti_discard_mini(struct ti_softc *sc, int i)
2689 {
2690
2691 struct ti_rx_desc *r;
2692
2693 r = &sc->ti_rdata.ti_rx_mini_ring[i];
2694 r->ti_len = MHLEN - ETHER_ALIGN;
2695 r->ti_type = TI_BDTYPE_RECV_BD;
2696 r->ti_flags = TI_BDFLAG_MINI_RING;
2697 r->ti_vlan_tag = 0;
2698 r->ti_tcp_udp_cksum = 0;
2699 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2700 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2701 r->ti_idx = i;
2702 }
2703
2704 #ifndef TI_SF_BUF_JUMBO
2705 static void
ti_discard_jumbo(struct ti_softc * sc,int i)2706 ti_discard_jumbo(struct ti_softc *sc, int i)
2707 {
2708
2709 struct ti_rx_desc *r;
2710
2711 r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2712 r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2713 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2714 r->ti_flags = TI_BDFLAG_JUMBO_RING;
2715 r->ti_vlan_tag = 0;
2716 r->ti_tcp_udp_cksum = 0;
2717 if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2718 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2719 r->ti_idx = i;
2720 }
2721 #endif
2722
2723 /*
2724 * Frame reception handling. This is called if there's a frame
2725 * on the receive return list.
2726 *
2727 * Note: we have to be able to handle three possibilities here:
2728 * 1) the frame is from the mini receive ring (can only happen)
2729 * on Tigon 2 boards)
2730 * 2) the frame is from the jumbo receive ring
2731 * 3) the frame is from the standard receive ring
2732 */
2733
2734 static void
ti_rxeof(struct ti_softc * sc)2735 ti_rxeof(struct ti_softc *sc)
2736 {
2737 if_t ifp;
2738 #ifdef TI_SF_BUF_JUMBO
2739 bus_dmamap_t map;
2740 #endif
2741 struct ti_cmd_desc cmd;
2742 int jumbocnt, minicnt, stdcnt, ti_len;
2743
2744 TI_LOCK_ASSERT(sc);
2745
2746 ifp = sc->ti_ifp;
2747
2748 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2749 sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2750 if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2751 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2752 sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2753 if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2754 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2755 sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2756 bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2757 sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2758
2759 jumbocnt = minicnt = stdcnt = 0;
2760 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2761 struct ti_rx_desc *cur_rx;
2762 uint32_t rxidx;
2763 struct mbuf *m = NULL;
2764 uint16_t vlan_tag = 0;
2765 int have_tag = 0;
2766
2767 cur_rx =
2768 &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2769 rxidx = cur_rx->ti_idx;
2770 ti_len = cur_rx->ti_len;
2771 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2772
2773 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2774 have_tag = 1;
2775 vlan_tag = cur_rx->ti_vlan_tag;
2776 }
2777
2778 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2779 jumbocnt++;
2780 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2781 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2782 #ifndef TI_SF_BUF_JUMBO
2783 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2784 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2785 ti_discard_jumbo(sc, rxidx);
2786 continue;
2787 }
2788 if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2789 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2790 ti_discard_jumbo(sc, rxidx);
2791 continue;
2792 }
2793 m->m_len = ti_len;
2794 #else /* !TI_SF_BUF_JUMBO */
2795 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2796 map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2797 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2798 BUS_DMASYNC_POSTREAD);
2799 bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2800 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2801 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2802 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2803 continue;
2804 }
2805 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2806 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2807 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2808 continue;
2809 }
2810 #ifdef TI_JUMBO_HDRSPLIT
2811 if (sc->ti_hdrsplit)
2812 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2813 ti_len, rxidx);
2814 else
2815 #endif /* TI_JUMBO_HDRSPLIT */
2816 m_adj(m, ti_len - m->m_pkthdr.len);
2817 #endif /* TI_SF_BUF_JUMBO */
2818 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2819 minicnt++;
2820 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2821 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2822 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2823 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2824 ti_discard_mini(sc, rxidx);
2825 continue;
2826 }
2827 if (ti_newbuf_mini(sc, rxidx) != 0) {
2828 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2829 ti_discard_mini(sc, rxidx);
2830 continue;
2831 }
2832 m->m_len = ti_len;
2833 } else {
2834 stdcnt++;
2835 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2836 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2837 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2838 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2839 ti_discard_std(sc, rxidx);
2840 continue;
2841 }
2842 if (ti_newbuf_std(sc, rxidx) != 0) {
2843 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2844 ti_discard_std(sc, rxidx);
2845 continue;
2846 }
2847 m->m_len = ti_len;
2848 }
2849
2850 m->m_pkthdr.len = ti_len;
2851 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2852 m->m_pkthdr.rcvif = ifp;
2853
2854 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2855 if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2856 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2857 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2858 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2859 }
2860 if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2861 m->m_pkthdr.csum_data =
2862 cur_rx->ti_tcp_udp_cksum;
2863 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2864 }
2865 }
2866
2867 /*
2868 * If we received a packet with a vlan tag,
2869 * tag it before passing the packet upward.
2870 */
2871 if (have_tag) {
2872 m->m_pkthdr.ether_vtag = vlan_tag;
2873 m->m_flags |= M_VLANTAG;
2874 }
2875 TI_UNLOCK(sc);
2876 if_input(ifp, m);
2877 TI_LOCK(sc);
2878 }
2879
2880 bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2881 sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2882 /* Only necessary on the Tigon 1. */
2883 if (sc->ti_hwrev == TI_HWREV_TIGON)
2884 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2885 sc->ti_rx_saved_considx);
2886
2887 if (stdcnt > 0) {
2888 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2889 sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2890 TI_UPDATE_STDPROD(sc, sc->ti_std);
2891 }
2892 if (minicnt > 0) {
2893 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2894 sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2895 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2896 }
2897 if (jumbocnt > 0) {
2898 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2899 sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2900 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2901 }
2902 }
2903
2904 static void
ti_txeof(struct ti_softc * sc)2905 ti_txeof(struct ti_softc *sc)
2906 {
2907 struct ti_txdesc *txd;
2908 struct ti_tx_desc txdesc;
2909 struct ti_tx_desc *cur_tx = NULL;
2910 if_t ifp;
2911 int idx;
2912
2913 ifp = sc->ti_ifp;
2914
2915 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2916 if (txd == NULL)
2917 return;
2918
2919 if (sc->ti_rdata.ti_tx_ring != NULL)
2920 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2921 sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2922 /*
2923 * Go through our tx ring and free mbufs for those
2924 * frames that have been sent.
2925 */
2926 for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2927 TI_INC(idx, TI_TX_RING_CNT)) {
2928 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2929 ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2930 sizeof(txdesc), &txdesc);
2931 cur_tx = &txdesc;
2932 } else
2933 cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2934 sc->ti_txcnt--;
2935 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2936 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2937 continue;
2938 bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2939 BUS_DMASYNC_POSTWRITE);
2940 bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2941
2942 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2943 m_freem(txd->tx_m);
2944 txd->tx_m = NULL;
2945 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2946 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2947 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2948 }
2949 sc->ti_tx_saved_considx = idx;
2950 if (sc->ti_txcnt == 0)
2951 sc->ti_timer = 0;
2952 }
2953
2954 static void
ti_intr(void * xsc)2955 ti_intr(void *xsc)
2956 {
2957 struct ti_softc *sc;
2958 if_t ifp;
2959
2960 sc = xsc;
2961 TI_LOCK(sc);
2962 ifp = sc->ti_ifp;
2963
2964 /* Make sure this is really our interrupt. */
2965 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2966 TI_UNLOCK(sc);
2967 return;
2968 }
2969
2970 /* Ack interrupt and stop others from occurring. */
2971 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2972
2973 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2974 bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2975 sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2976 /* Check RX return ring producer/consumer */
2977 ti_rxeof(sc);
2978
2979 /* Check TX ring producer/consumer */
2980 ti_txeof(sc);
2981 bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2982 sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2983 }
2984
2985 ti_handle_events(sc);
2986
2987 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2988 /* Re-enable interrupts. */
2989 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2990 if (!if_sendq_empty(ifp))
2991 ti_start_locked(ifp);
2992 }
2993
2994 TI_UNLOCK(sc);
2995 }
2996
2997 static uint64_t
ti_get_counter(if_t ifp,ift_counter cnt)2998 ti_get_counter(if_t ifp, ift_counter cnt)
2999 {
3000
3001 switch (cnt) {
3002 case IFCOUNTER_COLLISIONS:
3003 {
3004 struct ti_softc *sc;
3005 struct ti_stats *s;
3006 uint64_t rv;
3007
3008 sc = if_getsoftc(ifp);
3009 s = &sc->ti_rdata.ti_info->ti_stats;
3010
3011 TI_LOCK(sc);
3012 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3013 sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3014 rv = s->dot3StatsSingleCollisionFrames +
3015 s->dot3StatsMultipleCollisionFrames +
3016 s->dot3StatsExcessiveCollisions +
3017 s->dot3StatsLateCollisions;
3018 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3019 sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3020 TI_UNLOCK(sc);
3021 return (rv);
3022 }
3023 default:
3024 return (if_get_counter_default(ifp, cnt));
3025 }
3026 }
3027
3028 /*
3029 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3030 * pointers to descriptors.
3031 */
3032 static int
ti_encap(struct ti_softc * sc,struct mbuf ** m_head)3033 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3034 {
3035 struct ti_txdesc *txd;
3036 struct ti_tx_desc *f;
3037 struct ti_tx_desc txdesc;
3038 struct mbuf *m;
3039 bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3040 uint16_t csum_flags;
3041 int error, frag, i, nseg;
3042
3043 if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3044 return (ENOBUFS);
3045
3046 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3047 *m_head, txsegs, &nseg, 0);
3048 if (error == EFBIG) {
3049 m = m_defrag(*m_head, M_NOWAIT);
3050 if (m == NULL) {
3051 m_freem(*m_head);
3052 *m_head = NULL;
3053 return (ENOMEM);
3054 }
3055 *m_head = m;
3056 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3057 txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3058 if (error) {
3059 m_freem(*m_head);
3060 *m_head = NULL;
3061 return (error);
3062 }
3063 } else if (error != 0)
3064 return (error);
3065 if (nseg == 0) {
3066 m_freem(*m_head);
3067 *m_head = NULL;
3068 return (EIO);
3069 }
3070
3071 if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3072 bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3073 return (ENOBUFS);
3074 }
3075 bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3076 BUS_DMASYNC_PREWRITE);
3077
3078 m = *m_head;
3079 csum_flags = 0;
3080 if (m->m_pkthdr.csum_flags & CSUM_IP)
3081 csum_flags |= TI_BDFLAG_IP_CKSUM;
3082 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3083 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3084
3085 frag = sc->ti_tx_saved_prodidx;
3086 for (i = 0; i < nseg; i++) {
3087 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3088 bzero(&txdesc, sizeof(txdesc));
3089 f = &txdesc;
3090 } else
3091 f = &sc->ti_rdata.ti_tx_ring[frag];
3092 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3093 f->ti_len = txsegs[i].ds_len;
3094 f->ti_flags = csum_flags;
3095 if (m->m_flags & M_VLANTAG) {
3096 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3097 f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3098 } else {
3099 f->ti_vlan_tag = 0;
3100 }
3101
3102 if (sc->ti_hwrev == TI_HWREV_TIGON)
3103 ti_mem_write(sc, TI_TX_RING_BASE + frag *
3104 sizeof(txdesc), sizeof(txdesc), &txdesc);
3105 TI_INC(frag, TI_TX_RING_CNT);
3106 }
3107
3108 sc->ti_tx_saved_prodidx = frag;
3109 /* set TI_BDFLAG_END on the last descriptor */
3110 frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3111 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3112 txdesc.ti_flags |= TI_BDFLAG_END;
3113 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3114 sizeof(txdesc), &txdesc);
3115 } else
3116 sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3117
3118 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3119 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3120 txd->tx_m = m;
3121 sc->ti_txcnt += nseg;
3122
3123 return (0);
3124 }
3125
3126 static void
ti_start(if_t ifp)3127 ti_start(if_t ifp)
3128 {
3129 struct ti_softc *sc;
3130
3131 sc = if_getsoftc(ifp);
3132 TI_LOCK(sc);
3133 ti_start_locked(ifp);
3134 TI_UNLOCK(sc);
3135 }
3136
3137 /*
3138 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3139 * to the mbuf data regions directly in the transmit descriptors.
3140 */
3141 static void
ti_start_locked(if_t ifp)3142 ti_start_locked(if_t ifp)
3143 {
3144 struct ti_softc *sc;
3145 struct mbuf *m_head = NULL;
3146 int enq = 0;
3147
3148 sc = if_getsoftc(ifp);
3149
3150 for (; !if_sendq_empty(ifp) &&
3151 sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3152 m_head = if_dequeue(ifp);
3153 if (m_head == NULL)
3154 break;
3155
3156 /*
3157 * Pack the data into the transmit ring. If we
3158 * don't have room, set the OACTIVE flag and wait
3159 * for the NIC to drain the ring.
3160 */
3161 if (ti_encap(sc, &m_head)) {
3162 if (m_head == NULL)
3163 break;
3164 if_sendq_prepend(ifp, m_head);
3165 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3166 break;
3167 }
3168
3169 enq++;
3170 /*
3171 * If there's a BPF listener, bounce a copy of this frame
3172 * to him.
3173 */
3174 ETHER_BPF_MTAP(ifp, m_head);
3175 }
3176
3177 if (enq > 0) {
3178 if (sc->ti_rdata.ti_tx_ring != NULL)
3179 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3180 sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3181 /* Transmit */
3182 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3183
3184 /*
3185 * Set a timeout in case the chip goes out to lunch.
3186 */
3187 sc->ti_timer = 5;
3188 }
3189 }
3190
3191 static void
ti_init(void * xsc)3192 ti_init(void *xsc)
3193 {
3194 struct ti_softc *sc;
3195
3196 sc = xsc;
3197 TI_LOCK(sc);
3198 ti_init_locked(sc);
3199 TI_UNLOCK(sc);
3200 }
3201
3202 static void
ti_init_locked(void * xsc)3203 ti_init_locked(void *xsc)
3204 {
3205 struct ti_softc *sc = xsc;
3206
3207 if (if_getdrvflags(sc->ti_ifp) & IFF_DRV_RUNNING)
3208 return;
3209
3210 /* Cancel pending I/O and flush buffers. */
3211 ti_stop(sc);
3212
3213 /* Init the gen info block, ring control blocks and firmware. */
3214 if (ti_gibinit(sc)) {
3215 device_printf(sc->ti_dev, "initialization failure\n");
3216 return;
3217 }
3218 }
3219
ti_init2(struct ti_softc * sc)3220 static void ti_init2(struct ti_softc *sc)
3221 {
3222 struct ti_cmd_desc cmd;
3223 if_t ifp;
3224 uint8_t *ea;
3225 struct ifmedia *ifm;
3226 int tmp;
3227
3228 TI_LOCK_ASSERT(sc);
3229
3230 ifp = sc->ti_ifp;
3231
3232 /* Specify MTU and interface index. */
3233 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3234 CSR_WRITE_4(sc, TI_GCR_IFMTU, if_getmtu(ifp) +
3235 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3236 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3237
3238 /* Load our MAC address. */
3239 ea = if_getlladdr(sc->ti_ifp);
3240 CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3241 CSR_WRITE_4(sc, TI_GCR_PAR1,
3242 (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3243 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3244
3245 /* Enable or disable promiscuous mode as needed. */
3246 if (if_getflags(ifp) & IFF_PROMISC) {
3247 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3248 } else {
3249 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3250 }
3251
3252 /* Program multicast filter. */
3253 ti_setmulti(sc);
3254
3255 /*
3256 * If this is a Tigon 1, we should tell the
3257 * firmware to use software packet filtering.
3258 */
3259 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3260 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3261 }
3262
3263 /* Init RX ring. */
3264 if (ti_init_rx_ring_std(sc) != 0) {
3265 /* XXX */
3266 device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3267 return;
3268 }
3269
3270 /* Init jumbo RX ring. */
3271 if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3272 if (ti_init_rx_ring_jumbo(sc) != 0) {
3273 /* XXX */
3274 device_printf(sc->ti_dev,
3275 "no memory for jumbo Rx buffers.\n");
3276 return;
3277 }
3278 }
3279
3280 /*
3281 * If this is a Tigon 2, we can also configure the
3282 * mini ring.
3283 */
3284 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3285 if (ti_init_rx_ring_mini(sc) != 0) {
3286 /* XXX */
3287 device_printf(sc->ti_dev,
3288 "no memory for mini Rx buffers.\n");
3289 return;
3290 }
3291 }
3292
3293 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3294 sc->ti_rx_saved_considx = 0;
3295
3296 /* Init TX ring. */
3297 ti_init_tx_ring(sc);
3298
3299 /* Tell firmware we're alive. */
3300 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3301
3302 /* Enable host interrupts. */
3303 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3304
3305 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3306 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3307 callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3308
3309 /*
3310 * Make sure to set media properly. We have to do this
3311 * here since we have to issue commands in order to set
3312 * the link negotiation and we can't issue commands until
3313 * the firmware is running.
3314 */
3315 ifm = &sc->ifmedia;
3316 tmp = ifm->ifm_media;
3317 ifm->ifm_media = ifm->ifm_cur->ifm_media;
3318 ti_ifmedia_upd_locked(sc);
3319 ifm->ifm_media = tmp;
3320 }
3321
3322 /*
3323 * Set media options.
3324 */
3325 static int
ti_ifmedia_upd(if_t ifp)3326 ti_ifmedia_upd(if_t ifp)
3327 {
3328 struct ti_softc *sc;
3329 int error;
3330
3331 sc = if_getsoftc(ifp);
3332 TI_LOCK(sc);
3333 error = ti_ifmedia_upd_locked(sc);
3334 TI_UNLOCK(sc);
3335
3336 return (error);
3337 }
3338
3339 static int
ti_ifmedia_upd_locked(struct ti_softc * sc)3340 ti_ifmedia_upd_locked(struct ti_softc *sc)
3341 {
3342 struct ifmedia *ifm;
3343 struct ti_cmd_desc cmd;
3344 uint32_t flowctl;
3345
3346 ifm = &sc->ifmedia;
3347
3348 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3349 return (EINVAL);
3350
3351 flowctl = 0;
3352
3353 switch (IFM_SUBTYPE(ifm->ifm_media)) {
3354 case IFM_AUTO:
3355 /*
3356 * Transmit flow control doesn't work on the Tigon 1.
3357 */
3358 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3359
3360 /*
3361 * Transmit flow control can also cause problems on the
3362 * Tigon 2, apparently with both the copper and fiber
3363 * boards. The symptom is that the interface will just
3364 * hang. This was reproduced with Alteon 180 switches.
3365 */
3366 #if 0
3367 if (sc->ti_hwrev != TI_HWREV_TIGON)
3368 flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3369 #endif
3370
3371 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3372 TI_GLNK_FULL_DUPLEX| flowctl |
3373 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3374
3375 flowctl = TI_LNK_RX_FLOWCTL_Y;
3376 #if 0
3377 if (sc->ti_hwrev != TI_HWREV_TIGON)
3378 flowctl |= TI_LNK_TX_FLOWCTL_Y;
3379 #endif
3380
3381 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3382 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3383 TI_LNK_AUTONEGENB|TI_LNK_ENB);
3384 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3385 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3386 break;
3387 case IFM_1000_SX:
3388 case IFM_1000_T:
3389 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3390 #if 0
3391 if (sc->ti_hwrev != TI_HWREV_TIGON)
3392 flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3393 #endif
3394
3395 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3396 flowctl |TI_GLNK_ENB);
3397 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3398 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3399 TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3400 }
3401 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3402 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3403 break;
3404 case IFM_100_FX:
3405 case IFM_10_FL:
3406 case IFM_100_TX:
3407 case IFM_10_T:
3408 flowctl = TI_LNK_RX_FLOWCTL_Y;
3409 #if 0
3410 if (sc->ti_hwrev != TI_HWREV_TIGON)
3411 flowctl |= TI_LNK_TX_FLOWCTL_Y;
3412 #endif
3413
3414 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3415 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3416 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3417 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3418 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3419 } else {
3420 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3421 }
3422 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3423 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3424 } else {
3425 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3426 }
3427 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3428 TI_CMD_CODE_NEGOTIATE_10_100, 0);
3429 break;
3430 }
3431
3432 return (0);
3433 }
3434
3435 /*
3436 * Report current media status.
3437 */
3438 static void
ti_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)3439 ti_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3440 {
3441 struct ti_softc *sc;
3442 uint32_t media = 0;
3443
3444 sc = if_getsoftc(ifp);
3445
3446 TI_LOCK(sc);
3447
3448 ifmr->ifm_status = IFM_AVALID;
3449 ifmr->ifm_active = IFM_ETHER;
3450
3451 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3452 TI_UNLOCK(sc);
3453 return;
3454 }
3455
3456 ifmr->ifm_status |= IFM_ACTIVE;
3457
3458 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3459 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3460 if (sc->ti_copper)
3461 ifmr->ifm_active |= IFM_1000_T;
3462 else
3463 ifmr->ifm_active |= IFM_1000_SX;
3464 if (media & TI_GLNK_FULL_DUPLEX)
3465 ifmr->ifm_active |= IFM_FDX;
3466 else
3467 ifmr->ifm_active |= IFM_HDX;
3468 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3469 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3470 if (sc->ti_copper) {
3471 if (media & TI_LNK_100MB)
3472 ifmr->ifm_active |= IFM_100_TX;
3473 if (media & TI_LNK_10MB)
3474 ifmr->ifm_active |= IFM_10_T;
3475 } else {
3476 if (media & TI_LNK_100MB)
3477 ifmr->ifm_active |= IFM_100_FX;
3478 if (media & TI_LNK_10MB)
3479 ifmr->ifm_active |= IFM_10_FL;
3480 }
3481 if (media & TI_LNK_FULL_DUPLEX)
3482 ifmr->ifm_active |= IFM_FDX;
3483 if (media & TI_LNK_HALF_DUPLEX)
3484 ifmr->ifm_active |= IFM_HDX;
3485 }
3486 TI_UNLOCK(sc);
3487 }
3488
3489 static int
ti_ioctl(if_t ifp,u_long command,caddr_t data)3490 ti_ioctl(if_t ifp, u_long command, caddr_t data)
3491 {
3492 struct ti_softc *sc = if_getsoftc(ifp);
3493 struct ifreq *ifr = (struct ifreq *) data;
3494 struct ti_cmd_desc cmd;
3495 int mask, error = 0;
3496
3497 switch (command) {
3498 case SIOCSIFMTU:
3499 TI_LOCK(sc);
3500 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3501 error = EINVAL;
3502 else {
3503 if_setmtu(ifp, ifr->ifr_mtu);
3504 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3505 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3506 ti_init_locked(sc);
3507 }
3508 }
3509 TI_UNLOCK(sc);
3510 break;
3511 case SIOCSIFFLAGS:
3512 TI_LOCK(sc);
3513 if (if_getflags(ifp) & IFF_UP) {
3514 /*
3515 * If only the state of the PROMISC flag changed,
3516 * then just use the 'set promisc mode' command
3517 * instead of reinitializing the entire NIC. Doing
3518 * a full re-init means reloading the firmware and
3519 * waiting for it to start up, which may take a
3520 * second or two.
3521 */
3522 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3523 if_getflags(ifp) & IFF_PROMISC &&
3524 !(sc->ti_if_flags & IFF_PROMISC)) {
3525 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3526 TI_CMD_CODE_PROMISC_ENB, 0);
3527 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3528 !(if_getflags(ifp) & IFF_PROMISC) &&
3529 sc->ti_if_flags & IFF_PROMISC) {
3530 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3531 TI_CMD_CODE_PROMISC_DIS, 0);
3532 } else
3533 ti_init_locked(sc);
3534 } else {
3535 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3536 ti_stop(sc);
3537 }
3538 }
3539 sc->ti_if_flags = if_getflags(ifp);
3540 TI_UNLOCK(sc);
3541 break;
3542 case SIOCADDMULTI:
3543 case SIOCDELMULTI:
3544 TI_LOCK(sc);
3545 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3546 ti_setmulti(sc);
3547 TI_UNLOCK(sc);
3548 break;
3549 case SIOCSIFMEDIA:
3550 case SIOCGIFMEDIA:
3551 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3552 break;
3553 case SIOCSIFCAP:
3554 TI_LOCK(sc);
3555 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3556 if ((mask & IFCAP_TXCSUM) != 0 &&
3557 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
3558 if_togglecapenable(ifp, IFCAP_TXCSUM);
3559 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3560 if_sethwassistbits(ifp, TI_CSUM_FEATURES, 0);
3561 else
3562 if_sethwassistbits(ifp, 0, TI_CSUM_FEATURES);
3563 }
3564 if ((mask & IFCAP_RXCSUM) != 0 &&
3565 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
3566 if_togglecapenable(ifp, IFCAP_RXCSUM);
3567 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3568 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3569 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3570 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3571 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
3572 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3573 if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3574 IFCAP_VLAN_HWTAGGING)) != 0) {
3575 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3576 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3577 ti_init_locked(sc);
3578 }
3579 }
3580 TI_UNLOCK(sc);
3581 VLAN_CAPABILITIES(ifp);
3582 break;
3583 default:
3584 error = ether_ioctl(ifp, command, data);
3585 break;
3586 }
3587
3588 return (error);
3589 }
3590
3591 static int
ti_open(struct cdev * dev,int flags,int fmt,struct thread * td)3592 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3593 {
3594 struct ti_softc *sc;
3595
3596 sc = dev->si_drv1;
3597 if (sc == NULL)
3598 return (ENODEV);
3599
3600 TI_LOCK(sc);
3601 sc->ti_flags |= TI_FLAG_DEBUGING;
3602 TI_UNLOCK(sc);
3603
3604 return (0);
3605 }
3606
3607 static int
ti_close(struct cdev * dev,int flag,int fmt,struct thread * td)3608 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3609 {
3610 struct ti_softc *sc;
3611
3612 sc = dev->si_drv1;
3613 if (sc == NULL)
3614 return (ENODEV);
3615
3616 TI_LOCK(sc);
3617 sc->ti_flags &= ~TI_FLAG_DEBUGING;
3618 TI_UNLOCK(sc);
3619
3620 return (0);
3621 }
3622
3623 /*
3624 * This ioctl routine goes along with the Tigon character device.
3625 */
3626 static int
ti_ioctl2(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)3627 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3628 struct thread *td)
3629 {
3630 struct ti_softc *sc;
3631 int error;
3632
3633 sc = dev->si_drv1;
3634 if (sc == NULL)
3635 return (ENODEV);
3636
3637 error = 0;
3638
3639 switch (cmd) {
3640 case TIIOCGETSTATS:
3641 {
3642 struct ti_stats *outstats;
3643
3644 outstats = (struct ti_stats *)addr;
3645
3646 TI_LOCK(sc);
3647 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3648 sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3649 bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3650 sizeof(struct ti_stats));
3651 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3652 sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3653 TI_UNLOCK(sc);
3654 break;
3655 }
3656 case TIIOCGETPARAMS:
3657 {
3658 struct ti_params *params;
3659
3660 params = (struct ti_params *)addr;
3661
3662 TI_LOCK(sc);
3663 params->ti_stat_ticks = sc->ti_stat_ticks;
3664 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3665 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3666 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3667 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3668 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3669 params->param_mask = TI_PARAM_ALL;
3670 TI_UNLOCK(sc);
3671 break;
3672 }
3673 case TIIOCSETPARAMS:
3674 {
3675 struct ti_params *params;
3676
3677 params = (struct ti_params *)addr;
3678
3679 TI_LOCK(sc);
3680 if (params->param_mask & TI_PARAM_STAT_TICKS) {
3681 sc->ti_stat_ticks = params->ti_stat_ticks;
3682 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3683 }
3684
3685 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3686 sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3687 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3688 sc->ti_rx_coal_ticks);
3689 }
3690
3691 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3692 sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3693 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3694 sc->ti_tx_coal_ticks);
3695 }
3696
3697 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3698 sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3699 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3700 sc->ti_rx_max_coal_bds);
3701 }
3702
3703 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3704 sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3705 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3706 sc->ti_tx_max_coal_bds);
3707 }
3708
3709 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3710 sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3711 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3712 sc->ti_tx_buf_ratio);
3713 }
3714 TI_UNLOCK(sc);
3715 break;
3716 }
3717 case TIIOCSETTRACE: {
3718 ti_trace_type trace_type;
3719
3720 trace_type = *(ti_trace_type *)addr;
3721
3722 /*
3723 * Set tracing to whatever the user asked for. Setting
3724 * this register to 0 should have the effect of disabling
3725 * tracing.
3726 */
3727 TI_LOCK(sc);
3728 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3729 TI_UNLOCK(sc);
3730 break;
3731 }
3732 case TIIOCGETTRACE: {
3733 struct ti_trace_buf *trace_buf;
3734 uint32_t trace_start, cur_trace_ptr, trace_len;
3735
3736 trace_buf = (struct ti_trace_buf *)addr;
3737
3738 TI_LOCK(sc);
3739 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3740 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3741 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3742 #if 0
3743 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3744 "trace_len = %d\n", trace_start,
3745 cur_trace_ptr, trace_len);
3746 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3747 trace_buf->buf_len);
3748 #endif
3749 error = ti_copy_mem(sc, trace_start, min(trace_len,
3750 trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3751 if (error == 0) {
3752 trace_buf->fill_len = min(trace_len,
3753 trace_buf->buf_len);
3754 if (cur_trace_ptr < trace_start)
3755 trace_buf->cur_trace_ptr =
3756 trace_start - cur_trace_ptr;
3757 else
3758 trace_buf->cur_trace_ptr =
3759 cur_trace_ptr - trace_start;
3760 } else
3761 trace_buf->fill_len = 0;
3762 TI_UNLOCK(sc);
3763 break;
3764 }
3765
3766 /*
3767 * For debugging, five ioctls are needed:
3768 * ALT_ATTACH
3769 * ALT_READ_TG_REG
3770 * ALT_WRITE_TG_REG
3771 * ALT_READ_TG_MEM
3772 * ALT_WRITE_TG_MEM
3773 */
3774 case ALT_ATTACH:
3775 /*
3776 * From what I can tell, Alteon's Solaris Tigon driver
3777 * only has one character device, so you have to attach
3778 * to the Tigon board you're interested in. This seems
3779 * like a not-so-good way to do things, since unless you
3780 * subsequently specify the unit number of the device
3781 * you're interested in every ioctl, you'll only be
3782 * able to debug one board at a time.
3783 */
3784 break;
3785 case ALT_READ_TG_MEM:
3786 case ALT_WRITE_TG_MEM:
3787 {
3788 struct tg_mem *mem_param;
3789 uint32_t sram_end, scratch_end;
3790
3791 mem_param = (struct tg_mem *)addr;
3792
3793 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3794 sram_end = TI_END_SRAM_I;
3795 scratch_end = TI_END_SCRATCH_I;
3796 } else {
3797 sram_end = TI_END_SRAM_II;
3798 scratch_end = TI_END_SCRATCH_II;
3799 }
3800
3801 /*
3802 * For now, we'll only handle accessing regular SRAM,
3803 * nothing else.
3804 */
3805 TI_LOCK(sc);
3806 if (mem_param->tgAddr >= TI_BEG_SRAM &&
3807 mem_param->tgAddr + mem_param->len <= sram_end) {
3808 /*
3809 * In this instance, we always copy to/from user
3810 * space, so the user space argument is set to 1.
3811 */
3812 error = ti_copy_mem(sc, mem_param->tgAddr,
3813 mem_param->len, mem_param->userAddr, 1,
3814 cmd == ALT_READ_TG_MEM ? 1 : 0);
3815 } else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3816 mem_param->tgAddr <= scratch_end) {
3817 error = ti_copy_scratch(sc, mem_param->tgAddr,
3818 mem_param->len, mem_param->userAddr, 1,
3819 cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_A);
3820 } else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3821 mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3822 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3823 if_printf(sc->ti_ifp,
3824 "invalid memory range for Tigon I\n");
3825 error = EINVAL;
3826 break;
3827 }
3828 error = ti_copy_scratch(sc, mem_param->tgAddr -
3829 TI_SCRATCH_DEBUG_OFF, mem_param->len,
3830 mem_param->userAddr, 1,
3831 cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3832 } else {
3833 if_printf(sc->ti_ifp, "memory address %#x len %d is "
3834 "out of supported range\n",
3835 mem_param->tgAddr, mem_param->len);
3836 error = EINVAL;
3837 }
3838 TI_UNLOCK(sc);
3839 break;
3840 }
3841 case ALT_READ_TG_REG:
3842 case ALT_WRITE_TG_REG:
3843 {
3844 struct tg_reg *regs;
3845 uint32_t tmpval;
3846
3847 regs = (struct tg_reg *)addr;
3848
3849 /*
3850 * Make sure the address in question isn't out of range.
3851 */
3852 if (regs->addr > TI_REG_MAX) {
3853 error = EINVAL;
3854 break;
3855 }
3856 TI_LOCK(sc);
3857 if (cmd == ALT_READ_TG_REG) {
3858 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3859 regs->addr, &tmpval, 1);
3860 regs->data = ntohl(tmpval);
3861 #if 0
3862 if ((regs->addr == TI_CPU_STATE)
3863 || (regs->addr == TI_CPU_CTL_B)) {
3864 if_printf(sc->ti_ifp, "register %#x = %#x\n",
3865 regs->addr, tmpval);
3866 }
3867 #endif
3868 } else {
3869 tmpval = htonl(regs->data);
3870 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3871 regs->addr, &tmpval, 1);
3872 }
3873 TI_UNLOCK(sc);
3874 break;
3875 }
3876 default:
3877 error = ENOTTY;
3878 break;
3879 }
3880 return (error);
3881 }
3882
3883 static void
ti_watchdog(void * arg)3884 ti_watchdog(void *arg)
3885 {
3886 struct ti_softc *sc;
3887 if_t ifp;
3888
3889 sc = arg;
3890 TI_LOCK_ASSERT(sc);
3891 callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3892 if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3893 return;
3894
3895 /*
3896 * When we're debugging, the chip is often stopped for long periods
3897 * of time, and that would normally cause the watchdog timer to fire.
3898 * Since that impedes debugging, we don't want to do that.
3899 */
3900 if (sc->ti_flags & TI_FLAG_DEBUGING)
3901 return;
3902
3903 ifp = sc->ti_ifp;
3904 if_printf(ifp, "watchdog timeout -- resetting\n");
3905 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3906 ti_init_locked(sc);
3907
3908 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3909 }
3910
3911 /*
3912 * Stop the adapter and free any mbufs allocated to the
3913 * RX and TX lists.
3914 */
3915 static void
ti_stop(struct ti_softc * sc)3916 ti_stop(struct ti_softc *sc)
3917 {
3918 if_t ifp;
3919 struct ti_cmd_desc cmd;
3920
3921 TI_LOCK_ASSERT(sc);
3922
3923 ifp = sc->ti_ifp;
3924
3925 /* Disable host interrupts. */
3926 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3927 /*
3928 * Tell firmware we're shutting down.
3929 */
3930 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3931
3932 /* Halt and reinitialize. */
3933 if (ti_chipinit(sc) == 0) {
3934 ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3935 /* XXX ignore init errors. */
3936 ti_chipinit(sc);
3937 }
3938
3939 /* Free the RX lists. */
3940 ti_free_rx_ring_std(sc);
3941
3942 /* Free jumbo RX list. */
3943 ti_free_rx_ring_jumbo(sc);
3944
3945 /* Free mini RX list. */
3946 ti_free_rx_ring_mini(sc);
3947
3948 /* Free TX buffers. */
3949 ti_free_tx_ring(sc);
3950
3951 sc->ti_ev_prodidx.ti_idx = 0;
3952 sc->ti_return_prodidx.ti_idx = 0;
3953 sc->ti_tx_considx.ti_idx = 0;
3954 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3955
3956 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3957 callout_stop(&sc->ti_watchdog);
3958 }
3959
3960 /*
3961 * Stop all chip I/O so that the kernel's probe routines don't
3962 * get confused by errant DMAs when rebooting.
3963 */
3964 static int
ti_shutdown(device_t dev)3965 ti_shutdown(device_t dev)
3966 {
3967 struct ti_softc *sc;
3968
3969 sc = device_get_softc(dev);
3970 TI_LOCK(sc);
3971 ti_chipinit(sc);
3972 TI_UNLOCK(sc);
3973
3974 return (0);
3975 }
3976
3977 static void
ti_sysctl_node(struct ti_softc * sc)3978 ti_sysctl_node(struct ti_softc *sc)
3979 {
3980 struct sysctl_ctx_list *ctx;
3981 struct sysctl_oid_list *child;
3982 char tname[32];
3983
3984 ctx = device_get_sysctl_ctx(sc->ti_dev);
3985 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
3986
3987 /* Use DAC */
3988 sc->ti_dac = 1;
3989 snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
3990 device_get_unit(sc->ti_dev));
3991 TUNABLE_INT_FETCH(tname, &sc->ti_dac);
3992
3993 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
3994 &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
3995 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
3996 &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
3997
3998 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
3999 &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4000 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4001 &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4002 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4003 &sc->ti_tx_buf_ratio, 0,
4004 "Ratio of NIC memory devoted to TX buffer");
4005
4006 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4007 &sc->ti_stat_ticks, 0,
4008 "Number of clock ticks for statistics update interval");
4009
4010 /* Pull in device tunables. */
4011 sc->ti_rx_coal_ticks = 170;
4012 resource_int_value(device_get_name(sc->ti_dev),
4013 device_get_unit(sc->ti_dev), "rx_coal_ticks",
4014 &sc->ti_rx_coal_ticks);
4015 sc->ti_rx_max_coal_bds = 64;
4016 resource_int_value(device_get_name(sc->ti_dev),
4017 device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4018 &sc->ti_rx_max_coal_bds);
4019
4020 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4021 resource_int_value(device_get_name(sc->ti_dev),
4022 device_get_unit(sc->ti_dev), "tx_coal_ticks",
4023 &sc->ti_tx_coal_ticks);
4024 sc->ti_tx_max_coal_bds = 32;
4025 resource_int_value(device_get_name(sc->ti_dev),
4026 device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4027 &sc->ti_tx_max_coal_bds);
4028 sc->ti_tx_buf_ratio = 21;
4029 resource_int_value(device_get_name(sc->ti_dev),
4030 device_get_unit(sc->ti_dev), "tx_buf_ratio",
4031 &sc->ti_tx_buf_ratio);
4032
4033 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4034 resource_int_value(device_get_name(sc->ti_dev),
4035 device_get_unit(sc->ti_dev), "stat_ticks",
4036 &sc->ti_stat_ticks);
4037 }
4038