xref: /titanic_44/usr/src/stand/lib/tcp/tcp.c (revision 1915be19b7a1f7c113b706bd54d6ca393e8d8107)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * tcp.c, Code implementing the TCP protocol.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/types.h>
32 #include <socket_impl.h>
33 #include <socket_inet.h>
34 #include <sys/sysmacros.h>
35 #include <sys/promif.h>
36 #include <sys/socket.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/in.h>
39 #include <netinet/ip.h>
40 #include <netinet/tcp.h>
41 #include <net/if_types.h>
42 #include <sys/salib.h>
43 
44 #include "ipv4.h"
45 #include "ipv4_impl.h"
46 #include "mac.h"
47 #include "mac_impl.h"
48 #include "v4_sum_impl.h"
49 #include <sys/bootdebug.h>
50 #include "tcp_inet.h"
51 #include "tcp_sack.h"
52 #include <inet/common.h>
53 #include <inet/mib2.h>
54 
55 /*
56  * We need to redefine BUMP_MIB/UPDATE_MIB to not have DTrace probes.
57  */
58 #undef BUMP_MIB
59 #define	BUMP_MIB(x) (x)++
60 
61 #undef UPDATE_MIB
62 #define	UPDATE_MIB(x, y) x += y
63 
64 /*
65  * MIB-2 stuff for SNMP
66  */
67 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
68 
69 /* The TCP mib does not include the following errors. */
70 static uint_t tcp_cksum_errors;
71 static uint_t tcp_drops;
72 
73 /* Macros for timestamp comparisons */
74 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
75 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
76 
77 /*
78  * Parameters for TCP Initial Send Sequence number (ISS) generation.
79  * The ISS is calculated by adding three components: a time component
80  * which grows by 1 every 4096 nanoseconds (versus every 4 microseconds
81  * suggested by RFC 793, page 27);
82  * a per-connection component which grows by 125000 for every new connection;
83  * and an "extra" component that grows by a random amount centered
84  * approximately on 64000.  This causes the the ISS generator to cycle every
85  * 4.89 hours if no TCP connections are made, and faster if connections are
86  * made.
87  */
88 #define	ISS_INCR	250000
89 #define	ISS_NSEC_SHT	0
90 
91 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
92 
93 #define	TCP_XMIT_LOWATER	4096
94 #define	TCP_XMIT_HIWATER	49152
95 #define	TCP_RECV_LOWATER	2048
96 #define	TCP_RECV_HIWATER	49152
97 
98 /*
99  *  PAWS needs a timer for 24 days.  This is the number of ms in 24 days
100  */
101 #define	PAWS_TIMEOUT	((uint32_t)(24*24*60*60*1000))
102 
103 /*
104  * TCP options struct returned from tcp_parse_options.
105  */
106 typedef struct tcp_opt_s {
107 	uint32_t	tcp_opt_mss;
108 	uint32_t	tcp_opt_wscale;
109 	uint32_t	tcp_opt_ts_val;
110 	uint32_t	tcp_opt_ts_ecr;
111 	tcp_t		*tcp;
112 } tcp_opt_t;
113 
114 /*
115  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
116  */
117 
118 #ifdef _BIG_ENDIAN
119 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
120 	(TCPOPT_TSTAMP << 8) | 10)
121 #else
122 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
123 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
124 #endif
125 
126 /*
127  * Flags returned from tcp_parse_options.
128  */
129 #define	TCP_OPT_MSS_PRESENT	1
130 #define	TCP_OPT_WSCALE_PRESENT	2
131 #define	TCP_OPT_TSTAMP_PRESENT	4
132 #define	TCP_OPT_SACK_OK_PRESENT	8
133 #define	TCP_OPT_SACK_PRESENT	16
134 
135 /* TCP option length */
136 #define	TCPOPT_NOP_LEN		1
137 #define	TCPOPT_MAXSEG_LEN	4
138 #define	TCPOPT_WS_LEN		3
139 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
140 #define	TCPOPT_TSTAMP_LEN	10
141 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
142 #define	TCPOPT_SACK_OK_LEN	2
143 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
144 #define	TCPOPT_REAL_SACK_LEN	4
145 #define	TCPOPT_MAX_SACK_LEN	36
146 #define	TCPOPT_HEADER_LEN	2
147 
148 /* TCP cwnd burst factor. */
149 #define	TCP_CWND_INFINITE	65535
150 #define	TCP_CWND_SS		3
151 #define	TCP_CWND_NORMAL		5
152 
153 /* Named Dispatch Parameter Management Structure */
154 typedef struct tcpparam_s {
155 	uint32_t	tcp_param_min;
156 	uint32_t	tcp_param_max;
157 	uint32_t	tcp_param_val;
158 	char		*tcp_param_name;
159 } tcpparam_t;
160 
161 /* Max size IP datagram is 64k - 1 */
162 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (struct ip) + \
163 	sizeof (tcph_t)))
164 
165 /* Max of the above */
166 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
167 
168 /* Largest TCP port number */
169 #define	TCP_MAX_PORT	(64 * 1024 - 1)
170 
171 /* Round up the value to the nearest mss. */
172 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
173 
174 #define	MS	1L
175 #define	SECONDS	(1000 * MS)
176 #define	MINUTES	(60 * SECONDS)
177 #define	HOURS	(60 * MINUTES)
178 #define	DAYS	(24 * HOURS)
179 
180 /* All NDD params in the core TCP became static variables. */
181 static int	tcp_time_wait_interval = 1 * MINUTES;
182 static int	tcp_conn_req_max_q = 128;
183 static int	tcp_conn_req_max_q0 = 1024;
184 static int	tcp_conn_req_min = 1;
185 static int	tcp_conn_grace_period = 0 * SECONDS;
186 static int	tcp_cwnd_max_ = 1024 * 1024;
187 static int	tcp_smallest_nonpriv_port = 1024;
188 static int	tcp_ip_abort_cinterval = 3 * MINUTES;
189 static int	tcp_ip_abort_linterval = 3 * MINUTES;
190 static int	tcp_ip_abort_interval = 8 * MINUTES;
191 static int	tcp_ip_notify_cinterval = 10 * SECONDS;
192 static int	tcp_ip_notify_interval = 10 * SECONDS;
193 static int	tcp_ipv4_ttl = 64;
194 static int	tcp_mss_def_ipv4 = 536;
195 static int	tcp_mss_max_ipv4 = TCP_MSS_MAX_IPV4;
196 static int	tcp_mss_min = 108;
197 static int	tcp_naglim_def = (4*1024)-1;
198 static int	tcp_rexmit_interval_initial = 3 * SECONDS;
199 static int	tcp_rexmit_interval_max = 60 * SECONDS;
200 static int	tcp_rexmit_interval_min = 400 * MS;
201 static int	tcp_dupack_fast_retransmit = 3;
202 static int	tcp_smallest_anon_port = 32 * 1024;
203 static int	tcp_largest_anon_port = TCP_MAX_PORT;
204 static int	tcp_xmit_lowat = TCP_XMIT_LOWATER;
205 static int	tcp_recv_hiwat_minmss = 4;
206 static int	tcp_fin_wait_2_flush_interval = 1 * MINUTES;
207 static int	tcp_max_buf = 1024 * 1024;
208 static int	tcp_wscale_always = 1;
209 static int	tcp_tstamp_always = 1;
210 static int	tcp_tstamp_if_wscale = 1;
211 static int	tcp_rexmit_interval_extra = 0;
212 static int	tcp_slow_start_after_idle = 2;
213 static int	tcp_slow_start_initial = 2;
214 static int	tcp_sack_permitted = 2;
215 static int	tcp_ecn_permitted = 2;
216 
217 /* Extra room to fit in headers. */
218 static uint_t	tcp_wroff_xtra;
219 
220 /* Hint for next port to try. */
221 static in_port_t	tcp_next_port_to_try = 32*1024;
222 
223 /*
224  * Figure out the value of window scale opton.  Note that the rwnd is
225  * ASSUMED to be rounded up to the nearest MSS before the calculation.
226  * We cannot find the scale value and then do a round up of tcp_rwnd
227  * because the scale value may not be correct after that.
228  */
229 #define	SET_WS_VALUE(tcp) \
230 { \
231 	int i; \
232 	uint32_t rwnd = (tcp)->tcp_rwnd; \
233 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; \
234 	    i++, rwnd >>= 1) \
235 		; \
236 	(tcp)->tcp_rcv_ws = i; \
237 }
238 
239 /*
240  * Set ECN capable transport (ECT) code point in IP header.
241  *
242  * Note that there are 2 ECT code points '01' and '10', which are called
243  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
244  * point ECT(0) for TCP as described in RFC 2481.
245  */
246 #define	SET_ECT(tcp, iph) \
247 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
248 		/* We need to clear the code point first. */ \
249 		((struct ip *)(iph))->ip_tos &= 0xFC; \
250 		((struct ip *)(iph))->ip_tos |= IPH_ECN_ECT0; \
251 	}
252 
253 /*
254  * The format argument to pass to tcp_display().
255  * DISP_PORT_ONLY means that the returned string has only port info.
256  * DISP_ADDR_AND_PORT means that the returned string also contains the
257  * remote and local IP address.
258  */
259 #define	DISP_PORT_ONLY		1
260 #define	DISP_ADDR_AND_PORT	2
261 
262 /*
263  * TCP reassembly macros.  We hide starting and ending sequence numbers in
264  * b_next and b_prev of messages on the reassembly queue.  The messages are
265  * chained using b_cont.  These macros are used in tcp_reass() so we don't
266  * have to see the ugly casts and assignments.
267  * Note. use uintptr_t to suppress the gcc warning.
268  */
269 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
270 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
271 					    (mblk_t *)((uintptr_t)(u)))
272 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
273 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
274 					    (mblk_t *)((uintptr_t)(u)))
275 
276 #define	TCP_TIMER_RESTART(tcp, intvl) \
277 	(tcp)->tcp_rto_timeout = prom_gettime() + intvl; \
278 	(tcp)->tcp_timer_running = B_TRUE;
279 
280 static int tcp_accept_comm(tcp_t *, tcp_t *, mblk_t *, uint_t);
281 static mblk_t *tcp_ack_mp(tcp_t *);
282 static in_port_t tcp_bindi(in_port_t, in_addr_t *, boolean_t, boolean_t);
283 static uint16_t tcp_cksum(uint16_t *, uint32_t);
284 static void tcp_clean_death(int, tcp_t *, int err);
285 static tcp_t *tcp_conn_request(tcp_t *, mblk_t *mp, uint_t, uint_t);
286 static char *tcp_display(tcp_t *, char *, char);
287 static int tcp_drain_input(tcp_t *, int, int);
288 static void tcp_drain_needed(int, tcp_t *);
289 static boolean_t tcp_drop_q0(tcp_t *);
290 static mblk_t *tcp_get_seg_mp(tcp_t *, uint32_t, int32_t *);
291 static int tcp_header_len(struct inetgram *);
292 static in_port_t tcp_report_ports(uint16_t *, enum Ports);
293 static int tcp_input(int);
294 static void tcp_iss_init(tcp_t *);
295 static tcp_t *tcp_lookup_ipv4(struct ip *, tcpha_t *, int, int *);
296 static tcp_t *tcp_lookup_listener_ipv4(in_addr_t, in_port_t, int *);
297 static int tcp_conn_check(tcp_t *);
298 static int tcp_close(int);
299 static void tcp_close_detached(tcp_t *);
300 static void tcp_eager_cleanup(tcp_t *, boolean_t, int);
301 static void tcp_eager_unlink(tcp_t *);
302 static void tcp_free(tcp_t *);
303 static int tcp_header_init_ipv4(tcp_t *);
304 static void tcp_mss_set(tcp_t *, uint32_t);
305 static int tcp_parse_options(tcph_t *, tcp_opt_t *);
306 static boolean_t tcp_paws_check(tcp_t *, tcph_t *, tcp_opt_t *);
307 static void tcp_process_options(tcp_t *, tcph_t *);
308 static int tcp_random(void);
309 static void tcp_random_init(void);
310 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t);
311 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *);
312 static void tcp_rcv_drain(int sock_id, tcp_t *);
313 static void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t);
314 static void tcp_rput_data(tcp_t *, mblk_t *, int);
315 static int tcp_rwnd_set(tcp_t *, uint32_t);
316 static int32_t tcp_sack_rxmit(tcp_t *, int);
317 static void tcp_set_cksum(mblk_t *);
318 static void tcp_set_rto(tcp_t *, int32_t);
319 static void tcp_ss_rexmit(tcp_t *, int);
320 static int tcp_state_wait(int, tcp_t *, int);
321 static void tcp_timer(tcp_t *, int);
322 static void tcp_time_wait_append(tcp_t *);
323 static void tcp_time_wait_collector(void);
324 static void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
325     uint32_t, int, tcph_t *, int sock_id);
326 static void tcp_time_wait_remove(tcp_t *);
327 static in_port_t tcp_update_next_port(in_port_t);
328 static int tcp_verify_cksum(mblk_t *);
329 static void tcp_wput_data(tcp_t *, mblk_t *, int);
330 static void tcp_xmit_ctl(char *, tcp_t *, mblk_t *, uint32_t, uint32_t,
331     int, uint_t, int);
332 static void tcp_xmit_early_reset(char *, int, mblk_t *, uint32_t, uint32_t,
333     int, uint_t);
334 static int tcp_xmit_end(tcp_t *, int);
335 static void tcp_xmit_listeners_reset(int, mblk_t *, uint_t);
336 static mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
337     mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);
338 static int tcp_init_values(tcp_t *, struct inetboot_socket *);
339 
340 #if DEBUG > 1
341 #define	TCP_DUMP_PACKET(str, mp) \
342 { \
343 	int len = (mp)->b_wptr - (mp)->b_rptr; \
344 \
345 	printf("%s: dump TCP(%d): \n", (str), len); \
346 	hexdump((char *)(mp)->b_rptr, len); \
347 }
348 #else
349 #define	TCP_DUMP_PACKET(str, mp)
350 #endif
351 
352 #ifdef DEBUG
353 #define	DEBUG_1(str, arg)		printf(str, (arg))
354 #define	DEBUG_2(str, arg1, arg2)	printf(str, (arg1), (arg2))
355 #define	DEBUG_3(str, arg1, arg2, arg3)	printf(str, (arg1), (arg2), (arg3))
356 #else
357 #define	DEBUG_1(str, arg)
358 #define	DEBUG_2(str, arg1, arg2)
359 #define	DEBUG_3(str, arg1, arg2, arg3)
360 #endif
361 
362 /* Whether it is the first time TCP is used. */
363 static boolean_t tcp_initialized = B_FALSE;
364 
365 /* TCP time wait list. */
366 static tcp_t *tcp_time_wait_head;
367 static tcp_t *tcp_time_wait_tail;
368 static uint32_t tcp_cum_timewait;
369 /* When the tcp_time_wait_collector is run. */
370 static uint32_t tcp_time_wait_runtime;
371 
372 #define	TCP_RUN_TIME_WAIT_COLLECTOR() \
373 	if (prom_gettime() > tcp_time_wait_runtime) \
374 		tcp_time_wait_collector();
375 
376 /*
377  * Accept will return with an error if there is no connection coming in
378  * after this (in ms).
379  */
380 static int tcp_accept_timeout = 60000;
381 
382 /*
383  * Initialize the TCP-specific parts of a socket.
384  */
385 void
tcp_socket_init(struct inetboot_socket * isp)386 tcp_socket_init(struct inetboot_socket *isp)
387 {
388 	/* Do some initializations. */
389 	if (!tcp_initialized) {
390 		tcp_random_init();
391 		/* Extra head room for the MAC layer address. */
392 		if ((tcp_wroff_xtra = mac_get_hdr_len()) & 0x3) {
393 			tcp_wroff_xtra = (tcp_wroff_xtra & ~0x3) + 0x4;
394 		}
395 		/* Schedule the first time wait cleanup time */
396 		tcp_time_wait_runtime = prom_gettime() + tcp_time_wait_interval;
397 		tcp_initialized = B_TRUE;
398 	}
399 	TCP_RUN_TIME_WAIT_COLLECTOR();
400 
401 	isp->proto = IPPROTO_TCP;
402 	isp->input[TRANSPORT_LVL] = tcp_input;
403 	/* Socket layer should call tcp_send() directly. */
404 	isp->output[TRANSPORT_LVL] = NULL;
405 	isp->close[TRANSPORT_LVL] = tcp_close;
406 	isp->headerlen[TRANSPORT_LVL] = tcp_header_len;
407 	isp->ports = tcp_report_ports;
408 	if ((isp->pcb = bkmem_alloc(sizeof (tcp_t))) == NULL) {
409 		errno = ENOBUFS;
410 		return;
411 	}
412 	if ((errno = tcp_init_values((tcp_t *)isp->pcb, isp)) != 0) {
413 		bkmem_free(isp->pcb, sizeof (tcp_t));
414 		return;
415 	}
416 	/*
417 	 * This is set last because this field is used to determine if
418 	 * a socket is in use or not.
419 	 */
420 	isp->type = INETBOOT_STREAM;
421 }
422 
423 /*
424  * Return the size of a TCP header including TCP option.
425  */
426 static int
tcp_header_len(struct inetgram * igm)427 tcp_header_len(struct inetgram *igm)
428 {
429 	mblk_t *pkt;
430 	int ipvers;
431 
432 	/* Just returns the standard TCP header without option */
433 	if (igm == NULL)
434 		return (sizeof (tcph_t));
435 
436 	if ((pkt = igm->igm_mp) == NULL)
437 		return (0);
438 
439 	ipvers = ((struct ip *)pkt->b_rptr)->ip_v;
440 	if (ipvers == IPV4_VERSION) {
441 		return (TCP_HDR_LENGTH((tcph_t *)(pkt + IPH_HDR_LENGTH(pkt))));
442 	} else {
443 		dprintf("tcp_header_len: non-IPv4 packet.\n");
444 		return (0);
445 	}
446 }
447 
448 /*
449  * Return the requested port number in network order.
450  */
451 static in_port_t
tcp_report_ports(uint16_t * tcphp,enum Ports request)452 tcp_report_ports(uint16_t *tcphp, enum Ports request)
453 {
454 	if (request == SOURCE)
455 		return (*(uint16_t *)(((tcph_t *)tcphp)->th_lport));
456 	return (*(uint16_t *)(((tcph_t *)tcphp)->th_fport));
457 }
458 
459 /*
460  * Because inetboot is not interrupt driven, TCP can only poll.  This
461  * means that there can be packets stuck in the NIC buffer waiting to
462  * be processed.  Thus we need to drain them before, for example, sending
463  * anything because an ACK may actually be stuck there.
464  *
465  * The timeout arguments determine how long we should wait for draining.
466  */
467 static int
tcp_drain_input(tcp_t * tcp,int sock_id,int timeout)468 tcp_drain_input(tcp_t *tcp, int sock_id, int timeout)
469 {
470 	struct inetgram *in_gram;
471 	struct inetgram *old_in_gram;
472 	int old_timeout;
473 	mblk_t *mp;
474 	int i;
475 
476 	dprintf("tcp_drain_input(%d): %s\n", sock_id,
477 	    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
478 
479 	/*
480 	 * Since the driver uses the in_timeout value in the socket
481 	 * structure to determine the timeout value, we need to save
482 	 * the original one so that we can restore that after draining.
483 	 */
484 	old_timeout = sockets[sock_id].in_timeout;
485 	sockets[sock_id].in_timeout = timeout;
486 
487 	/*
488 	 * We do this because the input queue may have some user
489 	 * data already.
490 	 */
491 	old_in_gram = sockets[sock_id].inq;
492 	sockets[sock_id].inq = NULL;
493 
494 	/* Go out and check the wire */
495 	for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
496 		if (sockets[sock_id].input[i] != NULL) {
497 			if (sockets[sock_id].input[i](sock_id) < 0) {
498 				sockets[sock_id].in_timeout = old_timeout;
499 				if (sockets[sock_id].inq != NULL)
500 					nuke_grams(&sockets[sock_id].inq);
501 				sockets[sock_id].inq = old_in_gram;
502 				return (-1);
503 			}
504 		}
505 	}
506 #if DEBUG
507 	printf("tcp_drain_input: done with checking packets\n");
508 #endif
509 	while ((in_gram = sockets[sock_id].inq) != NULL) {
510 		/* Remove unknown inetgrams from the head of inq. */
511 		if (in_gram->igm_level != TRANSPORT_LVL) {
512 #if DEBUG
513 			printf("tcp_drain_input: unexpected packet "
514 			    "level %d frame found\n", in_gram->igm_level);
515 #endif
516 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
517 			continue;
518 		}
519 		mp = in_gram->igm_mp;
520 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
521 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
522 		tcp_rput_data(tcp, mp, sock_id);
523 		sockets[sock_id].in_timeout = old_timeout;
524 
525 		/*
526 		 * The other side may have closed this connection or
527 		 * RST us.  But we need to continue to process other
528 		 * packets in the socket's queue because they may be
529 		 * belong to another TCP connections.
530 		 */
531 		if (sockets[sock_id].pcb == NULL)
532 			tcp = NULL;
533 	}
534 
535 	if (tcp == NULL || sockets[sock_id].pcb == NULL) {
536 		if (sockets[sock_id].so_error != 0)
537 			return (-1);
538 		else
539 			return (0);
540 	}
541 #if DEBUG
542 	printf("tcp_drain_input: done with processing packets\n");
543 #endif
544 	sockets[sock_id].in_timeout = old_timeout;
545 	sockets[sock_id].inq = old_in_gram;
546 
547 	/*
548 	 * Data may have been received so indicate it is available
549 	 */
550 	tcp_drain_needed(sock_id, tcp);
551 	return (0);
552 }
553 
554 /*
555  * The receive entry point for upper layer to call to get data.  Note
556  * that this follows the current architecture that lower layer receive
557  * routines have been called already.  Thus if the inq of socket is
558  * not NULL, the packets must be for us.
559  */
560 static int
tcp_input(int sock_id)561 tcp_input(int sock_id)
562 {
563 	struct inetgram *in_gram;
564 	mblk_t *mp;
565 	tcp_t *tcp;
566 
567 	TCP_RUN_TIME_WAIT_COLLECTOR();
568 
569 	if ((tcp = sockets[sock_id].pcb) == NULL)
570 		return (-1);
571 
572 	while ((in_gram = sockets[sock_id].inq) != NULL) {
573 		/* Remove unknown inetgrams from the head of inq. */
574 		if (in_gram->igm_level != TRANSPORT_LVL) {
575 #ifdef DEBUG
576 			printf("tcp_input: unexpected packet "
577 			    "level %d frame found\n", in_gram->igm_level);
578 #endif
579 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
580 			continue;
581 		}
582 		mp = in_gram->igm_mp;
583 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
584 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
585 		tcp_rput_data(tcp, mp, sock_id);
586 		/* The TCP may be gone because it gets a RST. */
587 		if (sockets[sock_id].pcb == NULL)
588 			return (-1);
589 	}
590 
591 	/* Flush the receive list. */
592 	if (tcp->tcp_rcv_list != NULL) {
593 		tcp_rcv_drain(sock_id, tcp);
594 	} else {
595 		/* The other side has closed the connection, report this up. */
596 		if (tcp->tcp_state == TCPS_CLOSE_WAIT) {
597 			sockets[sock_id].so_state |= SS_CANTRCVMORE;
598 			return (0);
599 		}
600 	}
601 	return (0);
602 }
603 
604 /*
605  * The send entry point for upper layer to call to send data.  In order
606  * to minimize changes to the core TCP code, we need to put the
607  * data into mblks.
608  */
609 int
tcp_send(int sock_id,tcp_t * tcp,const void * msg,int len)610 tcp_send(int sock_id, tcp_t *tcp, const void *msg, int len)
611 {
612 	mblk_t *mp;
613 	mblk_t *head = NULL;
614 	mblk_t *tail;
615 	int mss = tcp->tcp_mss;
616 	int cnt = 0;
617 	int win_size;
618 	char *buf = (char *)msg;
619 
620 	TCP_RUN_TIME_WAIT_COLLECTOR();
621 
622 	/* We don't want to append 0 size mblk. */
623 	if (len == 0)
624 		return (0);
625 	while (len > 0) {
626 		if (len < mss) {
627 			mss = len;
628 		}
629 		/*
630 		 * If we cannot allocate more buffer, stop here and
631 		 * the number of bytes buffered will be returned.
632 		 *
633 		 * Note that we follow the core TCP optimization that
634 		 * each mblk contains only MSS bytes data.
635 		 */
636 		if ((mp = allocb(mss + tcp->tcp_ip_hdr_len +
637 		    TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0)) == NULL) {
638 			break;
639 		}
640 		mp->b_rptr += tcp->tcp_hdr_len + tcp_wroff_xtra;
641 		bcopy(buf, mp->b_rptr, mss);
642 		mp->b_wptr = mp->b_rptr + mss;
643 		buf += mss;
644 		cnt += mss;
645 		len -= mss;
646 
647 		if (head == NULL) {
648 			head = mp;
649 			tail = mp;
650 		} else {
651 			tail->b_cont = mp;
652 			tail = mp;
653 		}
654 	}
655 
656 	/*
657 	 * Since inetboot is not interrupt driven, there may be
658 	 * some ACKs in the MAC's buffer.  Drain them first,
659 	 * otherwise, we may not be able to send.
660 	 *
661 	 * We expect an ACK in two cases:
662 	 *
663 	 * 1) We have un-ACK'ed data.
664 	 *
665 	 * 2) All ACK's have been received and the sender's window has been
666 	 * closed.  We need an ACK back to open the window so that we can
667 	 * send.  In this case, call tcp_drain_input() if the window size is
668 	 * less than 2 * MSS.
669 	 */
670 
671 	/* window size = MIN(swnd, cwnd) - unacked bytes */
672 	win_size = (tcp->tcp_swnd > tcp->tcp_cwnd) ? tcp->tcp_cwnd :
673 		tcp->tcp_swnd;
674 	win_size -= tcp->tcp_snxt;
675 	win_size += tcp->tcp_suna;
676 	if (win_size < (2 * tcp->tcp_mss))
677 		if (tcp_drain_input(tcp, sock_id, 5) < 0)
678 			return (-1);
679 
680 	tcp_wput_data(tcp, head, sock_id);
681 	/*
682 	 * errno should be reset here as it may be
683 	 * set to ETIMEDOUT. This may be set by
684 	 * the MAC driver in case it has timed out
685 	 * waiting for ARP reply. Any segment which
686 	 * was not transmitted because of ARP timeout
687 	 * will be retransmitted by TCP.
688 	 */
689 	if (errno == ETIMEDOUT)
690 		errno = 0;
691 	return (cnt);
692 }
693 
694 /* Free up all TCP related stuff */
695 static void
tcp_free(tcp_t * tcp)696 tcp_free(tcp_t *tcp)
697 {
698 	if (tcp->tcp_iphc != NULL) {
699 		bkmem_free((caddr_t)tcp->tcp_iphc, tcp->tcp_iphc_len);
700 		tcp->tcp_iphc = NULL;
701 	}
702 	if (tcp->tcp_xmit_head != NULL) {
703 		freemsg(tcp->tcp_xmit_head);
704 		tcp->tcp_xmit_head = NULL;
705 	}
706 	if (tcp->tcp_rcv_list != NULL) {
707 		freemsg(tcp->tcp_rcv_list);
708 		tcp->tcp_rcv_list = NULL;
709 	}
710 	if (tcp->tcp_reass_head != NULL) {
711 		freemsg(tcp->tcp_reass_head);
712 		tcp->tcp_reass_head = NULL;
713 	}
714 	if (tcp->tcp_sack_info != NULL) {
715 		bkmem_free((caddr_t)tcp->tcp_sack_info,
716 		    sizeof (tcp_sack_info_t));
717 		tcp->tcp_sack_info = NULL;
718 	}
719 }
720 
721 static void
tcp_close_detached(tcp_t * tcp)722 tcp_close_detached(tcp_t *tcp)
723 {
724 	if (tcp->tcp_listener != NULL)
725 		tcp_eager_unlink(tcp);
726 	tcp_free(tcp);
727 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
728 }
729 
730 /*
731  * If we are an eager connection hanging off a listener that hasn't
732  * formally accepted the connection yet, get off his list and blow off
733  * any data that we have accumulated.
734  */
735 static void
tcp_eager_unlink(tcp_t * tcp)736 tcp_eager_unlink(tcp_t *tcp)
737 {
738 	tcp_t	*listener = tcp->tcp_listener;
739 
740 	assert(listener != NULL);
741 	if (tcp->tcp_eager_next_q0 != NULL) {
742 		assert(tcp->tcp_eager_prev_q0 != NULL);
743 
744 		/* Remove the eager tcp from q0 */
745 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
746 		    tcp->tcp_eager_prev_q0;
747 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
748 		    tcp->tcp_eager_next_q0;
749 		listener->tcp_conn_req_cnt_q0--;
750 	} else {
751 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
752 		tcp_t	*prev = NULL;
753 
754 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
755 			if (tcpp[0] == tcp) {
756 				if (listener->tcp_eager_last_q == tcp) {
757 					/*
758 					 * If we are unlinking the last
759 					 * element on the list, adjust
760 					 * tail pointer. Set tail pointer
761 					 * to nil when list is empty.
762 					 */
763 					assert(tcp->tcp_eager_next_q == NULL);
764 					if (listener->tcp_eager_last_q ==
765 					    listener->tcp_eager_next_q) {
766 						listener->tcp_eager_last_q =
767 						NULL;
768 					} else {
769 						/*
770 						 * We won't get here if there
771 						 * is only one eager in the
772 						 * list.
773 						 */
774 						assert(prev != NULL);
775 						listener->tcp_eager_last_q =
776 						    prev;
777 					}
778 				}
779 				tcpp[0] = tcp->tcp_eager_next_q;
780 				tcp->tcp_eager_next_q = NULL;
781 				tcp->tcp_eager_last_q = NULL;
782 				listener->tcp_conn_req_cnt_q--;
783 				break;
784 			}
785 			prev = tcpp[0];
786 		}
787 	}
788 	tcp->tcp_listener = NULL;
789 }
790 
791 /*
792  * Reset any eager connection hanging off this listener
793  * and then reclaim it's resources.
794  */
795 static void
tcp_eager_cleanup(tcp_t * listener,boolean_t q0_only,int sock_id)796 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only, int sock_id)
797 {
798 	tcp_t	*eager;
799 
800 	if (!q0_only) {
801 		/* First cleanup q */
802 		while ((eager = listener->tcp_eager_next_q) != NULL) {
803 			assert(listener->tcp_eager_last_q != NULL);
804 			tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
805 			    eager, NULL, eager->tcp_snxt, 0, TH_RST, 0,
806 			    sock_id);
807 			tcp_close_detached(eager);
808 		}
809 		assert(listener->tcp_eager_last_q == NULL);
810 	}
811 	/* Then cleanup q0 */
812 	while ((eager = listener->tcp_eager_next_q0) != listener) {
813 		tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
814 		    eager, NULL, eager->tcp_snxt, 0, TH_RST, 0, sock_id);
815 		tcp_close_detached(eager);
816 	}
817 }
818 
819 /*
820  * To handle the shutdown request. Called from shutdown()
821  */
822 int
tcp_shutdown(int sock_id)823 tcp_shutdown(int sock_id)
824 {
825 	tcp_t	*tcp;
826 
827 	DEBUG_1("tcp_shutdown: sock_id %x\n", sock_id);
828 
829 	if ((tcp = sockets[sock_id].pcb) == NULL) {
830 		return (-1);
831 	}
832 
833 	/*
834 	 * Since inetboot is not interrupt driven, there may be
835 	 * some ACKs in the MAC's buffer.  Drain them first,
836 	 * otherwise, we may not be able to send.
837 	 */
838 	if (tcp_drain_input(tcp, sock_id, 5) < 0) {
839 		/*
840 		 * If we return now without freeing TCP, there will be
841 		 * a memory leak.
842 		 */
843 		if (sockets[sock_id].pcb != NULL)
844 			tcp_clean_death(sock_id, tcp, 0);
845 		return (-1);
846 	}
847 
848 	DEBUG_1("tcp_shutdown: tcp_state %x\n", tcp->tcp_state);
849 	switch (tcp->tcp_state) {
850 
851 	case TCPS_SYN_RCVD:
852 		/*
853 		 * Shutdown during the connect 3-way handshake
854 		 */
855 	case TCPS_ESTABLISHED:
856 		/*
857 		 * Transmit the FIN
858 		 * wait for the FIN to be ACKed,
859 		 * then remain in FIN_WAIT_2
860 		 */
861 		dprintf("tcp_shutdown: sending fin\n");
862 		if (tcp_xmit_end(tcp, sock_id) == 0 &&
863 			tcp_state_wait(sock_id, tcp, TCPS_FIN_WAIT_2) < 0) {
864 			/* During the wait, TCP may be gone... */
865 			if (sockets[sock_id].pcb == NULL)
866 				return (-1);
867 		}
868 		dprintf("tcp_shutdown: done\n");
869 		break;
870 
871 	default:
872 		break;
873 
874 	}
875 	return (0);
876 }
877 
878 /* To handle closing of the socket */
879 static int
tcp_close(int sock_id)880 tcp_close(int sock_id)
881 {
882 	char	*msg;
883 	tcp_t	*tcp;
884 	int	error = 0;
885 
886 	if ((tcp = sockets[sock_id].pcb) == NULL) {
887 		return (-1);
888 	}
889 
890 	TCP_RUN_TIME_WAIT_COLLECTOR();
891 
892 	/*
893 	 * Since inetboot is not interrupt driven, there may be
894 	 * some ACKs in the MAC's buffer.  Drain them first,
895 	 * otherwise, we may not be able to send.
896 	 */
897 	if (tcp_drain_input(tcp, sock_id, 5) < 0) {
898 		/*
899 		 * If we return now without freeing TCP, there will be
900 		 * a memory leak.
901 		 */
902 		if (sockets[sock_id].pcb != NULL)
903 			tcp_clean_death(sock_id, tcp, 0);
904 		return (-1);
905 	}
906 
907 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
908 		/* Cleanup for listener */
909 		tcp_eager_cleanup(tcp, 0, sock_id);
910 	}
911 
912 	msg = NULL;
913 	switch (tcp->tcp_state) {
914 	case TCPS_CLOSED:
915 	case TCPS_IDLE:
916 	case TCPS_BOUND:
917 	case TCPS_LISTEN:
918 		break;
919 	case TCPS_SYN_SENT:
920 		msg = "tcp_close, during connect";
921 		break;
922 	case TCPS_SYN_RCVD:
923 		/*
924 		 * Close during the connect 3-way handshake
925 		 * but here there may or may not be pending data
926 		 * already on queue. Process almost same as in
927 		 * the ESTABLISHED state.
928 		 */
929 		/* FALLTHRU */
930 	default:
931 		/*
932 		 * If SO_LINGER has set a zero linger time, abort the
933 		 * connection with a reset.
934 		 */
935 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
936 			msg = "tcp_close, zero lingertime";
937 			break;
938 		}
939 
940 		/*
941 		 * Abort connection if there is unread data queued.
942 		 */
943 		if (tcp->tcp_rcv_list != NULL ||
944 				tcp->tcp_reass_head != NULL) {
945 			msg = "tcp_close, unread data";
946 			break;
947 		}
948 		if (tcp->tcp_state <= TCPS_LISTEN)
949 			break;
950 
951 		/*
952 		 * Transmit the FIN before detaching the tcp_t.
953 		 * After tcp_detach returns this queue/perimeter
954 		 * no longer owns the tcp_t thus others can modify it.
955 		 * The TCP could be closed in tcp_state_wait called by
956 		 * tcp_wput_data called by tcp_xmit_end.
957 		 */
958 		(void) tcp_xmit_end(tcp, sock_id);
959 		if (sockets[sock_id].pcb == NULL)
960 			return (0);
961 
962 		/*
963 		 * If lingering on close then wait until the fin is acked,
964 		 * the SO_LINGER time passes, or a reset is sent/received.
965 		 */
966 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
967 		    !(tcp->tcp_fin_acked) &&
968 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
969 			uint32_t stoptime; /* in ms */
970 
971 			tcp->tcp_client_errno = 0;
972 			stoptime = prom_gettime() +
973 			    (tcp->tcp_lingertime * 1000);
974 			while (!(tcp->tcp_fin_acked) &&
975 			    tcp->tcp_state >= TCPS_ESTABLISHED &&
976 			    tcp->tcp_client_errno == 0 &&
977 			    ((int32_t)(stoptime - prom_gettime()) > 0)) {
978 				if (tcp_drain_input(tcp, sock_id, 5) < 0) {
979 					if (sockets[sock_id].pcb != NULL) {
980 						tcp_clean_death(sock_id,
981 						    tcp, 0);
982 					}
983 					return (-1);
984 				}
985 			}
986 			tcp->tcp_client_errno = 0;
987 		}
988 		if (tcp_state_wait(sock_id, tcp, TCPS_TIME_WAIT) < 0) {
989 			/* During the wait, TCP may be gone... */
990 			if (sockets[sock_id].pcb == NULL)
991 				return (0);
992 			msg = "tcp_close, couldn't detach";
993 		} else {
994 			return (0);
995 		}
996 		break;
997 	}
998 
999 	/* Something went wrong...  Send a RST and report the error */
1000 	if (msg != NULL) {
1001 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
1002 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
1003 			BUMP_MIB(tcp_mib.tcpEstabResets);
1004 		if (tcp->tcp_state == TCPS_SYN_SENT ||
1005 		    tcp->tcp_state == TCPS_SYN_RCVD)
1006 			BUMP_MIB(tcp_mib.tcpAttemptFails);
1007 		tcp_xmit_ctl(msg, tcp, NULL, tcp->tcp_snxt, 0, TH_RST, 0,
1008 		    sock_id);
1009 	}
1010 
1011 	tcp_free(tcp);
1012 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
1013 	sockets[sock_id].pcb = NULL;
1014 	return (error);
1015 }
1016 
1017 /* To make an endpoint a listener. */
1018 int
tcp_listen(int sock_id,int backlog)1019 tcp_listen(int sock_id, int backlog)
1020 {
1021 	tcp_t *tcp;
1022 
1023 	if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
1024 		errno = EINVAL;
1025 		return (-1);
1026 	}
1027 	/* We allow calling listen() multiple times to change the backlog. */
1028 	if (tcp->tcp_state > TCPS_LISTEN || tcp->tcp_state < TCPS_BOUND) {
1029 		errno = EOPNOTSUPP;
1030 		return (-1);
1031 	}
1032 	/* The following initialization should only be done once. */
1033 	if (tcp->tcp_state != TCPS_LISTEN) {
1034 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
1035 		tcp->tcp_eager_next_q = NULL;
1036 		tcp->tcp_state = TCPS_LISTEN;
1037 		tcp->tcp_second_ctimer_threshold = tcp_ip_abort_linterval;
1038 	}
1039 	if ((tcp->tcp_conn_req_max = backlog) > tcp_conn_req_max_q) {
1040 		tcp->tcp_conn_req_max = tcp_conn_req_max_q;
1041 	}
1042 	if (tcp->tcp_conn_req_max < tcp_conn_req_min) {
1043 		tcp->tcp_conn_req_max = tcp_conn_req_min;
1044 	}
1045 	return (0);
1046 }
1047 
1048 /* To accept connections. */
1049 int
tcp_accept(int sock_id,struct sockaddr * addr,socklen_t * addr_len)1050 tcp_accept(int sock_id, struct sockaddr *addr, socklen_t *addr_len)
1051 {
1052 	tcp_t *listener;
1053 	tcp_t *eager;
1054 	int sd, new_sock_id;
1055 	struct sockaddr_in *new_addr = (struct sockaddr_in *)addr;
1056 	int timeout;
1057 
1058 	/* Sanity check. */
1059 	if ((listener = (tcp_t *)(sockets[sock_id].pcb)) == NULL ||
1060 	    new_addr == NULL || addr_len == NULL ||
1061 	    *addr_len < sizeof (struct sockaddr_in) ||
1062 	    listener->tcp_state != TCPS_LISTEN) {
1063 		errno = EINVAL;
1064 		return (-1);
1065 	}
1066 
1067 	if (sockets[sock_id].in_timeout > tcp_accept_timeout)
1068 		timeout = prom_gettime() + sockets[sock_id].in_timeout;
1069 	else
1070 		timeout = prom_gettime() + tcp_accept_timeout;
1071 	while (listener->tcp_eager_next_q == NULL &&
1072 	    timeout > prom_gettime()) {
1073 #if DEBUG
1074 		printf("tcp_accept: Waiting in tcp_accept()\n");
1075 #endif
1076 		if (tcp_drain_input(listener, sock_id, 5) < 0) {
1077 			return (-1);
1078 		}
1079 	}
1080 	/* If there is an eager, don't timeout... */
1081 	if (timeout <= prom_gettime() && listener->tcp_eager_next_q == NULL) {
1082 #if DEBUG
1083 		printf("tcp_accept: timeout\n");
1084 #endif
1085 		errno = ETIMEDOUT;
1086 		return (-1);
1087 	}
1088 #if DEBUG
1089 	printf("tcp_accept: got a connection\n");
1090 #endif
1091 
1092 	/* Now create the socket for this new TCP. */
1093 	if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
1094 		return (-1);
1095 	}
1096 	if ((new_sock_id = so_check_fd(sd, &errno)) == -1)
1097 		/* This should not happen! */
1098 		prom_panic("so_check_fd() fails in tcp_accept()");
1099 	/* Free the TCP PCB in the original socket. */
1100 	bkmem_free((caddr_t)(sockets[new_sock_id].pcb), sizeof (tcp_t));
1101 	/* Dequeue the eager and attach it to the socket. */
1102 	eager = listener->tcp_eager_next_q;
1103 	listener->tcp_eager_next_q = eager->tcp_eager_next_q;
1104 	if (listener->tcp_eager_last_q == eager)
1105 		listener->tcp_eager_last_q = NULL;
1106 	eager->tcp_eager_next_q = NULL;
1107 	sockets[new_sock_id].pcb = eager;
1108 	listener->tcp_conn_req_cnt_q--;
1109 
1110 	/* Copy in the address info. */
1111 	bcopy(&eager->tcp_remote, &new_addr->sin_addr.s_addr,
1112 	    sizeof (in_addr_t));
1113 	bcopy(&eager->tcp_fport, &new_addr->sin_port, sizeof (in_port_t));
1114 	new_addr->sin_family = AF_INET;
1115 
1116 #ifdef DEBUG
1117 	printf("tcp_accept(), new sock_id: %d\n", sd);
1118 #endif
1119 	return (sd);
1120 }
1121 
1122 /* Update the next anonymous port to use.  */
1123 static in_port_t
tcp_update_next_port(in_port_t port)1124 tcp_update_next_port(in_port_t port)
1125 {
1126 	/* Don't allow the port to fall out of the anonymous port range. */
1127 	if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port)
1128 		port = (in_port_t)tcp_smallest_anon_port;
1129 
1130 	if (port < tcp_smallest_nonpriv_port)
1131 		port = (in_port_t)tcp_smallest_nonpriv_port;
1132 	return (port);
1133 }
1134 
1135 /* To check whether a bind to a port is allowed. */
1136 static in_port_t
tcp_bindi(in_port_t port,in_addr_t * addr,boolean_t reuseaddr,boolean_t bind_to_req_port_only)1137 tcp_bindi(in_port_t port, in_addr_t *addr, boolean_t reuseaddr,
1138     boolean_t bind_to_req_port_only)
1139 {
1140 	int i, count;
1141 	tcp_t *tcp;
1142 
1143 	count = tcp_largest_anon_port - tcp_smallest_anon_port;
1144 try_again:
1145 	for (i = 0; i < MAXSOCKET; i++) {
1146 		if (sockets[i].type != INETBOOT_STREAM ||
1147 		    ((tcp = (tcp_t *)sockets[i].pcb) == NULL) ||
1148 		    ntohs(tcp->tcp_lport) != port) {
1149 			continue;
1150 		}
1151 		/*
1152 		 * Both TCPs have the same port.  If SO_REUSEDADDR is
1153 		 * set and the bound TCP has a state greater than
1154 		 * TCPS_LISTEN, it is fine.
1155 		 */
1156 		if (reuseaddr && tcp->tcp_state > TCPS_LISTEN) {
1157 			continue;
1158 		}
1159 		if (tcp->tcp_bound_source != INADDR_ANY &&
1160 		    *addr != INADDR_ANY &&
1161 		    tcp->tcp_bound_source != *addr) {
1162 			continue;
1163 		}
1164 		if (bind_to_req_port_only) {
1165 			return (0);
1166 		}
1167 		if (--count > 0) {
1168 			port = tcp_update_next_port(++port);
1169 			goto try_again;
1170 		} else {
1171 			return (0);
1172 		}
1173 	}
1174 	return (port);
1175 }
1176 
1177 /* To handle the bind request. */
1178 int
tcp_bind(int sock_id)1179 tcp_bind(int sock_id)
1180 {
1181 	tcp_t *tcp;
1182 	in_port_t requested_port, allocated_port;
1183 	boolean_t bind_to_req_port_only;
1184 	boolean_t reuseaddr;
1185 
1186 	if ((tcp = (tcp_t *)sockets[sock_id].pcb) == NULL) {
1187 		errno = EINVAL;
1188 		return (-1);
1189 	}
1190 
1191 	if (tcp->tcp_state >= TCPS_BOUND) {
1192 		/* We don't allow multiple bind(). */
1193 		errno = EPROTO;
1194 		return (-1);
1195 	}
1196 
1197 	requested_port = ntohs(sockets[sock_id].bind.sin_port);
1198 
1199 	/* The bound source can be INADDR_ANY. */
1200 	tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
1201 
1202 	tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
1203 
1204 	/* Verify the port is available. */
1205 	if (requested_port == 0)
1206 		bind_to_req_port_only = B_FALSE;
1207 	else			/* T_BIND_REQ and requested_port != 0 */
1208 		bind_to_req_port_only = B_TRUE;
1209 
1210 	if (requested_port == 0) {
1211 		requested_port = tcp_update_next_port(++tcp_next_port_to_try);
1212 	}
1213 	reuseaddr = sockets[sock_id].so_opt & SO_REUSEADDR;
1214 	allocated_port = tcp_bindi(requested_port, &(tcp->tcp_bound_source),
1215 	    reuseaddr, bind_to_req_port_only);
1216 
1217 	if (allocated_port == 0) {
1218 		errno = EADDRINUSE;
1219 		return (-1);
1220 	}
1221 	tcp->tcp_lport = htons(allocated_port);
1222 	*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
1223 	sockets[sock_id].bind.sin_port = tcp->tcp_lport;
1224 	tcp->tcp_state = TCPS_BOUND;
1225 	return (0);
1226 }
1227 
1228 /*
1229  * Check for duplicate TCP connections.
1230  */
1231 static int
tcp_conn_check(tcp_t * tcp)1232 tcp_conn_check(tcp_t *tcp)
1233 {
1234 	int i;
1235 	tcp_t *tmp_tcp;
1236 
1237 	for (i = 0; i < MAXSOCKET; i++) {
1238 		if (sockets[i].type != INETBOOT_STREAM)
1239 			continue;
1240 		/* Socket may not be closed but the TCP can be gone. */
1241 		if ((tmp_tcp = (tcp_t *)sockets[i].pcb) == NULL)
1242 			continue;
1243 		/* We only care about TCP in states later than SYN_SENT. */
1244 		if (tmp_tcp->tcp_state < TCPS_SYN_SENT)
1245 			continue;
1246 		if (tmp_tcp->tcp_lport != tcp->tcp_lport ||
1247 		    tmp_tcp->tcp_fport != tcp->tcp_fport ||
1248 		    tmp_tcp->tcp_bound_source != tcp->tcp_bound_source ||
1249 		    tmp_tcp->tcp_remote != tcp->tcp_remote) {
1250 			continue;
1251 		} else {
1252 			return (-1);
1253 		}
1254 	}
1255 	return (0);
1256 }
1257 
1258 /* To handle a connect request. */
1259 int
tcp_connect(int sock_id)1260 tcp_connect(int sock_id)
1261 {
1262 	tcp_t *tcp;
1263 	in_addr_t dstaddr;
1264 	in_port_t dstport;
1265 	tcph_t	*tcph;
1266 	int mss;
1267 	mblk_t *syn_mp;
1268 
1269 	if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
1270 		errno = EINVAL;
1271 		return (-1);
1272 	}
1273 
1274 	TCP_RUN_TIME_WAIT_COLLECTOR();
1275 
1276 	dstaddr = sockets[sock_id].remote.sin_addr.s_addr;
1277 	dstport = sockets[sock_id].remote.sin_port;
1278 
1279 	/*
1280 	 * Check for attempt to connect to INADDR_ANY or non-unicast addrress.
1281 	 * We don't have enough info to check for broadcast addr, except
1282 	 * for the all 1 broadcast.
1283 	 */
1284 	if (dstaddr == INADDR_ANY || IN_CLASSD(ntohl(dstaddr)) ||
1285 	    dstaddr == INADDR_BROADCAST)  {
1286 		/*
1287 		 * SunOS 4.x and 4.3 BSD allow an application
1288 		 * to connect a TCP socket to INADDR_ANY.
1289 		 * When they do this, the kernel picks the
1290 		 * address of one interface and uses it
1291 		 * instead.  The kernel usually ends up
1292 		 * picking the address of the loopback
1293 		 * interface.  This is an undocumented feature.
1294 		 * However, we provide the same thing here
1295 		 * in order to have source and binary
1296 		 * compatibility with SunOS 4.x.
1297 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1298 		 * generate the T_CONN_CON.
1299 		 *
1300 		 * Fail this for inetboot TCP.
1301 		 */
1302 		errno = EINVAL;
1303 		return (-1);
1304 	}
1305 
1306 	/* It is not bound to any address yet... */
1307 	if (tcp->tcp_bound_source == INADDR_ANY) {
1308 		ipv4_getipaddr(&(sockets[sock_id].bind.sin_addr));
1309 		/* We don't have an address! */
1310 		if (ntohl(sockets[sock_id].bind.sin_addr.s_addr) ==
1311 		    INADDR_ANY) {
1312 			errno = EPROTO;
1313 			return (-1);
1314 		}
1315 		tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
1316 		tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
1317 	}
1318 
1319 	/*
1320 	 * Don't let an endpoint connect to itself.
1321 	 */
1322 	if (dstaddr == tcp->tcp_ipha->ip_src.s_addr &&
1323 	    dstport == tcp->tcp_lport) {
1324 		errno = EINVAL;
1325 		return (-1);
1326 	}
1327 
1328 	tcp->tcp_ipha->ip_dst.s_addr = dstaddr;
1329 	tcp->tcp_remote = dstaddr;
1330 	tcph = tcp->tcp_tcph;
1331 	*(uint16_t *)tcph->th_fport = dstport;
1332 	tcp->tcp_fport = dstport;
1333 
1334 	/*
1335 	 * Don't allow this connection to completely duplicate
1336 	 * an existing connection.
1337 	 */
1338 	if (tcp_conn_check(tcp) < 0) {
1339 		errno = EADDRINUSE;
1340 		return (-1);
1341 	}
1342 
1343 	/*
1344 	 * Just make sure our rwnd is at
1345 	 * least tcp_recv_hiwat_mss * MSS
1346 	 * large, and round up to the nearest
1347 	 * MSS.
1348 	 *
1349 	 * We do the round up here because
1350 	 * we need to get the interface
1351 	 * MTU first before we can do the
1352 	 * round up.
1353 	 */
1354 	mss = tcp->tcp_mss - tcp->tcp_hdr_len;
1355 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
1356 	    tcp_recv_hiwat_minmss * mss);
1357 	tcp->tcp_rwnd_max = tcp->tcp_rwnd;
1358 	SET_WS_VALUE(tcp);
1359 	U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
1360 	    tcp->tcp_tcph->th_win);
1361 	if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
1362 		tcp->tcp_snd_ws_ok = B_TRUE;
1363 
1364 	/*
1365 	 * Set tcp_snd_ts_ok to true
1366 	 * so that tcp_xmit_mp will
1367 	 * include the timestamp
1368 	 * option in the SYN segment.
1369 	 */
1370 	if (tcp_tstamp_always ||
1371 	    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
1372 		tcp->tcp_snd_ts_ok = B_TRUE;
1373 	}
1374 
1375 	if (tcp_sack_permitted == 2 ||
1376 	    tcp->tcp_snd_sack_ok) {
1377 		assert(tcp->tcp_sack_info == NULL);
1378 		if ((tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
1379 		    sizeof (tcp_sack_info_t))) == NULL) {
1380 			tcp->tcp_snd_sack_ok = B_FALSE;
1381 		} else {
1382 			tcp->tcp_snd_sack_ok = B_TRUE;
1383 		}
1384 	}
1385 	/*
1386 	 * Should we use ECN?  Note that the current
1387 	 * default value (SunOS 5.9) of tcp_ecn_permitted
1388 	 * is 2.  The reason for doing this is that there
1389 	 * are equipments out there that will drop ECN
1390 	 * enabled IP packets.  Setting it to 1 avoids
1391 	 * compatibility problems.
1392 	 */
1393 	if (tcp_ecn_permitted == 2)
1394 		tcp->tcp_ecn_ok = B_TRUE;
1395 
1396 	tcp_iss_init(tcp);
1397 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
1398 	tcp->tcp_active_open = B_TRUE;
1399 
1400 	tcp->tcp_state = TCPS_SYN_SENT;
1401 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_iss, B_FALSE,
1402 	    NULL, B_FALSE);
1403 	if (syn_mp != NULL) {
1404 		int ret;
1405 
1406 		/* Dump the packet when debugging. */
1407 		TCP_DUMP_PACKET("tcp_connect", syn_mp);
1408 		/* Send out the SYN packet. */
1409 		ret = ipv4_tcp_output(sock_id, syn_mp);
1410 		freeb(syn_mp);
1411 		/*
1412 		 * errno ETIMEDOUT is set by the mac driver
1413 		 * in case it is not able to receive ARP reply.
1414 		 * TCP will retransmit this segment so we can
1415 		 * ignore the ARP timeout.
1416 		 */
1417 		if ((ret < 0) && (errno != ETIMEDOUT)) {
1418 			return (-1);
1419 		}
1420 		/* tcp_state_wait() will finish the 3 way handshake. */
1421 		return (tcp_state_wait(sock_id, tcp, TCPS_ESTABLISHED));
1422 	} else {
1423 		errno = ENOBUFS;
1424 		return (-1);
1425 	}
1426 }
1427 
1428 /*
1429  * Common accept code.  Called by tcp_conn_request.
1430  * cr_pkt is the SYN packet.
1431  */
1432 static int
tcp_accept_comm(tcp_t * listener,tcp_t * acceptor,mblk_t * cr_pkt,uint_t ip_hdr_len)1433 tcp_accept_comm(tcp_t *listener, tcp_t *acceptor, mblk_t *cr_pkt,
1434     uint_t ip_hdr_len)
1435 {
1436 	tcph_t		*tcph;
1437 
1438 #ifdef DEBUG
1439 	printf("tcp_accept_comm #######################\n");
1440 #endif
1441 
1442 	/*
1443 	 * When we get here, we know that the acceptor header template
1444 	 * has already been initialized.
1445 	 * However, it may not match the listener if the listener
1446 	 * includes options...
1447 	 * It may also not match the listener if the listener is v6 and
1448 	 * and the acceptor is v4
1449 	 */
1450 	acceptor->tcp_lport = listener->tcp_lport;
1451 
1452 	if (listener->tcp_ipversion == acceptor->tcp_ipversion) {
1453 		if (acceptor->tcp_iphc_len != listener->tcp_iphc_len) {
1454 			/*
1455 			 * Listener had options of some sort; acceptor inherits.
1456 			 * Free up the acceptor template and allocate one
1457 			 * of the right size.
1458 			 */
1459 			bkmem_free(acceptor->tcp_iphc, acceptor->tcp_iphc_len);
1460 			acceptor->tcp_iphc = bkmem_zalloc(
1461 			    listener->tcp_iphc_len);
1462 			if (acceptor->tcp_iphc == NULL) {
1463 				acceptor->tcp_iphc_len = 0;
1464 				return (ENOMEM);
1465 			}
1466 			acceptor->tcp_iphc_len = listener->tcp_iphc_len;
1467 		}
1468 		acceptor->tcp_hdr_len = listener->tcp_hdr_len;
1469 		acceptor->tcp_ip_hdr_len = listener->tcp_ip_hdr_len;
1470 		acceptor->tcp_tcp_hdr_len = listener->tcp_tcp_hdr_len;
1471 
1472 		/*
1473 		 * Copy the IP+TCP header template from listener to acceptor
1474 		 */
1475 		bcopy(listener->tcp_iphc, acceptor->tcp_iphc,
1476 		    listener->tcp_hdr_len);
1477 		acceptor->tcp_ipha = (struct ip *)acceptor->tcp_iphc;
1478 		acceptor->tcp_tcph = (tcph_t *)(acceptor->tcp_iphc +
1479 		    acceptor->tcp_ip_hdr_len);
1480 	} else {
1481 		prom_panic("tcp_accept_comm: version not equal");
1482 	}
1483 
1484 	/* Copy our new dest and fport from the connection request packet */
1485 	if (acceptor->tcp_ipversion == IPV4_VERSION) {
1486 		struct ip *ipha;
1487 
1488 		ipha = (struct ip *)cr_pkt->b_rptr;
1489 		acceptor->tcp_ipha->ip_dst = ipha->ip_src;
1490 		acceptor->tcp_remote = ipha->ip_src.s_addr;
1491 		acceptor->tcp_ipha->ip_src = ipha->ip_dst;
1492 		acceptor->tcp_bound_source = ipha->ip_dst.s_addr;
1493 		tcph = (tcph_t *)&cr_pkt->b_rptr[ip_hdr_len];
1494 	} else {
1495 		prom_panic("tcp_accept_comm: not IPv4");
1496 	}
1497 	bcopy(tcph->th_lport, acceptor->tcp_tcph->th_fport, sizeof (in_port_t));
1498 	bcopy(acceptor->tcp_tcph->th_fport, &acceptor->tcp_fport,
1499 	    sizeof (in_port_t));
1500 	/*
1501 	 * For an all-port proxy listener, the local port is determined by
1502 	 * the port number field in the SYN packet.
1503 	 */
1504 	if (listener->tcp_lport == 0) {
1505 		acceptor->tcp_lport = *(in_port_t *)tcph->th_fport;
1506 		bcopy(tcph->th_fport, acceptor->tcp_tcph->th_lport,
1507 		    sizeof (in_port_t));
1508 	}
1509 	/* Inherit various TCP parameters from the listener */
1510 	acceptor->tcp_naglim = listener->tcp_naglim;
1511 	acceptor->tcp_first_timer_threshold =
1512 	    listener->tcp_first_timer_threshold;
1513 	acceptor->tcp_second_timer_threshold =
1514 	    listener->tcp_second_timer_threshold;
1515 
1516 	acceptor->tcp_first_ctimer_threshold =
1517 	    listener->tcp_first_ctimer_threshold;
1518 	acceptor->tcp_second_ctimer_threshold =
1519 	    listener->tcp_second_ctimer_threshold;
1520 
1521 	acceptor->tcp_xmit_hiwater = listener->tcp_xmit_hiwater;
1522 
1523 	acceptor->tcp_state = TCPS_LISTEN;
1524 	tcp_iss_init(acceptor);
1525 
1526 	/* Process all TCP options. */
1527 	tcp_process_options(acceptor, tcph);
1528 
1529 	/* Is the other end ECN capable? */
1530 	if (tcp_ecn_permitted >= 1 &&
1531 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1532 		acceptor->tcp_ecn_ok = B_TRUE;
1533 	}
1534 
1535 	/*
1536 	 * listener->tcp_rq->q_hiwat should be the default window size or a
1537 	 * window size changed via SO_RCVBUF option.  First round up the
1538 	 * acceptor's tcp_rwnd to the nearest MSS.  Then find out the window
1539 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
1540 	 * setting.
1541 	 *
1542 	 * Note if there is a rpipe metric associated with the remote host,
1543 	 * we should not inherit receive window size from listener.
1544 	 */
1545 	acceptor->tcp_rwnd = MSS_ROUNDUP(
1546 	    (acceptor->tcp_rwnd == 0 ? listener->tcp_rwnd_max :
1547 	    acceptor->tcp_rwnd), acceptor->tcp_mss);
1548 	if (acceptor->tcp_snd_ws_ok)
1549 		SET_WS_VALUE(acceptor);
1550 	/*
1551 	 * Note that this is the only place tcp_rwnd_set() is called for
1552 	 * accepting a connection.  We need to call it here instead of
1553 	 * after the 3-way handshake because we need to tell the other
1554 	 * side our rwnd in the SYN-ACK segment.
1555 	 */
1556 	(void) tcp_rwnd_set(acceptor, acceptor->tcp_rwnd);
1557 
1558 	return (0);
1559 }
1560 
1561 /*
1562  * Defense for the SYN attack -
1563  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
1564  *    one that doesn't have the dontdrop bit set.
1565  * 2. Don't drop a SYN request before its first timeout. This gives every
1566  *    request at least til the first timeout to complete its 3-way handshake.
1567  * 3. The current threshold is - # of timeout > q0len/4 => SYN alert on
1568  *    # of timeout drops back to <= q0len/32 => SYN alert off
1569  */
1570 static boolean_t
tcp_drop_q0(tcp_t * tcp)1571 tcp_drop_q0(tcp_t *tcp)
1572 {
1573 	tcp_t	*eager;
1574 
1575 	assert(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
1576 	/*
1577 	 * New one is added after next_q0 so prev_q0 points to the oldest
1578 	 * Also do not drop any established connections that are deferred on
1579 	 * q0 due to q being full
1580 	 */
1581 
1582 	eager = tcp->tcp_eager_prev_q0;
1583 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
1584 		/* XXX should move the eager to the head */
1585 		eager = eager->tcp_eager_prev_q0;
1586 		if (eager == tcp) {
1587 			eager = tcp->tcp_eager_prev_q0;
1588 			break;
1589 		}
1590 	}
1591 	dprintf("tcp_drop_q0: listen half-open queue (max=%d) overflow"
1592 	    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
1593 	    tcp->tcp_conn_req_cnt_q0,
1594 	    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1595 
1596 	BUMP_MIB(tcp_mib.tcpHalfOpenDrop);
1597 	bkmem_free((caddr_t)eager, sizeof (tcp_t));
1598 	return (B_TRUE);
1599 }
1600 
1601 /* ARGSUSED */
1602 static tcp_t *
tcp_conn_request(tcp_t * tcp,mblk_t * mp,uint_t sock_id,uint_t ip_hdr_len)1603 tcp_conn_request(tcp_t *tcp, mblk_t *mp, uint_t sock_id, uint_t ip_hdr_len)
1604 {
1605 	tcp_t	*eager;
1606 	struct ip *ipha;
1607 	int	err;
1608 
1609 #ifdef DEBUG
1610 	printf("tcp_conn_request ###################\n");
1611 #endif
1612 
1613 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
1614 		BUMP_MIB(tcp_mib.tcpListenDrop);
1615 		dprintf("tcp_conn_request: listen backlog (max=%d) "
1616 		    "overflow (%d pending) on %s",
1617 		    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
1618 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1619 		return (NULL);
1620 	}
1621 
1622 	assert(OK_32PTR(mp->b_rptr));
1623 
1624 	if (tcp->tcp_conn_req_cnt_q0 >=
1625 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
1626 		/*
1627 		 * Q0 is full. Drop a pending half-open req from the queue
1628 		 * to make room for the new SYN req. Also mark the time we
1629 		 * drop a SYN.
1630 		 */
1631 		tcp->tcp_last_rcv_lbolt = prom_gettime();
1632 		if (!tcp_drop_q0(tcp)) {
1633 			freemsg(mp);
1634 			BUMP_MIB(tcp_mib.tcpListenDropQ0);
1635 			dprintf("tcp_conn_request: listen half-open queue "
1636 			    "(max=%d) full (%d pending) on %s",
1637 			    tcp_conn_req_max_q0,
1638 			    tcp->tcp_conn_req_cnt_q0,
1639 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1640 			return (NULL);
1641 		}
1642 	}
1643 
1644 	ipha = (struct ip *)mp->b_rptr;
1645 	if (IN_CLASSD(ntohl(ipha->ip_src.s_addr)) ||
1646 	    ipha->ip_src.s_addr == INADDR_BROADCAST ||
1647 	    ipha->ip_src.s_addr == INADDR_ANY ||
1648 	    ipha->ip_dst.s_addr == INADDR_BROADCAST) {
1649 		freemsg(mp);
1650 		return (NULL);
1651 	}
1652 	/*
1653 	 * We allow the connection to proceed
1654 	 * by generating a detached tcp state vector and put it in
1655 	 * the eager queue.  When an accept happens, it will be
1656 	 * dequeued sequentially.
1657 	 */
1658 	if ((eager = (tcp_t *)bkmem_alloc(sizeof (tcp_t))) == NULL) {
1659 		freemsg(mp);
1660 		errno = ENOBUFS;
1661 		return (NULL);
1662 	}
1663 	if ((errno = tcp_init_values(eager, NULL)) != 0) {
1664 		freemsg(mp);
1665 		bkmem_free((caddr_t)eager, sizeof (tcp_t));
1666 		return (NULL);
1667 	}
1668 
1669 	/*
1670 	 * Eager connection inherits address form from its listener,
1671 	 * but its packet form comes from the version of the received
1672 	 * SYN segment.
1673 	 */
1674 	eager->tcp_family = tcp->tcp_family;
1675 
1676 	err = tcp_accept_comm(tcp, eager, mp, ip_hdr_len);
1677 	if (err) {
1678 		bkmem_free((caddr_t)eager, sizeof (tcp_t));
1679 		return (NULL);
1680 	}
1681 
1682 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1683 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
1684 	tcp->tcp_eager_next_q0 = eager;
1685 	eager->tcp_eager_prev_q0 = tcp;
1686 
1687 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1688 	eager->tcp_listener = tcp;
1689 	tcp->tcp_conn_req_cnt_q0++;
1690 
1691 	return (eager);
1692 }
1693 
1694 /*
1695  * To get around the non-interrupt problem of inetboot.
1696  * Keep on processing packets until a certain state is reached or the
1697  * TCP is destroyed because of getting a RST packet.
1698  */
1699 static int
tcp_state_wait(int sock_id,tcp_t * tcp,int state)1700 tcp_state_wait(int sock_id, tcp_t *tcp, int state)
1701 {
1702 	int i;
1703 	struct inetgram *in_gram;
1704 	mblk_t *mp;
1705 	int timeout;
1706 	boolean_t changed = B_FALSE;
1707 
1708 	/*
1709 	 * We need to make sure that the MAC does not wait longer
1710 	 * than RTO for any packet so that TCP can do retransmission.
1711 	 * But if the MAC timeout is less than tcp_rto, we are fine
1712 	 * and do not need to change it.
1713 	 */
1714 	timeout = sockets[sock_id].in_timeout;
1715 	if (timeout > tcp->tcp_rto) {
1716 		sockets[sock_id].in_timeout = tcp->tcp_rto;
1717 		changed = B_TRUE;
1718 	}
1719 retry:
1720 	if (sockets[sock_id].inq == NULL) {
1721 		/* Go out and check the wire */
1722 		for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
1723 			if (sockets[sock_id].input[i] != NULL) {
1724 				if (sockets[sock_id].input[i](sock_id) < 0) {
1725 					if (changed) {
1726 						sockets[sock_id].in_timeout =
1727 						    timeout;
1728 					}
1729 					return (-1);
1730 				}
1731 			}
1732 		}
1733 	}
1734 
1735 	while ((in_gram = sockets[sock_id].inq) != NULL) {
1736 		if (tcp != NULL && tcp->tcp_state == state)
1737 			break;
1738 
1739 		/* Remove unknown inetgrams from the head of inq. */
1740 		if (in_gram->igm_level != TRANSPORT_LVL) {
1741 #ifdef DEBUG
1742 			printf("tcp_state_wait for state %d: unexpected "
1743 			    "packet level %d frame found\n", state,
1744 			    in_gram->igm_level);
1745 #endif
1746 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
1747 			continue;
1748 		}
1749 		mp = in_gram->igm_mp;
1750 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
1751 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
1752 		tcp_rput_data(tcp, mp, sock_id);
1753 
1754 		/*
1755 		 * The other side may have closed this connection or
1756 		 * RST us.  But we need to continue to process other
1757 		 * packets in the socket's queue because they may be
1758 		 * belong to another TCP connections.
1759 		 */
1760 		if (sockets[sock_id].pcb == NULL) {
1761 			tcp = NULL;
1762 		}
1763 	}
1764 
1765 	/* If the other side has closed the connection, just return. */
1766 	if (tcp == NULL || sockets[sock_id].pcb == NULL) {
1767 #ifdef DEBUG
1768 		printf("tcp_state_wait other side dead: state %d "
1769 		    "error %d\n", state, sockets[sock_id].so_error);
1770 #endif
1771 		if (sockets[sock_id].so_error != 0)
1772 			return (-1);
1773 		else
1774 			return (0);
1775 	}
1776 	/*
1777 	 * TCPS_ALL_ACKED is not a valid TCP state, it is just used as an
1778 	 * indicator to tcp_state_wait to mean that it is being called
1779 	 * to wait till we have received acks for all the new segments sent.
1780 	 */
1781 	if ((state == TCPS_ALL_ACKED) && (tcp->tcp_suna == tcp->tcp_snxt)) {
1782 		goto done;
1783 	}
1784 	if (tcp->tcp_state != state) {
1785 		if (prom_gettime() > tcp->tcp_rto_timeout)
1786 			tcp_timer(tcp, sock_id);
1787 		goto retry;
1788 	}
1789 done:
1790 	if (changed)
1791 		sockets[sock_id].in_timeout = timeout;
1792 
1793 	tcp_drain_needed(sock_id, tcp);
1794 	return (0);
1795 }
1796 
1797 /* Verify the checksum of a segment. */
1798 static int
tcp_verify_cksum(mblk_t * mp)1799 tcp_verify_cksum(mblk_t *mp)
1800 {
1801 	struct ip *iph;
1802 	tcpha_t *tcph;
1803 	int len;
1804 	uint16_t old_sum;
1805 
1806 	iph = (struct ip *)mp->b_rptr;
1807 	tcph = (tcpha_t *)(iph + 1);
1808 	len = ntohs(iph->ip_len);
1809 
1810 	/*
1811 	 * Calculate the TCP checksum.  Need to include the psuedo header,
1812 	 * which is similar to the real IP header starting at the TTL field.
1813 	 */
1814 	iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
1815 	old_sum = tcph->tha_sum;
1816 	tcph->tha_sum = 0;
1817 	iph->ip_ttl = 0;
1818 	if (old_sum == tcp_cksum((uint16_t *)&(iph->ip_ttl),
1819 	    len - IP_SIMPLE_HDR_LENGTH + 12)) {
1820 		return (0);
1821 	} else {
1822 		tcp_cksum_errors++;
1823 		return (-1);
1824 	}
1825 }
1826 
1827 /* To find a TCP connection matching the incoming segment. */
1828 static tcp_t *
tcp_lookup_ipv4(struct ip * iph,tcpha_t * tcph,int min_state,int * sock_id)1829 tcp_lookup_ipv4(struct ip *iph, tcpha_t *tcph, int min_state, int *sock_id)
1830 {
1831 	int i;
1832 	tcp_t *tcp;
1833 
1834 	for (i = 0; i < MAXSOCKET; i++) {
1835 		if (sockets[i].type == INETBOOT_STREAM &&
1836 		    (tcp = (tcp_t *)sockets[i].pcb) != NULL) {
1837 			if (tcph->tha_lport == tcp->tcp_fport &&
1838 			    tcph->tha_fport == tcp->tcp_lport &&
1839 			    iph->ip_src.s_addr == tcp->tcp_remote &&
1840 			    iph->ip_dst.s_addr == tcp->tcp_bound_source &&
1841 			    tcp->tcp_state >= min_state) {
1842 				*sock_id = i;
1843 				return (tcp);
1844 			}
1845 		}
1846 	}
1847 	/* Find it in the time wait list. */
1848 	for (tcp = tcp_time_wait_head; tcp != NULL;
1849 	    tcp = tcp->tcp_time_wait_next) {
1850 		if (tcph->tha_lport == tcp->tcp_fport &&
1851 		    tcph->tha_fport == tcp->tcp_lport &&
1852 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1853 		    iph->ip_dst.s_addr == tcp->tcp_bound_source &&
1854 		    tcp->tcp_state >= min_state) {
1855 			*sock_id = -1;
1856 			return (tcp);
1857 		}
1858 	}
1859 	return (NULL);
1860 }
1861 
1862 /* To find a TCP listening connection matching the incoming segment. */
1863 static tcp_t *
tcp_lookup_listener_ipv4(in_addr_t addr,in_port_t port,int * sock_id)1864 tcp_lookup_listener_ipv4(in_addr_t addr, in_port_t port, int *sock_id)
1865 {
1866 	int i;
1867 	tcp_t *tcp;
1868 
1869 	for (i = 0; i < MAXSOCKET; i++) {
1870 		if (sockets[i].type == INETBOOT_STREAM &&
1871 		    (tcp = (tcp_t *)sockets[i].pcb) != NULL) {
1872 			if (tcp->tcp_lport == port &&
1873 			    (tcp->tcp_bound_source == addr ||
1874 			    tcp->tcp_bound_source == INADDR_ANY)) {
1875 				*sock_id = i;
1876 				return (tcp);
1877 			}
1878 		}
1879 	}
1880 
1881 	return (NULL);
1882 }
1883 
1884 /* To find a TCP eager matching the incoming segment. */
1885 static tcp_t *
tcp_lookup_eager_ipv4(tcp_t * listener,struct ip * iph,tcpha_t * tcph)1886 tcp_lookup_eager_ipv4(tcp_t *listener, struct ip *iph, tcpha_t *tcph)
1887 {
1888 	tcp_t *tcp;
1889 
1890 #ifdef DEBUG
1891 	printf("tcp_lookup_eager_ipv4 ###############\n");
1892 #endif
1893 	for (tcp = listener->tcp_eager_next_q; tcp != NULL;
1894 	    tcp = tcp->tcp_eager_next_q) {
1895 		if (tcph->tha_lport == tcp->tcp_fport &&
1896 		    tcph->tha_fport == tcp->tcp_lport &&
1897 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1898 		    iph->ip_dst.s_addr == tcp->tcp_bound_source) {
1899 			return (tcp);
1900 		}
1901 	}
1902 
1903 	for (tcp = listener->tcp_eager_next_q0; tcp != listener;
1904 	    tcp = tcp->tcp_eager_next_q0) {
1905 		if (tcph->tha_lport == tcp->tcp_fport &&
1906 		    tcph->tha_fport == tcp->tcp_lport &&
1907 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1908 		    iph->ip_dst.s_addr == tcp->tcp_bound_source) {
1909 			return (tcp);
1910 		}
1911 	}
1912 #ifdef DEBUG
1913 	printf("No eager found\n");
1914 #endif
1915 	return (NULL);
1916 }
1917 
1918 /* To destroy a TCP control block. */
1919 static void
tcp_clean_death(int sock_id,tcp_t * tcp,int err)1920 tcp_clean_death(int sock_id, tcp_t *tcp, int err)
1921 {
1922 	tcp_free(tcp);
1923 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1924 		tcp_time_wait_remove(tcp);
1925 
1926 	if (sock_id >= 0) {
1927 		sockets[sock_id].pcb = NULL;
1928 		if (err != 0)
1929 			sockets[sock_id].so_error = err;
1930 	}
1931 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
1932 }
1933 
1934 /*
1935  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
1936  * We do not allow the receive window to shrink.  After setting rwnd,
1937  * set the flow control hiwat of the stream.
1938  *
1939  * This function is called in 2 cases:
1940  *
1941  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
1942  *    connection (passive open) and in tcp_rput_data() for active connect.
1943  *    This is called after tcp_mss_set() when the desired MSS value is known.
1944  *    This makes sure that our window size is a mutiple of the other side's
1945  *    MSS.
1946  * 2) Handling SO_RCVBUF option.
1947  *
1948  * It is ASSUMED that the requested size is a multiple of the current MSS.
1949  *
1950  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
1951  * user requests so.
1952  */
1953 static int
tcp_rwnd_set(tcp_t * tcp,uint32_t rwnd)1954 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
1955 {
1956 	uint32_t	mss = tcp->tcp_mss;
1957 	uint32_t	old_max_rwnd;
1958 	uint32_t	max_transmittable_rwnd;
1959 
1960 	if (tcp->tcp_rwnd_max != 0)
1961 		old_max_rwnd = tcp->tcp_rwnd_max;
1962 	else
1963 		old_max_rwnd = tcp->tcp_rwnd;
1964 
1965 	/*
1966 	 * Insist on a receive window that is at least
1967 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
1968 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
1969 	 * and delayed acknowledgement.
1970 	 */
1971 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
1972 
1973 	/*
1974 	 * If window size info has already been exchanged, TCP should not
1975 	 * shrink the window.  Shrinking window is doable if done carefully.
1976 	 * We may add that support later.  But so far there is not a real
1977 	 * need to do that.
1978 	 */
1979 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
1980 		/* MSS may have changed, do a round up again. */
1981 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
1982 	}
1983 
1984 	/*
1985 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
1986 	 * can be applied even before the window scale option is decided.
1987 	 */
1988 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
1989 	if (rwnd > max_transmittable_rwnd) {
1990 		rwnd = max_transmittable_rwnd -
1991 		    (max_transmittable_rwnd % mss);
1992 		if (rwnd < mss)
1993 			rwnd = max_transmittable_rwnd;
1994 		/*
1995 		 * If we're over the limit we may have to back down tcp_rwnd.
1996 		 * The increment below won't work for us. So we set all three
1997 		 * here and the increment below will have no effect.
1998 		 */
1999 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
2000 	}
2001 
2002 	/*
2003 	 * Increment the current rwnd by the amount the maximum grew (we
2004 	 * can not overwrite it since we might be in the middle of a
2005 	 * connection.)
2006 	 */
2007 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
2008 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
2009 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2010 		tcp->tcp_cwnd_max = rwnd;
2011 	tcp->tcp_rwnd_max = rwnd;
2012 
2013 	return (rwnd);
2014 }
2015 
2016 /*
2017  * Extract option values from a tcp header.  We put any found values into the
2018  * tcpopt struct and return a bitmask saying which options were found.
2019  */
2020 static int
tcp_parse_options(tcph_t * tcph,tcp_opt_t * tcpopt)2021 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
2022 {
2023 	uchar_t		*endp;
2024 	int		len;
2025 	uint32_t	mss;
2026 	uchar_t		*up = (uchar_t *)tcph;
2027 	int		found = 0;
2028 	int32_t		sack_len;
2029 	tcp_seq		sack_begin, sack_end;
2030 	tcp_t		*tcp;
2031 
2032 	endp = up + TCP_HDR_LENGTH(tcph);
2033 	up += TCP_MIN_HEADER_LENGTH;
2034 	while (up < endp) {
2035 		len = endp - up;
2036 		switch (*up) {
2037 		case TCPOPT_EOL:
2038 			break;
2039 
2040 		case TCPOPT_NOP:
2041 			up++;
2042 			continue;
2043 
2044 		case TCPOPT_MAXSEG:
2045 			if (len < TCPOPT_MAXSEG_LEN ||
2046 			    up[1] != TCPOPT_MAXSEG_LEN)
2047 				break;
2048 
2049 			mss = BE16_TO_U16(up+2);
2050 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
2051 			tcpopt->tcp_opt_mss = mss;
2052 			found |= TCP_OPT_MSS_PRESENT;
2053 
2054 			up += TCPOPT_MAXSEG_LEN;
2055 			continue;
2056 
2057 		case TCPOPT_WSCALE:
2058 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
2059 				break;
2060 
2061 			if (up[2] > TCP_MAX_WINSHIFT)
2062 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
2063 			else
2064 				tcpopt->tcp_opt_wscale = up[2];
2065 			found |= TCP_OPT_WSCALE_PRESENT;
2066 
2067 			up += TCPOPT_WS_LEN;
2068 			continue;
2069 
2070 		case TCPOPT_SACK_PERMITTED:
2071 			if (len < TCPOPT_SACK_OK_LEN ||
2072 			    up[1] != TCPOPT_SACK_OK_LEN)
2073 				break;
2074 			found |= TCP_OPT_SACK_OK_PRESENT;
2075 			up += TCPOPT_SACK_OK_LEN;
2076 			continue;
2077 
2078 		case TCPOPT_SACK:
2079 			if (len <= 2 || up[1] <= 2 || len < up[1])
2080 				break;
2081 
2082 			/* If TCP is not interested in SACK blks... */
2083 			if ((tcp = tcpopt->tcp) == NULL) {
2084 				up += up[1];
2085 				continue;
2086 			}
2087 			sack_len = up[1] - TCPOPT_HEADER_LEN;
2088 			up += TCPOPT_HEADER_LEN;
2089 
2090 			/*
2091 			 * If the list is empty, allocate one and assume
2092 			 * nothing is sack'ed.
2093 			 */
2094 			assert(tcp->tcp_sack_info != NULL);
2095 			if (tcp->tcp_notsack_list == NULL) {
2096 				tcp_notsack_update(&(tcp->tcp_notsack_list),
2097 				    tcp->tcp_suna, tcp->tcp_snxt,
2098 				    &(tcp->tcp_num_notsack_blk),
2099 				    &(tcp->tcp_cnt_notsack_list));
2100 
2101 				/*
2102 				 * Make sure tcp_notsack_list is not NULL.
2103 				 * This happens when kmem_alloc(KM_NOSLEEP)
2104 				 * returns NULL.
2105 				 */
2106 				if (tcp->tcp_notsack_list == NULL) {
2107 					up += sack_len;
2108 					continue;
2109 				}
2110 				tcp->tcp_fack = tcp->tcp_suna;
2111 			}
2112 
2113 			while (sack_len > 0) {
2114 				if (up + 8 > endp) {
2115 					up = endp;
2116 					break;
2117 				}
2118 				sack_begin = BE32_TO_U32(up);
2119 				up += 4;
2120 				sack_end = BE32_TO_U32(up);
2121 				up += 4;
2122 				sack_len -= 8;
2123 				/*
2124 				 * Bounds checking.  Make sure the SACK
2125 				 * info is within tcp_suna and tcp_snxt.
2126 				 * If this SACK blk is out of bound, ignore
2127 				 * it but continue to parse the following
2128 				 * blks.
2129 				 */
2130 				if (SEQ_LEQ(sack_end, sack_begin) ||
2131 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
2132 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
2133 					continue;
2134 				}
2135 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
2136 				    sack_begin, sack_end,
2137 				    &(tcp->tcp_num_notsack_blk),
2138 				    &(tcp->tcp_cnt_notsack_list));
2139 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
2140 					tcp->tcp_fack = sack_end;
2141 				}
2142 			}
2143 			found |= TCP_OPT_SACK_PRESENT;
2144 			continue;
2145 
2146 		case TCPOPT_TSTAMP:
2147 			if (len < TCPOPT_TSTAMP_LEN ||
2148 			    up[1] != TCPOPT_TSTAMP_LEN)
2149 				break;
2150 
2151 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
2152 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
2153 
2154 			found |= TCP_OPT_TSTAMP_PRESENT;
2155 
2156 			up += TCPOPT_TSTAMP_LEN;
2157 			continue;
2158 
2159 		default:
2160 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
2161 				break;
2162 			up += up[1];
2163 			continue;
2164 		}
2165 		break;
2166 	}
2167 	return (found);
2168 }
2169 
2170 /*
2171  * Set the mss associated with a particular tcp based on its current value,
2172  * and a new one passed in. Observe minimums and maximums, and reset
2173  * other state variables that we want to view as multiples of mss.
2174  *
2175  * This function is called in various places mainly because
2176  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
2177  *    other side's SYN/SYN-ACK packet arrives.
2178  * 2) PMTUd may get us a new MSS.
2179  * 3) If the other side stops sending us timestamp option, we need to
2180  *    increase the MSS size to use the extra bytes available.
2181  */
2182 static void
tcp_mss_set(tcp_t * tcp,uint32_t mss)2183 tcp_mss_set(tcp_t *tcp, uint32_t mss)
2184 {
2185 	uint32_t	mss_max;
2186 
2187 	mss_max = tcp_mss_max_ipv4;
2188 
2189 	if (mss < tcp_mss_min)
2190 		mss = tcp_mss_min;
2191 	if (mss > mss_max)
2192 		mss = mss_max;
2193 	/*
2194 	 * Unless naglim has been set by our client to
2195 	 * a non-mss value, force naglim to track mss.
2196 	 * This can help to aggregate small writes.
2197 	 */
2198 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
2199 		tcp->tcp_naglim = mss;
2200 	/*
2201 	 * TCP should be able to buffer at least 4 MSS data for obvious
2202 	 * performance reason.
2203 	 */
2204 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
2205 		tcp->tcp_xmit_hiwater = mss << 2;
2206 	tcp->tcp_mss = mss;
2207 	/*
2208 	 * Initialize cwnd according to draft-floyd-incr-init-win-01.txt.
2209 	 * Previously, we use tcp_slow_start_initial to control the size
2210 	 * of the initial cwnd.  Now, when tcp_slow_start_initial * mss
2211 	 * is smaller than the cwnd calculated from the formula suggested in
2212 	 * the draft, we use tcp_slow_start_initial * mss as the cwnd.
2213 	 * Otherwise, use the cwnd from the draft's formula.  The default
2214 	 * of tcp_slow_start_initial is 2.
2215 	 */
2216 	tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
2217 	    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
2218 	tcp->tcp_cwnd_cnt = 0;
2219 }
2220 
2221 /*
2222  * Process all TCP option in SYN segment.
2223  *
2224  * This function sets up the correct tcp_mss value according to the
2225  * MSS option value and our header size.  It also sets up the window scale
2226  * and timestamp values, and initialize SACK info blocks.  But it does not
2227  * change receive window size after setting the tcp_mss value.  The caller
2228  * should do the appropriate change.
2229  */
2230 void
tcp_process_options(tcp_t * tcp,tcph_t * tcph)2231 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
2232 {
2233 	int options;
2234 	tcp_opt_t tcpopt;
2235 	uint32_t mss_max;
2236 	char *tmp_tcph;
2237 
2238 	tcpopt.tcp = NULL;
2239 	options = tcp_parse_options(tcph, &tcpopt);
2240 
2241 	/*
2242 	 * Process MSS option.  Note that MSS option value does not account
2243 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
2244 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
2245 	 * IPv6.
2246 	 */
2247 	if (!(options & TCP_OPT_MSS_PRESENT)) {
2248 		tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
2249 	} else {
2250 		if (tcp->tcp_ipversion == IPV4_VERSION)
2251 			mss_max = tcp_mss_max_ipv4;
2252 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
2253 			tcpopt.tcp_opt_mss = tcp_mss_min;
2254 		else if (tcpopt.tcp_opt_mss > mss_max)
2255 			tcpopt.tcp_opt_mss = mss_max;
2256 	}
2257 
2258 	/* Process Window Scale option. */
2259 	if (options & TCP_OPT_WSCALE_PRESENT) {
2260 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
2261 		tcp->tcp_snd_ws_ok = B_TRUE;
2262 	} else {
2263 		tcp->tcp_snd_ws = B_FALSE;
2264 		tcp->tcp_snd_ws_ok = B_FALSE;
2265 		tcp->tcp_rcv_ws = B_FALSE;
2266 	}
2267 
2268 	/* Process Timestamp option. */
2269 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
2270 	    (tcp->tcp_snd_ts_ok || !tcp->tcp_active_open)) {
2271 		tmp_tcph = (char *)tcp->tcp_tcph;
2272 
2273 		tcp->tcp_snd_ts_ok = B_TRUE;
2274 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
2275 		tcp->tcp_last_rcv_lbolt = prom_gettime();
2276 		assert(OK_32PTR(tmp_tcph));
2277 		assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
2278 
2279 		/* Fill in our template header with basic timestamp option. */
2280 		tmp_tcph += tcp->tcp_tcp_hdr_len;
2281 		tmp_tcph[0] = TCPOPT_NOP;
2282 		tmp_tcph[1] = TCPOPT_NOP;
2283 		tmp_tcph[2] = TCPOPT_TSTAMP;
2284 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
2285 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
2286 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
2287 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
2288 	} else {
2289 		tcp->tcp_snd_ts_ok = B_FALSE;
2290 	}
2291 
2292 	/*
2293 	 * Process SACK options.  If SACK is enabled for this connection,
2294 	 * then allocate the SACK info structure.
2295 	 */
2296 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
2297 	    (tcp->tcp_snd_sack_ok ||
2298 	    (tcp_sack_permitted != 0 && !tcp->tcp_active_open))) {
2299 		/* This should be true only in the passive case. */
2300 		if (tcp->tcp_sack_info == NULL) {
2301 			tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
2302 			    sizeof (tcp_sack_info_t));
2303 		}
2304 		if (tcp->tcp_sack_info == NULL) {
2305 			tcp->tcp_snd_sack_ok = B_FALSE;
2306 		} else {
2307 			tcp->tcp_snd_sack_ok = B_TRUE;
2308 			if (tcp->tcp_snd_ts_ok) {
2309 				tcp->tcp_max_sack_blk = 3;
2310 			} else {
2311 				tcp->tcp_max_sack_blk = 4;
2312 			}
2313 		}
2314 	} else {
2315 		/*
2316 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
2317 		 * no SACK info will be used for this
2318 		 * connection.  This assumes that SACK usage
2319 		 * permission is negotiated.  This may need
2320 		 * to be changed once this is clarified.
2321 		 */
2322 		if (tcp->tcp_sack_info != NULL) {
2323 			bkmem_free((caddr_t)tcp->tcp_sack_info,
2324 			    sizeof (tcp_sack_info_t));
2325 			tcp->tcp_sack_info = NULL;
2326 		}
2327 		tcp->tcp_snd_sack_ok = B_FALSE;
2328 	}
2329 
2330 	/*
2331 	 * Now we know the exact TCP/IP header length, subtract
2332 	 * that from tcp_mss to get our side's MSS.
2333 	 */
2334 	tcp->tcp_mss -= tcp->tcp_hdr_len;
2335 	/*
2336 	 * Here we assume that the other side's header size will be equal to
2337 	 * our header size.  We calculate the real MSS accordingly.  Need to
2338 	 * take into additional stuffs IPsec puts in.
2339 	 *
2340 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
2341 	 */
2342 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len -
2343 	    (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH);
2344 
2345 	/*
2346 	 * Set MSS to the smaller one of both ends of the connection.
2347 	 * We should not have called tcp_mss_set() before, but our
2348 	 * side of the MSS should have been set to a proper value
2349 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
2350 	 * STREAM head parameters properly.
2351 	 *
2352 	 * If we have a larger-than-16-bit window but the other side
2353 	 * didn't want to do window scale, tcp_rwnd_set() will take
2354 	 * care of that.
2355 	 */
2356 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
2357 }
2358 
2359 /*
2360  * This function does PAWS protection check.  Returns B_TRUE if the
2361  * segment passes the PAWS test, else returns B_FALSE.
2362  */
2363 boolean_t
tcp_paws_check(tcp_t * tcp,tcph_t * tcph,tcp_opt_t * tcpoptp)2364 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
2365 {
2366 	uint8_t	flags;
2367 	int	options;
2368 	uint8_t *up;
2369 
2370 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
2371 	/*
2372 	 * If timestamp option is aligned nicely, get values inline,
2373 	 * otherwise call general routine to parse.  Only do that
2374 	 * if timestamp is the only option.
2375 	 */
2376 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
2377 	    TCPOPT_REAL_TS_LEN &&
2378 	    OK_32PTR((up = ((uint8_t *)tcph) +
2379 	    TCP_MIN_HEADER_LENGTH)) &&
2380 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
2381 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
2382 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
2383 
2384 		options = TCP_OPT_TSTAMP_PRESENT;
2385 	} else {
2386 		if (tcp->tcp_snd_sack_ok) {
2387 			tcpoptp->tcp = tcp;
2388 		} else {
2389 			tcpoptp->tcp = NULL;
2390 		}
2391 		options = tcp_parse_options(tcph, tcpoptp);
2392 	}
2393 
2394 	if (options & TCP_OPT_TSTAMP_PRESENT) {
2395 		/*
2396 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
2397 		 * regardless of the timestamp, page 18 RFC 1323.bis.
2398 		 */
2399 		if ((flags & TH_RST) == 0 &&
2400 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
2401 		    tcp->tcp_ts_recent)) {
2402 			if (TSTMP_LT(prom_gettime(),
2403 			    tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
2404 				/* This segment is not acceptable. */
2405 				return (B_FALSE);
2406 			} else {
2407 				/*
2408 				 * Connection has been idle for
2409 				 * too long.  Reset the timestamp
2410 				 * and assume the segment is valid.
2411 				 */
2412 				tcp->tcp_ts_recent =
2413 				    tcpoptp->tcp_opt_ts_val;
2414 			}
2415 		}
2416 	} else {
2417 		/*
2418 		 * If we don't get a timestamp on every packet, we
2419 		 * figure we can't really trust 'em, so we stop sending
2420 		 * and parsing them.
2421 		 */
2422 		tcp->tcp_snd_ts_ok = B_FALSE;
2423 
2424 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
2425 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
2426 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
2427 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
2428 		if (tcp->tcp_snd_sack_ok) {
2429 			assert(tcp->tcp_sack_info != NULL);
2430 			tcp->tcp_max_sack_blk = 4;
2431 		}
2432 	}
2433 	return (B_TRUE);
2434 }
2435 
2436 /*
2437  * tcp_get_seg_mp() is called to get the pointer to a segment in the
2438  * send queue which starts at the given seq. no.
2439  *
2440  * Parameters:
2441  *	tcp_t *tcp: the tcp instance pointer.
2442  *	uint32_t seq: the starting seq. no of the requested segment.
2443  *	int32_t *off: after the execution, *off will be the offset to
2444  *		the returned mblk which points to the requested seq no.
2445  *
2446  * Return:
2447  *	A mblk_t pointer pointing to the requested segment in send queue.
2448  */
2449 static mblk_t *
tcp_get_seg_mp(tcp_t * tcp,uint32_t seq,int32_t * off)2450 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
2451 {
2452 	int32_t	cnt;
2453 	mblk_t	*mp;
2454 
2455 	/* Defensive coding.  Make sure we don't send incorrect data. */
2456 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt) ||
2457 	    off == NULL) {
2458 		return (NULL);
2459 	}
2460 	cnt = seq - tcp->tcp_suna;
2461 	mp = tcp->tcp_xmit_head;
2462 	while (cnt > 0 && mp) {
2463 		cnt -= mp->b_wptr - mp->b_rptr;
2464 		if (cnt < 0) {
2465 			cnt += mp->b_wptr - mp->b_rptr;
2466 			break;
2467 		}
2468 		mp = mp->b_cont;
2469 	}
2470 	assert(mp != NULL);
2471 	*off = cnt;
2472 	return (mp);
2473 }
2474 
2475 /*
2476  * This function handles all retransmissions if SACK is enabled for this
2477  * connection.  First it calculates how many segments can be retransmitted
2478  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
2479  * segments.  A segment is eligible if sack_cnt for that segment is greater
2480  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
2481  * all eligible segments, it checks to see if TCP can send some new segments
2482  * (fast recovery).  If it can, it returns 1.  Otherwise it returns 0.
2483  *
2484  * Parameters:
2485  *	tcp_t *tcp: the tcp structure of the connection.
2486  *
2487  * Return:
2488  *	1 if the pipe is not full (new data can be sent), 0 otherwise
2489  */
2490 static int32_t
tcp_sack_rxmit(tcp_t * tcp,int sock_id)2491 tcp_sack_rxmit(tcp_t *tcp, int sock_id)
2492 {
2493 	notsack_blk_t	*notsack_blk;
2494 	int32_t		usable_swnd;
2495 	int32_t		mss;
2496 	uint32_t	seg_len;
2497 	mblk_t		*xmit_mp;
2498 
2499 	assert(tcp->tcp_sack_info != NULL);
2500 	assert(tcp->tcp_notsack_list != NULL);
2501 	assert(tcp->tcp_rexmit == B_FALSE);
2502 
2503 	/* Defensive coding in case there is a bug... */
2504 	if (tcp->tcp_notsack_list == NULL) {
2505 		return (0);
2506 	}
2507 	notsack_blk = tcp->tcp_notsack_list;
2508 	mss = tcp->tcp_mss;
2509 
2510 	/*
2511 	 * Limit the num of outstanding data in the network to be
2512 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
2513 	 */
2514 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
2515 
2516 	/* At least retransmit 1 MSS of data. */
2517 	if (usable_swnd <= 0) {
2518 		usable_swnd = mss;
2519 	}
2520 
2521 	/* Make sure no new RTT samples will be taken. */
2522 	tcp->tcp_csuna = tcp->tcp_snxt;
2523 
2524 	notsack_blk = tcp->tcp_notsack_list;
2525 	while (usable_swnd > 0) {
2526 		mblk_t		*snxt_mp, *tmp_mp;
2527 		tcp_seq		begin = tcp->tcp_sack_snxt;
2528 		tcp_seq		end;
2529 		int32_t		off;
2530 
2531 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
2532 			if (SEQ_GT(notsack_blk->end, begin) &&
2533 			    (notsack_blk->sack_cnt >=
2534 			    tcp_dupack_fast_retransmit)) {
2535 				end = notsack_blk->end;
2536 				if (SEQ_LT(begin, notsack_blk->begin)) {
2537 					begin = notsack_blk->begin;
2538 				}
2539 				break;
2540 			}
2541 		}
2542 		/*
2543 		 * All holes are filled.  Manipulate tcp_cwnd to send more
2544 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
2545 		 * set to tcp_cwnd_ssthresh.
2546 		 */
2547 		if (notsack_blk == NULL) {
2548 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
2549 			if (usable_swnd <= 0) {
2550 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
2551 				assert(tcp->tcp_cwnd > 0);
2552 				return (0);
2553 			} else {
2554 				usable_swnd = usable_swnd / mss;
2555 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
2556 				    MAX(usable_swnd * mss, mss);
2557 				return (1);
2558 			}
2559 		}
2560 
2561 		/*
2562 		 * Note that we may send more than usable_swnd allows here
2563 		 * because of round off, but no more than 1 MSS of data.
2564 		 */
2565 		seg_len = end - begin;
2566 		if (seg_len > mss)
2567 			seg_len = mss;
2568 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
2569 		assert(snxt_mp != NULL);
2570 		/* This should not happen.  Defensive coding again... */
2571 		if (snxt_mp == NULL) {
2572 			return (0);
2573 		}
2574 
2575 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
2576 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
2577 
2578 		if (xmit_mp == NULL)
2579 			return (0);
2580 
2581 		usable_swnd -= seg_len;
2582 		tcp->tcp_pipe += seg_len;
2583 		tcp->tcp_sack_snxt = begin + seg_len;
2584 		TCP_DUMP_PACKET("tcp_sack_rxmit", xmit_mp);
2585 		(void) ipv4_tcp_output(sock_id, xmit_mp);
2586 		freeb(xmit_mp);
2587 
2588 		/*
2589 		 * Update the send timestamp to avoid false retransmission.
2590 		 * Note. use uintptr_t to suppress the gcc warning.
2591 		 */
2592 		snxt_mp->b_prev = (mblk_t *)(uintptr_t)prom_gettime();
2593 
2594 		BUMP_MIB(tcp_mib.tcpRetransSegs);
2595 		UPDATE_MIB(tcp_mib.tcpRetransBytes, seg_len);
2596 		BUMP_MIB(tcp_mib.tcpOutSackRetransSegs);
2597 		/*
2598 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
2599 		 * This happens when new data sent during fast recovery is
2600 		 * also lost.  If TCP retransmits those new data, it needs
2601 		 * to extend SACK recover phase to avoid starting another
2602 		 * fast retransmit/recovery unnecessarily.
2603 		 */
2604 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
2605 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
2606 		}
2607 	}
2608 	return (0);
2609 }
2610 
2611 static void
tcp_rput_data(tcp_t * tcp,mblk_t * mp,int sock_id)2612 tcp_rput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
2613 {
2614 	uchar_t		*rptr;
2615 	struct ip	*iph;
2616 	tcp_t		*tcp1;
2617 	tcpha_t		*tcph;
2618 	uint32_t	seg_ack;
2619 	int		seg_len;
2620 	uint_t		ip_hdr_len;
2621 	uint32_t	seg_seq;
2622 	mblk_t		*mp1;
2623 	uint_t		flags;
2624 	uint32_t	new_swnd = 0;
2625 	int		mss;
2626 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2627 	int32_t		gap;
2628 	int32_t		rgap;
2629 	tcp_opt_t	tcpopt;
2630 	int32_t		bytes_acked;
2631 	int		npkt;
2632 	uint32_t	cwnd;
2633 	uint32_t	add;
2634 
2635 #ifdef DEBUG
2636 	printf("tcp_rput_data sock %d mp %x mp_datap %x #################\n",
2637 	    sock_id, mp, mp->b_datap);
2638 #endif
2639 
2640 	/* Dump the packet when debugging. */
2641 	TCP_DUMP_PACKET("tcp_rput_data", mp);
2642 
2643 	assert(OK_32PTR(mp->b_rptr));
2644 
2645 	rptr = mp->b_rptr;
2646 	iph = (struct ip *)rptr;
2647 	ip_hdr_len = IPH_HDR_LENGTH(rptr);
2648 	if (ip_hdr_len != IP_SIMPLE_HDR_LENGTH) {
2649 #ifdef DEBUG
2650 		printf("Not simple IP header\n");
2651 #endif
2652 		/* We cannot handle IP option yet... */
2653 		tcp_drops++;
2654 		freeb(mp);
2655 		return;
2656 	}
2657 	/* The TCP header must be aligned. */
2658 	tcph = (tcpha_t *)&rptr[ip_hdr_len];
2659 	seg_seq = ntohl(tcph->tha_seq);
2660 	seg_ack = ntohl(tcph->tha_ack);
2661 	assert((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2662 	seg_len = (int)(mp->b_wptr - rptr) -
2663 	    (ip_hdr_len + TCP_HDR_LENGTH(((tcph_t *)tcph)));
2664 	/* In inetboot, b_cont should always be NULL. */
2665 	assert(mp->b_cont == NULL);
2666 
2667 	/* Verify the checksum. */
2668 	if (tcp_verify_cksum(mp) < 0) {
2669 #ifdef DEBUG
2670 		printf("tcp_rput_data: wrong cksum\n");
2671 #endif
2672 		freemsg(mp);
2673 		return;
2674 	}
2675 
2676 	/*
2677 	 * This segment is not for us, try to find its
2678 	 * intended receiver.
2679 	 */
2680 	if (tcp == NULL ||
2681 	    tcph->tha_lport != tcp->tcp_fport ||
2682 	    tcph->tha_fport != tcp->tcp_lport ||
2683 	    iph->ip_src.s_addr != tcp->tcp_remote ||
2684 	    iph->ip_dst.s_addr != tcp->tcp_bound_source) {
2685 #ifdef DEBUG
2686 		printf("tcp_rput_data: not for us, state %d\n",
2687 		    tcp->tcp_state);
2688 #endif
2689 		/*
2690 		 * First try to find a established connection.  If none
2691 		 * is found, look for a listener.
2692 		 *
2693 		 * If a listener is found, we need to check to see if the
2694 		 * incoming segment is for one of its eagers.  If it is,
2695 		 * give it to the eager.  If not, listener should take care
2696 		 * of it.
2697 		 */
2698 		if ((tcp1 = tcp_lookup_ipv4(iph, tcph, TCPS_SYN_SENT,
2699 		    &sock_id)) != NULL ||
2700 		    (tcp1 = tcp_lookup_listener_ipv4(iph->ip_dst.s_addr,
2701 		    tcph->tha_fport, &sock_id)) != NULL) {
2702 			if (tcp1->tcp_state == TCPS_LISTEN) {
2703 				if ((tcp = tcp_lookup_eager_ipv4(tcp1,
2704 				    iph, tcph)) == NULL) {
2705 					/* No eager... sent to listener */
2706 #ifdef DEBUG
2707 					printf("found the listener: %s\n",
2708 					    tcp_display(tcp1, NULL,
2709 					    DISP_ADDR_AND_PORT));
2710 #endif
2711 					tcp = tcp1;
2712 				}
2713 #ifdef DEBUG
2714 				else {
2715 					printf("found the eager: %s\n",
2716 					    tcp_display(tcp, NULL,
2717 					    DISP_ADDR_AND_PORT));
2718 				}
2719 #endif
2720 			} else {
2721 				/* Non listener found... */
2722 #ifdef DEBUG
2723 				printf("found the connection: %s\n",
2724 				    tcp_display(tcp1, NULL,
2725 				    DISP_ADDR_AND_PORT));
2726 #endif
2727 				tcp = tcp1;
2728 			}
2729 		} else {
2730 			/*
2731 			 * No connection for this segment...
2732 			 * Send a RST to the other side.
2733 			 */
2734 			tcp_xmit_listeners_reset(sock_id, mp, ip_hdr_len);
2735 			return;
2736 		}
2737 	}
2738 
2739 	flags = tcph->tha_flags & 0xFF;
2740 	BUMP_MIB(tcp_mib.tcpInSegs);
2741 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2742 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2743 		    seg_len, (tcph_t *)tcph, sock_id);
2744 		return;
2745 	}
2746 	/*
2747 	 * From this point we can assume that the tcp is not compressed,
2748 	 * since we would have branched off to tcp_time_wait_processing()
2749 	 * in such a case.
2750 	 */
2751 	assert(tcp != NULL && tcp->tcp_state != TCPS_TIME_WAIT);
2752 
2753 	/*
2754 	 * After this point, we know we have the correct TCP, so update
2755 	 * the receive time.
2756 	 */
2757 	tcp->tcp_last_recv_time = prom_gettime();
2758 
2759 	/* In inetboot, we do not handle urgent pointer... */
2760 	if (flags & TH_URG) {
2761 		freemsg(mp);
2762 		DEBUG_1("tcp_rput_data(%d): received segment with urgent "
2763 		    "pointer\n", sock_id);
2764 		tcp_drops++;
2765 		return;
2766 	}
2767 
2768 	switch (tcp->tcp_state) {
2769 	case TCPS_LISTEN:
2770 		if ((flags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
2771 			if (flags & TH_RST) {
2772 				freemsg(mp);
2773 				return;
2774 			}
2775 			if (flags & TH_ACK) {
2776 				tcp_xmit_early_reset("TCPS_LISTEN-TH_ACK",
2777 				    sock_id, mp, seg_ack, 0, TH_RST,
2778 				    ip_hdr_len);
2779 				return;
2780 			}
2781 			if (!(flags & TH_SYN)) {
2782 				freemsg(mp);
2783 				return;
2784 			}
2785 			printf("tcp_rput_data: %d\n", __LINE__);
2786 			prom_panic("inetboot");
2787 		}
2788 		if (tcp->tcp_conn_req_max > 0) {
2789 			tcp = tcp_conn_request(tcp, mp, sock_id, ip_hdr_len);
2790 			if (tcp == NULL) {
2791 				freemsg(mp);
2792 				return;
2793 			}
2794 #ifdef DEBUG
2795 			printf("tcp_rput_data: new tcp created\n");
2796 #endif
2797 		}
2798 		tcp->tcp_irs = seg_seq;
2799 		tcp->tcp_rack = seg_seq;
2800 		tcp->tcp_rnxt = seg_seq + 1;
2801 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
2802 		BUMP_MIB(tcp_mib.tcpPassiveOpens);
2803 		goto syn_rcvd;
2804 	case TCPS_SYN_SENT:
2805 		if (flags & TH_ACK) {
2806 			/*
2807 			 * Note that our stack cannot send data before a
2808 			 * connection is established, therefore the
2809 			 * following check is valid.  Otherwise, it has
2810 			 * to be changed.
2811 			 */
2812 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2813 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2814 				if (flags & TH_RST) {
2815 					freemsg(mp);
2816 					return;
2817 				}
2818 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2819 				    tcp, mp, seg_ack, 0, TH_RST,
2820 				    ip_hdr_len, sock_id);
2821 				return;
2822 			}
2823 			assert(tcp->tcp_suna + 1 == seg_ack);
2824 		}
2825 		if (flags & TH_RST) {
2826 			freemsg(mp);
2827 			if (flags & TH_ACK) {
2828 				tcp_clean_death(sock_id, tcp, ECONNREFUSED);
2829 			}
2830 			return;
2831 		}
2832 		if (!(flags & TH_SYN)) {
2833 			freemsg(mp);
2834 			return;
2835 		}
2836 
2837 		/* Process all TCP options. */
2838 		tcp_process_options(tcp, (tcph_t *)tcph);
2839 		/*
2840 		 * The following changes our rwnd to be a multiple of the
2841 		 * MIN(peer MSS, our MSS) for performance reason.
2842 		 */
2843 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rwnd,
2844 		    tcp->tcp_mss));
2845 
2846 		/* Is the other end ECN capable? */
2847 		if (tcp->tcp_ecn_ok) {
2848 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2849 				tcp->tcp_ecn_ok = B_FALSE;
2850 			}
2851 		}
2852 		/*
2853 		 * Clear ECN flags because it may interfere with later
2854 		 * processing.
2855 		 */
2856 		flags &= ~(TH_ECE|TH_CWR);
2857 
2858 		tcp->tcp_irs = seg_seq;
2859 		tcp->tcp_rack = seg_seq;
2860 		tcp->tcp_rnxt = seg_seq + 1;
2861 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
2862 
2863 		if (flags & TH_ACK) {
2864 			/* One for the SYN */
2865 			tcp->tcp_suna = tcp->tcp_iss + 1;
2866 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2867 			tcp->tcp_state = TCPS_ESTABLISHED;
2868 
2869 			/*
2870 			 * If SYN was retransmitted, need to reset all
2871 			 * retransmission info.  This is because this
2872 			 * segment will be treated as a dup ACK.
2873 			 */
2874 			if (tcp->tcp_rexmit) {
2875 				tcp->tcp_rexmit = B_FALSE;
2876 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2877 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2878 				tcp->tcp_snd_burst = TCP_CWND_NORMAL;
2879 
2880 				/*
2881 				 * Set tcp_cwnd back to 1 MSS, per
2882 				 * recommendation from
2883 				 * draft-floyd-incr-init-win-01.txt,
2884 				 * Increasing TCP's Initial Window.
2885 				 */
2886 				tcp->tcp_cwnd = tcp->tcp_mss;
2887 			}
2888 
2889 			tcp->tcp_swl1 = seg_seq;
2890 			tcp->tcp_swl2 = seg_ack;
2891 
2892 			new_swnd = BE16_TO_U16(((tcph_t *)tcph)->th_win);
2893 			tcp->tcp_swnd = new_swnd;
2894 			if (new_swnd > tcp->tcp_max_swnd)
2895 				tcp->tcp_max_swnd = new_swnd;
2896 
2897 			/*
2898 			 * Always send the three-way handshake ack immediately
2899 			 * in order to make the connection complete as soon as
2900 			 * possible on the accepting host.
2901 			 */
2902 			flags |= TH_ACK_NEEDED;
2903 			/*
2904 			 * Check to see if there is data to be sent.  If
2905 			 * yes, set the transmit flag.  Then check to see
2906 			 * if received data processing needs to be done.
2907 			 * If not, go straight to xmit_check.  This short
2908 			 * cut is OK as we don't support T/TCP.
2909 			 */
2910 			if (tcp->tcp_unsent)
2911 				flags |= TH_XMIT_NEEDED;
2912 
2913 			if (seg_len == 0) {
2914 				freemsg(mp);
2915 				goto xmit_check;
2916 			}
2917 
2918 			flags &= ~TH_SYN;
2919 			seg_seq++;
2920 			break;
2921 		}
2922 		syn_rcvd:
2923 		tcp->tcp_state = TCPS_SYN_RCVD;
2924 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2925 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2926 		if (mp1 != NULL) {
2927 			TCP_DUMP_PACKET("tcp_rput_data replying SYN", mp1);
2928 			(void) ipv4_tcp_output(sock_id, mp1);
2929 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2930 			freeb(mp1);
2931 			/*
2932 			 * Let's wait till our SYN has been ACKED since we
2933 			 * don't have a timer.
2934 			 */
2935 			if (tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED) < 0) {
2936 				freemsg(mp);
2937 				return;
2938 			}
2939 		}
2940 		freemsg(mp);
2941 		return;
2942 	default:
2943 		break;
2944 	}
2945 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH((tcph_t *)tcph);
2946 	new_swnd = ntohs(tcph->tha_win) <<
2947 	    ((flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2948 	mss = tcp->tcp_mss;
2949 
2950 	if (tcp->tcp_snd_ts_ok) {
2951 		if (!tcp_paws_check(tcp, (tcph_t *)tcph, &tcpopt)) {
2952 			/*
2953 			 * This segment is not acceptable.
2954 			 * Drop it and send back an ACK.
2955 			 */
2956 			freemsg(mp);
2957 			flags |= TH_ACK_NEEDED;
2958 			goto ack_check;
2959 		}
2960 	} else if (tcp->tcp_snd_sack_ok) {
2961 		assert(tcp->tcp_sack_info != NULL);
2962 		tcpopt.tcp = tcp;
2963 		/*
2964 		 * SACK info in already updated in tcp_parse_options.  Ignore
2965 		 * all other TCP options...
2966 		 */
2967 		(void) tcp_parse_options((tcph_t *)tcph, &tcpopt);
2968 	}
2969 try_again:;
2970 	gap = seg_seq - tcp->tcp_rnxt;
2971 	rgap = tcp->tcp_rwnd - (gap + seg_len);
2972 	/*
2973 	 * gap is the amount of sequence space between what we expect to see
2974 	 * and what we got for seg_seq.  A positive value for gap means
2975 	 * something got lost.  A negative value means we got some old stuff.
2976 	 */
2977 	if (gap < 0) {
2978 		/* Old stuff present.  Is the SYN in there? */
2979 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2980 		    (seg_len != 0)) {
2981 			flags &= ~TH_SYN;
2982 			seg_seq++;
2983 			/* Recompute the gaps after noting the SYN. */
2984 			goto try_again;
2985 		}
2986 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
2987 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
2988 		    (seg_len > -gap ? -gap : seg_len));
2989 		/* Remove the old stuff from seg_len. */
2990 		seg_len += gap;
2991 		/*
2992 		 * Anything left?
2993 		 * Make sure to check for unack'd FIN when rest of data
2994 		 * has been previously ack'd.
2995 		 */
2996 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2997 			/*
2998 			 * Resets are only valid if they lie within our offered
2999 			 * window.  If the RST bit is set, we just ignore this
3000 			 * segment.
3001 			 */
3002 			if (flags & TH_RST) {
3003 				freemsg(mp);
3004 				return;
3005 			}
3006 
3007 			/*
3008 			 * This segment is "unacceptable".  None of its
3009 			 * sequence space lies within our advertized window.
3010 			 *
3011 			 * Adjust seg_len to the original value for tracing.
3012 			 */
3013 			seg_len -= gap;
3014 #ifdef DEBUG
3015 			printf("tcp_rput: unacceptable, gap %d, rgap "
3016 			    "%d, flags 0x%x, seg_seq %u, seg_ack %u, "
3017 			    "seg_len %d, rnxt %u, snxt %u, %s",
3018 			    gap, rgap, flags, seg_seq, seg_ack,
3019 			    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3020 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
3021 #endif
3022 
3023 			/*
3024 			 * Arrange to send an ACK in response to the
3025 			 * unacceptable segment per RFC 793 page 69. There
3026 			 * is only one small difference between ours and the
3027 			 * acceptability test in the RFC - we accept ACK-only
3028 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3029 			 * will be generated.
3030 			 *
3031 			 * Note that we have to ACK an ACK-only packet at least
3032 			 * for stacks that send 0-length keep-alives with
3033 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3034 			 * section 4.2.3.6. As long as we don't ever generate
3035 			 * an unacceptable packet in response to an incoming
3036 			 * packet that is unacceptable, it should not cause
3037 			 * "ACK wars".
3038 			 */
3039 			flags |=  TH_ACK_NEEDED;
3040 
3041 			/*
3042 			 * Continue processing this segment in order to use the
3043 			 * ACK information it contains, but skip all other
3044 			 * sequence-number processing.	Processing the ACK
3045 			 * information is necessary in order to
3046 			 * re-synchronize connections that may have lost
3047 			 * synchronization.
3048 			 *
3049 			 * We clear seg_len and flag fields related to
3050 			 * sequence number processing as they are not
3051 			 * to be trusted for an unacceptable segment.
3052 			 */
3053 			seg_len = 0;
3054 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3055 			goto process_ack;
3056 		}
3057 
3058 		/* Fix seg_seq, and chew the gap off the front. */
3059 		seg_seq = tcp->tcp_rnxt;
3060 		do {
3061 			mblk_t	*mp2;
3062 			assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3063 			    (uintptr_t)UINT_MAX);
3064 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3065 			if (gap > 0) {
3066 				mp->b_rptr = mp->b_wptr - gap;
3067 				break;
3068 			}
3069 			mp2 = mp;
3070 			mp = mp->b_cont;
3071 			freeb(mp2);
3072 		} while (gap < 0);
3073 	}
3074 	/*
3075 	 * rgap is the amount of stuff received out of window.  A negative
3076 	 * value is the amount out of window.
3077 	 */
3078 	if (rgap < 0) {
3079 		mblk_t	*mp2;
3080 
3081 		if (tcp->tcp_rwnd == 0)
3082 			BUMP_MIB(tcp_mib.tcpInWinProbe);
3083 		else {
3084 			BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
3085 			UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
3086 		}
3087 
3088 		/*
3089 		 * seg_len does not include the FIN, so if more than
3090 		 * just the FIN is out of window, we act like we don't
3091 		 * see it.  (If just the FIN is out of window, rgap
3092 		 * will be zero and we will go ahead and acknowledge
3093 		 * the FIN.)
3094 		 */
3095 		flags &= ~TH_FIN;
3096 
3097 		/* Fix seg_len and make sure there is something left. */
3098 		seg_len += rgap;
3099 		if (seg_len <= 0) {
3100 			/*
3101 			 * Resets are only valid if they lie within our offered
3102 			 * window.  If the RST bit is set, we just ignore this
3103 			 * segment.
3104 			 */
3105 			if (flags & TH_RST) {
3106 				freemsg(mp);
3107 				return;
3108 			}
3109 
3110 			/* Per RFC 793, we need to send back an ACK. */
3111 			flags |= TH_ACK_NEEDED;
3112 
3113 			/*
3114 			 * If this is a zero window probe, continue to
3115 			 * process the ACK part.  But we need to set seg_len
3116 			 * to 0 to avoid data processing.  Otherwise just
3117 			 * drop the segment and send back an ACK.
3118 			 */
3119 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3120 				flags &= ~(TH_SYN | TH_URG);
3121 				seg_len = 0;
3122 				/* Let's see if we can update our rwnd */
3123 				tcp_rcv_drain(sock_id, tcp);
3124 				goto process_ack;
3125 			} else {
3126 				freemsg(mp);
3127 				goto ack_check;
3128 			}
3129 		}
3130 		/* Pitch out of window stuff off the end. */
3131 		rgap = seg_len;
3132 		mp2 = mp;
3133 		do {
3134 			assert((uintptr_t)(mp2->b_wptr -
3135 			    mp2->b_rptr) <= (uintptr_t)INT_MAX);
3136 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3137 			if (rgap < 0) {
3138 				mp2->b_wptr += rgap;
3139 				if ((mp1 = mp2->b_cont) != NULL) {
3140 					mp2->b_cont = NULL;
3141 					freemsg(mp1);
3142 				}
3143 				break;
3144 			}
3145 		} while ((mp2 = mp2->b_cont) != NULL);
3146 	}
3147 ok:;
3148 	/*
3149 	 * TCP should check ECN info for segments inside the window only.
3150 	 * Therefore the check should be done here.
3151 	 */
3152 	if (tcp->tcp_ecn_ok) {
3153 		uchar_t tos = ((struct ip *)rptr)->ip_tos;
3154 
3155 		if (flags & TH_CWR) {
3156 			tcp->tcp_ecn_echo_on = B_FALSE;
3157 		}
3158 		/*
3159 		 * Note that both ECN_CE and CWR can be set in the
3160 		 * same segment.  In this case, we once again turn
3161 		 * on ECN_ECHO.
3162 		 */
3163 		if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3164 			tcp->tcp_ecn_echo_on = B_TRUE;
3165 		}
3166 	}
3167 
3168 	/*
3169 	 * Check whether we can update tcp_ts_recent.  This test is
3170 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
3171 	 * Extensions for High Performance: An Update", Internet Draft.
3172 	 */
3173 	if (tcp->tcp_snd_ts_ok &&
3174 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3175 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3176 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3177 		tcp->tcp_last_rcv_lbolt = prom_gettime();
3178 	}
3179 
3180 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3181 		/*
3182 		 * FIN in an out of order segment.  We record this in
3183 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3184 		 * Clear the FIN so that any check on FIN flag will fail.
3185 		 * Remember that FIN also counts in the sequence number
3186 		 * space.  So we need to ack out of order FIN only segments.
3187 		 */
3188 		if (flags & TH_FIN) {
3189 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3190 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3191 			flags &= ~TH_FIN;
3192 			flags |= TH_ACK_NEEDED;
3193 		}
3194 		if (seg_len > 0) {
3195 			/* Fill in the SACK blk list. */
3196 			if (tcp->tcp_snd_sack_ok) {
3197 				assert(tcp->tcp_sack_info != NULL);
3198 				tcp_sack_insert(tcp->tcp_sack_list,
3199 				    seg_seq, seg_seq + seg_len,
3200 				    &(tcp->tcp_num_sack_blk));
3201 			}
3202 
3203 			/*
3204 			 * Attempt reassembly and see if we have something
3205 			 * ready to go.
3206 			 */
3207 			mp = tcp_reass(tcp, mp, seg_seq);
3208 			/* Always ack out of order packets */
3209 			flags |= TH_ACK_NEEDED | TH_PUSH;
3210 			if (mp != NULL) {
3211 				assert((uintptr_t)(mp->b_wptr -
3212 				    mp->b_rptr) <= (uintptr_t)INT_MAX);
3213 				seg_len = mp->b_cont ? msgdsize(mp) :
3214 					(int)(mp->b_wptr - mp->b_rptr);
3215 				seg_seq = tcp->tcp_rnxt;
3216 				/*
3217 				 * A gap is filled and the seq num and len
3218 				 * of the gap match that of a previously
3219 				 * received FIN, put the FIN flag back in.
3220 				 */
3221 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3222 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3223 					flags |= TH_FIN;
3224 					tcp->tcp_valid_bits &=
3225 					    ~TCP_OFO_FIN_VALID;
3226 				}
3227 			} else {
3228 				/*
3229 				 * Keep going even with NULL mp.
3230 				 * There may be a useful ACK or something else
3231 				 * we don't want to miss.
3232 				 *
3233 				 * But TCP should not perform fast retransmit
3234 				 * because of the ack number.  TCP uses
3235 				 * seg_len == 0 to determine if it is a pure
3236 				 * ACK.  And this is not a pure ACK.
3237 				 */
3238 				seg_len = 0;
3239 				ofo_seg = B_TRUE;
3240 			}
3241 		}
3242 	} else if (seg_len > 0) {
3243 		BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
3244 		UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
3245 		/*
3246 		 * If an out of order FIN was received before, and the seq
3247 		 * num and len of the new segment match that of the FIN,
3248 		 * put the FIN flag back in.
3249 		 */
3250 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3251 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3252 			flags |= TH_FIN;
3253 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3254 		}
3255 	}
3256 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3257 	if (flags & TH_RST) {
3258 		freemsg(mp);
3259 		switch (tcp->tcp_state) {
3260 		case TCPS_SYN_RCVD:
3261 			(void) tcp_clean_death(sock_id, tcp, ECONNREFUSED);
3262 			break;
3263 		case TCPS_ESTABLISHED:
3264 		case TCPS_FIN_WAIT_1:
3265 		case TCPS_FIN_WAIT_2:
3266 		case TCPS_CLOSE_WAIT:
3267 			(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
3268 			break;
3269 		case TCPS_CLOSING:
3270 		case TCPS_LAST_ACK:
3271 			(void) tcp_clean_death(sock_id, tcp, 0);
3272 			break;
3273 		default:
3274 			assert(tcp->tcp_state != TCPS_TIME_WAIT);
3275 			(void) tcp_clean_death(sock_id, tcp, ENXIO);
3276 			break;
3277 		}
3278 		return;
3279 	}
3280 	if (flags & TH_SYN) {
3281 		/*
3282 		 * See RFC 793, Page 71
3283 		 *
3284 		 * The seq number must be in the window as it should
3285 		 * be "fixed" above.  If it is outside window, it should
3286 		 * be already rejected.  Note that we allow seg_seq to be
3287 		 * rnxt + rwnd because we want to accept 0 window probe.
3288 		 */
3289 		assert(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3290 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3291 		freemsg(mp);
3292 		/*
3293 		 * If the ACK flag is not set, just use our snxt as the
3294 		 * seq number of the RST segment.
3295 		 */
3296 		if (!(flags & TH_ACK)) {
3297 			seg_ack = tcp->tcp_snxt;
3298 		}
3299 		tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack,
3300 		    seg_seq + 1, TH_RST|TH_ACK, 0, sock_id);
3301 		assert(tcp->tcp_state != TCPS_TIME_WAIT);
3302 		(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
3303 		return;
3304 	}
3305 
3306 process_ack:
3307 	if (!(flags & TH_ACK)) {
3308 #ifdef DEBUG
3309 		printf("No ack in segment, dropped it, seq:%x\n", seg_seq);
3310 #endif
3311 		freemsg(mp);
3312 		goto xmit_check;
3313 	}
3314 	}
3315 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3316 
3317 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3318 		tcp_t	*listener = tcp->tcp_listener;
3319 #ifdef DEBUG
3320 		printf("Done with eager 3-way handshake\n");
3321 #endif
3322 		/*
3323 		 * NOTE: RFC 793 pg. 72 says this should be 'bytes_acked < 0'
3324 		 * but that would mean we have an ack that ignored our SYN.
3325 		 */
3326 		if (bytes_acked < 1 || SEQ_GT(seg_ack, tcp->tcp_snxt)) {
3327 			freemsg(mp);
3328 			tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
3329 			    tcp, NULL, seg_ack, 0, TH_RST, 0, sock_id);
3330 			return;
3331 		}
3332 
3333 		/*
3334 		 * if the conn_req_q is full defer processing
3335 		 * until space is availabe after accept()
3336 		 * processing
3337 		 */
3338 		if (listener->tcp_conn_req_cnt_q <
3339 		    listener->tcp_conn_req_max) {
3340 			tcp_t *tail;
3341 
3342 			listener->tcp_conn_req_cnt_q0--;
3343 			listener->tcp_conn_req_cnt_q++;
3344 
3345 			/* Move from SYN_RCVD to ESTABLISHED list  */
3346 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3347 				tcp->tcp_eager_prev_q0;
3348 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3349 				tcp->tcp_eager_next_q0;
3350 			tcp->tcp_eager_prev_q0 = NULL;
3351 			tcp->tcp_eager_next_q0 = NULL;
3352 
3353 			/*
3354 			 * Insert at end of the queue because sockfs
3355 			 * sends down T_CONN_RES in chronological
3356 			 * order. Leaving the older conn indications
3357 			 * at front of the queue helps reducing search
3358 			 * time.
3359 			 */
3360 			tail = listener->tcp_eager_last_q;
3361 			if (tail != NULL) {
3362 				tail->tcp_eager_next_q = tcp;
3363 			} else {
3364 				listener->tcp_eager_next_q = tcp;
3365 			}
3366 			listener->tcp_eager_last_q = tcp;
3367 			tcp->tcp_eager_next_q = NULL;
3368 		} else {
3369 			/*
3370 			 * Defer connection on q0 and set deferred
3371 			 * connection bit true
3372 			 */
3373 			tcp->tcp_conn_def_q0 = B_TRUE;
3374 
3375 			/* take tcp out of q0 ... */
3376 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3377 			    tcp->tcp_eager_next_q0;
3378 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3379 			    tcp->tcp_eager_prev_q0;
3380 
3381 			/* ... and place it at the end of q0 */
3382 			tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
3383 			tcp->tcp_eager_next_q0 = listener;
3384 			listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
3385 			listener->tcp_eager_prev_q0 = tcp;
3386 		}
3387 
3388 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3389 		bytes_acked--;
3390 
3391 		/*
3392 		 * If SYN was retransmitted, need to reset all
3393 		 * retransmission info as this segment will be
3394 		 * treated as a dup ACK.
3395 		 */
3396 		if (tcp->tcp_rexmit) {
3397 			tcp->tcp_rexmit = B_FALSE;
3398 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3399 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3400 			tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3401 			tcp->tcp_ms_we_have_waited = 0;
3402 			tcp->tcp_cwnd = mss;
3403 		}
3404 
3405 		/*
3406 		 * We set the send window to zero here.
3407 		 * This is needed if there is data to be
3408 		 * processed already on the queue.
3409 		 * Later (at swnd_update label), the
3410 		 * "new_swnd > tcp_swnd" condition is satisfied
3411 		 * the XMIT_NEEDED flag is set in the current
3412 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3413 		 * called if there is already data on queue in
3414 		 * this state.
3415 		 */
3416 		tcp->tcp_swnd = 0;
3417 
3418 		if (new_swnd > tcp->tcp_max_swnd)
3419 			tcp->tcp_max_swnd = new_swnd;
3420 		tcp->tcp_swl1 = seg_seq;
3421 		tcp->tcp_swl2 = seg_ack;
3422 		tcp->tcp_state = TCPS_ESTABLISHED;
3423 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3424 	}
3425 	/* This code follows 4.4BSD-Lite2 mostly. */
3426 	if (bytes_acked < 0)
3427 		goto est;
3428 
3429 	/*
3430 	 * If TCP is ECN capable and the congestion experience bit is
3431 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
3432 	 * done once per window (or more loosely, per RTT).
3433 	 */
3434 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3435 		tcp->tcp_cwr = B_FALSE;
3436 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3437 		if (!tcp->tcp_cwr) {
3438 			npkt = (MIN(tcp->tcp_cwnd, tcp->tcp_swnd) >> 1) / mss;
3439 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3440 			tcp->tcp_cwnd = npkt * mss;
3441 			/*
3442 			 * If the cwnd is 0, use the timer to clock out
3443 			 * new segments.  This is required by the ECN spec.
3444 			 */
3445 			if (npkt == 0) {
3446 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3447 				/*
3448 				 * This makes sure that when the ACK comes
3449 				 * back, we will increase tcp_cwnd by 1 MSS.
3450 				 */
3451 				tcp->tcp_cwnd_cnt = 0;
3452 			}
3453 			tcp->tcp_cwr = B_TRUE;
3454 			/*
3455 			 * This marks the end of the current window of in
3456 			 * flight data.  That is why we don't use
3457 			 * tcp_suna + tcp_swnd.  Only data in flight can
3458 			 * provide ECN info.
3459 			 */
3460 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3461 			tcp->tcp_ecn_cwr_sent = B_FALSE;
3462 		}
3463 	}
3464 
3465 	mp1 = tcp->tcp_xmit_head;
3466 	if (bytes_acked == 0) {
3467 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3468 			int dupack_cnt;
3469 
3470 			BUMP_MIB(tcp_mib.tcpInDupAck);
3471 			/*
3472 			 * Fast retransmit.  When we have seen exactly three
3473 			 * identical ACKs while we have unacked data
3474 			 * outstanding we take it as a hint that our peer
3475 			 * dropped something.
3476 			 *
3477 			 * If TCP is retransmitting, don't do fast retransmit.
3478 			 */
3479 			if (mp1 != NULL && tcp->tcp_suna != tcp->tcp_snxt &&
3480 			    ! tcp->tcp_rexmit) {
3481 				/* Do Limited Transmit */
3482 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3483 				    tcp_dupack_fast_retransmit) {
3484 					/*
3485 					 * RFC 3042
3486 					 *
3487 					 * What we need to do is temporarily
3488 					 * increase tcp_cwnd so that new
3489 					 * data can be sent if it is allowed
3490 					 * by the receive window (tcp_rwnd).
3491 					 * tcp_wput_data() will take care of
3492 					 * the rest.
3493 					 *
3494 					 * If the connection is SACK capable,
3495 					 * only do limited xmit when there
3496 					 * is SACK info.
3497 					 *
3498 					 * Note how tcp_cwnd is incremented.
3499 					 * The first dup ACK will increase
3500 					 * it by 1 MSS.  The second dup ACK
3501 					 * will increase it by 2 MSS.  This
3502 					 * means that only 1 new segment will
3503 					 * be sent for each dup ACK.
3504 					 */
3505 					if (tcp->tcp_unsent > 0 &&
3506 					    (!tcp->tcp_snd_sack_ok ||
3507 					    (tcp->tcp_snd_sack_ok &&
3508 					    tcp->tcp_notsack_list != NULL))) {
3509 						tcp->tcp_cwnd += mss <<
3510 						    (tcp->tcp_dupack_cnt - 1);
3511 						flags |= TH_LIMIT_XMIT;
3512 					}
3513 				} else if (dupack_cnt ==
3514 				    tcp_dupack_fast_retransmit) {
3515 
3516 				BUMP_MIB(tcp_mib.tcpOutFastRetrans);
3517 				/*
3518 				 * If we have reduced tcp_ssthresh
3519 				 * because of ECN, do not reduce it again
3520 				 * unless it is already one window of data
3521 				 * away.  After one window of data, tcp_cwr
3522 				 * should then be cleared.  Note that
3523 				 * for non ECN capable connection, tcp_cwr
3524 				 * should always be false.
3525 				 *
3526 				 * Adjust cwnd since the duplicate
3527 				 * ack indicates that a packet was
3528 				 * dropped (due to congestion.)
3529 				 */
3530 				if (!tcp->tcp_cwr) {
3531 					npkt = (MIN(tcp->tcp_cwnd,
3532 					    tcp->tcp_swnd) >> 1) / mss;
3533 					if (npkt < 2)
3534 						npkt = 2;
3535 					tcp->tcp_cwnd_ssthresh = npkt * mss;
3536 					tcp->tcp_cwnd = (npkt +
3537 					    tcp->tcp_dupack_cnt) * mss;
3538 				}
3539 				if (tcp->tcp_ecn_ok) {
3540 					tcp->tcp_cwr = B_TRUE;
3541 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3542 					tcp->tcp_ecn_cwr_sent = B_FALSE;
3543 				}
3544 
3545 				/*
3546 				 * We do Hoe's algorithm.  Refer to her
3547 				 * paper "Improving the Start-up Behavior
3548 				 * of a Congestion Control Scheme for TCP,"
3549 				 * appeared in SIGCOMM'96.
3550 				 *
3551 				 * Save highest seq no we have sent so far.
3552 				 * Be careful about the invisible FIN byte.
3553 				 */
3554 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
3555 				    (tcp->tcp_unsent == 0)) {
3556 					tcp->tcp_rexmit_max = tcp->tcp_fss;
3557 				} else {
3558 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
3559 				}
3560 
3561 				/*
3562 				 * Do not allow bursty traffic during.
3563 				 * fast recovery.  Refer to Fall and Floyd's
3564 				 * paper "Simulation-based Comparisons of
3565 				 * Tahoe, Reno and SACK TCP" (in CCR ??)
3566 				 * This is a best current practise.
3567 				 */
3568 				tcp->tcp_snd_burst = TCP_CWND_SS;
3569 
3570 				/*
3571 				 * For SACK:
3572 				 * Calculate tcp_pipe, which is the
3573 				 * estimated number of bytes in
3574 				 * network.
3575 				 *
3576 				 * tcp_fack is the highest sack'ed seq num
3577 				 * TCP has received.
3578 				 *
3579 				 * tcp_pipe is explained in the above quoted
3580 				 * Fall and Floyd's paper.  tcp_fack is
3581 				 * explained in Mathis and Mahdavi's
3582 				 * "Forward Acknowledgment: Refining TCP
3583 				 * Congestion Control" in SIGCOMM '96.
3584 				 */
3585 				if (tcp->tcp_snd_sack_ok) {
3586 					assert(tcp->tcp_sack_info != NULL);
3587 					if (tcp->tcp_notsack_list != NULL) {
3588 						tcp->tcp_pipe = tcp->tcp_snxt -
3589 						    tcp->tcp_fack;
3590 						tcp->tcp_sack_snxt = seg_ack;
3591 						flags |= TH_NEED_SACK_REXMIT;
3592 					} else {
3593 						/*
3594 						 * Always initialize tcp_pipe
3595 						 * even though we don't have
3596 						 * any SACK info.  If later
3597 						 * we get SACK info and
3598 						 * tcp_pipe is not initialized,
3599 						 * funny things will happen.
3600 						 */
3601 						tcp->tcp_pipe =
3602 						    tcp->tcp_cwnd_ssthresh;
3603 					}
3604 				} else {
3605 					flags |= TH_REXMIT_NEEDED;
3606 				} /* tcp_snd_sack_ok */
3607 
3608 				} else {
3609 					/*
3610 					 * Here we perform congestion
3611 					 * avoidance, but NOT slow start.
3612 					 * This is known as the Fast
3613 					 * Recovery Algorithm.
3614 					 */
3615 					if (tcp->tcp_snd_sack_ok &&
3616 					    tcp->tcp_notsack_list != NULL) {
3617 						flags |= TH_NEED_SACK_REXMIT;
3618 						tcp->tcp_pipe -= mss;
3619 						if (tcp->tcp_pipe < 0)
3620 							tcp->tcp_pipe = 0;
3621 					} else {
3622 					/*
3623 					 * We know that one more packet has
3624 					 * left the pipe thus we can update
3625 					 * cwnd.
3626 					 */
3627 					cwnd = tcp->tcp_cwnd + mss;
3628 					if (cwnd > tcp->tcp_cwnd_max)
3629 						cwnd = tcp->tcp_cwnd_max;
3630 					tcp->tcp_cwnd = cwnd;
3631 					flags |= TH_XMIT_NEEDED;
3632 					}
3633 				}
3634 			}
3635 		} else if (tcp->tcp_zero_win_probe) {
3636 			/*
3637 			 * If the window has opened, need to arrange
3638 			 * to send additional data.
3639 			 */
3640 			if (new_swnd != 0) {
3641 				/* tcp_suna != tcp_snxt */
3642 				/* Packet contains a window update */
3643 				BUMP_MIB(tcp_mib.tcpInWinUpdate);
3644 				tcp->tcp_zero_win_probe = 0;
3645 				tcp->tcp_timer_backoff = 0;
3646 				tcp->tcp_ms_we_have_waited = 0;
3647 
3648 				/*
3649 				 * Transmit starting with tcp_suna since
3650 				 * the one byte probe is not ack'ed.
3651 				 * If TCP has sent more than one identical
3652 				 * probe, tcp_rexmit will be set.  That means
3653 				 * tcp_ss_rexmit() will send out the one
3654 				 * byte along with new data.  Otherwise,
3655 				 * fake the retransmission.
3656 				 */
3657 				flags |= TH_XMIT_NEEDED;
3658 				if (!tcp->tcp_rexmit) {
3659 					tcp->tcp_rexmit = B_TRUE;
3660 					tcp->tcp_dupack_cnt = 0;
3661 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
3662 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
3663 				}
3664 			}
3665 		}
3666 		goto swnd_update;
3667 	}
3668 
3669 	/*
3670 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
3671 	 * If the ACK value acks something that we have not yet sent, it might
3672 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
3673 	 * other side.
3674 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
3675 	 * state is handled above, so we can always just drop the segment and
3676 	 * send an ACK here.
3677 	 *
3678 	 * Should we send ACKs in response to ACK only segments?
3679 	 */
3680 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
3681 		BUMP_MIB(tcp_mib.tcpInAckUnsent);
3682 		/* drop the received segment */
3683 		freemsg(mp);
3684 
3685 		/* Send back an ACK. */
3686 		mp = tcp_ack_mp(tcp);
3687 
3688 		if (mp == NULL) {
3689 			return;
3690 		}
3691 		BUMP_MIB(tcp_mib.tcpOutAck);
3692 		(void) ipv4_tcp_output(sock_id, mp);
3693 		freeb(mp);
3694 		return;
3695 	}
3696 
3697 	/*
3698 	 * TCP gets a new ACK, update the notsack'ed list to delete those
3699 	 * blocks that are covered by this ACK.
3700 	 */
3701 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
3702 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
3703 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
3704 	}
3705 
3706 	/*
3707 	 * If we got an ACK after fast retransmit, check to see
3708 	 * if it is a partial ACK.  If it is not and the congestion
3709 	 * window was inflated to account for the other side's
3710 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
3711 	 */
3712 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
3713 		assert(tcp->tcp_rexmit == B_FALSE);
3714 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
3715 			tcp->tcp_dupack_cnt = 0;
3716 			/*
3717 			 * Restore the orig tcp_cwnd_ssthresh after
3718 			 * fast retransmit phase.
3719 			 */
3720 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
3721 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
3722 			}
3723 			tcp->tcp_rexmit_max = seg_ack;
3724 			tcp->tcp_cwnd_cnt = 0;
3725 			tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3726 
3727 			/*
3728 			 * Remove all notsack info to avoid confusion with
3729 			 * the next fast retrasnmit/recovery phase.
3730 			 */
3731 			if (tcp->tcp_snd_sack_ok &&
3732 			    tcp->tcp_notsack_list != NULL) {
3733 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
3734 			}
3735 		} else {
3736 			if (tcp->tcp_snd_sack_ok &&
3737 			    tcp->tcp_notsack_list != NULL) {
3738 				flags |= TH_NEED_SACK_REXMIT;
3739 				tcp->tcp_pipe -= mss;
3740 				if (tcp->tcp_pipe < 0)
3741 					tcp->tcp_pipe = 0;
3742 			} else {
3743 				/*
3744 				 * Hoe's algorithm:
3745 				 *
3746 				 * Retransmit the unack'ed segment and
3747 				 * restart fast recovery.  Note that we
3748 				 * need to scale back tcp_cwnd to the
3749 				 * original value when we started fast
3750 				 * recovery.  This is to prevent overly
3751 				 * aggressive behaviour in sending new
3752 				 * segments.
3753 				 */
3754 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
3755 					tcp_dupack_fast_retransmit * mss;
3756 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
3757 				BUMP_MIB(tcp_mib.tcpOutFastRetrans);
3758 				flags |= TH_REXMIT_NEEDED;
3759 			}
3760 		}
3761 	} else {
3762 		tcp->tcp_dupack_cnt = 0;
3763 		if (tcp->tcp_rexmit) {
3764 			/*
3765 			 * TCP is retranmitting.  If the ACK ack's all
3766 			 * outstanding data, update tcp_rexmit_max and
3767 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
3768 			 * to the correct value.
3769 			 *
3770 			 * Note that SEQ_LEQ() is used.  This is to avoid
3771 			 * unnecessary fast retransmit caused by dup ACKs
3772 			 * received when TCP does slow start retransmission
3773 			 * after a time out.  During this phase, TCP may
3774 			 * send out segments which are already received.
3775 			 * This causes dup ACKs to be sent back.
3776 			 */
3777 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
3778 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
3779 					tcp->tcp_rexmit_nxt = seg_ack;
3780 				}
3781 				if (seg_ack != tcp->tcp_rexmit_max) {
3782 					flags |= TH_XMIT_NEEDED;
3783 				}
3784 			} else {
3785 				tcp->tcp_rexmit = B_FALSE;
3786 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3787 				tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3788 			}
3789 			tcp->tcp_ms_we_have_waited = 0;
3790 		}
3791 	}
3792 
3793 	BUMP_MIB(tcp_mib.tcpInAckSegs);
3794 	UPDATE_MIB(tcp_mib.tcpInAckBytes, bytes_acked);
3795 	tcp->tcp_suna = seg_ack;
3796 	if (tcp->tcp_zero_win_probe != 0) {
3797 		tcp->tcp_zero_win_probe = 0;
3798 		tcp->tcp_timer_backoff = 0;
3799 	}
3800 
3801 	/*
3802 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
3803 	 * Note that it cannot be the SYN being ack'ed.  The code flow
3804 	 * will not reach here.
3805 	 */
3806 	if (mp1 == NULL) {
3807 		goto fin_acked;
3808 	}
3809 
3810 	/*
3811 	 * Update the congestion window.
3812 	 *
3813 	 * If TCP is not ECN capable or TCP is ECN capable but the
3814 	 * congestion experience bit is not set, increase the tcp_cwnd as
3815 	 * usual.
3816 	 */
3817 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
3818 		cwnd = tcp->tcp_cwnd;
3819 		add = mss;
3820 
3821 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
3822 			/*
3823 			 * This is to prevent an increase of less than 1 MSS of
3824 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
3825 			 * may send out tinygrams in order to preserve mblk
3826 			 * boundaries.
3827 			 *
3828 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
3829 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
3830 			 * increased by 1 MSS for every RTTs.
3831 			 */
3832 			if (tcp->tcp_cwnd_cnt <= 0) {
3833 				tcp->tcp_cwnd_cnt = cwnd + add;
3834 			} else {
3835 				tcp->tcp_cwnd_cnt -= add;
3836 				add = 0;
3837 			}
3838 		}
3839 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
3840 	}
3841 
3842 	/* Can we update the RTT estimates? */
3843 	if (tcp->tcp_snd_ts_ok) {
3844 		/* Ignore zero timestamp echo-reply. */
3845 		if (tcpopt.tcp_opt_ts_ecr != 0) {
3846 			tcp_set_rto(tcp, (int32_t)(prom_gettime() -
3847 			    tcpopt.tcp_opt_ts_ecr));
3848 		}
3849 
3850 		/* If needed, restart the timer. */
3851 		if (tcp->tcp_set_timer == 1) {
3852 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3853 			tcp->tcp_set_timer = 0;
3854 		}
3855 		/*
3856 		 * Update tcp_csuna in case the other side stops sending
3857 		 * us timestamps.
3858 		 */
3859 		tcp->tcp_csuna = tcp->tcp_snxt;
3860 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
3861 		/*
3862 		 * An ACK sequence we haven't seen before, so get the RTT
3863 		 * and update the RTO.
3864 		 * Note. use uintptr_t to suppress the gcc warning.
3865 		 */
3866 		tcp_set_rto(tcp, (int32_t)(prom_gettime() -
3867 		    (uint32_t)(uintptr_t)mp1->b_prev));
3868 
3869 		/* Remeber the last sequence to be ACKed */
3870 		tcp->tcp_csuna = seg_ack;
3871 		if (tcp->tcp_set_timer == 1) {
3872 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3873 			tcp->tcp_set_timer = 0;
3874 		}
3875 	} else {
3876 		BUMP_MIB(tcp_mib.tcpRttNoUpdate);
3877 	}
3878 
3879 	/* Eat acknowledged bytes off the xmit queue. */
3880 	for (;;) {
3881 		mblk_t	*mp2;
3882 		uchar_t	*wptr;
3883 
3884 		wptr = mp1->b_wptr;
3885 		assert((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
3886 		bytes_acked -= (int)(wptr - mp1->b_rptr);
3887 		if (bytes_acked < 0) {
3888 			mp1->b_rptr = wptr + bytes_acked;
3889 			break;
3890 		}
3891 		mp1->b_prev = NULL;
3892 		mp2 = mp1;
3893 		mp1 = mp1->b_cont;
3894 		freeb(mp2);
3895 		if (bytes_acked == 0) {
3896 			if (mp1 == NULL) {
3897 				/* Everything is ack'ed, clear the tail. */
3898 				tcp->tcp_xmit_tail = NULL;
3899 				goto pre_swnd_update;
3900 			}
3901 			if (mp2 != tcp->tcp_xmit_tail)
3902 				break;
3903 			tcp->tcp_xmit_tail = mp1;
3904 			assert((uintptr_t)(mp1->b_wptr -
3905 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
3906 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
3907 			    mp1->b_rptr);
3908 			break;
3909 		}
3910 		if (mp1 == NULL) {
3911 			/*
3912 			 * More was acked but there is nothing more
3913 			 * outstanding.  This means that the FIN was
3914 			 * just acked or that we're talking to a clown.
3915 			 */
3916 fin_acked:
3917 			assert(tcp->tcp_fin_sent);
3918 			tcp->tcp_xmit_tail = NULL;
3919 			if (tcp->tcp_fin_sent) {
3920 				tcp->tcp_fin_acked = B_TRUE;
3921 			} else {
3922 				/*
3923 				 * We should never got here because
3924 				 * we have already checked that the
3925 				 * number of bytes ack'ed should be
3926 				 * smaller than or equal to what we
3927 				 * have sent so far (it is the
3928 				 * acceptability check of the ACK).
3929 				 * We can only get here if the send
3930 				 * queue is corrupted.
3931 				 *
3932 				 * Terminate the connection and
3933 				 * panic the system.  It is better
3934 				 * for us to panic instead of
3935 				 * continuing to avoid other disaster.
3936 				 */
3937 				tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
3938 				    tcp->tcp_rnxt, TH_RST|TH_ACK, 0, sock_id);
3939 				printf("Memory corruption "
3940 				    "detected for connection %s.\n",
3941 				    tcp_display(tcp, NULL,
3942 					DISP_ADDR_AND_PORT));
3943 				/* We should never get here... */
3944 				prom_panic("tcp_rput_data");
3945 				return;
3946 			}
3947 			goto pre_swnd_update;
3948 		}
3949 		assert(mp2 != tcp->tcp_xmit_tail);
3950 	}
3951 	if (tcp->tcp_unsent) {
3952 		flags |= TH_XMIT_NEEDED;
3953 	}
3954 pre_swnd_update:
3955 	tcp->tcp_xmit_head = mp1;
3956 swnd_update:
3957 	/*
3958 	 * The following check is different from most other implementations.
3959 	 * For bi-directional transfer, when segments are dropped, the
3960 	 * "normal" check will not accept a window update in those
3961 	 * retransmitted segemnts.  Failing to do that, TCP may send out
3962 	 * segments which are outside receiver's window.  As TCP accepts
3963 	 * the ack in those retransmitted segments, if the window update in
3964 	 * the same segment is not accepted, TCP will incorrectly calculates
3965 	 * that it can send more segments.  This can create a deadlock
3966 	 * with the receiver if its window becomes zero.
3967 	 */
3968 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
3969 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
3970 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
3971 		/*
3972 		 * The criteria for update is:
3973 		 *
3974 		 * 1. the segment acknowledges some data.  Or
3975 		 * 2. the segment is new, i.e. it has a higher seq num. Or
3976 		 * 3. the segment is not old and the advertised window is
3977 		 * larger than the previous advertised window.
3978 		 */
3979 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
3980 			flags |= TH_XMIT_NEEDED;
3981 		tcp->tcp_swnd = new_swnd;
3982 		if (new_swnd > tcp->tcp_max_swnd)
3983 			tcp->tcp_max_swnd = new_swnd;
3984 		tcp->tcp_swl1 = seg_seq;
3985 		tcp->tcp_swl2 = seg_ack;
3986 	}
3987 est:
3988 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
3989 		switch (tcp->tcp_state) {
3990 		case TCPS_FIN_WAIT_1:
3991 			if (tcp->tcp_fin_acked) {
3992 				tcp->tcp_state = TCPS_FIN_WAIT_2;
3993 				/*
3994 				 * We implement the non-standard BSD/SunOS
3995 				 * FIN_WAIT_2 flushing algorithm.
3996 				 * If there is no user attached to this
3997 				 * TCP endpoint, then this TCP struct
3998 				 * could hang around forever in FIN_WAIT_2
3999 				 * state if the peer forgets to send us
4000 				 * a FIN.  To prevent this, we wait only
4001 				 * 2*MSL (a convenient time value) for
4002 				 * the FIN to arrive.  If it doesn't show up,
4003 				 * we flush the TCP endpoint.  This algorithm,
4004 				 * though a violation of RFC-793, has worked
4005 				 * for over 10 years in BSD systems.
4006 				 * Note: SunOS 4.x waits 675 seconds before
4007 				 * flushing the FIN_WAIT_2 connection.
4008 				 */
4009 				TCP_TIMER_RESTART(tcp,
4010 				    tcp_fin_wait_2_flush_interval);
4011 			}
4012 			break;
4013 		case TCPS_FIN_WAIT_2:
4014 			break;	/* Shutdown hook? */
4015 		case TCPS_LAST_ACK:
4016 			freemsg(mp);
4017 			if (tcp->tcp_fin_acked) {
4018 				(void) tcp_clean_death(sock_id, tcp, 0);
4019 				return;
4020 			}
4021 			goto xmit_check;
4022 		case TCPS_CLOSING:
4023 			if (tcp->tcp_fin_acked) {
4024 				tcp->tcp_state = TCPS_TIME_WAIT;
4025 				tcp_time_wait_append(tcp);
4026 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
4027 			}
4028 			/*FALLTHRU*/
4029 		case TCPS_CLOSE_WAIT:
4030 			freemsg(mp);
4031 			goto xmit_check;
4032 		default:
4033 			assert(tcp->tcp_state != TCPS_TIME_WAIT);
4034 			break;
4035 		}
4036 	}
4037 	if (flags & TH_FIN) {
4038 		/* Make sure we ack the fin */
4039 		flags |= TH_ACK_NEEDED;
4040 		if (!tcp->tcp_fin_rcvd) {
4041 			tcp->tcp_fin_rcvd = B_TRUE;
4042 			tcp->tcp_rnxt++;
4043 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
4044 
4045 			switch (tcp->tcp_state) {
4046 			case TCPS_SYN_RCVD:
4047 			case TCPS_ESTABLISHED:
4048 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4049 				/* Keepalive? */
4050 				break;
4051 			case TCPS_FIN_WAIT_1:
4052 				if (!tcp->tcp_fin_acked) {
4053 					tcp->tcp_state = TCPS_CLOSING;
4054 					break;
4055 				}
4056 				/* FALLTHRU */
4057 			case TCPS_FIN_WAIT_2:
4058 				tcp->tcp_state = TCPS_TIME_WAIT;
4059 				tcp_time_wait_append(tcp);
4060 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
4061 				if (seg_len) {
4062 					/*
4063 					 * implies data piggybacked on FIN.
4064 					 * break to handle data.
4065 					 */
4066 					break;
4067 				}
4068 				freemsg(mp);
4069 				goto ack_check;
4070 			}
4071 		}
4072 	}
4073 	if (mp == NULL)
4074 		goto xmit_check;
4075 	if (seg_len == 0) {
4076 		freemsg(mp);
4077 		goto xmit_check;
4078 	}
4079 	if (mp->b_rptr == mp->b_wptr) {
4080 		/*
4081 		 * The header has been consumed, so we remove the
4082 		 * zero-length mblk here.
4083 		 */
4084 		mp1 = mp;
4085 		mp = mp->b_cont;
4086 		freeb(mp1);
4087 	}
4088 	/*
4089 	 * ACK every other segments, unless the input queue is empty
4090 	 * as we don't have a timer available.
4091 	 */
4092 	if (++tcp->tcp_rack_cnt == 2 || sockets[sock_id].inq == NULL) {
4093 		flags |= TH_ACK_NEEDED;
4094 		tcp->tcp_rack_cnt = 0;
4095 	}
4096 	tcp->tcp_rnxt += seg_len;
4097 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
4098 
4099 	/* Update SACK list */
4100 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4101 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4102 		    &(tcp->tcp_num_sack_blk));
4103 	}
4104 
4105 	if (tcp->tcp_listener) {
4106 		/*
4107 		 * Side queue inbound data until the accept happens.
4108 		 * tcp_accept/tcp_rput drains this when the accept happens.
4109 		 */
4110 		tcp_rcv_enqueue(tcp, mp, seg_len);
4111 	} else {
4112 		/* Just queue the data until the app calls read. */
4113 		tcp_rcv_enqueue(tcp, mp, seg_len);
4114 		/*
4115 		 * Make sure the timer is running if we have data waiting
4116 		 * for a push bit. This provides resiliency against
4117 		 * implementations that do not correctly generate push bits.
4118 		 */
4119 		if (tcp->tcp_rcv_list != NULL)
4120 			flags |= TH_TIMER_NEEDED;
4121 	}
4122 
4123 xmit_check:
4124 	/* Is there anything left to do? */
4125 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4126 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_TIMER_NEEDED)) == 0)
4127 		return;
4128 
4129 	/* Any transmit work to do and a non-zero window? */
4130 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4131 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4132 		if (flags & TH_REXMIT_NEEDED) {
4133 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4134 
4135 			if (snd_size > mss)
4136 				snd_size = mss;
4137 			if (snd_size > tcp->tcp_swnd)
4138 				snd_size = tcp->tcp_swnd;
4139 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4140 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4141 			    B_TRUE);
4142 
4143 			if (mp1 != NULL) {
4144 				/* use uintptr_t to suppress the gcc warning */
4145 				tcp->tcp_xmit_head->b_prev =
4146 				    (mblk_t *)(uintptr_t)prom_gettime();
4147 				tcp->tcp_csuna = tcp->tcp_snxt;
4148 				BUMP_MIB(tcp_mib.tcpRetransSegs);
4149 				UPDATE_MIB(tcp_mib.tcpRetransBytes, snd_size);
4150 				(void) ipv4_tcp_output(sock_id, mp1);
4151 				freeb(mp1);
4152 			}
4153 		}
4154 		if (flags & TH_NEED_SACK_REXMIT) {
4155 			if (tcp_sack_rxmit(tcp, sock_id) != 0) {
4156 				flags |= TH_XMIT_NEEDED;
4157 			}
4158 		}
4159 		/*
4160 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4161 		 * out new segment.  Note that tcp_rexmit should not be
4162 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4163 		 */
4164 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4165 			if (!tcp->tcp_rexmit) {
4166 				tcp_wput_data(tcp, NULL, sock_id);
4167 			} else {
4168 				tcp_ss_rexmit(tcp, sock_id);
4169 			}
4170 			/*
4171 			 * The TCP could be closed in tcp_state_wait via
4172 			 * tcp_wput_data (tcp_ss_rexmit could call
4173 			 * tcp_wput_data as well).
4174 			 */
4175 			if (sockets[sock_id].pcb == NULL)
4176 				return;
4177 		}
4178 		/*
4179 		 * Adjust tcp_cwnd back to normal value after sending
4180 		 * new data segments.
4181 		 */
4182 		if (flags & TH_LIMIT_XMIT) {
4183 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4184 		}
4185 
4186 		/* Anything more to do? */
4187 		if ((flags & (TH_ACK_NEEDED|TH_TIMER_NEEDED)) == 0)
4188 			return;
4189 	}
4190 ack_check:
4191 	if (flags & TH_ACK_NEEDED) {
4192 		/*
4193 		 * Time to send an ack for some reason.
4194 		 */
4195 		if ((mp1 = tcp_ack_mp(tcp)) != NULL) {
4196 			TCP_DUMP_PACKET("tcp_rput_data: ack mp", mp1);
4197 			(void) ipv4_tcp_output(sock_id, mp1);
4198 			BUMP_MIB(tcp_mib.tcpOutAck);
4199 			freeb(mp1);
4200 		}
4201 	}
4202 }
4203 
4204 /*
4205  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
4206  * retransmission after a timeout.
4207  *
4208  * To limit the number of duplicate segments, we limit the number of segment
4209  * to be sent in one time to tcp_snd_burst, the burst variable.
4210  */
4211 static void
tcp_ss_rexmit(tcp_t * tcp,int sock_id)4212 tcp_ss_rexmit(tcp_t *tcp, int sock_id)
4213 {
4214 	uint32_t	snxt;
4215 	uint32_t	smax;
4216 	int32_t		win;
4217 	int32_t		mss;
4218 	int32_t		off;
4219 	int32_t		burst = tcp->tcp_snd_burst;
4220 	mblk_t		*snxt_mp;
4221 
4222 	/*
4223 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
4224 	 * all unack'ed segments.
4225 	 */
4226 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
4227 		smax = tcp->tcp_rexmit_max;
4228 		snxt = tcp->tcp_rexmit_nxt;
4229 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
4230 			snxt = tcp->tcp_suna;
4231 		}
4232 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
4233 		win -= snxt - tcp->tcp_suna;
4234 		mss = tcp->tcp_mss;
4235 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
4236 
4237 		while (SEQ_LT(snxt, smax) && (win > 0) &&
4238 		    (burst > 0) && (snxt_mp != NULL)) {
4239 			mblk_t	*xmit_mp;
4240 			mblk_t	*old_snxt_mp = snxt_mp;
4241 			uint32_t cnt = mss;
4242 
4243 			if (win < cnt) {
4244 				cnt = win;
4245 			}
4246 			if (SEQ_GT(snxt + cnt, smax)) {
4247 				cnt = smax - snxt;
4248 			}
4249 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
4250 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
4251 
4252 			if (xmit_mp == NULL)
4253 				return;
4254 
4255 			(void) ipv4_tcp_output(sock_id, xmit_mp);
4256 			freeb(xmit_mp);
4257 
4258 			snxt += cnt;
4259 			win -= cnt;
4260 			/*
4261 			 * Update the send timestamp to avoid false
4262 			 * retransmission.
4263 			 * Note. use uintptr_t to suppress the gcc warning.
4264 			 */
4265 			old_snxt_mp->b_prev =
4266 			    (mblk_t *)(uintptr_t)prom_gettime();
4267 			BUMP_MIB(tcp_mib.tcpRetransSegs);
4268 			UPDATE_MIB(tcp_mib.tcpRetransBytes, cnt);
4269 
4270 			tcp->tcp_rexmit_nxt = snxt;
4271 			burst--;
4272 		}
4273 		/*
4274 		 * If we have transmitted all we have at the time
4275 		 * we started the retranmission, we can leave
4276 		 * the rest of the job to tcp_wput_data().  But we
4277 		 * need to check the send window first.  If the
4278 		 * win is not 0, go on with tcp_wput_data().
4279 		 */
4280 		if (SEQ_LT(snxt, smax) || win == 0) {
4281 			return;
4282 		}
4283 	}
4284 	/* Only call tcp_wput_data() if there is data to be sent. */
4285 	if (tcp->tcp_unsent) {
4286 		tcp_wput_data(tcp, NULL, sock_id);
4287 	}
4288 }
4289 
4290 /*
4291  * tcp_timer is the timer service routine.  It handles all timer events for
4292  * a tcp instance except keepalives.  It figures out from the state of the
4293  * tcp instance what kind of action needs to be done at the time it is called.
4294  */
4295 static void
tcp_timer(tcp_t * tcp,int sock_id)4296 tcp_timer(tcp_t	*tcp, int sock_id)
4297 {
4298 	mblk_t		*mp;
4299 	uint32_t	first_threshold;
4300 	uint32_t	second_threshold;
4301 	uint32_t	ms;
4302 	uint32_t	mss;
4303 
4304 	first_threshold =  tcp->tcp_first_timer_threshold;
4305 	second_threshold = tcp->tcp_second_timer_threshold;
4306 	switch (tcp->tcp_state) {
4307 	case TCPS_IDLE:
4308 	case TCPS_BOUND:
4309 	case TCPS_LISTEN:
4310 		return;
4311 	case TCPS_SYN_RCVD:
4312 	case TCPS_SYN_SENT:
4313 		first_threshold =  tcp->tcp_first_ctimer_threshold;
4314 		second_threshold = tcp->tcp_second_ctimer_threshold;
4315 		break;
4316 	case TCPS_ESTABLISHED:
4317 	case TCPS_FIN_WAIT_1:
4318 	case TCPS_CLOSING:
4319 	case TCPS_CLOSE_WAIT:
4320 	case TCPS_LAST_ACK:
4321 		/* If we have data to rexmit */
4322 		if (tcp->tcp_suna != tcp->tcp_snxt) {
4323 			int32_t time_to_wait;
4324 
4325 			BUMP_MIB(tcp_mib.tcpTimRetrans);
4326 			if (tcp->tcp_xmit_head == NULL)
4327 				break;
4328 			/* use uintptr_t to suppress the gcc warning */
4329 			time_to_wait = (int32_t)(prom_gettime() -
4330 			    (uint32_t)(uintptr_t)tcp->tcp_xmit_head->b_prev);
4331 			time_to_wait = tcp->tcp_rto - time_to_wait;
4332 			if (time_to_wait > 0) {
4333 				/*
4334 				 * Timer fired too early, so restart it.
4335 				 */
4336 				TCP_TIMER_RESTART(tcp, time_to_wait);
4337 				return;
4338 			}
4339 			/*
4340 			 * When we probe zero windows, we force the swnd open.
4341 			 * If our peer acks with a closed window swnd will be
4342 			 * set to zero by tcp_rput(). As long as we are
4343 			 * receiving acks tcp_rput will
4344 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
4345 			 * first and second interval actions.  NOTE: the timer
4346 			 * interval is allowed to continue its exponential
4347 			 * backoff.
4348 			 */
4349 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
4350 				DEBUG_1("tcp_timer (%d): zero win", sock_id);
4351 				break;
4352 			} else {
4353 				/*
4354 				 * After retransmission, we need to do
4355 				 * slow start.  Set the ssthresh to one
4356 				 * half of current effective window and
4357 				 * cwnd to one MSS.  Also reset
4358 				 * tcp_cwnd_cnt.
4359 				 *
4360 				 * Note that if tcp_ssthresh is reduced because
4361 				 * of ECN, do not reduce it again unless it is
4362 				 * already one window of data away (tcp_cwr
4363 				 * should then be cleared) or this is a
4364 				 * timeout for a retransmitted segment.
4365 				 */
4366 				uint32_t npkt;
4367 
4368 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
4369 					npkt = (MIN((tcp->tcp_timer_backoff ?
4370 					    tcp->tcp_cwnd_ssthresh :
4371 					    tcp->tcp_cwnd),
4372 					    tcp->tcp_swnd) >> 1) /
4373 					    tcp->tcp_mss;
4374 					if (npkt < 2)
4375 						npkt = 2;
4376 					tcp->tcp_cwnd_ssthresh = npkt *
4377 					    tcp->tcp_mss;
4378 				}
4379 				tcp->tcp_cwnd = tcp->tcp_mss;
4380 				tcp->tcp_cwnd_cnt = 0;
4381 				if (tcp->tcp_ecn_ok) {
4382 					tcp->tcp_cwr = B_TRUE;
4383 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4384 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4385 				}
4386 			}
4387 			break;
4388 		}
4389 		/*
4390 		 * We have something to send yet we cannot send.  The
4391 		 * reason can be:
4392 		 *
4393 		 * 1. Zero send window: we need to do zero window probe.
4394 		 * 2. Zero cwnd: because of ECN, we need to "clock out
4395 		 * segments.
4396 		 * 3. SWS avoidance: receiver may have shrunk window,
4397 		 * reset our knowledge.
4398 		 *
4399 		 * Note that condition 2 can happen with either 1 or
4400 		 * 3.  But 1 and 3 are exclusive.
4401 		 */
4402 		if (tcp->tcp_unsent != 0) {
4403 			if (tcp->tcp_cwnd == 0) {
4404 				/*
4405 				 * Set tcp_cwnd to 1 MSS so that a
4406 				 * new segment can be sent out.  We
4407 				 * are "clocking out" new data when
4408 				 * the network is really congested.
4409 				 */
4410 				assert(tcp->tcp_ecn_ok);
4411 				tcp->tcp_cwnd = tcp->tcp_mss;
4412 			}
4413 			if (tcp->tcp_swnd == 0) {
4414 				/* Extend window for zero window probe */
4415 				tcp->tcp_swnd++;
4416 				tcp->tcp_zero_win_probe = B_TRUE;
4417 				BUMP_MIB(tcp_mib.tcpOutWinProbe);
4418 			} else {
4419 				/*
4420 				 * Handle timeout from sender SWS avoidance.
4421 				 * Reset our knowledge of the max send window
4422 				 * since the receiver might have reduced its
4423 				 * receive buffer.  Avoid setting tcp_max_swnd
4424 				 * to one since that will essentially disable
4425 				 * the SWS checks.
4426 				 *
4427 				 * Note that since we don't have a SWS
4428 				 * state variable, if the timeout is set
4429 				 * for ECN but not for SWS, this
4430 				 * code will also be executed.  This is
4431 				 * fine as tcp_max_swnd is updated
4432 				 * constantly and it will not affect
4433 				 * anything.
4434 				 */
4435 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
4436 			}
4437 			tcp_wput_data(tcp, NULL, sock_id);
4438 			return;
4439 		}
4440 		/* Is there a FIN that needs to be to re retransmitted? */
4441 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4442 		    !tcp->tcp_fin_acked)
4443 			break;
4444 		/* Nothing to do, return without restarting timer. */
4445 		return;
4446 	case TCPS_FIN_WAIT_2:
4447 		/*
4448 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
4449 		 * We waited some time for for peer's FIN, but it hasn't
4450 		 * arrived.  We flush the connection now to avoid
4451 		 * case where the peer has rebooted.
4452 		 */
4453 		/* FALLTHRU */
4454 	case TCPS_TIME_WAIT:
4455 		(void) tcp_clean_death(sock_id, tcp, 0);
4456 		return;
4457 	default:
4458 		DEBUG_3("tcp_timer (%d): strange state (%d) %s", sock_id,
4459 		    tcp->tcp_state, tcp_display(tcp, NULL,
4460 		    DISP_PORT_ONLY));
4461 		return;
4462 	}
4463 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
4464 		/*
4465 		 * For zero window probe, we need to send indefinitely,
4466 		 * unless we have not heard from the other side for some
4467 		 * time...
4468 		 */
4469 		if ((tcp->tcp_zero_win_probe == 0) ||
4470 		    ((prom_gettime() - tcp->tcp_last_recv_time) >
4471 		    second_threshold)) {
4472 			BUMP_MIB(tcp_mib.tcpTimRetransDrop);
4473 			/*
4474 			 * If TCP is in SYN_RCVD state, send back a
4475 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
4476 			 * should be zero in TCPS_SYN_RCVD state.
4477 			 */
4478 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
4479 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
4480 				    "in SYN_RCVD",
4481 				    tcp, NULL, tcp->tcp_snxt,
4482 				    tcp->tcp_rnxt, TH_RST | TH_ACK, 0, sock_id);
4483 			}
4484 			(void) tcp_clean_death(sock_id, tcp,
4485 			    tcp->tcp_client_errno ?
4486 			    tcp->tcp_client_errno : ETIMEDOUT);
4487 			return;
4488 		} else {
4489 			/*
4490 			 * Set tcp_ms_we_have_waited to second_threshold
4491 			 * so that in next timeout, we will do the above
4492 			 * check (lbolt - tcp_last_recv_time).  This is
4493 			 * also to avoid overflow.
4494 			 *
4495 			 * We don't need to decrement tcp_timer_backoff
4496 			 * to avoid overflow because it will be decremented
4497 			 * later if new timeout value is greater than
4498 			 * tcp_rexmit_interval_max.  In the case when
4499 			 * tcp_rexmit_interval_max is greater than
4500 			 * second_threshold, it means that we will wait
4501 			 * longer than second_threshold to send the next
4502 			 * window probe.
4503 			 */
4504 			tcp->tcp_ms_we_have_waited = second_threshold;
4505 		}
4506 	} else if (ms > first_threshold && tcp->tcp_rtt_sa != 0) {
4507 		/*
4508 		 * We have been retransmitting for too long...  The RTT
4509 		 * we calculated is probably incorrect.  Reinitialize it.
4510 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
4511 		 * tcp_rtt_update so that we won't accidentally cache a
4512 		 * bad value.  But only do this if this is not a zero
4513 		 * window probe.
4514 		 */
4515 		if (tcp->tcp_zero_win_probe == 0) {
4516 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
4517 			    (tcp->tcp_rtt_sa >> 5);
4518 			tcp->tcp_rtt_sa = 0;
4519 			tcp->tcp_rtt_update = 0;
4520 		}
4521 	}
4522 	tcp->tcp_timer_backoff++;
4523 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
4524 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
4525 	    tcp_rexmit_interval_min) {
4526 		/*
4527 		 * This means the original RTO is tcp_rexmit_interval_min.
4528 		 * So we will use tcp_rexmit_interval_min as the RTO value
4529 		 * and do the backoff.
4530 		 */
4531 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
4532 	} else {
4533 		ms <<= tcp->tcp_timer_backoff;
4534 	}
4535 	if (ms > tcp_rexmit_interval_max) {
4536 		ms = tcp_rexmit_interval_max;
4537 		/*
4538 		 * ms is at max, decrement tcp_timer_backoff to avoid
4539 		 * overflow.
4540 		 */
4541 		tcp->tcp_timer_backoff--;
4542 	}
4543 	tcp->tcp_ms_we_have_waited += ms;
4544 	if (tcp->tcp_zero_win_probe == 0) {
4545 		tcp->tcp_rto = ms;
4546 	}
4547 	TCP_TIMER_RESTART(tcp, ms);
4548 	/*
4549 	 * This is after a timeout and tcp_rto is backed off.  Set
4550 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
4551 	 * restart the timer with a correct value.
4552 	 */
4553 	tcp->tcp_set_timer = 1;
4554 	mss = tcp->tcp_snxt - tcp->tcp_suna;
4555 	if (mss > tcp->tcp_mss)
4556 		mss = tcp->tcp_mss;
4557 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
4558 		mss = tcp->tcp_swnd;
4559 
4560 	if ((mp = tcp->tcp_xmit_head) != NULL) {
4561 		/* use uintptr_t to suppress the gcc warning */
4562 		mp->b_prev = (mblk_t *)(uintptr_t)prom_gettime();
4563 	}
4564 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
4565 	    B_TRUE);
4566 	if (mp == NULL)
4567 		return;
4568 	tcp->tcp_csuna = tcp->tcp_snxt;
4569 	BUMP_MIB(tcp_mib.tcpRetransSegs);
4570 	UPDATE_MIB(tcp_mib.tcpRetransBytes, mss);
4571 	/* Dump the packet when debugging. */
4572 	TCP_DUMP_PACKET("tcp_timer", mp);
4573 
4574 	(void) ipv4_tcp_output(sock_id, mp);
4575 	freeb(mp);
4576 
4577 	/*
4578 	 * When slow start after retransmission begins, start with
4579 	 * this seq no.  tcp_rexmit_max marks the end of special slow
4580 	 * start phase.  tcp_snd_burst controls how many segments
4581 	 * can be sent because of an ack.
4582 	 */
4583 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4584 	tcp->tcp_snd_burst = TCP_CWND_SS;
4585 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4586 	    (tcp->tcp_unsent == 0)) {
4587 		tcp->tcp_rexmit_max = tcp->tcp_fss;
4588 	} else {
4589 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
4590 	}
4591 	tcp->tcp_rexmit = B_TRUE;
4592 	tcp->tcp_dupack_cnt = 0;
4593 
4594 	/*
4595 	 * Remove all rexmit SACK blk to start from fresh.
4596 	 */
4597 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4598 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4599 		tcp->tcp_num_notsack_blk = 0;
4600 		tcp->tcp_cnt_notsack_list = 0;
4601 	}
4602 }
4603 
4604 /*
4605  * The TCP normal data output path.
4606  * NOTE: the logic of the fast path is duplicated from this function.
4607  */
4608 static void
tcp_wput_data(tcp_t * tcp,mblk_t * mp,int sock_id)4609 tcp_wput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
4610 {
4611 	int		len;
4612 	mblk_t		*local_time;
4613 	mblk_t		*mp1;
4614 	uchar_t		*rptr;
4615 	uint32_t	snxt;
4616 	int		tail_unsent;
4617 	int		tcpstate;
4618 	int		usable = 0;
4619 	mblk_t		*xmit_tail;
4620 	int32_t		num_burst_seg;
4621 	int32_t		mss;
4622 	int32_t		num_sack_blk = 0;
4623 	int32_t		tcp_hdr_len;
4624 	ipaddr_t	*dst;
4625 	ipaddr_t	*src;
4626 
4627 #ifdef DEBUG
4628 	printf("tcp_wput_data(%d) ##############################\n", sock_id);
4629 #endif
4630 	tcpstate = tcp->tcp_state;
4631 	if (mp == NULL) {
4632 		/* Really tacky... but we need this for detached closes. */
4633 		len = tcp->tcp_unsent;
4634 		goto data_null;
4635 	}
4636 
4637 	/*
4638 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
4639 	 * or before a connection attempt has begun.
4640 	 *
4641 	 * The following should not happen in inetboot....
4642 	 */
4643 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
4644 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
4645 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
4646 			printf("tcp_wput_data: data after ordrel, %s\n",
4647 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
4648 		}
4649 		freemsg(mp);
4650 		return;
4651 	}
4652 
4653 	/* Strip empties */
4654 	for (;;) {
4655 		assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4656 		    (uintptr_t)INT_MAX);
4657 		len = (int)(mp->b_wptr - mp->b_rptr);
4658 		if (len > 0)
4659 			break;
4660 		mp1 = mp;
4661 		mp = mp->b_cont;
4662 		freeb(mp1);
4663 		if (mp == NULL) {
4664 			return;
4665 		}
4666 	}
4667 
4668 	/* If we are the first on the list ... */
4669 	if (tcp->tcp_xmit_head == NULL) {
4670 		tcp->tcp_xmit_head = mp;
4671 		tcp->tcp_xmit_tail = mp;
4672 		tcp->tcp_xmit_tail_unsent = len;
4673 	} else {
4674 		tcp->tcp_xmit_last->b_cont = mp;
4675 		len += tcp->tcp_unsent;
4676 	}
4677 
4678 	/* Tack on however many more positive length mblks we have */
4679 	if ((mp1 = mp->b_cont) != NULL) {
4680 		do {
4681 			int tlen;
4682 			assert((uintptr_t)(mp1->b_wptr -
4683 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
4684 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
4685 			if (tlen <= 0) {
4686 				mp->b_cont = mp1->b_cont;
4687 				freeb(mp1);
4688 			} else {
4689 				len += tlen;
4690 				mp = mp1;
4691 			}
4692 		} while ((mp1 = mp->b_cont) != NULL);
4693 	}
4694 	tcp->tcp_xmit_last = mp;
4695 	tcp->tcp_unsent = len;
4696 
4697 data_null:
4698 	snxt = tcp->tcp_snxt;
4699 	xmit_tail = tcp->tcp_xmit_tail;
4700 	tail_unsent = tcp->tcp_xmit_tail_unsent;
4701 
4702 	/*
4703 	 * Note that tcp_mss has been adjusted to take into account the
4704 	 * timestamp option if applicable.  Because SACK options do not
4705 	 * appear in every TCP segments and they are of variable lengths,
4706 	 * they cannot be included in tcp_mss.  Thus we need to calculate
4707 	 * the actual segment length when we need to send a segment which
4708 	 * includes SACK options.
4709 	 */
4710 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4711 		int32_t	opt_len;
4712 
4713 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
4714 		    tcp->tcp_num_sack_blk);
4715 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
4716 		    2 + TCPOPT_HEADER_LEN;
4717 		mss = tcp->tcp_mss - opt_len;
4718 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
4719 	} else {
4720 		mss = tcp->tcp_mss;
4721 		tcp_hdr_len = tcp->tcp_hdr_len;
4722 	}
4723 
4724 	if ((tcp->tcp_suna == snxt) &&
4725 	    (prom_gettime() - tcp->tcp_last_recv_time) >= tcp->tcp_rto) {
4726 		tcp->tcp_cwnd = MIN(tcp_slow_start_after_idle * mss,
4727 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
4728 	}
4729 	if (tcpstate == TCPS_SYN_RCVD) {
4730 		/*
4731 		 * The three-way connection establishment handshake is not
4732 		 * complete yet. We want to queue the data for transmission
4733 		 * after entering ESTABLISHED state (RFC793). Setting usable to
4734 		 * zero cause a jump to "done" label effectively leaving data
4735 		 * on the queue.
4736 		 */
4737 
4738 		usable = 0;
4739 	} else {
4740 		int usable_r = tcp->tcp_swnd;
4741 
4742 		/*
4743 		 * In the special case when cwnd is zero, which can only
4744 		 * happen if the connection is ECN capable, return now.
4745 		 * New segments is sent using tcp_timer().  The timer
4746 		 * is set in tcp_rput_data().
4747 		 */
4748 		if (tcp->tcp_cwnd == 0) {
4749 			/*
4750 			 * Note that tcp_cwnd is 0 before 3-way handshake is
4751 			 * finished.
4752 			 */
4753 			assert(tcp->tcp_ecn_ok ||
4754 			    tcp->tcp_state < TCPS_ESTABLISHED);
4755 			return;
4756 		}
4757 
4758 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
4759 		if (usable_r > tcp->tcp_cwnd)
4760 			usable_r = tcp->tcp_cwnd;
4761 
4762 		/* NOTE: trouble if xmitting while SYN not acked? */
4763 		usable_r -= snxt;
4764 		usable_r += tcp->tcp_suna;
4765 
4766 		/* usable = MIN(usable, unsent) */
4767 		if (usable_r > len)
4768 			usable_r = len;
4769 
4770 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
4771 		if (usable_r != 0)
4772 			usable = usable_r;
4773 	}
4774 
4775 	/* use uintptr_t to suppress the gcc warning */
4776 	local_time = (mblk_t *)(uintptr_t)prom_gettime();
4777 
4778 	/*
4779 	 * "Our" Nagle Algorithm.  This is not the same as in the old
4780 	 * BSD.  This is more in line with the true intent of Nagle.
4781 	 *
4782 	 * The conditions are:
4783 	 * 1. The amount of unsent data (or amount of data which can be
4784 	 *    sent, whichever is smaller) is less than Nagle limit.
4785 	 * 2. The last sent size is also less than Nagle limit.
4786 	 * 3. There is unack'ed data.
4787 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
4788 	 *    Nagle algorithm.  This reduces the probability that urgent
4789 	 *    bytes get "merged" together.
4790 	 * 5. The app has not closed the connection.  This eliminates the
4791 	 *    wait time of the receiving side waiting for the last piece of
4792 	 *    (small) data.
4793 	 *
4794 	 * If all are satisified, exit without sending anything.  Note
4795 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
4796 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
4797 	 * 4095).
4798 	 */
4799 	if (usable < (int)tcp->tcp_naglim &&
4800 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
4801 	    snxt != tcp->tcp_suna &&
4802 	    !(tcp->tcp_valid_bits & TCP_URG_VALID))
4803 		goto done;
4804 
4805 	num_burst_seg = tcp->tcp_snd_burst;
4806 	for (;;) {
4807 		tcph_t		*tcph;
4808 		mblk_t		*new_mp;
4809 
4810 		if (num_burst_seg-- == 0)
4811 			goto done;
4812 
4813 		len = mss;
4814 		if (len > usable) {
4815 			len = usable;
4816 			if (len <= 0) {
4817 				/* Terminate the loop */
4818 				goto done;
4819 			}
4820 			/*
4821 			 * Sender silly-window avoidance.
4822 			 * Ignore this if we are going to send a
4823 			 * zero window probe out.
4824 			 *
4825 			 * TODO: force data into microscopic window ??
4826 			 *	==> (!pushed || (unsent > usable))
4827 			 */
4828 			if (len < (tcp->tcp_max_swnd >> 1) &&
4829 			    (tcp->tcp_unsent - (snxt - tcp->tcp_snxt)) > len &&
4830 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4831 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
4832 				/*
4833 				 * If the retransmit timer is not running
4834 				 * we start it so that we will retransmit
4835 				 * in the case when the the receiver has
4836 				 * decremented the window.
4837 				 */
4838 				if (snxt == tcp->tcp_snxt &&
4839 				    snxt == tcp->tcp_suna) {
4840 					/*
4841 					 * We are not supposed to send
4842 					 * anything.  So let's wait a little
4843 					 * bit longer before breaking SWS
4844 					 * avoidance.
4845 					 *
4846 					 * What should the value be?
4847 					 * Suggestion: MAX(init rexmit time,
4848 					 * tcp->tcp_rto)
4849 					 */
4850 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4851 				}
4852 				goto done;
4853 			}
4854 		}
4855 
4856 		tcph = tcp->tcp_tcph;
4857 
4858 		usable -= len;	/* Approximate - can be adjusted later */
4859 		if (usable > 0)
4860 			tcph->th_flags[0] = TH_ACK;
4861 		else
4862 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
4863 
4864 		U32_TO_ABE32(snxt, tcph->th_seq);
4865 
4866 		if (tcp->tcp_valid_bits) {
4867 			uchar_t		*prev_rptr = xmit_tail->b_rptr;
4868 			uint32_t	prev_snxt = tcp->tcp_snxt;
4869 
4870 			if (tail_unsent == 0) {
4871 				assert(xmit_tail->b_cont != NULL);
4872 				xmit_tail = xmit_tail->b_cont;
4873 				prev_rptr = xmit_tail->b_rptr;
4874 				tail_unsent = (int)(xmit_tail->b_wptr -
4875 				    xmit_tail->b_rptr);
4876 			} else {
4877 				xmit_tail->b_rptr = xmit_tail->b_wptr -
4878 				    tail_unsent;
4879 			}
4880 			mp = tcp_xmit_mp(tcp, xmit_tail, len, NULL, NULL,
4881 			    snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
4882 			/* Restore tcp_snxt so we get amount sent right. */
4883 			tcp->tcp_snxt = prev_snxt;
4884 			if (prev_rptr == xmit_tail->b_rptr)
4885 				xmit_tail->b_prev = local_time;
4886 			else
4887 				xmit_tail->b_rptr = prev_rptr;
4888 
4889 			if (mp == NULL)
4890 				break;
4891 
4892 			mp1 = mp->b_cont;
4893 
4894 			snxt += len;
4895 			tcp->tcp_last_sent_len = (ushort_t)len;
4896 			while (mp1->b_cont) {
4897 				xmit_tail = xmit_tail->b_cont;
4898 				xmit_tail->b_prev = local_time;
4899 				mp1 = mp1->b_cont;
4900 			}
4901 			tail_unsent = xmit_tail->b_wptr - mp1->b_wptr;
4902 			BUMP_MIB(tcp_mib.tcpOutDataSegs);
4903 			UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
4904 			/* Dump the packet when debugging. */
4905 			TCP_DUMP_PACKET("tcp_wput_data (valid bits)", mp);
4906 			(void) ipv4_tcp_output(sock_id, mp);
4907 			freeb(mp);
4908 			continue;
4909 		}
4910 
4911 		snxt += len;	/* Adjust later if we don't send all of len */
4912 		BUMP_MIB(tcp_mib.tcpOutDataSegs);
4913 		UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
4914 
4915 		if (tail_unsent) {
4916 			/* Are the bytes above us in flight? */
4917 			rptr = xmit_tail->b_wptr - tail_unsent;
4918 			if (rptr != xmit_tail->b_rptr) {
4919 				tail_unsent -= len;
4920 				len += tcp_hdr_len;
4921 				tcp->tcp_ipha->ip_len = htons(len);
4922 				mp = dupb(xmit_tail);
4923 				if (!mp)
4924 					break;
4925 				mp->b_rptr = rptr;
4926 				goto must_alloc;
4927 			}
4928 		} else {
4929 			xmit_tail = xmit_tail->b_cont;
4930 			assert((uintptr_t)(xmit_tail->b_wptr -
4931 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
4932 			tail_unsent = (int)(xmit_tail->b_wptr -
4933 			    xmit_tail->b_rptr);
4934 		}
4935 
4936 		tail_unsent -= len;
4937 		tcp->tcp_last_sent_len = (ushort_t)len;
4938 
4939 		len += tcp_hdr_len;
4940 		if (tcp->tcp_ipversion == IPV4_VERSION)
4941 			tcp->tcp_ipha->ip_len = htons(len);
4942 
4943 		xmit_tail->b_prev = local_time;
4944 
4945 		mp = dupb(xmit_tail);
4946 		if (mp == NULL)
4947 			goto out_of_mem;
4948 
4949 		len = tcp_hdr_len;
4950 		/*
4951 		 * There are four reasons to allocate a new hdr mblk:
4952 		 *  1) The bytes above us are in use by another packet
4953 		 *  2) We don't have good alignment
4954 		 *  3) The mblk is being shared
4955 		 *  4) We don't have enough room for a header
4956 		 */
4957 		rptr = mp->b_rptr - len;
4958 		if (!OK_32PTR(rptr) ||
4959 		    rptr < mp->b_datap) {
4960 			/* NOTE: we assume allocb returns an OK_32PTR */
4961 
4962 		must_alloc:;
4963 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
4964 			    tcp_wroff_xtra, 0);
4965 			if (mp1 == NULL) {
4966 				freemsg(mp);
4967 				goto out_of_mem;
4968 			}
4969 			mp1->b_cont = mp;
4970 			mp = mp1;
4971 			/* Leave room for Link Level header */
4972 			len = tcp_hdr_len;
4973 			rptr = &mp->b_rptr[tcp_wroff_xtra];
4974 			mp->b_wptr = &rptr[len];
4975 		}
4976 
4977 		if (tcp->tcp_snd_ts_ok) {
4978 			/* use uintptr_t to suppress the gcc warning */
4979 			U32_TO_BE32((uint32_t)(uintptr_t)local_time,
4980 				(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
4981 			U32_TO_BE32(tcp->tcp_ts_recent,
4982 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
4983 		} else {
4984 			assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
4985 		}
4986 
4987 		mp->b_rptr = rptr;
4988 
4989 		/* Copy the template header. */
4990 		dst = (ipaddr_t *)rptr;
4991 		src = (ipaddr_t *)tcp->tcp_iphc;
4992 		dst[0] = src[0];
4993 		dst[1] = src[1];
4994 		dst[2] = src[2];
4995 		dst[3] = src[3];
4996 		dst[4] = src[4];
4997 		dst[5] = src[5];
4998 		dst[6] = src[6];
4999 		dst[7] = src[7];
5000 		dst[8] = src[8];
5001 		dst[9] = src[9];
5002 		len = tcp->tcp_hdr_len;
5003 		if (len -= 40) {
5004 			len >>= 2;
5005 			dst += 10;
5006 			src += 10;
5007 			do {
5008 				*dst++ = *src++;
5009 			} while (--len);
5010 		}
5011 
5012 		/*
5013 		 * Set tcph to point to the header of the outgoing packet,
5014 		 * not to the template header.
5015 		 */
5016 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
5017 
5018 		/*
5019 		 * Set the ECN info in the TCP header if it is not a zero
5020 		 * window probe.  Zero window probe is only sent in
5021 		 * tcp_wput_data() and tcp_timer().
5022 		 */
5023 		if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
5024 			SET_ECT(tcp, rptr);
5025 
5026 			if (tcp->tcp_ecn_echo_on)
5027 				tcph->th_flags[0] |= TH_ECE;
5028 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
5029 				tcph->th_flags[0] |= TH_CWR;
5030 				tcp->tcp_ecn_cwr_sent = B_TRUE;
5031 			}
5032 		}
5033 
5034 		/* Fill in SACK options */
5035 		if (num_sack_blk > 0) {
5036 			uchar_t *wptr = rptr + tcp->tcp_hdr_len;
5037 			sack_blk_t *tmp;
5038 			int32_t	i;
5039 
5040 			wptr[0] = TCPOPT_NOP;
5041 			wptr[1] = TCPOPT_NOP;
5042 			wptr[2] = TCPOPT_SACK;
5043 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
5044 			    sizeof (sack_blk_t);
5045 			wptr += TCPOPT_REAL_SACK_LEN;
5046 
5047 			tmp = tcp->tcp_sack_list;
5048 			for (i = 0; i < num_sack_blk; i++) {
5049 				U32_TO_BE32(tmp[i].begin, wptr);
5050 				wptr += sizeof (tcp_seq);
5051 				U32_TO_BE32(tmp[i].end, wptr);
5052 				wptr += sizeof (tcp_seq);
5053 			}
5054 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
5055 			    << 4);
5056 		}
5057 
5058 		if (tail_unsent) {
5059 			mp1 = mp->b_cont;
5060 			if (mp1 == NULL)
5061 				mp1 = mp;
5062 			/*
5063 			 * If we're a little short, tack on more mblks
5064 			 * as long as we don't need to split an mblk.
5065 			 */
5066 			while (tail_unsent < 0 &&
5067 			    tail_unsent + (int)(xmit_tail->b_cont->b_wptr -
5068 			    xmit_tail->b_cont->b_rptr) <= 0) {
5069 				xmit_tail = xmit_tail->b_cont;
5070 				/* Stash for rtt use later */
5071 				xmit_tail->b_prev = local_time;
5072 				mp1->b_cont = dupb(xmit_tail);
5073 				mp1 = mp1->b_cont;
5074 				assert((uintptr_t)(xmit_tail->b_wptr -
5075 				    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
5076 				tail_unsent += (int)(xmit_tail->b_wptr -
5077 				    xmit_tail->b_rptr);
5078 				if (mp1 == NULL) {
5079 					freemsg(mp);
5080 					goto out_of_mem;
5081 				}
5082 			}
5083 			/* Trim back any surplus on the last mblk */
5084 			if (tail_unsent > 0)
5085 				mp1->b_wptr -= tail_unsent;
5086 			if (tail_unsent < 0) {
5087 				uint32_t ip_len;
5088 
5089 				/*
5090 				 * We did not send everything we could in
5091 				 * order to preserve mblk boundaries.
5092 				 */
5093 				usable -= tail_unsent;
5094 				snxt += tail_unsent;
5095 				tcp->tcp_last_sent_len += tail_unsent;
5096 				UPDATE_MIB(tcp_mib.tcpOutDataBytes,
5097 				    tail_unsent);
5098 				/* Adjust the IP length field. */
5099 				ip_len = ntohs(((struct ip *)rptr)->ip_len) +
5100 				    tail_unsent;
5101 				((struct ip *)rptr)->ip_len = htons(ip_len);
5102 				tail_unsent = 0;
5103 			}
5104 		}
5105 
5106 		if (mp == NULL)
5107 			goto out_of_mem;
5108 
5109 		/*
5110 		 * Performance hit!  We need to pullup the whole message
5111 		 * in order to do checksum and for the MAC output routine.
5112 		 */
5113 		if (mp->b_cont != NULL) {
5114 			int mp_size;
5115 #ifdef	DEBUG
5116 			printf("Multiple mblk %d\n", msgdsize(mp));
5117 #endif
5118 			new_mp = allocb(msgdsize(mp) + tcp_wroff_xtra, 0);
5119 			new_mp->b_rptr += tcp_wroff_xtra;
5120 			new_mp->b_wptr = new_mp->b_rptr;
5121 			while (mp != NULL) {
5122 				mp_size = mp->b_wptr - mp->b_rptr;
5123 				bcopy(mp->b_rptr, new_mp->b_wptr, mp_size);
5124 				new_mp->b_wptr += mp_size;
5125 				mp = mp->b_cont;
5126 			}
5127 			freemsg(mp);
5128 			mp = new_mp;
5129 		}
5130 		tcp_set_cksum(mp);
5131 		((struct ip *)mp->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5132 		TCP_DUMP_PACKET("tcp_wput_data", mp);
5133 		(void) ipv4_tcp_output(sock_id, mp);
5134 		freemsg(mp);
5135 	}
5136 out_of_mem:;
5137 	/* Pretend that all we were trying to send really got sent */
5138 	if (tail_unsent < 0) {
5139 		do {
5140 			xmit_tail = xmit_tail->b_cont;
5141 			xmit_tail->b_prev = local_time;
5142 			assert((uintptr_t)(xmit_tail->b_wptr -
5143 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
5144 			tail_unsent += (int)(xmit_tail->b_wptr -
5145 			    xmit_tail->b_rptr);
5146 		} while (tail_unsent < 0);
5147 	}
5148 done:;
5149 	tcp->tcp_xmit_tail = xmit_tail;
5150 	tcp->tcp_xmit_tail_unsent = tail_unsent;
5151 	len = tcp->tcp_snxt - snxt;
5152 	if (len) {
5153 		/*
5154 		 * If new data was sent, need to update the notsack
5155 		 * list, which is, afterall, data blocks that have
5156 		 * not been sack'ed by the receiver.  New data is
5157 		 * not sack'ed.
5158 		 */
5159 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
5160 			/* len is a negative value. */
5161 			tcp->tcp_pipe -= len;
5162 			tcp_notsack_update(&(tcp->tcp_notsack_list),
5163 			    tcp->tcp_snxt, snxt,
5164 			    &(tcp->tcp_num_notsack_blk),
5165 			    &(tcp->tcp_cnt_notsack_list));
5166 		}
5167 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
5168 		tcp->tcp_rack = tcp->tcp_rnxt;
5169 		tcp->tcp_rack_cnt = 0;
5170 		if ((snxt + len) == tcp->tcp_suna) {
5171 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5172 		}
5173 		/*
5174 		 * Note that len is the amount we just sent but with a negative
5175 		 * sign. We update tcp_unsent here since we may come back to
5176 		 * tcp_wput_data from tcp_state_wait.
5177 		 */
5178 		len += tcp->tcp_unsent;
5179 		tcp->tcp_unsent = len;
5180 
5181 		/*
5182 		 * Let's wait till all the segments have been acked, since we
5183 		 * don't have a timer.
5184 		 */
5185 		(void) tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED);
5186 		return;
5187 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
5188 		/*
5189 		 * Didn't send anything. Make sure the timer is running
5190 		 * so that we will probe a zero window.
5191 		 */
5192 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5193 	}
5194 
5195 	/* Note that len is the amount we just sent but with a negative sign */
5196 	len += tcp->tcp_unsent;
5197 	tcp->tcp_unsent = len;
5198 
5199 }
5200 
5201 static void
tcp_time_wait_processing(tcp_t * tcp,mblk_t * mp,uint32_t seg_seq,uint32_t seg_ack,int seg_len,tcph_t * tcph,int sock_id)5202 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
5203     uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcph_t *tcph,
5204     int sock_id)
5205 {
5206 	int32_t		bytes_acked;
5207 	int32_t		gap;
5208 	int32_t		rgap;
5209 	tcp_opt_t	tcpopt;
5210 	uint_t		flags;
5211 	uint32_t	new_swnd = 0;
5212 
5213 #ifdef DEBUG
5214 	printf("Time wait processing called ###############3\n");
5215 #endif
5216 
5217 	/* Just make sure we send the right sock_id to tcp_clean_death */
5218 	if ((sockets[sock_id].pcb == NULL) || (sockets[sock_id].pcb != tcp))
5219 		sock_id = -1;
5220 
5221 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
5222 	new_swnd = BE16_TO_U16(tcph->th_win) <<
5223 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
5224 	if (tcp->tcp_snd_ts_ok) {
5225 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
5226 			freemsg(mp);
5227 			tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5228 			    tcp->tcp_rnxt, TH_ACK, 0, -1);
5229 			return;
5230 		}
5231 	}
5232 	gap = seg_seq - tcp->tcp_rnxt;
5233 	rgap = tcp->tcp_rwnd - (gap + seg_len);
5234 	if (gap < 0) {
5235 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
5236 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
5237 		    (seg_len > -gap ? -gap : seg_len));
5238 		seg_len += gap;
5239 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
5240 			if (flags & TH_RST) {
5241 				freemsg(mp);
5242 				return;
5243 			}
5244 			if ((flags & TH_FIN) && seg_len == -1) {
5245 				/*
5246 				 * When TCP receives a duplicate FIN in
5247 				 * TIME_WAIT state, restart the 2 MSL timer.
5248 				 * See page 73 in RFC 793. Make sure this TCP
5249 				 * is already on the TIME_WAIT list. If not,
5250 				 * just restart the timer.
5251 				 */
5252 				tcp_time_wait_remove(tcp);
5253 				tcp_time_wait_append(tcp);
5254 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
5255 				tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5256 				    tcp->tcp_rnxt, TH_ACK, 0, -1);
5257 				freemsg(mp);
5258 				return;
5259 			}
5260 			flags |=  TH_ACK_NEEDED;
5261 			seg_len = 0;
5262 			goto process_ack;
5263 		}
5264 
5265 		/* Fix seg_seq, and chew the gap off the front. */
5266 		seg_seq = tcp->tcp_rnxt;
5267 	}
5268 
5269 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
5270 		/*
5271 		 * Make sure that when we accept the connection, pick
5272 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
5273 		 * old connection.
5274 		 *
5275 		 * The next ISS generated is equal to tcp_iss_incr_extra
5276 		 * + ISS_INCR/2 + other components depending on the
5277 		 * value of tcp_strong_iss.  We pre-calculate the new
5278 		 * ISS here and compare with tcp_snxt to determine if
5279 		 * we need to make adjustment to tcp_iss_incr_extra.
5280 		 *
5281 		 * Note that since we are now in the global queue
5282 		 * perimeter and need to do a lateral_put() to the
5283 		 * listener queue, there can be other connection requests/
5284 		 * attempts while the lateral_put() is going on.  That
5285 		 * means what we calculate here may not be correct.  This
5286 		 * is extremely difficult to solve unless TCP and IP
5287 		 * modules are merged and there is no perimeter, but just
5288 		 * locks.  The above calculation is ugly and is a
5289 		 * waste of CPU cycles...
5290 		 */
5291 		uint32_t new_iss = tcp_iss_incr_extra;
5292 		int32_t adj;
5293 
5294 		/* Add time component and min random (i.e. 1). */
5295 		new_iss += (prom_gettime() >> ISS_NSEC_SHT) + 1;
5296 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
5297 			/*
5298 			 * New ISS not guaranteed to be ISS_INCR/2
5299 			 * ahead of the current tcp_snxt, so add the
5300 			 * difference to tcp_iss_incr_extra.
5301 			 */
5302 			tcp_iss_incr_extra += adj;
5303 		}
5304 		tcp_clean_death(sock_id, tcp, 0);
5305 
5306 		/*
5307 		 * This is a passive open.  Right now we do not
5308 		 * do anything...
5309 		 */
5310 		freemsg(mp);
5311 		return;
5312 	}
5313 
5314 	/*
5315 	 * rgap is the amount of stuff received out of window.  A negative
5316 	 * value is the amount out of window.
5317 	 */
5318 	if (rgap < 0) {
5319 		BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
5320 		UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
5321 		/* Fix seg_len and make sure there is something left. */
5322 		seg_len += rgap;
5323 		if (seg_len <= 0) {
5324 			if (flags & TH_RST) {
5325 				freemsg(mp);
5326 				return;
5327 			}
5328 			flags |=  TH_ACK_NEEDED;
5329 			seg_len = 0;
5330 			goto process_ack;
5331 		}
5332 	}
5333 	/*
5334 	 * Check whether we can update tcp_ts_recent.  This test is
5335 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
5336 	 * Extensions for High Performance: An Update", Internet Draft.
5337 	 */
5338 	if (tcp->tcp_snd_ts_ok &&
5339 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
5340 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
5341 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
5342 		tcp->tcp_last_rcv_lbolt = prom_gettime();
5343 	}
5344 
5345 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
5346 		/* Always ack out of order packets */
5347 		flags |= TH_ACK_NEEDED;
5348 		seg_len = 0;
5349 	} else if (seg_len > 0) {
5350 		BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
5351 		UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
5352 	}
5353 	if (flags & TH_RST) {
5354 		freemsg(mp);
5355 		(void) tcp_clean_death(sock_id, tcp, 0);
5356 		return;
5357 	}
5358 	if (flags & TH_SYN) {
5359 		freemsg(mp);
5360 		tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack, seg_seq + 1,
5361 		    TH_RST|TH_ACK, 0, -1);
5362 		/*
5363 		 * Do not delete the TCP structure if it is in
5364 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
5365 		 */
5366 		return;
5367 	}
5368 process_ack:
5369 	if (flags & TH_ACK) {
5370 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
5371 		if (bytes_acked <= 0) {
5372 			if (bytes_acked == 0 && seg_len == 0 &&
5373 			    new_swnd == tcp->tcp_swnd)
5374 				BUMP_MIB(tcp_mib.tcpInDupAck);
5375 		} else {
5376 			/* Acks something not sent */
5377 			flags |= TH_ACK_NEEDED;
5378 		}
5379 	}
5380 	freemsg(mp);
5381 	if (flags & TH_ACK_NEEDED) {
5382 		/*
5383 		 * Time to send an ack for some reason.
5384 		 */
5385 		tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5386 		    tcp->tcp_rnxt, TH_ACK, 0, -1);
5387 	}
5388 }
5389 
5390 static int
tcp_init_values(tcp_t * tcp,struct inetboot_socket * isp)5391 tcp_init_values(tcp_t *tcp, struct inetboot_socket *isp)
5392 {
5393 	int	err;
5394 
5395 	tcp->tcp_family = AF_INET;
5396 	tcp->tcp_ipversion = IPV4_VERSION;
5397 
5398 	/*
5399 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
5400 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
5401 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
5402 	 * during first few transmissions of a connection as seen in slow
5403 	 * links.
5404 	 */
5405 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
5406 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
5407 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
5408 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
5409 	    tcp_conn_grace_period;
5410 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
5411 		tcp->tcp_rto = tcp_rexmit_interval_min;
5412 	tcp->tcp_timer_backoff = 0;
5413 	tcp->tcp_ms_we_have_waited = 0;
5414 	tcp->tcp_last_recv_time = prom_gettime();
5415 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
5416 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
5417 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
5418 	/* For Ethernet, the mtu returned is actually 1550... */
5419 	if (mac_get_type() == IFT_ETHER) {
5420 		tcp->tcp_if_mtu = mac_get_mtu() - 50;
5421 	} else {
5422 		tcp->tcp_if_mtu = mac_get_mtu();
5423 	}
5424 	tcp->tcp_mss = tcp->tcp_if_mtu;
5425 
5426 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
5427 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
5428 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
5429 	/*
5430 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
5431 	 * passive open.
5432 	 */
5433 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
5434 
5435 	tcp->tcp_naglim = tcp_naglim_def;
5436 
5437 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
5438 
5439 	/* Initialize the header template */
5440 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5441 		err = tcp_header_init_ipv4(tcp);
5442 	}
5443 	if (err)
5444 		return (err);
5445 
5446 	/*
5447 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
5448 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
5449 	 */
5450 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
5451 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
5452 	if (isp != NULL) {
5453 		tcp->tcp_xmit_hiwater = isp->so_sndbuf;
5454 		tcp->tcp_rwnd = isp->so_rcvbuf;
5455 		tcp->tcp_rwnd_max = isp->so_rcvbuf;
5456 	}
5457 	tcp->tcp_state = TCPS_IDLE;
5458 	return (0);
5459 }
5460 
5461 /*
5462  * Initialize the IPv4 header. Loses any record of any IP options.
5463  */
5464 static int
tcp_header_init_ipv4(tcp_t * tcp)5465 tcp_header_init_ipv4(tcp_t *tcp)
5466 {
5467 	tcph_t		*tcph;
5468 
5469 	/*
5470 	 * This is a simple initialization. If there's
5471 	 * already a template, it should never be too small,
5472 	 * so reuse it.  Otherwise, allocate space for the new one.
5473 	 */
5474 	if (tcp->tcp_iphc != NULL) {
5475 		assert(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5476 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5477 	} else {
5478 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
5479 		tcp->tcp_iphc = bkmem_zalloc(tcp->tcp_iphc_len);
5480 		if (tcp->tcp_iphc == NULL) {
5481 			tcp->tcp_iphc_len = 0;
5482 			return (ENOMEM);
5483 		}
5484 	}
5485 	tcp->tcp_ipha = (struct ip *)tcp->tcp_iphc;
5486 	tcp->tcp_ipversion = IPV4_VERSION;
5487 
5488 	/*
5489 	 * Note that it does not include TCP options yet.  It will
5490 	 * after the connection is established.
5491 	 */
5492 	tcp->tcp_hdr_len = sizeof (struct ip) + sizeof (tcph_t);
5493 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
5494 	tcp->tcp_ip_hdr_len = sizeof (struct ip);
5495 	tcp->tcp_ipha->ip_v = IP_VERSION;
5496 	/* We don't support IP options... */
5497 	tcp->tcp_ipha->ip_hl = IP_SIMPLE_HDR_LENGTH_IN_WORDS;
5498 	tcp->tcp_ipha->ip_p = IPPROTO_TCP;
5499 	/* We are not supposed to do PMTU discovery... */
5500 	tcp->tcp_ipha->ip_sum = 0;
5501 
5502 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (struct ip));
5503 	tcp->tcp_tcph = tcph;
5504 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
5505 	return (0);
5506 }
5507 
5508 /*
5509  * Send out a control packet on the tcp connection specified.  This routine
5510  * is typically called where we need a simple ACK or RST generated.
5511  *
5512  * This function is called with or without a mp.
5513  */
5514 static void
tcp_xmit_ctl(char * str,tcp_t * tcp,mblk_t * mp,uint32_t seq,uint32_t ack,int ctl,uint_t ip_hdr_len,int sock_id)5515 tcp_xmit_ctl(char *str, tcp_t *tcp, mblk_t *mp, uint32_t seq,
5516     uint32_t ack, int ctl, uint_t ip_hdr_len, int sock_id)
5517 {
5518 	uchar_t		*rptr;
5519 	tcph_t		*tcph;
5520 	struct ip	*iph = NULL;
5521 	int		tcp_hdr_len;
5522 	int		tcp_ip_hdr_len;
5523 
5524 	tcp_hdr_len = tcp->tcp_hdr_len;
5525 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
5526 
5527 	if (mp) {
5528 		assert(ip_hdr_len != 0);
5529 		rptr = mp->b_rptr;
5530 		tcph = (tcph_t *)(rptr + ip_hdr_len);
5531 		/* Don't reply to a RST segment. */
5532 		if (tcph->th_flags[0] & TH_RST) {
5533 			freeb(mp);
5534 			return;
5535 		}
5536 		freemsg(mp);
5537 		rptr = NULL;
5538 	} else {
5539 		assert(ip_hdr_len == 0);
5540 	}
5541 	/* If a text string is passed in with the request, print it out. */
5542 	if (str != NULL) {
5543 		dprintf("tcp_xmit_ctl(%d): '%s', seq 0x%x, ack 0x%x, "
5544 		    "ctl 0x%x\n", sock_id, str, seq, ack, ctl);
5545 	}
5546 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0);
5547 	if (mp == NULL) {
5548 		dprintf("tcp_xmit_ctl(%d): Cannot allocate memory\n", sock_id);
5549 		return;
5550 	}
5551 	rptr = &mp->b_rptr[tcp_wroff_xtra];
5552 	mp->b_rptr = rptr;
5553 	mp->b_wptr = &rptr[tcp_hdr_len];
5554 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
5555 
5556 	iph = (struct ip *)rptr;
5557 	iph->ip_len = htons(tcp_hdr_len);
5558 
5559 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
5560 	tcph->th_flags[0] = (uint8_t)ctl;
5561 	if (ctl & TH_RST) {
5562 		BUMP_MIB(tcp_mib.tcpOutRsts);
5563 		BUMP_MIB(tcp_mib.tcpOutControl);
5564 		/*
5565 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
5566 		 */
5567 		if (tcp->tcp_snd_ts_ok && tcp->tcp_state > TCPS_SYN_SENT) {
5568 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
5569 			*(mp->b_wptr) = TCPOPT_EOL;
5570 			iph->ip_len = htons(tcp_hdr_len -
5571 			    TCPOPT_REAL_TS_LEN);
5572 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
5573 		}
5574 	}
5575 	if (ctl & TH_ACK) {
5576 		uint32_t now = prom_gettime();
5577 
5578 		if (tcp->tcp_snd_ts_ok) {
5579 			U32_TO_BE32(now,
5580 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
5581 			U32_TO_BE32(tcp->tcp_ts_recent,
5582 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
5583 		}
5584 		tcp->tcp_rack = ack;
5585 		tcp->tcp_rack_cnt = 0;
5586 		BUMP_MIB(tcp_mib.tcpOutAck);
5587 	}
5588 	BUMP_MIB(tcp_mib.tcpOutSegs);
5589 	U32_TO_BE32(seq, tcph->th_seq);
5590 	U32_TO_BE32(ack, tcph->th_ack);
5591 
5592 	tcp_set_cksum(mp);
5593 	iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5594 	TCP_DUMP_PACKET("tcp_xmit_ctl", mp);
5595 	(void) ipv4_tcp_output(sock_id, mp);
5596 	freeb(mp);
5597 }
5598 
5599 /* Generate an ACK-only (no data) segment for a TCP endpoint */
5600 static mblk_t *
tcp_ack_mp(tcp_t * tcp)5601 tcp_ack_mp(tcp_t *tcp)
5602 {
5603 	if (tcp->tcp_valid_bits) {
5604 		/*
5605 		 * For the complex case where we have to send some
5606 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
5607 		 * When sending an ACK-only segment (no data)
5608 		 * into a zero window, always set the seq number to
5609 		 * suna, since snxt will be extended past the window.
5610 		 * If we used snxt, the receiver might consider the ACK
5611 		 * unacceptable.
5612 		 */
5613 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
5614 		    (tcp->tcp_zero_win_probe) ?
5615 		    tcp->tcp_suna :
5616 		    tcp->tcp_snxt, B_FALSE, NULL, B_FALSE));
5617 	} else {
5618 		/* Generate a simple ACK */
5619 		uchar_t	*rptr;
5620 		tcph_t	*tcph;
5621 		mblk_t	*mp1;
5622 		int32_t	tcp_hdr_len;
5623 		int32_t	num_sack_blk = 0;
5624 		int32_t sack_opt_len;
5625 
5626 		/*
5627 		 * Allocate space for TCP + IP headers
5628 		 * and link-level header
5629 		 */
5630 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
5631 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
5632 			    tcp->tcp_num_sack_blk);
5633 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
5634 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
5635 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
5636 		} else {
5637 			tcp_hdr_len = tcp->tcp_hdr_len;
5638 		}
5639 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, 0);
5640 		if (mp1 == NULL)
5641 			return (NULL);
5642 
5643 		/* copy in prototype TCP + IP header */
5644 		rptr = mp1->b_rptr + tcp_wroff_xtra;
5645 		mp1->b_rptr = rptr;
5646 		mp1->b_wptr = rptr + tcp_hdr_len;
5647 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
5648 
5649 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
5650 
5651 		/*
5652 		 * Set the TCP sequence number.
5653 		 * When sending an ACK-only segment (no data)
5654 		 * into a zero window, always set the seq number to
5655 		 * suna, since snxt will be extended past the window.
5656 		 * If we used snxt, the receiver might consider the ACK
5657 		 * unacceptable.
5658 		 */
5659 		U32_TO_ABE32((tcp->tcp_zero_win_probe) ?
5660 		    tcp->tcp_suna : tcp->tcp_snxt, tcph->th_seq);
5661 
5662 		/* Set up the TCP flag field. */
5663 		tcph->th_flags[0] = (uchar_t)TH_ACK;
5664 		if (tcp->tcp_ecn_echo_on)
5665 			tcph->th_flags[0] |= TH_ECE;
5666 
5667 		tcp->tcp_rack = tcp->tcp_rnxt;
5668 		tcp->tcp_rack_cnt = 0;
5669 
5670 		/* fill in timestamp option if in use */
5671 		if (tcp->tcp_snd_ts_ok) {
5672 			uint32_t llbolt = (uint32_t)prom_gettime();
5673 
5674 			U32_TO_BE32(llbolt,
5675 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
5676 			U32_TO_BE32(tcp->tcp_ts_recent,
5677 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
5678 		}
5679 
5680 		/* Fill in SACK options */
5681 		if (num_sack_blk > 0) {
5682 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
5683 			sack_blk_t *tmp;
5684 			int32_t	i;
5685 
5686 			wptr[0] = TCPOPT_NOP;
5687 			wptr[1] = TCPOPT_NOP;
5688 			wptr[2] = TCPOPT_SACK;
5689 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
5690 			    sizeof (sack_blk_t);
5691 			wptr += TCPOPT_REAL_SACK_LEN;
5692 
5693 			tmp = tcp->tcp_sack_list;
5694 			for (i = 0; i < num_sack_blk; i++) {
5695 				U32_TO_BE32(tmp[i].begin, wptr);
5696 				wptr += sizeof (tcp_seq);
5697 				U32_TO_BE32(tmp[i].end, wptr);
5698 				wptr += sizeof (tcp_seq);
5699 			}
5700 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
5701 			    << 4);
5702 		}
5703 
5704 		((struct ip *)rptr)->ip_len = htons(tcp_hdr_len);
5705 		tcp_set_cksum(mp1);
5706 		((struct ip *)rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5707 		return (mp1);
5708 	}
5709 }
5710 
5711 /*
5712  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
5713  * ip and tcp header ready to pass down to IP.  If the mp passed in is
5714  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
5715  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
5716  * otherwise it will dup partial mblks.)
5717  * Otherwise, an appropriate ACK packet will be generated.  This
5718  * routine is not usually called to send new data for the first time.  It
5719  * is mostly called out of the timer for retransmits, and to generate ACKs.
5720  *
5721  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
5722  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
5723  * of the original mblk chain will be returned in *offset and *end_mp.
5724  */
5725 static mblk_t *
tcp_xmit_mp(tcp_t * tcp,mblk_t * mp,int32_t max_to_send,int32_t * offset,mblk_t ** end_mp,uint32_t seq,boolean_t sendall,uint32_t * seg_len,boolean_t rexmit)5726 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
5727     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
5728     boolean_t rexmit)
5729 {
5730 	int	data_length;
5731 	int32_t	off = 0;
5732 	uint_t	flags;
5733 	mblk_t	*mp1;
5734 	mblk_t	*mp2;
5735 	mblk_t	*new_mp;
5736 	uchar_t	*rptr;
5737 	tcph_t	*tcph;
5738 	int32_t	num_sack_blk = 0;
5739 	int32_t	sack_opt_len = 0;
5740 
5741 	/* Allocate for our maximum TCP header + link-level */
5742 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
5743 	    tcp_wroff_xtra, 0);
5744 	if (mp1 == NULL)
5745 		return (NULL);
5746 	data_length = 0;
5747 
5748 	/*
5749 	 * Note that tcp_mss has been adjusted to take into account the
5750 	 * timestamp option if applicable.  Because SACK options do not
5751 	 * appear in every TCP segments and they are of variable lengths,
5752 	 * they cannot be included in tcp_mss.  Thus we need to calculate
5753 	 * the actual segment length when we need to send a segment which
5754 	 * includes SACK options.
5755 	 */
5756 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
5757 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
5758 		    tcp->tcp_num_sack_blk);
5759 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
5760 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
5761 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
5762 			max_to_send -= sack_opt_len;
5763 	}
5764 
5765 	if (offset != NULL) {
5766 		off = *offset;
5767 		/* We use offset as an indicator that end_mp is not NULL. */
5768 		*end_mp = NULL;
5769 	}
5770 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
5771 		/* This could be faster with cooperation from downstream */
5772 		if (mp2 != mp1 && !sendall &&
5773 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
5774 		    max_to_send)
5775 			/*
5776 			 * Don't send the next mblk since the whole mblk
5777 			 * does not fit.
5778 			 */
5779 			break;
5780 		mp2->b_cont = dupb(mp);
5781 		mp2 = mp2->b_cont;
5782 		if (mp2 == NULL) {
5783 			freemsg(mp1);
5784 			return (NULL);
5785 		}
5786 		mp2->b_rptr += off;
5787 		assert((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
5788 		    (uintptr_t)INT_MAX);
5789 
5790 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
5791 		if (data_length > max_to_send) {
5792 			mp2->b_wptr -= data_length - max_to_send;
5793 			data_length = max_to_send;
5794 			off = mp2->b_wptr - mp->b_rptr;
5795 			break;
5796 		} else {
5797 			off = 0;
5798 		}
5799 	}
5800 	if (offset != NULL) {
5801 		*offset = off;
5802 		*end_mp = mp;
5803 	}
5804 	if (seg_len != NULL) {
5805 		*seg_len = data_length;
5806 	}
5807 
5808 	rptr = mp1->b_rptr + tcp_wroff_xtra;
5809 	mp1->b_rptr = rptr;
5810 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
5811 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
5812 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
5813 	U32_TO_ABE32(seq, tcph->th_seq);
5814 
5815 	/*
5816 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
5817 	 * that this function was called from tcp_wput_data. Thus, when called
5818 	 * to retransmit data the setting of the PUSH bit may appear some
5819 	 * what random in that it might get set when it should not. This
5820 	 * should not pose any performance issues.
5821 	 */
5822 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
5823 	    tcp->tcp_unsent == data_length)) {
5824 		flags = TH_ACK | TH_PUSH;
5825 	} else {
5826 		flags = TH_ACK;
5827 	}
5828 
5829 	if (tcp->tcp_ecn_ok) {
5830 		if (tcp->tcp_ecn_echo_on)
5831 			flags |= TH_ECE;
5832 
5833 		/*
5834 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
5835 		 * There is no TCP flow control for non-data segments, and
5836 		 * only data segment is transmitted reliably.
5837 		 */
5838 		if (data_length > 0 && !rexmit) {
5839 			SET_ECT(tcp, rptr);
5840 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
5841 				flags |= TH_CWR;
5842 				tcp->tcp_ecn_cwr_sent = B_TRUE;
5843 			}
5844 		}
5845 	}
5846 
5847 	if (tcp->tcp_valid_bits) {
5848 		uint32_t u1;
5849 
5850 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
5851 		    seq == tcp->tcp_iss) {
5852 			uchar_t	*wptr;
5853 
5854 			/*
5855 			 * Tack on the MSS option.  It is always needed
5856 			 * for both active and passive open.
5857 			 */
5858 			wptr = mp1->b_wptr;
5859 			wptr[0] = TCPOPT_MAXSEG;
5860 			wptr[1] = TCPOPT_MAXSEG_LEN;
5861 			wptr += 2;
5862 			/*
5863 			 * MSS option value should be interface MTU - MIN
5864 			 * TCP/IP header.
5865 			 */
5866 			u1 = tcp->tcp_if_mtu - IP_SIMPLE_HDR_LENGTH -
5867 			    TCP_MIN_HEADER_LENGTH;
5868 			U16_TO_BE16(u1, wptr);
5869 			mp1->b_wptr = wptr + 2;
5870 			/* Update the offset to cover the additional word */
5871 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
5872 
5873 			/*
5874 			 * Note that the following way of filling in
5875 			 * TCP options are not optimal.  Some NOPs can
5876 			 * be saved.  But there is no need at this time
5877 			 * to optimize it.  When it is needed, we will
5878 			 * do it.
5879 			 */
5880 			switch (tcp->tcp_state) {
5881 			case TCPS_SYN_SENT:
5882 				flags = TH_SYN;
5883 
5884 				if (tcp->tcp_snd_ws_ok) {
5885 					wptr = mp1->b_wptr;
5886 					wptr[0] =  TCPOPT_NOP;
5887 					wptr[1] =  TCPOPT_WSCALE;
5888 					wptr[2] =  TCPOPT_WS_LEN;
5889 					wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
5890 					mp1->b_wptr += TCPOPT_REAL_WS_LEN;
5891 					tcph->th_offset_and_rsrvd[0] +=
5892 					    (1 << 4);
5893 				}
5894 
5895 				if (tcp->tcp_snd_ts_ok) {
5896 					uint32_t llbolt;
5897 
5898 					llbolt = prom_gettime();
5899 					wptr = mp1->b_wptr;
5900 					wptr[0] = TCPOPT_NOP;
5901 					wptr[1] = TCPOPT_NOP;
5902 					wptr[2] = TCPOPT_TSTAMP;
5903 					wptr[3] = TCPOPT_TSTAMP_LEN;
5904 					wptr += 4;
5905 					U32_TO_BE32(llbolt, wptr);
5906 					wptr += 4;
5907 					assert(tcp->tcp_ts_recent == 0);
5908 					U32_TO_BE32(0L, wptr);
5909 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
5910 					tcph->th_offset_and_rsrvd[0] +=
5911 					    (3 << 4);
5912 				}
5913 
5914 				if (tcp->tcp_snd_sack_ok) {
5915 					wptr = mp1->b_wptr;
5916 					wptr[0] = TCPOPT_NOP;
5917 					wptr[1] = TCPOPT_NOP;
5918 					wptr[2] = TCPOPT_SACK_PERMITTED;
5919 					wptr[3] = TCPOPT_SACK_OK_LEN;
5920 					mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
5921 					tcph->th_offset_and_rsrvd[0] +=
5922 					    (1 << 4);
5923 				}
5924 
5925 				/*
5926 				 * Set up all the bits to tell other side
5927 				 * we are ECN capable.
5928 				 */
5929 				if (tcp->tcp_ecn_ok) {
5930 					flags |= (TH_ECE | TH_CWR);
5931 				}
5932 				break;
5933 			case TCPS_SYN_RCVD:
5934 				flags |= TH_SYN;
5935 
5936 				if (tcp->tcp_snd_ws_ok) {
5937 				    wptr = mp1->b_wptr;
5938 				    wptr[0] =  TCPOPT_NOP;
5939 				    wptr[1] =  TCPOPT_WSCALE;
5940 				    wptr[2] =  TCPOPT_WS_LEN;
5941 				    wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
5942 				    mp1->b_wptr += TCPOPT_REAL_WS_LEN;
5943 				    tcph->th_offset_and_rsrvd[0] += (1 << 4);
5944 				}
5945 
5946 				if (tcp->tcp_snd_sack_ok) {
5947 					wptr = mp1->b_wptr;
5948 					wptr[0] = TCPOPT_NOP;
5949 					wptr[1] = TCPOPT_NOP;
5950 					wptr[2] = TCPOPT_SACK_PERMITTED;
5951 					wptr[3] = TCPOPT_SACK_OK_LEN;
5952 					mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
5953 					tcph->th_offset_and_rsrvd[0] +=
5954 					    (1 << 4);
5955 				}
5956 
5957 				/*
5958 				 * If the other side is ECN capable, reply
5959 				 * that we are also ECN capable.
5960 				 */
5961 				if (tcp->tcp_ecn_ok) {
5962 					flags |= TH_ECE;
5963 				}
5964 				break;
5965 			default:
5966 				break;
5967 			}
5968 			/* allocb() of adequate mblk assures space */
5969 			assert((uintptr_t)(mp1->b_wptr -
5970 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
5971 			if (flags & TH_SYN)
5972 				BUMP_MIB(tcp_mib.tcpOutControl);
5973 		}
5974 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
5975 		    (seq + data_length) == tcp->tcp_fss) {
5976 			if (!tcp->tcp_fin_acked) {
5977 				flags |= TH_FIN;
5978 				BUMP_MIB(tcp_mib.tcpOutControl);
5979 			}
5980 			if (!tcp->tcp_fin_sent) {
5981 				tcp->tcp_fin_sent = B_TRUE;
5982 				switch (tcp->tcp_state) {
5983 				case TCPS_SYN_RCVD:
5984 				case TCPS_ESTABLISHED:
5985 					tcp->tcp_state = TCPS_FIN_WAIT_1;
5986 					break;
5987 				case TCPS_CLOSE_WAIT:
5988 					tcp->tcp_state = TCPS_LAST_ACK;
5989 					break;
5990 				}
5991 				if (tcp->tcp_suna == tcp->tcp_snxt)
5992 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5993 				tcp->tcp_snxt = tcp->tcp_fss + 1;
5994 			}
5995 		}
5996 	}
5997 	tcph->th_flags[0] = (uchar_t)flags;
5998 	tcp->tcp_rack = tcp->tcp_rnxt;
5999 	tcp->tcp_rack_cnt = 0;
6000 
6001 	if (tcp->tcp_snd_ts_ok) {
6002 		if (tcp->tcp_state != TCPS_SYN_SENT) {
6003 			uint32_t llbolt = prom_gettime();
6004 
6005 			U32_TO_BE32(llbolt,
6006 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
6007 			U32_TO_BE32(tcp->tcp_ts_recent,
6008 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
6009 		}
6010 	}
6011 
6012 	if (num_sack_blk > 0) {
6013 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
6014 		sack_blk_t *tmp;
6015 		int32_t	i;
6016 
6017 		wptr[0] = TCPOPT_NOP;
6018 		wptr[1] = TCPOPT_NOP;
6019 		wptr[2] = TCPOPT_SACK;
6020 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
6021 		    sizeof (sack_blk_t);
6022 		wptr += TCPOPT_REAL_SACK_LEN;
6023 
6024 		tmp = tcp->tcp_sack_list;
6025 		for (i = 0; i < num_sack_blk; i++) {
6026 			U32_TO_BE32(tmp[i].begin, wptr);
6027 			wptr += sizeof (tcp_seq);
6028 			U32_TO_BE32(tmp[i].end, wptr);
6029 			wptr += sizeof (tcp_seq);
6030 		}
6031 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
6032 	}
6033 	assert((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
6034 	data_length += (int)(mp1->b_wptr - rptr);
6035 	if (tcp->tcp_ipversion == IPV4_VERSION)
6036 		((struct ip *)rptr)->ip_len = htons(data_length);
6037 
6038 	/*
6039 	 * Performance hit!  We need to pullup the whole message
6040 	 * in order to do checksum and for the MAC output routine.
6041 	 */
6042 	if (mp1->b_cont != NULL) {
6043 		int mp_size;
6044 #ifdef DEBUG
6045 		printf("Multiple mblk %d\n", msgdsize(mp1));
6046 #endif
6047 		mp2 = mp1;
6048 		new_mp = allocb(msgdsize(mp1) + tcp_wroff_xtra, 0);
6049 		new_mp->b_rptr += tcp_wroff_xtra;
6050 		new_mp->b_wptr = new_mp->b_rptr;
6051 		while (mp1 != NULL) {
6052 			mp_size = mp1->b_wptr - mp1->b_rptr;
6053 			bcopy(mp1->b_rptr, new_mp->b_wptr, mp_size);
6054 			new_mp->b_wptr += mp_size;
6055 			mp1 = mp1->b_cont;
6056 		}
6057 		freemsg(mp2);
6058 		mp1 = new_mp;
6059 	}
6060 	tcp_set_cksum(mp1);
6061 	/* Fill in the TTL field as it is 0 in the header template. */
6062 	((struct ip *)mp1->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
6063 
6064 	return (mp1);
6065 }
6066 
6067 /*
6068  * Generate a "no listener here" reset in response to the
6069  * connection request contained within 'mp'
6070  */
6071 static void
tcp_xmit_listeners_reset(int sock_id,mblk_t * mp,uint_t ip_hdr_len)6072 tcp_xmit_listeners_reset(int sock_id, mblk_t *mp, uint_t ip_hdr_len)
6073 {
6074 	uchar_t		*rptr;
6075 	uint32_t	seg_len;
6076 	tcph_t		*tcph;
6077 	uint32_t	seg_seq;
6078 	uint32_t	seg_ack;
6079 	uint_t		flags;
6080 
6081 	rptr = mp->b_rptr;
6082 
6083 	tcph = (tcph_t *)&rptr[ip_hdr_len];
6084 	seg_seq = BE32_TO_U32(tcph->th_seq);
6085 	seg_ack = BE32_TO_U32(tcph->th_ack);
6086 	flags = tcph->th_flags[0];
6087 
6088 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
6089 	if (flags & TH_RST) {
6090 		freeb(mp);
6091 	} else if (flags & TH_ACK) {
6092 		tcp_xmit_early_reset("no tcp, reset",
6093 		    sock_id, mp, seg_ack, 0, TH_RST, ip_hdr_len);
6094 	} else {
6095 		if (flags & TH_SYN)
6096 			seg_len++;
6097 		tcp_xmit_early_reset("no tcp, reset/ack", sock_id,
6098 		    mp, 0, seg_seq + seg_len,
6099 		    TH_RST | TH_ACK, ip_hdr_len);
6100 	}
6101 }
6102 
6103 /* Non overlapping byte exchanger */
6104 static void
tcp_xchg(uchar_t * a,uchar_t * b,int len)6105 tcp_xchg(uchar_t *a, uchar_t *b, int len)
6106 {
6107 	uchar_t	uch;
6108 
6109 	while (len-- > 0) {
6110 		uch = a[len];
6111 		a[len] = b[len];
6112 		b[len] = uch;
6113 	}
6114 }
6115 
6116 /*
6117  * Generate a reset based on an inbound packet for which there is no active
6118  * tcp state that we can find.
6119  */
6120 static void
tcp_xmit_early_reset(char * str,int sock_id,mblk_t * mp,uint32_t seq,uint32_t ack,int ctl,uint_t ip_hdr_len)6121 tcp_xmit_early_reset(char *str, int sock_id, mblk_t *mp, uint32_t seq,
6122     uint32_t ack, int ctl, uint_t ip_hdr_len)
6123 {
6124 	struct ip	*iph = NULL;
6125 	ushort_t	len;
6126 	tcph_t		*tcph;
6127 	int		i;
6128 	ipaddr_t	addr;
6129 	mblk_t		*new_mp;
6130 
6131 	if (str != NULL) {
6132 		dprintf("tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
6133 		    "flags 0x%x\n", str, seq, ack, ctl);
6134 	}
6135 
6136 	/*
6137 	 * We skip reversing source route here.
6138 	 * (for now we replace all IP options with EOL)
6139 	 */
6140 	iph = (struct ip *)mp->b_rptr;
6141 	for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
6142 		mp->b_rptr[i] = IPOPT_EOL;
6143 	/*
6144 	 * Make sure that src address is not a limited broadcast
6145 	 * address. Not all broadcast address checking for the
6146 	 * src address is possible, since we don't know the
6147 	 * netmask of the src addr.
6148 	 * No check for destination address is done, since
6149 	 * IP will not pass up a packet with a broadcast dest address
6150 	 * to TCP.
6151 	 */
6152 	if (iph->ip_src.s_addr == INADDR_ANY ||
6153 	    iph->ip_src.s_addr == INADDR_BROADCAST) {
6154 		freemsg(mp);
6155 		return;
6156 	}
6157 
6158 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6159 	if (tcph->th_flags[0] & TH_RST) {
6160 		freemsg(mp);
6161 		return;
6162 	}
6163 	/*
6164 	 * Now copy the original header to a new buffer.  The reason
6165 	 * for doing this is that we need to put extra room before
6166 	 * the header for the MAC layer address.  The original mblk
6167 	 * does not have this extra head room.
6168 	 */
6169 	len = ip_hdr_len + sizeof (tcph_t);
6170 	if ((new_mp = allocb(len + tcp_wroff_xtra, 0)) == NULL) {
6171 		freemsg(mp);
6172 		return;
6173 	}
6174 	new_mp->b_rptr += tcp_wroff_xtra;
6175 	bcopy(mp->b_rptr, new_mp->b_rptr, len);
6176 	new_mp->b_wptr = new_mp->b_rptr + len;
6177 	freemsg(mp);
6178 	mp = new_mp;
6179 	iph = (struct ip *)mp->b_rptr;
6180 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6181 
6182 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
6183 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
6184 	U32_TO_BE32(ack, tcph->th_ack);
6185 	U32_TO_BE32(seq, tcph->th_seq);
6186 	U16_TO_BE16(0, tcph->th_win);
6187 	bzero(tcph->th_sum, sizeof (int16_t));
6188 	tcph->th_flags[0] = (uint8_t)ctl;
6189 	if (ctl & TH_RST) {
6190 		BUMP_MIB(tcp_mib.tcpOutRsts);
6191 		BUMP_MIB(tcp_mib.tcpOutControl);
6192 	}
6193 
6194 	iph->ip_len = htons(len);
6195 	/* Swap addresses */
6196 	addr = iph->ip_src.s_addr;
6197 	iph->ip_src = iph->ip_dst;
6198 	iph->ip_dst.s_addr = addr;
6199 	iph->ip_id = 0;
6200 	iph->ip_ttl = 0;
6201 	tcp_set_cksum(mp);
6202 	iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
6203 
6204 	/* Dump the packet when debugging. */
6205 	TCP_DUMP_PACKET("tcp_xmit_early_reset", mp);
6206 	(void) ipv4_tcp_output(sock_id, mp);
6207 	freemsg(mp);
6208 }
6209 
6210 static void
tcp_set_cksum(mblk_t * mp)6211 tcp_set_cksum(mblk_t *mp)
6212 {
6213 	struct ip *iph;
6214 	tcpha_t *tcph;
6215 	int len;
6216 
6217 	iph = (struct ip *)mp->b_rptr;
6218 	tcph = (tcpha_t *)(iph + 1);
6219 	len = ntohs(iph->ip_len);
6220 	/*
6221 	 * Calculate the TCP checksum.  Need to include the psuedo header,
6222 	 * which is similar to the real IP header starting at the TTL field.
6223 	 */
6224 	iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
6225 	tcph->tha_sum = 0;
6226 	tcph->tha_sum = tcp_cksum((uint16_t *)&(iph->ip_ttl),
6227 	    len - IP_SIMPLE_HDR_LENGTH + 12);
6228 	iph->ip_sum = 0;
6229 }
6230 
6231 static uint16_t
tcp_cksum(uint16_t * buf,uint32_t len)6232 tcp_cksum(uint16_t *buf, uint32_t len)
6233 {
6234 	/*
6235 	 * Compute Internet Checksum for "count" bytes
6236 	 * beginning at location "addr".
6237 	 */
6238 	int32_t sum = 0;
6239 
6240 	while (len > 1) {
6241 		/*  This is the inner loop */
6242 		sum += *buf++;
6243 		len -= 2;
6244 	}
6245 
6246 	/*  Add left-over byte, if any */
6247 	if (len > 0)
6248 		sum += *(unsigned char *)buf * 256;
6249 
6250 	/*  Fold 32-bit sum to 16 bits */
6251 	while (sum >> 16)
6252 		sum = (sum & 0xffff) + (sum >> 16);
6253 
6254 	return ((uint16_t)~sum);
6255 }
6256 
6257 /*
6258  * Type three generator adapted from the random() function in 4.4 BSD:
6259  */
6260 
6261 /*
6262  * Copyright (c) 1983, 1993
6263  *	The Regents of the University of California.  All rights reserved.
6264  *
6265  * Redistribution and use in source and binary forms, with or without
6266  * modification, are permitted provided that the following conditions
6267  * are met:
6268  * 1. Redistributions of source code must retain the above copyright
6269  *    notice, this list of conditions and the following disclaimer.
6270  * 2. Redistributions in binary form must reproduce the above copyright
6271  *    notice, this list of conditions and the following disclaimer in the
6272  *    documentation and/or other materials provided with the distribution.
6273  * 3. All advertising materials mentioning features or use of this software
6274  *    must display the following acknowledgement:
6275  *	This product includes software developed by the University of
6276  *	California, Berkeley and its contributors.
6277  * 4. Neither the name of the University nor the names of its contributors
6278  *    may be used to endorse or promote products derived from this software
6279  *    without specific prior written permission.
6280  *
6281  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
6282  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6283  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6284  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
6285  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
6286  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
6287  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
6288  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6289  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6290  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
6291  * SUCH DAMAGE.
6292  */
6293 
6294 /* Type 3 -- x**31 + x**3 + 1 */
6295 #define	DEG_3		31
6296 #define	SEP_3		3
6297 
6298 
6299 /* Protected by tcp_random_lock */
6300 static int tcp_randtbl[DEG_3 + 1];
6301 
6302 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
6303 static int *tcp_random_rptr = &tcp_randtbl[1];
6304 
6305 static int *tcp_random_state = &tcp_randtbl[1];
6306 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
6307 
6308 static void
tcp_random_init(void)6309 tcp_random_init(void)
6310 {
6311 	int i;
6312 	uint32_t hrt;
6313 	uint32_t wallclock;
6314 	uint32_t result;
6315 
6316 	/*
6317 	 *
6318 	 * XXX We don't have high resolution time in standalone...  The
6319 	 * following is just some approximation on the comment below.
6320 	 *
6321 	 * Use high-res timer and current time for seed.  Gethrtime() returns
6322 	 * a longlong, which may contain resolution down to nanoseconds.
6323 	 * The current time will either be a 32-bit or a 64-bit quantity.
6324 	 * XOR the two together in a 64-bit result variable.
6325 	 * Convert the result to a 32-bit value by multiplying the high-order
6326 	 * 32-bits by the low-order 32-bits.
6327 	 *
6328 	 * XXX We don't have gethrtime() in prom and the wallclock....
6329 	 */
6330 
6331 	hrt = prom_gettime();
6332 	wallclock = (uint32_t)time(NULL);
6333 	result = wallclock ^ hrt;
6334 	tcp_random_state[0] = result;
6335 
6336 	for (i = 1; i < DEG_3; i++)
6337 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
6338 			+ 12345;
6339 	tcp_random_fptr = &tcp_random_state[SEP_3];
6340 	tcp_random_rptr = &tcp_random_state[0];
6341 	for (i = 0; i < 10 * DEG_3; i++)
6342 		(void) tcp_random();
6343 }
6344 
6345 /*
6346  * tcp_random: Return a random number in the range [1 - (128K + 1)].
6347  * This range is selected to be approximately centered on TCP_ISS / 2,
6348  * and easy to compute. We get this value by generating a 32-bit random
6349  * number, selecting out the high-order 17 bits, and then adding one so
6350  * that we never return zero.
6351  */
6352 static int
tcp_random(void)6353 tcp_random(void)
6354 {
6355 	int i;
6356 
6357 	*tcp_random_fptr += *tcp_random_rptr;
6358 
6359 	/*
6360 	 * The high-order bits are more random than the low-order bits,
6361 	 * so we select out the high-order 17 bits and add one so that
6362 	 * we never return zero.
6363 	 */
6364 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
6365 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
6366 		tcp_random_fptr = tcp_random_state;
6367 		++tcp_random_rptr;
6368 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
6369 		tcp_random_rptr = tcp_random_state;
6370 
6371 	return (i);
6372 }
6373 
6374 /*
6375  * Generate ISS, taking into account NDD changes may happen halfway through.
6376  * (If the iss is not zero, set it.)
6377  */
6378 static void
tcp_iss_init(tcp_t * tcp)6379 tcp_iss_init(tcp_t *tcp)
6380 {
6381 	tcp_iss_incr_extra += (ISS_INCR >> 1);
6382 	tcp->tcp_iss = tcp_iss_incr_extra;
6383 	tcp->tcp_iss += (prom_gettime() >> ISS_NSEC_SHT) + tcp_random();
6384 	tcp->tcp_valid_bits = TCP_ISS_VALID;
6385 	tcp->tcp_fss = tcp->tcp_iss - 1;
6386 	tcp->tcp_suna = tcp->tcp_iss;
6387 	tcp->tcp_snxt = tcp->tcp_iss + 1;
6388 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
6389 	tcp->tcp_csuna = tcp->tcp_snxt;
6390 }
6391 
6392 /*
6393  * Diagnostic routine used to return a string associated with the tcp state.
6394  * Note that if the caller does not supply a buffer, it will use an internal
6395  * static string.  This means that if multiple threads call this function at
6396  * the same time, output can be corrupted...  Note also that this function
6397  * does not check the size of the supplied buffer.  The caller has to make
6398  * sure that it is big enough.
6399  */
6400 static char *
tcp_display(tcp_t * tcp,char * sup_buf,char format)6401 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6402 {
6403 	char		buf1[30];
6404 	static char	priv_buf[INET_ADDRSTRLEN * 2 + 80];
6405 	char		*buf;
6406 	char		*cp;
6407 	char		local_addrbuf[INET_ADDRSTRLEN];
6408 	char		remote_addrbuf[INET_ADDRSTRLEN];
6409 	struct in_addr	addr;
6410 
6411 	if (sup_buf != NULL)
6412 		buf = sup_buf;
6413 	else
6414 		buf = priv_buf;
6415 
6416 	if (tcp == NULL)
6417 		return ("NULL_TCP");
6418 	switch (tcp->tcp_state) {
6419 	case TCPS_CLOSED:
6420 		cp = "TCP_CLOSED";
6421 		break;
6422 	case TCPS_IDLE:
6423 		cp = "TCP_IDLE";
6424 		break;
6425 	case TCPS_BOUND:
6426 		cp = "TCP_BOUND";
6427 		break;
6428 	case TCPS_LISTEN:
6429 		cp = "TCP_LISTEN";
6430 		break;
6431 	case TCPS_SYN_SENT:
6432 		cp = "TCP_SYN_SENT";
6433 		break;
6434 	case TCPS_SYN_RCVD:
6435 		cp = "TCP_SYN_RCVD";
6436 		break;
6437 	case TCPS_ESTABLISHED:
6438 		cp = "TCP_ESTABLISHED";
6439 		break;
6440 	case TCPS_CLOSE_WAIT:
6441 		cp = "TCP_CLOSE_WAIT";
6442 		break;
6443 	case TCPS_FIN_WAIT_1:
6444 		cp = "TCP_FIN_WAIT_1";
6445 		break;
6446 	case TCPS_CLOSING:
6447 		cp = "TCP_CLOSING";
6448 		break;
6449 	case TCPS_LAST_ACK:
6450 		cp = "TCP_LAST_ACK";
6451 		break;
6452 	case TCPS_FIN_WAIT_2:
6453 		cp = "TCP_FIN_WAIT_2";
6454 		break;
6455 	case TCPS_TIME_WAIT:
6456 		cp = "TCP_TIME_WAIT";
6457 		break;
6458 	default:
6459 		(void) sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6460 		cp = buf1;
6461 		break;
6462 	}
6463 	switch (format) {
6464 	case DISP_ADDR_AND_PORT:
6465 		/*
6466 		 * Note that we use the remote address in the tcp_b
6467 		 * structure.  This means that it will print out
6468 		 * the real destination address, not the next hop's
6469 		 * address if source routing is used.
6470 		 */
6471 		addr.s_addr = tcp->tcp_bound_source;
6472 		bcopy(inet_ntoa(addr), local_addrbuf, sizeof (local_addrbuf));
6473 		addr.s_addr = tcp->tcp_remote;
6474 		bcopy(inet_ntoa(addr), remote_addrbuf, sizeof (remote_addrbuf));
6475 		(void) snprintf(buf, sizeof (priv_buf), "[%s.%u, %s.%u] %s",
6476 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6477 		    ntohs(tcp->tcp_fport), cp);
6478 		break;
6479 	case DISP_PORT_ONLY:
6480 	default:
6481 		(void) snprintf(buf, sizeof (priv_buf), "[%u, %u] %s",
6482 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6483 		break;
6484 	}
6485 
6486 	return (buf);
6487 }
6488 
6489 /*
6490  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
6491  * is filled, return as much as we can.  The message passed in may be
6492  * multi-part, chained using b_cont.  "start" is the starting sequence
6493  * number for this piece.
6494  */
6495 static mblk_t *
tcp_reass(tcp_t * tcp,mblk_t * mp,uint32_t start)6496 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
6497 {
6498 	uint32_t	end;
6499 	mblk_t		*mp1;
6500 	mblk_t		*mp2;
6501 	mblk_t		*next_mp;
6502 	uint32_t	u1;
6503 
6504 	/* Walk through all the new pieces. */
6505 	do {
6506 		assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
6507 		    (uintptr_t)INT_MAX);
6508 		end = start + (int)(mp->b_wptr - mp->b_rptr);
6509 		next_mp = mp->b_cont;
6510 		if (start == end) {
6511 			/* Empty.  Blast it. */
6512 			freeb(mp);
6513 			continue;
6514 		}
6515 		mp->b_cont = NULL;
6516 		TCP_REASS_SET_SEQ(mp, start);
6517 		TCP_REASS_SET_END(mp, end);
6518 		mp1 = tcp->tcp_reass_tail;
6519 		if (!mp1) {
6520 			tcp->tcp_reass_tail = mp;
6521 			tcp->tcp_reass_head = mp;
6522 			BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
6523 			UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
6524 			continue;
6525 		}
6526 		/* New stuff completely beyond tail? */
6527 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
6528 			/* Link it on end. */
6529 			mp1->b_cont = mp;
6530 			tcp->tcp_reass_tail = mp;
6531 			BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
6532 			UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
6533 			continue;
6534 		}
6535 		mp1 = tcp->tcp_reass_head;
6536 		u1 = TCP_REASS_SEQ(mp1);
6537 		/* New stuff at the front? */
6538 		if (SEQ_LT(start, u1)) {
6539 			/* Yes... Check for overlap. */
6540 			mp->b_cont = mp1;
6541 			tcp->tcp_reass_head = mp;
6542 			tcp_reass_elim_overlap(tcp, mp);
6543 			continue;
6544 		}
6545 		/*
6546 		 * The new piece fits somewhere between the head and tail.
6547 		 * We find our slot, where mp1 precedes us and mp2 trails.
6548 		 */
6549 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
6550 			u1 = TCP_REASS_SEQ(mp2);
6551 			if (SEQ_LEQ(start, u1))
6552 				break;
6553 		}
6554 		/* Link ourselves in */
6555 		mp->b_cont = mp2;
6556 		mp1->b_cont = mp;
6557 
6558 		/* Trim overlap with following mblk(s) first */
6559 		tcp_reass_elim_overlap(tcp, mp);
6560 
6561 		/* Trim overlap with preceding mblk */
6562 		tcp_reass_elim_overlap(tcp, mp1);
6563 
6564 	} while (start = end, mp = next_mp);
6565 	mp1 = tcp->tcp_reass_head;
6566 	/* Anything ready to go? */
6567 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
6568 		return (NULL);
6569 	/* Eat what we can off the queue */
6570 	for (;;) {
6571 		mp = mp1->b_cont;
6572 		end = TCP_REASS_END(mp1);
6573 		TCP_REASS_SET_SEQ(mp1, 0);
6574 		TCP_REASS_SET_END(mp1, 0);
6575 		if (!mp) {
6576 			tcp->tcp_reass_tail = NULL;
6577 			break;
6578 		}
6579 		if (end != TCP_REASS_SEQ(mp)) {
6580 			mp1->b_cont = NULL;
6581 			break;
6582 		}
6583 		mp1 = mp;
6584 	}
6585 	mp1 = tcp->tcp_reass_head;
6586 	tcp->tcp_reass_head = mp;
6587 	return (mp1);
6588 }
6589 
6590 /* Eliminate any overlap that mp may have over later mblks */
6591 static void
tcp_reass_elim_overlap(tcp_t * tcp,mblk_t * mp)6592 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
6593 {
6594 	uint32_t	end;
6595 	mblk_t		*mp1;
6596 	uint32_t	u1;
6597 
6598 	end = TCP_REASS_END(mp);
6599 	while ((mp1 = mp->b_cont) != NULL) {
6600 		u1 = TCP_REASS_SEQ(mp1);
6601 		if (!SEQ_GT(end, u1))
6602 			break;
6603 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
6604 			mp->b_wptr -= end - u1;
6605 			TCP_REASS_SET_END(mp, u1);
6606 			BUMP_MIB(tcp_mib.tcpInDataPartDupSegs);
6607 			UPDATE_MIB(tcp_mib.tcpInDataPartDupBytes, end - u1);
6608 			break;
6609 		}
6610 		mp->b_cont = mp1->b_cont;
6611 		freeb(mp1);
6612 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
6613 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes, end - u1);
6614 	}
6615 	if (!mp1)
6616 		tcp->tcp_reass_tail = mp;
6617 }
6618 
6619 /*
6620  * Remove a connection from the list of detached TIME_WAIT connections.
6621  */
6622 static void
tcp_time_wait_remove(tcp_t * tcp)6623 tcp_time_wait_remove(tcp_t *tcp)
6624 {
6625 	if (tcp->tcp_time_wait_expire == 0) {
6626 		assert(tcp->tcp_time_wait_next == NULL);
6627 		assert(tcp->tcp_time_wait_prev == NULL);
6628 		return;
6629 	}
6630 	assert(tcp->tcp_state == TCPS_TIME_WAIT);
6631 	if (tcp == tcp_time_wait_head) {
6632 		assert(tcp->tcp_time_wait_prev == NULL);
6633 		tcp_time_wait_head = tcp->tcp_time_wait_next;
6634 		if (tcp_time_wait_head != NULL) {
6635 			tcp_time_wait_head->tcp_time_wait_prev = NULL;
6636 		} else {
6637 			tcp_time_wait_tail = NULL;
6638 		}
6639 	} else if (tcp == tcp_time_wait_tail) {
6640 		assert(tcp != tcp_time_wait_head);
6641 		assert(tcp->tcp_time_wait_next == NULL);
6642 		tcp_time_wait_tail = tcp->tcp_time_wait_prev;
6643 		assert(tcp_time_wait_tail != NULL);
6644 		tcp_time_wait_tail->tcp_time_wait_next = NULL;
6645 	} else {
6646 		assert(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
6647 		assert(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
6648 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
6649 		    tcp->tcp_time_wait_next;
6650 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
6651 		    tcp->tcp_time_wait_prev;
6652 	}
6653 	tcp->tcp_time_wait_next = NULL;
6654 	tcp->tcp_time_wait_prev = NULL;
6655 	tcp->tcp_time_wait_expire = 0;
6656 }
6657 
6658 /*
6659  * Add a connection to the list of detached TIME_WAIT connections
6660  * and set its time to expire ...
6661  */
6662 static void
tcp_time_wait_append(tcp_t * tcp)6663 tcp_time_wait_append(tcp_t *tcp)
6664 {
6665 	tcp->tcp_time_wait_expire = prom_gettime() + tcp_time_wait_interval;
6666 	if (tcp->tcp_time_wait_expire == 0)
6667 		tcp->tcp_time_wait_expire = 1;
6668 
6669 	if (tcp_time_wait_head == NULL) {
6670 		assert(tcp_time_wait_tail == NULL);
6671 		tcp_time_wait_head = tcp;
6672 	} else {
6673 		assert(tcp_time_wait_tail != NULL);
6674 		assert(tcp_time_wait_tail->tcp_state == TCPS_TIME_WAIT);
6675 		tcp_time_wait_tail->tcp_time_wait_next = tcp;
6676 		tcp->tcp_time_wait_prev = tcp_time_wait_tail;
6677 	}
6678 	tcp_time_wait_tail = tcp;
6679 
6680 	/* for ndd stats about compression */
6681 	tcp_cum_timewait++;
6682 }
6683 
6684 /*
6685  * Periodic qtimeout routine run on the default queue.
6686  * Performs 2 functions.
6687  * 	1.  Does TIME_WAIT compression on all recently added tcps. List
6688  *	    traversal is done backwards from the tail.
6689  *	2.  Blows away all tcps whose TIME_WAIT has expired. List traversal
6690  *	    is done forwards from the head.
6691  */
6692 void
tcp_time_wait_collector(void)6693 tcp_time_wait_collector(void)
6694 {
6695 	tcp_t *tcp;
6696 	uint32_t now;
6697 
6698 	/*
6699 	 * In order to reap time waits reliably, we should use a
6700 	 * source of time that is not adjustable by the user
6701 	 */
6702 	now = prom_gettime();
6703 	while ((tcp = tcp_time_wait_head) != NULL) {
6704 		/*
6705 		 * Compare times using modular arithmetic, since
6706 		 * lbolt can wrapover.
6707 		 */
6708 		if ((int32_t)(now - tcp->tcp_time_wait_expire) < 0) {
6709 			break;
6710 		}
6711 		/*
6712 		 * Note that the err must be 0 as there is no socket
6713 		 * associated with this TCP...
6714 		 */
6715 		(void) tcp_clean_death(-1, tcp, 0);
6716 	}
6717 	/* Schedule next run time. */
6718 	tcp_time_wait_runtime = prom_gettime() + 10000;
6719 }
6720 
6721 void
tcp_time_wait_report(void)6722 tcp_time_wait_report(void)
6723 {
6724 	tcp_t *tcp;
6725 
6726 	printf("Current time %u\n", prom_gettime());
6727 	for (tcp = tcp_time_wait_head; tcp != NULL;
6728 	    tcp = tcp->tcp_time_wait_next) {
6729 		printf("%s expires at %u\n", tcp_display(tcp, NULL,
6730 		    DISP_ADDR_AND_PORT), tcp->tcp_time_wait_expire);
6731 	}
6732 }
6733 
6734 /*
6735  * Send up all messages queued on tcp_rcv_list.
6736  * Have to set tcp_co_norm since we use putnext.
6737  */
6738 static void
tcp_rcv_drain(int sock_id,tcp_t * tcp)6739 tcp_rcv_drain(int sock_id, tcp_t *tcp)
6740 {
6741 	mblk_t *mp;
6742 	struct inetgram *in_gram;
6743 	mblk_t *in_mp;
6744 	int len;
6745 
6746 	/* Don't drain if the app has not finished reading all the data. */
6747 	if (sockets[sock_id].so_rcvbuf <= 0)
6748 		return;
6749 
6750 	/* We might have come here just to updated the rwnd */
6751 	if (tcp->tcp_rcv_list == NULL)
6752 		goto win_update;
6753 
6754 	if ((in_gram = (struct inetgram *)bkmem_zalloc(
6755 	    sizeof (struct inetgram))) == NULL) {
6756 		return;
6757 	}
6758 	if ((in_mp = allocb(tcp->tcp_rcv_cnt, 0)) == NULL) {
6759 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
6760 		return;
6761 	}
6762 	in_gram->igm_level = APP_LVL;
6763 	in_gram->igm_mp = in_mp;
6764 	in_gram->igm_id = 0;
6765 
6766 	while ((mp = tcp->tcp_rcv_list) != NULL) {
6767 		tcp->tcp_rcv_list = mp->b_cont;
6768 		len = mp->b_wptr - mp->b_rptr;
6769 		bcopy(mp->b_rptr, in_mp->b_wptr, len);
6770 		in_mp->b_wptr += len;
6771 		freeb(mp);
6772 	}
6773 
6774 	tcp->tcp_rcv_last_tail = NULL;
6775 	tcp->tcp_rcv_cnt = 0;
6776 	add_grams(&sockets[sock_id].inq, in_gram);
6777 
6778 	/* This means that so_rcvbuf can be less than 0. */
6779 	sockets[sock_id].so_rcvbuf -= in_mp->b_wptr - in_mp->b_rptr;
6780 win_update:
6781 	/*
6782 	 * Increase the receive window to max.  But we need to do receiver
6783 	 * SWS avoidance.  This means that we need to check the increase of
6784 	 * of receive window is at least 1 MSS.
6785 	 */
6786 	if (sockets[sock_id].so_rcvbuf > 0 &&
6787 	    (tcp->tcp_rwnd_max - tcp->tcp_rwnd >= tcp->tcp_mss)) {
6788 		tcp->tcp_rwnd = tcp->tcp_rwnd_max;
6789 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
6790 		    tcp->tcp_tcph->th_win);
6791 	}
6792 }
6793 
6794 /*
6795  * Wrapper for recvfrom to call
6796  */
6797 void
tcp_rcv_drain_sock(int sock_id)6798 tcp_rcv_drain_sock(int sock_id)
6799 {
6800 	tcp_t *tcp;
6801 	if ((tcp = sockets[sock_id].pcb) == NULL)
6802 		return;
6803 	tcp_rcv_drain(sock_id, tcp);
6804 }
6805 
6806 /*
6807  * If the inq == NULL and the tcp_rcv_list != NULL, we have data that
6808  * recvfrom could read. Place a magic message in the inq to let recvfrom
6809  * know that it needs to call tcp_rcv_drain_sock to pullup the data.
6810  */
6811 static void
tcp_drain_needed(int sock_id,tcp_t * tcp)6812 tcp_drain_needed(int sock_id, tcp_t *tcp)
6813 {
6814 	struct inetgram *in_gram;
6815 #ifdef DEBUG
6816 	printf("tcp_drain_needed: inq %x, tcp_rcv_list %x\n",
6817 		sockets[sock_id].inq, tcp->tcp_rcv_list);
6818 #endif
6819 	if ((sockets[sock_id].inq != NULL) ||
6820 		(tcp->tcp_rcv_list == NULL))
6821 		return;
6822 
6823 	if ((in_gram = (struct inetgram *)bkmem_zalloc(
6824 		sizeof (struct inetgram))) == NULL)
6825 		return;
6826 
6827 	in_gram->igm_level = APP_LVL;
6828 	in_gram->igm_mp = NULL;
6829 	in_gram->igm_id = TCP_CALLB_MAGIC_ID;
6830 
6831 	add_grams(&sockets[sock_id].inq, in_gram);
6832 }
6833 
6834 /*
6835  * Queue data on tcp_rcv_list which is a b_next chain.
6836  * Each element of the chain is a b_cont chain.
6837  *
6838  * M_DATA messages are added to the current element.
6839  * Other messages are added as new (b_next) elements.
6840  */
6841 static void
tcp_rcv_enqueue(tcp_t * tcp,mblk_t * mp,uint_t seg_len)6842 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
6843 {
6844 	assert(seg_len == msgdsize(mp));
6845 	if (tcp->tcp_rcv_list == NULL) {
6846 		tcp->tcp_rcv_list = mp;
6847 	} else {
6848 		tcp->tcp_rcv_last_tail->b_cont = mp;
6849 	}
6850 	while (mp->b_cont)
6851 		mp = mp->b_cont;
6852 	tcp->tcp_rcv_last_tail = mp;
6853 	tcp->tcp_rcv_cnt += seg_len;
6854 	tcp->tcp_rwnd -= seg_len;
6855 #ifdef DEBUG
6856 	printf("tcp_rcv_enqueue rwnd %d\n", tcp->tcp_rwnd);
6857 #endif
6858 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
6859 }
6860 
6861 /* The minimum of smoothed mean deviation in RTO calculation. */
6862 #define	TCP_SD_MIN	400
6863 
6864 /*
6865  * Set RTO for this connection.  The formula is from Jacobson and Karels'
6866  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
6867  * are the same as those in Appendix A.2 of that paper.
6868  *
6869  * m = new measurement
6870  * sa = smoothed RTT average (8 * average estimates).
6871  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
6872  */
6873 static void
tcp_set_rto(tcp_t * tcp,int32_t rtt)6874 tcp_set_rto(tcp_t *tcp, int32_t rtt)
6875 {
6876 	int32_t m = rtt;
6877 	uint32_t sa = tcp->tcp_rtt_sa;
6878 	uint32_t sv = tcp->tcp_rtt_sd;
6879 	uint32_t rto;
6880 
6881 	BUMP_MIB(tcp_mib.tcpRttUpdate);
6882 	tcp->tcp_rtt_update++;
6883 
6884 	/* tcp_rtt_sa is not 0 means this is a new sample. */
6885 	if (sa != 0) {
6886 		/*
6887 		 * Update average estimator:
6888 		 *	new rtt = 7/8 old rtt + 1/8 Error
6889 		 */
6890 
6891 		/* m is now Error in estimate. */
6892 		m -= sa >> 3;
6893 		if ((int32_t)(sa += m) <= 0) {
6894 			/*
6895 			 * Don't allow the smoothed average to be negative.
6896 			 * We use 0 to denote reinitialization of the
6897 			 * variables.
6898 			 */
6899 			sa = 1;
6900 		}
6901 
6902 		/*
6903 		 * Update deviation estimator:
6904 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
6905 		 */
6906 		if (m < 0)
6907 			m = -m;
6908 		m -= sv >> 2;
6909 		sv += m;
6910 	} else {
6911 		/*
6912 		 * This follows BSD's implementation.  So the reinitialized
6913 		 * RTO is 3 * m.  We cannot go less than 2 because if the
6914 		 * link is bandwidth dominated, doubling the window size
6915 		 * during slow start means doubling the RTT.  We want to be
6916 		 * more conservative when we reinitialize our estimates.  3
6917 		 * is just a convenient number.
6918 		 */
6919 		sa = m << 3;
6920 		sv = m << 1;
6921 	}
6922 	if (sv < TCP_SD_MIN) {
6923 		/*
6924 		 * We do not know that if sa captures the delay ACK
6925 		 * effect as in a long train of segments, a receiver
6926 		 * does not delay its ACKs.  So set the minimum of sv
6927 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
6928 		 * of BSD DATO.  That means the minimum of mean
6929 		 * deviation is 100 ms.
6930 		 *
6931 		 */
6932 		sv = TCP_SD_MIN;
6933 	}
6934 	tcp->tcp_rtt_sa = sa;
6935 	tcp->tcp_rtt_sd = sv;
6936 	/*
6937 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
6938 	 *
6939 	 * Add tcp_rexmit_interval extra in case of extreme environment
6940 	 * where the algorithm fails to work.  The default value of
6941 	 * tcp_rexmit_interval_extra should be 0.
6942 	 *
6943 	 * As we use a finer grained clock than BSD and update
6944 	 * RTO for every ACKs, add in another .25 of RTT to the
6945 	 * deviation of RTO to accomodate burstiness of 1/4 of
6946 	 * window size.
6947 	 */
6948 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
6949 
6950 	if (rto > tcp_rexmit_interval_max) {
6951 		tcp->tcp_rto = tcp_rexmit_interval_max;
6952 	} else if (rto < tcp_rexmit_interval_min) {
6953 		tcp->tcp_rto = tcp_rexmit_interval_min;
6954 	} else {
6955 		tcp->tcp_rto = rto;
6956 	}
6957 
6958 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
6959 	tcp->tcp_timer_backoff = 0;
6960 }
6961 
6962 /*
6963  * Initiate closedown sequence on an active connection.
6964  * Return value zero for OK return, non-zero for error return.
6965  */
6966 static int
tcp_xmit_end(tcp_t * tcp,int sock_id)6967 tcp_xmit_end(tcp_t *tcp, int sock_id)
6968 {
6969 	mblk_t	*mp;
6970 
6971 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
6972 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
6973 		/*
6974 		 * Invalid state, only states TCPS_SYN_RCVD,
6975 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
6976 		 */
6977 		return (-1);
6978 	}
6979 
6980 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
6981 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
6982 	/*
6983 	 * If there is nothing more unsent, send the FIN now.
6984 	 * Otherwise, it will go out with the last segment.
6985 	 */
6986 	if (tcp->tcp_unsent == 0) {
6987 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
6988 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
6989 
6990 		if (mp != NULL) {
6991 			/* Dump the packet when debugging. */
6992 			TCP_DUMP_PACKET("tcp_xmit_end", mp);
6993 			(void) ipv4_tcp_output(sock_id, mp);
6994 			freeb(mp);
6995 		} else {
6996 			/*
6997 			 * Couldn't allocate msg.  Pretend we got it out.
6998 			 * Wait for rexmit timeout.
6999 			 */
7000 			tcp->tcp_snxt = tcp->tcp_fss + 1;
7001 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
7002 		}
7003 
7004 		/*
7005 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
7006 		 * changed.
7007 		 */
7008 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
7009 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
7010 		}
7011 	} else {
7012 		tcp_wput_data(tcp, NULL, B_FALSE);
7013 	}
7014 
7015 	return (0);
7016 }
7017 
7018 int
tcp_opt_set(tcp_t * tcp,int level,int option,const void * optval,socklen_t optlen)7019 tcp_opt_set(tcp_t *tcp, int level, int option, const void *optval,
7020     socklen_t optlen)
7021 {
7022 	switch (level) {
7023 	case SOL_SOCKET: {
7024 		switch (option) {
7025 		case SO_RCVBUF:
7026 			if (optlen == sizeof (int)) {
7027 				int val = *(int *)optval;
7028 
7029 				if (val > tcp_max_buf) {
7030 					errno = ENOBUFS;
7031 					break;
7032 				}
7033 				/* Silently ignore zero */
7034 				if (val != 0) {
7035 					val = MSS_ROUNDUP(val, tcp->tcp_mss);
7036 					(void) tcp_rwnd_set(tcp, val);
7037 				}
7038 			} else {
7039 				errno = EINVAL;
7040 			}
7041 			break;
7042 		case SO_SNDBUF:
7043 			if (optlen == sizeof (int)) {
7044 				tcp->tcp_xmit_hiwater = *(int *)optval;
7045 				if (tcp->tcp_xmit_hiwater > tcp_max_buf)
7046 					tcp->tcp_xmit_hiwater = tcp_max_buf;
7047 			} else {
7048 				errno = EINVAL;
7049 			}
7050 			break;
7051 		case SO_LINGER:
7052 			if (optlen == sizeof (struct linger)) {
7053 				struct linger *lgr = (struct linger *)optval;
7054 
7055 				if (lgr->l_onoff) {
7056 					tcp->tcp_linger = 1;
7057 					tcp->tcp_lingertime = lgr->l_linger;
7058 				} else {
7059 					tcp->tcp_linger = 0;
7060 					tcp->tcp_lingertime = 0;
7061 				}
7062 			} else {
7063 				errno = EINVAL;
7064 			}
7065 			break;
7066 		default:
7067 			errno = ENOPROTOOPT;
7068 			break;
7069 		}
7070 		break;
7071 	} /* case SOL_SOCKET */
7072 	case IPPROTO_TCP: {
7073 		switch (option) {
7074 		default:
7075 			errno = ENOPROTOOPT;
7076 			break;
7077 		}
7078 		break;
7079 	} /* case IPPROTO_TCP */
7080 	case IPPROTO_IP: {
7081 		switch (option) {
7082 		default:
7083 			errno = ENOPROTOOPT;
7084 			break;
7085 		}
7086 		break;
7087 	} /* case IPPROTO_IP */
7088 	default:
7089 		errno = ENOPROTOOPT;
7090 		break;
7091 	} /* switch (level) */
7092 
7093 	if (errno != 0)
7094 		return (-1);
7095 	else
7096 		return (0);
7097 }
7098