xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, strlen, etc.
25 //
26 // This could recognize common matrix multiplies and dot product idioms and
27 // replace them with calls to BLAS (if linked in??).
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/CmpInstAnalysis.h"
43 #include "llvm/Analysis/LoopAccessAnalysis.h"
44 #include "llvm/Analysis/LoopInfo.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/MustExecute.h"
50 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
51 #include "llvm/Analysis/ScalarEvolution.h"
52 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Analysis/TargetTransformInfo.h"
55 #include "llvm/Analysis/ValueTracking.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constant.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/GlobalVariable.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Intrinsics.h"
71 #include "llvm/IR/LLVMContext.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/PassManager.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/User.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/IR/ValueHandle.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/InstructionCost.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Transforms/Utils/BuildLibCalls.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "loop-idiom"
97 
98 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
99 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
100 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
101 STATISTIC(
102     NumShiftUntilBitTest,
103     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
104 STATISTIC(NumShiftUntilZero,
105           "Number of uncountable loops recognized as 'shift until zero' idiom");
106 
107 bool DisableLIRP::All;
108 static cl::opt<bool, true>
109     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
110                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
111                    cl::location(DisableLIRP::All), cl::init(false),
112                    cl::ReallyHidden);
113 
114 bool DisableLIRP::Memset;
115 static cl::opt<bool, true>
116     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
117                       cl::desc("Proceed with loop idiom recognize pass, but do "
118                                "not convert loop(s) to memset."),
119                       cl::location(DisableLIRP::Memset), cl::init(false),
120                       cl::ReallyHidden);
121 
122 bool DisableLIRP::Memcpy;
123 static cl::opt<bool, true>
124     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
125                       cl::desc("Proceed with loop idiom recognize pass, but do "
126                                "not convert loop(s) to memcpy."),
127                       cl::location(DisableLIRP::Memcpy), cl::init(false),
128                       cl::ReallyHidden);
129 
130 static cl::opt<bool> UseLIRCodeSizeHeurs(
131     "use-lir-code-size-heurs",
132     cl::desc("Use loop idiom recognition code size heuristics when compiling"
133              "with -Os/-Oz"),
134     cl::init(true), cl::Hidden);
135 
136 namespace {
137 
138 class LoopIdiomRecognize {
139   Loop *CurLoop = nullptr;
140   AliasAnalysis *AA;
141   DominatorTree *DT;
142   LoopInfo *LI;
143   ScalarEvolution *SE;
144   TargetLibraryInfo *TLI;
145   const TargetTransformInfo *TTI;
146   const DataLayout *DL;
147   OptimizationRemarkEmitter &ORE;
148   bool ApplyCodeSizeHeuristics;
149   std::unique_ptr<MemorySSAUpdater> MSSAU;
150 
151 public:
LoopIdiomRecognize(AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,MemorySSA * MSSA,const DataLayout * DL,OptimizationRemarkEmitter & ORE)152   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
153                               LoopInfo *LI, ScalarEvolution *SE,
154                               TargetLibraryInfo *TLI,
155                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
156                               const DataLayout *DL,
157                               OptimizationRemarkEmitter &ORE)
158       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
159     if (MSSA)
160       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
161   }
162 
163   bool runOnLoop(Loop *L);
164 
165 private:
166   using StoreList = SmallVector<StoreInst *, 8>;
167   using StoreListMap = MapVector<Value *, StoreList>;
168 
169   StoreListMap StoreRefsForMemset;
170   StoreListMap StoreRefsForMemsetPattern;
171   StoreList StoreRefsForMemcpy;
172   bool HasMemset;
173   bool HasMemsetPattern;
174   bool HasMemcpy;
175 
176   /// Return code for isLegalStore()
177   enum LegalStoreKind {
178     None = 0,
179     Memset,
180     MemsetPattern,
181     Memcpy,
182     UnorderedAtomicMemcpy,
183     DontUse // Dummy retval never to be used. Allows catching errors in retval
184             // handling.
185   };
186 
187   /// \name Countable Loop Idiom Handling
188   /// @{
189 
190   bool runOnCountableLoop();
191   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
192                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
193 
194   void collectStores(BasicBlock *BB);
195   LegalStoreKind isLegalStore(StoreInst *SI);
196   enum class ForMemset { No, Yes };
197   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
198                          ForMemset For);
199 
200   template <typename MemInst>
201   bool processLoopMemIntrinsic(
202       BasicBlock *BB,
203       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
204       const SCEV *BECount);
205   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
206   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
207 
208   bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
209                                MaybeAlign StoreAlignment, Value *StoredVal,
210                                Instruction *TheStore,
211                                SmallPtrSetImpl<Instruction *> &Stores,
212                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
213                                bool IsNegStride, bool IsLoopMemset = false);
214   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
215   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
216                                   const SCEV *StoreSize, MaybeAlign StoreAlign,
217                                   MaybeAlign LoadAlign, Instruction *TheStore,
218                                   Instruction *TheLoad,
219                                   const SCEVAddRecExpr *StoreEv,
220                                   const SCEVAddRecExpr *LoadEv,
221                                   const SCEV *BECount);
222   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
223                                  bool IsLoopMemset = false);
224 
225   /// @}
226   /// \name Noncountable Loop Idiom Handling
227   /// @{
228 
229   bool runOnNoncountableLoop();
230 
231   bool recognizePopcount();
232   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
233                                PHINode *CntPhi, Value *Var);
234   bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX,
235                                bool ZeroCheck, size_t CanonicalSize);
236   bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX,
237                              Instruction *DefX, PHINode *CntPhi,
238                              Instruction *CntInst);
239   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
240   bool recognizeShiftUntilLessThan();
241   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
242                                 Instruction *CntInst, PHINode *CntPhi,
243                                 Value *Var, Instruction *DefX,
244                                 const DebugLoc &DL, bool ZeroCheck,
245                                 bool IsCntPhiUsedOutsideLoop,
246                                 bool InsertSub = false);
247 
248   bool recognizeShiftUntilBitTest();
249   bool recognizeShiftUntilZero();
250 
251   /// @}
252 };
253 } // end anonymous namespace
254 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)255 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
256                                               LoopStandardAnalysisResults &AR,
257                                               LPMUpdater &) {
258   if (DisableLIRP::All)
259     return PreservedAnalyses::all();
260 
261   const auto *DL = &L.getHeader()->getDataLayout();
262 
263   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
264   // pass.  Function analyses need to be preserved across loop transformations
265   // but ORE cannot be preserved (see comment before the pass definition).
266   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
267 
268   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
269                          AR.MSSA, DL, ORE);
270   if (!LIR.runOnLoop(&L))
271     return PreservedAnalyses::all();
272 
273   auto PA = getLoopPassPreservedAnalyses();
274   if (AR.MSSA)
275     PA.preserve<MemorySSAAnalysis>();
276   return PA;
277 }
278 
deleteDeadInstruction(Instruction * I)279 static void deleteDeadInstruction(Instruction *I) {
280   I->replaceAllUsesWith(PoisonValue::get(I->getType()));
281   I->eraseFromParent();
282 }
283 
284 //===----------------------------------------------------------------------===//
285 //
286 //          Implementation of LoopIdiomRecognize
287 //
288 //===----------------------------------------------------------------------===//
289 
runOnLoop(Loop * L)290 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
291   CurLoop = L;
292   // If the loop could not be converted to canonical form, it must have an
293   // indirectbr in it, just give up.
294   if (!L->getLoopPreheader())
295     return false;
296 
297   // Disable loop idiom recognition if the function's name is a common idiom.
298   StringRef Name = L->getHeader()->getParent()->getName();
299   if (Name == "memset" || Name == "memcpy")
300     return false;
301 
302   // Determine if code size heuristics need to be applied.
303   ApplyCodeSizeHeuristics =
304       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
305 
306   HasMemset = TLI->has(LibFunc_memset);
307   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
308   HasMemcpy = TLI->has(LibFunc_memcpy);
309 
310   if (HasMemset || HasMemsetPattern || HasMemcpy)
311     if (SE->hasLoopInvariantBackedgeTakenCount(L))
312       return runOnCountableLoop();
313 
314   return runOnNoncountableLoop();
315 }
316 
runOnCountableLoop()317 bool LoopIdiomRecognize::runOnCountableLoop() {
318   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
319   assert(!isa<SCEVCouldNotCompute>(BECount) &&
320          "runOnCountableLoop() called on a loop without a predictable"
321          "backedge-taken count");
322 
323   // If this loop executes exactly one time, then it should be peeled, not
324   // optimized by this pass.
325   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
326     if (BECst->getAPInt() == 0)
327       return false;
328 
329   SmallVector<BasicBlock *, 8> ExitBlocks;
330   CurLoop->getUniqueExitBlocks(ExitBlocks);
331 
332   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
333                     << CurLoop->getHeader()->getParent()->getName()
334                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
335                     << "\n");
336 
337   // The following transforms hoist stores/memsets into the loop pre-header.
338   // Give up if the loop has instructions that may throw.
339   SimpleLoopSafetyInfo SafetyInfo;
340   SafetyInfo.computeLoopSafetyInfo(CurLoop);
341   if (SafetyInfo.anyBlockMayThrow())
342     return false;
343 
344   bool MadeChange = false;
345 
346   // Scan all the blocks in the loop that are not in subloops.
347   for (auto *BB : CurLoop->getBlocks()) {
348     // Ignore blocks in subloops.
349     if (LI->getLoopFor(BB) != CurLoop)
350       continue;
351 
352     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
353   }
354   return MadeChange;
355 }
356 
getStoreStride(const SCEVAddRecExpr * StoreEv)357 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
358   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
359   return ConstStride->getAPInt();
360 }
361 
362 /// getMemSetPatternValue - If a strided store of the specified value is safe to
363 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
364 /// be passed in.  Otherwise, return null.
365 ///
366 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
367 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)368 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
369   // FIXME: This could check for UndefValue because it can be merged into any
370   // other valid pattern.
371 
372   // If the value isn't a constant, we can't promote it to being in a constant
373   // array.  We could theoretically do a store to an alloca or something, but
374   // that doesn't seem worthwhile.
375   Constant *C = dyn_cast<Constant>(V);
376   if (!C || isa<ConstantExpr>(C))
377     return nullptr;
378 
379   // Only handle simple values that are a power of two bytes in size.
380   uint64_t Size = DL->getTypeSizeInBits(V->getType());
381   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
382     return nullptr;
383 
384   // Don't care enough about darwin/ppc to implement this.
385   if (DL->isBigEndian())
386     return nullptr;
387 
388   // Convert to size in bytes.
389   Size /= 8;
390 
391   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
392   // if the top and bottom are the same (e.g. for vectors and large integers).
393   if (Size > 16)
394     return nullptr;
395 
396   // If the constant is exactly 16 bytes, just use it.
397   if (Size == 16)
398     return C;
399 
400   // Otherwise, we'll use an array of the constants.
401   unsigned ArraySize = 16 / Size;
402   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
403   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
404 }
405 
406 LoopIdiomRecognize::LegalStoreKind
isLegalStore(StoreInst * SI)407 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
408   // Don't touch volatile stores.
409   if (SI->isVolatile())
410     return LegalStoreKind::None;
411   // We only want simple or unordered-atomic stores.
412   if (!SI->isUnordered())
413     return LegalStoreKind::None;
414 
415   // Avoid merging nontemporal stores.
416   if (SI->getMetadata(LLVMContext::MD_nontemporal))
417     return LegalStoreKind::None;
418 
419   Value *StoredVal = SI->getValueOperand();
420   Value *StorePtr = SI->getPointerOperand();
421 
422   // Don't convert stores of non-integral pointer types to memsets (which stores
423   // integers).
424   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
425     return LegalStoreKind::None;
426 
427   // Reject stores that are so large that they overflow an unsigned.
428   // When storing out scalable vectors we bail out for now, since the code
429   // below currently only works for constant strides.
430   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
431   if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
432       (SizeInBits.getFixedValue() >> 32) != 0)
433     return LegalStoreKind::None;
434 
435   // See if the pointer expression is an AddRec like {base,+,1} on the current
436   // loop, which indicates a strided store.  If we have something else, it's a
437   // random store we can't handle.
438   const SCEVAddRecExpr *StoreEv =
439       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
440   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
441     return LegalStoreKind::None;
442 
443   // Check to see if we have a constant stride.
444   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
445     return LegalStoreKind::None;
446 
447   // See if the store can be turned into a memset.
448 
449   // If the stored value is a byte-wise value (like i32 -1), then it may be
450   // turned into a memset of i8 -1, assuming that all the consecutive bytes
451   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
452   // but it can be turned into memset_pattern if the target supports it.
453   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
454 
455   // Note: memset and memset_pattern on unordered-atomic is yet not supported
456   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
457 
458   // If we're allowed to form a memset, and the stored value would be
459   // acceptable for memset, use it.
460   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
461       // Verify that the stored value is loop invariant.  If not, we can't
462       // promote the memset.
463       CurLoop->isLoopInvariant(SplatValue)) {
464     // It looks like we can use SplatValue.
465     return LegalStoreKind::Memset;
466   }
467   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
468       // Don't create memset_pattern16s with address spaces.
469       StorePtr->getType()->getPointerAddressSpace() == 0 &&
470       getMemSetPatternValue(StoredVal, DL)) {
471     // It looks like we can use PatternValue!
472     return LegalStoreKind::MemsetPattern;
473   }
474 
475   // Otherwise, see if the store can be turned into a memcpy.
476   if (HasMemcpy && !DisableLIRP::Memcpy) {
477     // Check to see if the stride matches the size of the store.  If so, then we
478     // know that every byte is touched in the loop.
479     APInt Stride = getStoreStride(StoreEv);
480     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
481     if (StoreSize != Stride && StoreSize != -Stride)
482       return LegalStoreKind::None;
483 
484     // The store must be feeding a non-volatile load.
485     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
486 
487     // Only allow non-volatile loads
488     if (!LI || LI->isVolatile())
489       return LegalStoreKind::None;
490     // Only allow simple or unordered-atomic loads
491     if (!LI->isUnordered())
492       return LegalStoreKind::None;
493 
494     // See if the pointer expression is an AddRec like {base,+,1} on the current
495     // loop, which indicates a strided load.  If we have something else, it's a
496     // random load we can't handle.
497     const SCEVAddRecExpr *LoadEv =
498         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
499     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
500       return LegalStoreKind::None;
501 
502     // The store and load must share the same stride.
503     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
504       return LegalStoreKind::None;
505 
506     // Success.  This store can be converted into a memcpy.
507     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
508     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
509                            : LegalStoreKind::Memcpy;
510   }
511   // This store can't be transformed into a memset/memcpy.
512   return LegalStoreKind::None;
513 }
514 
collectStores(BasicBlock * BB)515 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
516   StoreRefsForMemset.clear();
517   StoreRefsForMemsetPattern.clear();
518   StoreRefsForMemcpy.clear();
519   for (Instruction &I : *BB) {
520     StoreInst *SI = dyn_cast<StoreInst>(&I);
521     if (!SI)
522       continue;
523 
524     // Make sure this is a strided store with a constant stride.
525     switch (isLegalStore(SI)) {
526     case LegalStoreKind::None:
527       // Nothing to do
528       break;
529     case LegalStoreKind::Memset: {
530       // Find the base pointer.
531       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
532       StoreRefsForMemset[Ptr].push_back(SI);
533     } break;
534     case LegalStoreKind::MemsetPattern: {
535       // Find the base pointer.
536       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
537       StoreRefsForMemsetPattern[Ptr].push_back(SI);
538     } break;
539     case LegalStoreKind::Memcpy:
540     case LegalStoreKind::UnorderedAtomicMemcpy:
541       StoreRefsForMemcpy.push_back(SI);
542       break;
543     default:
544       assert(false && "unhandled return value");
545       break;
546     }
547   }
548 }
549 
550 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
551 /// with the specified backedge count.  This block is known to be in the current
552 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)553 bool LoopIdiomRecognize::runOnLoopBlock(
554     BasicBlock *BB, const SCEV *BECount,
555     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
556   // We can only promote stores in this block if they are unconditionally
557   // executed in the loop.  For a block to be unconditionally executed, it has
558   // to dominate all the exit blocks of the loop.  Verify this now.
559   for (BasicBlock *ExitBlock : ExitBlocks)
560     if (!DT->dominates(BB, ExitBlock))
561       return false;
562 
563   bool MadeChange = false;
564   // Look for store instructions, which may be optimized to memset/memcpy.
565   collectStores(BB);
566 
567   // Look for a single store or sets of stores with a common base, which can be
568   // optimized into a memset (memset_pattern).  The latter most commonly happens
569   // with structs and handunrolled loops.
570   for (auto &SL : StoreRefsForMemset)
571     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
572 
573   for (auto &SL : StoreRefsForMemsetPattern)
574     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
575 
576   // Optimize the store into a memcpy, if it feeds an similarly strided load.
577   for (auto &SI : StoreRefsForMemcpy)
578     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
579 
580   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
581       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
582   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
583       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
584 
585   return MadeChange;
586 }
587 
588 /// See if this store(s) can be promoted to a memset.
processLoopStores(SmallVectorImpl<StoreInst * > & SL,const SCEV * BECount,ForMemset For)589 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
590                                            const SCEV *BECount, ForMemset For) {
591   // Try to find consecutive stores that can be transformed into memsets.
592   SetVector<StoreInst *> Heads, Tails;
593   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
594 
595   // Do a quadratic search on all of the given stores and find
596   // all of the pairs of stores that follow each other.
597   SmallVector<unsigned, 16> IndexQueue;
598   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
599     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
600 
601     Value *FirstStoredVal = SL[i]->getValueOperand();
602     Value *FirstStorePtr = SL[i]->getPointerOperand();
603     const SCEVAddRecExpr *FirstStoreEv =
604         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
605     APInt FirstStride = getStoreStride(FirstStoreEv);
606     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
607 
608     // See if we can optimize just this store in isolation.
609     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
610       Heads.insert(SL[i]);
611       continue;
612     }
613 
614     Value *FirstSplatValue = nullptr;
615     Constant *FirstPatternValue = nullptr;
616 
617     if (For == ForMemset::Yes)
618       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
619     else
620       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
621 
622     assert((FirstSplatValue || FirstPatternValue) &&
623            "Expected either splat value or pattern value.");
624 
625     IndexQueue.clear();
626     // If a store has multiple consecutive store candidates, search Stores
627     // array according to the sequence: from i+1 to e, then from i-1 to 0.
628     // This is because usually pairing with immediate succeeding or preceding
629     // candidate create the best chance to find memset opportunity.
630     unsigned j = 0;
631     for (j = i + 1; j < e; ++j)
632       IndexQueue.push_back(j);
633     for (j = i; j > 0; --j)
634       IndexQueue.push_back(j - 1);
635 
636     for (auto &k : IndexQueue) {
637       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
638       Value *SecondStorePtr = SL[k]->getPointerOperand();
639       const SCEVAddRecExpr *SecondStoreEv =
640           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
641       APInt SecondStride = getStoreStride(SecondStoreEv);
642 
643       if (FirstStride != SecondStride)
644         continue;
645 
646       Value *SecondStoredVal = SL[k]->getValueOperand();
647       Value *SecondSplatValue = nullptr;
648       Constant *SecondPatternValue = nullptr;
649 
650       if (For == ForMemset::Yes)
651         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
652       else
653         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
654 
655       assert((SecondSplatValue || SecondPatternValue) &&
656              "Expected either splat value or pattern value.");
657 
658       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
659         if (For == ForMemset::Yes) {
660           if (isa<UndefValue>(FirstSplatValue))
661             FirstSplatValue = SecondSplatValue;
662           if (FirstSplatValue != SecondSplatValue)
663             continue;
664         } else {
665           if (isa<UndefValue>(FirstPatternValue))
666             FirstPatternValue = SecondPatternValue;
667           if (FirstPatternValue != SecondPatternValue)
668             continue;
669         }
670         Tails.insert(SL[k]);
671         Heads.insert(SL[i]);
672         ConsecutiveChain[SL[i]] = SL[k];
673         break;
674       }
675     }
676   }
677 
678   // We may run into multiple chains that merge into a single chain. We mark the
679   // stores that we transformed so that we don't visit the same store twice.
680   SmallPtrSet<Value *, 16> TransformedStores;
681   bool Changed = false;
682 
683   // For stores that start but don't end a link in the chain:
684   for (StoreInst *I : Heads) {
685     if (Tails.count(I))
686       continue;
687 
688     // We found a store instr that starts a chain. Now follow the chain and try
689     // to transform it.
690     SmallPtrSet<Instruction *, 8> AdjacentStores;
691     StoreInst *HeadStore = I;
692     unsigned StoreSize = 0;
693 
694     // Collect the chain into a list.
695     while (Tails.count(I) || Heads.count(I)) {
696       if (TransformedStores.count(I))
697         break;
698       AdjacentStores.insert(I);
699 
700       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
701       // Move to the next value in the chain.
702       I = ConsecutiveChain[I];
703     }
704 
705     Value *StoredVal = HeadStore->getValueOperand();
706     Value *StorePtr = HeadStore->getPointerOperand();
707     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
708     APInt Stride = getStoreStride(StoreEv);
709 
710     // Check to see if the stride matches the size of the stores.  If so, then
711     // we know that every byte is touched in the loop.
712     if (StoreSize != Stride && StoreSize != -Stride)
713       continue;
714 
715     bool IsNegStride = StoreSize == -Stride;
716 
717     Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
718     const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
719     if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
720                                 MaybeAlign(HeadStore->getAlign()), StoredVal,
721                                 HeadStore, AdjacentStores, StoreEv, BECount,
722                                 IsNegStride)) {
723       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
724       Changed = true;
725     }
726   }
727 
728   return Changed;
729 }
730 
731 /// processLoopMemIntrinsic - Template function for calling different processor
732 /// functions based on mem intrinsic type.
733 template <typename MemInst>
processLoopMemIntrinsic(BasicBlock * BB,bool (LoopIdiomRecognize::* Processor)(MemInst *,const SCEV *),const SCEV * BECount)734 bool LoopIdiomRecognize::processLoopMemIntrinsic(
735     BasicBlock *BB,
736     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
737     const SCEV *BECount) {
738   bool MadeChange = false;
739   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
740     Instruction *Inst = &*I++;
741     // Look for memory instructions, which may be optimized to a larger one.
742     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
743       WeakTrackingVH InstPtr(&*I);
744       if (!(this->*Processor)(MI, BECount))
745         continue;
746       MadeChange = true;
747 
748       // If processing the instruction invalidated our iterator, start over from
749       // the top of the block.
750       if (!InstPtr)
751         I = BB->begin();
752     }
753   }
754   return MadeChange;
755 }
756 
757 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
processLoopMemCpy(MemCpyInst * MCI,const SCEV * BECount)758 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
759                                            const SCEV *BECount) {
760   // We can only handle non-volatile memcpys with a constant size.
761   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
762     return false;
763 
764   // If we're not allowed to hack on memcpy, we fail.
765   if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
766     return false;
767 
768   Value *Dest = MCI->getDest();
769   Value *Source = MCI->getSource();
770   if (!Dest || !Source)
771     return false;
772 
773   // See if the load and store pointer expressions are AddRec like {base,+,1} on
774   // the current loop, which indicates a strided load and store.  If we have
775   // something else, it's a random load or store we can't handle.
776   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
777   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
778     return false;
779   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
780   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
781     return false;
782 
783   // Reject memcpys that are so large that they overflow an unsigned.
784   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
785   if ((SizeInBytes >> 32) != 0)
786     return false;
787 
788   // Check if the stride matches the size of the memcpy. If so, then we know
789   // that every byte is touched in the loop.
790   const SCEVConstant *ConstStoreStride =
791       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
792   const SCEVConstant *ConstLoadStride =
793       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
794   if (!ConstStoreStride || !ConstLoadStride)
795     return false;
796 
797   APInt StoreStrideValue = ConstStoreStride->getAPInt();
798   APInt LoadStrideValue = ConstLoadStride->getAPInt();
799   // Huge stride value - give up
800   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
801     return false;
802 
803   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
804     ORE.emit([&]() {
805       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
806              << ore::NV("Inst", "memcpy") << " in "
807              << ore::NV("Function", MCI->getFunction())
808              << " function will not be hoisted: "
809              << ore::NV("Reason", "memcpy size is not equal to stride");
810     });
811     return false;
812   }
813 
814   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
815   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
816   // Check if the load stride matches the store stride.
817   if (StoreStrideInt != LoadStrideInt)
818     return false;
819 
820   return processLoopStoreOfLoopLoad(
821       Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
822       MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
823       BECount);
824 }
825 
826 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)827 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
828                                            const SCEV *BECount) {
829   // We can only handle non-volatile memsets.
830   if (MSI->isVolatile())
831     return false;
832 
833   // If we're not allowed to hack on memset, we fail.
834   if (!HasMemset || DisableLIRP::Memset)
835     return false;
836 
837   Value *Pointer = MSI->getDest();
838 
839   // See if the pointer expression is an AddRec like {base,+,1} on the current
840   // loop, which indicates a strided store.  If we have something else, it's a
841   // random store we can't handle.
842   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
843   if (!Ev || Ev->getLoop() != CurLoop)
844     return false;
845   if (!Ev->isAffine()) {
846     LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n");
847     return false;
848   }
849 
850   const SCEV *PointerStrideSCEV = Ev->getOperand(1);
851   const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
852   if (!PointerStrideSCEV || !MemsetSizeSCEV)
853     return false;
854 
855   bool IsNegStride = false;
856   const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
857 
858   if (IsConstantSize) {
859     // Memset size is constant.
860     // Check if the pointer stride matches the memset size. If so, then
861     // we know that every byte is touched in the loop.
862     LLVM_DEBUG(dbgs() << "  memset size is constant\n");
863     uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
864     const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
865     if (!ConstStride)
866       return false;
867 
868     APInt Stride = ConstStride->getAPInt();
869     if (SizeInBytes != Stride && SizeInBytes != -Stride)
870       return false;
871 
872     IsNegStride = SizeInBytes == -Stride;
873   } else {
874     // Memset size is non-constant.
875     // Check if the pointer stride matches the memset size.
876     // To be conservative, the pass would not promote pointers that aren't in
877     // address space zero. Also, the pass only handles memset length and stride
878     // that are invariant for the top level loop.
879     LLVM_DEBUG(dbgs() << "  memset size is non-constant\n");
880     if (Pointer->getType()->getPointerAddressSpace() != 0) {
881       LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, "
882                         << "abort\n");
883       return false;
884     }
885     if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
886       LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, "
887                         << "abort\n");
888       return false;
889     }
890 
891     // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
892     IsNegStride = PointerStrideSCEV->isNonConstantNegative();
893     const SCEV *PositiveStrideSCEV =
894         IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
895                     : PointerStrideSCEV;
896     LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
897                       << "  PositiveStrideSCEV: " << *PositiveStrideSCEV
898                       << "\n");
899 
900     if (PositiveStrideSCEV != MemsetSizeSCEV) {
901       // If an expression is covered by the loop guard, compare again and
902       // proceed with optimization if equal.
903       const SCEV *FoldedPositiveStride =
904           SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
905       const SCEV *FoldedMemsetSize =
906           SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
907 
908       LLVM_DEBUG(dbgs() << "  Try to fold SCEV based on loop guard\n"
909                         << "    FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
910                         << "    FoldedPositiveStride: " << *FoldedPositiveStride
911                         << "\n");
912 
913       if (FoldedPositiveStride != FoldedMemsetSize) {
914         LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n");
915         return false;
916       }
917     }
918   }
919 
920   // Verify that the memset value is loop invariant.  If not, we can't promote
921   // the memset.
922   Value *SplatValue = MSI->getValue();
923   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
924     return false;
925 
926   SmallPtrSet<Instruction *, 1> MSIs;
927   MSIs.insert(MSI);
928   return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
929                                  MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
930                                  BECount, IsNegStride, /*IsLoopMemset=*/true);
931 }
932 
933 /// mayLoopAccessLocation - Return true if the specified loop might access the
934 /// specified pointer location, which is a loop-strided access.  The 'Access'
935 /// argument specifies what the verboten forms of access are (read or write).
936 static bool
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,const SCEV * StoreSizeSCEV,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & IgnoredInsts)937 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
938                       const SCEV *BECount, const SCEV *StoreSizeSCEV,
939                       AliasAnalysis &AA,
940                       SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
941   // Get the location that may be stored across the loop.  Since the access is
942   // strided positively through memory, we say that the modified location starts
943   // at the pointer and has infinite size.
944   LocationSize AccessSize = LocationSize::afterPointer();
945 
946   // If the loop iterates a fixed number of times, we can refine the access size
947   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
948   const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
949   const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
950   if (BECst && ConstSize) {
951     std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue();
952     std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue();
953     // FIXME: Should this check for overflow?
954     if (BEInt && SizeInt)
955       AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt);
956   }
957 
958   // TODO: For this to be really effective, we have to dive into the pointer
959   // operand in the store.  Store to &A[i] of 100 will always return may alias
960   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
961   // which will then no-alias a store to &A[100].
962   MemoryLocation StoreLoc(Ptr, AccessSize);
963 
964   for (BasicBlock *B : L->blocks())
965     for (Instruction &I : *B)
966       if (!IgnoredInsts.contains(&I) &&
967           isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
968         return true;
969   return false;
970 }
971 
972 // If we have a negative stride, Start refers to the end of the memory location
973 // we're trying to memset.  Therefore, we need to recompute the base pointer,
974 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,ScalarEvolution * SE)975 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
976                                         Type *IntPtr, const SCEV *StoreSizeSCEV,
977                                         ScalarEvolution *SE) {
978   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
979   if (!StoreSizeSCEV->isOne()) {
980     // index = back edge count * store size
981     Index = SE->getMulExpr(Index,
982                            SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
983                            SCEV::FlagNUW);
984   }
985   // base pointer = start - index * store size
986   return SE->getMinusSCEV(Start, Index);
987 }
988 
989 /// Compute the number of bytes as a SCEV from the backedge taken count.
990 ///
991 /// This also maps the SCEV into the provided type and tries to handle the
992 /// computation in a way that will fold cleanly.
getNumBytes(const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)993 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
994                                const SCEV *StoreSizeSCEV, Loop *CurLoop,
995                                const DataLayout *DL, ScalarEvolution *SE) {
996   const SCEV *TripCountSCEV =
997       SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop);
998   return SE->getMulExpr(TripCountSCEV,
999                         SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1000                         SCEV::FlagNUW);
1001 }
1002 
1003 /// processLoopStridedStore - We see a strided store of some value.  If we can
1004 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlignment,Value * StoredVal,Instruction * TheStore,SmallPtrSetImpl<Instruction * > & Stores,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool IsNegStride,bool IsLoopMemset)1005 bool LoopIdiomRecognize::processLoopStridedStore(
1006     Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1007     Value *StoredVal, Instruction *TheStore,
1008     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1009     const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1010   Module *M = TheStore->getModule();
1011   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1012   Constant *PatternValue = nullptr;
1013 
1014   if (!SplatValue)
1015     PatternValue = getMemSetPatternValue(StoredVal, DL);
1016 
1017   assert((SplatValue || PatternValue) &&
1018          "Expected either splat value or pattern value.");
1019 
1020   // The trip count of the loop and the base pointer of the addrec SCEV is
1021   // guaranteed to be loop invariant, which means that it should dominate the
1022   // header.  This allows us to insert code for it in the preheader.
1023   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1024   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1025   IRBuilder<> Builder(Preheader->getTerminator());
1026   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1027   SCEVExpanderCleaner ExpCleaner(Expander);
1028 
1029   Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
1030   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1031 
1032   bool Changed = false;
1033   const SCEV *Start = Ev->getStart();
1034   // Handle negative strided loops.
1035   if (IsNegStride)
1036     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1037 
1038   // TODO: ideally we should still be able to generate memset if SCEV expander
1039   // is taught to generate the dependencies at the latest point.
1040   if (!Expander.isSafeToExpand(Start))
1041     return Changed;
1042 
1043   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1044   // this into a memset in the loop preheader now if we want.  However, this
1045   // would be unsafe to do if there is anything else in the loop that may read
1046   // or write to the aliased location.  Check for any overlap by generating the
1047   // base pointer and checking the region.
1048   Value *BasePtr =
1049       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1050 
1051   // From here on out, conservatively report to the pass manager that we've
1052   // changed the IR, even if we later clean up these added instructions. There
1053   // may be structural differences e.g. in the order of use lists not accounted
1054   // for in just a textual dump of the IR. This is written as a variable, even
1055   // though statically all the places this dominates could be replaced with
1056   // 'true', with the hope that anyone trying to be clever / "more precise" with
1057   // the return value will read this comment, and leave them alone.
1058   Changed = true;
1059 
1060   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1061                             StoreSizeSCEV, *AA, Stores))
1062     return Changed;
1063 
1064   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1065     return Changed;
1066 
1067   // Okay, everything looks good, insert the memset.
1068 
1069   const SCEV *NumBytesS =
1070       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1071 
1072   // TODO: ideally we should still be able to generate memset if SCEV expander
1073   // is taught to generate the dependencies at the latest point.
1074   if (!Expander.isSafeToExpand(NumBytesS))
1075     return Changed;
1076 
1077   Value *NumBytes =
1078       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1079 
1080   if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16))
1081     return Changed;
1082 
1083   AAMDNodes AATags = TheStore->getAAMetadata();
1084   for (Instruction *Store : Stores)
1085     AATags = AATags.merge(Store->getAAMetadata());
1086   if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1087     AATags = AATags.extendTo(CI->getZExtValue());
1088   else
1089     AATags = AATags.extendTo(-1);
1090 
1091   CallInst *NewCall;
1092   if (SplatValue) {
1093     NewCall = Builder.CreateMemSet(
1094         BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1095         /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1096   } else {
1097     assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16));
1098     // Everything is emitted in default address space
1099     Type *Int8PtrTy = DestInt8PtrTy;
1100 
1101     StringRef FuncName = "memset_pattern16";
1102     FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1103                             Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1104     inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1105 
1106     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1107     // an constant array of 16-bytes.  Plop the value into a mergable global.
1108     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1109                                             GlobalValue::PrivateLinkage,
1110                                             PatternValue, ".memset_pattern");
1111     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1112     GV->setAlignment(Align(16));
1113     Value *PatternPtr = GV;
1114     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1115 
1116     // Set the TBAA info if present.
1117     if (AATags.TBAA)
1118       NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA);
1119 
1120     if (AATags.Scope)
1121       NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope);
1122 
1123     if (AATags.NoAlias)
1124       NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias);
1125   }
1126 
1127   NewCall->setDebugLoc(TheStore->getDebugLoc());
1128 
1129   if (MSSAU) {
1130     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1131         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1132     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1133   }
1134 
1135   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1136                     << "    from store to: " << *Ev << " at: " << *TheStore
1137                     << "\n");
1138 
1139   ORE.emit([&]() {
1140     OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1141                          NewCall->getDebugLoc(), Preheader);
1142     R << "Transformed loop-strided store in "
1143       << ore::NV("Function", TheStore->getFunction())
1144       << " function into a call to "
1145       << ore::NV("NewFunction", NewCall->getCalledFunction())
1146       << "() intrinsic";
1147     if (!Stores.empty())
1148       R << ore::setExtraArgs();
1149     for (auto *I : Stores) {
1150       R << ore::NV("FromBlock", I->getParent()->getName())
1151         << ore::NV("ToBlock", Preheader->getName());
1152     }
1153     return R;
1154   });
1155 
1156   // Okay, the memset has been formed.  Zap the original store and anything that
1157   // feeds into it.
1158   for (auto *I : Stores) {
1159     if (MSSAU)
1160       MSSAU->removeMemoryAccess(I, true);
1161     deleteDeadInstruction(I);
1162   }
1163   if (MSSAU && VerifyMemorySSA)
1164     MSSAU->getMemorySSA()->verifyMemorySSA();
1165   ++NumMemSet;
1166   ExpCleaner.markResultUsed();
1167   return true;
1168 }
1169 
1170 /// If the stored value is a strided load in the same loop with the same stride
1171 /// this may be transformable into a memcpy.  This kicks in for stuff like
1172 /// for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,const SCEV * BECount)1173 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1174                                                     const SCEV *BECount) {
1175   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1176 
1177   Value *StorePtr = SI->getPointerOperand();
1178   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1179   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1180 
1181   // The store must be feeding a non-volatile load.
1182   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1183   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1184 
1185   // See if the pointer expression is an AddRec like {base,+,1} on the current
1186   // loop, which indicates a strided load.  If we have something else, it's a
1187   // random load we can't handle.
1188   Value *LoadPtr = LI->getPointerOperand();
1189   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1190 
1191   const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1192   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1193                                     SI->getAlign(), LI->getAlign(), SI, LI,
1194                                     StoreEv, LoadEv, BECount);
1195 }
1196 
1197 namespace {
1198 class MemmoveVerifier {
1199 public:
MemmoveVerifier(const Value & LoadBasePtr,const Value & StoreBasePtr,const DataLayout & DL)1200   explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1201                            const DataLayout &DL)
1202       : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1203                     LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1204         BP2(llvm::GetPointerBaseWithConstantOffset(
1205             StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1206         IsSameObject(BP1 == BP2) {}
1207 
loadAndStoreMayFormMemmove(unsigned StoreSize,bool IsNegStride,const Instruction & TheLoad,bool IsMemCpy) const1208   bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1209                                   const Instruction &TheLoad,
1210                                   bool IsMemCpy) const {
1211     if (IsMemCpy) {
1212       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1213       // for negative stride.
1214       if ((!IsNegStride && LoadOff <= StoreOff) ||
1215           (IsNegStride && LoadOff >= StoreOff))
1216         return false;
1217     } else {
1218       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1219       // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1220       int64_t LoadSize =
1221           DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1222       if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1223         return false;
1224       if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1225           (IsNegStride && LoadOff + LoadSize > StoreOff))
1226         return false;
1227     }
1228     return true;
1229   }
1230 
1231 private:
1232   const DataLayout &DL;
1233   int64_t LoadOff = 0;
1234   int64_t StoreOff = 0;
1235   const Value *BP1;
1236   const Value *BP2;
1237 
1238 public:
1239   const bool IsSameObject;
1240 };
1241 } // namespace
1242 
processLoopStoreOfLoopLoad(Value * DestPtr,Value * SourcePtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlign,MaybeAlign LoadAlign,Instruction * TheStore,Instruction * TheLoad,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1243 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1244     Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1245     MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1246     Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1247     const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1248 
1249   // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1250   // conservatively bail here, since otherwise we may have to transform
1251   // llvm.memcpy.inline into llvm.memcpy which is illegal.
1252   if (isa<MemCpyInlineInst>(TheStore))
1253     return false;
1254 
1255   // The trip count of the loop and the base pointer of the addrec SCEV is
1256   // guaranteed to be loop invariant, which means that it should dominate the
1257   // header.  This allows us to insert code for it in the preheader.
1258   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1259   IRBuilder<> Builder(Preheader->getTerminator());
1260   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1261 
1262   SCEVExpanderCleaner ExpCleaner(Expander);
1263 
1264   bool Changed = false;
1265   const SCEV *StrStart = StoreEv->getStart();
1266   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1267   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1268 
1269   APInt Stride = getStoreStride(StoreEv);
1270   const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1271 
1272   // TODO: Deal with non-constant size; Currently expect constant store size
1273   assert(ConstStoreSize && "store size is expected to be a constant");
1274 
1275   int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1276   bool IsNegStride = StoreSize == -Stride;
1277 
1278   // Handle negative strided loops.
1279   if (IsNegStride)
1280     StrStart =
1281         getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1282 
1283   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1284   // this into a memcpy in the loop preheader now if we want.  However, this
1285   // would be unsafe to do if there is anything else in the loop that may read
1286   // or write the memory region we're storing to.  This includes the load that
1287   // feeds the stores.  Check for an alias by generating the base address and
1288   // checking everything.
1289   Value *StoreBasePtr = Expander.expandCodeFor(
1290       StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator());
1291 
1292   // From here on out, conservatively report to the pass manager that we've
1293   // changed the IR, even if we later clean up these added instructions. There
1294   // may be structural differences e.g. in the order of use lists not accounted
1295   // for in just a textual dump of the IR. This is written as a variable, even
1296   // though statically all the places this dominates could be replaced with
1297   // 'true', with the hope that anyone trying to be clever / "more precise" with
1298   // the return value will read this comment, and leave them alone.
1299   Changed = true;
1300 
1301   SmallPtrSet<Instruction *, 2> IgnoredInsts;
1302   IgnoredInsts.insert(TheStore);
1303 
1304   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1305   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1306 
1307   bool LoopAccessStore =
1308       mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1309                             StoreSizeSCEV, *AA, IgnoredInsts);
1310   if (LoopAccessStore) {
1311     // For memmove case it's not enough to guarantee that loop doesn't access
1312     // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1313     // the only user of TheLoad.
1314     if (!TheLoad->hasOneUse())
1315       return Changed;
1316     IgnoredInsts.insert(TheLoad);
1317     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1318                               BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1319       ORE.emit([&]() {
1320         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1321                                         TheStore)
1322                << ore::NV("Inst", InstRemark) << " in "
1323                << ore::NV("Function", TheStore->getFunction())
1324                << " function will not be hoisted: "
1325                << ore::NV("Reason", "The loop may access store location");
1326       });
1327       return Changed;
1328     }
1329     IgnoredInsts.erase(TheLoad);
1330   }
1331 
1332   const SCEV *LdStart = LoadEv->getStart();
1333   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1334 
1335   // Handle negative strided loops.
1336   if (IsNegStride)
1337     LdStart =
1338         getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1339 
1340   // For a memcpy, we have to make sure that the input array is not being
1341   // mutated by the loop.
1342   Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
1343                                               Preheader->getTerminator());
1344 
1345   // If the store is a memcpy instruction, we must check if it will write to
1346   // the load memory locations. So remove it from the ignored stores.
1347   MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1348   if (IsMemCpy && !Verifier.IsSameObject)
1349     IgnoredInsts.erase(TheStore);
1350   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1351                             StoreSizeSCEV, *AA, IgnoredInsts)) {
1352     ORE.emit([&]() {
1353       return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1354              << ore::NV("Inst", InstRemark) << " in "
1355              << ore::NV("Function", TheStore->getFunction())
1356              << " function will not be hoisted: "
1357              << ore::NV("Reason", "The loop may access load location");
1358     });
1359     return Changed;
1360   }
1361 
1362   bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1363   if (UseMemMove)
1364     if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1365                                              IsMemCpy))
1366       return Changed;
1367 
1368   if (avoidLIRForMultiBlockLoop())
1369     return Changed;
1370 
1371   // Okay, everything is safe, we can transform this!
1372 
1373   const SCEV *NumBytesS =
1374       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1375 
1376   Value *NumBytes =
1377       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1378 
1379   AAMDNodes AATags = TheLoad->getAAMetadata();
1380   AAMDNodes StoreAATags = TheStore->getAAMetadata();
1381   AATags = AATags.merge(StoreAATags);
1382   if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1383     AATags = AATags.extendTo(CI->getZExtValue());
1384   else
1385     AATags = AATags.extendTo(-1);
1386 
1387   CallInst *NewCall = nullptr;
1388   // Check whether to generate an unordered atomic memcpy:
1389   //  If the load or store are atomic, then they must necessarily be unordered
1390   //  by previous checks.
1391   if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1392     if (UseMemMove)
1393       NewCall = Builder.CreateMemMove(
1394           StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1395           /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1396     else
1397       NewCall =
1398           Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1399                                NumBytes, /*isVolatile=*/false, AATags.TBAA,
1400                                AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1401   } else {
1402     // For now don't support unordered atomic memmove.
1403     if (UseMemMove)
1404       return Changed;
1405     // We cannot allow unaligned ops for unordered load/store, so reject
1406     // anything where the alignment isn't at least the element size.
1407     assert((StoreAlign && LoadAlign) &&
1408            "Expect unordered load/store to have align.");
1409     if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1410       return Changed;
1411 
1412     // If the element.atomic memcpy is not lowered into explicit
1413     // loads/stores later, then it will be lowered into an element-size
1414     // specific lib call. If the lib call doesn't exist for our store size, then
1415     // we shouldn't generate the memcpy.
1416     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1417       return Changed;
1418 
1419     // Create the call.
1420     // Note that unordered atomic loads/stores are *required* by the spec to
1421     // have an alignment but non-atomic loads/stores may not.
1422     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1423         StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1424         AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1425   }
1426   NewCall->setDebugLoc(TheStore->getDebugLoc());
1427 
1428   if (MSSAU) {
1429     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1430         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1431     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1432   }
1433 
1434   LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n"
1435                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1436                     << "\n"
1437                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1438                     << "\n");
1439 
1440   ORE.emit([&]() {
1441     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1442                               NewCall->getDebugLoc(), Preheader)
1443            << "Formed a call to "
1444            << ore::NV("NewFunction", NewCall->getCalledFunction())
1445            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1446            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1447            << " function"
1448            << ore::setExtraArgs()
1449            << ore::NV("FromBlock", TheStore->getParent()->getName())
1450            << ore::NV("ToBlock", Preheader->getName());
1451   });
1452 
1453   // Okay, a new call to memcpy/memmove has been formed.  Zap the original store
1454   // and anything that feeds into it.
1455   if (MSSAU)
1456     MSSAU->removeMemoryAccess(TheStore, true);
1457   deleteDeadInstruction(TheStore);
1458   if (MSSAU && VerifyMemorySSA)
1459     MSSAU->getMemorySSA()->verifyMemorySSA();
1460   if (UseMemMove)
1461     ++NumMemMove;
1462   else
1463     ++NumMemCpy;
1464   ExpCleaner.markResultUsed();
1465   return true;
1466 }
1467 
1468 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1469 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1470 //
avoidLIRForMultiBlockLoop(bool IsMemset,bool IsLoopMemset)1471 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1472                                                    bool IsLoopMemset) {
1473   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1474     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1475       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1476                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1477                         << " avoided: multi-block top-level loop\n");
1478       return true;
1479     }
1480   }
1481 
1482   return false;
1483 }
1484 
runOnNoncountableLoop()1485 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1486   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1487                     << CurLoop->getHeader()->getParent()->getName()
1488                     << "] Noncountable Loop %"
1489                     << CurLoop->getHeader()->getName() << "\n");
1490 
1491   return recognizePopcount() || recognizeAndInsertFFS() ||
1492          recognizeShiftUntilBitTest() || recognizeShiftUntilZero() ||
1493          recognizeShiftUntilLessThan();
1494 }
1495 
1496 /// Check if the given conditional branch is based on the comparison between
1497 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1498 /// true), the control yields to the loop entry. If the branch matches the
1499 /// behavior, the variable involved in the comparison is returned. This function
1500 /// will be called to see if the precondition and postcondition of the loop are
1501 /// in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry,bool JmpOnZero=false)1502 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1503                              bool JmpOnZero = false) {
1504   if (!BI || !BI->isConditional())
1505     return nullptr;
1506 
1507   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1508   if (!Cond)
1509     return nullptr;
1510 
1511   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1512   if (!CmpZero || !CmpZero->isZero())
1513     return nullptr;
1514 
1515   BasicBlock *TrueSucc = BI->getSuccessor(0);
1516   BasicBlock *FalseSucc = BI->getSuccessor(1);
1517   if (JmpOnZero)
1518     std::swap(TrueSucc, FalseSucc);
1519 
1520   ICmpInst::Predicate Pred = Cond->getPredicate();
1521   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1522       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1523     return Cond->getOperand(0);
1524 
1525   return nullptr;
1526 }
1527 
1528 /// Check if the given conditional branch is based on an unsigned less-than
1529 /// comparison between a variable and a constant, and if the comparison is false
1530 /// the control yields to the loop entry. If the branch matches the behaviour,
1531 /// the variable involved in the comparison is returned.
matchShiftULTCondition(BranchInst * BI,BasicBlock * LoopEntry,APInt & Threshold)1532 static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry,
1533                                      APInt &Threshold) {
1534   if (!BI || !BI->isConditional())
1535     return nullptr;
1536 
1537   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1538   if (!Cond)
1539     return nullptr;
1540 
1541   ConstantInt *CmpConst = dyn_cast<ConstantInt>(Cond->getOperand(1));
1542   if (!CmpConst)
1543     return nullptr;
1544 
1545   BasicBlock *FalseSucc = BI->getSuccessor(1);
1546   ICmpInst::Predicate Pred = Cond->getPredicate();
1547 
1548   if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) {
1549     Threshold = CmpConst->getValue();
1550     return Cond->getOperand(0);
1551   }
1552 
1553   return nullptr;
1554 }
1555 
1556 // Check if the recurrence variable `VarX` is in the right form to create
1557 // the idiom. Returns the value coerced to a PHINode if so.
getRecurrenceVar(Value * VarX,Instruction * DefX,BasicBlock * LoopEntry)1558 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1559                                  BasicBlock *LoopEntry) {
1560   auto *PhiX = dyn_cast<PHINode>(VarX);
1561   if (PhiX && PhiX->getParent() == LoopEntry &&
1562       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1563     return PhiX;
1564   return nullptr;
1565 }
1566 
1567 /// Return true if the idiom is detected in the loop.
1568 ///
1569 /// Additionally:
1570 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1571 ///       or nullptr if there is no such.
1572 /// 2) \p CntPhi is set to the corresponding phi node
1573 ///       or nullptr if there is no such.
1574 /// 3) \p InitX is set to the value whose CTLZ could be used.
1575 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1576 /// 5) \p Threshold is set to the constant involved in the unsigned less-than
1577 ///       comparison.
1578 ///
1579 /// The core idiom we are trying to detect is:
1580 /// \code
1581 ///    if (x0 < 2)
1582 ///      goto loop-exit // the precondition of the loop
1583 ///    cnt0 = init-val
1584 ///    do {
1585 ///      x = phi (x0, x.next);   //PhiX
1586 ///      cnt = phi (cnt0, cnt.next)
1587 ///
1588 ///      cnt.next = cnt + 1;
1589 ///       ...
1590 ///      x.next = x >> 1;   // DefX
1591 ///    } while (x >= 4)
1592 /// loop-exit:
1593 /// \endcode
detectShiftUntilLessThanIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX,APInt & Threshold)1594 static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL,
1595                                           Intrinsic::ID &IntrinID,
1596                                           Value *&InitX, Instruction *&CntInst,
1597                                           PHINode *&CntPhi, Instruction *&DefX,
1598                                           APInt &Threshold) {
1599   BasicBlock *LoopEntry;
1600 
1601   DefX = nullptr;
1602   CntInst = nullptr;
1603   CntPhi = nullptr;
1604   LoopEntry = *(CurLoop->block_begin());
1605 
1606   // step 1: Check if the loop-back branch is in desirable form.
1607   if (Value *T = matchShiftULTCondition(
1608           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry,
1609           Threshold))
1610     DefX = dyn_cast<Instruction>(T);
1611   else
1612     return false;
1613 
1614   // step 2: Check the recurrence of variable X
1615   if (!DefX || !isa<PHINode>(DefX))
1616     return false;
1617 
1618   PHINode *VarPhi = cast<PHINode>(DefX);
1619   int Idx = VarPhi->getBasicBlockIndex(LoopEntry);
1620   if (Idx == -1)
1621     return false;
1622 
1623   DefX = dyn_cast<Instruction>(VarPhi->getIncomingValue(Idx));
1624   if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(0) != VarPhi)
1625     return false;
1626 
1627   // step 3: detect instructions corresponding to "x.next = x >> 1"
1628   if (DefX->getOpcode() != Instruction::LShr)
1629     return false;
1630 
1631   IntrinID = Intrinsic::ctlz;
1632   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1633   if (!Shft || !Shft->isOne())
1634     return false;
1635 
1636   InitX = VarPhi->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1637 
1638   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1639   //         or cnt.next = cnt + -1.
1640   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1641   //       then all uses of "cnt.next" could be optimized to the trip count
1642   //       plus "cnt0". Currently it is not optimized.
1643   //       This step could be used to detect POPCNT instruction:
1644   //       cnt.next = cnt + (x.next & 1)
1645   for (Instruction &Inst : llvm::make_range(
1646            LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1647     if (Inst.getOpcode() != Instruction::Add)
1648       continue;
1649 
1650     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1651     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1652       continue;
1653 
1654     PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1655     if (!Phi)
1656       continue;
1657 
1658     CntInst = &Inst;
1659     CntPhi = Phi;
1660     break;
1661   }
1662   if (!CntInst)
1663     return false;
1664 
1665   return true;
1666 }
1667 
1668 /// Return true iff the idiom is detected in the loop.
1669 ///
1670 /// Additionally:
1671 /// 1) \p CntInst is set to the instruction counting the population bit.
1672 /// 2) \p CntPhi is set to the corresponding phi node.
1673 /// 3) \p Var is set to the value whose population bits are being counted.
1674 ///
1675 /// The core idiom we are trying to detect is:
1676 /// \code
1677 ///    if (x0 != 0)
1678 ///      goto loop-exit // the precondition of the loop
1679 ///    cnt0 = init-val;
1680 ///    do {
1681 ///       x1 = phi (x0, x2);
1682 ///       cnt1 = phi(cnt0, cnt2);
1683 ///
1684 ///       cnt2 = cnt1 + 1;
1685 ///        ...
1686 ///       x2 = x1 & (x1 - 1);
1687 ///        ...
1688 ///    } while(x != 0);
1689 ///
1690 /// loop-exit:
1691 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)1692 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1693                                 Instruction *&CntInst, PHINode *&CntPhi,
1694                                 Value *&Var) {
1695   // step 1: Check to see if the look-back branch match this pattern:
1696   //    "if (a!=0) goto loop-entry".
1697   BasicBlock *LoopEntry;
1698   Instruction *DefX2, *CountInst;
1699   Value *VarX1, *VarX0;
1700   PHINode *PhiX, *CountPhi;
1701 
1702   DefX2 = CountInst = nullptr;
1703   VarX1 = VarX0 = nullptr;
1704   PhiX = CountPhi = nullptr;
1705   LoopEntry = *(CurLoop->block_begin());
1706 
1707   // step 1: Check if the loop-back branch is in desirable form.
1708   {
1709     if (Value *T = matchCondition(
1710             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1711       DefX2 = dyn_cast<Instruction>(T);
1712     else
1713       return false;
1714   }
1715 
1716   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1717   {
1718     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1719       return false;
1720 
1721     BinaryOperator *SubOneOp;
1722 
1723     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1724       VarX1 = DefX2->getOperand(1);
1725     else {
1726       VarX1 = DefX2->getOperand(0);
1727       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1728     }
1729     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1730       return false;
1731 
1732     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1733     if (!Dec ||
1734         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1735           (SubOneOp->getOpcode() == Instruction::Add &&
1736            Dec->isMinusOne()))) {
1737       return false;
1738     }
1739   }
1740 
1741   // step 3: Check the recurrence of variable X
1742   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1743   if (!PhiX)
1744     return false;
1745 
1746   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1747   {
1748     CountInst = nullptr;
1749     for (Instruction &Inst : llvm::make_range(
1750              LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1751       if (Inst.getOpcode() != Instruction::Add)
1752         continue;
1753 
1754       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1755       if (!Inc || !Inc->isOne())
1756         continue;
1757 
1758       PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1759       if (!Phi)
1760         continue;
1761 
1762       // Check if the result of the instruction is live of the loop.
1763       bool LiveOutLoop = false;
1764       for (User *U : Inst.users()) {
1765         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1766           LiveOutLoop = true;
1767           break;
1768         }
1769       }
1770 
1771       if (LiveOutLoop) {
1772         CountInst = &Inst;
1773         CountPhi = Phi;
1774         break;
1775       }
1776     }
1777 
1778     if (!CountInst)
1779       return false;
1780   }
1781 
1782   // step 5: check if the precondition is in this form:
1783   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1784   {
1785     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1786     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1787     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1788       return false;
1789 
1790     CntInst = CountInst;
1791     CntPhi = CountPhi;
1792     Var = T;
1793   }
1794 
1795   return true;
1796 }
1797 
1798 /// Return true if the idiom is detected in the loop.
1799 ///
1800 /// Additionally:
1801 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1802 ///       or nullptr if there is no such.
1803 /// 2) \p CntPhi is set to the corresponding phi node
1804 ///       or nullptr if there is no such.
1805 /// 3) \p Var is set to the value whose CTLZ could be used.
1806 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1807 ///
1808 /// The core idiom we are trying to detect is:
1809 /// \code
1810 ///    if (x0 == 0)
1811 ///      goto loop-exit // the precondition of the loop
1812 ///    cnt0 = init-val;
1813 ///    do {
1814 ///       x = phi (x0, x.next);   //PhiX
1815 ///       cnt = phi(cnt0, cnt.next);
1816 ///
1817 ///       cnt.next = cnt + 1;
1818 ///        ...
1819 ///       x.next = x >> 1;   // DefX
1820 ///        ...
1821 ///    } while(x.next != 0);
1822 ///
1823 /// loop-exit:
1824 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX)1825 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1826                                       Intrinsic::ID &IntrinID, Value *&InitX,
1827                                       Instruction *&CntInst, PHINode *&CntPhi,
1828                                       Instruction *&DefX) {
1829   BasicBlock *LoopEntry;
1830   Value *VarX = nullptr;
1831 
1832   DefX = nullptr;
1833   CntInst = nullptr;
1834   CntPhi = nullptr;
1835   LoopEntry = *(CurLoop->block_begin());
1836 
1837   // step 1: Check if the loop-back branch is in desirable form.
1838   if (Value *T = matchCondition(
1839           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1840     DefX = dyn_cast<Instruction>(T);
1841   else
1842     return false;
1843 
1844   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1845   if (!DefX || !DefX->isShift())
1846     return false;
1847   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1848                                                      Intrinsic::ctlz;
1849   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1850   if (!Shft || !Shft->isOne())
1851     return false;
1852   VarX = DefX->getOperand(0);
1853 
1854   // step 3: Check the recurrence of variable X
1855   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1856   if (!PhiX)
1857     return false;
1858 
1859   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1860 
1861   // Make sure the initial value can't be negative otherwise the ashr in the
1862   // loop might never reach zero which would make the loop infinite.
1863   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1864     return false;
1865 
1866   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1867   //         or cnt.next = cnt + -1.
1868   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1869   //       then all uses of "cnt.next" could be optimized to the trip count
1870   //       plus "cnt0". Currently it is not optimized.
1871   //       This step could be used to detect POPCNT instruction:
1872   //       cnt.next = cnt + (x.next & 1)
1873   for (Instruction &Inst : llvm::make_range(
1874            LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1875     if (Inst.getOpcode() != Instruction::Add)
1876       continue;
1877 
1878     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1879     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1880       continue;
1881 
1882     PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1883     if (!Phi)
1884       continue;
1885 
1886     CntInst = &Inst;
1887     CntPhi = Phi;
1888     break;
1889   }
1890   if (!CntInst)
1891     return false;
1892 
1893   return true;
1894 }
1895 
1896 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1897 // profitable if we delete the loop.
isProfitableToInsertFFS(Intrinsic::ID IntrinID,Value * InitX,bool ZeroCheck,size_t CanonicalSize)1898 bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID,
1899                                                  Value *InitX, bool ZeroCheck,
1900                                                  size_t CanonicalSize) {
1901   const Value *Args[] = {InitX,
1902                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1903 
1904   // @llvm.dbg doesn't count as they have no semantic effect.
1905   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1906   uint32_t HeaderSize =
1907       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1908 
1909   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1910   InstructionCost Cost = TTI->getIntrinsicInstrCost(
1911       Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1912   if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic)
1913     return false;
1914 
1915   return true;
1916 }
1917 
1918 /// Convert CTLZ / CTTZ idiom loop into countable loop.
1919 /// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise,
1920 /// returns false.
insertFFSIfProfitable(Intrinsic::ID IntrinID,Value * InitX,Instruction * DefX,PHINode * CntPhi,Instruction * CntInst)1921 bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID,
1922                                                Value *InitX, Instruction *DefX,
1923                                                PHINode *CntPhi,
1924                                                Instruction *CntInst) {
1925   bool IsCntPhiUsedOutsideLoop = false;
1926   for (User *U : CntPhi->users())
1927     if (!CurLoop->contains(cast<Instruction>(U))) {
1928       IsCntPhiUsedOutsideLoop = true;
1929       break;
1930     }
1931   bool IsCntInstUsedOutsideLoop = false;
1932   for (User *U : CntInst->users())
1933     if (!CurLoop->contains(cast<Instruction>(U))) {
1934       IsCntInstUsedOutsideLoop = true;
1935       break;
1936     }
1937   // If both CntInst and CntPhi are used outside the loop the profitability
1938   // is questionable.
1939   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1940     return false;
1941 
1942   // For some CPUs result of CTLZ(X) intrinsic is undefined
1943   // when X is 0. If we can not guarantee X != 0, we need to check this
1944   // when expand.
1945   bool ZeroCheck = false;
1946   // It is safe to assume Preheader exist as it was checked in
1947   // parent function RunOnLoop.
1948   BasicBlock *PH = CurLoop->getLoopPreheader();
1949 
1950   // If we are using the count instruction outside the loop, make sure we
1951   // have a zero check as a precondition. Without the check the loop would run
1952   // one iteration for before any check of the input value. This means 0 and 1
1953   // would have identical behavior in the original loop and thus
1954   if (!IsCntPhiUsedOutsideLoop) {
1955     auto *PreCondBB = PH->getSinglePredecessor();
1956     if (!PreCondBB)
1957       return false;
1958     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1959     if (!PreCondBI)
1960       return false;
1961     if (matchCondition(PreCondBI, PH) != InitX)
1962       return false;
1963     ZeroCheck = true;
1964   }
1965 
1966   // FFS idiom loop has only 6 instructions:
1967   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1968   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1969   //  %shr = ashr %n.addr.0, 1
1970   //  %tobool = icmp eq %shr, 0
1971   //  %inc = add nsw %i.0, 1
1972   //  br i1 %tobool
1973   size_t IdiomCanonicalSize = 6;
1974   if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
1975     return false;
1976 
1977   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1978                            DefX->getDebugLoc(), ZeroCheck,
1979                            IsCntPhiUsedOutsideLoop);
1980   return true;
1981 }
1982 
1983 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1984 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1985 /// trip count returns true; otherwise, returns false.
recognizeAndInsertFFS()1986 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1987   // Give up if the loop has multiple blocks or multiple backedges.
1988   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1989     return false;
1990 
1991   Intrinsic::ID IntrinID;
1992   Value *InitX;
1993   Instruction *DefX = nullptr;
1994   PHINode *CntPhi = nullptr;
1995   Instruction *CntInst = nullptr;
1996 
1997   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi,
1998                                  DefX))
1999     return false;
2000 
2001   return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2002 }
2003 
recognizeShiftUntilLessThan()2004 bool LoopIdiomRecognize::recognizeShiftUntilLessThan() {
2005   // Give up if the loop has multiple blocks or multiple backedges.
2006   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
2007     return false;
2008 
2009   Intrinsic::ID IntrinID;
2010   Value *InitX;
2011   Instruction *DefX = nullptr;
2012   PHINode *CntPhi = nullptr;
2013   Instruction *CntInst = nullptr;
2014 
2015   APInt LoopThreshold;
2016   if (!detectShiftUntilLessThanIdiom(CurLoop, *DL, IntrinID, InitX, CntInst,
2017                                      CntPhi, DefX, LoopThreshold))
2018     return false;
2019 
2020   if (LoopThreshold == 2) {
2021     // Treat as regular FFS.
2022     return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2023   }
2024 
2025   // Look for Floor Log2 Idiom.
2026   if (LoopThreshold != 4)
2027     return false;
2028 
2029   // Abort if CntPhi is used outside of the loop.
2030   for (User *U : CntPhi->users())
2031     if (!CurLoop->contains(cast<Instruction>(U)))
2032       return false;
2033 
2034   // It is safe to assume Preheader exist as it was checked in
2035   // parent function RunOnLoop.
2036   BasicBlock *PH = CurLoop->getLoopPreheader();
2037   auto *PreCondBB = PH->getSinglePredecessor();
2038   if (!PreCondBB)
2039     return false;
2040   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
2041   if (!PreCondBI)
2042     return false;
2043 
2044   APInt PreLoopThreshold;
2045   if (matchShiftULTCondition(PreCondBI, PH, PreLoopThreshold) != InitX ||
2046       PreLoopThreshold != 2)
2047     return false;
2048 
2049   bool ZeroCheck = true;
2050 
2051   // the loop has only 6 instructions:
2052   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
2053   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
2054   //  %shr = ashr %n.addr.0, 1
2055   //  %tobool = icmp ult %n.addr.0, C
2056   //  %inc = add nsw %i.0, 1
2057   //  br i1 %tobool
2058   size_t IdiomCanonicalSize = 6;
2059   if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
2060     return false;
2061 
2062   // log2(x) = w − 1 − clz(x)
2063   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
2064                            DefX->getDebugLoc(), ZeroCheck,
2065                            /*IsCntPhiUsedOutsideLoop=*/false,
2066                            /*InsertSub=*/true);
2067   return true;
2068 }
2069 
2070 /// Recognizes a population count idiom in a non-countable loop.
2071 ///
2072 /// If detected, transforms the relevant code to issue the popcount intrinsic
2073 /// function call, and returns true; otherwise, returns false.
recognizePopcount()2074 bool LoopIdiomRecognize::recognizePopcount() {
2075   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
2076     return false;
2077 
2078   // Counting population are usually conducted by few arithmetic instructions.
2079   // Such instructions can be easily "absorbed" by vacant slots in a
2080   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
2081   // in a compact loop.
2082 
2083   // Give up if the loop has multiple blocks or multiple backedges.
2084   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
2085     return false;
2086 
2087   BasicBlock *LoopBody = *(CurLoop->block_begin());
2088   if (LoopBody->size() >= 20) {
2089     // The loop is too big, bail out.
2090     return false;
2091   }
2092 
2093   // It should have a preheader containing nothing but an unconditional branch.
2094   BasicBlock *PH = CurLoop->getLoopPreheader();
2095   if (!PH || &PH->front() != PH->getTerminator())
2096     return false;
2097   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
2098   if (!EntryBI || EntryBI->isConditional())
2099     return false;
2100 
2101   // It should have a precondition block where the generated popcount intrinsic
2102   // function can be inserted.
2103   auto *PreCondBB = PH->getSinglePredecessor();
2104   if (!PreCondBB)
2105     return false;
2106   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
2107   if (!PreCondBI || PreCondBI->isUnconditional())
2108     return false;
2109 
2110   Instruction *CntInst;
2111   PHINode *CntPhi;
2112   Value *Val;
2113   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
2114     return false;
2115 
2116   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
2117   return true;
2118 }
2119 
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL)2120 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2121                                        const DebugLoc &DL) {
2122   Value *Ops[] = {Val};
2123   Type *Tys[] = {Val->getType()};
2124 
2125   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2126   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
2127   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2128   CI->setDebugLoc(DL);
2129 
2130   return CI;
2131 }
2132 
createFFSIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL,bool ZeroCheck,Intrinsic::ID IID)2133 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2134                                     const DebugLoc &DL, bool ZeroCheck,
2135                                     Intrinsic::ID IID) {
2136   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
2137   Type *Tys[] = {Val->getType()};
2138 
2139   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2140   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
2141   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2142   CI->setDebugLoc(DL);
2143 
2144   return CI;
2145 }
2146 
2147 /// Transform the following loop (Using CTLZ, CTTZ is similar):
2148 /// loop:
2149 ///   CntPhi = PHI [Cnt0, CntInst]
2150 ///   PhiX = PHI [InitX, DefX]
2151 ///   CntInst = CntPhi + 1
2152 ///   DefX = PhiX >> 1
2153 ///   LOOP_BODY
2154 ///   Br: loop if (DefX != 0)
2155 /// Use(CntPhi) or Use(CntInst)
2156 ///
2157 /// Into:
2158 /// If CntPhi used outside the loop:
2159 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2160 ///   Count = CountPrev + 1
2161 /// else
2162 ///   Count = BitWidth(InitX) - CTLZ(InitX)
2163 /// loop:
2164 ///   CntPhi = PHI [Cnt0, CntInst]
2165 ///   PhiX = PHI [InitX, DefX]
2166 ///   PhiCount = PHI [Count, Dec]
2167 ///   CntInst = CntPhi + 1
2168 ///   DefX = PhiX >> 1
2169 ///   Dec = PhiCount - 1
2170 ///   LOOP_BODY
2171 ///   Br: loop if (Dec != 0)
2172 /// Use(CountPrev + Cnt0) // Use(CntPhi)
2173 /// or
2174 /// Use(Count + Cnt0) // Use(CntInst)
2175 ///
2176 /// If LOOP_BODY is empty the loop will be deleted.
2177 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
transformLoopToCountable(Intrinsic::ID IntrinID,BasicBlock * Preheader,Instruction * CntInst,PHINode * CntPhi,Value * InitX,Instruction * DefX,const DebugLoc & DL,bool ZeroCheck,bool IsCntPhiUsedOutsideLoop,bool InsertSub)2178 void LoopIdiomRecognize::transformLoopToCountable(
2179     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2180     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2181     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) {
2182   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2183 
2184   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2185   IRBuilder<> Builder(PreheaderBr);
2186   Builder.SetCurrentDebugLocation(DL);
2187 
2188   // If there are no uses of CntPhi crate:
2189   //   Count = BitWidth - CTLZ(InitX);
2190   //   NewCount = Count;
2191   // If there are uses of CntPhi create:
2192   //   NewCount = BitWidth - CTLZ(InitX >> 1);
2193   //   Count = NewCount + 1;
2194   Value *InitXNext;
2195   if (IsCntPhiUsedOutsideLoop) {
2196     if (DefX->getOpcode() == Instruction::AShr)
2197       InitXNext = Builder.CreateAShr(InitX, 1);
2198     else if (DefX->getOpcode() == Instruction::LShr)
2199       InitXNext = Builder.CreateLShr(InitX, 1);
2200     else if (DefX->getOpcode() == Instruction::Shl) // cttz
2201       InitXNext = Builder.CreateShl(InitX, 1);
2202     else
2203       llvm_unreachable("Unexpected opcode!");
2204   } else
2205     InitXNext = InitX;
2206   Value *Count =
2207       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2208   Type *CountTy = Count->getType();
2209   Count = Builder.CreateSub(
2210       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2211   if (InsertSub)
2212     Count = Builder.CreateSub(Count, ConstantInt::get(CountTy, 1));
2213   Value *NewCount = Count;
2214   if (IsCntPhiUsedOutsideLoop)
2215     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2216 
2217   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2218 
2219   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2220   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2221     // If the counter was being incremented in the loop, add NewCount to the
2222     // counter's initial value, but only if the initial value is not zero.
2223     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2224     if (!InitConst || !InitConst->isZero())
2225       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2226   } else {
2227     // If the count was being decremented in the loop, subtract NewCount from
2228     // the counter's initial value.
2229     NewCount = Builder.CreateSub(CntInitVal, NewCount);
2230   }
2231 
2232   // Step 2: Insert new IV and loop condition:
2233   // loop:
2234   //   ...
2235   //   PhiCount = PHI [Count, Dec]
2236   //   ...
2237   //   Dec = PhiCount - 1
2238   //   ...
2239   //   Br: loop if (Dec != 0)
2240   BasicBlock *Body = *(CurLoop->block_begin());
2241   auto *LbBr = cast<BranchInst>(Body->getTerminator());
2242   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2243 
2244   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi");
2245   TcPhi->insertBefore(Body->begin());
2246 
2247   Builder.SetInsertPoint(LbCond);
2248   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2249       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2250 
2251   TcPhi->addIncoming(Count, Preheader);
2252   TcPhi->addIncoming(TcDec, Body);
2253 
2254   CmpInst::Predicate Pred =
2255       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2256   LbCond->setPredicate(Pred);
2257   LbCond->setOperand(0, TcDec);
2258   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2259 
2260   // Step 3: All the references to the original counter outside
2261   //  the loop are replaced with the NewCount
2262   if (IsCntPhiUsedOutsideLoop)
2263     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2264   else
2265     CntInst->replaceUsesOutsideBlock(NewCount, Body);
2266 
2267   // step 4: Forget the "non-computable" trip-count SCEV associated with the
2268   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2269   SE->forgetLoop(CurLoop);
2270 }
2271 
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)2272 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2273                                                  Instruction *CntInst,
2274                                                  PHINode *CntPhi, Value *Var) {
2275   BasicBlock *PreHead = CurLoop->getLoopPreheader();
2276   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2277   const DebugLoc &DL = CntInst->getDebugLoc();
2278 
2279   // Assuming before transformation, the loop is following:
2280   //  if (x) // the precondition
2281   //     do { cnt++; x &= x - 1; } while(x);
2282 
2283   // Step 1: Insert the ctpop instruction at the end of the precondition block
2284   IRBuilder<> Builder(PreCondBr);
2285   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2286   {
2287     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2288     NewCount = PopCntZext =
2289         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2290 
2291     if (NewCount != PopCnt)
2292       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2293 
2294     // TripCnt is exactly the number of iterations the loop has
2295     TripCnt = NewCount;
2296 
2297     // If the population counter's initial value is not zero, insert Add Inst.
2298     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2299     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2300     if (!InitConst || !InitConst->isZero()) {
2301       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2302       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2303     }
2304   }
2305 
2306   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2307   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2308   //   function would be partial dead code, and downstream passes will drag
2309   //   it back from the precondition block to the preheader.
2310   {
2311     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2312 
2313     Value *Opnd0 = PopCntZext;
2314     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2315     if (PreCond->getOperand(0) != Var)
2316       std::swap(Opnd0, Opnd1);
2317 
2318     ICmpInst *NewPreCond = cast<ICmpInst>(
2319         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2320     PreCondBr->setCondition(NewPreCond);
2321 
2322     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2323   }
2324 
2325   // Step 3: Note that the population count is exactly the trip count of the
2326   // loop in question, which enable us to convert the loop from noncountable
2327   // loop into a countable one. The benefit is twofold:
2328   //
2329   //  - If the loop only counts population, the entire loop becomes dead after
2330   //    the transformation. It is a lot easier to prove a countable loop dead
2331   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2332   //    isn't dead even if it computes nothing useful. In general, DCE needs
2333   //    to prove a noncountable loop finite before safely delete it.)
2334   //
2335   //  - If the loop also performs something else, it remains alive.
2336   //    Since it is transformed to countable form, it can be aggressively
2337   //    optimized by some optimizations which are in general not applicable
2338   //    to a noncountable loop.
2339   //
2340   // After this step, this loop (conceptually) would look like following:
2341   //   newcnt = __builtin_ctpop(x);
2342   //   t = newcnt;
2343   //   if (x)
2344   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2345   BasicBlock *Body = *(CurLoop->block_begin());
2346   {
2347     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2348     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2349     Type *Ty = TripCnt->getType();
2350 
2351     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi");
2352     TcPhi->insertBefore(Body->begin());
2353 
2354     Builder.SetInsertPoint(LbCond);
2355     Instruction *TcDec = cast<Instruction>(
2356         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2357                           "tcdec", false, true));
2358 
2359     TcPhi->addIncoming(TripCnt, PreHead);
2360     TcPhi->addIncoming(TcDec, Body);
2361 
2362     CmpInst::Predicate Pred =
2363         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2364     LbCond->setPredicate(Pred);
2365     LbCond->setOperand(0, TcDec);
2366     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2367   }
2368 
2369   // Step 4: All the references to the original population counter outside
2370   //  the loop are replaced with the NewCount -- the value returned from
2371   //  __builtin_ctpop().
2372   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2373 
2374   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2375   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2376   SE->forgetLoop(CurLoop);
2377 }
2378 
2379 /// Match loop-invariant value.
2380 template <typename SubPattern_t> struct match_LoopInvariant {
2381   SubPattern_t SubPattern;
2382   const Loop *L;
2383 
match_LoopInvariantmatch_LoopInvariant2384   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2385       : SubPattern(SP), L(L) {}
2386 
matchmatch_LoopInvariant2387   template <typename ITy> bool match(ITy *V) {
2388     return L->isLoopInvariant(V) && SubPattern.match(V);
2389   }
2390 };
2391 
2392 /// Matches if the value is loop-invariant.
2393 template <typename Ty>
m_LoopInvariant(const Ty & M,const Loop * L)2394 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2395   return match_LoopInvariant<Ty>(M, L);
2396 }
2397 
2398 /// Return true if the idiom is detected in the loop.
2399 ///
2400 /// The core idiom we are trying to detect is:
2401 /// \code
2402 ///   entry:
2403 ///     <...>
2404 ///     %bitmask = shl i32 1, %bitpos
2405 ///     br label %loop
2406 ///
2407 ///   loop:
2408 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2409 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2410 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2411 ///     %x.next = shl i32 %x.curr, 1
2412 ///     <...>
2413 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2414 ///
2415 ///   end:
2416 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2417 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2418 ///     <...>
2419 /// \endcode
detectShiftUntilBitTestIdiom(Loop * CurLoop,Value * & BaseX,Value * & BitMask,Value * & BitPos,Value * & CurrX,Instruction * & NextX)2420 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2421                                          Value *&BitMask, Value *&BitPos,
2422                                          Value *&CurrX, Instruction *&NextX) {
2423   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2424              " Performing shift-until-bittest idiom detection.\n");
2425 
2426   // Give up if the loop has multiple blocks or multiple backedges.
2427   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2428     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2429     return false;
2430   }
2431 
2432   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2433   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2434   assert(LoopPreheaderBB && "There is always a loop preheader.");
2435 
2436   using namespace PatternMatch;
2437 
2438   // Step 1: Check if the loop backedge is in desirable form.
2439 
2440   ICmpInst::Predicate Pred;
2441   Value *CmpLHS, *CmpRHS;
2442   BasicBlock *TrueBB, *FalseBB;
2443   if (!match(LoopHeaderBB->getTerminator(),
2444              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2445                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2446     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2447     return false;
2448   }
2449 
2450   // Step 2: Check if the backedge's condition is in desirable form.
2451 
2452   auto MatchVariableBitMask = [&]() {
2453     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2454            match(CmpLHS,
2455                  m_c_And(m_Value(CurrX),
2456                          m_CombineAnd(
2457                              m_Value(BitMask),
2458                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2459                                              CurLoop))));
2460   };
2461   auto MatchConstantBitMask = [&]() {
2462     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2463            match(CmpLHS, m_And(m_Value(CurrX),
2464                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2465            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2466   };
2467   auto MatchDecomposableConstantBitMask = [&]() {
2468     APInt Mask;
2469     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2470            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2471            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2472            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2473   };
2474 
2475   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2476       !MatchDecomposableConstantBitMask()) {
2477     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2478     return false;
2479   }
2480 
2481   // Step 3: Check if the recurrence is in desirable form.
2482   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2483   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2484     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2485     return false;
2486   }
2487 
2488   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2489   NextX =
2490       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2491 
2492   assert(CurLoop->isLoopInvariant(BaseX) &&
2493          "Expected BaseX to be avaliable in the preheader!");
2494 
2495   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2496     // FIXME: support right-shift?
2497     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2498     return false;
2499   }
2500 
2501   // Step 4: Check if the backedge's destinations are in desirable form.
2502 
2503   assert(ICmpInst::isEquality(Pred) &&
2504          "Should only get equality predicates here.");
2505 
2506   // cmp-br is commutative, so canonicalize to a single variant.
2507   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2508     Pred = ICmpInst::getInversePredicate(Pred);
2509     std::swap(TrueBB, FalseBB);
2510   }
2511 
2512   // We expect to exit loop when comparison yields false,
2513   // so when it yields true we should branch back to loop header.
2514   if (TrueBB != LoopHeaderBB) {
2515     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2516     return false;
2517   }
2518 
2519   // Okay, idiom checks out.
2520   return true;
2521 }
2522 
2523 /// Look for the following loop:
2524 /// \code
2525 ///   entry:
2526 ///     <...>
2527 ///     %bitmask = shl i32 1, %bitpos
2528 ///     br label %loop
2529 ///
2530 ///   loop:
2531 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2532 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2533 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2534 ///     %x.next = shl i32 %x.curr, 1
2535 ///     <...>
2536 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2537 ///
2538 ///   end:
2539 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2540 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2541 ///     <...>
2542 /// \endcode
2543 ///
2544 /// And transform it into:
2545 /// \code
2546 ///   entry:
2547 ///     %bitmask = shl i32 1, %bitpos
2548 ///     %lowbitmask = add i32 %bitmask, -1
2549 ///     %mask = or i32 %lowbitmask, %bitmask
2550 ///     %x.masked = and i32 %x, %mask
2551 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2552 ///                                                         i1 true)
2553 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2554 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2555 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2556 ///     %tripcount = add i32 %backedgetakencount, 1
2557 ///     %x.curr = shl i32 %x, %backedgetakencount
2558 ///     %x.next = shl i32 %x, %tripcount
2559 ///     br label %loop
2560 ///
2561 ///   loop:
2562 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2563 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2564 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2565 ///     <...>
2566 ///     br i1 %loop.ivcheck, label %end, label %loop
2567 ///
2568 ///   end:
2569 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2570 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2571 ///     <...>
2572 /// \endcode
recognizeShiftUntilBitTest()2573 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2574   bool MadeChange = false;
2575 
2576   Value *X, *BitMask, *BitPos, *XCurr;
2577   Instruction *XNext;
2578   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2579                                     XNext)) {
2580     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2581                " shift-until-bittest idiom detection failed.\n");
2582     return MadeChange;
2583   }
2584   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2585 
2586   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2587   // but is it profitable to transform?
2588 
2589   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2590   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2591   assert(LoopPreheaderBB && "There is always a loop preheader.");
2592 
2593   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2594   assert(SuccessorBB && "There is only a single successor.");
2595 
2596   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2597   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2598 
2599   Intrinsic::ID IntrID = Intrinsic::ctlz;
2600   Type *Ty = X->getType();
2601   unsigned Bitwidth = Ty->getScalarSizeInBits();
2602 
2603   TargetTransformInfo::TargetCostKind CostKind =
2604       TargetTransformInfo::TCK_SizeAndLatency;
2605 
2606   // The rewrite is considered to be unprofitable iff and only iff the
2607   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2608   // making the loop countable, even if nothing else changes.
2609   IntrinsicCostAttributes Attrs(
2610       IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()});
2611   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2612   if (Cost > TargetTransformInfo::TCC_Basic) {
2613     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2614                " Intrinsic is too costly, not beneficial\n");
2615     return MadeChange;
2616   }
2617   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2618       TargetTransformInfo::TCC_Basic) {
2619     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2620     return MadeChange;
2621   }
2622 
2623   // Ok, transform appears worthwhile.
2624   MadeChange = true;
2625 
2626   if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) {
2627     // BitMask may be computed from BitPos, Freeze BitPos so we can increase
2628     // it's use count.
2629     std::optional<BasicBlock::iterator> InsertPt = std::nullopt;
2630     if (auto *BitPosI = dyn_cast<Instruction>(BitPos))
2631       InsertPt = BitPosI->getInsertionPointAfterDef();
2632     else
2633       InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca();
2634     if (!InsertPt)
2635       return false;
2636     FreezeInst *BitPosFrozen =
2637         new FreezeInst(BitPos, BitPos->getName() + ".fr", *InsertPt);
2638     BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) {
2639       return U.getUser() != BitPosFrozen;
2640     });
2641     BitPos = BitPosFrozen;
2642   }
2643 
2644   // Step 1: Compute the loop trip count.
2645 
2646   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2647                                         BitPos->getName() + ".lowbitmask");
2648   Value *Mask =
2649       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2650   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2651   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2652       IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()},
2653       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2654   Value *XMaskedNumActiveBits = Builder.CreateSub(
2655       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2656       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2657       /*HasNSW=*/Bitwidth != 2);
2658   Value *XMaskedLeadingOnePos =
2659       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2660                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2661                         /*HasNSW=*/Bitwidth > 2);
2662 
2663   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2664       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2665       /*HasNUW=*/true, /*HasNSW=*/true);
2666   // We know loop's backedge-taken count, but what's loop's trip count?
2667   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2668   Value *LoopTripCount =
2669       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2670                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2671                         /*HasNSW=*/Bitwidth != 2);
2672 
2673   // Step 2: Compute the recurrence's final value without a loop.
2674 
2675   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2676   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2677   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2678   NewX->takeName(XCurr);
2679   if (auto *I = dyn_cast<Instruction>(NewX))
2680     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2681 
2682   Value *NewXNext;
2683   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2684   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2685   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2686   // that isn't the case, we'll need to emit an alternative, safe IR.
2687   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2688       PatternMatch::match(
2689           BitPos, PatternMatch::m_SpecificInt_ICMP(
2690                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2691                                                Ty->getScalarSizeInBits() - 1))))
2692     NewXNext = Builder.CreateShl(X, LoopTripCount);
2693   else {
2694     // Otherwise, just additionally shift by one. It's the smallest solution,
2695     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2696     // and select 0 instead.
2697     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2698   }
2699 
2700   NewXNext->takeName(XNext);
2701   if (auto *I = dyn_cast<Instruction>(NewXNext))
2702     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2703 
2704   // Step 3: Adjust the successor basic block to recieve the computed
2705   //         recurrence's final value instead of the recurrence itself.
2706 
2707   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2708   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2709 
2710   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2711 
2712   // The new canonical induction variable.
2713   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2714   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2715 
2716   // The induction itself.
2717   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2718   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2719   auto *IVNext =
2720       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2721                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2722 
2723   // The loop trip count check.
2724   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2725                                        CurLoop->getName() + ".ivcheck");
2726   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2727   LoopHeaderBB->getTerminator()->eraseFromParent();
2728 
2729   // Populate the IV PHI.
2730   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2731   IV->addIncoming(IVNext, LoopHeaderBB);
2732 
2733   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2734   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2735 
2736   SE->forgetLoop(CurLoop);
2737 
2738   // Other passes will take care of actually deleting the loop if possible.
2739 
2740   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2741 
2742   ++NumShiftUntilBitTest;
2743   return MadeChange;
2744 }
2745 
2746 /// Return true if the idiom is detected in the loop.
2747 ///
2748 /// The core idiom we are trying to detect is:
2749 /// \code
2750 ///   entry:
2751 ///     <...>
2752 ///     %start = <...>
2753 ///     %extraoffset = <...>
2754 ///     <...>
2755 ///     br label %for.cond
2756 ///
2757 ///   loop:
2758 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2759 ///     %nbits = add nsw i8 %iv, %extraoffset
2760 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2761 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2762 ///     %iv.next = add i8 %iv, 1
2763 ///     <...>
2764 ///     br i1 %val.shifted.iszero, label %end, label %loop
2765 ///
2766 ///   end:
2767 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2768 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2769 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2770 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2771 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2772 ///     <...>
2773 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,ScalarEvolution * SE,Instruction * & ValShiftedIsZero,Intrinsic::ID & IntrinID,Instruction * & IV,Value * & Start,Value * & Val,const SCEV * & ExtraOffsetExpr,bool & InvertedCond)2774 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2775                                       Instruction *&ValShiftedIsZero,
2776                                       Intrinsic::ID &IntrinID, Instruction *&IV,
2777                                       Value *&Start, Value *&Val,
2778                                       const SCEV *&ExtraOffsetExpr,
2779                                       bool &InvertedCond) {
2780   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2781              " Performing shift-until-zero idiom detection.\n");
2782 
2783   // Give up if the loop has multiple blocks or multiple backedges.
2784   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2785     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2786     return false;
2787   }
2788 
2789   Instruction *ValShifted, *NBits, *IVNext;
2790   Value *ExtraOffset;
2791 
2792   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2793   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2794   assert(LoopPreheaderBB && "There is always a loop preheader.");
2795 
2796   using namespace PatternMatch;
2797 
2798   // Step 1: Check if the loop backedge, condition is in desirable form.
2799 
2800   ICmpInst::Predicate Pred;
2801   BasicBlock *TrueBB, *FalseBB;
2802   if (!match(LoopHeaderBB->getTerminator(),
2803              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2804                   m_BasicBlock(FalseBB))) ||
2805       !match(ValShiftedIsZero,
2806              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2807       !ICmpInst::isEquality(Pred)) {
2808     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2809     return false;
2810   }
2811 
2812   // Step 2: Check if the comparison's operand is in desirable form.
2813   // FIXME: Val could be a one-input PHI node, which we should look past.
2814   if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2815                                  m_Instruction(NBits)))) {
2816     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2817     return false;
2818   }
2819   IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2820                                                          : Intrinsic::ctlz;
2821 
2822   // Step 3: Check if the shift amount is in desirable form.
2823 
2824   if (match(NBits, m_c_Add(m_Instruction(IV),
2825                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2826       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2827     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2828   else if (match(NBits,
2829                  m_Sub(m_Instruction(IV),
2830                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2831            NBits->hasNoSignedWrap())
2832     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2833   else {
2834     IV = NBits;
2835     ExtraOffsetExpr = SE->getZero(NBits->getType());
2836   }
2837 
2838   // Step 4: Check if the recurrence is in desirable form.
2839   auto *IVPN = dyn_cast<PHINode>(IV);
2840   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2841     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2842     return false;
2843   }
2844 
2845   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2846   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2847 
2848   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2849     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2850     return false;
2851   }
2852 
2853   // Step 4: Check if the backedge's destinations are in desirable form.
2854 
2855   assert(ICmpInst::isEquality(Pred) &&
2856          "Should only get equality predicates here.");
2857 
2858   // cmp-br is commutative, so canonicalize to a single variant.
2859   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2860   if (InvertedCond) {
2861     Pred = ICmpInst::getInversePredicate(Pred);
2862     std::swap(TrueBB, FalseBB);
2863   }
2864 
2865   // We expect to exit loop when comparison yields true,
2866   // so when it yields false we should branch back to loop header.
2867   if (FalseBB != LoopHeaderBB) {
2868     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2869     return false;
2870   }
2871 
2872   // The new, countable, loop will certainly only run a known number of
2873   // iterations, It won't be infinite. But the old loop might be infinite
2874   // under certain conditions. For logical shifts, the value will become zero
2875   // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2876   // right-shift, iff the sign bit was set, the value will never become zero,
2877   // and the loop may never finish.
2878   if (ValShifted->getOpcode() == Instruction::AShr &&
2879       !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2880     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2881     return false;
2882   }
2883 
2884   // Okay, idiom checks out.
2885   return true;
2886 }
2887 
2888 /// Look for the following loop:
2889 /// \code
2890 ///   entry:
2891 ///     <...>
2892 ///     %start = <...>
2893 ///     %extraoffset = <...>
2894 ///     <...>
2895 ///     br label %for.cond
2896 ///
2897 ///   loop:
2898 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2899 ///     %nbits = add nsw i8 %iv, %extraoffset
2900 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2901 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2902 ///     %iv.next = add i8 %iv, 1
2903 ///     <...>
2904 ///     br i1 %val.shifted.iszero, label %end, label %loop
2905 ///
2906 ///   end:
2907 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2908 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2909 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2910 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2911 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2912 ///     <...>
2913 /// \endcode
2914 ///
2915 /// And transform it into:
2916 /// \code
2917 ///   entry:
2918 ///     <...>
2919 ///     %start = <...>
2920 ///     %extraoffset = <...>
2921 ///     <...>
2922 ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2923 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2924 ///     %extraoffset.neg = sub i8 0, %extraoffset
2925 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2926 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2927 ///     %loop.tripcount = sub i8 %iv.final, %start
2928 ///     br label %loop
2929 ///
2930 ///   loop:
2931 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2932 ///     %loop.iv.next = add i8 %loop.iv, 1
2933 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2934 ///     %iv = add i8 %loop.iv, %start
2935 ///     <...>
2936 ///     br i1 %loop.ivcheck, label %end, label %loop
2937 ///
2938 ///   end:
2939 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2940 ///     <...>
2941 /// \endcode
recognizeShiftUntilZero()2942 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2943   bool MadeChange = false;
2944 
2945   Instruction *ValShiftedIsZero;
2946   Intrinsic::ID IntrID;
2947   Instruction *IV;
2948   Value *Start, *Val;
2949   const SCEV *ExtraOffsetExpr;
2950   bool InvertedCond;
2951   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2952                                  Start, Val, ExtraOffsetExpr, InvertedCond)) {
2953     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2954                " shift-until-zero idiom detection failed.\n");
2955     return MadeChange;
2956   }
2957   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2958 
2959   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2960   // but is it profitable to transform?
2961 
2962   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2963   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2964   assert(LoopPreheaderBB && "There is always a loop preheader.");
2965 
2966   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2967   assert(SuccessorBB && "There is only a single successor.");
2968 
2969   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2970   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2971 
2972   Type *Ty = Val->getType();
2973   unsigned Bitwidth = Ty->getScalarSizeInBits();
2974 
2975   TargetTransformInfo::TargetCostKind CostKind =
2976       TargetTransformInfo::TCK_SizeAndLatency;
2977 
2978   // The rewrite is considered to be unprofitable iff and only iff the
2979   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2980   // making the loop countable, even if nothing else changes.
2981   IntrinsicCostAttributes Attrs(
2982       IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()});
2983   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2984   if (Cost > TargetTransformInfo::TCC_Basic) {
2985     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2986                " Intrinsic is too costly, not beneficial\n");
2987     return MadeChange;
2988   }
2989 
2990   // Ok, transform appears worthwhile.
2991   MadeChange = true;
2992 
2993   bool OffsetIsZero = false;
2994   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2995     OffsetIsZero = ExtraOffsetExprC->isZero();
2996 
2997   // Step 1: Compute the loop's final IV value / trip count.
2998 
2999   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
3000       IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()},
3001       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
3002   Value *ValNumActiveBits = Builder.CreateSub(
3003       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
3004       Val->getName() + ".numactivebits", /*HasNUW=*/true,
3005       /*HasNSW=*/Bitwidth != 2);
3006 
3007   SCEVExpander Expander(*SE, *DL, "loop-idiom");
3008   Expander.setInsertPoint(&*Builder.GetInsertPoint());
3009   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
3010 
3011   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
3012       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
3013       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
3014   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
3015                                            {ValNumActiveBitsOffset, Start},
3016                                            /*FMFSource=*/nullptr, "iv.final");
3017 
3018   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
3019       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
3020       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
3021   // FIXME: or when the offset was `add nuw`
3022 
3023   // We know loop's backedge-taken count, but what's loop's trip count?
3024   Value *LoopTripCount =
3025       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
3026                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
3027                         /*HasNSW=*/Bitwidth != 2);
3028 
3029   // Step 2: Adjust the successor basic block to recieve the original
3030   //         induction variable's final value instead of the orig. IV itself.
3031 
3032   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
3033 
3034   // Step 3: Rewrite the loop into a countable form, with canonical IV.
3035 
3036   // The new canonical induction variable.
3037   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
3038   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
3039 
3040   // The induction itself.
3041   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt());
3042   auto *CIVNext =
3043       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
3044                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
3045 
3046   // The loop trip count check.
3047   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
3048                                         CurLoop->getName() + ".ivcheck");
3049   auto *NewIVCheck = CIVCheck;
3050   if (InvertedCond) {
3051     NewIVCheck = Builder.CreateNot(CIVCheck);
3052     NewIVCheck->takeName(ValShiftedIsZero);
3053   }
3054 
3055   // The original IV, but rebased to be an offset to the CIV.
3056   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
3057                                      /*HasNSW=*/true); // FIXME: what about NUW?
3058   IVDePHId->takeName(IV);
3059 
3060   // The loop terminator.
3061   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
3062   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
3063   LoopHeaderBB->getTerminator()->eraseFromParent();
3064 
3065   // Populate the IV PHI.
3066   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
3067   CIV->addIncoming(CIVNext, LoopHeaderBB);
3068 
3069   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
3070   //   loop. The loop would otherwise not be deleted even if it becomes empty.
3071 
3072   SE->forgetLoop(CurLoop);
3073 
3074   // Step 5: Try to cleanup the loop's body somewhat.
3075   IV->replaceAllUsesWith(IVDePHId);
3076   IV->eraseFromParent();
3077 
3078   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
3079   ValShiftedIsZero->eraseFromParent();
3080 
3081   // Other passes will take care of actually deleting the loop if possible.
3082 
3083   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
3084 
3085   ++NumShiftUntilZero;
3086   return MadeChange;
3087 }
3088