xref: /freebsd/contrib/llvm-project/clang/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the state of the program along the analysisa path.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
14 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
15 
16 #include "clang/Basic/LLVM.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/ImmutableMap.h"
25 #include "llvm/Support/Allocator.h"
26 #include <optional>
27 #include <utility>
28 
29 namespace llvm {
30 class APSInt;
31 }
32 
33 namespace clang {
34 class ASTContext;
35 
36 namespace ento {
37 
38 class AnalysisManager;
39 class CallEvent;
40 class CallEventManager;
41 
42 typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
43     ProgramStateManager &, ExprEngine *);
44 typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
45     ProgramStateManager &);
46 
47 //===----------------------------------------------------------------------===//
48 // ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
49 //===----------------------------------------------------------------------===//
50 
51 template <typename T> struct ProgramStateTrait {
52   typedef typename T::data_type data_type;
MakeVoidPtrProgramStateTrait53   static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
MakeDataProgramStateTrait54   static inline data_type MakeData(void *const* P) {
55     return P ? (data_type) *P : (data_type) 0;
56   }
57 };
58 
59 /// \class ProgramState
60 /// ProgramState - This class encapsulates:
61 ///
62 ///    1. A mapping from expressions to values (Environment)
63 ///    2. A mapping from locations to values (Store)
64 ///    3. Constraints on symbolic values (GenericDataMap)
65 ///
66 ///  Together these represent the "abstract state" of a program.
67 ///
68 ///  ProgramState is intended to be used as a functional object; that is,
69 ///  once it is created and made "persistent" in a FoldingSet, its
70 ///  values will never change.
71 class ProgramState : public llvm::FoldingSetNode {
72 public:
73   typedef llvm::ImmutableSet<llvm::APSInt*>                IntSetTy;
74   typedef llvm::ImmutableMap<void*, void*>                 GenericDataMap;
75 
76 private:
77   void operator=(const ProgramState& R) = delete;
78 
79   friend class ProgramStateManager;
80   friend class ExplodedGraph;
81   friend class ExplodedNode;
82   friend class NodeBuilder;
83 
84   ProgramStateManager *stateMgr;
85   Environment Env;           // Maps a Stmt to its current SVal.
86   Store store;               // Maps a location to its current value.
87   GenericDataMap   GDM;      // Custom data stored by a client of this class.
88 
89   // A state is infeasible if there is a contradiction among the constraints.
90   // An infeasible state is represented by a `nullptr`.
91   // In the sense of `assumeDual`, a state can have two children by adding a
92   // new constraint and the negation of that new constraint. A parent state is
93   // over-constrained if both of its children are infeasible. In the
94   // mathematical sense, it means that the parent is infeasible and we should
95   // have realized that at the moment when we have created it. However, we
96   // could not recognize that because of the imperfection of the underlying
97   // constraint solver. We say it is posteriorly over-constrained because we
98   // recognize that a parent is infeasible only *after* a new and more specific
99   // constraint and its negation are evaluated.
100   //
101   // Example:
102   //
103   // x * x = 4 and x is in the range [0, 1]
104   // This is an already infeasible state, but the constraint solver is not
105   // capable of handling sqrt, thus we don't know it yet.
106   //
107   // Then a new constraint `x = 0` is added. At this moment the constraint
108   // solver re-evaluates the existing constraints and realizes the
109   // contradiction `0 * 0 = 4`.
110   // We also evaluate the negated constraint `x != 0`;  the constraint solver
111   // deduces `x = 1` and then realizes the contradiction `1 * 1 = 4`.
112   // Both children are infeasible, thus the parent state is marked as
113   // posteriorly over-constrained. These parents are handled with special care:
114   // we do not allow transitions to exploded nodes with such states.
115   bool PosteriorlyOverconstrained = false;
116   // Make internal constraint solver entities friends so they can access the
117   // overconstrained-related functions. We want to keep this API inaccessible
118   // for Checkers.
119   friend class ConstraintManager;
isPosteriorlyOverconstrained()120   bool isPosteriorlyOverconstrained() const {
121     return PosteriorlyOverconstrained;
122   }
123   ProgramStateRef cloneAsPosteriorlyOverconstrained() const;
124 
125   unsigned refCount;
126 
127   /// makeWithStore - Return a ProgramState with the same values as the current
128   ///  state with the exception of using the specified Store.
129   ProgramStateRef makeWithStore(const StoreRef &store) const;
130 
131   void setStore(const StoreRef &storeRef);
132 
133 public:
134   /// This ctor is used when creating the first ProgramState object.
135   ProgramState(ProgramStateManager *mgr, const Environment& env,
136           StoreRef st, GenericDataMap gdm);
137 
138   /// Copy ctor - We must explicitly define this or else the "Next" ptr
139   ///  in FoldingSetNode will also get copied.
140   ProgramState(const ProgramState &RHS);
141 
142   ~ProgramState();
143 
144   int64_t getID() const;
145 
146   /// Return the ProgramStateManager associated with this state.
getStateManager()147   ProgramStateManager &getStateManager() const {
148     return *stateMgr;
149   }
150 
151   AnalysisManager &getAnalysisManager() const;
152 
153   /// Return the ConstraintManager.
154   ConstraintManager &getConstraintManager() const;
155 
156   /// getEnvironment - Return the environment associated with this state.
157   ///  The environment is the mapping from expressions to values.
getEnvironment()158   const Environment& getEnvironment() const { return Env; }
159 
160   /// Return the store associated with this state.  The store
161   ///  is a mapping from locations to values.
getStore()162   Store getStore() const { return store; }
163 
164 
165   /// getGDM - Return the generic data map associated with this state.
getGDM()166   GenericDataMap getGDM() const { return GDM; }
167 
setGDM(GenericDataMap gdm)168   void setGDM(GenericDataMap gdm) { GDM = gdm; }
169 
170   /// Profile - Profile the contents of a ProgramState object for use in a
171   ///  FoldingSet.  Two ProgramState objects are considered equal if they
172   ///  have the same Environment, Store, and GenericDataMap.
Profile(llvm::FoldingSetNodeID & ID,const ProgramState * V)173   static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
174     V->Env.Profile(ID);
175     ID.AddPointer(V->store);
176     V->GDM.Profile(ID);
177     ID.AddBoolean(V->PosteriorlyOverconstrained);
178   }
179 
180   /// Profile - Used to profile the contents of this object for inclusion
181   ///  in a FoldingSet.
Profile(llvm::FoldingSetNodeID & ID)182   void Profile(llvm::FoldingSetNodeID& ID) const {
183     Profile(ID, this);
184   }
185 
186   BasicValueFactory &getBasicVals() const;
187   SymbolManager &getSymbolManager() const;
188 
189   //==---------------------------------------------------------------------==//
190   // Constraints on values.
191   //==---------------------------------------------------------------------==//
192   //
193   // Each ProgramState records constraints on symbolic values.  These constraints
194   // are managed using the ConstraintManager associated with a ProgramStateManager.
195   // As constraints gradually accrue on symbolic values, added constraints
196   // may conflict and indicate that a state is infeasible (as no real values
197   // could satisfy all the constraints).  This is the principal mechanism
198   // for modeling path-sensitivity in ExprEngine/ProgramState.
199   //
200   // Various "assume" methods form the interface for adding constraints to
201   // symbolic values.  A call to 'assume' indicates an assumption being placed
202   // on one or symbolic values.  'assume' methods take the following inputs:
203   //
204   //  (1) A ProgramState object representing the current state.
205   //
206   //  (2) The assumed constraint (which is specific to a given "assume" method).
207   //
208   //  (3) A binary value "Assumption" that indicates whether the constraint is
209   //      assumed to be true or false.
210   //
211   // The output of "assume*" is a new ProgramState object with the added constraints.
212   // If no new state is feasible, NULL is returned.
213   //
214 
215   /// Assumes that the value of \p cond is zero (if \p assumption is "false")
216   /// or non-zero (if \p assumption is "true").
217   ///
218   /// This returns a new state with the added constraint on \p cond.
219   /// If no new state is feasible, NULL is returned.
220   [[nodiscard]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
221                                        bool assumption) const;
222 
223   /// Assumes both "true" and "false" for \p cond, and returns both
224   /// corresponding states (respectively).
225   ///
226   /// This is more efficient than calling assume() twice. Note that one (but not
227   /// both) of the returned states may be NULL.
228   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
229   assume(DefinedOrUnknownSVal cond) const;
230 
231   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
232   assumeInBoundDual(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
233                     QualType IndexType = QualType()) const;
234 
235   [[nodiscard]] ProgramStateRef
236   assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
237                 bool assumption, QualType IndexType = QualType()) const;
238 
239   /// Assumes that the value of \p Val is bounded with [\p From; \p To]
240   /// (if \p assumption is "true") or it is fully out of this range
241   /// (if \p assumption is "false").
242   ///
243   /// This returns a new state with the added constraint on \p cond.
244   /// If no new state is feasible, NULL is returned.
245   [[nodiscard]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
246                                                      const llvm::APSInt &From,
247                                                      const llvm::APSInt &To,
248                                                      bool assumption) const;
249 
250   /// Assumes given range both "true" and "false" for \p Val, and returns both
251   /// corresponding states (respectively).
252   ///
253   /// This is more efficient than calling assume() twice. Note that one (but not
254   /// both) of the returned states may be NULL.
255   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
256   assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
257                        const llvm::APSInt &To) const;
258 
259   /// Check if the given SVal is not constrained to zero and is not
260   ///        a zero constant.
261   ConditionTruthVal isNonNull(SVal V) const;
262 
263   /// Check if the given SVal is constrained to zero or is a zero
264   ///        constant.
265   ConditionTruthVal isNull(SVal V) const;
266 
267   /// \return Whether values \p Lhs and \p Rhs are equal.
268   ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
269 
270   /// Utility method for getting regions.
271   LLVM_ATTRIBUTE_RETURNS_NONNULL
272   const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
273 
274   //==---------------------------------------------------------------------==//
275   // Binding and retrieving values to/from the environment and symbolic store.
276   //==---------------------------------------------------------------------==//
277 
278   /// Create a new state by binding the value 'V' to the statement 'S' in the
279   /// state's environment.
280   [[nodiscard]] ProgramStateRef BindExpr(const Stmt *S,
281                                          const LocationContext *LCtx, SVal V,
282                                          bool Invalidate = true) const;
283 
284   [[nodiscard]] ProgramStateRef bindLoc(Loc location, SVal V,
285                                         const LocationContext *LCtx,
286                                         bool notifyChanges = true) const;
287 
288   [[nodiscard]] ProgramStateRef bindLoc(SVal location, SVal V,
289                                         const LocationContext *LCtx) const;
290 
291   /// Initializes the region of memory represented by \p loc with an initial
292   /// value. Once initialized, all values loaded from any sub-regions of that
293   /// region will be equal to \p V, unless overwritten later by the program.
294   /// This method should not be used on regions that are already initialized.
295   /// If you need to indicate that memory contents have suddenly become unknown
296   /// within a certain region of memory, consider invalidateRegions().
297   [[nodiscard]] ProgramStateRef
298   bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
299 
300   /// Performs C++ zero-initialization procedure on the region of memory
301   /// represented by \p loc.
302   [[nodiscard]] ProgramStateRef
303   bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
304 
305   [[nodiscard]] ProgramStateRef killBinding(Loc LV) const;
306 
307   /// Returns the state with bindings for the given regions
308   ///  cleared from the store.
309   ///
310   /// Optionally invalidates global regions as well.
311   ///
312   /// \param Regions the set of regions to be invalidated.
313   /// \param E the expression that caused the invalidation.
314   /// \param BlockCount The number of times the current basic block has been
315   //         visited.
316   /// \param CausesPointerEscape the flag is set to true when
317   ///        the invalidation entails escape of a symbol (representing a
318   ///        pointer). For example, due to it being passed as an argument in a
319   ///        call.
320   /// \param IS the set of invalidated symbols.
321   /// \param Call if non-null, the invalidated regions represent parameters to
322   ///        the call and should be considered directly invalidated.
323   /// \param ITraits information about special handling for a particular
324   ///        region/symbol.
325   [[nodiscard]] ProgramStateRef
326   invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
327                     unsigned BlockCount, const LocationContext *LCtx,
328                     bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
329                     const CallEvent *Call = nullptr,
330                     RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
331 
332   [[nodiscard]] ProgramStateRef
333   invalidateRegions(ArrayRef<SVal> Regions, const Expr *E, unsigned BlockCount,
334                     const LocationContext *LCtx, bool CausesPointerEscape,
335                     InvalidatedSymbols *IS = nullptr,
336                     const CallEvent *Call = nullptr,
337                     RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
338 
339   /// enterStackFrame - Returns the state for entry to the given stack frame,
340   ///  preserving the current state.
341   [[nodiscard]] ProgramStateRef
342   enterStackFrame(const CallEvent &Call,
343                   const StackFrameContext *CalleeCtx) const;
344 
345   /// Return the value of 'self' if available in the given context.
346   SVal getSelfSVal(const LocationContext *LC) const;
347 
348   /// Get the lvalue for a base class object reference.
349   Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
350 
351   /// Get the lvalue for a base class object reference.
352   Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
353                 bool IsVirtual) const;
354 
355   /// Get the lvalue for a variable reference.
356   Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
357 
358   Loc getLValue(const CompoundLiteralExpr *literal,
359                 const LocationContext *LC) const;
360 
361   /// Get the lvalue for an ivar reference.
362   SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
363 
364   /// Get the lvalue for a field reference.
365   SVal getLValue(const FieldDecl *decl, SVal Base) const;
366 
367   /// Get the lvalue for an indirect field reference.
368   SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
369 
370   /// Get the lvalue for an array index.
371   SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
372 
373   /// Returns the SVal bound to the statement 'S' in the state's environment.
374   SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
375 
376   SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
377 
378   /// Return the value bound to the specified location.
379   /// Returns UnknownVal() if none found.
380   SVal getSVal(Loc LV, QualType T = QualType()) const;
381 
382   /// Returns the "raw" SVal bound to LV before any value simplfication.
383   SVal getRawSVal(Loc LV, QualType T= QualType()) const;
384 
385   /// Return the value bound to the specified location.
386   /// Returns UnknownVal() if none found.
387   SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
388 
389   /// Return the value bound to the specified location, assuming
390   /// that the value is a scalar integer or an enumeration or a pointer.
391   /// Returns UnknownVal() if none found or the region is not known to hold
392   /// a value of such type.
393   SVal getSValAsScalarOrLoc(const MemRegion *R) const;
394 
395   using region_iterator = const MemRegion **;
396 
397   /// Visits the symbols reachable from the given SVal using the provided
398   /// SymbolVisitor.
399   ///
400   /// This is a convenience API. Consider using ScanReachableSymbols class
401   /// directly when making multiple scans on the same state with the same
402   /// visitor to avoid repeated initialization cost.
403   /// \sa ScanReachableSymbols
404   bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
405 
406   /// Visits the symbols reachable from the regions in the given
407   /// MemRegions range using the provided SymbolVisitor.
408   bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
409                             SymbolVisitor &visitor) const;
410 
411   template <typename CB> CB scanReachableSymbols(SVal val) const;
412   template <typename CB> CB
413   scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
414 
415   //==---------------------------------------------------------------------==//
416   // Accessing the Generic Data Map (GDM).
417   //==---------------------------------------------------------------------==//
418 
419   void *const* FindGDM(void *K) const;
420 
421   template <typename T>
422   [[nodiscard]] ProgramStateRef
423   add(typename ProgramStateTrait<T>::key_type K) const;
424 
425   template <typename T>
426   typename ProgramStateTrait<T>::data_type
get()427   get() const {
428     return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
429   }
430 
431   template<typename T>
432   typename ProgramStateTrait<T>::lookup_type
get(typename ProgramStateTrait<T>::key_type key)433   get(typename ProgramStateTrait<T>::key_type key) const {
434     void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
435     return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
436   }
437 
438   template <typename T>
439   typename ProgramStateTrait<T>::context_type get_context() const;
440 
441   template <typename T>
442   [[nodiscard]] ProgramStateRef
443   remove(typename ProgramStateTrait<T>::key_type K) const;
444 
445   template <typename T>
446   [[nodiscard]] ProgramStateRef
447   remove(typename ProgramStateTrait<T>::key_type K,
448          typename ProgramStateTrait<T>::context_type C) const;
449 
450   template <typename T> [[nodiscard]] ProgramStateRef remove() const;
451 
452   template <typename T>
453   [[nodiscard]] ProgramStateRef
454   set(typename ProgramStateTrait<T>::data_type D) const;
455 
456   template <typename T>
457   [[nodiscard]] ProgramStateRef
458   set(typename ProgramStateTrait<T>::key_type K,
459       typename ProgramStateTrait<T>::value_type E) const;
460 
461   template <typename T>
462   [[nodiscard]] ProgramStateRef
463   set(typename ProgramStateTrait<T>::key_type K,
464       typename ProgramStateTrait<T>::value_type E,
465       typename ProgramStateTrait<T>::context_type C) const;
466 
467   template<typename T>
contains(typename ProgramStateTrait<T>::key_type key)468   bool contains(typename ProgramStateTrait<T>::key_type key) const {
469     void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
470     return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
471   }
472 
473   // Pretty-printing.
474   void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
475                  const char *NL = "\n", unsigned int Space = 0,
476                  bool IsDot = false) const;
477 
478   void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
479                 unsigned int Space = 0) const;
480 
481   void dump() const;
482 
483 private:
484   friend void ProgramStateRetain(const ProgramState *state);
485   friend void ProgramStateRelease(const ProgramState *state);
486 
487   /// \sa invalidateValues()
488   /// \sa invalidateRegions()
489   ProgramStateRef
490   invalidateRegionsImpl(ArrayRef<SVal> Values,
491                         const Expr *E, unsigned BlockCount,
492                         const LocationContext *LCtx,
493                         bool ResultsInSymbolEscape,
494                         InvalidatedSymbols *IS,
495                         RegionAndSymbolInvalidationTraits *HTraits,
496                         const CallEvent *Call) const;
497 
498   SVal wrapSymbolicRegion(SVal Base) const;
499 };
500 
501 //===----------------------------------------------------------------------===//
502 // ProgramStateManager - Factory object for ProgramStates.
503 //===----------------------------------------------------------------------===//
504 
505 class ProgramStateManager {
506   friend class ProgramState;
507   friend void ProgramStateRelease(const ProgramState *state);
508 private:
509   /// Eng - The ExprEngine that owns this state manager.
510   ExprEngine *Eng; /* Can be null. */
511 
512   EnvironmentManager                   EnvMgr;
513   std::unique_ptr<StoreManager>        StoreMgr;
514   std::unique_ptr<ConstraintManager>   ConstraintMgr;
515 
516   ProgramState::GenericDataMap::Factory     GDMFactory;
517 
518   typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
519   GDMContextsTy GDMContexts;
520 
521   /// StateSet - FoldingSet containing all the states created for analyzing
522   ///  a particular function.  This is used to unique states.
523   llvm::FoldingSet<ProgramState> StateSet;
524 
525   /// Object that manages the data for all created SVals.
526   std::unique_ptr<SValBuilder> svalBuilder;
527 
528   /// Manages memory for created CallEvents.
529   std::unique_ptr<CallEventManager> CallEventMgr;
530 
531   /// A BumpPtrAllocator to allocate states.
532   llvm::BumpPtrAllocator &Alloc;
533 
534   /// A vector of ProgramStates that we can reuse.
535   std::vector<ProgramState *> freeStates;
536 
537 public:
538   ProgramStateManager(ASTContext &Ctx,
539                  StoreManagerCreator CreateStoreManager,
540                  ConstraintManagerCreator CreateConstraintManager,
541                  llvm::BumpPtrAllocator& alloc,
542                  ExprEngine *expreng);
543 
544   ~ProgramStateManager();
545 
546   ProgramStateRef getInitialState(const LocationContext *InitLoc);
547 
getContext()548   ASTContext &getContext() { return svalBuilder->getContext(); }
getContext()549   const ASTContext &getContext() const { return svalBuilder->getContext(); }
550 
getBasicVals()551   BasicValueFactory &getBasicVals() {
552     return svalBuilder->getBasicValueFactory();
553   }
554 
getSValBuilder()555   SValBuilder &getSValBuilder() {
556     return *svalBuilder;
557   }
558 
getSValBuilder()559   const SValBuilder &getSValBuilder() const {
560     return *svalBuilder;
561   }
562 
getSymbolManager()563   SymbolManager &getSymbolManager() {
564     return svalBuilder->getSymbolManager();
565   }
getSymbolManager()566   const SymbolManager &getSymbolManager() const {
567     return svalBuilder->getSymbolManager();
568   }
569 
getAllocator()570   llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
571 
getRegionManager()572   MemRegionManager& getRegionManager() {
573     return svalBuilder->getRegionManager();
574   }
getRegionManager()575   const MemRegionManager &getRegionManager() const {
576     return svalBuilder->getRegionManager();
577   }
578 
getCallEventManager()579   CallEventManager &getCallEventManager() { return *CallEventMgr; }
580 
getStoreManager()581   StoreManager &getStoreManager() { return *StoreMgr; }
getConstraintManager()582   ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
getOwningEngine()583   ExprEngine &getOwningEngine() { return *Eng; }
584 
585   ProgramStateRef
586   removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
587                                             const StackFrameContext *LCtx,
588                                             SymbolReaper &SymReaper);
589 
590 public:
591 
ArrayToPointer(Loc Array,QualType ElementTy)592   SVal ArrayToPointer(Loc Array, QualType ElementTy) {
593     return StoreMgr->ArrayToPointer(Array, ElementTy);
594   }
595 
596   // Methods that manipulate the GDM.
597   ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
598   ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
599 
600   // Methods that query & manipulate the Store.
601 
iterBindings(ProgramStateRef state,StoreManager::BindingsHandler & F)602   void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
603     StoreMgr->iterBindings(state->getStore(), F);
604   }
605 
606   ProgramStateRef getPersistentState(ProgramState &Impl);
607   ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
608                                            ProgramStateRef GDMState);
609 
haveEqualConstraints(ProgramStateRef S1,ProgramStateRef S2)610   bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
611     return ConstraintMgr->haveEqualConstraints(S1, S2);
612   }
613 
haveEqualEnvironments(ProgramStateRef S1,ProgramStateRef S2)614   bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
615     return S1->Env == S2->Env;
616   }
617 
haveEqualStores(ProgramStateRef S1,ProgramStateRef S2)618   bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
619     return S1->store == S2->store;
620   }
621 
622   //==---------------------------------------------------------------------==//
623   // Generic Data Map methods.
624   //==---------------------------------------------------------------------==//
625   //
626   // ProgramStateManager and ProgramState support a "generic data map" that allows
627   // different clients of ProgramState objects to embed arbitrary data within a
628   // ProgramState object.  The generic data map is essentially an immutable map
629   // from a "tag" (that acts as the "key" for a client) and opaque values.
630   // Tags/keys and values are simply void* values.  The typical way that clients
631   // generate unique tags are by taking the address of a static variable.
632   // Clients are responsible for ensuring that data values referred to by a
633   // the data pointer are immutable (and thus are essentially purely functional
634   // data).
635   //
636   // The templated methods below use the ProgramStateTrait<T> class
637   // to resolve keys into the GDM and to return data values to clients.
638   //
639 
640   // Trait based GDM dispatch.
641   template <typename T>
set(ProgramStateRef st,typename ProgramStateTrait<T>::data_type D)642   ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
643     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
644                   ProgramStateTrait<T>::MakeVoidPtr(D));
645   }
646 
647   template<typename T>
set(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type V,typename ProgramStateTrait<T>::context_type C)648   ProgramStateRef set(ProgramStateRef st,
649                      typename ProgramStateTrait<T>::key_type K,
650                      typename ProgramStateTrait<T>::value_type V,
651                      typename ProgramStateTrait<T>::context_type C) {
652 
653     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
654      ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
655   }
656 
657   template <typename T>
add(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)658   ProgramStateRef add(ProgramStateRef st,
659                      typename ProgramStateTrait<T>::key_type K,
660                      typename ProgramStateTrait<T>::context_type C) {
661     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
662         ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
663   }
664 
665   template <typename T>
remove(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)666   ProgramStateRef remove(ProgramStateRef st,
667                         typename ProgramStateTrait<T>::key_type K,
668                         typename ProgramStateTrait<T>::context_type C) {
669 
670     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
671      ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
672   }
673 
674   template <typename T>
remove(ProgramStateRef st)675   ProgramStateRef remove(ProgramStateRef st) {
676     return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
677   }
678 
679   void *FindGDMContext(void *index,
680                        void *(*CreateContext)(llvm::BumpPtrAllocator&),
681                        void  (*DeleteContext)(void*));
682 
683   template <typename T>
get_context()684   typename ProgramStateTrait<T>::context_type get_context() {
685     void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
686                              ProgramStateTrait<T>::CreateContext,
687                              ProgramStateTrait<T>::DeleteContext);
688 
689     return ProgramStateTrait<T>::MakeContext(p);
690   }
691 };
692 
693 
694 //===----------------------------------------------------------------------===//
695 // Out-of-line method definitions for ProgramState.
696 //===----------------------------------------------------------------------===//
697 
getConstraintManager()698 inline ConstraintManager &ProgramState::getConstraintManager() const {
699   return stateMgr->getConstraintManager();
700 }
701 
getRegion(const VarDecl * D,const LocationContext * LC)702 inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
703                                                 const LocationContext *LC) const
704 {
705   return getStateManager().getRegionManager().getVarRegion(D, LC);
706 }
707 
assume(DefinedOrUnknownSVal Cond,bool Assumption)708 inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
709                                       bool Assumption) const {
710   if (Cond.isUnknown())
711     return this;
712 
713   return getStateManager().ConstraintMgr
714       ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
715 }
716 
717 inline std::pair<ProgramStateRef , ProgramStateRef >
assume(DefinedOrUnknownSVal Cond)718 ProgramState::assume(DefinedOrUnknownSVal Cond) const {
719   if (Cond.isUnknown())
720     return std::make_pair(this, this);
721 
722   return getStateManager().ConstraintMgr
723       ->assumeDual(this, Cond.castAs<DefinedSVal>());
724 }
725 
assumeInclusiveRange(DefinedOrUnknownSVal Val,const llvm::APSInt & From,const llvm::APSInt & To,bool Assumption)726 inline ProgramStateRef ProgramState::assumeInclusiveRange(
727     DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
728     bool Assumption) const {
729   if (Val.isUnknown())
730     return this;
731 
732   assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
733 
734   return getStateManager().ConstraintMgr->assumeInclusiveRange(
735       this, Val.castAs<NonLoc>(), From, To, Assumption);
736 }
737 
738 inline std::pair<ProgramStateRef, ProgramStateRef>
assumeInclusiveRange(DefinedOrUnknownSVal Val,const llvm::APSInt & From,const llvm::APSInt & To)739 ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
740                                    const llvm::APSInt &From,
741                                    const llvm::APSInt &To) const {
742   if (Val.isUnknown())
743     return std::make_pair(this, this);
744 
745   assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
746 
747   return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
748       this, Val.castAs<NonLoc>(), From, To);
749 }
750 
bindLoc(SVal LV,SVal V,const LocationContext * LCtx)751 inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
752   if (std::optional<Loc> L = LV.getAs<Loc>())
753     return bindLoc(*L, V, LCtx);
754   return this;
755 }
756 
getLValue(const CXXBaseSpecifier & BaseSpec,const SubRegion * Super)757 inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
758                                    const SubRegion *Super) const {
759   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
760   return loc::MemRegionVal(
761            getStateManager().getRegionManager().getCXXBaseObjectRegion(
762                                             Base, Super, BaseSpec.isVirtual()));
763 }
764 
getLValue(const CXXRecordDecl * BaseClass,const SubRegion * Super,bool IsVirtual)765 inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
766                                    const SubRegion *Super,
767                                    bool IsVirtual) const {
768   return loc::MemRegionVal(
769            getStateManager().getRegionManager().getCXXBaseObjectRegion(
770                                                   BaseClass, Super, IsVirtual));
771 }
772 
getLValue(const VarDecl * VD,const LocationContext * LC)773 inline Loc ProgramState::getLValue(const VarDecl *VD,
774                                const LocationContext *LC) const {
775   return getStateManager().StoreMgr->getLValueVar(VD, LC);
776 }
777 
getLValue(const CompoundLiteralExpr * literal,const LocationContext * LC)778 inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
779                                const LocationContext *LC) const {
780   return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
781 }
782 
getLValue(const ObjCIvarDecl * D,SVal Base)783 inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
784   return getStateManager().StoreMgr->getLValueIvar(D, Base);
785 }
786 
getLValue(QualType ElementType,SVal Idx,SVal Base)787 inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
788   if (std::optional<NonLoc> N = Idx.getAs<NonLoc>())
789     return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
790   return UnknownVal();
791 }
792 
getSVal(const Stmt * Ex,const LocationContext * LCtx)793 inline SVal ProgramState::getSVal(const Stmt *Ex,
794                                   const LocationContext *LCtx) const{
795   return Env.getSVal(EnvironmentEntry(Ex, LCtx),
796                      *getStateManager().svalBuilder);
797 }
798 
799 inline SVal
getSValAsScalarOrLoc(const Stmt * S,const LocationContext * LCtx)800 ProgramState::getSValAsScalarOrLoc(const Stmt *S,
801                                    const LocationContext *LCtx) const {
802   if (const Expr *Ex = dyn_cast<Expr>(S)) {
803     QualType T = Ex->getType();
804     if (Ex->isGLValue() || Loc::isLocType(T) ||
805         T->isIntegralOrEnumerationType())
806       return getSVal(S, LCtx);
807   }
808 
809   return UnknownVal();
810 }
811 
getRawSVal(Loc LV,QualType T)812 inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
813   return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
814 }
815 
getSVal(const MemRegion * R,QualType T)816 inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
817   return getStateManager().StoreMgr->getBinding(getStore(),
818                                                 loc::MemRegionVal(R),
819                                                 T);
820 }
821 
getBasicVals()822 inline BasicValueFactory &ProgramState::getBasicVals() const {
823   return getStateManager().getBasicVals();
824 }
825 
getSymbolManager()826 inline SymbolManager &ProgramState::getSymbolManager() const {
827   return getStateManager().getSymbolManager();
828 }
829 
830 template<typename T>
add(typename ProgramStateTrait<T>::key_type K)831 ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
832   return getStateManager().add<T>(this, K, get_context<T>());
833 }
834 
835 template <typename T>
get_context()836 typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
837   return getStateManager().get_context<T>();
838 }
839 
840 template<typename T>
remove(typename ProgramStateTrait<T>::key_type K)841 ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
842   return getStateManager().remove<T>(this, K, get_context<T>());
843 }
844 
845 template<typename T>
remove(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)846 ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
847                                typename ProgramStateTrait<T>::context_type C) const {
848   return getStateManager().remove<T>(this, K, C);
849 }
850 
851 template <typename T>
remove()852 ProgramStateRef ProgramState::remove() const {
853   return getStateManager().remove<T>(this);
854 }
855 
856 template<typename T>
set(typename ProgramStateTrait<T>::data_type D)857 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
858   return getStateManager().set<T>(this, D);
859 }
860 
861 template<typename T>
set(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type E)862 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
863                             typename ProgramStateTrait<T>::value_type E) const {
864   return getStateManager().set<T>(this, K, E, get_context<T>());
865 }
866 
867 template<typename T>
set(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type E,typename ProgramStateTrait<T>::context_type C)868 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
869                             typename ProgramStateTrait<T>::value_type E,
870                             typename ProgramStateTrait<T>::context_type C) const {
871   return getStateManager().set<T>(this, K, E, C);
872 }
873 
874 template <typename CB>
scanReachableSymbols(SVal val)875 CB ProgramState::scanReachableSymbols(SVal val) const {
876   CB cb(this);
877   scanReachableSymbols(val, cb);
878   return cb;
879 }
880 
881 template <typename CB>
scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable)882 CB ProgramState::scanReachableSymbols(
883     llvm::iterator_range<region_iterator> Reachable) const {
884   CB cb(this);
885   scanReachableSymbols(Reachable, cb);
886   return cb;
887 }
888 
889 /// \class ScanReachableSymbols
890 /// A utility class that visits the reachable symbols using a custom
891 /// SymbolVisitor. Terminates recursive traversal when the visitor function
892 /// returns false.
893 class ScanReachableSymbols {
894   typedef llvm::DenseSet<const void*> VisitedItems;
895 
896   VisitedItems visited;
897   ProgramStateRef state;
898   SymbolVisitor &visitor;
899 public:
ScanReachableSymbols(ProgramStateRef st,SymbolVisitor & v)900   ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
901       : state(std::move(st)), visitor(v) {}
902 
903   bool scan(nonloc::LazyCompoundVal val);
904   bool scan(nonloc::CompoundVal val);
905   bool scan(SVal val);
906   bool scan(const MemRegion *R);
907   bool scan(const SymExpr *sym);
908 };
909 
910 } // end ento namespace
911 
912 } // end clang namespace
913 
914 #endif
915