1 //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file performs vector type splitting and scalarization for LegalizeTypes.
10 // Scalarization is the act of changing a computation in an illegal one-element
11 // vector type to be a computation in its scalar element type. For example,
12 // implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
13 // as a base case when scalarizing vector arithmetic like <4 x f32>, which
14 // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
15 // types.
16 // Splitting is the act of changing a computation in an invalid vector type to
17 // be a computation in two vectors of half the size. For example, implementing
18 // <128 x f32> operations in terms of two <64 x f32> operations.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "LegalizeTypes.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "llvm/Analysis/MemoryLocation.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/TypeSize.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <numeric>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "legalize-types"
36
37 //===----------------------------------------------------------------------===//
38 // Result Vector Scalarization: <1 x ty> -> ty.
39 //===----------------------------------------------------------------------===//
40
ScalarizeVectorResult(SDNode * N,unsigned ResNo)41 void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
42 LLVM_DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
43 N->dump(&DAG));
44 SDValue R = SDValue();
45
46 switch (N->getOpcode()) {
47 default:
48 #ifndef NDEBUG
49 dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
50 N->dump(&DAG);
51 dbgs() << "\n";
52 #endif
53 report_fatal_error("Do not know how to scalarize the result of this "
54 "operator!\n");
55
56 case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
57 case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
58 case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
59 case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
60 case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
61 case ISD::FPOWI: R = ScalarizeVecRes_ExpOp(N); break;
62 case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
63 case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
64 case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
65 case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
66 case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
67 case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
68 case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
69 case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
70 case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
71 case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
72 case ISD::IS_FPCLASS: R = ScalarizeVecRes_IS_FPCLASS(N); break;
73 case ISD::ANY_EXTEND_VECTOR_INREG:
74 case ISD::SIGN_EXTEND_VECTOR_INREG:
75 case ISD::ZERO_EXTEND_VECTOR_INREG:
76 R = ScalarizeVecRes_VecInregOp(N);
77 break;
78 case ISD::ABS:
79 case ISD::ANY_EXTEND:
80 case ISD::BITREVERSE:
81 case ISD::BSWAP:
82 case ISD::CTLZ:
83 case ISD::CTLZ_ZERO_UNDEF:
84 case ISD::CTPOP:
85 case ISD::CTTZ:
86 case ISD::CTTZ_ZERO_UNDEF:
87 case ISD::FABS:
88 case ISD::FACOS:
89 case ISD::FASIN:
90 case ISD::FATAN:
91 case ISD::FCEIL:
92 case ISD::FCOS:
93 case ISD::FCOSH:
94 case ISD::FEXP:
95 case ISD::FEXP2:
96 case ISD::FEXP10:
97 case ISD::FFLOOR:
98 case ISD::FLOG:
99 case ISD::FLOG10:
100 case ISD::FLOG2:
101 case ISD::FNEARBYINT:
102 case ISD::FNEG:
103 case ISD::FREEZE:
104 case ISD::ARITH_FENCE:
105 case ISD::FP_EXTEND:
106 case ISD::FP_TO_SINT:
107 case ISD::FP_TO_UINT:
108 case ISD::FRINT:
109 case ISD::LRINT:
110 case ISD::LLRINT:
111 case ISD::FROUND:
112 case ISD::FROUNDEVEN:
113 case ISD::FSIN:
114 case ISD::FSINH:
115 case ISD::FSQRT:
116 case ISD::FTAN:
117 case ISD::FTANH:
118 case ISD::FTRUNC:
119 case ISD::SIGN_EXTEND:
120 case ISD::SINT_TO_FP:
121 case ISD::TRUNCATE:
122 case ISD::UINT_TO_FP:
123 case ISD::ZERO_EXTEND:
124 case ISD::FCANONICALIZE:
125 R = ScalarizeVecRes_UnaryOp(N);
126 break;
127 case ISD::ADDRSPACECAST:
128 R = ScalarizeVecRes_ADDRSPACECAST(N);
129 break;
130 case ISD::FFREXP:
131 R = ScalarizeVecRes_FFREXP(N, ResNo);
132 break;
133 case ISD::ADD:
134 case ISD::AND:
135 case ISD::AVGCEILS:
136 case ISD::AVGCEILU:
137 case ISD::AVGFLOORS:
138 case ISD::AVGFLOORU:
139 case ISD::FADD:
140 case ISD::FCOPYSIGN:
141 case ISD::FDIV:
142 case ISD::FMUL:
143 case ISD::FMINNUM:
144 case ISD::FMAXNUM:
145 case ISD::FMINNUM_IEEE:
146 case ISD::FMAXNUM_IEEE:
147 case ISD::FMINIMUM:
148 case ISD::FMAXIMUM:
149 case ISD::FLDEXP:
150 case ISD::SMIN:
151 case ISD::SMAX:
152 case ISD::UMIN:
153 case ISD::UMAX:
154
155 case ISD::SADDSAT:
156 case ISD::UADDSAT:
157 case ISD::SSUBSAT:
158 case ISD::USUBSAT:
159 case ISD::SSHLSAT:
160 case ISD::USHLSAT:
161
162 case ISD::FPOW:
163 case ISD::FREM:
164 case ISD::FSUB:
165 case ISD::MUL:
166 case ISD::MULHS:
167 case ISD::MULHU:
168 case ISD::OR:
169 case ISD::SDIV:
170 case ISD::SREM:
171 case ISD::SUB:
172 case ISD::UDIV:
173 case ISD::UREM:
174 case ISD::XOR:
175 case ISD::SHL:
176 case ISD::SRA:
177 case ISD::SRL:
178 case ISD::ROTL:
179 case ISD::ROTR:
180 R = ScalarizeVecRes_BinOp(N);
181 break;
182
183 case ISD::SCMP:
184 case ISD::UCMP:
185 R = ScalarizeVecRes_CMP(N);
186 break;
187
188 case ISD::FMA:
189 case ISD::FSHL:
190 case ISD::FSHR:
191 R = ScalarizeVecRes_TernaryOp(N);
192 break;
193
194 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
195 case ISD::STRICT_##DAGN:
196 #include "llvm/IR/ConstrainedOps.def"
197 R = ScalarizeVecRes_StrictFPOp(N);
198 break;
199
200 case ISD::FP_TO_UINT_SAT:
201 case ISD::FP_TO_SINT_SAT:
202 R = ScalarizeVecRes_FP_TO_XINT_SAT(N);
203 break;
204
205 case ISD::UADDO:
206 case ISD::SADDO:
207 case ISD::USUBO:
208 case ISD::SSUBO:
209 case ISD::UMULO:
210 case ISD::SMULO:
211 R = ScalarizeVecRes_OverflowOp(N, ResNo);
212 break;
213 case ISD::SMULFIX:
214 case ISD::SMULFIXSAT:
215 case ISD::UMULFIX:
216 case ISD::UMULFIXSAT:
217 case ISD::SDIVFIX:
218 case ISD::SDIVFIXSAT:
219 case ISD::UDIVFIX:
220 case ISD::UDIVFIXSAT:
221 R = ScalarizeVecRes_FIX(N);
222 break;
223 }
224
225 // If R is null, the sub-method took care of registering the result.
226 if (R.getNode())
227 SetScalarizedVector(SDValue(N, ResNo), R);
228 }
229
ScalarizeVecRes_BinOp(SDNode * N)230 SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
231 SDValue LHS = GetScalarizedVector(N->getOperand(0));
232 SDValue RHS = GetScalarizedVector(N->getOperand(1));
233 return DAG.getNode(N->getOpcode(), SDLoc(N),
234 LHS.getValueType(), LHS, RHS, N->getFlags());
235 }
236
ScalarizeVecRes_CMP(SDNode * N)237 SDValue DAGTypeLegalizer::ScalarizeVecRes_CMP(SDNode *N) {
238 SDLoc DL(N);
239
240 SDValue LHS = N->getOperand(0);
241 SDValue RHS = N->getOperand(1);
242 if (getTypeAction(LHS.getValueType()) ==
243 TargetLowering::TypeScalarizeVector) {
244 LHS = GetScalarizedVector(LHS);
245 RHS = GetScalarizedVector(RHS);
246 } else {
247 EVT VT = LHS.getValueType().getVectorElementType();
248 LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
249 DAG.getVectorIdxConstant(0, DL));
250 RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
251 DAG.getVectorIdxConstant(0, DL));
252 }
253
254 return DAG.getNode(N->getOpcode(), SDLoc(N),
255 N->getValueType(0).getVectorElementType(), LHS, RHS);
256 }
257
ScalarizeVecRes_TernaryOp(SDNode * N)258 SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
259 SDValue Op0 = GetScalarizedVector(N->getOperand(0));
260 SDValue Op1 = GetScalarizedVector(N->getOperand(1));
261 SDValue Op2 = GetScalarizedVector(N->getOperand(2));
262 return DAG.getNode(N->getOpcode(), SDLoc(N), Op0.getValueType(), Op0, Op1,
263 Op2, N->getFlags());
264 }
265
ScalarizeVecRes_FIX(SDNode * N)266 SDValue DAGTypeLegalizer::ScalarizeVecRes_FIX(SDNode *N) {
267 SDValue Op0 = GetScalarizedVector(N->getOperand(0));
268 SDValue Op1 = GetScalarizedVector(N->getOperand(1));
269 SDValue Op2 = N->getOperand(2);
270 return DAG.getNode(N->getOpcode(), SDLoc(N), Op0.getValueType(), Op0, Op1,
271 Op2, N->getFlags());
272 }
273
ScalarizeVecRes_FFREXP(SDNode * N,unsigned ResNo)274 SDValue DAGTypeLegalizer::ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo) {
275 assert(N->getValueType(0).getVectorNumElements() == 1 &&
276 "Unexpected vector type!");
277 SDValue Elt = GetScalarizedVector(N->getOperand(0));
278
279 EVT VT0 = N->getValueType(0);
280 EVT VT1 = N->getValueType(1);
281 SDLoc dl(N);
282
283 SDNode *ScalarNode =
284 DAG.getNode(N->getOpcode(), dl,
285 {VT0.getScalarType(), VT1.getScalarType()}, Elt)
286 .getNode();
287
288 // Replace the other vector result not being explicitly scalarized here.
289 unsigned OtherNo = 1 - ResNo;
290 EVT OtherVT = N->getValueType(OtherNo);
291 if (getTypeAction(OtherVT) == TargetLowering::TypeScalarizeVector) {
292 SetScalarizedVector(SDValue(N, OtherNo), SDValue(ScalarNode, OtherNo));
293 } else {
294 SDValue OtherVal = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, OtherVT,
295 SDValue(ScalarNode, OtherNo));
296 ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
297 }
298
299 return SDValue(ScalarNode, ResNo);
300 }
301
ScalarizeVecRes_StrictFPOp(SDNode * N)302 SDValue DAGTypeLegalizer::ScalarizeVecRes_StrictFPOp(SDNode *N) {
303 EVT VT = N->getValueType(0).getVectorElementType();
304 unsigned NumOpers = N->getNumOperands();
305 SDValue Chain = N->getOperand(0);
306 EVT ValueVTs[] = {VT, MVT::Other};
307 SDLoc dl(N);
308
309 SmallVector<SDValue, 4> Opers(NumOpers);
310
311 // The Chain is the first operand.
312 Opers[0] = Chain;
313
314 // Now process the remaining operands.
315 for (unsigned i = 1; i < NumOpers; ++i) {
316 SDValue Oper = N->getOperand(i);
317 EVT OperVT = Oper.getValueType();
318
319 if (OperVT.isVector()) {
320 if (getTypeAction(OperVT) == TargetLowering::TypeScalarizeVector)
321 Oper = GetScalarizedVector(Oper);
322 else
323 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
324 OperVT.getVectorElementType(), Oper,
325 DAG.getVectorIdxConstant(0, dl));
326 }
327
328 Opers[i] = Oper;
329 }
330
331 SDValue Result = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(ValueVTs),
332 Opers, N->getFlags());
333
334 // Legalize the chain result - switch anything that used the old chain to
335 // use the new one.
336 ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
337 return Result;
338 }
339
ScalarizeVecRes_OverflowOp(SDNode * N,unsigned ResNo)340 SDValue DAGTypeLegalizer::ScalarizeVecRes_OverflowOp(SDNode *N,
341 unsigned ResNo) {
342 SDLoc DL(N);
343 EVT ResVT = N->getValueType(0);
344 EVT OvVT = N->getValueType(1);
345
346 SDValue ScalarLHS, ScalarRHS;
347 if (getTypeAction(ResVT) == TargetLowering::TypeScalarizeVector) {
348 ScalarLHS = GetScalarizedVector(N->getOperand(0));
349 ScalarRHS = GetScalarizedVector(N->getOperand(1));
350 } else {
351 SmallVector<SDValue, 1> ElemsLHS, ElemsRHS;
352 DAG.ExtractVectorElements(N->getOperand(0), ElemsLHS);
353 DAG.ExtractVectorElements(N->getOperand(1), ElemsRHS);
354 ScalarLHS = ElemsLHS[0];
355 ScalarRHS = ElemsRHS[0];
356 }
357
358 SDVTList ScalarVTs = DAG.getVTList(
359 ResVT.getVectorElementType(), OvVT.getVectorElementType());
360 SDNode *ScalarNode = DAG.getNode(
361 N->getOpcode(), DL, ScalarVTs, ScalarLHS, ScalarRHS).getNode();
362 ScalarNode->setFlags(N->getFlags());
363
364 // Replace the other vector result not being explicitly scalarized here.
365 unsigned OtherNo = 1 - ResNo;
366 EVT OtherVT = N->getValueType(OtherNo);
367 if (getTypeAction(OtherVT) == TargetLowering::TypeScalarizeVector) {
368 SetScalarizedVector(SDValue(N, OtherNo), SDValue(ScalarNode, OtherNo));
369 } else {
370 SDValue OtherVal = DAG.getNode(
371 ISD::SCALAR_TO_VECTOR, DL, OtherVT, SDValue(ScalarNode, OtherNo));
372 ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
373 }
374
375 return SDValue(ScalarNode, ResNo);
376 }
377
ScalarizeVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)378 SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
379 unsigned ResNo) {
380 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
381 return GetScalarizedVector(Op);
382 }
383
ScalarizeVecRes_BITCAST(SDNode * N)384 SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
385 SDValue Op = N->getOperand(0);
386 if (Op.getValueType().isVector()
387 && Op.getValueType().getVectorNumElements() == 1
388 && !isSimpleLegalType(Op.getValueType()))
389 Op = GetScalarizedVector(Op);
390 EVT NewVT = N->getValueType(0).getVectorElementType();
391 return DAG.getNode(ISD::BITCAST, SDLoc(N),
392 NewVT, Op);
393 }
394
ScalarizeVecRes_BUILD_VECTOR(SDNode * N)395 SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
396 EVT EltVT = N->getValueType(0).getVectorElementType();
397 SDValue InOp = N->getOperand(0);
398 // The BUILD_VECTOR operands may be of wider element types and
399 // we may need to truncate them back to the requested return type.
400 if (EltVT.isInteger())
401 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
402 return InOp;
403 }
404
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode * N)405 SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
406 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
407 N->getValueType(0).getVectorElementType(),
408 N->getOperand(0), N->getOperand(1));
409 }
410
ScalarizeVecRes_FP_ROUND(SDNode * N)411 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
412 SDLoc DL(N);
413 SDValue Op = N->getOperand(0);
414 EVT OpVT = Op.getValueType();
415 // The result needs scalarizing, but it's not a given that the source does.
416 // See similar logic in ScalarizeVecRes_UnaryOp.
417 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
418 Op = GetScalarizedVector(Op);
419 } else {
420 EVT VT = OpVT.getVectorElementType();
421 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
422 DAG.getVectorIdxConstant(0, DL));
423 }
424 return DAG.getNode(ISD::FP_ROUND, DL,
425 N->getValueType(0).getVectorElementType(), Op,
426 N->getOperand(1));
427 }
428
ScalarizeVecRes_ExpOp(SDNode * N)429 SDValue DAGTypeLegalizer::ScalarizeVecRes_ExpOp(SDNode *N) {
430 SDValue Op = GetScalarizedVector(N->getOperand(0));
431 return DAG.getNode(N->getOpcode(), SDLoc(N), Op.getValueType(), Op,
432 N->getOperand(1));
433 }
434
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode * N)435 SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
436 // The value to insert may have a wider type than the vector element type,
437 // so be sure to truncate it to the element type if necessary.
438 SDValue Op = N->getOperand(1);
439 EVT EltVT = N->getValueType(0).getVectorElementType();
440 if (Op.getValueType() != EltVT)
441 // FIXME: Can this happen for floating point types?
442 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
443 return Op;
444 }
445
ScalarizeVecRes_LOAD(LoadSDNode * N)446 SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
447 assert(N->isUnindexed() && "Indexed vector load?");
448
449 SDValue Result = DAG.getLoad(
450 ISD::UNINDEXED, N->getExtensionType(),
451 N->getValueType(0).getVectorElementType(), SDLoc(N), N->getChain(),
452 N->getBasePtr(), DAG.getUNDEF(N->getBasePtr().getValueType()),
453 N->getPointerInfo(), N->getMemoryVT().getVectorElementType(),
454 N->getOriginalAlign(), N->getMemOperand()->getFlags(), N->getAAInfo());
455
456 // Legalize the chain result - switch anything that used the old chain to
457 // use the new one.
458 ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
459 return Result;
460 }
461
ScalarizeVecRes_UnaryOp(SDNode * N)462 SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
463 // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
464 EVT DestVT = N->getValueType(0).getVectorElementType();
465 SDValue Op = N->getOperand(0);
466 EVT OpVT = Op.getValueType();
467 SDLoc DL(N);
468 // The result needs scalarizing, but it's not a given that the source does.
469 // This is a workaround for targets where it's impossible to scalarize the
470 // result of a conversion, because the source type is legal.
471 // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
472 // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
473 // legal and was not scalarized.
474 // See the similar logic in ScalarizeVecRes_SETCC
475 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
476 Op = GetScalarizedVector(Op);
477 } else {
478 EVT VT = OpVT.getVectorElementType();
479 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
480 DAG.getVectorIdxConstant(0, DL));
481 }
482 return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op, N->getFlags());
483 }
484
ScalarizeVecRes_InregOp(SDNode * N)485 SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
486 EVT EltVT = N->getValueType(0).getVectorElementType();
487 EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
488 SDValue LHS = GetScalarizedVector(N->getOperand(0));
489 return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
490 LHS, DAG.getValueType(ExtVT));
491 }
492
ScalarizeVecRes_VecInregOp(SDNode * N)493 SDValue DAGTypeLegalizer::ScalarizeVecRes_VecInregOp(SDNode *N) {
494 SDLoc DL(N);
495 SDValue Op = N->getOperand(0);
496
497 EVT OpVT = Op.getValueType();
498 EVT OpEltVT = OpVT.getVectorElementType();
499 EVT EltVT = N->getValueType(0).getVectorElementType();
500
501 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
502 Op = GetScalarizedVector(Op);
503 } else {
504 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpEltVT, Op,
505 DAG.getVectorIdxConstant(0, DL));
506 }
507
508 switch (N->getOpcode()) {
509 case ISD::ANY_EXTEND_VECTOR_INREG:
510 return DAG.getNode(ISD::ANY_EXTEND, DL, EltVT, Op);
511 case ISD::SIGN_EXTEND_VECTOR_INREG:
512 return DAG.getNode(ISD::SIGN_EXTEND, DL, EltVT, Op);
513 case ISD::ZERO_EXTEND_VECTOR_INREG:
514 return DAG.getNode(ISD::ZERO_EXTEND, DL, EltVT, Op);
515 }
516
517 llvm_unreachable("Illegal extend_vector_inreg opcode");
518 }
519
ScalarizeVecRes_ADDRSPACECAST(SDNode * N)520 SDValue DAGTypeLegalizer::ScalarizeVecRes_ADDRSPACECAST(SDNode *N) {
521 EVT DestVT = N->getValueType(0).getVectorElementType();
522 SDValue Op = N->getOperand(0);
523 EVT OpVT = Op.getValueType();
524 SDLoc DL(N);
525 // The result needs scalarizing, but it's not a given that the source does.
526 // This is a workaround for targets where it's impossible to scalarize the
527 // result of a conversion, because the source type is legal.
528 // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
529 // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
530 // legal and was not scalarized.
531 // See the similar logic in ScalarizeVecRes_SETCC
532 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
533 Op = GetScalarizedVector(Op);
534 } else {
535 EVT VT = OpVT.getVectorElementType();
536 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
537 DAG.getVectorIdxConstant(0, DL));
538 }
539 auto *AddrSpaceCastN = cast<AddrSpaceCastSDNode>(N);
540 unsigned SrcAS = AddrSpaceCastN->getSrcAddressSpace();
541 unsigned DestAS = AddrSpaceCastN->getDestAddressSpace();
542 return DAG.getAddrSpaceCast(DL, DestVT, Op, SrcAS, DestAS);
543 }
544
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode * N)545 SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
546 // If the operand is wider than the vector element type then it is implicitly
547 // truncated. Make that explicit here.
548 EVT EltVT = N->getValueType(0).getVectorElementType();
549 SDValue InOp = N->getOperand(0);
550 if (InOp.getValueType() != EltVT)
551 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
552 return InOp;
553 }
554
ScalarizeVecRes_VSELECT(SDNode * N)555 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
556 SDValue Cond = N->getOperand(0);
557 EVT OpVT = Cond.getValueType();
558 SDLoc DL(N);
559 // The vselect result and true/value operands needs scalarizing, but it's
560 // not a given that the Cond does. For instance, in AVX512 v1i1 is legal.
561 // See the similar logic in ScalarizeVecRes_SETCC
562 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
563 Cond = GetScalarizedVector(Cond);
564 } else {
565 EVT VT = OpVT.getVectorElementType();
566 Cond = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Cond,
567 DAG.getVectorIdxConstant(0, DL));
568 }
569
570 SDValue LHS = GetScalarizedVector(N->getOperand(1));
571 TargetLowering::BooleanContent ScalarBool =
572 TLI.getBooleanContents(false, false);
573 TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
574
575 // If integer and float booleans have different contents then we can't
576 // reliably optimize in all cases. There is a full explanation for this in
577 // DAGCombiner::visitSELECT() where the same issue affects folding
578 // (select C, 0, 1) to (xor C, 1).
579 if (TLI.getBooleanContents(false, false) !=
580 TLI.getBooleanContents(false, true)) {
581 // At least try the common case where the boolean is generated by a
582 // comparison.
583 if (Cond->getOpcode() == ISD::SETCC) {
584 EVT OpVT = Cond->getOperand(0).getValueType();
585 ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
586 VecBool = TLI.getBooleanContents(OpVT);
587 } else
588 ScalarBool = TargetLowering::UndefinedBooleanContent;
589 }
590
591 EVT CondVT = Cond.getValueType();
592 if (ScalarBool != VecBool) {
593 switch (ScalarBool) {
594 case TargetLowering::UndefinedBooleanContent:
595 break;
596 case TargetLowering::ZeroOrOneBooleanContent:
597 assert(VecBool == TargetLowering::UndefinedBooleanContent ||
598 VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
599 // Vector read from all ones, scalar expects a single 1 so mask.
600 Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
601 Cond, DAG.getConstant(1, SDLoc(N), CondVT));
602 break;
603 case TargetLowering::ZeroOrNegativeOneBooleanContent:
604 assert(VecBool == TargetLowering::UndefinedBooleanContent ||
605 VecBool == TargetLowering::ZeroOrOneBooleanContent);
606 // Vector reads from a one, scalar from all ones so sign extend.
607 Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
608 Cond, DAG.getValueType(MVT::i1));
609 break;
610 }
611 }
612
613 // Truncate the condition if needed
614 auto BoolVT = getSetCCResultType(CondVT);
615 if (BoolVT.bitsLT(CondVT))
616 Cond = DAG.getNode(ISD::TRUNCATE, SDLoc(N), BoolVT, Cond);
617
618 return DAG.getSelect(SDLoc(N),
619 LHS.getValueType(), Cond, LHS,
620 GetScalarizedVector(N->getOperand(2)));
621 }
622
ScalarizeVecRes_SELECT(SDNode * N)623 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
624 SDValue LHS = GetScalarizedVector(N->getOperand(1));
625 return DAG.getSelect(SDLoc(N),
626 LHS.getValueType(), N->getOperand(0), LHS,
627 GetScalarizedVector(N->getOperand(2)));
628 }
629
ScalarizeVecRes_SELECT_CC(SDNode * N)630 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
631 SDValue LHS = GetScalarizedVector(N->getOperand(2));
632 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
633 N->getOperand(0), N->getOperand(1),
634 LHS, GetScalarizedVector(N->getOperand(3)),
635 N->getOperand(4));
636 }
637
ScalarizeVecRes_UNDEF(SDNode * N)638 SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
639 return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
640 }
641
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode * N)642 SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
643 // Figure out if the scalar is the LHS or RHS and return it.
644 SDValue Arg = N->getOperand(2).getOperand(0);
645 if (Arg.isUndef())
646 return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
647 unsigned Op = !cast<ConstantSDNode>(Arg)->isZero();
648 return GetScalarizedVector(N->getOperand(Op));
649 }
650
ScalarizeVecRes_FP_TO_XINT_SAT(SDNode * N)651 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N) {
652 SDValue Src = N->getOperand(0);
653 EVT SrcVT = Src.getValueType();
654 SDLoc dl(N);
655
656 // Handle case where result is scalarized but operand is not
657 if (getTypeAction(SrcVT) == TargetLowering::TypeScalarizeVector)
658 Src = GetScalarizedVector(Src);
659 else
660 Src = DAG.getNode(
661 ISD::EXTRACT_VECTOR_ELT, dl, SrcVT.getVectorElementType(), Src,
662 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
663
664 EVT DstVT = N->getValueType(0).getVectorElementType();
665 return DAG.getNode(N->getOpcode(), dl, DstVT, Src, N->getOperand(1));
666 }
667
ScalarizeVecRes_SETCC(SDNode * N)668 SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
669 assert(N->getValueType(0).isVector() &&
670 N->getOperand(0).getValueType().isVector() &&
671 "Operand types must be vectors");
672 SDValue LHS = N->getOperand(0);
673 SDValue RHS = N->getOperand(1);
674 EVT OpVT = LHS.getValueType();
675 EVT NVT = N->getValueType(0).getVectorElementType();
676 SDLoc DL(N);
677
678 // The result needs scalarizing, but it's not a given that the source does.
679 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
680 LHS = GetScalarizedVector(LHS);
681 RHS = GetScalarizedVector(RHS);
682 } else {
683 EVT VT = OpVT.getVectorElementType();
684 LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
685 DAG.getVectorIdxConstant(0, DL));
686 RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
687 DAG.getVectorIdxConstant(0, DL));
688 }
689
690 // Turn it into a scalar SETCC.
691 SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
692 N->getOperand(2));
693 // Vectors may have a different boolean contents to scalars. Promote the
694 // value appropriately.
695 ISD::NodeType ExtendCode =
696 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
697 return DAG.getNode(ExtendCode, DL, NVT, Res);
698 }
699
ScalarizeVecRes_IS_FPCLASS(SDNode * N)700 SDValue DAGTypeLegalizer::ScalarizeVecRes_IS_FPCLASS(SDNode *N) {
701 SDLoc DL(N);
702 SDValue Arg = N->getOperand(0);
703 SDValue Test = N->getOperand(1);
704 EVT ArgVT = Arg.getValueType();
705 EVT ResultVT = N->getValueType(0).getVectorElementType();
706
707 if (getTypeAction(ArgVT) == TargetLowering::TypeScalarizeVector) {
708 Arg = GetScalarizedVector(Arg);
709 } else {
710 EVT VT = ArgVT.getVectorElementType();
711 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Arg,
712 DAG.getVectorIdxConstant(0, DL));
713 }
714
715 SDValue Res =
716 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, {Arg, Test}, N->getFlags());
717 // Vectors may have a different boolean contents to scalars. Promote the
718 // value appropriately.
719 ISD::NodeType ExtendCode =
720 TargetLowering::getExtendForContent(TLI.getBooleanContents(ArgVT));
721 return DAG.getNode(ExtendCode, DL, ResultVT, Res);
722 }
723
724 //===----------------------------------------------------------------------===//
725 // Operand Vector Scalarization <1 x ty> -> ty.
726 //===----------------------------------------------------------------------===//
727
ScalarizeVectorOperand(SDNode * N,unsigned OpNo)728 bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
729 LLVM_DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
730 N->dump(&DAG));
731 SDValue Res = SDValue();
732
733 switch (N->getOpcode()) {
734 default:
735 #ifndef NDEBUG
736 dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
737 N->dump(&DAG);
738 dbgs() << "\n";
739 #endif
740 report_fatal_error("Do not know how to scalarize this operator's "
741 "operand!\n");
742 case ISD::BITCAST:
743 Res = ScalarizeVecOp_BITCAST(N);
744 break;
745 case ISD::ANY_EXTEND:
746 case ISD::ZERO_EXTEND:
747 case ISD::SIGN_EXTEND:
748 case ISD::TRUNCATE:
749 case ISD::FP_TO_SINT:
750 case ISD::FP_TO_UINT:
751 case ISD::SINT_TO_FP:
752 case ISD::UINT_TO_FP:
753 case ISD::LRINT:
754 case ISD::LLRINT:
755 Res = ScalarizeVecOp_UnaryOp(N);
756 break;
757 case ISD::STRICT_SINT_TO_FP:
758 case ISD::STRICT_UINT_TO_FP:
759 case ISD::STRICT_FP_TO_SINT:
760 case ISD::STRICT_FP_TO_UINT:
761 Res = ScalarizeVecOp_UnaryOp_StrictFP(N);
762 break;
763 case ISD::CONCAT_VECTORS:
764 Res = ScalarizeVecOp_CONCAT_VECTORS(N);
765 break;
766 case ISD::EXTRACT_VECTOR_ELT:
767 Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
768 break;
769 case ISD::VSELECT:
770 Res = ScalarizeVecOp_VSELECT(N);
771 break;
772 case ISD::SETCC:
773 Res = ScalarizeVecOp_VSETCC(N);
774 break;
775 case ISD::STORE:
776 Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
777 break;
778 case ISD::STRICT_FP_ROUND:
779 Res = ScalarizeVecOp_STRICT_FP_ROUND(N, OpNo);
780 break;
781 case ISD::FP_ROUND:
782 Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
783 break;
784 case ISD::STRICT_FP_EXTEND:
785 Res = ScalarizeVecOp_STRICT_FP_EXTEND(N);
786 break;
787 case ISD::FP_EXTEND:
788 Res = ScalarizeVecOp_FP_EXTEND(N);
789 break;
790 case ISD::VECREDUCE_FADD:
791 case ISD::VECREDUCE_FMUL:
792 case ISD::VECREDUCE_ADD:
793 case ISD::VECREDUCE_MUL:
794 case ISD::VECREDUCE_AND:
795 case ISD::VECREDUCE_OR:
796 case ISD::VECREDUCE_XOR:
797 case ISD::VECREDUCE_SMAX:
798 case ISD::VECREDUCE_SMIN:
799 case ISD::VECREDUCE_UMAX:
800 case ISD::VECREDUCE_UMIN:
801 case ISD::VECREDUCE_FMAX:
802 case ISD::VECREDUCE_FMIN:
803 case ISD::VECREDUCE_FMAXIMUM:
804 case ISD::VECREDUCE_FMINIMUM:
805 Res = ScalarizeVecOp_VECREDUCE(N);
806 break;
807 case ISD::VECREDUCE_SEQ_FADD:
808 case ISD::VECREDUCE_SEQ_FMUL:
809 Res = ScalarizeVecOp_VECREDUCE_SEQ(N);
810 break;
811 case ISD::SCMP:
812 case ISD::UCMP:
813 Res = ScalarizeVecOp_CMP(N);
814 break;
815 }
816
817 // If the result is null, the sub-method took care of registering results etc.
818 if (!Res.getNode()) return false;
819
820 // If the result is N, the sub-method updated N in place. Tell the legalizer
821 // core about this.
822 if (Res.getNode() == N)
823 return true;
824
825 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
826 "Invalid operand expansion");
827
828 ReplaceValueWith(SDValue(N, 0), Res);
829 return false;
830 }
831
832 /// If the value to convert is a vector that needs to be scalarized, it must be
833 /// <1 x ty>. Convert the element instead.
ScalarizeVecOp_BITCAST(SDNode * N)834 SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
835 SDValue Elt = GetScalarizedVector(N->getOperand(0));
836 return DAG.getNode(ISD::BITCAST, SDLoc(N),
837 N->getValueType(0), Elt);
838 }
839
840 /// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
841 /// Do the operation on the element instead.
ScalarizeVecOp_UnaryOp(SDNode * N)842 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
843 assert(N->getValueType(0).getVectorNumElements() == 1 &&
844 "Unexpected vector type!");
845 SDValue Elt = GetScalarizedVector(N->getOperand(0));
846 SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
847 N->getValueType(0).getScalarType(), Elt);
848 // Revectorize the result so the types line up with what the uses of this
849 // expression expect.
850 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Op);
851 }
852
853 /// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
854 /// Do the strict FP operation on the element instead.
ScalarizeVecOp_UnaryOp_StrictFP(SDNode * N)855 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N) {
856 assert(N->getValueType(0).getVectorNumElements() == 1 &&
857 "Unexpected vector type!");
858 SDValue Elt = GetScalarizedVector(N->getOperand(1));
859 SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
860 { N->getValueType(0).getScalarType(), MVT::Other },
861 { N->getOperand(0), Elt });
862 // Legalize the chain result - switch anything that used the old chain to
863 // use the new one.
864 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
865 // Revectorize the result so the types line up with what the uses of this
866 // expression expect.
867 Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
868
869 // Do our own replacement and return SDValue() to tell the caller that we
870 // handled all replacements since caller can only handle a single result.
871 ReplaceValueWith(SDValue(N, 0), Res);
872 return SDValue();
873 }
874
875 /// The vectors to concatenate have length one - use a BUILD_VECTOR instead.
ScalarizeVecOp_CONCAT_VECTORS(SDNode * N)876 SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
877 SmallVector<SDValue, 8> Ops(N->getNumOperands());
878 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
879 Ops[i] = GetScalarizedVector(N->getOperand(i));
880 return DAG.getBuildVector(N->getValueType(0), SDLoc(N), Ops);
881 }
882
883 /// If the input is a vector that needs to be scalarized, it must be <1 x ty>,
884 /// so just return the element, ignoring the index.
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode * N)885 SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
886 EVT VT = N->getValueType(0);
887 SDValue Res = GetScalarizedVector(N->getOperand(0));
888 if (Res.getValueType() != VT)
889 Res = VT.isFloatingPoint()
890 ? DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Res)
891 : DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Res);
892 return Res;
893 }
894
895 /// If the input condition is a vector that needs to be scalarized, it must be
896 /// <1 x i1>, so just convert to a normal ISD::SELECT
897 /// (still with vector output type since that was acceptable if we got here).
ScalarizeVecOp_VSELECT(SDNode * N)898 SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
899 SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
900 EVT VT = N->getValueType(0);
901
902 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
903 N->getOperand(2));
904 }
905
906 /// If the operand is a vector that needs to be scalarized then the
907 /// result must be v1i1, so just convert to a scalar SETCC and wrap
908 /// with a scalar_to_vector since the res type is legal if we got here
ScalarizeVecOp_VSETCC(SDNode * N)909 SDValue DAGTypeLegalizer::ScalarizeVecOp_VSETCC(SDNode *N) {
910 assert(N->getValueType(0).isVector() &&
911 N->getOperand(0).getValueType().isVector() &&
912 "Operand types must be vectors");
913 assert(N->getValueType(0) == MVT::v1i1 && "Expected v1i1 type");
914
915 EVT VT = N->getValueType(0);
916 SDValue LHS = GetScalarizedVector(N->getOperand(0));
917 SDValue RHS = GetScalarizedVector(N->getOperand(1));
918
919 EVT OpVT = N->getOperand(0).getValueType();
920 EVT NVT = VT.getVectorElementType();
921 SDLoc DL(N);
922 // Turn it into a scalar SETCC.
923 SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
924 N->getOperand(2));
925
926 // Vectors may have a different boolean contents to scalars. Promote the
927 // value appropriately.
928 ISD::NodeType ExtendCode =
929 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
930
931 Res = DAG.getNode(ExtendCode, DL, NVT, Res);
932
933 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Res);
934 }
935
936 /// If the value to store is a vector that needs to be scalarized, it must be
937 /// <1 x ty>. Just store the element.
ScalarizeVecOp_STORE(StoreSDNode * N,unsigned OpNo)938 SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
939 assert(N->isUnindexed() && "Indexed store of one-element vector?");
940 assert(OpNo == 1 && "Do not know how to scalarize this operand!");
941 SDLoc dl(N);
942
943 if (N->isTruncatingStore())
944 return DAG.getTruncStore(
945 N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
946 N->getBasePtr(), N->getPointerInfo(),
947 N->getMemoryVT().getVectorElementType(), N->getOriginalAlign(),
948 N->getMemOperand()->getFlags(), N->getAAInfo());
949
950 return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
951 N->getBasePtr(), N->getPointerInfo(),
952 N->getOriginalAlign(), N->getMemOperand()->getFlags(),
953 N->getAAInfo());
954 }
955
956 /// If the value to round is a vector that needs to be scalarized, it must be
957 /// <1 x ty>. Convert the element instead.
ScalarizeVecOp_FP_ROUND(SDNode * N,unsigned OpNo)958 SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
959 assert(OpNo == 0 && "Wrong operand for scalarization!");
960 SDValue Elt = GetScalarizedVector(N->getOperand(0));
961 SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
962 N->getValueType(0).getVectorElementType(), Elt,
963 N->getOperand(1));
964 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
965 }
966
ScalarizeVecOp_STRICT_FP_ROUND(SDNode * N,unsigned OpNo)967 SDValue DAGTypeLegalizer::ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N,
968 unsigned OpNo) {
969 assert(OpNo == 1 && "Wrong operand for scalarization!");
970 SDValue Elt = GetScalarizedVector(N->getOperand(1));
971 SDValue Res = DAG.getNode(ISD::STRICT_FP_ROUND, SDLoc(N),
972 { N->getValueType(0).getVectorElementType(),
973 MVT::Other },
974 { N->getOperand(0), Elt, N->getOperand(2) });
975 // Legalize the chain result - switch anything that used the old chain to
976 // use the new one.
977 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
978
979 Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
980
981 // Do our own replacement and return SDValue() to tell the caller that we
982 // handled all replacements since caller can only handle a single result.
983 ReplaceValueWith(SDValue(N, 0), Res);
984 return SDValue();
985 }
986
987 /// If the value to extend is a vector that needs to be scalarized, it must be
988 /// <1 x ty>. Convert the element instead.
ScalarizeVecOp_FP_EXTEND(SDNode * N)989 SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_EXTEND(SDNode *N) {
990 SDValue Elt = GetScalarizedVector(N->getOperand(0));
991 SDValue Res = DAG.getNode(ISD::FP_EXTEND, SDLoc(N),
992 N->getValueType(0).getVectorElementType(), Elt);
993 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
994 }
995
996 /// If the value to extend is a vector that needs to be scalarized, it must be
997 /// <1 x ty>. Convert the element instead.
ScalarizeVecOp_STRICT_FP_EXTEND(SDNode * N)998 SDValue DAGTypeLegalizer::ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N) {
999 SDValue Elt = GetScalarizedVector(N->getOperand(1));
1000 SDValue Res =
1001 DAG.getNode(ISD::STRICT_FP_EXTEND, SDLoc(N),
1002 {N->getValueType(0).getVectorElementType(), MVT::Other},
1003 {N->getOperand(0), Elt});
1004 // Legalize the chain result - switch anything that used the old chain to
1005 // use the new one.
1006 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
1007
1008 Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
1009
1010 // Do our own replacement and return SDValue() to tell the caller that we
1011 // handled all replacements since caller can only handle a single result.
1012 ReplaceValueWith(SDValue(N, 0), Res);
1013 return SDValue();
1014 }
1015
ScalarizeVecOp_VECREDUCE(SDNode * N)1016 SDValue DAGTypeLegalizer::ScalarizeVecOp_VECREDUCE(SDNode *N) {
1017 SDValue Res = GetScalarizedVector(N->getOperand(0));
1018 // Result type may be wider than element type.
1019 if (Res.getValueType() != N->getValueType(0))
1020 Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Res);
1021 return Res;
1022 }
1023
ScalarizeVecOp_VECREDUCE_SEQ(SDNode * N)1024 SDValue DAGTypeLegalizer::ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N) {
1025 SDValue AccOp = N->getOperand(0);
1026 SDValue VecOp = N->getOperand(1);
1027
1028 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(N->getOpcode());
1029
1030 SDValue Op = GetScalarizedVector(VecOp);
1031 return DAG.getNode(BaseOpc, SDLoc(N), N->getValueType(0),
1032 AccOp, Op, N->getFlags());
1033 }
1034
ScalarizeVecOp_CMP(SDNode * N)1035 SDValue DAGTypeLegalizer::ScalarizeVecOp_CMP(SDNode *N) {
1036 SDValue LHS = GetScalarizedVector(N->getOperand(0));
1037 SDValue RHS = GetScalarizedVector(N->getOperand(1));
1038
1039 EVT ResVT = N->getValueType(0).getVectorElementType();
1040 SDValue Cmp = DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, LHS, RHS);
1041 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Cmp);
1042 }
1043
1044 //===----------------------------------------------------------------------===//
1045 // Result Vector Splitting
1046 //===----------------------------------------------------------------------===//
1047
1048 /// This method is called when the specified result of the specified node is
1049 /// found to need vector splitting. At this point, the node may also have
1050 /// invalid operands or may have other results that need legalization, we just
1051 /// know that (at least) one result needs vector splitting.
SplitVectorResult(SDNode * N,unsigned ResNo)1052 void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
1053 LLVM_DEBUG(dbgs() << "Split node result: "; N->dump(&DAG));
1054 SDValue Lo, Hi;
1055
1056 // See if the target wants to custom expand this node.
1057 if (CustomLowerNode(N, N->getValueType(ResNo), true))
1058 return;
1059
1060 switch (N->getOpcode()) {
1061 default:
1062 #ifndef NDEBUG
1063 dbgs() << "SplitVectorResult #" << ResNo << ": ";
1064 N->dump(&DAG);
1065 dbgs() << "\n";
1066 #endif
1067 report_fatal_error("Do not know how to split the result of this "
1068 "operator!\n");
1069
1070 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1071 case ISD::AssertZext: SplitVecRes_AssertZext(N, Lo, Hi); break;
1072 case ISD::VSELECT:
1073 case ISD::SELECT:
1074 case ISD::VP_MERGE:
1075 case ISD::VP_SELECT: SplitRes_Select(N, Lo, Hi); break;
1076 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
1077 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
1078 case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
1079 case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
1080 case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
1081 case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
1082 case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
1083 case ISD::FPOWI:
1084 case ISD::FLDEXP:
1085 case ISD::FCOPYSIGN: SplitVecRes_FPOp_MultiType(N, Lo, Hi); break;
1086 case ISD::IS_FPCLASS: SplitVecRes_IS_FPCLASS(N, Lo, Hi); break;
1087 case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
1088 case ISD::EXPERIMENTAL_VP_SPLAT: SplitVecRes_VP_SPLAT(N, Lo, Hi); break;
1089 case ISD::SPLAT_VECTOR:
1090 case ISD::SCALAR_TO_VECTOR:
1091 SplitVecRes_ScalarOp(N, Lo, Hi);
1092 break;
1093 case ISD::STEP_VECTOR:
1094 SplitVecRes_STEP_VECTOR(N, Lo, Hi);
1095 break;
1096 case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
1097 case ISD::LOAD:
1098 SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
1099 break;
1100 case ISD::VP_LOAD:
1101 SplitVecRes_VP_LOAD(cast<VPLoadSDNode>(N), Lo, Hi);
1102 break;
1103 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1104 SplitVecRes_VP_STRIDED_LOAD(cast<VPStridedLoadSDNode>(N), Lo, Hi);
1105 break;
1106 case ISD::MLOAD:
1107 SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
1108 break;
1109 case ISD::MGATHER:
1110 case ISD::VP_GATHER:
1111 SplitVecRes_Gather(cast<MemSDNode>(N), Lo, Hi, /*SplitSETCC*/ true);
1112 break;
1113 case ISD::VECTOR_COMPRESS:
1114 SplitVecRes_VECTOR_COMPRESS(N, Lo, Hi);
1115 break;
1116 case ISD::SETCC:
1117 case ISD::VP_SETCC:
1118 SplitVecRes_SETCC(N, Lo, Hi);
1119 break;
1120 case ISD::VECTOR_REVERSE:
1121 SplitVecRes_VECTOR_REVERSE(N, Lo, Hi);
1122 break;
1123 case ISD::VECTOR_SHUFFLE:
1124 SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
1125 break;
1126 case ISD::VECTOR_SPLICE:
1127 SplitVecRes_VECTOR_SPLICE(N, Lo, Hi);
1128 break;
1129 case ISD::VECTOR_DEINTERLEAVE:
1130 SplitVecRes_VECTOR_DEINTERLEAVE(N);
1131 return;
1132 case ISD::VECTOR_INTERLEAVE:
1133 SplitVecRes_VECTOR_INTERLEAVE(N);
1134 return;
1135 case ISD::VAARG:
1136 SplitVecRes_VAARG(N, Lo, Hi);
1137 break;
1138
1139 case ISD::ANY_EXTEND_VECTOR_INREG:
1140 case ISD::SIGN_EXTEND_VECTOR_INREG:
1141 case ISD::ZERO_EXTEND_VECTOR_INREG:
1142 SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
1143 break;
1144
1145 case ISD::ABS:
1146 case ISD::VP_ABS:
1147 case ISD::BITREVERSE:
1148 case ISD::VP_BITREVERSE:
1149 case ISD::BSWAP:
1150 case ISD::VP_BSWAP:
1151 case ISD::CTLZ:
1152 case ISD::VP_CTLZ:
1153 case ISD::CTTZ:
1154 case ISD::VP_CTTZ:
1155 case ISD::CTLZ_ZERO_UNDEF:
1156 case ISD::VP_CTLZ_ZERO_UNDEF:
1157 case ISD::CTTZ_ZERO_UNDEF:
1158 case ISD::VP_CTTZ_ZERO_UNDEF:
1159 case ISD::CTPOP:
1160 case ISD::VP_CTPOP:
1161 case ISD::FABS: case ISD::VP_FABS:
1162 case ISD::FACOS:
1163 case ISD::FASIN:
1164 case ISD::FATAN:
1165 case ISD::FCEIL:
1166 case ISD::VP_FCEIL:
1167 case ISD::FCOS:
1168 case ISD::FCOSH:
1169 case ISD::FEXP:
1170 case ISD::FEXP2:
1171 case ISD::FEXP10:
1172 case ISD::FFLOOR:
1173 case ISD::VP_FFLOOR:
1174 case ISD::FLOG:
1175 case ISD::FLOG10:
1176 case ISD::FLOG2:
1177 case ISD::FNEARBYINT:
1178 case ISD::VP_FNEARBYINT:
1179 case ISD::FNEG: case ISD::VP_FNEG:
1180 case ISD::FREEZE:
1181 case ISD::ARITH_FENCE:
1182 case ISD::FP_EXTEND:
1183 case ISD::VP_FP_EXTEND:
1184 case ISD::FP_ROUND:
1185 case ISD::VP_FP_ROUND:
1186 case ISD::FP_TO_SINT:
1187 case ISD::VP_FP_TO_SINT:
1188 case ISD::FP_TO_UINT:
1189 case ISD::VP_FP_TO_UINT:
1190 case ISD::FRINT:
1191 case ISD::VP_FRINT:
1192 case ISD::LRINT:
1193 case ISD::VP_LRINT:
1194 case ISD::LLRINT:
1195 case ISD::VP_LLRINT:
1196 case ISD::FROUND:
1197 case ISD::VP_FROUND:
1198 case ISD::FROUNDEVEN:
1199 case ISD::VP_FROUNDEVEN:
1200 case ISD::FSIN:
1201 case ISD::FSINH:
1202 case ISD::FSQRT: case ISD::VP_SQRT:
1203 case ISD::FTAN:
1204 case ISD::FTANH:
1205 case ISD::FTRUNC:
1206 case ISD::VP_FROUNDTOZERO:
1207 case ISD::SINT_TO_FP:
1208 case ISD::VP_SINT_TO_FP:
1209 case ISD::TRUNCATE:
1210 case ISD::VP_TRUNCATE:
1211 case ISD::UINT_TO_FP:
1212 case ISD::VP_UINT_TO_FP:
1213 case ISD::FCANONICALIZE:
1214 SplitVecRes_UnaryOp(N, Lo, Hi);
1215 break;
1216 case ISD::ADDRSPACECAST:
1217 SplitVecRes_ADDRSPACECAST(N, Lo, Hi);
1218 break;
1219 case ISD::FFREXP:
1220 SplitVecRes_FFREXP(N, ResNo, Lo, Hi);
1221 break;
1222
1223 case ISD::ANY_EXTEND:
1224 case ISD::SIGN_EXTEND:
1225 case ISD::ZERO_EXTEND:
1226 case ISD::VP_SIGN_EXTEND:
1227 case ISD::VP_ZERO_EXTEND:
1228 SplitVecRes_ExtendOp(N, Lo, Hi);
1229 break;
1230
1231 case ISD::ADD: case ISD::VP_ADD:
1232 case ISD::SUB: case ISD::VP_SUB:
1233 case ISD::MUL: case ISD::VP_MUL:
1234 case ISD::MULHS:
1235 case ISD::MULHU:
1236 case ISD::AVGCEILS:
1237 case ISD::AVGCEILU:
1238 case ISD::AVGFLOORS:
1239 case ISD::AVGFLOORU:
1240 case ISD::FADD: case ISD::VP_FADD:
1241 case ISD::FSUB: case ISD::VP_FSUB:
1242 case ISD::FMUL: case ISD::VP_FMUL:
1243 case ISD::FMINNUM:
1244 case ISD::FMINNUM_IEEE:
1245 case ISD::VP_FMINNUM:
1246 case ISD::FMAXNUM:
1247 case ISD::FMAXNUM_IEEE:
1248 case ISD::VP_FMAXNUM:
1249 case ISD::FMINIMUM:
1250 case ISD::VP_FMINIMUM:
1251 case ISD::FMAXIMUM:
1252 case ISD::VP_FMAXIMUM:
1253 case ISD::SDIV: case ISD::VP_SDIV:
1254 case ISD::UDIV: case ISD::VP_UDIV:
1255 case ISD::FDIV: case ISD::VP_FDIV:
1256 case ISD::FPOW:
1257 case ISD::AND: case ISD::VP_AND:
1258 case ISD::OR: case ISD::VP_OR:
1259 case ISD::XOR: case ISD::VP_XOR:
1260 case ISD::SHL: case ISD::VP_SHL:
1261 case ISD::SRA: case ISD::VP_SRA:
1262 case ISD::SRL: case ISD::VP_SRL:
1263 case ISD::UREM: case ISD::VP_UREM:
1264 case ISD::SREM: case ISD::VP_SREM:
1265 case ISD::FREM: case ISD::VP_FREM:
1266 case ISD::SMIN: case ISD::VP_SMIN:
1267 case ISD::SMAX: case ISD::VP_SMAX:
1268 case ISD::UMIN: case ISD::VP_UMIN:
1269 case ISD::UMAX: case ISD::VP_UMAX:
1270 case ISD::SADDSAT: case ISD::VP_SADDSAT:
1271 case ISD::UADDSAT: case ISD::VP_UADDSAT:
1272 case ISD::SSUBSAT: case ISD::VP_SSUBSAT:
1273 case ISD::USUBSAT: case ISD::VP_USUBSAT:
1274 case ISD::SSHLSAT:
1275 case ISD::USHLSAT:
1276 case ISD::ROTL:
1277 case ISD::ROTR:
1278 case ISD::VP_FCOPYSIGN:
1279 SplitVecRes_BinOp(N, Lo, Hi);
1280 break;
1281 case ISD::FMA: case ISD::VP_FMA:
1282 case ISD::FSHL:
1283 case ISD::VP_FSHL:
1284 case ISD::FSHR:
1285 case ISD::VP_FSHR:
1286 SplitVecRes_TernaryOp(N, Lo, Hi);
1287 break;
1288
1289 case ISD::SCMP: case ISD::UCMP:
1290 SplitVecRes_CMP(N, Lo, Hi);
1291 break;
1292
1293 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1294 case ISD::STRICT_##DAGN:
1295 #include "llvm/IR/ConstrainedOps.def"
1296 SplitVecRes_StrictFPOp(N, Lo, Hi);
1297 break;
1298
1299 case ISD::FP_TO_UINT_SAT:
1300 case ISD::FP_TO_SINT_SAT:
1301 SplitVecRes_FP_TO_XINT_SAT(N, Lo, Hi);
1302 break;
1303
1304 case ISD::UADDO:
1305 case ISD::SADDO:
1306 case ISD::USUBO:
1307 case ISD::SSUBO:
1308 case ISD::UMULO:
1309 case ISD::SMULO:
1310 SplitVecRes_OverflowOp(N, ResNo, Lo, Hi);
1311 break;
1312 case ISD::SMULFIX:
1313 case ISD::SMULFIXSAT:
1314 case ISD::UMULFIX:
1315 case ISD::UMULFIXSAT:
1316 case ISD::SDIVFIX:
1317 case ISD::SDIVFIXSAT:
1318 case ISD::UDIVFIX:
1319 case ISD::UDIVFIXSAT:
1320 SplitVecRes_FIX(N, Lo, Hi);
1321 break;
1322 case ISD::EXPERIMENTAL_VP_REVERSE:
1323 SplitVecRes_VP_REVERSE(N, Lo, Hi);
1324 break;
1325 }
1326
1327 // If Lo/Hi is null, the sub-method took care of registering results etc.
1328 if (Lo.getNode())
1329 SetSplitVector(SDValue(N, ResNo), Lo, Hi);
1330 }
1331
IncrementPointer(MemSDNode * N,EVT MemVT,MachinePointerInfo & MPI,SDValue & Ptr,uint64_t * ScaledOffset)1332 void DAGTypeLegalizer::IncrementPointer(MemSDNode *N, EVT MemVT,
1333 MachinePointerInfo &MPI, SDValue &Ptr,
1334 uint64_t *ScaledOffset) {
1335 SDLoc DL(N);
1336 unsigned IncrementSize = MemVT.getSizeInBits().getKnownMinValue() / 8;
1337
1338 if (MemVT.isScalableVector()) {
1339 SDNodeFlags Flags;
1340 SDValue BytesIncrement = DAG.getVScale(
1341 DL, Ptr.getValueType(),
1342 APInt(Ptr.getValueSizeInBits().getFixedValue(), IncrementSize));
1343 MPI = MachinePointerInfo(N->getPointerInfo().getAddrSpace());
1344 Flags.setNoUnsignedWrap(true);
1345 if (ScaledOffset)
1346 *ScaledOffset += IncrementSize;
1347 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, BytesIncrement,
1348 Flags);
1349 } else {
1350 MPI = N->getPointerInfo().getWithOffset(IncrementSize);
1351 // Increment the pointer to the other half.
1352 Ptr = DAG.getObjectPtrOffset(DL, Ptr, TypeSize::getFixed(IncrementSize));
1353 }
1354 }
1355
SplitMask(SDValue Mask)1356 std::pair<SDValue, SDValue> DAGTypeLegalizer::SplitMask(SDValue Mask) {
1357 return SplitMask(Mask, SDLoc(Mask));
1358 }
1359
SplitMask(SDValue Mask,const SDLoc & DL)1360 std::pair<SDValue, SDValue> DAGTypeLegalizer::SplitMask(SDValue Mask,
1361 const SDLoc &DL) {
1362 SDValue MaskLo, MaskHi;
1363 EVT MaskVT = Mask.getValueType();
1364 if (getTypeAction(MaskVT) == TargetLowering::TypeSplitVector)
1365 GetSplitVector(Mask, MaskLo, MaskHi);
1366 else
1367 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
1368 return std::make_pair(MaskLo, MaskHi);
1369 }
1370
SplitVecRes_BinOp(SDNode * N,SDValue & Lo,SDValue & Hi)1371 void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi) {
1372 SDValue LHSLo, LHSHi;
1373 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
1374 SDValue RHSLo, RHSHi;
1375 GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
1376 SDLoc dl(N);
1377
1378 const SDNodeFlags Flags = N->getFlags();
1379 unsigned Opcode = N->getOpcode();
1380 if (N->getNumOperands() == 2) {
1381 Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Flags);
1382 Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Flags);
1383 return;
1384 }
1385
1386 assert(N->getNumOperands() == 4 && "Unexpected number of operands!");
1387 assert(N->isVPOpcode() && "Expected VP opcode");
1388
1389 SDValue MaskLo, MaskHi;
1390 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(2));
1391
1392 SDValue EVLLo, EVLHi;
1393 std::tie(EVLLo, EVLHi) =
1394 DAG.SplitEVL(N->getOperand(3), N->getValueType(0), dl);
1395
1396 Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(),
1397 {LHSLo, RHSLo, MaskLo, EVLLo}, Flags);
1398 Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(),
1399 {LHSHi, RHSHi, MaskHi, EVLHi}, Flags);
1400 }
1401
SplitVecRes_TernaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)1402 void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
1403 SDValue &Hi) {
1404 SDValue Op0Lo, Op0Hi;
1405 GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
1406 SDValue Op1Lo, Op1Hi;
1407 GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
1408 SDValue Op2Lo, Op2Hi;
1409 GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
1410 SDLoc dl(N);
1411
1412 const SDNodeFlags Flags = N->getFlags();
1413 unsigned Opcode = N->getOpcode();
1414 if (N->getNumOperands() == 3) {
1415 Lo = DAG.getNode(Opcode, dl, Op0Lo.getValueType(), Op0Lo, Op1Lo, Op2Lo, Flags);
1416 Hi = DAG.getNode(Opcode, dl, Op0Hi.getValueType(), Op0Hi, Op1Hi, Op2Hi, Flags);
1417 return;
1418 }
1419
1420 assert(N->getNumOperands() == 5 && "Unexpected number of operands!");
1421 assert(N->isVPOpcode() && "Expected VP opcode");
1422
1423 SDValue MaskLo, MaskHi;
1424 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(3));
1425
1426 SDValue EVLLo, EVLHi;
1427 std::tie(EVLLo, EVLHi) =
1428 DAG.SplitEVL(N->getOperand(4), N->getValueType(0), dl);
1429
1430 Lo = DAG.getNode(Opcode, dl, Op0Lo.getValueType(),
1431 {Op0Lo, Op1Lo, Op2Lo, MaskLo, EVLLo}, Flags);
1432 Hi = DAG.getNode(Opcode, dl, Op0Hi.getValueType(),
1433 {Op0Hi, Op1Hi, Op2Hi, MaskHi, EVLHi}, Flags);
1434 }
1435
SplitVecRes_CMP(SDNode * N,SDValue & Lo,SDValue & Hi)1436 void DAGTypeLegalizer::SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi) {
1437 LLVMContext &Ctxt = *DAG.getContext();
1438 SDLoc dl(N);
1439
1440 SDValue LHS = N->getOperand(0);
1441 SDValue RHS = N->getOperand(1);
1442
1443 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
1444 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypeSplitVector) {
1445 GetSplitVector(LHS, LHSLo, LHSHi);
1446 GetSplitVector(RHS, RHSLo, RHSHi);
1447 } else {
1448 std::tie(LHSLo, LHSHi) = DAG.SplitVector(LHS, dl);
1449 std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, dl);
1450 }
1451
1452 EVT SplitResVT = N->getValueType(0).getHalfNumVectorElementsVT(Ctxt);
1453 Lo = DAG.getNode(N->getOpcode(), dl, SplitResVT, LHSLo, RHSLo);
1454 Hi = DAG.getNode(N->getOpcode(), dl, SplitResVT, LHSHi, RHSHi);
1455 }
1456
SplitVecRes_FIX(SDNode * N,SDValue & Lo,SDValue & Hi)1457 void DAGTypeLegalizer::SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi) {
1458 SDValue LHSLo, LHSHi;
1459 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
1460 SDValue RHSLo, RHSHi;
1461 GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
1462 SDLoc dl(N);
1463 SDValue Op2 = N->getOperand(2);
1464
1465 unsigned Opcode = N->getOpcode();
1466 Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Op2,
1467 N->getFlags());
1468 Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Op2,
1469 N->getFlags());
1470 }
1471
SplitVecRes_BITCAST(SDNode * N,SDValue & Lo,SDValue & Hi)1472 void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
1473 SDValue &Hi) {
1474 // We know the result is a vector. The input may be either a vector or a
1475 // scalar value.
1476 EVT LoVT, HiVT;
1477 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1478 SDLoc dl(N);
1479
1480 SDValue InOp = N->getOperand(0);
1481 EVT InVT = InOp.getValueType();
1482
1483 // Handle some special cases efficiently.
1484 switch (getTypeAction(InVT)) {
1485 case TargetLowering::TypeLegal:
1486 case TargetLowering::TypePromoteInteger:
1487 case TargetLowering::TypePromoteFloat:
1488 case TargetLowering::TypeSoftPromoteHalf:
1489 case TargetLowering::TypeSoftenFloat:
1490 case TargetLowering::TypeScalarizeVector:
1491 case TargetLowering::TypeWidenVector:
1492 break;
1493 case TargetLowering::TypeExpandInteger:
1494 case TargetLowering::TypeExpandFloat:
1495 // A scalar to vector conversion, where the scalar needs expansion.
1496 // If the vector is being split in two then we can just convert the
1497 // expanded pieces.
1498 if (LoVT == HiVT) {
1499 GetExpandedOp(InOp, Lo, Hi);
1500 if (DAG.getDataLayout().isBigEndian())
1501 std::swap(Lo, Hi);
1502 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
1503 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
1504 return;
1505 }
1506 break;
1507 case TargetLowering::TypeSplitVector:
1508 // If the input is a vector that needs to be split, convert each split
1509 // piece of the input now.
1510 GetSplitVector(InOp, Lo, Hi);
1511 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
1512 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
1513 return;
1514 case TargetLowering::TypeScalarizeScalableVector:
1515 report_fatal_error("Scalarization of scalable vectors is not supported.");
1516 }
1517
1518 if (LoVT.isScalableVector()) {
1519 auto [InLo, InHi] = DAG.SplitVectorOperand(N, 0);
1520 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, InLo);
1521 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, InHi);
1522 return;
1523 }
1524
1525 // In the general case, convert the input to an integer and split it by hand.
1526 EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
1527 EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
1528 if (DAG.getDataLayout().isBigEndian())
1529 std::swap(LoIntVT, HiIntVT);
1530
1531 SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
1532
1533 if (DAG.getDataLayout().isBigEndian())
1534 std::swap(Lo, Hi);
1535 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
1536 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
1537 }
1538
SplitVecRes_BUILD_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)1539 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
1540 SDValue &Hi) {
1541 EVT LoVT, HiVT;
1542 SDLoc dl(N);
1543 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1544 unsigned LoNumElts = LoVT.getVectorNumElements();
1545 SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
1546 Lo = DAG.getBuildVector(LoVT, dl, LoOps);
1547
1548 SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
1549 Hi = DAG.getBuildVector(HiVT, dl, HiOps);
1550 }
1551
SplitVecRes_CONCAT_VECTORS(SDNode * N,SDValue & Lo,SDValue & Hi)1552 void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
1553 SDValue &Hi) {
1554 assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
1555 SDLoc dl(N);
1556 unsigned NumSubvectors = N->getNumOperands() / 2;
1557 if (NumSubvectors == 1) {
1558 Lo = N->getOperand(0);
1559 Hi = N->getOperand(1);
1560 return;
1561 }
1562
1563 EVT LoVT, HiVT;
1564 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1565
1566 SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
1567 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
1568
1569 SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
1570 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
1571 }
1572
SplitVecRes_EXTRACT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)1573 void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
1574 SDValue &Hi) {
1575 SDValue Vec = N->getOperand(0);
1576 SDValue Idx = N->getOperand(1);
1577 SDLoc dl(N);
1578
1579 EVT LoVT, HiVT;
1580 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1581
1582 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
1583 uint64_t IdxVal = Idx->getAsZExtVal();
1584 Hi = DAG.getNode(
1585 ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
1586 DAG.getVectorIdxConstant(IdxVal + LoVT.getVectorMinNumElements(), dl));
1587 }
1588
SplitVecRes_INSERT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)1589 void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
1590 SDValue &Hi) {
1591 SDValue Vec = N->getOperand(0);
1592 SDValue SubVec = N->getOperand(1);
1593 SDValue Idx = N->getOperand(2);
1594 SDLoc dl(N);
1595 GetSplitVector(Vec, Lo, Hi);
1596
1597 EVT VecVT = Vec.getValueType();
1598 EVT LoVT = Lo.getValueType();
1599 EVT SubVecVT = SubVec.getValueType();
1600 unsigned VecElems = VecVT.getVectorMinNumElements();
1601 unsigned SubElems = SubVecVT.getVectorMinNumElements();
1602 unsigned LoElems = LoVT.getVectorMinNumElements();
1603
1604 // If we know the index is in the first half, and we know the subvector
1605 // doesn't cross the boundary between the halves, we can avoid spilling the
1606 // vector, and insert into the lower half of the split vector directly.
1607 unsigned IdxVal = Idx->getAsZExtVal();
1608 if (IdxVal + SubElems <= LoElems) {
1609 Lo = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, LoVT, Lo, SubVec, Idx);
1610 return;
1611 }
1612 // Similarly if the subvector is fully in the high half, but mind that we
1613 // can't tell whether a fixed-length subvector is fully within the high half
1614 // of a scalable vector.
1615 if (VecVT.isScalableVector() == SubVecVT.isScalableVector() &&
1616 IdxVal >= LoElems && IdxVal + SubElems <= VecElems) {
1617 Hi = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, Hi.getValueType(), Hi, SubVec,
1618 DAG.getVectorIdxConstant(IdxVal - LoElems, dl));
1619 return;
1620 }
1621
1622 // Spill the vector to the stack.
1623 // In cases where the vector is illegal it will be broken down into parts
1624 // and stored in parts - we should use the alignment for the smallest part.
1625 Align SmallestAlign = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
1626 SDValue StackPtr =
1627 DAG.CreateStackTemporary(VecVT.getStoreSize(), SmallestAlign);
1628 auto &MF = DAG.getMachineFunction();
1629 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1630 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
1631
1632 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1633 SmallestAlign);
1634
1635 // Store the new subvector into the specified index.
1636 SDValue SubVecPtr =
1637 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx);
1638 Store = DAG.getStore(Store, dl, SubVec, SubVecPtr,
1639 MachinePointerInfo::getUnknownStack(MF));
1640
1641 // Load the Lo part from the stack slot.
1642 Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, PtrInfo,
1643 SmallestAlign);
1644
1645 // Increment the pointer to the other part.
1646 auto *Load = cast<LoadSDNode>(Lo);
1647 MachinePointerInfo MPI = Load->getPointerInfo();
1648 IncrementPointer(Load, LoVT, MPI, StackPtr);
1649
1650 // Load the Hi part from the stack slot.
1651 Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MPI, SmallestAlign);
1652 }
1653
1654 // Handle splitting an FP where the second operand does not match the first
1655 // type. The second operand may be a scalar, or a vector that has exactly as
1656 // many elements as the first
SplitVecRes_FPOp_MultiType(SDNode * N,SDValue & Lo,SDValue & Hi)1657 void DAGTypeLegalizer::SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo,
1658 SDValue &Hi) {
1659 SDValue LHSLo, LHSHi;
1660 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
1661 SDLoc DL(N);
1662
1663 SDValue RHSLo, RHSHi;
1664 SDValue RHS = N->getOperand(1);
1665 EVT RHSVT = RHS.getValueType();
1666 if (RHSVT.isVector()) {
1667 if (getTypeAction(RHSVT) == TargetLowering::TypeSplitVector)
1668 GetSplitVector(RHS, RHSLo, RHSHi);
1669 else
1670 std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, SDLoc(RHS));
1671
1672 Lo = DAG.getNode(N->getOpcode(), DL, LHSLo.getValueType(), LHSLo, RHSLo);
1673 Hi = DAG.getNode(N->getOpcode(), DL, LHSHi.getValueType(), LHSHi, RHSHi);
1674 } else {
1675 Lo = DAG.getNode(N->getOpcode(), DL, LHSLo.getValueType(), LHSLo, RHS);
1676 Hi = DAG.getNode(N->getOpcode(), DL, LHSHi.getValueType(), LHSHi, RHS);
1677 }
1678 }
1679
SplitVecRes_IS_FPCLASS(SDNode * N,SDValue & Lo,SDValue & Hi)1680 void DAGTypeLegalizer::SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo,
1681 SDValue &Hi) {
1682 SDLoc DL(N);
1683 SDValue ArgLo, ArgHi;
1684 SDValue Test = N->getOperand(1);
1685 SDValue FpValue = N->getOperand(0);
1686 if (getTypeAction(FpValue.getValueType()) == TargetLowering::TypeSplitVector)
1687 GetSplitVector(FpValue, ArgLo, ArgHi);
1688 else
1689 std::tie(ArgLo, ArgHi) = DAG.SplitVector(FpValue, SDLoc(FpValue));
1690 EVT LoVT, HiVT;
1691 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1692
1693 Lo = DAG.getNode(ISD::IS_FPCLASS, DL, LoVT, ArgLo, Test, N->getFlags());
1694 Hi = DAG.getNode(ISD::IS_FPCLASS, DL, HiVT, ArgHi, Test, N->getFlags());
1695 }
1696
SplitVecRes_InregOp(SDNode * N,SDValue & Lo,SDValue & Hi)1697 void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
1698 SDValue &Hi) {
1699 SDValue LHSLo, LHSHi;
1700 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
1701 SDLoc dl(N);
1702
1703 EVT LoVT, HiVT;
1704 std::tie(LoVT, HiVT) =
1705 DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
1706
1707 Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
1708 DAG.getValueType(LoVT));
1709 Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
1710 DAG.getValueType(HiVT));
1711 }
1712
SplitVecRes_ExtVecInRegOp(SDNode * N,SDValue & Lo,SDValue & Hi)1713 void DAGTypeLegalizer::SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo,
1714 SDValue &Hi) {
1715 unsigned Opcode = N->getOpcode();
1716 SDValue N0 = N->getOperand(0);
1717
1718 SDLoc dl(N);
1719 SDValue InLo, InHi;
1720
1721 if (getTypeAction(N0.getValueType()) == TargetLowering::TypeSplitVector)
1722 GetSplitVector(N0, InLo, InHi);
1723 else
1724 std::tie(InLo, InHi) = DAG.SplitVectorOperand(N, 0);
1725
1726 EVT InLoVT = InLo.getValueType();
1727 unsigned InNumElements = InLoVT.getVectorNumElements();
1728
1729 EVT OutLoVT, OutHiVT;
1730 std::tie(OutLoVT, OutHiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1731 unsigned OutNumElements = OutLoVT.getVectorNumElements();
1732 assert((2 * OutNumElements) <= InNumElements &&
1733 "Illegal extend vector in reg split");
1734
1735 // *_EXTEND_VECTOR_INREG instructions extend the lowest elements of the
1736 // input vector (i.e. we only use InLo):
1737 // OutLo will extend the first OutNumElements from InLo.
1738 // OutHi will extend the next OutNumElements from InLo.
1739
1740 // Shuffle the elements from InLo for OutHi into the bottom elements to
1741 // create a 'fake' InHi.
1742 SmallVector<int, 8> SplitHi(InNumElements, -1);
1743 for (unsigned i = 0; i != OutNumElements; ++i)
1744 SplitHi[i] = i + OutNumElements;
1745 InHi = DAG.getVectorShuffle(InLoVT, dl, InLo, DAG.getUNDEF(InLoVT), SplitHi);
1746
1747 Lo = DAG.getNode(Opcode, dl, OutLoVT, InLo);
1748 Hi = DAG.getNode(Opcode, dl, OutHiVT, InHi);
1749 }
1750
SplitVecRes_StrictFPOp(SDNode * N,SDValue & Lo,SDValue & Hi)1751 void DAGTypeLegalizer::SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo,
1752 SDValue &Hi) {
1753 unsigned NumOps = N->getNumOperands();
1754 SDValue Chain = N->getOperand(0);
1755 EVT LoVT, HiVT;
1756 SDLoc dl(N);
1757 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1758
1759 SmallVector<SDValue, 4> OpsLo(NumOps);
1760 SmallVector<SDValue, 4> OpsHi(NumOps);
1761
1762 // The Chain is the first operand.
1763 OpsLo[0] = Chain;
1764 OpsHi[0] = Chain;
1765
1766 // Now process the remaining operands.
1767 for (unsigned i = 1; i < NumOps; ++i) {
1768 SDValue Op = N->getOperand(i);
1769 SDValue OpLo = Op;
1770 SDValue OpHi = Op;
1771
1772 EVT InVT = Op.getValueType();
1773 if (InVT.isVector()) {
1774 // If the input also splits, handle it directly for a
1775 // compile time speedup. Otherwise split it by hand.
1776 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
1777 GetSplitVector(Op, OpLo, OpHi);
1778 else
1779 std::tie(OpLo, OpHi) = DAG.SplitVectorOperand(N, i);
1780 }
1781
1782 OpsLo[i] = OpLo;
1783 OpsHi[i] = OpHi;
1784 }
1785
1786 EVT LoValueVTs[] = {LoVT, MVT::Other};
1787 EVT HiValueVTs[] = {HiVT, MVT::Other};
1788 Lo = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(LoValueVTs), OpsLo,
1789 N->getFlags());
1790 Hi = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(HiValueVTs), OpsHi,
1791 N->getFlags());
1792
1793 // Build a factor node to remember that this Op is independent of the
1794 // other one.
1795 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1796 Lo.getValue(1), Hi.getValue(1));
1797
1798 // Legalize the chain result - switch anything that used the old chain to
1799 // use the new one.
1800 ReplaceValueWith(SDValue(N, 1), Chain);
1801 }
1802
UnrollVectorOp_StrictFP(SDNode * N,unsigned ResNE)1803 SDValue DAGTypeLegalizer::UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE) {
1804 SDValue Chain = N->getOperand(0);
1805 EVT VT = N->getValueType(0);
1806 unsigned NE = VT.getVectorNumElements();
1807 EVT EltVT = VT.getVectorElementType();
1808 SDLoc dl(N);
1809
1810 SmallVector<SDValue, 8> Scalars;
1811 SmallVector<SDValue, 4> Operands(N->getNumOperands());
1812
1813 // If ResNE is 0, fully unroll the vector op.
1814 if (ResNE == 0)
1815 ResNE = NE;
1816 else if (NE > ResNE)
1817 NE = ResNE;
1818
1819 //The results of each unrolled operation, including the chain.
1820 EVT ChainVTs[] = {EltVT, MVT::Other};
1821 SmallVector<SDValue, 8> Chains;
1822
1823 unsigned i;
1824 for (i = 0; i != NE; ++i) {
1825 Operands[0] = Chain;
1826 for (unsigned j = 1, e = N->getNumOperands(); j != e; ++j) {
1827 SDValue Operand = N->getOperand(j);
1828 EVT OperandVT = Operand.getValueType();
1829 if (OperandVT.isVector()) {
1830 EVT OperandEltVT = OperandVT.getVectorElementType();
1831 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
1832 Operand, DAG.getVectorIdxConstant(i, dl));
1833 } else {
1834 Operands[j] = Operand;
1835 }
1836 }
1837 SDValue Scalar = DAG.getNode(N->getOpcode(), dl, ChainVTs, Operands);
1838 Scalar.getNode()->setFlags(N->getFlags());
1839
1840 //Add in the scalar as well as its chain value to the
1841 //result vectors.
1842 Scalars.push_back(Scalar);
1843 Chains.push_back(Scalar.getValue(1));
1844 }
1845
1846 for (; i < ResNE; ++i)
1847 Scalars.push_back(DAG.getUNDEF(EltVT));
1848
1849 // Build a new factor node to connect the chain back together.
1850 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1851 ReplaceValueWith(SDValue(N, 1), Chain);
1852
1853 // Create a new BUILD_VECTOR node
1854 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, ResNE);
1855 return DAG.getBuildVector(VecVT, dl, Scalars);
1856 }
1857
SplitVecRes_OverflowOp(SDNode * N,unsigned ResNo,SDValue & Lo,SDValue & Hi)1858 void DAGTypeLegalizer::SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
1859 SDValue &Lo, SDValue &Hi) {
1860 SDLoc dl(N);
1861 EVT ResVT = N->getValueType(0);
1862 EVT OvVT = N->getValueType(1);
1863 EVT LoResVT, HiResVT, LoOvVT, HiOvVT;
1864 std::tie(LoResVT, HiResVT) = DAG.GetSplitDestVTs(ResVT);
1865 std::tie(LoOvVT, HiOvVT) = DAG.GetSplitDestVTs(OvVT);
1866
1867 SDValue LoLHS, HiLHS, LoRHS, HiRHS;
1868 if (getTypeAction(ResVT) == TargetLowering::TypeSplitVector) {
1869 GetSplitVector(N->getOperand(0), LoLHS, HiLHS);
1870 GetSplitVector(N->getOperand(1), LoRHS, HiRHS);
1871 } else {
1872 std::tie(LoLHS, HiLHS) = DAG.SplitVectorOperand(N, 0);
1873 std::tie(LoRHS, HiRHS) = DAG.SplitVectorOperand(N, 1);
1874 }
1875
1876 unsigned Opcode = N->getOpcode();
1877 SDVTList LoVTs = DAG.getVTList(LoResVT, LoOvVT);
1878 SDVTList HiVTs = DAG.getVTList(HiResVT, HiOvVT);
1879 SDNode *LoNode = DAG.getNode(Opcode, dl, LoVTs, LoLHS, LoRHS).getNode();
1880 SDNode *HiNode = DAG.getNode(Opcode, dl, HiVTs, HiLHS, HiRHS).getNode();
1881 LoNode->setFlags(N->getFlags());
1882 HiNode->setFlags(N->getFlags());
1883
1884 Lo = SDValue(LoNode, ResNo);
1885 Hi = SDValue(HiNode, ResNo);
1886
1887 // Replace the other vector result not being explicitly split here.
1888 unsigned OtherNo = 1 - ResNo;
1889 EVT OtherVT = N->getValueType(OtherNo);
1890 if (getTypeAction(OtherVT) == TargetLowering::TypeSplitVector) {
1891 SetSplitVector(SDValue(N, OtherNo),
1892 SDValue(LoNode, OtherNo), SDValue(HiNode, OtherNo));
1893 } else {
1894 SDValue OtherVal = DAG.getNode(
1895 ISD::CONCAT_VECTORS, dl, OtherVT,
1896 SDValue(LoNode, OtherNo), SDValue(HiNode, OtherNo));
1897 ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
1898 }
1899 }
1900
SplitVecRes_INSERT_VECTOR_ELT(SDNode * N,SDValue & Lo,SDValue & Hi)1901 void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
1902 SDValue &Hi) {
1903 SDValue Vec = N->getOperand(0);
1904 SDValue Elt = N->getOperand(1);
1905 SDValue Idx = N->getOperand(2);
1906 SDLoc dl(N);
1907 GetSplitVector(Vec, Lo, Hi);
1908
1909 if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
1910 unsigned IdxVal = CIdx->getZExtValue();
1911 unsigned LoNumElts = Lo.getValueType().getVectorMinNumElements();
1912 if (IdxVal < LoNumElts) {
1913 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
1914 Lo.getValueType(), Lo, Elt, Idx);
1915 return;
1916 } else if (!Vec.getValueType().isScalableVector()) {
1917 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
1918 DAG.getVectorIdxConstant(IdxVal - LoNumElts, dl));
1919 return;
1920 }
1921 }
1922
1923 // Make the vector elements byte-addressable if they aren't already.
1924 EVT VecVT = Vec.getValueType();
1925 EVT EltVT = VecVT.getVectorElementType();
1926 if (!EltVT.isByteSized()) {
1927 EltVT = EltVT.changeTypeToInteger().getRoundIntegerType(*DAG.getContext());
1928 VecVT = VecVT.changeElementType(EltVT);
1929 Vec = DAG.getNode(ISD::ANY_EXTEND, dl, VecVT, Vec);
1930 // Extend the element type to match if needed.
1931 if (EltVT.bitsGT(Elt.getValueType()))
1932 Elt = DAG.getNode(ISD::ANY_EXTEND, dl, EltVT, Elt);
1933 }
1934
1935 // Spill the vector to the stack.
1936 // In cases where the vector is illegal it will be broken down into parts
1937 // and stored in parts - we should use the alignment for the smallest part.
1938 Align SmallestAlign = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
1939 SDValue StackPtr =
1940 DAG.CreateStackTemporary(VecVT.getStoreSize(), SmallestAlign);
1941 auto &MF = DAG.getMachineFunction();
1942 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1943 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
1944
1945 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1946 SmallestAlign);
1947
1948 // Store the new element. This may be larger than the vector element type,
1949 // so use a truncating store.
1950 SDValue EltPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1951 Store = DAG.getTruncStore(
1952 Store, dl, Elt, EltPtr, MachinePointerInfo::getUnknownStack(MF), EltVT,
1953 commonAlignment(SmallestAlign,
1954 EltVT.getFixedSizeInBits() / 8));
1955
1956 EVT LoVT, HiVT;
1957 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
1958
1959 // Load the Lo part from the stack slot.
1960 Lo = DAG.getLoad(LoVT, dl, Store, StackPtr, PtrInfo, SmallestAlign);
1961
1962 // Increment the pointer to the other part.
1963 auto Load = cast<LoadSDNode>(Lo);
1964 MachinePointerInfo MPI = Load->getPointerInfo();
1965 IncrementPointer(Load, LoVT, MPI, StackPtr);
1966
1967 Hi = DAG.getLoad(HiVT, dl, Store, StackPtr, MPI, SmallestAlign);
1968
1969 // If we adjusted the original type, we need to truncate the results.
1970 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1971 if (LoVT != Lo.getValueType())
1972 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Lo);
1973 if (HiVT != Hi.getValueType())
1974 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1975 }
1976
SplitVecRes_STEP_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)1977 void DAGTypeLegalizer::SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo,
1978 SDValue &Hi) {
1979 EVT LoVT, HiVT;
1980 SDLoc dl(N);
1981 assert(N->getValueType(0).isScalableVector() &&
1982 "Only scalable vectors are supported for STEP_VECTOR");
1983 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1984 SDValue Step = N->getOperand(0);
1985
1986 Lo = DAG.getNode(ISD::STEP_VECTOR, dl, LoVT, Step);
1987
1988 // Hi = Lo + (EltCnt * Step)
1989 EVT EltVT = Step.getValueType();
1990 APInt StepVal = Step->getAsAPIntVal();
1991 SDValue StartOfHi =
1992 DAG.getVScale(dl, EltVT, StepVal * LoVT.getVectorMinNumElements());
1993 StartOfHi = DAG.getSExtOrTrunc(StartOfHi, dl, HiVT.getVectorElementType());
1994 StartOfHi = DAG.getNode(ISD::SPLAT_VECTOR, dl, HiVT, StartOfHi);
1995
1996 Hi = DAG.getNode(ISD::STEP_VECTOR, dl, HiVT, Step);
1997 Hi = DAG.getNode(ISD::ADD, dl, HiVT, Hi, StartOfHi);
1998 }
1999
SplitVecRes_ScalarOp(SDNode * N,SDValue & Lo,SDValue & Hi)2000 void DAGTypeLegalizer::SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo,
2001 SDValue &Hi) {
2002 EVT LoVT, HiVT;
2003 SDLoc dl(N);
2004 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
2005 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, N->getOperand(0));
2006 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2007 Hi = DAG.getUNDEF(HiVT);
2008 } else {
2009 assert(N->getOpcode() == ISD::SPLAT_VECTOR && "Unexpected opcode");
2010 Hi = Lo;
2011 }
2012 }
2013
SplitVecRes_VP_SPLAT(SDNode * N,SDValue & Lo,SDValue & Hi)2014 void DAGTypeLegalizer::SplitVecRes_VP_SPLAT(SDNode *N, SDValue &Lo,
2015 SDValue &Hi) {
2016 SDLoc dl(N);
2017 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(N->getValueType(0));
2018 auto [MaskLo, MaskHi] = SplitMask(N->getOperand(1));
2019 auto [EVLLo, EVLHi] = DAG.SplitEVL(N->getOperand(2), N->getValueType(0), dl);
2020 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, N->getOperand(0), MaskLo, EVLLo);
2021 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, N->getOperand(0), MaskHi, EVLHi);
2022 }
2023
SplitVecRes_LOAD(LoadSDNode * LD,SDValue & Lo,SDValue & Hi)2024 void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
2025 SDValue &Hi) {
2026 assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
2027 EVT LoVT, HiVT;
2028 SDLoc dl(LD);
2029 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
2030
2031 ISD::LoadExtType ExtType = LD->getExtensionType();
2032 SDValue Ch = LD->getChain();
2033 SDValue Ptr = LD->getBasePtr();
2034 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
2035 EVT MemoryVT = LD->getMemoryVT();
2036 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
2037 AAMDNodes AAInfo = LD->getAAInfo();
2038
2039 EVT LoMemVT, HiMemVT;
2040 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
2041
2042 if (!LoMemVT.isByteSized() || !HiMemVT.isByteSized()) {
2043 SDValue Value, NewChain;
2044 std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG);
2045 std::tie(Lo, Hi) = DAG.SplitVector(Value, dl);
2046 ReplaceValueWith(SDValue(LD, 1), NewChain);
2047 return;
2048 }
2049
2050 Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
2051 LD->getPointerInfo(), LoMemVT, LD->getOriginalAlign(),
2052 MMOFlags, AAInfo);
2053
2054 MachinePointerInfo MPI;
2055 IncrementPointer(LD, LoMemVT, MPI, Ptr);
2056
2057 Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset, MPI,
2058 HiMemVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
2059
2060 // Build a factor node to remember that this load is independent of the
2061 // other one.
2062 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2063 Hi.getValue(1));
2064
2065 // Legalize the chain result - switch anything that used the old chain to
2066 // use the new one.
2067 ReplaceValueWith(SDValue(LD, 1), Ch);
2068 }
2069
SplitVecRes_VP_LOAD(VPLoadSDNode * LD,SDValue & Lo,SDValue & Hi)2070 void DAGTypeLegalizer::SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo,
2071 SDValue &Hi) {
2072 assert(LD->isUnindexed() && "Indexed VP load during type legalization!");
2073 EVT LoVT, HiVT;
2074 SDLoc dl(LD);
2075 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
2076
2077 ISD::LoadExtType ExtType = LD->getExtensionType();
2078 SDValue Ch = LD->getChain();
2079 SDValue Ptr = LD->getBasePtr();
2080 SDValue Offset = LD->getOffset();
2081 assert(Offset.isUndef() && "Unexpected indexed variable-length load offset");
2082 Align Alignment = LD->getOriginalAlign();
2083 SDValue Mask = LD->getMask();
2084 SDValue EVL = LD->getVectorLength();
2085 EVT MemoryVT = LD->getMemoryVT();
2086
2087 EVT LoMemVT, HiMemVT;
2088 bool HiIsEmpty = false;
2089 std::tie(LoMemVT, HiMemVT) =
2090 DAG.GetDependentSplitDestVTs(MemoryVT, LoVT, &HiIsEmpty);
2091
2092 // Split Mask operand
2093 SDValue MaskLo, MaskHi;
2094 if (Mask.getOpcode() == ISD::SETCC) {
2095 SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
2096 } else {
2097 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
2098 GetSplitVector(Mask, MaskLo, MaskHi);
2099 else
2100 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
2101 }
2102
2103 // Split EVL operand
2104 SDValue EVLLo, EVLHi;
2105 std::tie(EVLLo, EVLHi) = DAG.SplitEVL(EVL, LD->getValueType(0), dl);
2106
2107 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
2108 LD->getPointerInfo(), MachineMemOperand::MOLoad,
2109 LocationSize::beforeOrAfterPointer(), Alignment, LD->getAAInfo(),
2110 LD->getRanges());
2111
2112 Lo =
2113 DAG.getLoadVP(LD->getAddressingMode(), ExtType, LoVT, dl, Ch, Ptr, Offset,
2114 MaskLo, EVLLo, LoMemVT, MMO, LD->isExpandingLoad());
2115
2116 if (HiIsEmpty) {
2117 // The hi vp_load has zero storage size. We therefore simply set it to
2118 // the low vp_load and rely on subsequent removal from the chain.
2119 Hi = Lo;
2120 } else {
2121 // Generate hi vp_load.
2122 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, dl, LoMemVT, DAG,
2123 LD->isExpandingLoad());
2124
2125 MachinePointerInfo MPI;
2126 if (LoMemVT.isScalableVector())
2127 MPI = MachinePointerInfo(LD->getPointerInfo().getAddrSpace());
2128 else
2129 MPI = LD->getPointerInfo().getWithOffset(
2130 LoMemVT.getStoreSize().getFixedValue());
2131
2132 MMO = DAG.getMachineFunction().getMachineMemOperand(
2133 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
2134 Alignment, LD->getAAInfo(), LD->getRanges());
2135
2136 Hi = DAG.getLoadVP(LD->getAddressingMode(), ExtType, HiVT, dl, Ch, Ptr,
2137 Offset, MaskHi, EVLHi, HiMemVT, MMO,
2138 LD->isExpandingLoad());
2139 }
2140
2141 // Build a factor node to remember that this load is independent of the
2142 // other one.
2143 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2144 Hi.getValue(1));
2145
2146 // Legalize the chain result - switch anything that used the old chain to
2147 // use the new one.
2148 ReplaceValueWith(SDValue(LD, 1), Ch);
2149 }
2150
SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode * SLD,SDValue & Lo,SDValue & Hi)2151 void DAGTypeLegalizer::SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD,
2152 SDValue &Lo, SDValue &Hi) {
2153 assert(SLD->isUnindexed() &&
2154 "Indexed VP strided load during type legalization!");
2155 assert(SLD->getOffset().isUndef() &&
2156 "Unexpected indexed variable-length load offset");
2157
2158 SDLoc DL(SLD);
2159
2160 EVT LoVT, HiVT;
2161 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(SLD->getValueType(0));
2162
2163 EVT LoMemVT, HiMemVT;
2164 bool HiIsEmpty = false;
2165 std::tie(LoMemVT, HiMemVT) =
2166 DAG.GetDependentSplitDestVTs(SLD->getMemoryVT(), LoVT, &HiIsEmpty);
2167
2168 SDValue Mask = SLD->getMask();
2169 SDValue LoMask, HiMask;
2170 if (Mask.getOpcode() == ISD::SETCC) {
2171 SplitVecRes_SETCC(Mask.getNode(), LoMask, HiMask);
2172 } else {
2173 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
2174 GetSplitVector(Mask, LoMask, HiMask);
2175 else
2176 std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
2177 }
2178
2179 SDValue LoEVL, HiEVL;
2180 std::tie(LoEVL, HiEVL) =
2181 DAG.SplitEVL(SLD->getVectorLength(), SLD->getValueType(0), DL);
2182
2183 // Generate the low vp_strided_load
2184 Lo = DAG.getStridedLoadVP(
2185 SLD->getAddressingMode(), SLD->getExtensionType(), LoVT, DL,
2186 SLD->getChain(), SLD->getBasePtr(), SLD->getOffset(), SLD->getStride(),
2187 LoMask, LoEVL, LoMemVT, SLD->getMemOperand(), SLD->isExpandingLoad());
2188
2189 if (HiIsEmpty) {
2190 // The high vp_strided_load has zero storage size. We therefore simply set
2191 // it to the low vp_strided_load and rely on subsequent removal from the
2192 // chain.
2193 Hi = Lo;
2194 } else {
2195 // Generate the high vp_strided_load.
2196 // To calculate the high base address, we need to sum to the low base
2197 // address stride number of bytes for each element already loaded by low,
2198 // that is: Ptr = Ptr + (LoEVL * Stride)
2199 EVT PtrVT = SLD->getBasePtr().getValueType();
2200 SDValue Increment =
2201 DAG.getNode(ISD::MUL, DL, PtrVT, LoEVL,
2202 DAG.getSExtOrTrunc(SLD->getStride(), DL, PtrVT));
2203 SDValue Ptr =
2204 DAG.getNode(ISD::ADD, DL, PtrVT, SLD->getBasePtr(), Increment);
2205
2206 Align Alignment = SLD->getOriginalAlign();
2207 if (LoMemVT.isScalableVector())
2208 Alignment = commonAlignment(
2209 Alignment, LoMemVT.getSizeInBits().getKnownMinValue() / 8);
2210
2211 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
2212 MachinePointerInfo(SLD->getPointerInfo().getAddrSpace()),
2213 MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
2214 Alignment, SLD->getAAInfo(), SLD->getRanges());
2215
2216 Hi = DAG.getStridedLoadVP(SLD->getAddressingMode(), SLD->getExtensionType(),
2217 HiVT, DL, SLD->getChain(), Ptr, SLD->getOffset(),
2218 SLD->getStride(), HiMask, HiEVL, HiMemVT, MMO,
2219 SLD->isExpandingLoad());
2220 }
2221
2222 // Build a factor node to remember that this load is independent of the
2223 // other one.
2224 SDValue Ch = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
2225 Hi.getValue(1));
2226
2227 // Legalize the chain result - switch anything that used the old chain to
2228 // use the new one.
2229 ReplaceValueWith(SDValue(SLD, 1), Ch);
2230 }
2231
SplitVecRes_MLOAD(MaskedLoadSDNode * MLD,SDValue & Lo,SDValue & Hi)2232 void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
2233 SDValue &Lo, SDValue &Hi) {
2234 assert(MLD->isUnindexed() && "Indexed masked load during type legalization!");
2235 EVT LoVT, HiVT;
2236 SDLoc dl(MLD);
2237 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
2238
2239 SDValue Ch = MLD->getChain();
2240 SDValue Ptr = MLD->getBasePtr();
2241 SDValue Offset = MLD->getOffset();
2242 assert(Offset.isUndef() && "Unexpected indexed masked load offset");
2243 SDValue Mask = MLD->getMask();
2244 SDValue PassThru = MLD->getPassThru();
2245 Align Alignment = MLD->getOriginalAlign();
2246 ISD::LoadExtType ExtType = MLD->getExtensionType();
2247
2248 // Split Mask operand
2249 SDValue MaskLo, MaskHi;
2250 if (Mask.getOpcode() == ISD::SETCC) {
2251 SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
2252 } else {
2253 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
2254 GetSplitVector(Mask, MaskLo, MaskHi);
2255 else
2256 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
2257 }
2258
2259 EVT MemoryVT = MLD->getMemoryVT();
2260 EVT LoMemVT, HiMemVT;
2261 bool HiIsEmpty = false;
2262 std::tie(LoMemVT, HiMemVT) =
2263 DAG.GetDependentSplitDestVTs(MemoryVT, LoVT, &HiIsEmpty);
2264
2265 SDValue PassThruLo, PassThruHi;
2266 if (getTypeAction(PassThru.getValueType()) == TargetLowering::TypeSplitVector)
2267 GetSplitVector(PassThru, PassThruLo, PassThruHi);
2268 else
2269 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, dl);
2270
2271 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
2272 MLD->getPointerInfo(), MachineMemOperand::MOLoad,
2273 LocationSize::beforeOrAfterPointer(), Alignment, MLD->getAAInfo(),
2274 MLD->getRanges());
2275
2276 Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, Offset, MaskLo, PassThruLo, LoMemVT,
2277 MMO, MLD->getAddressingMode(), ExtType,
2278 MLD->isExpandingLoad());
2279
2280 if (HiIsEmpty) {
2281 // The hi masked load has zero storage size. We therefore simply set it to
2282 // the low masked load and rely on subsequent removal from the chain.
2283 Hi = Lo;
2284 } else {
2285 // Generate hi masked load.
2286 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, dl, LoMemVT, DAG,
2287 MLD->isExpandingLoad());
2288
2289 MachinePointerInfo MPI;
2290 if (LoMemVT.isScalableVector())
2291 MPI = MachinePointerInfo(MLD->getPointerInfo().getAddrSpace());
2292 else
2293 MPI = MLD->getPointerInfo().getWithOffset(
2294 LoMemVT.getStoreSize().getFixedValue());
2295
2296 MMO = DAG.getMachineFunction().getMachineMemOperand(
2297 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
2298 Alignment, MLD->getAAInfo(), MLD->getRanges());
2299
2300 Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, Offset, MaskHi, PassThruHi,
2301 HiMemVT, MMO, MLD->getAddressingMode(), ExtType,
2302 MLD->isExpandingLoad());
2303 }
2304
2305 // Build a factor node to remember that this load is independent of the
2306 // other one.
2307 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2308 Hi.getValue(1));
2309
2310 // Legalize the chain result - switch anything that used the old chain to
2311 // use the new one.
2312 ReplaceValueWith(SDValue(MLD, 1), Ch);
2313
2314 }
2315
SplitVecRes_Gather(MemSDNode * N,SDValue & Lo,SDValue & Hi,bool SplitSETCC)2316 void DAGTypeLegalizer::SplitVecRes_Gather(MemSDNode *N, SDValue &Lo,
2317 SDValue &Hi, bool SplitSETCC) {
2318 EVT LoVT, HiVT;
2319 SDLoc dl(N);
2320 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
2321
2322 SDValue Ch = N->getChain();
2323 SDValue Ptr = N->getBasePtr();
2324 struct Operands {
2325 SDValue Mask;
2326 SDValue Index;
2327 SDValue Scale;
2328 } Ops = [&]() -> Operands {
2329 if (auto *MSC = dyn_cast<MaskedGatherSDNode>(N)) {
2330 return {MSC->getMask(), MSC->getIndex(), MSC->getScale()};
2331 }
2332 auto *VPSC = cast<VPGatherSDNode>(N);
2333 return {VPSC->getMask(), VPSC->getIndex(), VPSC->getScale()};
2334 }();
2335
2336 EVT MemoryVT = N->getMemoryVT();
2337 Align Alignment = N->getOriginalAlign();
2338
2339 // Split Mask operand
2340 SDValue MaskLo, MaskHi;
2341 if (SplitSETCC && Ops.Mask.getOpcode() == ISD::SETCC) {
2342 SplitVecRes_SETCC(Ops.Mask.getNode(), MaskLo, MaskHi);
2343 } else {
2344 std::tie(MaskLo, MaskHi) = SplitMask(Ops.Mask, dl);
2345 }
2346
2347 EVT LoMemVT, HiMemVT;
2348 // Split MemoryVT
2349 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
2350
2351 SDValue IndexHi, IndexLo;
2352 if (getTypeAction(Ops.Index.getValueType()) ==
2353 TargetLowering::TypeSplitVector)
2354 GetSplitVector(Ops.Index, IndexLo, IndexHi);
2355 else
2356 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Ops.Index, dl);
2357
2358 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
2359 N->getPointerInfo(), MachineMemOperand::MOLoad,
2360 LocationSize::beforeOrAfterPointer(), Alignment, N->getAAInfo(),
2361 N->getRanges());
2362
2363 if (auto *MGT = dyn_cast<MaskedGatherSDNode>(N)) {
2364 SDValue PassThru = MGT->getPassThru();
2365 SDValue PassThruLo, PassThruHi;
2366 if (getTypeAction(PassThru.getValueType()) ==
2367 TargetLowering::TypeSplitVector)
2368 GetSplitVector(PassThru, PassThruLo, PassThruHi);
2369 else
2370 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, dl);
2371
2372 ISD::LoadExtType ExtType = MGT->getExtensionType();
2373 ISD::MemIndexType IndexTy = MGT->getIndexType();
2374
2375 SDValue OpsLo[] = {Ch, PassThruLo, MaskLo, Ptr, IndexLo, Ops.Scale};
2376 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoMemVT, dl,
2377 OpsLo, MMO, IndexTy, ExtType);
2378
2379 SDValue OpsHi[] = {Ch, PassThruHi, MaskHi, Ptr, IndexHi, Ops.Scale};
2380 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiMemVT, dl,
2381 OpsHi, MMO, IndexTy, ExtType);
2382 } else {
2383 auto *VPGT = cast<VPGatherSDNode>(N);
2384 SDValue EVLLo, EVLHi;
2385 std::tie(EVLLo, EVLHi) =
2386 DAG.SplitEVL(VPGT->getVectorLength(), MemoryVT, dl);
2387
2388 SDValue OpsLo[] = {Ch, Ptr, IndexLo, Ops.Scale, MaskLo, EVLLo};
2389 Lo = DAG.getGatherVP(DAG.getVTList(LoVT, MVT::Other), LoMemVT, dl, OpsLo,
2390 MMO, VPGT->getIndexType());
2391
2392 SDValue OpsHi[] = {Ch, Ptr, IndexHi, Ops.Scale, MaskHi, EVLHi};
2393 Hi = DAG.getGatherVP(DAG.getVTList(HiVT, MVT::Other), HiMemVT, dl, OpsHi,
2394 MMO, VPGT->getIndexType());
2395 }
2396
2397 // Build a factor node to remember that this load is independent of the
2398 // other one.
2399 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2400 Hi.getValue(1));
2401
2402 // Legalize the chain result - switch anything that used the old chain to
2403 // use the new one.
2404 ReplaceValueWith(SDValue(N, 1), Ch);
2405 }
2406
SplitVecRes_VECTOR_COMPRESS(SDNode * N,SDValue & Lo,SDValue & Hi)2407 void DAGTypeLegalizer::SplitVecRes_VECTOR_COMPRESS(SDNode *N, SDValue &Lo,
2408 SDValue &Hi) {
2409 // This is not "trivial", as there is a dependency between the two subvectors.
2410 // Depending on the number of 1s in the mask, the elements from the Hi vector
2411 // need to be moved to the Lo vector. So we just perform this as one "big"
2412 // operation and then extract the Lo and Hi vectors from that. This gets rid
2413 // of VECTOR_COMPRESS and all other operands can be legalized later.
2414 SDValue Compressed = TLI.expandVECTOR_COMPRESS(N, DAG);
2415 std::tie(Lo, Hi) = DAG.SplitVector(Compressed, SDLoc(N));
2416 }
2417
SplitVecRes_SETCC(SDNode * N,SDValue & Lo,SDValue & Hi)2418 void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
2419 assert(N->getValueType(0).isVector() &&
2420 N->getOperand(0).getValueType().isVector() &&
2421 "Operand types must be vectors");
2422
2423 EVT LoVT, HiVT;
2424 SDLoc DL(N);
2425 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
2426
2427 // If the input also splits, handle it directly. Otherwise split it by hand.
2428 SDValue LL, LH, RL, RH;
2429 if (getTypeAction(N->getOperand(0).getValueType()) ==
2430 TargetLowering::TypeSplitVector)
2431 GetSplitVector(N->getOperand(0), LL, LH);
2432 else
2433 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
2434
2435 if (getTypeAction(N->getOperand(1).getValueType()) ==
2436 TargetLowering::TypeSplitVector)
2437 GetSplitVector(N->getOperand(1), RL, RH);
2438 else
2439 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
2440
2441 if (N->getOpcode() == ISD::SETCC) {
2442 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
2443 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
2444 } else {
2445 assert(N->getOpcode() == ISD::VP_SETCC && "Expected VP_SETCC opcode");
2446 SDValue MaskLo, MaskHi, EVLLo, EVLHi;
2447 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(3));
2448 std::tie(EVLLo, EVLHi) =
2449 DAG.SplitEVL(N->getOperand(4), N->getValueType(0), DL);
2450 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2), MaskLo,
2451 EVLLo);
2452 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2), MaskHi,
2453 EVLHi);
2454 }
2455 }
2456
SplitVecRes_UnaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)2457 void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
2458 SDValue &Hi) {
2459 // Get the dest types - they may not match the input types, e.g. int_to_fp.
2460 EVT LoVT, HiVT;
2461 SDLoc dl(N);
2462 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
2463
2464 // If the input also splits, handle it directly for a compile time speedup.
2465 // Otherwise split it by hand.
2466 EVT InVT = N->getOperand(0).getValueType();
2467 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
2468 GetSplitVector(N->getOperand(0), Lo, Hi);
2469 else
2470 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
2471
2472 const SDNodeFlags Flags = N->getFlags();
2473 unsigned Opcode = N->getOpcode();
2474 if (N->getNumOperands() <= 2) {
2475 if (Opcode == ISD::FP_ROUND) {
2476 Lo = DAG.getNode(Opcode, dl, LoVT, Lo, N->getOperand(1), Flags);
2477 Hi = DAG.getNode(Opcode, dl, HiVT, Hi, N->getOperand(1), Flags);
2478 } else {
2479 Lo = DAG.getNode(Opcode, dl, LoVT, Lo, Flags);
2480 Hi = DAG.getNode(Opcode, dl, HiVT, Hi, Flags);
2481 }
2482 return;
2483 }
2484
2485 assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
2486 assert(N->isVPOpcode() && "Expected VP opcode");
2487
2488 SDValue MaskLo, MaskHi;
2489 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(1));
2490
2491 SDValue EVLLo, EVLHi;
2492 std::tie(EVLLo, EVLHi) =
2493 DAG.SplitEVL(N->getOperand(2), N->getValueType(0), dl);
2494
2495 Lo = DAG.getNode(Opcode, dl, LoVT, {Lo, MaskLo, EVLLo}, Flags);
2496 Hi = DAG.getNode(Opcode, dl, HiVT, {Hi, MaskHi, EVLHi}, Flags);
2497 }
2498
SplitVecRes_ADDRSPACECAST(SDNode * N,SDValue & Lo,SDValue & Hi)2499 void DAGTypeLegalizer::SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo,
2500 SDValue &Hi) {
2501 SDLoc dl(N);
2502 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(N->getValueType(0));
2503
2504 // If the input also splits, handle it directly for a compile time speedup.
2505 // Otherwise split it by hand.
2506 EVT InVT = N->getOperand(0).getValueType();
2507 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
2508 GetSplitVector(N->getOperand(0), Lo, Hi);
2509 else
2510 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
2511
2512 auto *AddrSpaceCastN = cast<AddrSpaceCastSDNode>(N);
2513 unsigned SrcAS = AddrSpaceCastN->getSrcAddressSpace();
2514 unsigned DestAS = AddrSpaceCastN->getDestAddressSpace();
2515 Lo = DAG.getAddrSpaceCast(dl, LoVT, Lo, SrcAS, DestAS);
2516 Hi = DAG.getAddrSpaceCast(dl, HiVT, Hi, SrcAS, DestAS);
2517 }
2518
SplitVecRes_FFREXP(SDNode * N,unsigned ResNo,SDValue & Lo,SDValue & Hi)2519 void DAGTypeLegalizer::SplitVecRes_FFREXP(SDNode *N, unsigned ResNo,
2520 SDValue &Lo, SDValue &Hi) {
2521 SDLoc dl(N);
2522 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(N->getValueType(0));
2523 auto [LoVT1, HiVT1] = DAG.GetSplitDestVTs(N->getValueType(1));
2524
2525 // If the input also splits, handle it directly for a compile time speedup.
2526 // Otherwise split it by hand.
2527 EVT InVT = N->getOperand(0).getValueType();
2528 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
2529 GetSplitVector(N->getOperand(0), Lo, Hi);
2530 else
2531 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
2532
2533 Lo = DAG.getNode(N->getOpcode(), dl, {LoVT, LoVT1}, Lo);
2534 Hi = DAG.getNode(N->getOpcode(), dl, {HiVT, HiVT1}, Hi);
2535 Lo->setFlags(N->getFlags());
2536 Hi->setFlags(N->getFlags());
2537
2538 SDNode *HiNode = Hi.getNode();
2539 SDNode *LoNode = Lo.getNode();
2540
2541 // Replace the other vector result not being explicitly split here.
2542 unsigned OtherNo = 1 - ResNo;
2543 EVT OtherVT = N->getValueType(OtherNo);
2544 if (getTypeAction(OtherVT) == TargetLowering::TypeSplitVector) {
2545 SetSplitVector(SDValue(N, OtherNo), SDValue(LoNode, OtherNo),
2546 SDValue(HiNode, OtherNo));
2547 } else {
2548 SDValue OtherVal =
2549 DAG.getNode(ISD::CONCAT_VECTORS, dl, OtherVT, SDValue(LoNode, OtherNo),
2550 SDValue(HiNode, OtherNo));
2551 ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
2552 }
2553 }
2554
SplitVecRes_ExtendOp(SDNode * N,SDValue & Lo,SDValue & Hi)2555 void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
2556 SDValue &Hi) {
2557 SDLoc dl(N);
2558 EVT SrcVT = N->getOperand(0).getValueType();
2559 EVT DestVT = N->getValueType(0);
2560 EVT LoVT, HiVT;
2561 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
2562
2563 // We can do better than a generic split operation if the extend is doing
2564 // more than just doubling the width of the elements and the following are
2565 // true:
2566 // - The number of vector elements is even,
2567 // - the source type is legal,
2568 // - the type of a split source is illegal,
2569 // - the type of an extended (by doubling element size) source is legal, and
2570 // - the type of that extended source when split is legal.
2571 //
2572 // This won't necessarily completely legalize the operation, but it will
2573 // more effectively move in the right direction and prevent falling down
2574 // to scalarization in many cases due to the input vector being split too
2575 // far.
2576 if (SrcVT.getVectorElementCount().isKnownEven() &&
2577 SrcVT.getScalarSizeInBits() * 2 < DestVT.getScalarSizeInBits()) {
2578 LLVMContext &Ctx = *DAG.getContext();
2579 EVT NewSrcVT = SrcVT.widenIntegerVectorElementType(Ctx);
2580 EVT SplitSrcVT = SrcVT.getHalfNumVectorElementsVT(Ctx);
2581
2582 EVT SplitLoVT, SplitHiVT;
2583 std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
2584 if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
2585 TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
2586 LLVM_DEBUG(dbgs() << "Split vector extend via incremental extend:";
2587 N->dump(&DAG); dbgs() << "\n");
2588 if (!N->isVPOpcode()) {
2589 // Extend the source vector by one step.
2590 SDValue NewSrc =
2591 DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
2592 // Get the low and high halves of the new, extended one step, vector.
2593 std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
2594 // Extend those vector halves the rest of the way.
2595 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
2596 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
2597 return;
2598 }
2599
2600 // Extend the source vector by one step.
2601 SDValue NewSrc =
2602 DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0),
2603 N->getOperand(1), N->getOperand(2));
2604 // Get the low and high halves of the new, extended one step, vector.
2605 std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
2606
2607 SDValue MaskLo, MaskHi;
2608 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(1));
2609
2610 SDValue EVLLo, EVLHi;
2611 std::tie(EVLLo, EVLHi) =
2612 DAG.SplitEVL(N->getOperand(2), N->getValueType(0), dl);
2613 // Extend those vector halves the rest of the way.
2614 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, {Lo, MaskLo, EVLLo});
2615 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, {Hi, MaskHi, EVLHi});
2616 return;
2617 }
2618 }
2619 // Fall back to the generic unary operator splitting otherwise.
2620 SplitVecRes_UnaryOp(N, Lo, Hi);
2621 }
2622
SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N,SDValue & Lo,SDValue & Hi)2623 void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
2624 SDValue &Lo, SDValue &Hi) {
2625 // The low and high parts of the original input give four input vectors.
2626 SDValue Inputs[4];
2627 SDLoc DL(N);
2628 GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
2629 GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
2630 EVT NewVT = Inputs[0].getValueType();
2631 unsigned NewElts = NewVT.getVectorNumElements();
2632
2633 auto &&IsConstant = [](const SDValue &N) {
2634 APInt SplatValue;
2635 return N.getResNo() == 0 &&
2636 (ISD::isConstantSplatVector(N.getNode(), SplatValue) ||
2637 ISD::isBuildVectorOfConstantSDNodes(N.getNode()));
2638 };
2639 auto &&BuildVector = [NewElts, &DAG = DAG, NewVT, &DL](SDValue &Input1,
2640 SDValue &Input2,
2641 ArrayRef<int> Mask) {
2642 assert(Input1->getOpcode() == ISD::BUILD_VECTOR &&
2643 Input2->getOpcode() == ISD::BUILD_VECTOR &&
2644 "Expected build vector node.");
2645 EVT EltVT = NewVT.getVectorElementType();
2646 SmallVector<SDValue> Ops(NewElts, DAG.getUNDEF(EltVT));
2647 for (unsigned I = 0; I < NewElts; ++I) {
2648 if (Mask[I] == PoisonMaskElem)
2649 continue;
2650 unsigned Idx = Mask[I];
2651 if (Idx >= NewElts)
2652 Ops[I] = Input2.getOperand(Idx - NewElts);
2653 else
2654 Ops[I] = Input1.getOperand(Idx);
2655 // Make the type of all elements the same as the element type.
2656 if (Ops[I].getValueType().bitsGT(EltVT))
2657 Ops[I] = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Ops[I]);
2658 }
2659 return DAG.getBuildVector(NewVT, DL, Ops);
2660 };
2661
2662 // If Lo or Hi uses elements from at most two of the four input vectors, then
2663 // express it as a vector shuffle of those two inputs. Otherwise extract the
2664 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
2665 SmallVector<int> OrigMask(N->getMask());
2666 // Try to pack incoming shuffles/inputs.
2667 auto &&TryPeekThroughShufflesInputs = [&Inputs, &NewVT, this, NewElts,
2668 &DL](SmallVectorImpl<int> &Mask) {
2669 // Check if all inputs are shuffles of the same operands or non-shuffles.
2670 MapVector<std::pair<SDValue, SDValue>, SmallVector<unsigned>> ShufflesIdxs;
2671 for (unsigned Idx = 0; Idx < std::size(Inputs); ++Idx) {
2672 SDValue Input = Inputs[Idx];
2673 auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Input.getNode());
2674 if (!Shuffle ||
2675 Input.getOperand(0).getValueType() != Input.getValueType())
2676 continue;
2677 ShufflesIdxs[std::make_pair(Input.getOperand(0), Input.getOperand(1))]
2678 .push_back(Idx);
2679 ShufflesIdxs[std::make_pair(Input.getOperand(1), Input.getOperand(0))]
2680 .push_back(Idx);
2681 }
2682 for (auto &P : ShufflesIdxs) {
2683 if (P.second.size() < 2)
2684 continue;
2685 // Use shuffles operands instead of shuffles themselves.
2686 // 1. Adjust mask.
2687 for (int &Idx : Mask) {
2688 if (Idx == PoisonMaskElem)
2689 continue;
2690 unsigned SrcRegIdx = Idx / NewElts;
2691 if (Inputs[SrcRegIdx].isUndef()) {
2692 Idx = PoisonMaskElem;
2693 continue;
2694 }
2695 auto *Shuffle =
2696 dyn_cast<ShuffleVectorSDNode>(Inputs[SrcRegIdx].getNode());
2697 if (!Shuffle || !is_contained(P.second, SrcRegIdx))
2698 continue;
2699 int MaskElt = Shuffle->getMaskElt(Idx % NewElts);
2700 if (MaskElt == PoisonMaskElem) {
2701 Idx = PoisonMaskElem;
2702 continue;
2703 }
2704 Idx = MaskElt % NewElts +
2705 P.second[Shuffle->getOperand(MaskElt / NewElts) == P.first.first
2706 ? 0
2707 : 1] *
2708 NewElts;
2709 }
2710 // 2. Update inputs.
2711 Inputs[P.second[0]] = P.first.first;
2712 Inputs[P.second[1]] = P.first.second;
2713 // Clear the pair data.
2714 P.second.clear();
2715 ShufflesIdxs[std::make_pair(P.first.second, P.first.first)].clear();
2716 }
2717 // Check if any concat_vectors can be simplified.
2718 SmallBitVector UsedSubVector(2 * std::size(Inputs));
2719 for (int &Idx : Mask) {
2720 if (Idx == PoisonMaskElem)
2721 continue;
2722 unsigned SrcRegIdx = Idx / NewElts;
2723 if (Inputs[SrcRegIdx].isUndef()) {
2724 Idx = PoisonMaskElem;
2725 continue;
2726 }
2727 TargetLowering::LegalizeTypeAction TypeAction =
2728 getTypeAction(Inputs[SrcRegIdx].getValueType());
2729 if (Inputs[SrcRegIdx].getOpcode() == ISD::CONCAT_VECTORS &&
2730 Inputs[SrcRegIdx].getNumOperands() == 2 &&
2731 !Inputs[SrcRegIdx].getOperand(1).isUndef() &&
2732 (TypeAction == TargetLowering::TypeLegal ||
2733 TypeAction == TargetLowering::TypeWidenVector))
2734 UsedSubVector.set(2 * SrcRegIdx + (Idx % NewElts) / (NewElts / 2));
2735 }
2736 if (UsedSubVector.count() > 1) {
2737 SmallVector<SmallVector<std::pair<unsigned, int>, 2>> Pairs;
2738 for (unsigned I = 0; I < std::size(Inputs); ++I) {
2739 if (UsedSubVector.test(2 * I) == UsedSubVector.test(2 * I + 1))
2740 continue;
2741 if (Pairs.empty() || Pairs.back().size() == 2)
2742 Pairs.emplace_back();
2743 if (UsedSubVector.test(2 * I)) {
2744 Pairs.back().emplace_back(I, 0);
2745 } else {
2746 assert(UsedSubVector.test(2 * I + 1) &&
2747 "Expected to be used one of the subvectors.");
2748 Pairs.back().emplace_back(I, 1);
2749 }
2750 }
2751 if (!Pairs.empty() && Pairs.front().size() > 1) {
2752 // Adjust mask.
2753 for (int &Idx : Mask) {
2754 if (Idx == PoisonMaskElem)
2755 continue;
2756 unsigned SrcRegIdx = Idx / NewElts;
2757 auto *It = find_if(
2758 Pairs, [SrcRegIdx](ArrayRef<std::pair<unsigned, int>> Idxs) {
2759 return Idxs.front().first == SrcRegIdx ||
2760 Idxs.back().first == SrcRegIdx;
2761 });
2762 if (It == Pairs.end())
2763 continue;
2764 Idx = It->front().first * NewElts + (Idx % NewElts) % (NewElts / 2) +
2765 (SrcRegIdx == It->front().first ? 0 : (NewElts / 2));
2766 }
2767 // Adjust inputs.
2768 for (ArrayRef<std::pair<unsigned, int>> Idxs : Pairs) {
2769 Inputs[Idxs.front().first] = DAG.getNode(
2770 ISD::CONCAT_VECTORS, DL,
2771 Inputs[Idxs.front().first].getValueType(),
2772 Inputs[Idxs.front().first].getOperand(Idxs.front().second),
2773 Inputs[Idxs.back().first].getOperand(Idxs.back().second));
2774 }
2775 }
2776 }
2777 bool Changed;
2778 do {
2779 // Try to remove extra shuffles (except broadcasts) and shuffles with the
2780 // reused operands.
2781 Changed = false;
2782 for (unsigned I = 0; I < std::size(Inputs); ++I) {
2783 auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Inputs[I].getNode());
2784 if (!Shuffle)
2785 continue;
2786 if (Shuffle->getOperand(0).getValueType() != NewVT)
2787 continue;
2788 int Op = -1;
2789 if (!Inputs[I].hasOneUse() && Shuffle->getOperand(1).isUndef() &&
2790 !Shuffle->isSplat()) {
2791 Op = 0;
2792 } else if (!Inputs[I].hasOneUse() &&
2793 !Shuffle->getOperand(1).isUndef()) {
2794 // Find the only used operand, if possible.
2795 for (int &Idx : Mask) {
2796 if (Idx == PoisonMaskElem)
2797 continue;
2798 unsigned SrcRegIdx = Idx / NewElts;
2799 if (SrcRegIdx != I)
2800 continue;
2801 int MaskElt = Shuffle->getMaskElt(Idx % NewElts);
2802 if (MaskElt == PoisonMaskElem) {
2803 Idx = PoisonMaskElem;
2804 continue;
2805 }
2806 int OpIdx = MaskElt / NewElts;
2807 if (Op == -1) {
2808 Op = OpIdx;
2809 continue;
2810 }
2811 if (Op != OpIdx) {
2812 Op = -1;
2813 break;
2814 }
2815 }
2816 }
2817 if (Op < 0) {
2818 // Try to check if one of the shuffle operands is used already.
2819 for (int OpIdx = 0; OpIdx < 2; ++OpIdx) {
2820 if (Shuffle->getOperand(OpIdx).isUndef())
2821 continue;
2822 auto *It = find(Inputs, Shuffle->getOperand(OpIdx));
2823 if (It == std::end(Inputs))
2824 continue;
2825 int FoundOp = std::distance(std::begin(Inputs), It);
2826 // Found that operand is used already.
2827 // 1. Fix the mask for the reused operand.
2828 for (int &Idx : Mask) {
2829 if (Idx == PoisonMaskElem)
2830 continue;
2831 unsigned SrcRegIdx = Idx / NewElts;
2832 if (SrcRegIdx != I)
2833 continue;
2834 int MaskElt = Shuffle->getMaskElt(Idx % NewElts);
2835 if (MaskElt == PoisonMaskElem) {
2836 Idx = PoisonMaskElem;
2837 continue;
2838 }
2839 int MaskIdx = MaskElt / NewElts;
2840 if (OpIdx == MaskIdx)
2841 Idx = MaskElt % NewElts + FoundOp * NewElts;
2842 }
2843 // 2. Set Op to the unused OpIdx.
2844 Op = (OpIdx + 1) % 2;
2845 break;
2846 }
2847 }
2848 if (Op >= 0) {
2849 Changed = true;
2850 Inputs[I] = Shuffle->getOperand(Op);
2851 // Adjust mask.
2852 for (int &Idx : Mask) {
2853 if (Idx == PoisonMaskElem)
2854 continue;
2855 unsigned SrcRegIdx = Idx / NewElts;
2856 if (SrcRegIdx != I)
2857 continue;
2858 int MaskElt = Shuffle->getMaskElt(Idx % NewElts);
2859 int OpIdx = MaskElt / NewElts;
2860 if (OpIdx != Op)
2861 continue;
2862 Idx = MaskElt % NewElts + SrcRegIdx * NewElts;
2863 }
2864 }
2865 }
2866 } while (Changed);
2867 };
2868 TryPeekThroughShufflesInputs(OrigMask);
2869 // Proces unique inputs.
2870 auto &&MakeUniqueInputs = [&Inputs, &IsConstant,
2871 NewElts](SmallVectorImpl<int> &Mask) {
2872 SetVector<SDValue> UniqueInputs;
2873 SetVector<SDValue> UniqueConstantInputs;
2874 for (const auto &I : Inputs) {
2875 if (IsConstant(I))
2876 UniqueConstantInputs.insert(I);
2877 else if (!I.isUndef())
2878 UniqueInputs.insert(I);
2879 }
2880 // Adjust mask in case of reused inputs. Also, need to insert constant
2881 // inputs at first, otherwise it affects the final outcome.
2882 if (UniqueInputs.size() != std::size(Inputs)) {
2883 auto &&UniqueVec = UniqueInputs.takeVector();
2884 auto &&UniqueConstantVec = UniqueConstantInputs.takeVector();
2885 unsigned ConstNum = UniqueConstantVec.size();
2886 for (int &Idx : Mask) {
2887 if (Idx == PoisonMaskElem)
2888 continue;
2889 unsigned SrcRegIdx = Idx / NewElts;
2890 if (Inputs[SrcRegIdx].isUndef()) {
2891 Idx = PoisonMaskElem;
2892 continue;
2893 }
2894 const auto It = find(UniqueConstantVec, Inputs[SrcRegIdx]);
2895 if (It != UniqueConstantVec.end()) {
2896 Idx = (Idx % NewElts) +
2897 NewElts * std::distance(UniqueConstantVec.begin(), It);
2898 assert(Idx >= 0 && "Expected defined mask idx.");
2899 continue;
2900 }
2901 const auto RegIt = find(UniqueVec, Inputs[SrcRegIdx]);
2902 assert(RegIt != UniqueVec.end() && "Cannot find non-const value.");
2903 Idx = (Idx % NewElts) +
2904 NewElts * (std::distance(UniqueVec.begin(), RegIt) + ConstNum);
2905 assert(Idx >= 0 && "Expected defined mask idx.");
2906 }
2907 copy(UniqueConstantVec, std::begin(Inputs));
2908 copy(UniqueVec, std::next(std::begin(Inputs), ConstNum));
2909 }
2910 };
2911 MakeUniqueInputs(OrigMask);
2912 SDValue OrigInputs[4];
2913 copy(Inputs, std::begin(OrigInputs));
2914 for (unsigned High = 0; High < 2; ++High) {
2915 SDValue &Output = High ? Hi : Lo;
2916
2917 // Build a shuffle mask for the output, discovering on the fly which
2918 // input vectors to use as shuffle operands.
2919 unsigned FirstMaskIdx = High * NewElts;
2920 SmallVector<int> Mask(NewElts * std::size(Inputs), PoisonMaskElem);
2921 copy(ArrayRef(OrigMask).slice(FirstMaskIdx, NewElts), Mask.begin());
2922 assert(!Output && "Expected default initialized initial value.");
2923 TryPeekThroughShufflesInputs(Mask);
2924 MakeUniqueInputs(Mask);
2925 SDValue TmpInputs[4];
2926 copy(Inputs, std::begin(TmpInputs));
2927 // Track changes in the output registers.
2928 int UsedIdx = -1;
2929 bool SecondIteration = false;
2930 auto &&AccumulateResults = [&UsedIdx, &SecondIteration](unsigned Idx) {
2931 if (UsedIdx < 0) {
2932 UsedIdx = Idx;
2933 return false;
2934 }
2935 if (UsedIdx >= 0 && static_cast<unsigned>(UsedIdx) == Idx)
2936 SecondIteration = true;
2937 return SecondIteration;
2938 };
2939 processShuffleMasks(
2940 Mask, std::size(Inputs), std::size(Inputs),
2941 /*NumOfUsedRegs=*/1,
2942 [&Output, &DAG = DAG, NewVT]() { Output = DAG.getUNDEF(NewVT); },
2943 [&Output, &DAG = DAG, NewVT, &DL, &Inputs,
2944 &BuildVector](ArrayRef<int> Mask, unsigned Idx, unsigned /*Unused*/) {
2945 if (Inputs[Idx]->getOpcode() == ISD::BUILD_VECTOR)
2946 Output = BuildVector(Inputs[Idx], Inputs[Idx], Mask);
2947 else
2948 Output = DAG.getVectorShuffle(NewVT, DL, Inputs[Idx],
2949 DAG.getUNDEF(NewVT), Mask);
2950 Inputs[Idx] = Output;
2951 },
2952 [&AccumulateResults, &Output, &DAG = DAG, NewVT, &DL, &Inputs,
2953 &TmpInputs,
2954 &BuildVector](ArrayRef<int> Mask, unsigned Idx1, unsigned Idx2) {
2955 if (AccumulateResults(Idx1)) {
2956 if (Inputs[Idx1]->getOpcode() == ISD::BUILD_VECTOR &&
2957 Inputs[Idx2]->getOpcode() == ISD::BUILD_VECTOR)
2958 Output = BuildVector(Inputs[Idx1], Inputs[Idx2], Mask);
2959 else
2960 Output = DAG.getVectorShuffle(NewVT, DL, Inputs[Idx1],
2961 Inputs[Idx2], Mask);
2962 } else {
2963 if (TmpInputs[Idx1]->getOpcode() == ISD::BUILD_VECTOR &&
2964 TmpInputs[Idx2]->getOpcode() == ISD::BUILD_VECTOR)
2965 Output = BuildVector(TmpInputs[Idx1], TmpInputs[Idx2], Mask);
2966 else
2967 Output = DAG.getVectorShuffle(NewVT, DL, TmpInputs[Idx1],
2968 TmpInputs[Idx2], Mask);
2969 }
2970 Inputs[Idx1] = Output;
2971 });
2972 copy(OrigInputs, std::begin(Inputs));
2973 }
2974 }
2975
SplitVecRes_VAARG(SDNode * N,SDValue & Lo,SDValue & Hi)2976 void DAGTypeLegalizer::SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2977 EVT OVT = N->getValueType(0);
2978 EVT NVT = OVT.getHalfNumVectorElementsVT(*DAG.getContext());
2979 SDValue Chain = N->getOperand(0);
2980 SDValue Ptr = N->getOperand(1);
2981 SDValue SV = N->getOperand(2);
2982 SDLoc dl(N);
2983
2984 const Align Alignment =
2985 DAG.getDataLayout().getABITypeAlign(NVT.getTypeForEVT(*DAG.getContext()));
2986
2987 Lo = DAG.getVAArg(NVT, dl, Chain, Ptr, SV, Alignment.value());
2988 Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, SV, Alignment.value());
2989 Chain = Hi.getValue(1);
2990
2991 // Modified the chain - switch anything that used the old chain to use
2992 // the new one.
2993 ReplaceValueWith(SDValue(N, 1), Chain);
2994 }
2995
SplitVecRes_FP_TO_XINT_SAT(SDNode * N,SDValue & Lo,SDValue & Hi)2996 void DAGTypeLegalizer::SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo,
2997 SDValue &Hi) {
2998 EVT DstVTLo, DstVTHi;
2999 std::tie(DstVTLo, DstVTHi) = DAG.GetSplitDestVTs(N->getValueType(0));
3000 SDLoc dl(N);
3001
3002 SDValue SrcLo, SrcHi;
3003 EVT SrcVT = N->getOperand(0).getValueType();
3004 if (getTypeAction(SrcVT) == TargetLowering::TypeSplitVector)
3005 GetSplitVector(N->getOperand(0), SrcLo, SrcHi);
3006 else
3007 std::tie(SrcLo, SrcHi) = DAG.SplitVectorOperand(N, 0);
3008
3009 Lo = DAG.getNode(N->getOpcode(), dl, DstVTLo, SrcLo, N->getOperand(1));
3010 Hi = DAG.getNode(N->getOpcode(), dl, DstVTHi, SrcHi, N->getOperand(1));
3011 }
3012
SplitVecRes_VECTOR_REVERSE(SDNode * N,SDValue & Lo,SDValue & Hi)3013 void DAGTypeLegalizer::SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo,
3014 SDValue &Hi) {
3015 SDValue InLo, InHi;
3016 GetSplitVector(N->getOperand(0), InLo, InHi);
3017 SDLoc DL(N);
3018
3019 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, InHi.getValueType(), InHi);
3020 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, InLo.getValueType(), InLo);
3021 }
3022
SplitVecRes_VECTOR_SPLICE(SDNode * N,SDValue & Lo,SDValue & Hi)3023 void DAGTypeLegalizer::SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo,
3024 SDValue &Hi) {
3025 SDLoc DL(N);
3026
3027 SDValue Expanded = TLI.expandVectorSplice(N, DAG);
3028 std::tie(Lo, Hi) = DAG.SplitVector(Expanded, DL);
3029 }
3030
SplitVecRes_VP_REVERSE(SDNode * N,SDValue & Lo,SDValue & Hi)3031 void DAGTypeLegalizer::SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo,
3032 SDValue &Hi) {
3033 EVT VT = N->getValueType(0);
3034 SDValue Val = N->getOperand(0);
3035 SDValue Mask = N->getOperand(1);
3036 SDValue EVL = N->getOperand(2);
3037 SDLoc DL(N);
3038
3039 // Fallback to VP_STRIDED_STORE to stack followed by VP_LOAD.
3040 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
3041
3042 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
3043 VT.getVectorElementCount());
3044 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
3045 EVT PtrVT = StackPtr.getValueType();
3046 auto &MF = DAG.getMachineFunction();
3047 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3048 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
3049
3050 MachineMemOperand *StoreMMO = DAG.getMachineFunction().getMachineMemOperand(
3051 PtrInfo, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
3052 Alignment);
3053 MachineMemOperand *LoadMMO = DAG.getMachineFunction().getMachineMemOperand(
3054 PtrInfo, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
3055 Alignment);
3056
3057 unsigned EltWidth = VT.getScalarSizeInBits() / 8;
3058 SDValue NumElemMinus1 =
3059 DAG.getNode(ISD::SUB, DL, PtrVT, DAG.getZExtOrTrunc(EVL, DL, PtrVT),
3060 DAG.getConstant(1, DL, PtrVT));
3061 SDValue StartOffset = DAG.getNode(ISD::MUL, DL, PtrVT, NumElemMinus1,
3062 DAG.getConstant(EltWidth, DL, PtrVT));
3063 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, StartOffset);
3064 SDValue Stride = DAG.getConstant(-(int64_t)EltWidth, DL, PtrVT);
3065
3066 SDValue TrueMask = DAG.getBoolConstant(true, DL, Mask.getValueType(), VT);
3067 SDValue Store = DAG.getStridedStoreVP(DAG.getEntryNode(), DL, Val, StorePtr,
3068 DAG.getUNDEF(PtrVT), Stride, TrueMask,
3069 EVL, MemVT, StoreMMO, ISD::UNINDEXED);
3070
3071 SDValue Load = DAG.getLoadVP(VT, DL, Store, StackPtr, Mask, EVL, LoadMMO);
3072
3073 std::tie(Lo, Hi) = DAG.SplitVector(Load, DL);
3074 }
3075
SplitVecRes_VECTOR_DEINTERLEAVE(SDNode * N)3076 void DAGTypeLegalizer::SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N) {
3077
3078 SDValue Op0Lo, Op0Hi, Op1Lo, Op1Hi;
3079 GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
3080 GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
3081 EVT VT = Op0Lo.getValueType();
3082 SDLoc DL(N);
3083 SDValue ResLo = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
3084 DAG.getVTList(VT, VT), Op0Lo, Op0Hi);
3085 SDValue ResHi = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
3086 DAG.getVTList(VT, VT), Op1Lo, Op1Hi);
3087
3088 SetSplitVector(SDValue(N, 0), ResLo.getValue(0), ResHi.getValue(0));
3089 SetSplitVector(SDValue(N, 1), ResLo.getValue(1), ResHi.getValue(1));
3090 }
3091
SplitVecRes_VECTOR_INTERLEAVE(SDNode * N)3092 void DAGTypeLegalizer::SplitVecRes_VECTOR_INTERLEAVE(SDNode *N) {
3093 SDValue Op0Lo, Op0Hi, Op1Lo, Op1Hi;
3094 GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
3095 GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
3096 EVT VT = Op0Lo.getValueType();
3097 SDLoc DL(N);
3098 SDValue Res[] = {DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
3099 DAG.getVTList(VT, VT), Op0Lo, Op1Lo),
3100 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
3101 DAG.getVTList(VT, VT), Op0Hi, Op1Hi)};
3102
3103 SetSplitVector(SDValue(N, 0), Res[0].getValue(0), Res[0].getValue(1));
3104 SetSplitVector(SDValue(N, 1), Res[1].getValue(0), Res[1].getValue(1));
3105 }
3106
3107 //===----------------------------------------------------------------------===//
3108 // Operand Vector Splitting
3109 //===----------------------------------------------------------------------===//
3110
3111 /// This method is called when the specified operand of the specified node is
3112 /// found to need vector splitting. At this point, all of the result types of
3113 /// the node are known to be legal, but other operands of the node may need
3114 /// legalization as well as the specified one.
SplitVectorOperand(SDNode * N,unsigned OpNo)3115 bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
3116 LLVM_DEBUG(dbgs() << "Split node operand: "; N->dump(&DAG));
3117 SDValue Res = SDValue();
3118
3119 // See if the target wants to custom split this node.
3120 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
3121 return false;
3122
3123 switch (N->getOpcode()) {
3124 default:
3125 #ifndef NDEBUG
3126 dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
3127 N->dump(&DAG);
3128 dbgs() << "\n";
3129 #endif
3130 report_fatal_error("Do not know how to split this operator's "
3131 "operand!\n");
3132
3133 case ISD::VP_SETCC:
3134 case ISD::STRICT_FSETCC:
3135 case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
3136 case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
3137 case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
3138 case ISD::INSERT_SUBVECTOR: Res = SplitVecOp_INSERT_SUBVECTOR(N, OpNo); break;
3139 case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
3140 case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
3141 case ISD::VP_TRUNCATE:
3142 case ISD::TRUNCATE:
3143 Res = SplitVecOp_TruncateHelper(N);
3144 break;
3145 case ISD::STRICT_FP_ROUND:
3146 case ISD::VP_FP_ROUND:
3147 case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
3148 case ISD::FCOPYSIGN: Res = SplitVecOp_FPOpDifferentTypes(N); break;
3149 case ISD::STORE:
3150 Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
3151 break;
3152 case ISD::VP_STORE:
3153 Res = SplitVecOp_VP_STORE(cast<VPStoreSDNode>(N), OpNo);
3154 break;
3155 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
3156 Res = SplitVecOp_VP_STRIDED_STORE(cast<VPStridedStoreSDNode>(N), OpNo);
3157 break;
3158 case ISD::MSTORE:
3159 Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
3160 break;
3161 case ISD::MSCATTER:
3162 case ISD::VP_SCATTER:
3163 Res = SplitVecOp_Scatter(cast<MemSDNode>(N), OpNo);
3164 break;
3165 case ISD::MGATHER:
3166 case ISD::VP_GATHER:
3167 Res = SplitVecOp_Gather(cast<MemSDNode>(N), OpNo);
3168 break;
3169 case ISD::VSELECT:
3170 Res = SplitVecOp_VSELECT(N, OpNo);
3171 break;
3172 case ISD::STRICT_SINT_TO_FP:
3173 case ISD::STRICT_UINT_TO_FP:
3174 case ISD::SINT_TO_FP:
3175 case ISD::UINT_TO_FP:
3176 case ISD::VP_SINT_TO_FP:
3177 case ISD::VP_UINT_TO_FP:
3178 if (N->getValueType(0).bitsLT(
3179 N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType()))
3180 Res = SplitVecOp_TruncateHelper(N);
3181 else
3182 Res = SplitVecOp_UnaryOp(N);
3183 break;
3184 case ISD::FP_TO_SINT_SAT:
3185 case ISD::FP_TO_UINT_SAT:
3186 Res = SplitVecOp_FP_TO_XINT_SAT(N);
3187 break;
3188 case ISD::FP_TO_SINT:
3189 case ISD::FP_TO_UINT:
3190 case ISD::VP_FP_TO_SINT:
3191 case ISD::VP_FP_TO_UINT:
3192 case ISD::STRICT_FP_TO_SINT:
3193 case ISD::STRICT_FP_TO_UINT:
3194 case ISD::STRICT_FP_EXTEND:
3195 case ISD::FP_EXTEND:
3196 case ISD::SIGN_EXTEND:
3197 case ISD::ZERO_EXTEND:
3198 case ISD::ANY_EXTEND:
3199 case ISD::FTRUNC:
3200 case ISD::LRINT:
3201 case ISD::LLRINT:
3202 Res = SplitVecOp_UnaryOp(N);
3203 break;
3204 case ISD::FLDEXP:
3205 Res = SplitVecOp_FPOpDifferentTypes(N);
3206 break;
3207
3208 case ISD::SCMP:
3209 case ISD::UCMP:
3210 Res = SplitVecOp_CMP(N);
3211 break;
3212
3213 case ISD::ANY_EXTEND_VECTOR_INREG:
3214 case ISD::SIGN_EXTEND_VECTOR_INREG:
3215 case ISD::ZERO_EXTEND_VECTOR_INREG:
3216 Res = SplitVecOp_ExtVecInRegOp(N);
3217 break;
3218
3219 case ISD::VECREDUCE_FADD:
3220 case ISD::VECREDUCE_FMUL:
3221 case ISD::VECREDUCE_ADD:
3222 case ISD::VECREDUCE_MUL:
3223 case ISD::VECREDUCE_AND:
3224 case ISD::VECREDUCE_OR:
3225 case ISD::VECREDUCE_XOR:
3226 case ISD::VECREDUCE_SMAX:
3227 case ISD::VECREDUCE_SMIN:
3228 case ISD::VECREDUCE_UMAX:
3229 case ISD::VECREDUCE_UMIN:
3230 case ISD::VECREDUCE_FMAX:
3231 case ISD::VECREDUCE_FMIN:
3232 case ISD::VECREDUCE_FMAXIMUM:
3233 case ISD::VECREDUCE_FMINIMUM:
3234 Res = SplitVecOp_VECREDUCE(N, OpNo);
3235 break;
3236 case ISD::VECREDUCE_SEQ_FADD:
3237 case ISD::VECREDUCE_SEQ_FMUL:
3238 Res = SplitVecOp_VECREDUCE_SEQ(N);
3239 break;
3240 case ISD::VP_REDUCE_FADD:
3241 case ISD::VP_REDUCE_SEQ_FADD:
3242 case ISD::VP_REDUCE_FMUL:
3243 case ISD::VP_REDUCE_SEQ_FMUL:
3244 case ISD::VP_REDUCE_ADD:
3245 case ISD::VP_REDUCE_MUL:
3246 case ISD::VP_REDUCE_AND:
3247 case ISD::VP_REDUCE_OR:
3248 case ISD::VP_REDUCE_XOR:
3249 case ISD::VP_REDUCE_SMAX:
3250 case ISD::VP_REDUCE_SMIN:
3251 case ISD::VP_REDUCE_UMAX:
3252 case ISD::VP_REDUCE_UMIN:
3253 case ISD::VP_REDUCE_FMAX:
3254 case ISD::VP_REDUCE_FMIN:
3255 case ISD::VP_REDUCE_FMAXIMUM:
3256 case ISD::VP_REDUCE_FMINIMUM:
3257 Res = SplitVecOp_VP_REDUCE(N, OpNo);
3258 break;
3259 case ISD::VP_CTTZ_ELTS:
3260 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
3261 Res = SplitVecOp_VP_CttzElements(N);
3262 break;
3263 }
3264
3265 // If the result is null, the sub-method took care of registering results etc.
3266 if (!Res.getNode()) return false;
3267
3268 // If the result is N, the sub-method updated N in place. Tell the legalizer
3269 // core about this.
3270 if (Res.getNode() == N)
3271 return true;
3272
3273 if (N->isStrictFPOpcode())
3274 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 2 &&
3275 "Invalid operand expansion");
3276 else
3277 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
3278 "Invalid operand expansion");
3279
3280 ReplaceValueWith(SDValue(N, 0), Res);
3281 return false;
3282 }
3283
SplitVecOp_VSELECT(SDNode * N,unsigned OpNo)3284 SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
3285 // The only possibility for an illegal operand is the mask, since result type
3286 // legalization would have handled this node already otherwise.
3287 assert(OpNo == 0 && "Illegal operand must be mask");
3288
3289 SDValue Mask = N->getOperand(0);
3290 SDValue Src0 = N->getOperand(1);
3291 SDValue Src1 = N->getOperand(2);
3292 EVT Src0VT = Src0.getValueType();
3293 SDLoc DL(N);
3294 assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
3295
3296 SDValue Lo, Hi;
3297 GetSplitVector(N->getOperand(0), Lo, Hi);
3298 assert(Lo.getValueType() == Hi.getValueType() &&
3299 "Lo and Hi have differing types");
3300
3301 EVT LoOpVT, HiOpVT;
3302 std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
3303 assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
3304
3305 SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
3306 std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
3307 std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
3308 std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
3309
3310 SDValue LoSelect =
3311 DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
3312 SDValue HiSelect =
3313 DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
3314
3315 return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
3316 }
3317
SplitVecOp_VECREDUCE(SDNode * N,unsigned OpNo)3318 SDValue DAGTypeLegalizer::SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo) {
3319 EVT ResVT = N->getValueType(0);
3320 SDValue Lo, Hi;
3321 SDLoc dl(N);
3322
3323 SDValue VecOp = N->getOperand(OpNo);
3324 EVT VecVT = VecOp.getValueType();
3325 assert(VecVT.isVector() && "Can only split reduce vector operand");
3326 GetSplitVector(VecOp, Lo, Hi);
3327 EVT LoOpVT, HiOpVT;
3328 std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(VecVT);
3329
3330 // Use the appropriate scalar instruction on the split subvectors before
3331 // reducing the now partially reduced smaller vector.
3332 unsigned CombineOpc = ISD::getVecReduceBaseOpcode(N->getOpcode());
3333 SDValue Partial = DAG.getNode(CombineOpc, dl, LoOpVT, Lo, Hi, N->getFlags());
3334 return DAG.getNode(N->getOpcode(), dl, ResVT, Partial, N->getFlags());
3335 }
3336
SplitVecOp_VECREDUCE_SEQ(SDNode * N)3337 SDValue DAGTypeLegalizer::SplitVecOp_VECREDUCE_SEQ(SDNode *N) {
3338 EVT ResVT = N->getValueType(0);
3339 SDValue Lo, Hi;
3340 SDLoc dl(N);
3341
3342 SDValue AccOp = N->getOperand(0);
3343 SDValue VecOp = N->getOperand(1);
3344 SDNodeFlags Flags = N->getFlags();
3345
3346 EVT VecVT = VecOp.getValueType();
3347 assert(VecVT.isVector() && "Can only split reduce vector operand");
3348 GetSplitVector(VecOp, Lo, Hi);
3349 EVT LoOpVT, HiOpVT;
3350 std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(VecVT);
3351
3352 // Reduce low half.
3353 SDValue Partial = DAG.getNode(N->getOpcode(), dl, ResVT, AccOp, Lo, Flags);
3354
3355 // Reduce high half, using low half result as initial value.
3356 return DAG.getNode(N->getOpcode(), dl, ResVT, Partial, Hi, Flags);
3357 }
3358
SplitVecOp_VP_REDUCE(SDNode * N,unsigned OpNo)3359 SDValue DAGTypeLegalizer::SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo) {
3360 assert(N->isVPOpcode() && "Expected VP opcode");
3361 assert(OpNo == 1 && "Can only split reduce vector operand");
3362
3363 unsigned Opc = N->getOpcode();
3364 EVT ResVT = N->getValueType(0);
3365 SDValue Lo, Hi;
3366 SDLoc dl(N);
3367
3368 SDValue VecOp = N->getOperand(OpNo);
3369 EVT VecVT = VecOp.getValueType();
3370 assert(VecVT.isVector() && "Can only split reduce vector operand");
3371 GetSplitVector(VecOp, Lo, Hi);
3372
3373 SDValue MaskLo, MaskHi;
3374 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(2));
3375
3376 SDValue EVLLo, EVLHi;
3377 std::tie(EVLLo, EVLHi) = DAG.SplitEVL(N->getOperand(3), VecVT, dl);
3378
3379 const SDNodeFlags Flags = N->getFlags();
3380
3381 SDValue ResLo =
3382 DAG.getNode(Opc, dl, ResVT, {N->getOperand(0), Lo, MaskLo, EVLLo}, Flags);
3383 return DAG.getNode(Opc, dl, ResVT, {ResLo, Hi, MaskHi, EVLHi}, Flags);
3384 }
3385
SplitVecOp_UnaryOp(SDNode * N)3386 SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
3387 // The result has a legal vector type, but the input needs splitting.
3388 EVT ResVT = N->getValueType(0);
3389 SDValue Lo, Hi;
3390 SDLoc dl(N);
3391 GetSplitVector(N->getOperand(N->isStrictFPOpcode() ? 1 : 0), Lo, Hi);
3392 EVT InVT = Lo.getValueType();
3393
3394 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
3395 InVT.getVectorElementCount());
3396
3397 if (N->isStrictFPOpcode()) {
3398 Lo = DAG.getNode(N->getOpcode(), dl, { OutVT, MVT::Other },
3399 { N->getOperand(0), Lo });
3400 Hi = DAG.getNode(N->getOpcode(), dl, { OutVT, MVT::Other },
3401 { N->getOperand(0), Hi });
3402
3403 // Build a factor node to remember that this operation is independent
3404 // of the other one.
3405 SDValue Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3406 Hi.getValue(1));
3407
3408 // Legalize the chain result - switch anything that used the old chain to
3409 // use the new one.
3410 ReplaceValueWith(SDValue(N, 1), Ch);
3411 } else if (N->getNumOperands() == 3) {
3412 assert(N->isVPOpcode() && "Expected VP opcode");
3413 SDValue MaskLo, MaskHi, EVLLo, EVLHi;
3414 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(1));
3415 std::tie(EVLLo, EVLHi) =
3416 DAG.SplitEVL(N->getOperand(2), N->getValueType(0), dl);
3417 Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo, MaskLo, EVLLo);
3418 Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi, MaskHi, EVLHi);
3419 } else {
3420 Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
3421 Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
3422 }
3423
3424 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
3425 }
3426
SplitVecOp_BITCAST(SDNode * N)3427 SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
3428 // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
3429 // end up being split all the way down to individual components. Convert the
3430 // split pieces into integers and reassemble.
3431 EVT ResVT = N->getValueType(0);
3432 SDValue Lo, Hi;
3433 GetSplitVector(N->getOperand(0), Lo, Hi);
3434 SDLoc dl(N);
3435
3436 if (ResVT.isScalableVector()) {
3437 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(ResVT);
3438 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
3439 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
3440 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
3441 }
3442
3443 Lo = BitConvertToInteger(Lo);
3444 Hi = BitConvertToInteger(Hi);
3445
3446 if (DAG.getDataLayout().isBigEndian())
3447 std::swap(Lo, Hi);
3448
3449 return DAG.getNode(ISD::BITCAST, dl, ResVT, JoinIntegers(Lo, Hi));
3450 }
3451
SplitVecOp_INSERT_SUBVECTOR(SDNode * N,unsigned OpNo)3452 SDValue DAGTypeLegalizer::SplitVecOp_INSERT_SUBVECTOR(SDNode *N,
3453 unsigned OpNo) {
3454 assert(OpNo == 1 && "Invalid OpNo; can only split SubVec.");
3455 // We know that the result type is legal.
3456 EVT ResVT = N->getValueType(0);
3457
3458 SDValue Vec = N->getOperand(0);
3459 SDValue SubVec = N->getOperand(1);
3460 SDValue Idx = N->getOperand(2);
3461 SDLoc dl(N);
3462
3463 SDValue Lo, Hi;
3464 GetSplitVector(SubVec, Lo, Hi);
3465
3466 uint64_t IdxVal = Idx->getAsZExtVal();
3467 uint64_t LoElts = Lo.getValueType().getVectorMinNumElements();
3468
3469 SDValue FirstInsertion =
3470 DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Lo, Idx);
3471 SDValue SecondInsertion =
3472 DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, FirstInsertion, Hi,
3473 DAG.getVectorIdxConstant(IdxVal + LoElts, dl));
3474
3475 return SecondInsertion;
3476 }
3477
SplitVecOp_EXTRACT_SUBVECTOR(SDNode * N)3478 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
3479 // We know that the extracted result type is legal.
3480 EVT SubVT = N->getValueType(0);
3481 SDValue Idx = N->getOperand(1);
3482 SDLoc dl(N);
3483 SDValue Lo, Hi;
3484
3485 GetSplitVector(N->getOperand(0), Lo, Hi);
3486
3487 uint64_t LoEltsMin = Lo.getValueType().getVectorMinNumElements();
3488 uint64_t IdxVal = Idx->getAsZExtVal();
3489
3490 if (IdxVal < LoEltsMin) {
3491 assert(IdxVal + SubVT.getVectorMinNumElements() <= LoEltsMin &&
3492 "Extracted subvector crosses vector split!");
3493 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
3494 } else if (SubVT.isScalableVector() ==
3495 N->getOperand(0).getValueType().isScalableVector())
3496 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
3497 DAG.getVectorIdxConstant(IdxVal - LoEltsMin, dl));
3498
3499 // After this point the DAG node only permits extracting fixed-width
3500 // subvectors from scalable vectors.
3501 assert(SubVT.isFixedLengthVector() &&
3502 "Extracting scalable subvector from fixed-width unsupported");
3503
3504 // If the element type is i1 and we're not promoting the result, then we may
3505 // end up loading the wrong data since the bits are packed tightly into
3506 // bytes. For example, if we extract a v4i1 (legal) from a nxv4i1 (legal)
3507 // type at index 4, then we will load a byte starting at index 0.
3508 if (SubVT.getScalarType() == MVT::i1)
3509 report_fatal_error("Don't know how to extract fixed-width predicate "
3510 "subvector from a scalable predicate vector");
3511
3512 // Spill the vector to the stack. We should use the alignment for
3513 // the smallest part.
3514 SDValue Vec = N->getOperand(0);
3515 EVT VecVT = Vec.getValueType();
3516 Align SmallestAlign = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
3517 SDValue StackPtr =
3518 DAG.CreateStackTemporary(VecVT.getStoreSize(), SmallestAlign);
3519 auto &MF = DAG.getMachineFunction();
3520 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3521 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
3522
3523 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
3524 SmallestAlign);
3525
3526 // Extract the subvector by loading the correct part.
3527 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVT, Idx);
3528
3529 return DAG.getLoad(
3530 SubVT, dl, Store, StackPtr,
3531 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
3532 }
3533
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode * N)3534 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3535 SDValue Vec = N->getOperand(0);
3536 SDValue Idx = N->getOperand(1);
3537 EVT VecVT = Vec.getValueType();
3538
3539 if (const ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Idx)) {
3540 uint64_t IdxVal = Index->getZExtValue();
3541
3542 SDValue Lo, Hi;
3543 GetSplitVector(Vec, Lo, Hi);
3544
3545 uint64_t LoElts = Lo.getValueType().getVectorMinNumElements();
3546
3547 if (IdxVal < LoElts)
3548 return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
3549 else if (!Vec.getValueType().isScalableVector())
3550 return SDValue(DAG.UpdateNodeOperands(N, Hi,
3551 DAG.getConstant(IdxVal - LoElts, SDLoc(N),
3552 Idx.getValueType())), 0);
3553 }
3554
3555 // See if the target wants to custom expand this node.
3556 if (CustomLowerNode(N, N->getValueType(0), true))
3557 return SDValue();
3558
3559 // Make the vector elements byte-addressable if they aren't already.
3560 SDLoc dl(N);
3561 EVT EltVT = VecVT.getVectorElementType();
3562 if (!EltVT.isByteSized()) {
3563 EltVT = EltVT.changeTypeToInteger().getRoundIntegerType(*DAG.getContext());
3564 VecVT = VecVT.changeElementType(EltVT);
3565 Vec = DAG.getNode(ISD::ANY_EXTEND, dl, VecVT, Vec);
3566 SDValue NewExtract =
3567 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vec, Idx);
3568 return DAG.getAnyExtOrTrunc(NewExtract, dl, N->getValueType(0));
3569 }
3570
3571 // Store the vector to the stack.
3572 // In cases where the vector is illegal it will be broken down into parts
3573 // and stored in parts - we should use the alignment for the smallest part.
3574 Align SmallestAlign = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
3575 SDValue StackPtr =
3576 DAG.CreateStackTemporary(VecVT.getStoreSize(), SmallestAlign);
3577 auto &MF = DAG.getMachineFunction();
3578 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3579 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
3580 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
3581 SmallestAlign);
3582
3583 // Load back the required element.
3584 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
3585
3586 // EXTRACT_VECTOR_ELT can extend the element type to the width of the return
3587 // type, leaving the high bits undefined. But it can't truncate.
3588 assert(N->getValueType(0).bitsGE(EltVT) && "Illegal EXTRACT_VECTOR_ELT.");
3589
3590 return DAG.getExtLoad(
3591 ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
3592 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT,
3593 commonAlignment(SmallestAlign, EltVT.getFixedSizeInBits() / 8));
3594 }
3595
SplitVecOp_ExtVecInRegOp(SDNode * N)3596 SDValue DAGTypeLegalizer::SplitVecOp_ExtVecInRegOp(SDNode *N) {
3597 SDValue Lo, Hi;
3598
3599 // *_EXTEND_VECTOR_INREG only reference the lower half of the input, so
3600 // splitting the result has the same effect as splitting the input operand.
3601 SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
3602
3603 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), N->getValueType(0), Lo, Hi);
3604 }
3605
SplitVecOp_Gather(MemSDNode * N,unsigned OpNo)3606 SDValue DAGTypeLegalizer::SplitVecOp_Gather(MemSDNode *N, unsigned OpNo) {
3607 (void)OpNo;
3608 SDValue Lo, Hi;
3609 SplitVecRes_Gather(N, Lo, Hi);
3610
3611 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, N, N->getValueType(0), Lo, Hi);
3612 ReplaceValueWith(SDValue(N, 0), Res);
3613 return SDValue();
3614 }
3615
SplitVecOp_VP_STORE(VPStoreSDNode * N,unsigned OpNo)3616 SDValue DAGTypeLegalizer::SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo) {
3617 assert(N->isUnindexed() && "Indexed vp_store of vector?");
3618 SDValue Ch = N->getChain();
3619 SDValue Ptr = N->getBasePtr();
3620 SDValue Offset = N->getOffset();
3621 assert(Offset.isUndef() && "Unexpected VP store offset");
3622 SDValue Mask = N->getMask();
3623 SDValue EVL = N->getVectorLength();
3624 SDValue Data = N->getValue();
3625 Align Alignment = N->getOriginalAlign();
3626 SDLoc DL(N);
3627
3628 SDValue DataLo, DataHi;
3629 if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
3630 // Split Data operand
3631 GetSplitVector(Data, DataLo, DataHi);
3632 else
3633 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
3634
3635 // Split Mask operand
3636 SDValue MaskLo, MaskHi;
3637 if (OpNo == 1 && Mask.getOpcode() == ISD::SETCC) {
3638 SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
3639 } else {
3640 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
3641 GetSplitVector(Mask, MaskLo, MaskHi);
3642 else
3643 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
3644 }
3645
3646 EVT MemoryVT = N->getMemoryVT();
3647 EVT LoMemVT, HiMemVT;
3648 bool HiIsEmpty = false;
3649 std::tie(LoMemVT, HiMemVT) =
3650 DAG.GetDependentSplitDestVTs(MemoryVT, DataLo.getValueType(), &HiIsEmpty);
3651
3652 // Split EVL
3653 SDValue EVLLo, EVLHi;
3654 std::tie(EVLLo, EVLHi) = DAG.SplitEVL(EVL, Data.getValueType(), DL);
3655
3656 SDValue Lo, Hi;
3657 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
3658 N->getPointerInfo(), MachineMemOperand::MOStore,
3659 LocationSize::beforeOrAfterPointer(), Alignment, N->getAAInfo(),
3660 N->getRanges());
3661
3662 Lo = DAG.getStoreVP(Ch, DL, DataLo, Ptr, Offset, MaskLo, EVLLo, LoMemVT, MMO,
3663 N->getAddressingMode(), N->isTruncatingStore(),
3664 N->isCompressingStore());
3665
3666 // If the hi vp_store has zero storage size, only the lo vp_store is needed.
3667 if (HiIsEmpty)
3668 return Lo;
3669
3670 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
3671 N->isCompressingStore());
3672
3673 MachinePointerInfo MPI;
3674 if (LoMemVT.isScalableVector()) {
3675 Alignment = commonAlignment(Alignment,
3676 LoMemVT.getSizeInBits().getKnownMinValue() / 8);
3677 MPI = MachinePointerInfo(N->getPointerInfo().getAddrSpace());
3678 } else
3679 MPI = N->getPointerInfo().getWithOffset(
3680 LoMemVT.getStoreSize().getFixedValue());
3681
3682 MMO = DAG.getMachineFunction().getMachineMemOperand(
3683 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
3684 Alignment, N->getAAInfo(), N->getRanges());
3685
3686 Hi = DAG.getStoreVP(Ch, DL, DataHi, Ptr, Offset, MaskHi, EVLHi, HiMemVT, MMO,
3687 N->getAddressingMode(), N->isTruncatingStore(),
3688 N->isCompressingStore());
3689
3690 // Build a factor node to remember that this store is independent of the
3691 // other one.
3692 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
3693 }
3694
SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode * N,unsigned OpNo)3695 SDValue DAGTypeLegalizer::SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N,
3696 unsigned OpNo) {
3697 assert(N->isUnindexed() && "Indexed vp_strided_store of a vector?");
3698 assert(N->getOffset().isUndef() && "Unexpected VP strided store offset");
3699
3700 SDLoc DL(N);
3701
3702 SDValue Data = N->getValue();
3703 SDValue LoData, HiData;
3704 if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
3705 GetSplitVector(Data, LoData, HiData);
3706 else
3707 std::tie(LoData, HiData) = DAG.SplitVector(Data, DL);
3708
3709 EVT LoMemVT, HiMemVT;
3710 bool HiIsEmpty = false;
3711 std::tie(LoMemVT, HiMemVT) = DAG.GetDependentSplitDestVTs(
3712 N->getMemoryVT(), LoData.getValueType(), &HiIsEmpty);
3713
3714 SDValue Mask = N->getMask();
3715 SDValue LoMask, HiMask;
3716 if (OpNo == 1 && Mask.getOpcode() == ISD::SETCC)
3717 SplitVecRes_SETCC(Mask.getNode(), LoMask, HiMask);
3718 else if (getTypeAction(Mask.getValueType()) ==
3719 TargetLowering::TypeSplitVector)
3720 GetSplitVector(Mask, LoMask, HiMask);
3721 else
3722 std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
3723
3724 SDValue LoEVL, HiEVL;
3725 std::tie(LoEVL, HiEVL) =
3726 DAG.SplitEVL(N->getVectorLength(), Data.getValueType(), DL);
3727
3728 // Generate the low vp_strided_store
3729 SDValue Lo = DAG.getStridedStoreVP(
3730 N->getChain(), DL, LoData, N->getBasePtr(), N->getOffset(),
3731 N->getStride(), LoMask, LoEVL, LoMemVT, N->getMemOperand(),
3732 N->getAddressingMode(), N->isTruncatingStore(), N->isCompressingStore());
3733
3734 // If the high vp_strided_store has zero storage size, only the low
3735 // vp_strided_store is needed.
3736 if (HiIsEmpty)
3737 return Lo;
3738
3739 // Generate the high vp_strided_store.
3740 // To calculate the high base address, we need to sum to the low base
3741 // address stride number of bytes for each element already stored by low,
3742 // that is: Ptr = Ptr + (LoEVL * Stride)
3743 EVT PtrVT = N->getBasePtr().getValueType();
3744 SDValue Increment =
3745 DAG.getNode(ISD::MUL, DL, PtrVT, LoEVL,
3746 DAG.getSExtOrTrunc(N->getStride(), DL, PtrVT));
3747 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, N->getBasePtr(), Increment);
3748
3749 Align Alignment = N->getOriginalAlign();
3750 if (LoMemVT.isScalableVector())
3751 Alignment = commonAlignment(Alignment,
3752 LoMemVT.getSizeInBits().getKnownMinValue() / 8);
3753
3754 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
3755 MachinePointerInfo(N->getPointerInfo().getAddrSpace()),
3756 MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
3757 Alignment, N->getAAInfo(), N->getRanges());
3758
3759 SDValue Hi = DAG.getStridedStoreVP(
3760 N->getChain(), DL, HiData, Ptr, N->getOffset(), N->getStride(), HiMask,
3761 HiEVL, HiMemVT, MMO, N->getAddressingMode(), N->isTruncatingStore(),
3762 N->isCompressingStore());
3763
3764 // Build a factor node to remember that this store is independent of the
3765 // other one.
3766 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
3767 }
3768
SplitVecOp_MSTORE(MaskedStoreSDNode * N,unsigned OpNo)3769 SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
3770 unsigned OpNo) {
3771 assert(N->isUnindexed() && "Indexed masked store of vector?");
3772 SDValue Ch = N->getChain();
3773 SDValue Ptr = N->getBasePtr();
3774 SDValue Offset = N->getOffset();
3775 assert(Offset.isUndef() && "Unexpected indexed masked store offset");
3776 SDValue Mask = N->getMask();
3777 SDValue Data = N->getValue();
3778 Align Alignment = N->getOriginalAlign();
3779 SDLoc DL(N);
3780
3781 SDValue DataLo, DataHi;
3782 if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
3783 // Split Data operand
3784 GetSplitVector(Data, DataLo, DataHi);
3785 else
3786 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
3787
3788 // Split Mask operand
3789 SDValue MaskLo, MaskHi;
3790 if (OpNo == 1 && Mask.getOpcode() == ISD::SETCC) {
3791 SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
3792 } else {
3793 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
3794 GetSplitVector(Mask, MaskLo, MaskHi);
3795 else
3796 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
3797 }
3798
3799 EVT MemoryVT = N->getMemoryVT();
3800 EVT LoMemVT, HiMemVT;
3801 bool HiIsEmpty = false;
3802 std::tie(LoMemVT, HiMemVT) =
3803 DAG.GetDependentSplitDestVTs(MemoryVT, DataLo.getValueType(), &HiIsEmpty);
3804
3805 SDValue Lo, Hi, Res;
3806 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
3807 N->getPointerInfo(), MachineMemOperand::MOStore,
3808 LocationSize::beforeOrAfterPointer(), Alignment, N->getAAInfo(),
3809 N->getRanges());
3810
3811 Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, Offset, MaskLo, LoMemVT, MMO,
3812 N->getAddressingMode(), N->isTruncatingStore(),
3813 N->isCompressingStore());
3814
3815 if (HiIsEmpty) {
3816 // The hi masked store has zero storage size.
3817 // Only the lo masked store is needed.
3818 Res = Lo;
3819 } else {
3820
3821 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
3822 N->isCompressingStore());
3823
3824 MachinePointerInfo MPI;
3825 if (LoMemVT.isScalableVector()) {
3826 Alignment = commonAlignment(
3827 Alignment, LoMemVT.getSizeInBits().getKnownMinValue() / 8);
3828 MPI = MachinePointerInfo(N->getPointerInfo().getAddrSpace());
3829 } else
3830 MPI = N->getPointerInfo().getWithOffset(
3831 LoMemVT.getStoreSize().getFixedValue());
3832
3833 MMO = DAG.getMachineFunction().getMachineMemOperand(
3834 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
3835 Alignment, N->getAAInfo(), N->getRanges());
3836
3837 Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, Offset, MaskHi, HiMemVT, MMO,
3838 N->getAddressingMode(), N->isTruncatingStore(),
3839 N->isCompressingStore());
3840
3841 // Build a factor node to remember that this store is independent of the
3842 // other one.
3843 Res = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
3844 }
3845
3846 return Res;
3847 }
3848
SplitVecOp_Scatter(MemSDNode * N,unsigned OpNo)3849 SDValue DAGTypeLegalizer::SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo) {
3850 SDValue Ch = N->getChain();
3851 SDValue Ptr = N->getBasePtr();
3852 EVT MemoryVT = N->getMemoryVT();
3853 Align Alignment = N->getOriginalAlign();
3854 SDLoc DL(N);
3855 struct Operands {
3856 SDValue Mask;
3857 SDValue Index;
3858 SDValue Scale;
3859 SDValue Data;
3860 } Ops = [&]() -> Operands {
3861 if (auto *MSC = dyn_cast<MaskedScatterSDNode>(N)) {
3862 return {MSC->getMask(), MSC->getIndex(), MSC->getScale(),
3863 MSC->getValue()};
3864 }
3865 auto *VPSC = cast<VPScatterSDNode>(N);
3866 return {VPSC->getMask(), VPSC->getIndex(), VPSC->getScale(),
3867 VPSC->getValue()};
3868 }();
3869 // Split all operands
3870
3871 EVT LoMemVT, HiMemVT;
3872 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
3873
3874 SDValue DataLo, DataHi;
3875 if (getTypeAction(Ops.Data.getValueType()) == TargetLowering::TypeSplitVector)
3876 // Split Data operand
3877 GetSplitVector(Ops.Data, DataLo, DataHi);
3878 else
3879 std::tie(DataLo, DataHi) = DAG.SplitVector(Ops.Data, DL);
3880
3881 // Split Mask operand
3882 SDValue MaskLo, MaskHi;
3883 if (OpNo == 1 && Ops.Mask.getOpcode() == ISD::SETCC) {
3884 SplitVecRes_SETCC(Ops.Mask.getNode(), MaskLo, MaskHi);
3885 } else {
3886 std::tie(MaskLo, MaskHi) = SplitMask(Ops.Mask, DL);
3887 }
3888
3889 SDValue IndexHi, IndexLo;
3890 if (getTypeAction(Ops.Index.getValueType()) ==
3891 TargetLowering::TypeSplitVector)
3892 GetSplitVector(Ops.Index, IndexLo, IndexHi);
3893 else
3894 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Ops.Index, DL);
3895
3896 SDValue Lo;
3897 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
3898 N->getPointerInfo(), MachineMemOperand::MOStore,
3899 LocationSize::beforeOrAfterPointer(), Alignment, N->getAAInfo(),
3900 N->getRanges());
3901
3902 if (auto *MSC = dyn_cast<MaskedScatterSDNode>(N)) {
3903 SDValue OpsLo[] = {Ch, DataLo, MaskLo, Ptr, IndexLo, Ops.Scale};
3904 Lo =
3905 DAG.getMaskedScatter(DAG.getVTList(MVT::Other), LoMemVT, DL, OpsLo, MMO,
3906 MSC->getIndexType(), MSC->isTruncatingStore());
3907
3908 // The order of the Scatter operation after split is well defined. The "Hi"
3909 // part comes after the "Lo". So these two operations should be chained one
3910 // after another.
3911 SDValue OpsHi[] = {Lo, DataHi, MaskHi, Ptr, IndexHi, Ops.Scale};
3912 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), HiMemVT, DL, OpsHi,
3913 MMO, MSC->getIndexType(),
3914 MSC->isTruncatingStore());
3915 }
3916 auto *VPSC = cast<VPScatterSDNode>(N);
3917 SDValue EVLLo, EVLHi;
3918 std::tie(EVLLo, EVLHi) =
3919 DAG.SplitEVL(VPSC->getVectorLength(), Ops.Data.getValueType(), DL);
3920
3921 SDValue OpsLo[] = {Ch, DataLo, Ptr, IndexLo, Ops.Scale, MaskLo, EVLLo};
3922 Lo = DAG.getScatterVP(DAG.getVTList(MVT::Other), LoMemVT, DL, OpsLo, MMO,
3923 VPSC->getIndexType());
3924
3925 // The order of the Scatter operation after split is well defined. The "Hi"
3926 // part comes after the "Lo". So these two operations should be chained one
3927 // after another.
3928 SDValue OpsHi[] = {Lo, DataHi, Ptr, IndexHi, Ops.Scale, MaskHi, EVLHi};
3929 return DAG.getScatterVP(DAG.getVTList(MVT::Other), HiMemVT, DL, OpsHi, MMO,
3930 VPSC->getIndexType());
3931 }
3932
SplitVecOp_STORE(StoreSDNode * N,unsigned OpNo)3933 SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
3934 assert(N->isUnindexed() && "Indexed store of vector?");
3935 assert(OpNo == 1 && "Can only split the stored value");
3936 SDLoc DL(N);
3937
3938 bool isTruncating = N->isTruncatingStore();
3939 SDValue Ch = N->getChain();
3940 SDValue Ptr = N->getBasePtr();
3941 EVT MemoryVT = N->getMemoryVT();
3942 Align Alignment = N->getOriginalAlign();
3943 MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
3944 AAMDNodes AAInfo = N->getAAInfo();
3945 SDValue Lo, Hi;
3946 GetSplitVector(N->getOperand(1), Lo, Hi);
3947
3948 EVT LoMemVT, HiMemVT;
3949 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
3950
3951 // Scalarize if the split halves are not byte-sized.
3952 if (!LoMemVT.isByteSized() || !HiMemVT.isByteSized())
3953 return TLI.scalarizeVectorStore(N, DAG);
3954
3955 if (isTruncating)
3956 Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), LoMemVT,
3957 Alignment, MMOFlags, AAInfo);
3958 else
3959 Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
3960 AAInfo);
3961
3962 MachinePointerInfo MPI;
3963 IncrementPointer(N, LoMemVT, MPI, Ptr);
3964
3965 if (isTruncating)
3966 Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr, MPI,
3967 HiMemVT, Alignment, MMOFlags, AAInfo);
3968 else
3969 Hi = DAG.getStore(Ch, DL, Hi, Ptr, MPI, Alignment, MMOFlags, AAInfo);
3970
3971 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
3972 }
3973
SplitVecOp_CONCAT_VECTORS(SDNode * N)3974 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
3975 SDLoc DL(N);
3976
3977 // The input operands all must have the same type, and we know the result
3978 // type is valid. Convert this to a buildvector which extracts all the
3979 // input elements.
3980 // TODO: If the input elements are power-two vectors, we could convert this to
3981 // a new CONCAT_VECTORS node with elements that are half-wide.
3982 SmallVector<SDValue, 32> Elts;
3983 EVT EltVT = N->getValueType(0).getVectorElementType();
3984 for (const SDValue &Op : N->op_values()) {
3985 for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
3986 i != e; ++i) {
3987 Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op,
3988 DAG.getVectorIdxConstant(i, DL)));
3989 }
3990 }
3991
3992 return DAG.getBuildVector(N->getValueType(0), DL, Elts);
3993 }
3994
SplitVecOp_TruncateHelper(SDNode * N)3995 SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
3996 // The result type is legal, but the input type is illegal. If splitting
3997 // ends up with the result type of each half still being legal, just
3998 // do that. If, however, that would result in an illegal result type,
3999 // we can try to get more clever with power-two vectors. Specifically,
4000 // split the input type, but also widen the result element size, then
4001 // concatenate the halves and truncate again. For example, consider a target
4002 // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
4003 // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
4004 // %inlo = v4i32 extract_subvector %in, 0
4005 // %inhi = v4i32 extract_subvector %in, 4
4006 // %lo16 = v4i16 trunc v4i32 %inlo
4007 // %hi16 = v4i16 trunc v4i32 %inhi
4008 // %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
4009 // %res = v8i8 trunc v8i16 %in16
4010 //
4011 // Without this transform, the original truncate would end up being
4012 // scalarized, which is pretty much always a last resort.
4013 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
4014 SDValue InVec = N->getOperand(OpNo);
4015 EVT InVT = InVec->getValueType(0);
4016 EVT OutVT = N->getValueType(0);
4017 ElementCount NumElements = OutVT.getVectorElementCount();
4018 bool IsFloat = OutVT.isFloatingPoint();
4019
4020 unsigned InElementSize = InVT.getScalarSizeInBits();
4021 unsigned OutElementSize = OutVT.getScalarSizeInBits();
4022
4023 // Determine the split output VT. If its legal we can just split dirctly.
4024 EVT LoOutVT, HiOutVT;
4025 std::tie(LoOutVT, HiOutVT) = DAG.GetSplitDestVTs(OutVT);
4026 assert(LoOutVT == HiOutVT && "Unequal split?");
4027
4028 // If the input elements are only 1/2 the width of the result elements,
4029 // just use the normal splitting. Our trick only work if there's room
4030 // to split more than once.
4031 if (isTypeLegal(LoOutVT) ||
4032 InElementSize <= OutElementSize * 2)
4033 return SplitVecOp_UnaryOp(N);
4034 SDLoc DL(N);
4035
4036 // Don't touch if this will be scalarized.
4037 EVT FinalVT = InVT;
4038 while (getTypeAction(FinalVT) == TargetLowering::TypeSplitVector)
4039 FinalVT = FinalVT.getHalfNumVectorElementsVT(*DAG.getContext());
4040
4041 if (getTypeAction(FinalVT) == TargetLowering::TypeScalarizeVector)
4042 return SplitVecOp_UnaryOp(N);
4043
4044 // Get the split input vector.
4045 SDValue InLoVec, InHiVec;
4046 GetSplitVector(InVec, InLoVec, InHiVec);
4047
4048 // Truncate them to 1/2 the element size.
4049 //
4050 // This assumes the number of elements is a power of two; any vector that
4051 // isn't should be widened, not split.
4052 EVT HalfElementVT = IsFloat ?
4053 EVT::getFloatingPointVT(InElementSize/2) :
4054 EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
4055 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
4056 NumElements.divideCoefficientBy(2));
4057
4058 SDValue HalfLo;
4059 SDValue HalfHi;
4060 SDValue Chain;
4061 if (N->isStrictFPOpcode()) {
4062 HalfLo = DAG.getNode(N->getOpcode(), DL, {HalfVT, MVT::Other},
4063 {N->getOperand(0), InLoVec});
4064 HalfHi = DAG.getNode(N->getOpcode(), DL, {HalfVT, MVT::Other},
4065 {N->getOperand(0), InHiVec});
4066 // Legalize the chain result - switch anything that used the old chain to
4067 // use the new one.
4068 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, HalfLo.getValue(1),
4069 HalfHi.getValue(1));
4070 } else {
4071 HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
4072 HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
4073 }
4074
4075 // Concatenate them to get the full intermediate truncation result.
4076 EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
4077 SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
4078 HalfHi);
4079 // Now finish up by truncating all the way down to the original result
4080 // type. This should normally be something that ends up being legal directly,
4081 // but in theory if a target has very wide vectors and an annoyingly
4082 // restricted set of legal types, this split can chain to build things up.
4083
4084 if (N->isStrictFPOpcode()) {
4085 SDValue Res = DAG.getNode(
4086 ISD::STRICT_FP_ROUND, DL, {OutVT, MVT::Other},
4087 {Chain, InterVec,
4088 DAG.getTargetConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()))});
4089 // Relink the chain
4090 ReplaceValueWith(SDValue(N, 1), SDValue(Res.getNode(), 1));
4091 return Res;
4092 }
4093
4094 return IsFloat
4095 ? DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
4096 DAG.getTargetConstant(
4097 0, DL, TLI.getPointerTy(DAG.getDataLayout())))
4098 : DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
4099 }
4100
SplitVecOp_VSETCC(SDNode * N)4101 SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
4102 bool isStrict = N->getOpcode() == ISD::STRICT_FSETCC;
4103 assert(N->getValueType(0).isVector() &&
4104 N->getOperand(isStrict ? 1 : 0).getValueType().isVector() &&
4105 "Operand types must be vectors");
4106 // The result has a legal vector type, but the input needs splitting.
4107 SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
4108 SDLoc DL(N);
4109 GetSplitVector(N->getOperand(isStrict ? 1 : 0), Lo0, Hi0);
4110 GetSplitVector(N->getOperand(isStrict ? 2 : 1), Lo1, Hi1);
4111
4112 auto PartEltCnt = Lo0.getValueType().getVectorElementCount();
4113
4114 LLVMContext &Context = *DAG.getContext();
4115 EVT PartResVT = EVT::getVectorVT(Context, MVT::i1, PartEltCnt);
4116 EVT WideResVT = EVT::getVectorVT(Context, MVT::i1, PartEltCnt*2);
4117
4118 if (N->getOpcode() == ISD::SETCC) {
4119 LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
4120 HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
4121 } else if (N->getOpcode() == ISD::STRICT_FSETCC) {
4122 LoRes = DAG.getNode(ISD::STRICT_FSETCC, DL,
4123 DAG.getVTList(PartResVT, N->getValueType(1)),
4124 N->getOperand(0), Lo0, Lo1, N->getOperand(3));
4125 HiRes = DAG.getNode(ISD::STRICT_FSETCC, DL,
4126 DAG.getVTList(PartResVT, N->getValueType(1)),
4127 N->getOperand(0), Hi0, Hi1, N->getOperand(3));
4128 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4129 LoRes.getValue(1), HiRes.getValue(1));
4130 ReplaceValueWith(SDValue(N, 1), NewChain);
4131 } else {
4132 assert(N->getOpcode() == ISD::VP_SETCC && "Expected VP_SETCC opcode");
4133 SDValue MaskLo, MaskHi, EVLLo, EVLHi;
4134 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(3));
4135 std::tie(EVLLo, EVLHi) =
4136 DAG.SplitEVL(N->getOperand(4), N->getValueType(0), DL);
4137 LoRes = DAG.getNode(ISD::VP_SETCC, DL, PartResVT, Lo0, Lo1,
4138 N->getOperand(2), MaskLo, EVLLo);
4139 HiRes = DAG.getNode(ISD::VP_SETCC, DL, PartResVT, Hi0, Hi1,
4140 N->getOperand(2), MaskHi, EVLHi);
4141 }
4142 SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
4143
4144 EVT OpVT = N->getOperand(0).getValueType();
4145 ISD::NodeType ExtendCode =
4146 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
4147 return DAG.getNode(ExtendCode, DL, N->getValueType(0), Con);
4148 }
4149
4150
SplitVecOp_FP_ROUND(SDNode * N)4151 SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
4152 // The result has a legal vector type, but the input needs splitting.
4153 EVT ResVT = N->getValueType(0);
4154 SDValue Lo, Hi;
4155 SDLoc DL(N);
4156 GetSplitVector(N->getOperand(N->isStrictFPOpcode() ? 1 : 0), Lo, Hi);
4157 EVT InVT = Lo.getValueType();
4158
4159 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
4160 InVT.getVectorElementCount());
4161
4162 if (N->isStrictFPOpcode()) {
4163 Lo = DAG.getNode(N->getOpcode(), DL, { OutVT, MVT::Other },
4164 { N->getOperand(0), Lo, N->getOperand(2) });
4165 Hi = DAG.getNode(N->getOpcode(), DL, { OutVT, MVT::Other },
4166 { N->getOperand(0), Hi, N->getOperand(2) });
4167 // Legalize the chain result - switch anything that used the old chain to
4168 // use the new one.
4169 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4170 Lo.getValue(1), Hi.getValue(1));
4171 ReplaceValueWith(SDValue(N, 1), NewChain);
4172 } else if (N->getOpcode() == ISD::VP_FP_ROUND) {
4173 SDValue MaskLo, MaskHi, EVLLo, EVLHi;
4174 std::tie(MaskLo, MaskHi) = SplitMask(N->getOperand(1));
4175 std::tie(EVLLo, EVLHi) =
4176 DAG.SplitEVL(N->getOperand(2), N->getValueType(0), DL);
4177 Lo = DAG.getNode(ISD::VP_FP_ROUND, DL, OutVT, Lo, MaskLo, EVLLo);
4178 Hi = DAG.getNode(ISD::VP_FP_ROUND, DL, OutVT, Hi, MaskHi, EVLHi);
4179 } else {
4180 Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
4181 Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
4182 }
4183
4184 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
4185 }
4186
4187 // Split a vector type in an FP binary operation where the second operand has a
4188 // different type from the first.
4189 //
4190 // The result (and the first input) has a legal vector type, but the second
4191 // input needs splitting.
SplitVecOp_FPOpDifferentTypes(SDNode * N)4192 SDValue DAGTypeLegalizer::SplitVecOp_FPOpDifferentTypes(SDNode *N) {
4193 SDLoc DL(N);
4194
4195 EVT LHSLoVT, LHSHiVT;
4196 std::tie(LHSLoVT, LHSHiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4197
4198 if (!isTypeLegal(LHSLoVT) || !isTypeLegal(LHSHiVT))
4199 return DAG.UnrollVectorOp(N, N->getValueType(0).getVectorNumElements());
4200
4201 SDValue LHSLo, LHSHi;
4202 std::tie(LHSLo, LHSHi) =
4203 DAG.SplitVector(N->getOperand(0), DL, LHSLoVT, LHSHiVT);
4204
4205 SDValue RHSLo, RHSHi;
4206 std::tie(RHSLo, RHSHi) = DAG.SplitVector(N->getOperand(1), DL);
4207
4208 SDValue Lo = DAG.getNode(N->getOpcode(), DL, LHSLoVT, LHSLo, RHSLo);
4209 SDValue Hi = DAG.getNode(N->getOpcode(), DL, LHSHiVT, LHSHi, RHSHi);
4210
4211 return DAG.getNode(ISD::CONCAT_VECTORS, DL, N->getValueType(0), Lo, Hi);
4212 }
4213
SplitVecOp_CMP(SDNode * N)4214 SDValue DAGTypeLegalizer::SplitVecOp_CMP(SDNode *N) {
4215 LLVMContext &Ctxt = *DAG.getContext();
4216 SDLoc dl(N);
4217
4218 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
4219 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
4220 GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
4221
4222 EVT ResVT = N->getValueType(0);
4223 ElementCount SplitOpEC = LHSLo.getValueType().getVectorElementCount();
4224 EVT NewResVT =
4225 EVT::getVectorVT(Ctxt, ResVT.getVectorElementType(), SplitOpEC);
4226
4227 SDValue Lo = DAG.getNode(N->getOpcode(), dl, NewResVT, LHSLo, RHSLo);
4228 SDValue Hi = DAG.getNode(N->getOpcode(), dl, NewResVT, LHSHi, RHSHi);
4229
4230 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
4231 }
4232
SplitVecOp_FP_TO_XINT_SAT(SDNode * N)4233 SDValue DAGTypeLegalizer::SplitVecOp_FP_TO_XINT_SAT(SDNode *N) {
4234 EVT ResVT = N->getValueType(0);
4235 SDValue Lo, Hi;
4236 SDLoc dl(N);
4237 GetSplitVector(N->getOperand(0), Lo, Hi);
4238 EVT InVT = Lo.getValueType();
4239
4240 EVT NewResVT =
4241 EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
4242 InVT.getVectorElementCount());
4243
4244 Lo = DAG.getNode(N->getOpcode(), dl, NewResVT, Lo, N->getOperand(1));
4245 Hi = DAG.getNode(N->getOpcode(), dl, NewResVT, Hi, N->getOperand(1));
4246
4247 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
4248 }
4249
SplitVecOp_VP_CttzElements(SDNode * N)4250 SDValue DAGTypeLegalizer::SplitVecOp_VP_CttzElements(SDNode *N) {
4251 SDLoc DL(N);
4252 EVT ResVT = N->getValueType(0);
4253
4254 SDValue Lo, Hi;
4255 SDValue VecOp = N->getOperand(0);
4256 GetSplitVector(VecOp, Lo, Hi);
4257
4258 auto [MaskLo, MaskHi] = SplitMask(N->getOperand(1));
4259 auto [EVLLo, EVLHi] =
4260 DAG.SplitEVL(N->getOperand(2), VecOp.getValueType(), DL);
4261 SDValue VLo = DAG.getZExtOrTrunc(EVLLo, DL, ResVT);
4262
4263 // if VP_CTTZ_ELTS(Lo) != EVLLo => VP_CTTZ_ELTS(Lo).
4264 // else => EVLLo + (VP_CTTZ_ELTS(Hi) or VP_CTTZ_ELTS_ZERO_UNDEF(Hi)).
4265 SDValue ResLo = DAG.getNode(ISD::VP_CTTZ_ELTS, DL, ResVT, Lo, MaskLo, EVLLo);
4266 SDValue ResLoNotEVL =
4267 DAG.getSetCC(DL, getSetCCResultType(ResVT), ResLo, VLo, ISD::SETNE);
4268 SDValue ResHi = DAG.getNode(N->getOpcode(), DL, ResVT, Hi, MaskHi, EVLHi);
4269 return DAG.getSelect(DL, ResVT, ResLoNotEVL, ResLo,
4270 DAG.getNode(ISD::ADD, DL, ResVT, VLo, ResHi));
4271 }
4272
4273 //===----------------------------------------------------------------------===//
4274 // Result Vector Widening
4275 //===----------------------------------------------------------------------===//
4276
WidenVectorResult(SDNode * N,unsigned ResNo)4277 void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
4278 LLVM_DEBUG(dbgs() << "Widen node result " << ResNo << ": "; N->dump(&DAG));
4279
4280 // See if the target wants to custom widen this node.
4281 if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
4282 return;
4283
4284 SDValue Res = SDValue();
4285
4286 auto unrollExpandedOp = [&]() {
4287 // We're going to widen this vector op to a legal type by padding with undef
4288 // elements. If the wide vector op is eventually going to be expanded to
4289 // scalar libcalls, then unroll into scalar ops now to avoid unnecessary
4290 // libcalls on the undef elements.
4291 EVT VT = N->getValueType(0);
4292 EVT WideVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4293 if (!TLI.isOperationLegalOrCustom(N->getOpcode(), WideVecVT) &&
4294 TLI.isOperationExpand(N->getOpcode(), VT.getScalarType())) {
4295 Res = DAG.UnrollVectorOp(N, WideVecVT.getVectorNumElements());
4296 return true;
4297 }
4298 return false;
4299 };
4300
4301 switch (N->getOpcode()) {
4302 default:
4303 #ifndef NDEBUG
4304 dbgs() << "WidenVectorResult #" << ResNo << ": ";
4305 N->dump(&DAG);
4306 dbgs() << "\n";
4307 #endif
4308 report_fatal_error("Do not know how to widen the result of this operator!");
4309
4310 case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
4311 case ISD::ADDRSPACECAST:
4312 Res = WidenVecRes_ADDRSPACECAST(N);
4313 break;
4314 case ISD::AssertZext: Res = WidenVecRes_AssertZext(N); break;
4315 case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
4316 case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
4317 case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
4318 case ISD::INSERT_SUBVECTOR:
4319 Res = WidenVecRes_INSERT_SUBVECTOR(N);
4320 break;
4321 case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
4322 case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
4323 case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
4324 case ISD::STEP_VECTOR:
4325 case ISD::SPLAT_VECTOR:
4326 case ISD::SCALAR_TO_VECTOR:
4327 case ISD::EXPERIMENTAL_VP_SPLAT:
4328 Res = WidenVecRes_ScalarOp(N);
4329 break;
4330 case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
4331 case ISD::VSELECT:
4332 case ISD::SELECT:
4333 case ISD::VP_SELECT:
4334 case ISD::VP_MERGE:
4335 Res = WidenVecRes_Select(N);
4336 break;
4337 case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
4338 case ISD::VP_SETCC:
4339 case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
4340 case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
4341 case ISD::VECTOR_SHUFFLE:
4342 Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
4343 break;
4344 case ISD::VP_LOAD:
4345 Res = WidenVecRes_VP_LOAD(cast<VPLoadSDNode>(N));
4346 break;
4347 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
4348 Res = WidenVecRes_VP_STRIDED_LOAD(cast<VPStridedLoadSDNode>(N));
4349 break;
4350 case ISD::VECTOR_COMPRESS:
4351 Res = WidenVecRes_VECTOR_COMPRESS(N);
4352 break;
4353 case ISD::MLOAD:
4354 Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
4355 break;
4356 case ISD::MGATHER:
4357 Res = WidenVecRes_MGATHER(cast<MaskedGatherSDNode>(N));
4358 break;
4359 case ISD::VP_GATHER:
4360 Res = WidenVecRes_VP_GATHER(cast<VPGatherSDNode>(N));
4361 break;
4362 case ISD::VECTOR_REVERSE:
4363 Res = WidenVecRes_VECTOR_REVERSE(N);
4364 break;
4365
4366 case ISD::ADD: case ISD::VP_ADD:
4367 case ISD::AND: case ISD::VP_AND:
4368 case ISD::MUL: case ISD::VP_MUL:
4369 case ISD::MULHS:
4370 case ISD::MULHU:
4371 case ISD::OR: case ISD::VP_OR:
4372 case ISD::SUB: case ISD::VP_SUB:
4373 case ISD::XOR: case ISD::VP_XOR:
4374 case ISD::SHL: case ISD::VP_SHL:
4375 case ISD::SRA: case ISD::VP_SRA:
4376 case ISD::SRL: case ISD::VP_SRL:
4377 case ISD::FMINNUM:
4378 case ISD::FMINNUM_IEEE:
4379 case ISD::VP_FMINNUM:
4380 case ISD::FMAXNUM:
4381 case ISD::FMAXNUM_IEEE:
4382 case ISD::VP_FMAXNUM:
4383 case ISD::FMINIMUM:
4384 case ISD::VP_FMINIMUM:
4385 case ISD::FMAXIMUM:
4386 case ISD::VP_FMAXIMUM:
4387 case ISD::SMIN: case ISD::VP_SMIN:
4388 case ISD::SMAX: case ISD::VP_SMAX:
4389 case ISD::UMIN: case ISD::VP_UMIN:
4390 case ISD::UMAX: case ISD::VP_UMAX:
4391 case ISD::UADDSAT: case ISD::VP_UADDSAT:
4392 case ISD::SADDSAT: case ISD::VP_SADDSAT:
4393 case ISD::USUBSAT: case ISD::VP_USUBSAT:
4394 case ISD::SSUBSAT: case ISD::VP_SSUBSAT:
4395 case ISD::SSHLSAT:
4396 case ISD::USHLSAT:
4397 case ISD::ROTL:
4398 case ISD::ROTR:
4399 case ISD::AVGFLOORS:
4400 case ISD::AVGFLOORU:
4401 case ISD::AVGCEILS:
4402 case ISD::AVGCEILU:
4403 // Vector-predicated binary op widening. Note that -- unlike the
4404 // unpredicated versions -- we don't have to worry about trapping on
4405 // operations like UDIV, FADD, etc., as we pass on the original vector
4406 // length parameter. This means the widened elements containing garbage
4407 // aren't active.
4408 case ISD::VP_SDIV:
4409 case ISD::VP_UDIV:
4410 case ISD::VP_SREM:
4411 case ISD::VP_UREM:
4412 case ISD::VP_FADD:
4413 case ISD::VP_FSUB:
4414 case ISD::VP_FMUL:
4415 case ISD::VP_FDIV:
4416 case ISD::VP_FREM:
4417 case ISD::VP_FCOPYSIGN:
4418 Res = WidenVecRes_Binary(N);
4419 break;
4420
4421 case ISD::SCMP:
4422 case ISD::UCMP:
4423 Res = WidenVecRes_CMP(N);
4424 break;
4425
4426 case ISD::FPOW:
4427 case ISD::FREM:
4428 if (unrollExpandedOp())
4429 break;
4430 // If the target has custom/legal support for the scalar FP intrinsic ops
4431 // (they are probably not destined to become libcalls), then widen those
4432 // like any other binary ops.
4433 [[fallthrough]];
4434
4435 case ISD::FADD:
4436 case ISD::FMUL:
4437 case ISD::FSUB:
4438 case ISD::FDIV:
4439 case ISD::SDIV:
4440 case ISD::UDIV:
4441 case ISD::SREM:
4442 case ISD::UREM:
4443 Res = WidenVecRes_BinaryCanTrap(N);
4444 break;
4445
4446 case ISD::SMULFIX:
4447 case ISD::SMULFIXSAT:
4448 case ISD::UMULFIX:
4449 case ISD::UMULFIXSAT:
4450 // These are binary operations, but with an extra operand that shouldn't
4451 // be widened (the scale).
4452 Res = WidenVecRes_BinaryWithExtraScalarOp(N);
4453 break;
4454
4455 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
4456 case ISD::STRICT_##DAGN:
4457 #include "llvm/IR/ConstrainedOps.def"
4458 Res = WidenVecRes_StrictFP(N);
4459 break;
4460
4461 case ISD::UADDO:
4462 case ISD::SADDO:
4463 case ISD::USUBO:
4464 case ISD::SSUBO:
4465 case ISD::UMULO:
4466 case ISD::SMULO:
4467 Res = WidenVecRes_OverflowOp(N, ResNo);
4468 break;
4469
4470 case ISD::FCOPYSIGN:
4471 Res = WidenVecRes_FCOPYSIGN(N);
4472 break;
4473
4474 case ISD::IS_FPCLASS:
4475 case ISD::FPTRUNC_ROUND:
4476 Res = WidenVecRes_UnarySameEltsWithScalarArg(N);
4477 break;
4478
4479 case ISD::FLDEXP:
4480 case ISD::FPOWI:
4481 if (!unrollExpandedOp())
4482 Res = WidenVecRes_ExpOp(N);
4483 break;
4484
4485 case ISD::ANY_EXTEND_VECTOR_INREG:
4486 case ISD::SIGN_EXTEND_VECTOR_INREG:
4487 case ISD::ZERO_EXTEND_VECTOR_INREG:
4488 Res = WidenVecRes_EXTEND_VECTOR_INREG(N);
4489 break;
4490
4491 case ISD::ANY_EXTEND:
4492 case ISD::FP_EXTEND:
4493 case ISD::VP_FP_EXTEND:
4494 case ISD::FP_ROUND:
4495 case ISD::VP_FP_ROUND:
4496 case ISD::FP_TO_SINT:
4497 case ISD::VP_FP_TO_SINT:
4498 case ISD::FP_TO_UINT:
4499 case ISD::VP_FP_TO_UINT:
4500 case ISD::SIGN_EXTEND:
4501 case ISD::VP_SIGN_EXTEND:
4502 case ISD::SINT_TO_FP:
4503 case ISD::VP_SINT_TO_FP:
4504 case ISD::VP_TRUNCATE:
4505 case ISD::TRUNCATE:
4506 case ISD::UINT_TO_FP:
4507 case ISD::VP_UINT_TO_FP:
4508 case ISD::ZERO_EXTEND:
4509 case ISD::VP_ZERO_EXTEND:
4510 Res = WidenVecRes_Convert(N);
4511 break;
4512
4513 case ISD::FP_TO_SINT_SAT:
4514 case ISD::FP_TO_UINT_SAT:
4515 Res = WidenVecRes_FP_TO_XINT_SAT(N);
4516 break;
4517
4518 case ISD::LRINT:
4519 case ISD::LLRINT:
4520 case ISD::VP_LRINT:
4521 case ISD::VP_LLRINT:
4522 Res = WidenVecRes_XRINT(N);
4523 break;
4524
4525 case ISD::FABS:
4526 case ISD::FACOS:
4527 case ISD::FASIN:
4528 case ISD::FATAN:
4529 case ISD::FCEIL:
4530 case ISD::FCOS:
4531 case ISD::FCOSH:
4532 case ISD::FEXP:
4533 case ISD::FEXP2:
4534 case ISD::FEXP10:
4535 case ISD::FFLOOR:
4536 case ISD::FLOG:
4537 case ISD::FLOG10:
4538 case ISD::FLOG2:
4539 case ISD::FNEARBYINT:
4540 case ISD::FRINT:
4541 case ISD::FROUND:
4542 case ISD::FROUNDEVEN:
4543 case ISD::FSIN:
4544 case ISD::FSINH:
4545 case ISD::FSQRT:
4546 case ISD::FTAN:
4547 case ISD::FTANH:
4548 case ISD::FTRUNC:
4549 if (unrollExpandedOp())
4550 break;
4551 // If the target has custom/legal support for the scalar FP intrinsic ops
4552 // (they are probably not destined to become libcalls), then widen those
4553 // like any other unary ops.
4554 [[fallthrough]];
4555
4556 case ISD::ABS:
4557 case ISD::VP_ABS:
4558 case ISD::BITREVERSE:
4559 case ISD::VP_BITREVERSE:
4560 case ISD::BSWAP:
4561 case ISD::VP_BSWAP:
4562 case ISD::CTLZ:
4563 case ISD::VP_CTLZ:
4564 case ISD::CTLZ_ZERO_UNDEF:
4565 case ISD::VP_CTLZ_ZERO_UNDEF:
4566 case ISD::CTPOP:
4567 case ISD::VP_CTPOP:
4568 case ISD::CTTZ:
4569 case ISD::VP_CTTZ:
4570 case ISD::CTTZ_ZERO_UNDEF:
4571 case ISD::VP_CTTZ_ZERO_UNDEF:
4572 case ISD::FNEG: case ISD::VP_FNEG:
4573 case ISD::VP_FABS:
4574 case ISD::VP_SQRT:
4575 case ISD::VP_FCEIL:
4576 case ISD::VP_FFLOOR:
4577 case ISD::VP_FRINT:
4578 case ISD::VP_FNEARBYINT:
4579 case ISD::VP_FROUND:
4580 case ISD::VP_FROUNDEVEN:
4581 case ISD::VP_FROUNDTOZERO:
4582 case ISD::FREEZE:
4583 case ISD::ARITH_FENCE:
4584 case ISD::FCANONICALIZE:
4585 Res = WidenVecRes_Unary(N);
4586 break;
4587 case ISD::FMA: case ISD::VP_FMA:
4588 case ISD::FSHL:
4589 case ISD::VP_FSHL:
4590 case ISD::FSHR:
4591 case ISD::VP_FSHR:
4592 Res = WidenVecRes_Ternary(N);
4593 break;
4594 }
4595
4596 // If Res is null, the sub-method took care of registering the result.
4597 if (Res.getNode())
4598 SetWidenedVector(SDValue(N, ResNo), Res);
4599 }
4600
WidenVecRes_Ternary(SDNode * N)4601 SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
4602 // Ternary op widening.
4603 SDLoc dl(N);
4604 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4605 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
4606 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
4607 SDValue InOp3 = GetWidenedVector(N->getOperand(2));
4608 if (N->getNumOperands() == 3)
4609 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
4610
4611 assert(N->getNumOperands() == 5 && "Unexpected number of operands!");
4612 assert(N->isVPOpcode() && "Expected VP opcode");
4613
4614 SDValue Mask =
4615 GetWidenedMask(N->getOperand(3), WidenVT.getVectorElementCount());
4616 return DAG.getNode(N->getOpcode(), dl, WidenVT,
4617 {InOp1, InOp2, InOp3, Mask, N->getOperand(4)});
4618 }
4619
WidenVecRes_Binary(SDNode * N)4620 SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
4621 // Binary op widening.
4622 SDLoc dl(N);
4623 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4624 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
4625 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
4626 if (N->getNumOperands() == 2)
4627 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2,
4628 N->getFlags());
4629
4630 assert(N->getNumOperands() == 4 && "Unexpected number of operands!");
4631 assert(N->isVPOpcode() && "Expected VP opcode");
4632
4633 SDValue Mask =
4634 GetWidenedMask(N->getOperand(2), WidenVT.getVectorElementCount());
4635 return DAG.getNode(N->getOpcode(), dl, WidenVT,
4636 {InOp1, InOp2, Mask, N->getOperand(3)}, N->getFlags());
4637 }
4638
WidenVecRes_CMP(SDNode * N)4639 SDValue DAGTypeLegalizer::WidenVecRes_CMP(SDNode *N) {
4640 LLVMContext &Ctxt = *DAG.getContext();
4641 SDLoc dl(N);
4642
4643 SDValue LHS = N->getOperand(0);
4644 SDValue RHS = N->getOperand(1);
4645 EVT OpVT = LHS.getValueType();
4646 if (getTypeAction(OpVT) == TargetLowering::TypeWidenVector) {
4647 LHS = GetWidenedVector(LHS);
4648 RHS = GetWidenedVector(RHS);
4649 OpVT = LHS.getValueType();
4650 }
4651
4652 EVT WidenResVT = TLI.getTypeToTransformTo(Ctxt, N->getValueType(0));
4653 ElementCount WidenResEC = WidenResVT.getVectorElementCount();
4654 if (WidenResEC == OpVT.getVectorElementCount()) {
4655 return DAG.getNode(N->getOpcode(), dl, WidenResVT, LHS, RHS);
4656 }
4657
4658 return DAG.UnrollVectorOp(N, WidenResVT.getVectorNumElements());
4659 }
4660
WidenVecRes_BinaryWithExtraScalarOp(SDNode * N)4661 SDValue DAGTypeLegalizer::WidenVecRes_BinaryWithExtraScalarOp(SDNode *N) {
4662 // Binary op widening, but with an extra operand that shouldn't be widened.
4663 SDLoc dl(N);
4664 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4665 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
4666 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
4667 SDValue InOp3 = N->getOperand(2);
4668 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3,
4669 N->getFlags());
4670 }
4671
4672 // Given a vector of operations that have been broken up to widen, see
4673 // if we can collect them together into the next widest legal VT. This
4674 // implementation is trap-safe.
CollectOpsToWiden(SelectionDAG & DAG,const TargetLowering & TLI,SmallVectorImpl<SDValue> & ConcatOps,unsigned ConcatEnd,EVT VT,EVT MaxVT,EVT WidenVT)4675 static SDValue CollectOpsToWiden(SelectionDAG &DAG, const TargetLowering &TLI,
4676 SmallVectorImpl<SDValue> &ConcatOps,
4677 unsigned ConcatEnd, EVT VT, EVT MaxVT,
4678 EVT WidenVT) {
4679 // Check to see if we have a single operation with the widen type.
4680 if (ConcatEnd == 1) {
4681 VT = ConcatOps[0].getValueType();
4682 if (VT == WidenVT)
4683 return ConcatOps[0];
4684 }
4685
4686 SDLoc dl(ConcatOps[0]);
4687 EVT WidenEltVT = WidenVT.getVectorElementType();
4688
4689 // while (Some element of ConcatOps is not of type MaxVT) {
4690 // From the end of ConcatOps, collect elements of the same type and put
4691 // them into an op of the next larger supported type
4692 // }
4693 while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
4694 int Idx = ConcatEnd - 1;
4695 VT = ConcatOps[Idx--].getValueType();
4696 while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
4697 Idx--;
4698
4699 int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
4700 EVT NextVT;
4701 do {
4702 NextSize *= 2;
4703 NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
4704 } while (!TLI.isTypeLegal(NextVT));
4705
4706 if (!VT.isVector()) {
4707 // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
4708 SDValue VecOp = DAG.getUNDEF(NextVT);
4709 unsigned NumToInsert = ConcatEnd - Idx - 1;
4710 for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
4711 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
4712 ConcatOps[OpIdx], DAG.getVectorIdxConstant(i, dl));
4713 }
4714 ConcatOps[Idx+1] = VecOp;
4715 ConcatEnd = Idx + 2;
4716 } else {
4717 // Vector type, create a CONCAT_VECTORS of type NextVT
4718 SDValue undefVec = DAG.getUNDEF(VT);
4719 unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
4720 SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
4721 unsigned RealVals = ConcatEnd - Idx - 1;
4722 unsigned SubConcatEnd = 0;
4723 unsigned SubConcatIdx = Idx + 1;
4724 while (SubConcatEnd < RealVals)
4725 SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
4726 while (SubConcatEnd < OpsToConcat)
4727 SubConcatOps[SubConcatEnd++] = undefVec;
4728 ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
4729 NextVT, SubConcatOps);
4730 ConcatEnd = SubConcatIdx + 1;
4731 }
4732 }
4733
4734 // Check to see if we have a single operation with the widen type.
4735 if (ConcatEnd == 1) {
4736 VT = ConcatOps[0].getValueType();
4737 if (VT == WidenVT)
4738 return ConcatOps[0];
4739 }
4740
4741 // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
4742 unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
4743 if (NumOps != ConcatEnd ) {
4744 SDValue UndefVal = DAG.getUNDEF(MaxVT);
4745 for (unsigned j = ConcatEnd; j < NumOps; ++j)
4746 ConcatOps[j] = UndefVal;
4747 }
4748 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
4749 ArrayRef(ConcatOps.data(), NumOps));
4750 }
4751
WidenVecRes_BinaryCanTrap(SDNode * N)4752 SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
4753 // Binary op widening for operations that can trap.
4754 unsigned Opcode = N->getOpcode();
4755 SDLoc dl(N);
4756 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4757 EVT WidenEltVT = WidenVT.getVectorElementType();
4758 EVT VT = WidenVT;
4759 unsigned NumElts = VT.getVectorMinNumElements();
4760 const SDNodeFlags Flags = N->getFlags();
4761 while (!TLI.isTypeLegal(VT) && NumElts != 1) {
4762 NumElts = NumElts / 2;
4763 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
4764 }
4765
4766 if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
4767 // Operation doesn't trap so just widen as normal.
4768 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
4769 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
4770 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, Flags);
4771 }
4772
4773 // FIXME: Improve support for scalable vectors.
4774 assert(!VT.isScalableVector() && "Scalable vectors not handled yet.");
4775
4776 // No legal vector version so unroll the vector operation and then widen.
4777 if (NumElts == 1)
4778 return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
4779
4780 // Since the operation can trap, apply operation on the original vector.
4781 EVT MaxVT = VT;
4782 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
4783 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
4784 unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
4785
4786 SmallVector<SDValue, 16> ConcatOps(CurNumElts);
4787 unsigned ConcatEnd = 0; // Current ConcatOps index.
4788 int Idx = 0; // Current Idx into input vectors.
4789
4790 // NumElts := greatest legal vector size (at most WidenVT)
4791 // while (orig. vector has unhandled elements) {
4792 // take munches of size NumElts from the beginning and add to ConcatOps
4793 // NumElts := next smaller supported vector size or 1
4794 // }
4795 while (CurNumElts != 0) {
4796 while (CurNumElts >= NumElts) {
4797 SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
4798 DAG.getVectorIdxConstant(Idx, dl));
4799 SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
4800 DAG.getVectorIdxConstant(Idx, dl));
4801 ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2, Flags);
4802 Idx += NumElts;
4803 CurNumElts -= NumElts;
4804 }
4805 do {
4806 NumElts = NumElts / 2;
4807 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
4808 } while (!TLI.isTypeLegal(VT) && NumElts != 1);
4809
4810 if (NumElts == 1) {
4811 for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
4812 SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
4813 InOp1, DAG.getVectorIdxConstant(Idx, dl));
4814 SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
4815 InOp2, DAG.getVectorIdxConstant(Idx, dl));
4816 ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
4817 EOp1, EOp2, Flags);
4818 }
4819 CurNumElts = 0;
4820 }
4821 }
4822
4823 return CollectOpsToWiden(DAG, TLI, ConcatOps, ConcatEnd, VT, MaxVT, WidenVT);
4824 }
4825
WidenVecRes_StrictFP(SDNode * N)4826 SDValue DAGTypeLegalizer::WidenVecRes_StrictFP(SDNode *N) {
4827 switch (N->getOpcode()) {
4828 case ISD::STRICT_FSETCC:
4829 case ISD::STRICT_FSETCCS:
4830 return WidenVecRes_STRICT_FSETCC(N);
4831 case ISD::STRICT_FP_EXTEND:
4832 case ISD::STRICT_FP_ROUND:
4833 case ISD::STRICT_FP_TO_SINT:
4834 case ISD::STRICT_FP_TO_UINT:
4835 case ISD::STRICT_SINT_TO_FP:
4836 case ISD::STRICT_UINT_TO_FP:
4837 return WidenVecRes_Convert_StrictFP(N);
4838 default:
4839 break;
4840 }
4841
4842 // StrictFP op widening for operations that can trap.
4843 unsigned NumOpers = N->getNumOperands();
4844 unsigned Opcode = N->getOpcode();
4845 SDLoc dl(N);
4846 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4847 EVT WidenEltVT = WidenVT.getVectorElementType();
4848 EVT VT = WidenVT;
4849 unsigned NumElts = VT.getVectorNumElements();
4850 while (!TLI.isTypeLegal(VT) && NumElts != 1) {
4851 NumElts = NumElts / 2;
4852 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
4853 }
4854
4855 // No legal vector version so unroll the vector operation and then widen.
4856 if (NumElts == 1)
4857 return UnrollVectorOp_StrictFP(N, WidenVT.getVectorNumElements());
4858
4859 // Since the operation can trap, apply operation on the original vector.
4860 EVT MaxVT = VT;
4861 SmallVector<SDValue, 4> InOps;
4862 unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
4863
4864 SmallVector<SDValue, 16> ConcatOps(CurNumElts);
4865 SmallVector<SDValue, 16> Chains;
4866 unsigned ConcatEnd = 0; // Current ConcatOps index.
4867 int Idx = 0; // Current Idx into input vectors.
4868
4869 // The Chain is the first operand.
4870 InOps.push_back(N->getOperand(0));
4871
4872 // Now process the remaining operands.
4873 for (unsigned i = 1; i < NumOpers; ++i) {
4874 SDValue Oper = N->getOperand(i);
4875
4876 EVT OpVT = Oper.getValueType();
4877 if (OpVT.isVector()) {
4878 if (getTypeAction(OpVT) == TargetLowering::TypeWidenVector)
4879 Oper = GetWidenedVector(Oper);
4880 else {
4881 EVT WideOpVT =
4882 EVT::getVectorVT(*DAG.getContext(), OpVT.getVectorElementType(),
4883 WidenVT.getVectorElementCount());
4884 Oper = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
4885 DAG.getUNDEF(WideOpVT), Oper,
4886 DAG.getVectorIdxConstant(0, dl));
4887 }
4888 }
4889
4890 InOps.push_back(Oper);
4891 }
4892
4893 // NumElts := greatest legal vector size (at most WidenVT)
4894 // while (orig. vector has unhandled elements) {
4895 // take munches of size NumElts from the beginning and add to ConcatOps
4896 // NumElts := next smaller supported vector size or 1
4897 // }
4898 while (CurNumElts != 0) {
4899 while (CurNumElts >= NumElts) {
4900 SmallVector<SDValue, 4> EOps;
4901
4902 for (unsigned i = 0; i < NumOpers; ++i) {
4903 SDValue Op = InOps[i];
4904
4905 EVT OpVT = Op.getValueType();
4906 if (OpVT.isVector()) {
4907 EVT OpExtractVT =
4908 EVT::getVectorVT(*DAG.getContext(), OpVT.getVectorElementType(),
4909 VT.getVectorElementCount());
4910 Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpExtractVT, Op,
4911 DAG.getVectorIdxConstant(Idx, dl));
4912 }
4913
4914 EOps.push_back(Op);
4915 }
4916
4917 EVT OperVT[] = {VT, MVT::Other};
4918 SDValue Oper = DAG.getNode(Opcode, dl, OperVT, EOps);
4919 ConcatOps[ConcatEnd++] = Oper;
4920 Chains.push_back(Oper.getValue(1));
4921 Idx += NumElts;
4922 CurNumElts -= NumElts;
4923 }
4924 do {
4925 NumElts = NumElts / 2;
4926 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
4927 } while (!TLI.isTypeLegal(VT) && NumElts != 1);
4928
4929 if (NumElts == 1) {
4930 for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
4931 SmallVector<SDValue, 4> EOps;
4932
4933 for (unsigned i = 0; i < NumOpers; ++i) {
4934 SDValue Op = InOps[i];
4935
4936 EVT OpVT = Op.getValueType();
4937 if (OpVT.isVector())
4938 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4939 OpVT.getVectorElementType(), Op,
4940 DAG.getVectorIdxConstant(Idx, dl));
4941
4942 EOps.push_back(Op);
4943 }
4944
4945 EVT WidenVT[] = {WidenEltVT, MVT::Other};
4946 SDValue Oper = DAG.getNode(Opcode, dl, WidenVT, EOps);
4947 ConcatOps[ConcatEnd++] = Oper;
4948 Chains.push_back(Oper.getValue(1));
4949 }
4950 CurNumElts = 0;
4951 }
4952 }
4953
4954 // Build a factor node to remember all the Ops that have been created.
4955 SDValue NewChain;
4956 if (Chains.size() == 1)
4957 NewChain = Chains[0];
4958 else
4959 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
4960 ReplaceValueWith(SDValue(N, 1), NewChain);
4961
4962 return CollectOpsToWiden(DAG, TLI, ConcatOps, ConcatEnd, VT, MaxVT, WidenVT);
4963 }
4964
WidenVecRes_OverflowOp(SDNode * N,unsigned ResNo)4965 SDValue DAGTypeLegalizer::WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo) {
4966 SDLoc DL(N);
4967 EVT ResVT = N->getValueType(0);
4968 EVT OvVT = N->getValueType(1);
4969 EVT WideResVT, WideOvVT;
4970 SDValue WideLHS, WideRHS;
4971
4972 // TODO: This might result in a widen/split loop.
4973 if (ResNo == 0) {
4974 WideResVT = TLI.getTypeToTransformTo(*DAG.getContext(), ResVT);
4975 WideOvVT = EVT::getVectorVT(
4976 *DAG.getContext(), OvVT.getVectorElementType(),
4977 WideResVT.getVectorNumElements());
4978
4979 WideLHS = GetWidenedVector(N->getOperand(0));
4980 WideRHS = GetWidenedVector(N->getOperand(1));
4981 } else {
4982 WideOvVT = TLI.getTypeToTransformTo(*DAG.getContext(), OvVT);
4983 WideResVT = EVT::getVectorVT(
4984 *DAG.getContext(), ResVT.getVectorElementType(),
4985 WideOvVT.getVectorNumElements());
4986
4987 SDValue Zero = DAG.getVectorIdxConstant(0, DL);
4988 WideLHS = DAG.getNode(
4989 ISD::INSERT_SUBVECTOR, DL, WideResVT, DAG.getUNDEF(WideResVT),
4990 N->getOperand(0), Zero);
4991 WideRHS = DAG.getNode(
4992 ISD::INSERT_SUBVECTOR, DL, WideResVT, DAG.getUNDEF(WideResVT),
4993 N->getOperand(1), Zero);
4994 }
4995
4996 SDVTList WideVTs = DAG.getVTList(WideResVT, WideOvVT);
4997 SDNode *WideNode = DAG.getNode(
4998 N->getOpcode(), DL, WideVTs, WideLHS, WideRHS).getNode();
4999
5000 // Replace the other vector result not being explicitly widened here.
5001 unsigned OtherNo = 1 - ResNo;
5002 EVT OtherVT = N->getValueType(OtherNo);
5003 if (getTypeAction(OtherVT) == TargetLowering::TypeWidenVector) {
5004 SetWidenedVector(SDValue(N, OtherNo), SDValue(WideNode, OtherNo));
5005 } else {
5006 SDValue Zero = DAG.getVectorIdxConstant(0, DL);
5007 SDValue OtherVal = DAG.getNode(
5008 ISD::EXTRACT_SUBVECTOR, DL, OtherVT, SDValue(WideNode, OtherNo), Zero);
5009 ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
5010 }
5011
5012 return SDValue(WideNode, ResNo);
5013 }
5014
WidenVecRes_Convert(SDNode * N)5015 SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
5016 LLVMContext &Ctx = *DAG.getContext();
5017 SDValue InOp = N->getOperand(0);
5018 SDLoc DL(N);
5019
5020 EVT WidenVT = TLI.getTypeToTransformTo(Ctx, N->getValueType(0));
5021 ElementCount WidenEC = WidenVT.getVectorElementCount();
5022
5023 EVT InVT = InOp.getValueType();
5024
5025 unsigned Opcode = N->getOpcode();
5026 const SDNodeFlags Flags = N->getFlags();
5027
5028 // Handle the case of ZERO_EXTEND where the promoted InVT element size does
5029 // not equal that of WidenVT.
5030 if (N->getOpcode() == ISD::ZERO_EXTEND &&
5031 getTypeAction(InVT) == TargetLowering::TypePromoteInteger &&
5032 TLI.getTypeToTransformTo(Ctx, InVT).getScalarSizeInBits() !=
5033 WidenVT.getScalarSizeInBits()) {
5034 InOp = ZExtPromotedInteger(InOp);
5035 InVT = InOp.getValueType();
5036 if (WidenVT.getScalarSizeInBits() < InVT.getScalarSizeInBits())
5037 Opcode = ISD::TRUNCATE;
5038 }
5039
5040 EVT InEltVT = InVT.getVectorElementType();
5041 EVT InWidenVT = EVT::getVectorVT(Ctx, InEltVT, WidenEC);
5042 ElementCount InVTEC = InVT.getVectorElementCount();
5043
5044 if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
5045 InOp = GetWidenedVector(N->getOperand(0));
5046 InVT = InOp.getValueType();
5047 InVTEC = InVT.getVectorElementCount();
5048 if (InVTEC == WidenEC) {
5049 if (N->getNumOperands() == 1)
5050 return DAG.getNode(Opcode, DL, WidenVT, InOp);
5051 if (N->getNumOperands() == 3) {
5052 assert(N->isVPOpcode() && "Expected VP opcode");
5053 SDValue Mask =
5054 GetWidenedMask(N->getOperand(1), WidenVT.getVectorElementCount());
5055 return DAG.getNode(Opcode, DL, WidenVT, InOp, Mask, N->getOperand(2));
5056 }
5057 return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1), Flags);
5058 }
5059 if (WidenVT.getSizeInBits() == InVT.getSizeInBits()) {
5060 // If both input and result vector types are of same width, extend
5061 // operations should be done with SIGN/ZERO_EXTEND_VECTOR_INREG, which
5062 // accepts fewer elements in the result than in the input.
5063 if (Opcode == ISD::ANY_EXTEND)
5064 return DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
5065 if (Opcode == ISD::SIGN_EXTEND)
5066 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
5067 if (Opcode == ISD::ZERO_EXTEND)
5068 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
5069 }
5070 }
5071
5072 if (TLI.isTypeLegal(InWidenVT)) {
5073 // Because the result and the input are different vector types, widening
5074 // the result could create a legal type but widening the input might make
5075 // it an illegal type that might lead to repeatedly splitting the input
5076 // and then widening it. To avoid this, we widen the input only if
5077 // it results in a legal type.
5078 if (WidenEC.isKnownMultipleOf(InVTEC.getKnownMinValue())) {
5079 // Widen the input and call convert on the widened input vector.
5080 unsigned NumConcat =
5081 WidenEC.getKnownMinValue() / InVTEC.getKnownMinValue();
5082 SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
5083 Ops[0] = InOp;
5084 SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
5085 if (N->getNumOperands() == 1)
5086 return DAG.getNode(Opcode, DL, WidenVT, InVec);
5087 return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1), Flags);
5088 }
5089
5090 if (InVTEC.isKnownMultipleOf(WidenEC.getKnownMinValue())) {
5091 SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp,
5092 DAG.getVectorIdxConstant(0, DL));
5093 // Extract the input and convert the shorten input vector.
5094 if (N->getNumOperands() == 1)
5095 return DAG.getNode(Opcode, DL, WidenVT, InVal);
5096 return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1), Flags);
5097 }
5098 }
5099
5100 // Otherwise unroll into some nasty scalar code and rebuild the vector.
5101 EVT EltVT = WidenVT.getVectorElementType();
5102 SmallVector<SDValue, 16> Ops(WidenEC.getFixedValue(), DAG.getUNDEF(EltVT));
5103 // Use the original element count so we don't do more scalar opts than
5104 // necessary.
5105 unsigned MinElts = N->getValueType(0).getVectorNumElements();
5106 for (unsigned i=0; i < MinElts; ++i) {
5107 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
5108 DAG.getVectorIdxConstant(i, DL));
5109 if (N->getNumOperands() == 1)
5110 Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
5111 else
5112 Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1), Flags);
5113 }
5114
5115 return DAG.getBuildVector(WidenVT, DL, Ops);
5116 }
5117
WidenVecRes_FP_TO_XINT_SAT(SDNode * N)5118 SDValue DAGTypeLegalizer::WidenVecRes_FP_TO_XINT_SAT(SDNode *N) {
5119 SDLoc dl(N);
5120 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5121 ElementCount WidenNumElts = WidenVT.getVectorElementCount();
5122
5123 SDValue Src = N->getOperand(0);
5124 EVT SrcVT = Src.getValueType();
5125
5126 // Also widen the input.
5127 if (getTypeAction(SrcVT) == TargetLowering::TypeWidenVector) {
5128 Src = GetWidenedVector(Src);
5129 SrcVT = Src.getValueType();
5130 }
5131
5132 // Input and output not widened to the same size, give up.
5133 if (WidenNumElts != SrcVT.getVectorElementCount())
5134 return DAG.UnrollVectorOp(N, WidenNumElts.getKnownMinValue());
5135
5136 return DAG.getNode(N->getOpcode(), dl, WidenVT, Src, N->getOperand(1));
5137 }
5138
WidenVecRes_XRINT(SDNode * N)5139 SDValue DAGTypeLegalizer::WidenVecRes_XRINT(SDNode *N) {
5140 SDLoc dl(N);
5141 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5142 ElementCount WidenNumElts = WidenVT.getVectorElementCount();
5143
5144 SDValue Src = N->getOperand(0);
5145 EVT SrcVT = Src.getValueType();
5146
5147 // Also widen the input.
5148 if (getTypeAction(SrcVT) == TargetLowering::TypeWidenVector) {
5149 Src = GetWidenedVector(Src);
5150 SrcVT = Src.getValueType();
5151 }
5152
5153 // Input and output not widened to the same size, give up.
5154 if (WidenNumElts != SrcVT.getVectorElementCount())
5155 return DAG.UnrollVectorOp(N, WidenNumElts.getKnownMinValue());
5156
5157 if (N->getNumOperands() == 1)
5158 return DAG.getNode(N->getOpcode(), dl, WidenVT, Src);
5159
5160 assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
5161 assert(N->isVPOpcode() && "Expected VP opcode");
5162
5163 SDValue Mask =
5164 GetWidenedMask(N->getOperand(1), WidenVT.getVectorElementCount());
5165 return DAG.getNode(N->getOpcode(), dl, WidenVT, Src, Mask, N->getOperand(2));
5166 }
5167
WidenVecRes_Convert_StrictFP(SDNode * N)5168 SDValue DAGTypeLegalizer::WidenVecRes_Convert_StrictFP(SDNode *N) {
5169 SDValue InOp = N->getOperand(1);
5170 SDLoc DL(N);
5171 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
5172
5173 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5174 unsigned WidenNumElts = WidenVT.getVectorNumElements();
5175
5176 EVT InVT = InOp.getValueType();
5177 EVT InEltVT = InVT.getVectorElementType();
5178
5179 unsigned Opcode = N->getOpcode();
5180
5181 // FIXME: Optimizations need to be implemented here.
5182
5183 // Otherwise unroll into some nasty scalar code and rebuild the vector.
5184 EVT EltVT = WidenVT.getVectorElementType();
5185 std::array<EVT, 2> EltVTs = {{EltVT, MVT::Other}};
5186 SmallVector<SDValue, 16> Ops(WidenNumElts, DAG.getUNDEF(EltVT));
5187 SmallVector<SDValue, 32> OpChains;
5188 // Use the original element count so we don't do more scalar opts than
5189 // necessary.
5190 unsigned MinElts = N->getValueType(0).getVectorNumElements();
5191 for (unsigned i=0; i < MinElts; ++i) {
5192 NewOps[1] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
5193 DAG.getVectorIdxConstant(i, DL));
5194 Ops[i] = DAG.getNode(Opcode, DL, EltVTs, NewOps);
5195 OpChains.push_back(Ops[i].getValue(1));
5196 }
5197 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OpChains);
5198 ReplaceValueWith(SDValue(N, 1), NewChain);
5199
5200 return DAG.getBuildVector(WidenVT, DL, Ops);
5201 }
5202
WidenVecRes_EXTEND_VECTOR_INREG(SDNode * N)5203 SDValue DAGTypeLegalizer::WidenVecRes_EXTEND_VECTOR_INREG(SDNode *N) {
5204 unsigned Opcode = N->getOpcode();
5205 SDValue InOp = N->getOperand(0);
5206 SDLoc DL(N);
5207
5208 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5209 EVT WidenSVT = WidenVT.getVectorElementType();
5210 unsigned WidenNumElts = WidenVT.getVectorNumElements();
5211
5212 EVT InVT = InOp.getValueType();
5213 EVT InSVT = InVT.getVectorElementType();
5214 unsigned InVTNumElts = InVT.getVectorNumElements();
5215
5216 if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
5217 InOp = GetWidenedVector(InOp);
5218 InVT = InOp.getValueType();
5219 if (InVT.getSizeInBits() == WidenVT.getSizeInBits()) {
5220 switch (Opcode) {
5221 case ISD::ANY_EXTEND_VECTOR_INREG:
5222 case ISD::SIGN_EXTEND_VECTOR_INREG:
5223 case ISD::ZERO_EXTEND_VECTOR_INREG:
5224 return DAG.getNode(Opcode, DL, WidenVT, InOp);
5225 }
5226 }
5227 }
5228
5229 // Unroll, extend the scalars and rebuild the vector.
5230 SmallVector<SDValue, 16> Ops;
5231 for (unsigned i = 0, e = std::min(InVTNumElts, WidenNumElts); i != e; ++i) {
5232 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InSVT, InOp,
5233 DAG.getVectorIdxConstant(i, DL));
5234 switch (Opcode) {
5235 case ISD::ANY_EXTEND_VECTOR_INREG:
5236 Val = DAG.getNode(ISD::ANY_EXTEND, DL, WidenSVT, Val);
5237 break;
5238 case ISD::SIGN_EXTEND_VECTOR_INREG:
5239 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, WidenSVT, Val);
5240 break;
5241 case ISD::ZERO_EXTEND_VECTOR_INREG:
5242 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenSVT, Val);
5243 break;
5244 default:
5245 llvm_unreachable("A *_EXTEND_VECTOR_INREG node was expected");
5246 }
5247 Ops.push_back(Val);
5248 }
5249
5250 while (Ops.size() != WidenNumElts)
5251 Ops.push_back(DAG.getUNDEF(WidenSVT));
5252
5253 return DAG.getBuildVector(WidenVT, DL, Ops);
5254 }
5255
WidenVecRes_FCOPYSIGN(SDNode * N)5256 SDValue DAGTypeLegalizer::WidenVecRes_FCOPYSIGN(SDNode *N) {
5257 // If this is an FCOPYSIGN with same input types, we can treat it as a
5258 // normal (can trap) binary op.
5259 if (N->getOperand(0).getValueType() == N->getOperand(1).getValueType())
5260 return WidenVecRes_BinaryCanTrap(N);
5261
5262 // If the types are different, fall back to unrolling.
5263 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5264 return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
5265 }
5266
5267 /// Result and first source operand are different scalar types, but must have
5268 /// the same number of elements. There is an additional control argument which
5269 /// should be passed through unchanged.
WidenVecRes_UnarySameEltsWithScalarArg(SDNode * N)5270 SDValue DAGTypeLegalizer::WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N) {
5271 SDValue FpValue = N->getOperand(0);
5272 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5273 if (getTypeAction(FpValue.getValueType()) != TargetLowering::TypeWidenVector)
5274 return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
5275 SDValue Arg = GetWidenedVector(FpValue);
5276 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, {Arg, N->getOperand(1)},
5277 N->getFlags());
5278 }
5279
WidenVecRes_ExpOp(SDNode * N)5280 SDValue DAGTypeLegalizer::WidenVecRes_ExpOp(SDNode *N) {
5281 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5282 SDValue InOp = GetWidenedVector(N->getOperand(0));
5283 SDValue RHS = N->getOperand(1);
5284 EVT ExpVT = RHS.getValueType();
5285 SDValue ExpOp = RHS;
5286 if (ExpVT.isVector()) {
5287 EVT WideExpVT =
5288 WidenVT.changeVectorElementType(ExpVT.getVectorElementType());
5289 ExpOp = ModifyToType(RHS, WideExpVT);
5290 }
5291
5292 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ExpOp);
5293 }
5294
WidenVecRes_Unary(SDNode * N)5295 SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
5296 // Unary op widening.
5297 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5298 SDValue InOp = GetWidenedVector(N->getOperand(0));
5299 if (N->getNumOperands() == 1)
5300 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, N->getFlags());
5301
5302 assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
5303 assert(N->isVPOpcode() && "Expected VP opcode");
5304
5305 SDValue Mask =
5306 GetWidenedMask(N->getOperand(1), WidenVT.getVectorElementCount());
5307 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT,
5308 {InOp, Mask, N->getOperand(2)});
5309 }
5310
WidenVecRes_InregOp(SDNode * N)5311 SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
5312 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5313 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
5314 cast<VTSDNode>(N->getOperand(1))->getVT()
5315 .getVectorElementType(),
5316 WidenVT.getVectorNumElements());
5317 SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
5318 return DAG.getNode(N->getOpcode(), SDLoc(N),
5319 WidenVT, WidenLHS, DAG.getValueType(ExtVT));
5320 }
5321
WidenVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)5322 SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
5323 SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
5324 return GetWidenedVector(WidenVec);
5325 }
5326
WidenVecRes_ADDRSPACECAST(SDNode * N)5327 SDValue DAGTypeLegalizer::WidenVecRes_ADDRSPACECAST(SDNode *N) {
5328 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5329 SDValue InOp = GetWidenedVector(N->getOperand(0));
5330 auto *AddrSpaceCastN = cast<AddrSpaceCastSDNode>(N);
5331
5332 return DAG.getAddrSpaceCast(SDLoc(N), WidenVT, InOp,
5333 AddrSpaceCastN->getSrcAddressSpace(),
5334 AddrSpaceCastN->getDestAddressSpace());
5335 }
5336
WidenVecRes_BITCAST(SDNode * N)5337 SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
5338 SDValue InOp = N->getOperand(0);
5339 EVT InVT = InOp.getValueType();
5340 EVT VT = N->getValueType(0);
5341 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
5342 SDLoc dl(N);
5343
5344 switch (getTypeAction(InVT)) {
5345 case TargetLowering::TypeLegal:
5346 break;
5347 case TargetLowering::TypeScalarizeScalableVector:
5348 report_fatal_error("Scalarization of scalable vectors is not supported.");
5349 case TargetLowering::TypePromoteInteger: {
5350 // If the incoming type is a vector that is being promoted, then
5351 // we know that the elements are arranged differently and that we
5352 // must perform the conversion using a stack slot.
5353 if (InVT.isVector())
5354 break;
5355
5356 // If the InOp is promoted to the same size, convert it. Otherwise,
5357 // fall out of the switch and widen the promoted input.
5358 SDValue NInOp = GetPromotedInteger(InOp);
5359 EVT NInVT = NInOp.getValueType();
5360 if (WidenVT.bitsEq(NInVT)) {
5361 // For big endian targets we need to shift the input integer or the
5362 // interesting bits will end up at the wrong place.
5363 if (DAG.getDataLayout().isBigEndian()) {
5364 unsigned ShiftAmt = NInVT.getSizeInBits() - InVT.getSizeInBits();
5365 EVT ShiftAmtTy = TLI.getShiftAmountTy(NInVT, DAG.getDataLayout());
5366 assert(ShiftAmt < WidenVT.getSizeInBits() && "Too large shift amount!");
5367 NInOp = DAG.getNode(ISD::SHL, dl, NInVT, NInOp,
5368 DAG.getConstant(ShiftAmt, dl, ShiftAmtTy));
5369 }
5370 return DAG.getNode(ISD::BITCAST, dl, WidenVT, NInOp);
5371 }
5372 InOp = NInOp;
5373 InVT = NInVT;
5374 break;
5375 }
5376 case TargetLowering::TypeSoftenFloat:
5377 case TargetLowering::TypePromoteFloat:
5378 case TargetLowering::TypeSoftPromoteHalf:
5379 case TargetLowering::TypeExpandInteger:
5380 case TargetLowering::TypeExpandFloat:
5381 case TargetLowering::TypeScalarizeVector:
5382 case TargetLowering::TypeSplitVector:
5383 break;
5384 case TargetLowering::TypeWidenVector:
5385 // If the InOp is widened to the same size, convert it. Otherwise, fall
5386 // out of the switch and widen the widened input.
5387 InOp = GetWidenedVector(InOp);
5388 InVT = InOp.getValueType();
5389 if (WidenVT.bitsEq(InVT))
5390 // The input widens to the same size. Convert to the widen value.
5391 return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
5392 break;
5393 }
5394
5395 unsigned WidenSize = WidenVT.getSizeInBits();
5396 unsigned InSize = InVT.getSizeInBits();
5397 unsigned InScalarSize = InVT.getScalarSizeInBits();
5398 // x86mmx is not an acceptable vector element type, so don't try.
5399 if (WidenSize % InScalarSize == 0 && InVT != MVT::x86mmx) {
5400 // Determine new input vector type. The new input vector type will use
5401 // the same element type (if its a vector) or use the input type as a
5402 // vector. It is the same size as the type to widen to.
5403 EVT NewInVT;
5404 unsigned NewNumParts = WidenSize / InSize;
5405 if (InVT.isVector()) {
5406 EVT InEltVT = InVT.getVectorElementType();
5407 NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
5408 WidenSize / InEltVT.getSizeInBits());
5409 } else {
5410 // For big endian systems, using the promoted input scalar type
5411 // to produce the scalar_to_vector would put the desired bits into
5412 // the least significant byte(s) of the wider element zero. This
5413 // will mean that the users of the result vector are using incorrect
5414 // bits. Use the original input type instead. Although either input
5415 // type can be used on little endian systems, for consistency we
5416 // use the original type there as well.
5417 EVT OrigInVT = N->getOperand(0).getValueType();
5418 NewNumParts = WidenSize / OrigInVT.getSizeInBits();
5419 NewInVT = EVT::getVectorVT(*DAG.getContext(), OrigInVT, NewNumParts);
5420 }
5421
5422 if (TLI.isTypeLegal(NewInVT)) {
5423 SDValue NewVec;
5424 if (InVT.isVector()) {
5425 // Because the result and the input are different vector types, widening
5426 // the result could create a legal type but widening the input might
5427 // make it an illegal type that might lead to repeatedly splitting the
5428 // input and then widening it. To avoid this, we widen the input only if
5429 // it results in a legal type.
5430 if (WidenSize % InSize == 0) {
5431 SmallVector<SDValue, 16> Ops(NewNumParts, DAG.getUNDEF(InVT));
5432 Ops[0] = InOp;
5433
5434 NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
5435 } else {
5436 SmallVector<SDValue, 16> Ops;
5437 DAG.ExtractVectorElements(InOp, Ops);
5438 Ops.append(WidenSize / InScalarSize - Ops.size(),
5439 DAG.getUNDEF(InVT.getVectorElementType()));
5440
5441 NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
5442 }
5443 } else {
5444 NewVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewInVT, InOp);
5445 }
5446 return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
5447 }
5448 }
5449
5450 return CreateStackStoreLoad(InOp, WidenVT);
5451 }
5452
WidenVecRes_BUILD_VECTOR(SDNode * N)5453 SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
5454 SDLoc dl(N);
5455 // Build a vector with undefined for the new nodes.
5456 EVT VT = N->getValueType(0);
5457
5458 // Integer BUILD_VECTOR operands may be larger than the node's vector element
5459 // type. The UNDEFs need to have the same type as the existing operands.
5460 EVT EltVT = N->getOperand(0).getValueType();
5461 unsigned NumElts = VT.getVectorNumElements();
5462
5463 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
5464 unsigned WidenNumElts = WidenVT.getVectorNumElements();
5465
5466 SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
5467 assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
5468 NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
5469
5470 return DAG.getBuildVector(WidenVT, dl, NewOps);
5471 }
5472
WidenVecRes_CONCAT_VECTORS(SDNode * N)5473 SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
5474 EVT InVT = N->getOperand(0).getValueType();
5475 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5476 SDLoc dl(N);
5477 unsigned NumOperands = N->getNumOperands();
5478
5479 bool InputWidened = false; // Indicates we need to widen the input.
5480 if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
5481 unsigned WidenNumElts = WidenVT.getVectorMinNumElements();
5482 unsigned NumInElts = InVT.getVectorMinNumElements();
5483 if (WidenNumElts % NumInElts == 0) {
5484 // Add undef vectors to widen to correct length.
5485 unsigned NumConcat = WidenNumElts / NumInElts;
5486 SDValue UndefVal = DAG.getUNDEF(InVT);
5487 SmallVector<SDValue, 16> Ops(NumConcat);
5488 for (unsigned i=0; i < NumOperands; ++i)
5489 Ops[i] = N->getOperand(i);
5490 for (unsigned i = NumOperands; i != NumConcat; ++i)
5491 Ops[i] = UndefVal;
5492 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
5493 }
5494 } else {
5495 InputWidened = true;
5496 if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
5497 // The inputs and the result are widen to the same value.
5498 unsigned i;
5499 for (i=1; i < NumOperands; ++i)
5500 if (!N->getOperand(i).isUndef())
5501 break;
5502
5503 if (i == NumOperands)
5504 // Everything but the first operand is an UNDEF so just return the
5505 // widened first operand.
5506 return GetWidenedVector(N->getOperand(0));
5507
5508 if (NumOperands == 2) {
5509 assert(!WidenVT.isScalableVector() &&
5510 "Cannot use vector shuffles to widen CONCAT_VECTOR result");
5511 unsigned WidenNumElts = WidenVT.getVectorNumElements();
5512 unsigned NumInElts = InVT.getVectorNumElements();
5513
5514 // Replace concat of two operands with a shuffle.
5515 SmallVector<int, 16> MaskOps(WidenNumElts, -1);
5516 for (unsigned i = 0; i < NumInElts; ++i) {
5517 MaskOps[i] = i;
5518 MaskOps[i + NumInElts] = i + WidenNumElts;
5519 }
5520 return DAG.getVectorShuffle(WidenVT, dl,
5521 GetWidenedVector(N->getOperand(0)),
5522 GetWidenedVector(N->getOperand(1)),
5523 MaskOps);
5524 }
5525 }
5526 }
5527
5528 assert(!WidenVT.isScalableVector() &&
5529 "Cannot use build vectors to widen CONCAT_VECTOR result");
5530 unsigned WidenNumElts = WidenVT.getVectorNumElements();
5531 unsigned NumInElts = InVT.getVectorNumElements();
5532
5533 // Fall back to use extracts and build vector.
5534 EVT EltVT = WidenVT.getVectorElementType();
5535 SmallVector<SDValue, 16> Ops(WidenNumElts);
5536 unsigned Idx = 0;
5537 for (unsigned i=0; i < NumOperands; ++i) {
5538 SDValue InOp = N->getOperand(i);
5539 if (InputWidened)
5540 InOp = GetWidenedVector(InOp);
5541 for (unsigned j = 0; j < NumInElts; ++j)
5542 Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
5543 DAG.getVectorIdxConstant(j, dl));
5544 }
5545 SDValue UndefVal = DAG.getUNDEF(EltVT);
5546 for (; Idx < WidenNumElts; ++Idx)
5547 Ops[Idx] = UndefVal;
5548 return DAG.getBuildVector(WidenVT, dl, Ops);
5549 }
5550
WidenVecRes_INSERT_SUBVECTOR(SDNode * N)5551 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_SUBVECTOR(SDNode *N) {
5552 EVT VT = N->getValueType(0);
5553 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
5554 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
5555 SDValue InOp2 = N->getOperand(1);
5556 SDValue Idx = N->getOperand(2);
5557 SDLoc dl(N);
5558 return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WidenVT, InOp1, InOp2, Idx);
5559 }
5560
WidenVecRes_EXTRACT_SUBVECTOR(SDNode * N)5561 SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
5562 EVT VT = N->getValueType(0);
5563 EVT EltVT = VT.getVectorElementType();
5564 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
5565 SDValue InOp = N->getOperand(0);
5566 SDValue Idx = N->getOperand(1);
5567 SDLoc dl(N);
5568
5569 auto InOpTypeAction = getTypeAction(InOp.getValueType());
5570 if (InOpTypeAction == TargetLowering::TypeWidenVector)
5571 InOp = GetWidenedVector(InOp);
5572
5573 EVT InVT = InOp.getValueType();
5574
5575 // Check if we can just return the input vector after widening.
5576 uint64_t IdxVal = Idx->getAsZExtVal();
5577 if (IdxVal == 0 && InVT == WidenVT)
5578 return InOp;
5579
5580 // Check if we can extract from the vector.
5581 unsigned WidenNumElts = WidenVT.getVectorMinNumElements();
5582 unsigned InNumElts = InVT.getVectorMinNumElements();
5583 unsigned VTNumElts = VT.getVectorMinNumElements();
5584 assert(IdxVal % VTNumElts == 0 &&
5585 "Expected Idx to be a multiple of subvector minimum vector length");
5586 if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
5587 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
5588
5589 if (VT.isScalableVector()) {
5590 // Try to split the operation up into smaller extracts and concat the
5591 // results together, e.g.
5592 // nxv6i64 extract_subvector(nxv12i64, 6)
5593 // <->
5594 // nxv8i64 concat(
5595 // nxv2i64 extract_subvector(nxv16i64, 6)
5596 // nxv2i64 extract_subvector(nxv16i64, 8)
5597 // nxv2i64 extract_subvector(nxv16i64, 10)
5598 // undef)
5599 unsigned GCD = std::gcd(VTNumElts, WidenNumElts);
5600 assert((IdxVal % GCD) == 0 && "Expected Idx to be a multiple of the broken "
5601 "down type's element count");
5602 EVT PartVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
5603 ElementCount::getScalable(GCD));
5604 // Avoid recursion around e.g. nxv1i8.
5605 if (getTypeAction(PartVT) != TargetLowering::TypeWidenVector) {
5606 SmallVector<SDValue> Parts;
5607 unsigned I = 0;
5608 for (; I < VTNumElts / GCD; ++I)
5609 Parts.push_back(
5610 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, PartVT, InOp,
5611 DAG.getVectorIdxConstant(IdxVal + I * GCD, dl)));
5612 for (; I < WidenNumElts / GCD; ++I)
5613 Parts.push_back(DAG.getUNDEF(PartVT));
5614
5615 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Parts);
5616 }
5617
5618 report_fatal_error("Don't know how to widen the result of "
5619 "EXTRACT_SUBVECTOR for scalable vectors");
5620 }
5621
5622 // We could try widening the input to the right length but for now, extract
5623 // the original elements, fill the rest with undefs and build a vector.
5624 SmallVector<SDValue, 16> Ops(WidenNumElts);
5625 unsigned i;
5626 for (i = 0; i < VTNumElts; ++i)
5627 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
5628 DAG.getVectorIdxConstant(IdxVal + i, dl));
5629
5630 SDValue UndefVal = DAG.getUNDEF(EltVT);
5631 for (; i < WidenNumElts; ++i)
5632 Ops[i] = UndefVal;
5633 return DAG.getBuildVector(WidenVT, dl, Ops);
5634 }
5635
WidenVecRes_AssertZext(SDNode * N)5636 SDValue DAGTypeLegalizer::WidenVecRes_AssertZext(SDNode *N) {
5637 SDValue InOp = ModifyToType(
5638 N->getOperand(0),
5639 TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)), true);
5640 return DAG.getNode(ISD::AssertZext, SDLoc(N), InOp.getValueType(), InOp,
5641 N->getOperand(1));
5642 }
5643
WidenVecRes_INSERT_VECTOR_ELT(SDNode * N)5644 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
5645 SDValue InOp = GetWidenedVector(N->getOperand(0));
5646 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
5647 InOp.getValueType(), InOp,
5648 N->getOperand(1), N->getOperand(2));
5649 }
5650
WidenVecRes_LOAD(SDNode * N)5651 SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
5652 LoadSDNode *LD = cast<LoadSDNode>(N);
5653 ISD::LoadExtType ExtType = LD->getExtensionType();
5654
5655 // A vector must always be stored in memory as-is, i.e. without any padding
5656 // between the elements, since various code depend on it, e.g. in the
5657 // handling of a bitcast of a vector type to int, which may be done with a
5658 // vector store followed by an integer load. A vector that does not have
5659 // elements that are byte-sized must therefore be stored as an integer
5660 // built out of the extracted vector elements.
5661 if (!LD->getMemoryVT().isByteSized()) {
5662 SDValue Value, NewChain;
5663 std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG);
5664 ReplaceValueWith(SDValue(LD, 0), Value);
5665 ReplaceValueWith(SDValue(LD, 1), NewChain);
5666 return SDValue();
5667 }
5668
5669 // Generate a vector-predicated load if it is custom/legal on the target. To
5670 // avoid possible recursion, only do this if the widened mask type is legal.
5671 // FIXME: Not all targets may support EVL in VP_LOAD. These will have been
5672 // removed from the IR by the ExpandVectorPredication pass but we're
5673 // reintroducing them here.
5674 EVT LdVT = LD->getMemoryVT();
5675 EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), LdVT);
5676 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
5677 WideVT.getVectorElementCount());
5678 if (ExtType == ISD::NON_EXTLOAD &&
5679 TLI.isOperationLegalOrCustom(ISD::VP_LOAD, WideVT) &&
5680 TLI.isTypeLegal(WideMaskVT)) {
5681 SDLoc DL(N);
5682 SDValue Mask = DAG.getAllOnesConstant(DL, WideMaskVT);
5683 SDValue EVL = DAG.getElementCount(DL, TLI.getVPExplicitVectorLengthTy(),
5684 LdVT.getVectorElementCount());
5685 const auto *MMO = LD->getMemOperand();
5686 SDValue NewLoad =
5687 DAG.getLoadVP(WideVT, DL, LD->getChain(), LD->getBasePtr(), Mask, EVL,
5688 MMO->getPointerInfo(), MMO->getAlign(), MMO->getFlags(),
5689 MMO->getAAInfo());
5690
5691 // Modified the chain - switch anything that used the old chain to use
5692 // the new one.
5693 ReplaceValueWith(SDValue(N, 1), NewLoad.getValue(1));
5694
5695 return NewLoad;
5696 }
5697
5698 SDValue Result;
5699 SmallVector<SDValue, 16> LdChain; // Chain for the series of load
5700 if (ExtType != ISD::NON_EXTLOAD)
5701 Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
5702 else
5703 Result = GenWidenVectorLoads(LdChain, LD);
5704
5705 if (Result) {
5706 // If we generate a single load, we can use that for the chain. Otherwise,
5707 // build a factor node to remember the multiple loads are independent and
5708 // chain to that.
5709 SDValue NewChain;
5710 if (LdChain.size() == 1)
5711 NewChain = LdChain[0];
5712 else
5713 NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
5714
5715 // Modified the chain - switch anything that used the old chain to use
5716 // the new one.
5717 ReplaceValueWith(SDValue(N, 1), NewChain);
5718
5719 return Result;
5720 }
5721
5722 report_fatal_error("Unable to widen vector load");
5723 }
5724
WidenVecRes_VP_LOAD(VPLoadSDNode * N)5725 SDValue DAGTypeLegalizer::WidenVecRes_VP_LOAD(VPLoadSDNode *N) {
5726 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5727 SDValue Mask = N->getMask();
5728 SDValue EVL = N->getVectorLength();
5729 ISD::LoadExtType ExtType = N->getExtensionType();
5730 SDLoc dl(N);
5731
5732 // The mask should be widened as well
5733 assert(getTypeAction(Mask.getValueType()) ==
5734 TargetLowering::TypeWidenVector &&
5735 "Unable to widen binary VP op");
5736 Mask = GetWidenedVector(Mask);
5737 assert(Mask.getValueType().getVectorElementCount() ==
5738 TLI.getTypeToTransformTo(*DAG.getContext(), Mask.getValueType())
5739 .getVectorElementCount() &&
5740 "Unable to widen vector load");
5741
5742 SDValue Res =
5743 DAG.getLoadVP(N->getAddressingMode(), ExtType, WidenVT, dl, N->getChain(),
5744 N->getBasePtr(), N->getOffset(), Mask, EVL,
5745 N->getMemoryVT(), N->getMemOperand(), N->isExpandingLoad());
5746 // Legalize the chain result - switch anything that used the old chain to
5747 // use the new one.
5748 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
5749 return Res;
5750 }
5751
WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode * N)5752 SDValue DAGTypeLegalizer::WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N) {
5753 SDLoc DL(N);
5754
5755 // The mask should be widened as well
5756 SDValue Mask = N->getMask();
5757 assert(getTypeAction(Mask.getValueType()) ==
5758 TargetLowering::TypeWidenVector &&
5759 "Unable to widen VP strided load");
5760 Mask = GetWidenedVector(Mask);
5761
5762 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5763 assert(Mask.getValueType().getVectorElementCount() ==
5764 WidenVT.getVectorElementCount() &&
5765 "Data and mask vectors should have the same number of elements");
5766
5767 SDValue Res = DAG.getStridedLoadVP(
5768 N->getAddressingMode(), N->getExtensionType(), WidenVT, DL, N->getChain(),
5769 N->getBasePtr(), N->getOffset(), N->getStride(), Mask,
5770 N->getVectorLength(), N->getMemoryVT(), N->getMemOperand(),
5771 N->isExpandingLoad());
5772
5773 // Legalize the chain result - switch anything that used the old chain to
5774 // use the new one.
5775 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
5776 return Res;
5777 }
5778
WidenVecRes_VECTOR_COMPRESS(SDNode * N)5779 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_COMPRESS(SDNode *N) {
5780 SDValue Vec = N->getOperand(0);
5781 SDValue Mask = N->getOperand(1);
5782 SDValue Passthru = N->getOperand(2);
5783 EVT WideVecVT =
5784 TLI.getTypeToTransformTo(*DAG.getContext(), Vec.getValueType());
5785 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
5786 Mask.getValueType().getVectorElementType(),
5787 WideVecVT.getVectorNumElements());
5788
5789 SDValue WideVec = ModifyToType(Vec, WideVecVT);
5790 SDValue WideMask = ModifyToType(Mask, WideMaskVT, /*FillWithZeroes=*/true);
5791 SDValue WidePassthru = ModifyToType(Passthru, WideVecVT);
5792 return DAG.getNode(ISD::VECTOR_COMPRESS, SDLoc(N), WideVecVT, WideVec,
5793 WideMask, WidePassthru);
5794 }
5795
WidenVecRes_MLOAD(MaskedLoadSDNode * N)5796 SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
5797
5798 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
5799 SDValue Mask = N->getMask();
5800 EVT MaskVT = Mask.getValueType();
5801 SDValue PassThru = GetWidenedVector(N->getPassThru());
5802 ISD::LoadExtType ExtType = N->getExtensionType();
5803 SDLoc dl(N);
5804
5805 // The mask should be widened as well
5806 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
5807 MaskVT.getVectorElementType(),
5808 WidenVT.getVectorNumElements());
5809 Mask = ModifyToType(Mask, WideMaskVT, true);
5810
5811 SDValue Res = DAG.getMaskedLoad(
5812 WidenVT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask,
5813 PassThru, N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
5814 ExtType, N->isExpandingLoad());
5815 // Legalize the chain result - switch anything that used the old chain to
5816 // use the new one.
5817 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
5818 return Res;
5819 }
5820
WidenVecRes_MGATHER(MaskedGatherSDNode * N)5821 SDValue DAGTypeLegalizer::WidenVecRes_MGATHER(MaskedGatherSDNode *N) {
5822
5823 EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5824 SDValue Mask = N->getMask();
5825 EVT MaskVT = Mask.getValueType();
5826 SDValue PassThru = GetWidenedVector(N->getPassThru());
5827 SDValue Scale = N->getScale();
5828 unsigned NumElts = WideVT.getVectorNumElements();
5829 SDLoc dl(N);
5830
5831 // The mask should be widened as well
5832 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
5833 MaskVT.getVectorElementType(),
5834 WideVT.getVectorNumElements());
5835 Mask = ModifyToType(Mask, WideMaskVT, true);
5836
5837 // Widen the Index operand
5838 SDValue Index = N->getIndex();
5839 EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
5840 Index.getValueType().getScalarType(),
5841 NumElts);
5842 Index = ModifyToType(Index, WideIndexVT);
5843 SDValue Ops[] = { N->getChain(), PassThru, Mask, N->getBasePtr(), Index,
5844 Scale };
5845
5846 // Widen the MemoryType
5847 EVT WideMemVT = EVT::getVectorVT(*DAG.getContext(),
5848 N->getMemoryVT().getScalarType(), NumElts);
5849 SDValue Res = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other),
5850 WideMemVT, dl, Ops, N->getMemOperand(),
5851 N->getIndexType(), N->getExtensionType());
5852
5853 // Legalize the chain result - switch anything that used the old chain to
5854 // use the new one.
5855 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
5856 return Res;
5857 }
5858
WidenVecRes_VP_GATHER(VPGatherSDNode * N)5859 SDValue DAGTypeLegalizer::WidenVecRes_VP_GATHER(VPGatherSDNode *N) {
5860 EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5861 SDValue Mask = N->getMask();
5862 SDValue Scale = N->getScale();
5863 ElementCount WideEC = WideVT.getVectorElementCount();
5864 SDLoc dl(N);
5865
5866 SDValue Index = GetWidenedVector(N->getIndex());
5867 EVT WideMemVT = EVT::getVectorVT(*DAG.getContext(),
5868 N->getMemoryVT().getScalarType(), WideEC);
5869 Mask = GetWidenedMask(Mask, WideEC);
5870
5871 SDValue Ops[] = {N->getChain(), N->getBasePtr(), Index, Scale,
5872 Mask, N->getVectorLength()};
5873 SDValue Res = DAG.getGatherVP(DAG.getVTList(WideVT, MVT::Other), WideMemVT,
5874 dl, Ops, N->getMemOperand(), N->getIndexType());
5875
5876 // Legalize the chain result - switch anything that used the old chain to
5877 // use the new one.
5878 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
5879 return Res;
5880 }
5881
WidenVecRes_ScalarOp(SDNode * N)5882 SDValue DAGTypeLegalizer::WidenVecRes_ScalarOp(SDNode *N) {
5883 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
5884 if (N->isVPOpcode())
5885 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, N->getOperand(0),
5886 N->getOperand(1), N->getOperand(2));
5887 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, N->getOperand(0));
5888 }
5889
5890 // Return true is this is a SETCC node or a strict version of it.
isSETCCOp(unsigned Opcode)5891 static inline bool isSETCCOp(unsigned Opcode) {
5892 switch (Opcode) {
5893 case ISD::SETCC:
5894 case ISD::STRICT_FSETCC:
5895 case ISD::STRICT_FSETCCS:
5896 return true;
5897 }
5898 return false;
5899 }
5900
5901 // Return true if this is a node that could have two SETCCs as operands.
isLogicalMaskOp(unsigned Opcode)5902 static inline bool isLogicalMaskOp(unsigned Opcode) {
5903 switch (Opcode) {
5904 case ISD::AND:
5905 case ISD::OR:
5906 case ISD::XOR:
5907 return true;
5908 }
5909 return false;
5910 }
5911
5912 // If N is a SETCC or a strict variant of it, return the type
5913 // of the compare operands.
getSETCCOperandType(SDValue N)5914 static inline EVT getSETCCOperandType(SDValue N) {
5915 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5916 return N->getOperand(OpNo).getValueType();
5917 }
5918
5919 // This is used just for the assert in convertMask(). Check that this either
5920 // a SETCC or a previously handled SETCC by convertMask().
5921 #ifndef NDEBUG
isSETCCorConvertedSETCC(SDValue N)5922 static inline bool isSETCCorConvertedSETCC(SDValue N) {
5923 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
5924 N = N.getOperand(0);
5925 else if (N.getOpcode() == ISD::CONCAT_VECTORS) {
5926 for (unsigned i = 1; i < N->getNumOperands(); ++i)
5927 if (!N->getOperand(i)->isUndef())
5928 return false;
5929 N = N.getOperand(0);
5930 }
5931
5932 if (N.getOpcode() == ISD::TRUNCATE)
5933 N = N.getOperand(0);
5934 else if (N.getOpcode() == ISD::SIGN_EXTEND)
5935 N = N.getOperand(0);
5936
5937 if (isLogicalMaskOp(N.getOpcode()))
5938 return isSETCCorConvertedSETCC(N.getOperand(0)) &&
5939 isSETCCorConvertedSETCC(N.getOperand(1));
5940
5941 return (isSETCCOp(N.getOpcode()) ||
5942 ISD::isBuildVectorOfConstantSDNodes(N.getNode()));
5943 }
5944 #endif
5945
5946 // Return a mask of vector type MaskVT to replace InMask. Also adjust MaskVT
5947 // to ToMaskVT if needed with vector extension or truncation.
convertMask(SDValue InMask,EVT MaskVT,EVT ToMaskVT)5948 SDValue DAGTypeLegalizer::convertMask(SDValue InMask, EVT MaskVT,
5949 EVT ToMaskVT) {
5950 // Currently a SETCC or a AND/OR/XOR with two SETCCs are handled.
5951 // FIXME: This code seems to be too restrictive, we might consider
5952 // generalizing it or dropping it.
5953 assert(isSETCCorConvertedSETCC(InMask) && "Unexpected mask argument.");
5954
5955 // Make a new Mask node, with a legal result VT.
5956 SDValue Mask;
5957 SmallVector<SDValue, 4> Ops;
5958 for (unsigned i = 0, e = InMask->getNumOperands(); i < e; ++i)
5959 Ops.push_back(InMask->getOperand(i));
5960 if (InMask->isStrictFPOpcode()) {
5961 Mask = DAG.getNode(InMask->getOpcode(), SDLoc(InMask),
5962 { MaskVT, MVT::Other }, Ops);
5963 ReplaceValueWith(InMask.getValue(1), Mask.getValue(1));
5964 }
5965 else
5966 Mask = DAG.getNode(InMask->getOpcode(), SDLoc(InMask), MaskVT, Ops);
5967
5968 // If MaskVT has smaller or bigger elements than ToMaskVT, a vector sign
5969 // extend or truncate is needed.
5970 LLVMContext &Ctx = *DAG.getContext();
5971 unsigned MaskScalarBits = MaskVT.getScalarSizeInBits();
5972 unsigned ToMaskScalBits = ToMaskVT.getScalarSizeInBits();
5973 if (MaskScalarBits < ToMaskScalBits) {
5974 EVT ExtVT = EVT::getVectorVT(Ctx, ToMaskVT.getVectorElementType(),
5975 MaskVT.getVectorNumElements());
5976 Mask = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Mask), ExtVT, Mask);
5977 } else if (MaskScalarBits > ToMaskScalBits) {
5978 EVT TruncVT = EVT::getVectorVT(Ctx, ToMaskVT.getVectorElementType(),
5979 MaskVT.getVectorNumElements());
5980 Mask = DAG.getNode(ISD::TRUNCATE, SDLoc(Mask), TruncVT, Mask);
5981 }
5982
5983 assert(Mask->getValueType(0).getScalarSizeInBits() ==
5984 ToMaskVT.getScalarSizeInBits() &&
5985 "Mask should have the right element size by now.");
5986
5987 // Adjust Mask to the right number of elements.
5988 unsigned CurrMaskNumEls = Mask->getValueType(0).getVectorNumElements();
5989 if (CurrMaskNumEls > ToMaskVT.getVectorNumElements()) {
5990 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(Mask));
5991 Mask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Mask), ToMaskVT, Mask,
5992 ZeroIdx);
5993 } else if (CurrMaskNumEls < ToMaskVT.getVectorNumElements()) {
5994 unsigned NumSubVecs = (ToMaskVT.getVectorNumElements() / CurrMaskNumEls);
5995 EVT SubVT = Mask->getValueType(0);
5996 SmallVector<SDValue, 16> SubOps(NumSubVecs, DAG.getUNDEF(SubVT));
5997 SubOps[0] = Mask;
5998 Mask = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Mask), ToMaskVT, SubOps);
5999 }
6000
6001 assert((Mask->getValueType(0) == ToMaskVT) &&
6002 "A mask of ToMaskVT should have been produced by now.");
6003
6004 return Mask;
6005 }
6006
6007 // This method tries to handle some special cases for the vselect mask
6008 // and if needed adjusting the mask vector type to match that of the VSELECT.
6009 // Without it, many cases end up with scalarization of the SETCC, with many
6010 // unnecessary instructions.
WidenVSELECTMask(SDNode * N)6011 SDValue DAGTypeLegalizer::WidenVSELECTMask(SDNode *N) {
6012 LLVMContext &Ctx = *DAG.getContext();
6013 SDValue Cond = N->getOperand(0);
6014
6015 if (N->getOpcode() != ISD::VSELECT)
6016 return SDValue();
6017
6018 if (!isSETCCOp(Cond->getOpcode()) && !isLogicalMaskOp(Cond->getOpcode()))
6019 return SDValue();
6020
6021 // If this is a splitted VSELECT that was previously already handled, do
6022 // nothing.
6023 EVT CondVT = Cond->getValueType(0);
6024 if (CondVT.getScalarSizeInBits() != 1)
6025 return SDValue();
6026
6027 EVT VSelVT = N->getValueType(0);
6028
6029 // This method can't handle scalable vector types.
6030 // FIXME: This support could be added in the future.
6031 if (VSelVT.isScalableVector())
6032 return SDValue();
6033
6034 // Only handle vector types which are a power of 2.
6035 if (!isPowerOf2_64(VSelVT.getSizeInBits()))
6036 return SDValue();
6037
6038 // Don't touch if this will be scalarized.
6039 EVT FinalVT = VSelVT;
6040 while (getTypeAction(FinalVT) == TargetLowering::TypeSplitVector)
6041 FinalVT = FinalVT.getHalfNumVectorElementsVT(Ctx);
6042
6043 if (FinalVT.getVectorNumElements() == 1)
6044 return SDValue();
6045
6046 // If there is support for an i1 vector mask, don't touch.
6047 if (isSETCCOp(Cond.getOpcode())) {
6048 EVT SetCCOpVT = getSETCCOperandType(Cond);
6049 while (TLI.getTypeAction(Ctx, SetCCOpVT) != TargetLowering::TypeLegal)
6050 SetCCOpVT = TLI.getTypeToTransformTo(Ctx, SetCCOpVT);
6051 EVT SetCCResVT = getSetCCResultType(SetCCOpVT);
6052 if (SetCCResVT.getScalarSizeInBits() == 1)
6053 return SDValue();
6054 } else if (CondVT.getScalarType() == MVT::i1) {
6055 // If there is support for an i1 vector mask (or only scalar i1 conditions),
6056 // don't touch.
6057 while (TLI.getTypeAction(Ctx, CondVT) != TargetLowering::TypeLegal)
6058 CondVT = TLI.getTypeToTransformTo(Ctx, CondVT);
6059
6060 if (CondVT.getScalarType() == MVT::i1)
6061 return SDValue();
6062 }
6063
6064 // Widen the vselect result type if needed.
6065 if (getTypeAction(VSelVT) == TargetLowering::TypeWidenVector)
6066 VSelVT = TLI.getTypeToTransformTo(Ctx, VSelVT);
6067
6068 // The mask of the VSELECT should have integer elements.
6069 EVT ToMaskVT = VSelVT;
6070 if (!ToMaskVT.getScalarType().isInteger())
6071 ToMaskVT = ToMaskVT.changeVectorElementTypeToInteger();
6072
6073 SDValue Mask;
6074 if (isSETCCOp(Cond->getOpcode())) {
6075 EVT MaskVT = getSetCCResultType(getSETCCOperandType(Cond));
6076 Mask = convertMask(Cond, MaskVT, ToMaskVT);
6077 } else if (isLogicalMaskOp(Cond->getOpcode()) &&
6078 isSETCCOp(Cond->getOperand(0).getOpcode()) &&
6079 isSETCCOp(Cond->getOperand(1).getOpcode())) {
6080 // Cond is (AND/OR/XOR (SETCC, SETCC))
6081 SDValue SETCC0 = Cond->getOperand(0);
6082 SDValue SETCC1 = Cond->getOperand(1);
6083 EVT VT0 = getSetCCResultType(getSETCCOperandType(SETCC0));
6084 EVT VT1 = getSetCCResultType(getSETCCOperandType(SETCC1));
6085 unsigned ScalarBits0 = VT0.getScalarSizeInBits();
6086 unsigned ScalarBits1 = VT1.getScalarSizeInBits();
6087 unsigned ScalarBits_ToMask = ToMaskVT.getScalarSizeInBits();
6088 EVT MaskVT;
6089 // If the two SETCCs have different VTs, either extend/truncate one of
6090 // them to the other "towards" ToMaskVT, or truncate one and extend the
6091 // other to ToMaskVT.
6092 if (ScalarBits0 != ScalarBits1) {
6093 EVT NarrowVT = ((ScalarBits0 < ScalarBits1) ? VT0 : VT1);
6094 EVT WideVT = ((NarrowVT == VT0) ? VT1 : VT0);
6095 if (ScalarBits_ToMask >= WideVT.getScalarSizeInBits())
6096 MaskVT = WideVT;
6097 else if (ScalarBits_ToMask <= NarrowVT.getScalarSizeInBits())
6098 MaskVT = NarrowVT;
6099 else
6100 MaskVT = ToMaskVT;
6101 } else
6102 // If the two SETCCs have the same VT, don't change it.
6103 MaskVT = VT0;
6104
6105 // Make new SETCCs and logical nodes.
6106 SETCC0 = convertMask(SETCC0, VT0, MaskVT);
6107 SETCC1 = convertMask(SETCC1, VT1, MaskVT);
6108 Cond = DAG.getNode(Cond->getOpcode(), SDLoc(Cond), MaskVT, SETCC0, SETCC1);
6109
6110 // Convert the logical op for VSELECT if needed.
6111 Mask = convertMask(Cond, MaskVT, ToMaskVT);
6112 } else
6113 return SDValue();
6114
6115 return Mask;
6116 }
6117
WidenVecRes_Select(SDNode * N)6118 SDValue DAGTypeLegalizer::WidenVecRes_Select(SDNode *N) {
6119 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
6120 ElementCount WidenEC = WidenVT.getVectorElementCount();
6121
6122 SDValue Cond1 = N->getOperand(0);
6123 EVT CondVT = Cond1.getValueType();
6124 unsigned Opcode = N->getOpcode();
6125 if (CondVT.isVector()) {
6126 if (SDValue WideCond = WidenVSELECTMask(N)) {
6127 SDValue InOp1 = GetWidenedVector(N->getOperand(1));
6128 SDValue InOp2 = GetWidenedVector(N->getOperand(2));
6129 assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
6130 return DAG.getNode(Opcode, SDLoc(N), WidenVT, WideCond, InOp1, InOp2);
6131 }
6132
6133 EVT CondEltVT = CondVT.getVectorElementType();
6134 EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(), CondEltVT, WidenEC);
6135 if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
6136 Cond1 = GetWidenedVector(Cond1);
6137
6138 // If we have to split the condition there is no point in widening the
6139 // select. This would result in an cycle of widening the select ->
6140 // widening the condition operand -> splitting the condition operand ->
6141 // splitting the select -> widening the select. Instead split this select
6142 // further and widen the resulting type.
6143 if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
6144 SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
6145 SDValue Res = ModifyToType(SplitSelect, WidenVT);
6146 return Res;
6147 }
6148
6149 if (Cond1.getValueType() != CondWidenVT)
6150 Cond1 = ModifyToType(Cond1, CondWidenVT);
6151 }
6152
6153 SDValue InOp1 = GetWidenedVector(N->getOperand(1));
6154 SDValue InOp2 = GetWidenedVector(N->getOperand(2));
6155 assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
6156 if (Opcode == ISD::VP_SELECT || Opcode == ISD::VP_MERGE)
6157 return DAG.getNode(Opcode, SDLoc(N), WidenVT, Cond1, InOp1, InOp2,
6158 N->getOperand(3));
6159 return DAG.getNode(Opcode, SDLoc(N), WidenVT, Cond1, InOp1, InOp2);
6160 }
6161
WidenVecRes_SELECT_CC(SDNode * N)6162 SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
6163 SDValue InOp1 = GetWidenedVector(N->getOperand(2));
6164 SDValue InOp2 = GetWidenedVector(N->getOperand(3));
6165 return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
6166 InOp1.getValueType(), N->getOperand(0),
6167 N->getOperand(1), InOp1, InOp2, N->getOperand(4));
6168 }
6169
WidenVecRes_UNDEF(SDNode * N)6170 SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
6171 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
6172 return DAG.getUNDEF(WidenVT);
6173 }
6174
WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N)6175 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
6176 EVT VT = N->getValueType(0);
6177 SDLoc dl(N);
6178
6179 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
6180 unsigned NumElts = VT.getVectorNumElements();
6181 unsigned WidenNumElts = WidenVT.getVectorNumElements();
6182
6183 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
6184 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
6185
6186 // Adjust mask based on new input vector length.
6187 SmallVector<int, 16> NewMask;
6188 for (unsigned i = 0; i != NumElts; ++i) {
6189 int Idx = N->getMaskElt(i);
6190 if (Idx < (int)NumElts)
6191 NewMask.push_back(Idx);
6192 else
6193 NewMask.push_back(Idx - NumElts + WidenNumElts);
6194 }
6195 for (unsigned i = NumElts; i != WidenNumElts; ++i)
6196 NewMask.push_back(-1);
6197 return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, NewMask);
6198 }
6199
WidenVecRes_VECTOR_REVERSE(SDNode * N)6200 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_REVERSE(SDNode *N) {
6201 EVT VT = N->getValueType(0);
6202 EVT EltVT = VT.getVectorElementType();
6203 SDLoc dl(N);
6204
6205 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
6206 SDValue OpValue = GetWidenedVector(N->getOperand(0));
6207 assert(WidenVT == OpValue.getValueType() && "Unexpected widened vector type");
6208
6209 SDValue ReverseVal = DAG.getNode(ISD::VECTOR_REVERSE, dl, WidenVT, OpValue);
6210 unsigned WidenNumElts = WidenVT.getVectorMinNumElements();
6211 unsigned VTNumElts = VT.getVectorMinNumElements();
6212 unsigned IdxVal = WidenNumElts - VTNumElts;
6213
6214 if (VT.isScalableVector()) {
6215 // Try to split the 'Widen ReverseVal' into smaller extracts and concat the
6216 // results together, e.g.(nxv6i64 -> nxv8i64)
6217 // nxv8i64 vector_reverse
6218 // <->
6219 // nxv8i64 concat(
6220 // nxv2i64 extract_subvector(nxv8i64, 2)
6221 // nxv2i64 extract_subvector(nxv8i64, 4)
6222 // nxv2i64 extract_subvector(nxv8i64, 6)
6223 // nxv2i64 undef)
6224
6225 unsigned GCD = std::gcd(VTNumElts, WidenNumElts);
6226 EVT PartVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
6227 ElementCount::getScalable(GCD));
6228 assert((IdxVal % GCD) == 0 && "Expected Idx to be a multiple of the broken "
6229 "down type's element count");
6230 SmallVector<SDValue> Parts;
6231 unsigned i = 0;
6232 for (; i < VTNumElts / GCD; ++i)
6233 Parts.push_back(
6234 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, PartVT, ReverseVal,
6235 DAG.getVectorIdxConstant(IdxVal + i * GCD, dl)));
6236 for (; i < WidenNumElts / GCD; ++i)
6237 Parts.push_back(DAG.getUNDEF(PartVT));
6238
6239 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Parts);
6240 }
6241
6242 // Use VECTOR_SHUFFLE to combine new vector from 'ReverseVal' for
6243 // fixed-vectors.
6244 SmallVector<int, 16> Mask;
6245 for (unsigned i = 0; i != VTNumElts; ++i) {
6246 Mask.push_back(IdxVal + i);
6247 }
6248 for (unsigned i = VTNumElts; i != WidenNumElts; ++i)
6249 Mask.push_back(-1);
6250
6251 return DAG.getVectorShuffle(WidenVT, dl, ReverseVal, DAG.getUNDEF(WidenVT),
6252 Mask);
6253 }
6254
WidenVecRes_SETCC(SDNode * N)6255 SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
6256 assert(N->getValueType(0).isVector() &&
6257 N->getOperand(0).getValueType().isVector() &&
6258 "Operands must be vectors");
6259 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
6260 ElementCount WidenEC = WidenVT.getVectorElementCount();
6261
6262 SDValue InOp1 = N->getOperand(0);
6263 EVT InVT = InOp1.getValueType();
6264 assert(InVT.isVector() && "can not widen non-vector type");
6265 EVT WidenInVT =
6266 EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), WidenEC);
6267
6268 // The input and output types often differ here, and it could be that while
6269 // we'd prefer to widen the result type, the input operands have been split.
6270 // In this case, we also need to split the result of this node as well.
6271 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
6272 SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
6273 SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
6274 return Res;
6275 }
6276
6277 // If the inputs also widen, handle them directly. Otherwise widen by hand.
6278 SDValue InOp2 = N->getOperand(1);
6279 if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
6280 InOp1 = GetWidenedVector(InOp1);
6281 InOp2 = GetWidenedVector(InOp2);
6282 } else {
6283 InOp1 = DAG.WidenVector(InOp1, SDLoc(N));
6284 InOp2 = DAG.WidenVector(InOp2, SDLoc(N));
6285 }
6286
6287 // Assume that the input and output will be widen appropriately. If not,
6288 // we will have to unroll it at some point.
6289 assert(InOp1.getValueType() == WidenInVT &&
6290 InOp2.getValueType() == WidenInVT &&
6291 "Input not widened to expected type!");
6292 (void)WidenInVT;
6293 if (N->getOpcode() == ISD::VP_SETCC) {
6294 SDValue Mask =
6295 GetWidenedMask(N->getOperand(3), WidenVT.getVectorElementCount());
6296 return DAG.getNode(ISD::VP_SETCC, SDLoc(N), WidenVT, InOp1, InOp2,
6297 N->getOperand(2), Mask, N->getOperand(4));
6298 }
6299 return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT, InOp1, InOp2,
6300 N->getOperand(2));
6301 }
6302
WidenVecRes_STRICT_FSETCC(SDNode * N)6303 SDValue DAGTypeLegalizer::WidenVecRes_STRICT_FSETCC(SDNode *N) {
6304 assert(N->getValueType(0).isVector() &&
6305 N->getOperand(1).getValueType().isVector() &&
6306 "Operands must be vectors");
6307 EVT VT = N->getValueType(0);
6308 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
6309 unsigned WidenNumElts = WidenVT.getVectorNumElements();
6310 unsigned NumElts = VT.getVectorNumElements();
6311 EVT EltVT = VT.getVectorElementType();
6312
6313 SDLoc dl(N);
6314 SDValue Chain = N->getOperand(0);
6315 SDValue LHS = N->getOperand(1);
6316 SDValue RHS = N->getOperand(2);
6317 SDValue CC = N->getOperand(3);
6318 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
6319
6320 // Fully unroll and reassemble.
6321 SmallVector<SDValue, 8> Scalars(WidenNumElts, DAG.getUNDEF(EltVT));
6322 SmallVector<SDValue, 8> Chains(NumElts);
6323 for (unsigned i = 0; i != NumElts; ++i) {
6324 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
6325 DAG.getVectorIdxConstant(i, dl));
6326 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
6327 DAG.getVectorIdxConstant(i, dl));
6328
6329 Scalars[i] = DAG.getNode(N->getOpcode(), dl, {MVT::i1, MVT::Other},
6330 {Chain, LHSElem, RHSElem, CC});
6331 Chains[i] = Scalars[i].getValue(1);
6332 Scalars[i] = DAG.getSelect(dl, EltVT, Scalars[i],
6333 DAG.getBoolConstant(true, dl, EltVT, VT),
6334 DAG.getBoolConstant(false, dl, EltVT, VT));
6335 }
6336
6337 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
6338 ReplaceValueWith(SDValue(N, 1), NewChain);
6339
6340 return DAG.getBuildVector(WidenVT, dl, Scalars);
6341 }
6342
6343 //===----------------------------------------------------------------------===//
6344 // Widen Vector Operand
6345 //===----------------------------------------------------------------------===//
WidenVectorOperand(SDNode * N,unsigned OpNo)6346 bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
6347 LLVM_DEBUG(dbgs() << "Widen node operand " << OpNo << ": "; N->dump(&DAG));
6348 SDValue Res = SDValue();
6349
6350 // See if the target wants to custom widen this node.
6351 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
6352 return false;
6353
6354 switch (N->getOpcode()) {
6355 default:
6356 #ifndef NDEBUG
6357 dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
6358 N->dump(&DAG);
6359 dbgs() << "\n";
6360 #endif
6361 report_fatal_error("Do not know how to widen this operator's operand!");
6362
6363 case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
6364 case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
6365 case ISD::INSERT_SUBVECTOR: Res = WidenVecOp_INSERT_SUBVECTOR(N); break;
6366 case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
6367 case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
6368 case ISD::STORE: Res = WidenVecOp_STORE(N); break;
6369 case ISD::VP_STORE: Res = WidenVecOp_VP_STORE(N, OpNo); break;
6370 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
6371 Res = WidenVecOp_VP_STRIDED_STORE(N, OpNo);
6372 break;
6373 case ISD::ANY_EXTEND_VECTOR_INREG:
6374 case ISD::SIGN_EXTEND_VECTOR_INREG:
6375 case ISD::ZERO_EXTEND_VECTOR_INREG:
6376 Res = WidenVecOp_EXTEND_VECTOR_INREG(N);
6377 break;
6378 case ISD::MSTORE: Res = WidenVecOp_MSTORE(N, OpNo); break;
6379 case ISD::MGATHER: Res = WidenVecOp_MGATHER(N, OpNo); break;
6380 case ISD::MSCATTER: Res = WidenVecOp_MSCATTER(N, OpNo); break;
6381 case ISD::VP_SCATTER: Res = WidenVecOp_VP_SCATTER(N, OpNo); break;
6382 case ISD::SETCC: Res = WidenVecOp_SETCC(N); break;
6383 case ISD::STRICT_FSETCC:
6384 case ISD::STRICT_FSETCCS: Res = WidenVecOp_STRICT_FSETCC(N); break;
6385 case ISD::VSELECT: Res = WidenVecOp_VSELECT(N); break;
6386 case ISD::FLDEXP:
6387 case ISD::FCOPYSIGN:
6388 case ISD::LRINT:
6389 case ISD::LLRINT:
6390 Res = WidenVecOp_UnrollVectorOp(N);
6391 break;
6392 case ISD::IS_FPCLASS: Res = WidenVecOp_IS_FPCLASS(N); break;
6393
6394 case ISD::ANY_EXTEND:
6395 case ISD::SIGN_EXTEND:
6396 case ISD::ZERO_EXTEND:
6397 Res = WidenVecOp_EXTEND(N);
6398 break;
6399
6400 case ISD::SCMP:
6401 case ISD::UCMP:
6402 Res = WidenVecOp_CMP(N);
6403 break;
6404
6405 case ISD::FP_EXTEND:
6406 case ISD::STRICT_FP_EXTEND:
6407 case ISD::FP_ROUND:
6408 case ISD::STRICT_FP_ROUND:
6409 case ISD::FP_TO_SINT:
6410 case ISD::STRICT_FP_TO_SINT:
6411 case ISD::FP_TO_UINT:
6412 case ISD::STRICT_FP_TO_UINT:
6413 case ISD::SINT_TO_FP:
6414 case ISD::STRICT_SINT_TO_FP:
6415 case ISD::UINT_TO_FP:
6416 case ISD::STRICT_UINT_TO_FP:
6417 case ISD::TRUNCATE:
6418 Res = WidenVecOp_Convert(N);
6419 break;
6420
6421 case ISD::FP_TO_SINT_SAT:
6422 case ISD::FP_TO_UINT_SAT:
6423 Res = WidenVecOp_FP_TO_XINT_SAT(N);
6424 break;
6425
6426 case ISD::EXPERIMENTAL_VP_SPLAT:
6427 Res = WidenVecOp_VP_SPLAT(N, OpNo);
6428 break;
6429
6430 case ISD::VECREDUCE_FADD:
6431 case ISD::VECREDUCE_FMUL:
6432 case ISD::VECREDUCE_ADD:
6433 case ISD::VECREDUCE_MUL:
6434 case ISD::VECREDUCE_AND:
6435 case ISD::VECREDUCE_OR:
6436 case ISD::VECREDUCE_XOR:
6437 case ISD::VECREDUCE_SMAX:
6438 case ISD::VECREDUCE_SMIN:
6439 case ISD::VECREDUCE_UMAX:
6440 case ISD::VECREDUCE_UMIN:
6441 case ISD::VECREDUCE_FMAX:
6442 case ISD::VECREDUCE_FMIN:
6443 case ISD::VECREDUCE_FMAXIMUM:
6444 case ISD::VECREDUCE_FMINIMUM:
6445 Res = WidenVecOp_VECREDUCE(N);
6446 break;
6447 case ISD::VECREDUCE_SEQ_FADD:
6448 case ISD::VECREDUCE_SEQ_FMUL:
6449 Res = WidenVecOp_VECREDUCE_SEQ(N);
6450 break;
6451 case ISD::VP_REDUCE_FADD:
6452 case ISD::VP_REDUCE_SEQ_FADD:
6453 case ISD::VP_REDUCE_FMUL:
6454 case ISD::VP_REDUCE_SEQ_FMUL:
6455 case ISD::VP_REDUCE_ADD:
6456 case ISD::VP_REDUCE_MUL:
6457 case ISD::VP_REDUCE_AND:
6458 case ISD::VP_REDUCE_OR:
6459 case ISD::VP_REDUCE_XOR:
6460 case ISD::VP_REDUCE_SMAX:
6461 case ISD::VP_REDUCE_SMIN:
6462 case ISD::VP_REDUCE_UMAX:
6463 case ISD::VP_REDUCE_UMIN:
6464 case ISD::VP_REDUCE_FMAX:
6465 case ISD::VP_REDUCE_FMIN:
6466 case ISD::VP_REDUCE_FMAXIMUM:
6467 case ISD::VP_REDUCE_FMINIMUM:
6468 Res = WidenVecOp_VP_REDUCE(N);
6469 break;
6470 case ISD::VP_CTTZ_ELTS:
6471 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
6472 Res = WidenVecOp_VP_CttzElements(N);
6473 break;
6474 }
6475
6476 // If Res is null, the sub-method took care of registering the result.
6477 if (!Res.getNode()) return false;
6478
6479 // If the result is N, the sub-method updated N in place. Tell the legalizer
6480 // core about this.
6481 if (Res.getNode() == N)
6482 return true;
6483
6484
6485 if (N->isStrictFPOpcode())
6486 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 2 &&
6487 "Invalid operand expansion");
6488 else
6489 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
6490 "Invalid operand expansion");
6491
6492 ReplaceValueWith(SDValue(N, 0), Res);
6493 return false;
6494 }
6495
WidenVecOp_EXTEND(SDNode * N)6496 SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
6497 SDLoc DL(N);
6498 EVT VT = N->getValueType(0);
6499
6500 SDValue InOp = N->getOperand(0);
6501 assert(getTypeAction(InOp.getValueType()) ==
6502 TargetLowering::TypeWidenVector &&
6503 "Unexpected type action");
6504 InOp = GetWidenedVector(InOp);
6505 assert(VT.getVectorNumElements() <
6506 InOp.getValueType().getVectorNumElements() &&
6507 "Input wasn't widened!");
6508
6509 // We may need to further widen the operand until it has the same total
6510 // vector size as the result.
6511 EVT InVT = InOp.getValueType();
6512 if (InVT.getSizeInBits() != VT.getSizeInBits()) {
6513 EVT InEltVT = InVT.getVectorElementType();
6514 for (EVT FixedVT : MVT::vector_valuetypes()) {
6515 EVT FixedEltVT = FixedVT.getVectorElementType();
6516 if (TLI.isTypeLegal(FixedVT) &&
6517 FixedVT.getSizeInBits() == VT.getSizeInBits() &&
6518 FixedEltVT == InEltVT) {
6519 assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
6520 "Not enough elements in the fixed type for the operand!");
6521 assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
6522 "We can't have the same type as we started with!");
6523 if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
6524 InOp = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, FixedVT,
6525 DAG.getUNDEF(FixedVT), InOp,
6526 DAG.getVectorIdxConstant(0, DL));
6527 else
6528 InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
6529 DAG.getVectorIdxConstant(0, DL));
6530 break;
6531 }
6532 }
6533 InVT = InOp.getValueType();
6534 if (InVT.getSizeInBits() != VT.getSizeInBits())
6535 // We couldn't find a legal vector type that was a widening of the input
6536 // and could be extended in-register to the result type, so we have to
6537 // scalarize.
6538 return WidenVecOp_Convert(N);
6539 }
6540
6541 // Use special DAG nodes to represent the operation of extending the
6542 // low lanes.
6543 switch (N->getOpcode()) {
6544 default:
6545 llvm_unreachable("Extend legalization on extend operation!");
6546 case ISD::ANY_EXTEND:
6547 return DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, InOp);
6548 case ISD::SIGN_EXTEND:
6549 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, InOp);
6550 case ISD::ZERO_EXTEND:
6551 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, InOp);
6552 }
6553 }
6554
WidenVecOp_CMP(SDNode * N)6555 SDValue DAGTypeLegalizer::WidenVecOp_CMP(SDNode *N) {
6556 SDLoc dl(N);
6557
6558 EVT OpVT = N->getOperand(0).getValueType();
6559 EVT ResVT = N->getValueType(0);
6560 SDValue LHS = GetWidenedVector(N->getOperand(0));
6561 SDValue RHS = GetWidenedVector(N->getOperand(1));
6562
6563 // 1. EXTRACT_SUBVECTOR
6564 // 2. SIGN_EXTEND/ZERO_EXTEND
6565 // 3. CMP
6566 LHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, LHS,
6567 DAG.getVectorIdxConstant(0, dl));
6568 RHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, RHS,
6569 DAG.getVectorIdxConstant(0, dl));
6570
6571 // At this point the result type is guaranteed to be valid, so we can use it
6572 // as the operand type by extending it appropriately
6573 ISD::NodeType ExtendOpcode =
6574 N->getOpcode() == ISD::SCMP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6575 LHS = DAG.getNode(ExtendOpcode, dl, ResVT, LHS);
6576 RHS = DAG.getNode(ExtendOpcode, dl, ResVT, RHS);
6577
6578 return DAG.getNode(N->getOpcode(), dl, ResVT, LHS, RHS);
6579 }
6580
WidenVecOp_UnrollVectorOp(SDNode * N)6581 SDValue DAGTypeLegalizer::WidenVecOp_UnrollVectorOp(SDNode *N) {
6582 // The result (and first input) is legal, but the second input is illegal.
6583 // We can't do much to fix that, so just unroll and let the extracts off of
6584 // the second input be widened as needed later.
6585 return DAG.UnrollVectorOp(N);
6586 }
6587
WidenVecOp_IS_FPCLASS(SDNode * N)6588 SDValue DAGTypeLegalizer::WidenVecOp_IS_FPCLASS(SDNode *N) {
6589 SDLoc DL(N);
6590 EVT ResultVT = N->getValueType(0);
6591 SDValue Test = N->getOperand(1);
6592 SDValue WideArg = GetWidenedVector(N->getOperand(0));
6593
6594 // Process this node similarly to SETCC.
6595 EVT WideResultVT = getSetCCResultType(WideArg.getValueType());
6596 if (ResultVT.getScalarType() == MVT::i1)
6597 WideResultVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
6598 WideResultVT.getVectorNumElements());
6599
6600 SDValue WideNode = DAG.getNode(ISD::IS_FPCLASS, DL, WideResultVT,
6601 {WideArg, Test}, N->getFlags());
6602
6603 // Extract the needed results from the result vector.
6604 EVT ResVT =
6605 EVT::getVectorVT(*DAG.getContext(), WideResultVT.getVectorElementType(),
6606 ResultVT.getVectorNumElements());
6607 SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, WideNode,
6608 DAG.getVectorIdxConstant(0, DL));
6609
6610 EVT OpVT = N->getOperand(0).getValueType();
6611 ISD::NodeType ExtendCode =
6612 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
6613 return DAG.getNode(ExtendCode, DL, ResultVT, CC);
6614 }
6615
WidenVecOp_Convert(SDNode * N)6616 SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
6617 // Since the result is legal and the input is illegal.
6618 EVT VT = N->getValueType(0);
6619 EVT EltVT = VT.getVectorElementType();
6620 SDLoc dl(N);
6621 SDValue InOp = N->getOperand(N->isStrictFPOpcode() ? 1 : 0);
6622 assert(getTypeAction(InOp.getValueType()) ==
6623 TargetLowering::TypeWidenVector &&
6624 "Unexpected type action");
6625 InOp = GetWidenedVector(InOp);
6626 EVT InVT = InOp.getValueType();
6627 unsigned Opcode = N->getOpcode();
6628
6629 // See if a widened result type would be legal, if so widen the node.
6630 // FIXME: This isn't safe for StrictFP. Other optimization here is needed.
6631 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
6632 InVT.getVectorElementCount());
6633 if (TLI.isTypeLegal(WideVT) && !N->isStrictFPOpcode()) {
6634 SDValue Res;
6635 if (N->isStrictFPOpcode()) {
6636 if (Opcode == ISD::STRICT_FP_ROUND)
6637 Res = DAG.getNode(Opcode, dl, { WideVT, MVT::Other },
6638 { N->getOperand(0), InOp, N->getOperand(2) });
6639 else
6640 Res = DAG.getNode(Opcode, dl, { WideVT, MVT::Other },
6641 { N->getOperand(0), InOp });
6642 // Legalize the chain result - switch anything that used the old chain to
6643 // use the new one.
6644 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
6645 } else {
6646 if (Opcode == ISD::FP_ROUND)
6647 Res = DAG.getNode(Opcode, dl, WideVT, InOp, N->getOperand(1));
6648 else
6649 Res = DAG.getNode(Opcode, dl, WideVT, InOp);
6650 }
6651 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
6652 DAG.getVectorIdxConstant(0, dl));
6653 }
6654
6655 EVT InEltVT = InVT.getVectorElementType();
6656
6657 // Unroll the convert into some scalar code and create a nasty build vector.
6658 unsigned NumElts = VT.getVectorNumElements();
6659 SmallVector<SDValue, 16> Ops(NumElts);
6660 if (N->isStrictFPOpcode()) {
6661 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
6662 SmallVector<SDValue, 32> OpChains;
6663 for (unsigned i=0; i < NumElts; ++i) {
6664 NewOps[1] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
6665 DAG.getVectorIdxConstant(i, dl));
6666 Ops[i] = DAG.getNode(Opcode, dl, { EltVT, MVT::Other }, NewOps);
6667 OpChains.push_back(Ops[i].getValue(1));
6668 }
6669 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
6670 ReplaceValueWith(SDValue(N, 1), NewChain);
6671 } else {
6672 for (unsigned i = 0; i < NumElts; ++i)
6673 Ops[i] = DAG.getNode(Opcode, dl, EltVT,
6674 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT,
6675 InOp, DAG.getVectorIdxConstant(i, dl)));
6676 }
6677
6678 return DAG.getBuildVector(VT, dl, Ops);
6679 }
6680
WidenVecOp_FP_TO_XINT_SAT(SDNode * N)6681 SDValue DAGTypeLegalizer::WidenVecOp_FP_TO_XINT_SAT(SDNode *N) {
6682 EVT DstVT = N->getValueType(0);
6683 SDValue Src = GetWidenedVector(N->getOperand(0));
6684 EVT SrcVT = Src.getValueType();
6685 ElementCount WideNumElts = SrcVT.getVectorElementCount();
6686 SDLoc dl(N);
6687
6688 // See if a widened result type would be legal, if so widen the node.
6689 EVT WideDstVT = EVT::getVectorVT(*DAG.getContext(),
6690 DstVT.getVectorElementType(), WideNumElts);
6691 if (TLI.isTypeLegal(WideDstVT)) {
6692 SDValue Res =
6693 DAG.getNode(N->getOpcode(), dl, WideDstVT, Src, N->getOperand(1));
6694 return DAG.getNode(
6695 ISD::EXTRACT_SUBVECTOR, dl, DstVT, Res,
6696 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
6697 }
6698
6699 // Give up and unroll.
6700 return DAG.UnrollVectorOp(N);
6701 }
6702
WidenVecOp_BITCAST(SDNode * N)6703 SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
6704 EVT VT = N->getValueType(0);
6705 SDValue InOp = GetWidenedVector(N->getOperand(0));
6706 EVT InWidenVT = InOp.getValueType();
6707 SDLoc dl(N);
6708
6709 // Check if we can convert between two legal vector types and extract.
6710 TypeSize InWidenSize = InWidenVT.getSizeInBits();
6711 TypeSize Size = VT.getSizeInBits();
6712 // x86mmx is not an acceptable vector element type, so don't try.
6713 if (!VT.isVector() && VT != MVT::x86mmx &&
6714 InWidenSize.hasKnownScalarFactor(Size)) {
6715 unsigned NewNumElts = InWidenSize.getKnownScalarFactor(Size);
6716 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
6717 if (TLI.isTypeLegal(NewVT)) {
6718 SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
6719 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
6720 DAG.getVectorIdxConstant(0, dl));
6721 }
6722 }
6723
6724 // Handle a case like bitcast v12i8 -> v3i32. Normally that would get widened
6725 // to v16i8 -> v4i32, but for a target where v3i32 is legal but v12i8 is not,
6726 // we end up here. Handling the case here with EXTRACT_SUBVECTOR avoids
6727 // having to copy via memory.
6728 if (VT.isVector()) {
6729 EVT EltVT = VT.getVectorElementType();
6730 unsigned EltSize = EltVT.getFixedSizeInBits();
6731 if (InWidenSize.isKnownMultipleOf(EltSize)) {
6732 ElementCount NewNumElts =
6733 (InWidenVT.getVectorElementCount() * InWidenVT.getScalarSizeInBits())
6734 .divideCoefficientBy(EltSize);
6735 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NewNumElts);
6736 if (TLI.isTypeLegal(NewVT)) {
6737 SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
6738 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, BitOp,
6739 DAG.getVectorIdxConstant(0, dl));
6740 }
6741 }
6742 }
6743
6744 return CreateStackStoreLoad(InOp, VT);
6745 }
6746
WidenVecOp_CONCAT_VECTORS(SDNode * N)6747 SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
6748 EVT VT = N->getValueType(0);
6749 EVT EltVT = VT.getVectorElementType();
6750 EVT InVT = N->getOperand(0).getValueType();
6751 SDLoc dl(N);
6752
6753 // If the widen width for this operand is the same as the width of the concat
6754 // and all but the first operand is undef, just use the widened operand.
6755 unsigned NumOperands = N->getNumOperands();
6756 if (VT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
6757 unsigned i;
6758 for (i = 1; i < NumOperands; ++i)
6759 if (!N->getOperand(i).isUndef())
6760 break;
6761
6762 if (i == NumOperands)
6763 return GetWidenedVector(N->getOperand(0));
6764 }
6765
6766 // Otherwise, fall back to a nasty build vector.
6767 unsigned NumElts = VT.getVectorNumElements();
6768 SmallVector<SDValue, 16> Ops(NumElts);
6769
6770 unsigned NumInElts = InVT.getVectorNumElements();
6771
6772 unsigned Idx = 0;
6773 for (unsigned i=0; i < NumOperands; ++i) {
6774 SDValue InOp = N->getOperand(i);
6775 assert(getTypeAction(InOp.getValueType()) ==
6776 TargetLowering::TypeWidenVector &&
6777 "Unexpected type action");
6778 InOp = GetWidenedVector(InOp);
6779 for (unsigned j = 0; j < NumInElts; ++j)
6780 Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
6781 DAG.getVectorIdxConstant(j, dl));
6782 }
6783 return DAG.getBuildVector(VT, dl, Ops);
6784 }
6785
WidenVecOp_INSERT_SUBVECTOR(SDNode * N)6786 SDValue DAGTypeLegalizer::WidenVecOp_INSERT_SUBVECTOR(SDNode *N) {
6787 EVT VT = N->getValueType(0);
6788 SDValue SubVec = N->getOperand(1);
6789 SDValue InVec = N->getOperand(0);
6790
6791 if (getTypeAction(SubVec.getValueType()) == TargetLowering::TypeWidenVector)
6792 SubVec = GetWidenedVector(SubVec);
6793
6794 EVT SubVT = SubVec.getValueType();
6795
6796 // Whether or not all the elements of the widened SubVec will be inserted into
6797 // valid indices of VT.
6798 bool IndicesValid = false;
6799 // If we statically know that VT can fit SubVT, the indices are valid.
6800 if (VT.knownBitsGE(SubVT))
6801 IndicesValid = true;
6802 else if (VT.isScalableVector() && SubVT.isFixedLengthVector()) {
6803 // Otherwise, if we're inserting a fixed vector into a scalable vector and
6804 // we know the minimum vscale we can work out if it's valid ourselves.
6805 Attribute Attr = DAG.getMachineFunction().getFunction().getFnAttribute(
6806 Attribute::VScaleRange);
6807 if (Attr.isValid()) {
6808 unsigned VScaleMin = Attr.getVScaleRangeMin();
6809 if (VT.getSizeInBits().getKnownMinValue() * VScaleMin >=
6810 SubVT.getFixedSizeInBits())
6811 IndicesValid = true;
6812 }
6813 }
6814
6815 // We need to make sure that the indices are still valid, otherwise we might
6816 // widen what was previously well-defined to something undefined.
6817 if (IndicesValid && InVec.isUndef() && N->getConstantOperandVal(2) == 0)
6818 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, InVec, SubVec,
6819 N->getOperand(2));
6820
6821 report_fatal_error("Don't know how to widen the operands for "
6822 "INSERT_SUBVECTOR");
6823 }
6824
WidenVecOp_EXTRACT_SUBVECTOR(SDNode * N)6825 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
6826 SDValue InOp = GetWidenedVector(N->getOperand(0));
6827 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
6828 N->getValueType(0), InOp, N->getOperand(1));
6829 }
6830
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode * N)6831 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
6832 SDValue InOp = GetWidenedVector(N->getOperand(0));
6833 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
6834 N->getValueType(0), InOp, N->getOperand(1));
6835 }
6836
WidenVecOp_EXTEND_VECTOR_INREG(SDNode * N)6837 SDValue DAGTypeLegalizer::WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N) {
6838 SDValue InOp = GetWidenedVector(N->getOperand(0));
6839 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), InOp);
6840 }
6841
WidenVecOp_STORE(SDNode * N)6842 SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
6843 // We have to widen the value, but we want only to store the original
6844 // vector type.
6845 StoreSDNode *ST = cast<StoreSDNode>(N);
6846
6847 if (!ST->getMemoryVT().getScalarType().isByteSized())
6848 return TLI.scalarizeVectorStore(ST, DAG);
6849
6850 if (ST->isTruncatingStore())
6851 return TLI.scalarizeVectorStore(ST, DAG);
6852
6853 // Generate a vector-predicated store if it is custom/legal on the target.
6854 // To avoid possible recursion, only do this if the widened mask type is
6855 // legal.
6856 // FIXME: Not all targets may support EVL in VP_STORE. These will have been
6857 // removed from the IR by the ExpandVectorPredication pass but we're
6858 // reintroducing them here.
6859 SDValue StVal = ST->getValue();
6860 EVT StVT = StVal.getValueType();
6861 EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), StVT);
6862 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
6863 WideVT.getVectorElementCount());
6864
6865 if (TLI.isOperationLegalOrCustom(ISD::VP_STORE, WideVT) &&
6866 TLI.isTypeLegal(WideMaskVT)) {
6867 // Widen the value.
6868 SDLoc DL(N);
6869 StVal = GetWidenedVector(StVal);
6870 SDValue Mask = DAG.getAllOnesConstant(DL, WideMaskVT);
6871 SDValue EVL = DAG.getElementCount(DL, TLI.getVPExplicitVectorLengthTy(),
6872 StVT.getVectorElementCount());
6873 return DAG.getStoreVP(ST->getChain(), DL, StVal, ST->getBasePtr(),
6874 DAG.getUNDEF(ST->getBasePtr().getValueType()), Mask,
6875 EVL, StVT, ST->getMemOperand(),
6876 ST->getAddressingMode());
6877 }
6878
6879 SmallVector<SDValue, 16> StChain;
6880 if (GenWidenVectorStores(StChain, ST)) {
6881 if (StChain.size() == 1)
6882 return StChain[0];
6883
6884 return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
6885 }
6886
6887 report_fatal_error("Unable to widen vector store");
6888 }
6889
WidenVecOp_VP_SPLAT(SDNode * N,unsigned OpNo)6890 SDValue DAGTypeLegalizer::WidenVecOp_VP_SPLAT(SDNode *N, unsigned OpNo) {
6891 assert(OpNo == 1 && "Can widen only mask operand of vp_splat");
6892 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
6893 N->getOperand(0), GetWidenedVector(N->getOperand(1)),
6894 N->getOperand(2));
6895 }
6896
WidenVecOp_VP_STORE(SDNode * N,unsigned OpNo)6897 SDValue DAGTypeLegalizer::WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo) {
6898 assert((OpNo == 1 || OpNo == 3) &&
6899 "Can widen only data or mask operand of vp_store");
6900 VPStoreSDNode *ST = cast<VPStoreSDNode>(N);
6901 SDValue Mask = ST->getMask();
6902 SDValue StVal = ST->getValue();
6903 SDLoc dl(N);
6904
6905 if (OpNo == 1) {
6906 // Widen the value.
6907 StVal = GetWidenedVector(StVal);
6908
6909 // We only handle the case where the mask needs widening to an
6910 // identically-sized type as the vector inputs.
6911 assert(getTypeAction(Mask.getValueType()) ==
6912 TargetLowering::TypeWidenVector &&
6913 "Unable to widen VP store");
6914 Mask = GetWidenedVector(Mask);
6915 } else {
6916 Mask = GetWidenedVector(Mask);
6917
6918 // We only handle the case where the stored value needs widening to an
6919 // identically-sized type as the mask.
6920 assert(getTypeAction(StVal.getValueType()) ==
6921 TargetLowering::TypeWidenVector &&
6922 "Unable to widen VP store");
6923 StVal = GetWidenedVector(StVal);
6924 }
6925
6926 assert(Mask.getValueType().getVectorElementCount() ==
6927 StVal.getValueType().getVectorElementCount() &&
6928 "Mask and data vectors should have the same number of elements");
6929 return DAG.getStoreVP(ST->getChain(), dl, StVal, ST->getBasePtr(),
6930 ST->getOffset(), Mask, ST->getVectorLength(),
6931 ST->getMemoryVT(), ST->getMemOperand(),
6932 ST->getAddressingMode(), ST->isTruncatingStore(),
6933 ST->isCompressingStore());
6934 }
6935
WidenVecOp_VP_STRIDED_STORE(SDNode * N,unsigned OpNo)6936 SDValue DAGTypeLegalizer::WidenVecOp_VP_STRIDED_STORE(SDNode *N,
6937 unsigned OpNo) {
6938 assert((OpNo == 1 || OpNo == 4) &&
6939 "Can widen only data or mask operand of vp_strided_store");
6940 VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
6941 SDValue Mask = SST->getMask();
6942 SDValue StVal = SST->getValue();
6943 SDLoc DL(N);
6944
6945 if (OpNo == 1)
6946 assert(getTypeAction(Mask.getValueType()) ==
6947 TargetLowering::TypeWidenVector &&
6948 "Unable to widen VP strided store");
6949 else
6950 assert(getTypeAction(StVal.getValueType()) ==
6951 TargetLowering::TypeWidenVector &&
6952 "Unable to widen VP strided store");
6953
6954 StVal = GetWidenedVector(StVal);
6955 Mask = GetWidenedVector(Mask);
6956
6957 assert(StVal.getValueType().getVectorElementCount() ==
6958 Mask.getValueType().getVectorElementCount() &&
6959 "Data and mask vectors should have the same number of elements");
6960
6961 return DAG.getStridedStoreVP(
6962 SST->getChain(), DL, StVal, SST->getBasePtr(), SST->getOffset(),
6963 SST->getStride(), Mask, SST->getVectorLength(), SST->getMemoryVT(),
6964 SST->getMemOperand(), SST->getAddressingMode(), SST->isTruncatingStore(),
6965 SST->isCompressingStore());
6966 }
6967
WidenVecOp_MSTORE(SDNode * N,unsigned OpNo)6968 SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
6969 assert((OpNo == 1 || OpNo == 4) &&
6970 "Can widen only data or mask operand of mstore");
6971 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
6972 SDValue Mask = MST->getMask();
6973 EVT MaskVT = Mask.getValueType();
6974 SDValue StVal = MST->getValue();
6975 SDLoc dl(N);
6976
6977 if (OpNo == 1) {
6978 // Widen the value.
6979 StVal = GetWidenedVector(StVal);
6980
6981 // The mask should be widened as well.
6982 EVT WideVT = StVal.getValueType();
6983 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
6984 MaskVT.getVectorElementType(),
6985 WideVT.getVectorNumElements());
6986 Mask = ModifyToType(Mask, WideMaskVT, true);
6987 } else {
6988 // Widen the mask.
6989 EVT WideMaskVT = TLI.getTypeToTransformTo(*DAG.getContext(), MaskVT);
6990 Mask = ModifyToType(Mask, WideMaskVT, true);
6991
6992 EVT ValueVT = StVal.getValueType();
6993 EVT WideVT = EVT::getVectorVT(*DAG.getContext(),
6994 ValueVT.getVectorElementType(),
6995 WideMaskVT.getVectorNumElements());
6996 StVal = ModifyToType(StVal, WideVT);
6997 }
6998
6999 assert(Mask.getValueType().getVectorNumElements() ==
7000 StVal.getValueType().getVectorNumElements() &&
7001 "Mask and data vectors should have the same number of elements");
7002 return DAG.getMaskedStore(MST->getChain(), dl, StVal, MST->getBasePtr(),
7003 MST->getOffset(), Mask, MST->getMemoryVT(),
7004 MST->getMemOperand(), MST->getAddressingMode(),
7005 false, MST->isCompressingStore());
7006 }
7007
WidenVecOp_MGATHER(SDNode * N,unsigned OpNo)7008 SDValue DAGTypeLegalizer::WidenVecOp_MGATHER(SDNode *N, unsigned OpNo) {
7009 assert(OpNo == 4 && "Can widen only the index of mgather");
7010 auto *MG = cast<MaskedGatherSDNode>(N);
7011 SDValue DataOp = MG->getPassThru();
7012 SDValue Mask = MG->getMask();
7013 SDValue Scale = MG->getScale();
7014
7015 // Just widen the index. It's allowed to have extra elements.
7016 SDValue Index = GetWidenedVector(MG->getIndex());
7017
7018 SDLoc dl(N);
7019 SDValue Ops[] = {MG->getChain(), DataOp, Mask, MG->getBasePtr(), Index,
7020 Scale};
7021 SDValue Res = DAG.getMaskedGather(MG->getVTList(), MG->getMemoryVT(), dl, Ops,
7022 MG->getMemOperand(), MG->getIndexType(),
7023 MG->getExtensionType());
7024 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
7025 ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
7026 return SDValue();
7027 }
7028
WidenVecOp_MSCATTER(SDNode * N,unsigned OpNo)7029 SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
7030 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
7031 SDValue DataOp = MSC->getValue();
7032 SDValue Mask = MSC->getMask();
7033 SDValue Index = MSC->getIndex();
7034 SDValue Scale = MSC->getScale();
7035 EVT WideMemVT = MSC->getMemoryVT();
7036
7037 if (OpNo == 1) {
7038 DataOp = GetWidenedVector(DataOp);
7039 unsigned NumElts = DataOp.getValueType().getVectorNumElements();
7040
7041 // Widen index.
7042 EVT IndexVT = Index.getValueType();
7043 EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
7044 IndexVT.getVectorElementType(), NumElts);
7045 Index = ModifyToType(Index, WideIndexVT);
7046
7047 // The mask should be widened as well.
7048 EVT MaskVT = Mask.getValueType();
7049 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
7050 MaskVT.getVectorElementType(), NumElts);
7051 Mask = ModifyToType(Mask, WideMaskVT, true);
7052
7053 // Widen the MemoryType
7054 WideMemVT = EVT::getVectorVT(*DAG.getContext(),
7055 MSC->getMemoryVT().getScalarType(), NumElts);
7056 } else if (OpNo == 4) {
7057 // Just widen the index. It's allowed to have extra elements.
7058 Index = GetWidenedVector(Index);
7059 } else
7060 llvm_unreachable("Can't widen this operand of mscatter");
7061
7062 SDValue Ops[] = {MSC->getChain(), DataOp, Mask, MSC->getBasePtr(), Index,
7063 Scale};
7064 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), WideMemVT, SDLoc(N),
7065 Ops, MSC->getMemOperand(), MSC->getIndexType(),
7066 MSC->isTruncatingStore());
7067 }
7068
WidenVecOp_VP_SCATTER(SDNode * N,unsigned OpNo)7069 SDValue DAGTypeLegalizer::WidenVecOp_VP_SCATTER(SDNode *N, unsigned OpNo) {
7070 VPScatterSDNode *VPSC = cast<VPScatterSDNode>(N);
7071 SDValue DataOp = VPSC->getValue();
7072 SDValue Mask = VPSC->getMask();
7073 SDValue Index = VPSC->getIndex();
7074 SDValue Scale = VPSC->getScale();
7075 EVT WideMemVT = VPSC->getMemoryVT();
7076
7077 if (OpNo == 1) {
7078 DataOp = GetWidenedVector(DataOp);
7079 Index = GetWidenedVector(Index);
7080 const auto WideEC = DataOp.getValueType().getVectorElementCount();
7081 Mask = GetWidenedMask(Mask, WideEC);
7082 WideMemVT = EVT::getVectorVT(*DAG.getContext(),
7083 VPSC->getMemoryVT().getScalarType(), WideEC);
7084 } else if (OpNo == 3) {
7085 // Just widen the index. It's allowed to have extra elements.
7086 Index = GetWidenedVector(Index);
7087 } else
7088 llvm_unreachable("Can't widen this operand of VP_SCATTER");
7089
7090 SDValue Ops[] = {
7091 VPSC->getChain(), DataOp, VPSC->getBasePtr(), Index, Scale, Mask,
7092 VPSC->getVectorLength()};
7093 return DAG.getScatterVP(DAG.getVTList(MVT::Other), WideMemVT, SDLoc(N), Ops,
7094 VPSC->getMemOperand(), VPSC->getIndexType());
7095 }
7096
WidenVecOp_SETCC(SDNode * N)7097 SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
7098 SDValue InOp0 = GetWidenedVector(N->getOperand(0));
7099 SDValue InOp1 = GetWidenedVector(N->getOperand(1));
7100 SDLoc dl(N);
7101 EVT VT = N->getValueType(0);
7102
7103 // WARNING: In this code we widen the compare instruction with garbage.
7104 // This garbage may contain denormal floats which may be slow. Is this a real
7105 // concern ? Should we zero the unused lanes if this is a float compare ?
7106
7107 // Get a new SETCC node to compare the newly widened operands.
7108 // Only some of the compared elements are legal.
7109 EVT SVT = getSetCCResultType(InOp0.getValueType());
7110 // The result type is legal, if its vXi1, keep vXi1 for the new SETCC.
7111 if (VT.getScalarType() == MVT::i1)
7112 SVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7113 SVT.getVectorElementCount());
7114
7115 SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
7116 SVT, InOp0, InOp1, N->getOperand(2));
7117
7118 // Extract the needed results from the result vector.
7119 EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
7120 SVT.getVectorElementType(),
7121 VT.getVectorElementCount());
7122 SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC,
7123 DAG.getVectorIdxConstant(0, dl));
7124
7125 EVT OpVT = N->getOperand(0).getValueType();
7126 ISD::NodeType ExtendCode =
7127 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
7128 return DAG.getNode(ExtendCode, dl, VT, CC);
7129 }
7130
WidenVecOp_STRICT_FSETCC(SDNode * N)7131 SDValue DAGTypeLegalizer::WidenVecOp_STRICT_FSETCC(SDNode *N) {
7132 SDValue Chain = N->getOperand(0);
7133 SDValue LHS = GetWidenedVector(N->getOperand(1));
7134 SDValue RHS = GetWidenedVector(N->getOperand(2));
7135 SDValue CC = N->getOperand(3);
7136 SDLoc dl(N);
7137
7138 EVT VT = N->getValueType(0);
7139 EVT EltVT = VT.getVectorElementType();
7140 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
7141 unsigned NumElts = VT.getVectorNumElements();
7142
7143 // Unroll into a build vector.
7144 SmallVector<SDValue, 8> Scalars(NumElts);
7145 SmallVector<SDValue, 8> Chains(NumElts);
7146
7147 for (unsigned i = 0; i != NumElts; ++i) {
7148 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
7149 DAG.getVectorIdxConstant(i, dl));
7150 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
7151 DAG.getVectorIdxConstant(i, dl));
7152
7153 Scalars[i] = DAG.getNode(N->getOpcode(), dl, {MVT::i1, MVT::Other},
7154 {Chain, LHSElem, RHSElem, CC});
7155 Chains[i] = Scalars[i].getValue(1);
7156 Scalars[i] = DAG.getSelect(dl, EltVT, Scalars[i],
7157 DAG.getBoolConstant(true, dl, EltVT, VT),
7158 DAG.getBoolConstant(false, dl, EltVT, VT));
7159 }
7160
7161 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
7162 ReplaceValueWith(SDValue(N, 1), NewChain);
7163
7164 return DAG.getBuildVector(VT, dl, Scalars);
7165 }
7166
WidenVecOp_VECREDUCE(SDNode * N)7167 SDValue DAGTypeLegalizer::WidenVecOp_VECREDUCE(SDNode *N) {
7168 SDLoc dl(N);
7169 SDValue Op = GetWidenedVector(N->getOperand(0));
7170 EVT OrigVT = N->getOperand(0).getValueType();
7171 EVT WideVT = Op.getValueType();
7172 EVT ElemVT = OrigVT.getVectorElementType();
7173 SDNodeFlags Flags = N->getFlags();
7174
7175 unsigned Opc = N->getOpcode();
7176 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Opc);
7177 SDValue NeutralElem = DAG.getNeutralElement(BaseOpc, dl, ElemVT, Flags);
7178 assert(NeutralElem && "Neutral element must exist");
7179
7180 // Pad the vector with the neutral element.
7181 unsigned OrigElts = OrigVT.getVectorMinNumElements();
7182 unsigned WideElts = WideVT.getVectorMinNumElements();
7183
7184 if (WideVT.isScalableVector()) {
7185 unsigned GCD = std::gcd(OrigElts, WideElts);
7186 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
7187 ElementCount::getScalable(GCD));
7188 SDValue SplatNeutral = DAG.getSplatVector(SplatVT, dl, NeutralElem);
7189 for (unsigned Idx = OrigElts; Idx < WideElts; Idx = Idx + GCD)
7190 Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Op, SplatNeutral,
7191 DAG.getVectorIdxConstant(Idx, dl));
7192 return DAG.getNode(Opc, dl, N->getValueType(0), Op, Flags);
7193 }
7194
7195 for (unsigned Idx = OrigElts; Idx < WideElts; Idx++)
7196 Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WideVT, Op, NeutralElem,
7197 DAG.getVectorIdxConstant(Idx, dl));
7198
7199 return DAG.getNode(Opc, dl, N->getValueType(0), Op, Flags);
7200 }
7201
WidenVecOp_VECREDUCE_SEQ(SDNode * N)7202 SDValue DAGTypeLegalizer::WidenVecOp_VECREDUCE_SEQ(SDNode *N) {
7203 SDLoc dl(N);
7204 SDValue AccOp = N->getOperand(0);
7205 SDValue VecOp = N->getOperand(1);
7206 SDValue Op = GetWidenedVector(VecOp);
7207
7208 EVT OrigVT = VecOp.getValueType();
7209 EVT WideVT = Op.getValueType();
7210 EVT ElemVT = OrigVT.getVectorElementType();
7211 SDNodeFlags Flags = N->getFlags();
7212
7213 unsigned Opc = N->getOpcode();
7214 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Opc);
7215 SDValue NeutralElem = DAG.getNeutralElement(BaseOpc, dl, ElemVT, Flags);
7216
7217 // Pad the vector with the neutral element.
7218 unsigned OrigElts = OrigVT.getVectorMinNumElements();
7219 unsigned WideElts = WideVT.getVectorMinNumElements();
7220
7221 if (WideVT.isScalableVector()) {
7222 unsigned GCD = std::gcd(OrigElts, WideElts);
7223 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
7224 ElementCount::getScalable(GCD));
7225 SDValue SplatNeutral = DAG.getSplatVector(SplatVT, dl, NeutralElem);
7226 for (unsigned Idx = OrigElts; Idx < WideElts; Idx = Idx + GCD)
7227 Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Op, SplatNeutral,
7228 DAG.getVectorIdxConstant(Idx, dl));
7229 return DAG.getNode(Opc, dl, N->getValueType(0), AccOp, Op, Flags);
7230 }
7231
7232 for (unsigned Idx = OrigElts; Idx < WideElts; Idx++)
7233 Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WideVT, Op, NeutralElem,
7234 DAG.getVectorIdxConstant(Idx, dl));
7235
7236 return DAG.getNode(Opc, dl, N->getValueType(0), AccOp, Op, Flags);
7237 }
7238
WidenVecOp_VP_REDUCE(SDNode * N)7239 SDValue DAGTypeLegalizer::WidenVecOp_VP_REDUCE(SDNode *N) {
7240 assert(N->isVPOpcode() && "Expected VP opcode");
7241
7242 SDLoc dl(N);
7243 SDValue Op = GetWidenedVector(N->getOperand(1));
7244 SDValue Mask = GetWidenedMask(N->getOperand(2),
7245 Op.getValueType().getVectorElementCount());
7246
7247 return DAG.getNode(N->getOpcode(), dl, N->getValueType(0),
7248 {N->getOperand(0), Op, Mask, N->getOperand(3)},
7249 N->getFlags());
7250 }
7251
WidenVecOp_VSELECT(SDNode * N)7252 SDValue DAGTypeLegalizer::WidenVecOp_VSELECT(SDNode *N) {
7253 // This only gets called in the case that the left and right inputs and
7254 // result are of a legal odd vector type, and the condition is illegal i1 of
7255 // the same odd width that needs widening.
7256 EVT VT = N->getValueType(0);
7257 assert(VT.isVector() && !VT.isPow2VectorType() && isTypeLegal(VT));
7258
7259 SDValue Cond = GetWidenedVector(N->getOperand(0));
7260 SDValue LeftIn = DAG.WidenVector(N->getOperand(1), SDLoc(N));
7261 SDValue RightIn = DAG.WidenVector(N->getOperand(2), SDLoc(N));
7262 SDLoc DL(N);
7263
7264 SDValue Select = DAG.getNode(N->getOpcode(), DL, LeftIn.getValueType(), Cond,
7265 LeftIn, RightIn);
7266 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Select,
7267 DAG.getVectorIdxConstant(0, DL));
7268 }
7269
WidenVecOp_VP_CttzElements(SDNode * N)7270 SDValue DAGTypeLegalizer::WidenVecOp_VP_CttzElements(SDNode *N) {
7271 SDLoc DL(N);
7272 SDValue Source = GetWidenedVector(N->getOperand(0));
7273 EVT SrcVT = Source.getValueType();
7274 SDValue Mask =
7275 GetWidenedMask(N->getOperand(1), SrcVT.getVectorElementCount());
7276
7277 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0),
7278 {Source, Mask, N->getOperand(2)}, N->getFlags());
7279 }
7280
7281 //===----------------------------------------------------------------------===//
7282 // Vector Widening Utilities
7283 //===----------------------------------------------------------------------===//
7284
7285 // Utility function to find the type to chop up a widen vector for load/store
7286 // TLI: Target lowering used to determine legal types.
7287 // Width: Width left need to load/store.
7288 // WidenVT: The widen vector type to load to/store from
7289 // Align: If 0, don't allow use of a wider type
7290 // WidenEx: If Align is not 0, the amount additional we can load/store from.
7291
findMemType(SelectionDAG & DAG,const TargetLowering & TLI,unsigned Width,EVT WidenVT,unsigned Align=0,unsigned WidenEx=0)7292 static std::optional<EVT> findMemType(SelectionDAG &DAG,
7293 const TargetLowering &TLI, unsigned Width,
7294 EVT WidenVT, unsigned Align = 0,
7295 unsigned WidenEx = 0) {
7296 EVT WidenEltVT = WidenVT.getVectorElementType();
7297 const bool Scalable = WidenVT.isScalableVector();
7298 unsigned WidenWidth = WidenVT.getSizeInBits().getKnownMinValue();
7299 unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
7300 unsigned AlignInBits = Align*8;
7301
7302 // If we have one element to load/store, return it.
7303 EVT RetVT = WidenEltVT;
7304 if (!Scalable && Width == WidenEltWidth)
7305 return RetVT;
7306
7307 // Don't bother looking for an integer type if the vector is scalable, skip
7308 // to vector types.
7309 if (!Scalable) {
7310 // See if there is larger legal integer than the element type to load/store.
7311 for (EVT MemVT : reverse(MVT::integer_valuetypes())) {
7312 unsigned MemVTWidth = MemVT.getSizeInBits();
7313 if (MemVT.getSizeInBits() <= WidenEltWidth)
7314 break;
7315 auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
7316 if ((Action == TargetLowering::TypeLegal ||
7317 Action == TargetLowering::TypePromoteInteger) &&
7318 (WidenWidth % MemVTWidth) == 0 &&
7319 isPowerOf2_32(WidenWidth / MemVTWidth) &&
7320 (MemVTWidth <= Width ||
7321 (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
7322 if (MemVTWidth == WidenWidth)
7323 return MemVT;
7324 RetVT = MemVT;
7325 break;
7326 }
7327 }
7328 }
7329
7330 // See if there is a larger vector type to load/store that has the same vector
7331 // element type and is evenly divisible with the WidenVT.
7332 for (EVT MemVT : reverse(MVT::vector_valuetypes())) {
7333 // Skip vector MVTs which don't match the scalable property of WidenVT.
7334 if (Scalable != MemVT.isScalableVector())
7335 continue;
7336 unsigned MemVTWidth = MemVT.getSizeInBits().getKnownMinValue();
7337 auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
7338 if ((Action == TargetLowering::TypeLegal ||
7339 Action == TargetLowering::TypePromoteInteger) &&
7340 WidenEltVT == MemVT.getVectorElementType() &&
7341 (WidenWidth % MemVTWidth) == 0 &&
7342 isPowerOf2_32(WidenWidth / MemVTWidth) &&
7343 (MemVTWidth <= Width ||
7344 (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
7345 if (RetVT.getFixedSizeInBits() < MemVTWidth || MemVT == WidenVT)
7346 return MemVT;
7347 }
7348 }
7349
7350 // Using element-wise loads and stores for widening operations is not
7351 // supported for scalable vectors
7352 if (Scalable)
7353 return std::nullopt;
7354
7355 return RetVT;
7356 }
7357
7358 // Builds a vector type from scalar loads
7359 // VecTy: Resulting Vector type
7360 // LDOps: Load operators to build a vector type
7361 // [Start,End) the list of loads to use.
BuildVectorFromScalar(SelectionDAG & DAG,EVT VecTy,SmallVectorImpl<SDValue> & LdOps,unsigned Start,unsigned End)7362 static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
7363 SmallVectorImpl<SDValue> &LdOps,
7364 unsigned Start, unsigned End) {
7365 SDLoc dl(LdOps[Start]);
7366 EVT LdTy = LdOps[Start].getValueType();
7367 unsigned Width = VecTy.getSizeInBits();
7368 unsigned NumElts = Width / LdTy.getSizeInBits();
7369 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
7370
7371 unsigned Idx = 1;
7372 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
7373
7374 for (unsigned i = Start + 1; i != End; ++i) {
7375 EVT NewLdTy = LdOps[i].getValueType();
7376 if (NewLdTy != LdTy) {
7377 NumElts = Width / NewLdTy.getSizeInBits();
7378 NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
7379 VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
7380 // Readjust position and vector position based on new load type.
7381 Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
7382 LdTy = NewLdTy;
7383 }
7384 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
7385 DAG.getVectorIdxConstant(Idx++, dl));
7386 }
7387 return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
7388 }
7389
GenWidenVectorLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD)7390 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
7391 LoadSDNode *LD) {
7392 // The strategy assumes that we can efficiently load power-of-two widths.
7393 // The routine chops the vector into the largest vector loads with the same
7394 // element type or scalar loads and then recombines it to the widen vector
7395 // type.
7396 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
7397 EVT LdVT = LD->getMemoryVT();
7398 SDLoc dl(LD);
7399 assert(LdVT.isVector() && WidenVT.isVector());
7400 assert(LdVT.isScalableVector() == WidenVT.isScalableVector());
7401 assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
7402
7403 // Load information
7404 SDValue Chain = LD->getChain();
7405 SDValue BasePtr = LD->getBasePtr();
7406 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
7407 AAMDNodes AAInfo = LD->getAAInfo();
7408
7409 TypeSize LdWidth = LdVT.getSizeInBits();
7410 TypeSize WidenWidth = WidenVT.getSizeInBits();
7411 TypeSize WidthDiff = WidenWidth - LdWidth;
7412 // Allow wider loads if they are sufficiently aligned to avoid memory faults
7413 // and if the original load is simple.
7414 unsigned LdAlign =
7415 (!LD->isSimple() || LdVT.isScalableVector()) ? 0 : LD->getAlign().value();
7416
7417 // Find the vector type that can load from.
7418 std::optional<EVT> FirstVT =
7419 findMemType(DAG, TLI, LdWidth.getKnownMinValue(), WidenVT, LdAlign,
7420 WidthDiff.getKnownMinValue());
7421
7422 if (!FirstVT)
7423 return SDValue();
7424
7425 SmallVector<EVT, 8> MemVTs;
7426 TypeSize FirstVTWidth = FirstVT->getSizeInBits();
7427
7428 // Unless we're able to load in one instruction we must work out how to load
7429 // the remainder.
7430 if (!TypeSize::isKnownLE(LdWidth, FirstVTWidth)) {
7431 std::optional<EVT> NewVT = FirstVT;
7432 TypeSize RemainingWidth = LdWidth;
7433 TypeSize NewVTWidth = FirstVTWidth;
7434 do {
7435 RemainingWidth -= NewVTWidth;
7436 if (TypeSize::isKnownLT(RemainingWidth, NewVTWidth)) {
7437 // The current type we are using is too large. Find a better size.
7438 NewVT = findMemType(DAG, TLI, RemainingWidth.getKnownMinValue(),
7439 WidenVT, LdAlign, WidthDiff.getKnownMinValue());
7440 if (!NewVT)
7441 return SDValue();
7442 NewVTWidth = NewVT->getSizeInBits();
7443 }
7444 MemVTs.push_back(*NewVT);
7445 } while (TypeSize::isKnownGT(RemainingWidth, NewVTWidth));
7446 }
7447
7448 SDValue LdOp = DAG.getLoad(*FirstVT, dl, Chain, BasePtr, LD->getPointerInfo(),
7449 LD->getOriginalAlign(), MMOFlags, AAInfo);
7450 LdChain.push_back(LdOp.getValue(1));
7451
7452 // Check if we can load the element with one instruction.
7453 if (MemVTs.empty()) {
7454 assert(TypeSize::isKnownLE(LdWidth, FirstVTWidth));
7455 if (!FirstVT->isVector()) {
7456 unsigned NumElts =
7457 WidenWidth.getFixedValue() / FirstVTWidth.getFixedValue();
7458 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), *FirstVT, NumElts);
7459 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
7460 return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
7461 }
7462 if (FirstVT == WidenVT)
7463 return LdOp;
7464
7465 // TODO: We don't currently have any tests that exercise this code path.
7466 assert(WidenWidth.getFixedValue() % FirstVTWidth.getFixedValue() == 0);
7467 unsigned NumConcat =
7468 WidenWidth.getFixedValue() / FirstVTWidth.getFixedValue();
7469 SmallVector<SDValue, 16> ConcatOps(NumConcat);
7470 SDValue UndefVal = DAG.getUNDEF(*FirstVT);
7471 ConcatOps[0] = LdOp;
7472 for (unsigned i = 1; i != NumConcat; ++i)
7473 ConcatOps[i] = UndefVal;
7474 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
7475 }
7476
7477 // Load vector by using multiple loads from largest vector to scalar.
7478 SmallVector<SDValue, 16> LdOps;
7479 LdOps.push_back(LdOp);
7480
7481 uint64_t ScaledOffset = 0;
7482 MachinePointerInfo MPI = LD->getPointerInfo();
7483
7484 // First incremement past the first load.
7485 IncrementPointer(cast<LoadSDNode>(LdOp), *FirstVT, MPI, BasePtr,
7486 &ScaledOffset);
7487
7488 for (EVT MemVT : MemVTs) {
7489 Align NewAlign = ScaledOffset == 0
7490 ? LD->getOriginalAlign()
7491 : commonAlignment(LD->getAlign(), ScaledOffset);
7492 SDValue L =
7493 DAG.getLoad(MemVT, dl, Chain, BasePtr, MPI, NewAlign, MMOFlags, AAInfo);
7494
7495 LdOps.push_back(L);
7496 LdChain.push_back(L.getValue(1));
7497 IncrementPointer(cast<LoadSDNode>(L), MemVT, MPI, BasePtr, &ScaledOffset);
7498 }
7499
7500 // Build the vector from the load operations.
7501 unsigned End = LdOps.size();
7502 if (!LdOps[0].getValueType().isVector())
7503 // All the loads are scalar loads.
7504 return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
7505
7506 // If the load contains vectors, build the vector using concat vector.
7507 // All of the vectors used to load are power-of-2, and the scalar loads can be
7508 // combined to make a power-of-2 vector.
7509 SmallVector<SDValue, 16> ConcatOps(End);
7510 int i = End - 1;
7511 int Idx = End;
7512 EVT LdTy = LdOps[i].getValueType();
7513 // First, combine the scalar loads to a vector.
7514 if (!LdTy.isVector()) {
7515 for (--i; i >= 0; --i) {
7516 LdTy = LdOps[i].getValueType();
7517 if (LdTy.isVector())
7518 break;
7519 }
7520 ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i + 1, End);
7521 }
7522
7523 ConcatOps[--Idx] = LdOps[i];
7524 for (--i; i >= 0; --i) {
7525 EVT NewLdTy = LdOps[i].getValueType();
7526 if (NewLdTy != LdTy) {
7527 // Create a larger vector.
7528 TypeSize LdTySize = LdTy.getSizeInBits();
7529 TypeSize NewLdTySize = NewLdTy.getSizeInBits();
7530 assert(NewLdTySize.isScalable() == LdTySize.isScalable() &&
7531 NewLdTySize.isKnownMultipleOf(LdTySize.getKnownMinValue()));
7532 unsigned NumOps =
7533 NewLdTySize.getKnownMinValue() / LdTySize.getKnownMinValue();
7534 SmallVector<SDValue, 16> WidenOps(NumOps);
7535 unsigned j = 0;
7536 for (; j != End-Idx; ++j)
7537 WidenOps[j] = ConcatOps[Idx+j];
7538 for (; j != NumOps; ++j)
7539 WidenOps[j] = DAG.getUNDEF(LdTy);
7540
7541 ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
7542 WidenOps);
7543 Idx = End - 1;
7544 LdTy = NewLdTy;
7545 }
7546 ConcatOps[--Idx] = LdOps[i];
7547 }
7548
7549 if (WidenWidth == LdTy.getSizeInBits() * (End - Idx))
7550 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
7551 ArrayRef(&ConcatOps[Idx], End - Idx));
7552
7553 // We need to fill the rest with undefs to build the vector.
7554 unsigned NumOps =
7555 WidenWidth.getKnownMinValue() / LdTy.getSizeInBits().getKnownMinValue();
7556 SmallVector<SDValue, 16> WidenOps(NumOps);
7557 SDValue UndefVal = DAG.getUNDEF(LdTy);
7558 {
7559 unsigned i = 0;
7560 for (; i != End-Idx; ++i)
7561 WidenOps[i] = ConcatOps[Idx+i];
7562 for (; i != NumOps; ++i)
7563 WidenOps[i] = UndefVal;
7564 }
7565 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
7566 }
7567
7568 SDValue
GenWidenVectorExtLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD,ISD::LoadExtType ExtType)7569 DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
7570 LoadSDNode *LD,
7571 ISD::LoadExtType ExtType) {
7572 // For extension loads, it may not be more efficient to chop up the vector
7573 // and then extend it. Instead, we unroll the load and build a new vector.
7574 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
7575 EVT LdVT = LD->getMemoryVT();
7576 SDLoc dl(LD);
7577 assert(LdVT.isVector() && WidenVT.isVector());
7578 assert(LdVT.isScalableVector() == WidenVT.isScalableVector());
7579
7580 // Load information
7581 SDValue Chain = LD->getChain();
7582 SDValue BasePtr = LD->getBasePtr();
7583 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
7584 AAMDNodes AAInfo = LD->getAAInfo();
7585
7586 if (LdVT.isScalableVector())
7587 report_fatal_error("Generating widen scalable extending vector loads is "
7588 "not yet supported");
7589
7590 EVT EltVT = WidenVT.getVectorElementType();
7591 EVT LdEltVT = LdVT.getVectorElementType();
7592 unsigned NumElts = LdVT.getVectorNumElements();
7593
7594 // Load each element and widen.
7595 unsigned WidenNumElts = WidenVT.getVectorNumElements();
7596 SmallVector<SDValue, 16> Ops(WidenNumElts);
7597 unsigned Increment = LdEltVT.getSizeInBits() / 8;
7598 Ops[0] =
7599 DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, LD->getPointerInfo(),
7600 LdEltVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
7601 LdChain.push_back(Ops[0].getValue(1));
7602 unsigned i = 0, Offset = Increment;
7603 for (i=1; i < NumElts; ++i, Offset += Increment) {
7604 SDValue NewBasePtr =
7605 DAG.getObjectPtrOffset(dl, BasePtr, TypeSize::getFixed(Offset));
7606 Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
7607 LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
7608 LD->getOriginalAlign(), MMOFlags, AAInfo);
7609 LdChain.push_back(Ops[i].getValue(1));
7610 }
7611
7612 // Fill the rest with undefs.
7613 SDValue UndefVal = DAG.getUNDEF(EltVT);
7614 for (; i != WidenNumElts; ++i)
7615 Ops[i] = UndefVal;
7616
7617 return DAG.getBuildVector(WidenVT, dl, Ops);
7618 }
7619
GenWidenVectorStores(SmallVectorImpl<SDValue> & StChain,StoreSDNode * ST)7620 bool DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
7621 StoreSDNode *ST) {
7622 // The strategy assumes that we can efficiently store power-of-two widths.
7623 // The routine chops the vector into the largest vector stores with the same
7624 // element type or scalar stores.
7625 SDValue Chain = ST->getChain();
7626 SDValue BasePtr = ST->getBasePtr();
7627 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
7628 AAMDNodes AAInfo = ST->getAAInfo();
7629 SDValue ValOp = GetWidenedVector(ST->getValue());
7630 SDLoc dl(ST);
7631
7632 EVT StVT = ST->getMemoryVT();
7633 TypeSize StWidth = StVT.getSizeInBits();
7634 EVT ValVT = ValOp.getValueType();
7635 TypeSize ValWidth = ValVT.getSizeInBits();
7636 EVT ValEltVT = ValVT.getVectorElementType();
7637 unsigned ValEltWidth = ValEltVT.getFixedSizeInBits();
7638 assert(StVT.getVectorElementType() == ValEltVT);
7639 assert(StVT.isScalableVector() == ValVT.isScalableVector() &&
7640 "Mismatch between store and value types");
7641
7642 int Idx = 0; // current index to store
7643
7644 MachinePointerInfo MPI = ST->getPointerInfo();
7645 uint64_t ScaledOffset = 0;
7646
7647 // A breakdown of how to widen this vector store. Each element of the vector
7648 // is a memory VT combined with the number of times it is to be stored to,
7649 // e,g., v5i32 -> {{v2i32,2},{i32,1}}
7650 SmallVector<std::pair<EVT, unsigned>, 4> MemVTs;
7651
7652 while (StWidth.isNonZero()) {
7653 // Find the largest vector type we can store with.
7654 std::optional<EVT> NewVT =
7655 findMemType(DAG, TLI, StWidth.getKnownMinValue(), ValVT);
7656 if (!NewVT)
7657 return false;
7658 MemVTs.push_back({*NewVT, 0});
7659 TypeSize NewVTWidth = NewVT->getSizeInBits();
7660
7661 do {
7662 StWidth -= NewVTWidth;
7663 MemVTs.back().second++;
7664 } while (StWidth.isNonZero() && TypeSize::isKnownGE(StWidth, NewVTWidth));
7665 }
7666
7667 for (const auto &Pair : MemVTs) {
7668 EVT NewVT = Pair.first;
7669 unsigned Count = Pair.second;
7670 TypeSize NewVTWidth = NewVT.getSizeInBits();
7671
7672 if (NewVT.isVector()) {
7673 unsigned NumVTElts = NewVT.getVectorMinNumElements();
7674 do {
7675 Align NewAlign = ScaledOffset == 0
7676 ? ST->getOriginalAlign()
7677 : commonAlignment(ST->getAlign(), ScaledOffset);
7678 SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
7679 DAG.getVectorIdxConstant(Idx, dl));
7680 SDValue PartStore = DAG.getStore(Chain, dl, EOp, BasePtr, MPI, NewAlign,
7681 MMOFlags, AAInfo);
7682 StChain.push_back(PartStore);
7683
7684 Idx += NumVTElts;
7685 IncrementPointer(cast<StoreSDNode>(PartStore), NewVT, MPI, BasePtr,
7686 &ScaledOffset);
7687 } while (--Count);
7688 } else {
7689 // Cast the vector to the scalar type we can store.
7690 unsigned NumElts = ValWidth.getFixedValue() / NewVTWidth.getFixedValue();
7691 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
7692 SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
7693 // Readjust index position based on new vector type.
7694 Idx = Idx * ValEltWidth / NewVTWidth.getFixedValue();
7695 do {
7696 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
7697 DAG.getVectorIdxConstant(Idx++, dl));
7698 SDValue PartStore =
7699 DAG.getStore(Chain, dl, EOp, BasePtr, MPI, ST->getOriginalAlign(),
7700 MMOFlags, AAInfo);
7701 StChain.push_back(PartStore);
7702
7703 IncrementPointer(cast<StoreSDNode>(PartStore), NewVT, MPI, BasePtr);
7704 } while (--Count);
7705 // Restore index back to be relative to the original widen element type.
7706 Idx = Idx * NewVTWidth.getFixedValue() / ValEltWidth;
7707 }
7708 }
7709
7710 return true;
7711 }
7712
7713 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
7714 /// input vector must have the same element type as NVT.
7715 /// FillWithZeroes specifies that the vector should be widened with zeroes.
ModifyToType(SDValue InOp,EVT NVT,bool FillWithZeroes)7716 SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT,
7717 bool FillWithZeroes) {
7718 // Note that InOp might have been widened so it might already have
7719 // the right width or it might need be narrowed.
7720 EVT InVT = InOp.getValueType();
7721 assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
7722 "input and widen element type must match");
7723 assert(InVT.isScalableVector() == NVT.isScalableVector() &&
7724 "cannot modify scalable vectors in this way");
7725 SDLoc dl(InOp);
7726
7727 // Check if InOp already has the right width.
7728 if (InVT == NVT)
7729 return InOp;
7730
7731 ElementCount InEC = InVT.getVectorElementCount();
7732 ElementCount WidenEC = NVT.getVectorElementCount();
7733 if (WidenEC.hasKnownScalarFactor(InEC)) {
7734 unsigned NumConcat = WidenEC.getKnownScalarFactor(InEC);
7735 SmallVector<SDValue, 16> Ops(NumConcat);
7736 SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, InVT) :
7737 DAG.getUNDEF(InVT);
7738 Ops[0] = InOp;
7739 for (unsigned i = 1; i != NumConcat; ++i)
7740 Ops[i] = FillVal;
7741
7742 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
7743 }
7744
7745 if (InEC.hasKnownScalarFactor(WidenEC))
7746 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
7747 DAG.getVectorIdxConstant(0, dl));
7748
7749 assert(!InVT.isScalableVector() && !NVT.isScalableVector() &&
7750 "Scalable vectors should have been handled already.");
7751
7752 unsigned InNumElts = InEC.getFixedValue();
7753 unsigned WidenNumElts = WidenEC.getFixedValue();
7754
7755 // Fall back to extract and build (+ mask, if padding with zeros).
7756 SmallVector<SDValue, 16> Ops(WidenNumElts);
7757 EVT EltVT = NVT.getVectorElementType();
7758 unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
7759 unsigned Idx;
7760 for (Idx = 0; Idx < MinNumElts; ++Idx)
7761 Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
7762 DAG.getVectorIdxConstant(Idx, dl));
7763
7764 SDValue UndefVal = DAG.getUNDEF(EltVT);
7765 for (; Idx < WidenNumElts; ++Idx)
7766 Ops[Idx] = UndefVal;
7767
7768 SDValue Widened = DAG.getBuildVector(NVT, dl, Ops);
7769 if (!FillWithZeroes)
7770 return Widened;
7771
7772 assert(NVT.isInteger() &&
7773 "We expect to never want to FillWithZeroes for non-integral types.");
7774
7775 SmallVector<SDValue, 16> MaskOps;
7776 MaskOps.append(MinNumElts, DAG.getAllOnesConstant(dl, EltVT));
7777 MaskOps.append(WidenNumElts - MinNumElts, DAG.getConstant(0, dl, EltVT));
7778
7779 return DAG.getNode(ISD::AND, dl, NVT, Widened,
7780 DAG.getBuildVector(NVT, dl, MaskOps));
7781 }
7782