xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/ParentMap.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include <optional>
30 
31 using namespace clang;
32 
33 //===----------------------------------------------------------------------===//
34 // Core Reachability Analysis routines.
35 //===----------------------------------------------------------------------===//
36 
isEnumConstant(const Expr * Ex)37 static bool isEnumConstant(const Expr *Ex) {
38   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
39   if (!DR)
40     return false;
41   return isa<EnumConstantDecl>(DR->getDecl());
42 }
43 
isTrivialExpression(const Expr * Ex)44 static bool isTrivialExpression(const Expr *Ex) {
45   Ex = Ex->IgnoreParenCasts();
46   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
47          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
48          isa<CharacterLiteral>(Ex) ||
49          isEnumConstant(Ex);
50 }
51 
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)52 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
53   // Check if the block ends with a do...while() and see if 'S' is the
54   // condition.
55   if (const Stmt *Term = B->getTerminatorStmt()) {
56     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
57       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
58       return Cond == S && isTrivialExpression(Cond);
59     }
60   }
61   return false;
62 }
63 
isBuiltinUnreachable(const Stmt * S)64 static bool isBuiltinUnreachable(const Stmt *S) {
65   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
66     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
67       return FDecl->getIdentifier() &&
68              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
69   return false;
70 }
71 
isBuiltinAssumeFalse(const CFGBlock * B,const Stmt * S,ASTContext & C)72 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
73                                  ASTContext &C) {
74   if (B->empty())  {
75     // Happens if S is B's terminator and B contains nothing else
76     // (e.g. a CFGBlock containing only a goto).
77     return false;
78   }
79   if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
80     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
81       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
82     }
83   }
84   return false;
85 }
86 
isDeadReturn(const CFGBlock * B,const Stmt * S)87 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
88   // Look to see if the current control flow ends with a 'return', and see if
89   // 'S' is a substatement. The 'return' may not be the last element in the
90   // block, or may be in a subsequent block because of destructors.
91   const CFGBlock *Current = B;
92   while (true) {
93     for (const CFGElement &CE : llvm::reverse(*Current)) {
94       if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
95         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
96           if (RS == S)
97             return true;
98           if (const Expr *RE = RS->getRetValue()) {
99             RE = RE->IgnoreParenCasts();
100             if (RE == S)
101               return true;
102             ParentMap PM(const_cast<Expr *>(RE));
103             // If 'S' is in the ParentMap, it is a subexpression of
104             // the return statement.
105             return PM.getParent(S);
106           }
107         }
108         break;
109       }
110     }
111     // Note also that we are restricting the search for the return statement
112     // to stop at control-flow; only part of a return statement may be dead,
113     // without the whole return statement being dead.
114     if (Current->getTerminator().isTemporaryDtorsBranch()) {
115       // Temporary destructors have a predictable control flow, thus we want to
116       // look into the next block for the return statement.
117       // We look into the false branch, as we know the true branch only contains
118       // the call to the destructor.
119       assert(Current->succ_size() == 2);
120       Current = *(Current->succ_begin() + 1);
121     } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
122       // If there is only one successor, we're not dealing with outgoing control
123       // flow. Thus, look into the next block.
124       Current = *Current->succ_begin();
125       if (Current->pred_size() > 1) {
126         // If there is more than one predecessor, we're dealing with incoming
127         // control flow - if the return statement is in that block, it might
128         // well be reachable via a different control flow, thus it's not dead.
129         return false;
130       }
131     } else {
132       // We hit control flow or a dead end. Stop searching.
133       return false;
134     }
135   }
136   llvm_unreachable("Broke out of infinite loop.");
137 }
138 
getTopMostMacro(SourceLocation Loc,SourceManager & SM)139 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
140   assert(Loc.isMacroID());
141   SourceLocation Last;
142   do {
143     Last = Loc;
144     Loc = SM.getImmediateMacroCallerLoc(Loc);
145   } while (Loc.isMacroID());
146   return Last;
147 }
148 
149 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)150 static bool isExpandedFromConfigurationMacro(const Stmt *S,
151                                              Preprocessor &PP,
152                                              bool IgnoreYES_NO = false) {
153   // FIXME: This is not very precise.  Here we just check to see if the
154   // value comes from a macro, but we can do much better.  This is likely
155   // to be over conservative.  This logic is factored into a separate function
156   // so that we can refine it later.
157   SourceLocation L = S->getBeginLoc();
158   if (L.isMacroID()) {
159     SourceManager &SM = PP.getSourceManager();
160     if (IgnoreYES_NO) {
161       // The Objective-C constant 'YES' and 'NO'
162       // are defined as macros.  Do not treat them
163       // as configuration values.
164       SourceLocation TopL = getTopMostMacro(L, SM);
165       StringRef MacroName = PP.getImmediateMacroName(TopL);
166       if (MacroName == "YES" || MacroName == "NO")
167         return false;
168     } else if (!PP.getLangOpts().CPlusPlus) {
169       // Do not treat C 'false' and 'true' macros as configuration values.
170       SourceLocation TopL = getTopMostMacro(L, SM);
171       StringRef MacroName = PP.getImmediateMacroName(TopL);
172       if (MacroName == "false" || MacroName == "true")
173         return false;
174     }
175     return true;
176   }
177   return false;
178 }
179 
180 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
181 
182 /// Returns true if the statement represents a configuration value.
183 ///
184 /// A configuration value is something usually determined at compile-time
185 /// to conditionally always execute some branch.  Such guards are for
186 /// "sometimes unreachable" code.  Such code is usually not interesting
187 /// to report as unreachable, and may mask truly unreachable code within
188 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)189 static bool isConfigurationValue(const Stmt *S,
190                                  Preprocessor &PP,
191                                  SourceRange *SilenceableCondVal = nullptr,
192                                  bool IncludeIntegers = true,
193                                  bool WrappedInParens = false) {
194   if (!S)
195     return false;
196 
197   if (const auto *Ex = dyn_cast<Expr>(S))
198     S = Ex->IgnoreImplicit();
199 
200   if (const auto *Ex = dyn_cast<Expr>(S))
201     S = Ex->IgnoreCasts();
202 
203   // Special case looking for the sigil '()' around an integer literal.
204   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
205     if (!PE->getBeginLoc().isMacroID())
206       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
207                                   IncludeIntegers, true);
208 
209   if (const Expr *Ex = dyn_cast<Expr>(S))
210     S = Ex->IgnoreCasts();
211 
212   bool IgnoreYES_NO = false;
213 
214   switch (S->getStmtClass()) {
215     case Stmt::CallExprClass: {
216       const FunctionDecl *Callee =
217         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
218       return Callee ? Callee->isConstexpr() : false;
219     }
220     case Stmt::DeclRefExprClass:
221       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
222     case Stmt::ObjCBoolLiteralExprClass:
223       IgnoreYES_NO = true;
224       [[fallthrough]];
225     case Stmt::CXXBoolLiteralExprClass:
226     case Stmt::IntegerLiteralClass: {
227       const Expr *E = cast<Expr>(S);
228       if (IncludeIntegers) {
229         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
230           *SilenceableCondVal = E->getSourceRange();
231         return WrappedInParens ||
232                isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
233       }
234       return false;
235     }
236     case Stmt::MemberExprClass:
237       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
238     case Stmt::UnaryExprOrTypeTraitExprClass:
239       return true;
240     case Stmt::BinaryOperatorClass: {
241       const BinaryOperator *B = cast<BinaryOperator>(S);
242       // Only include raw integers (not enums) as configuration
243       // values if they are used in a logical or comparison operator
244       // (not arithmetic).
245       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
246       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
247                                   IncludeIntegers) ||
248              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
249                                   IncludeIntegers);
250     }
251     case Stmt::UnaryOperatorClass: {
252       const UnaryOperator *UO = cast<UnaryOperator>(S);
253       if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
254         return false;
255       bool SilenceableCondValNotSet =
256           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
257       bool IsSubExprConfigValue =
258           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
259                                IncludeIntegers, WrappedInParens);
260       // Update the silenceable condition value source range only if the range
261       // was set directly by the child expression.
262       if (SilenceableCondValNotSet &&
263           SilenceableCondVal->getBegin().isValid() &&
264           *SilenceableCondVal ==
265               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
266         *SilenceableCondVal = UO->getSourceRange();
267       return IsSubExprConfigValue;
268     }
269     default:
270       return false;
271   }
272 }
273 
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)274 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
275   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
276     return isConfigurationValue(ED->getInitExpr(), PP);
277   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
278     // As a heuristic, treat globals as configuration values.  Note
279     // that we only will get here if Sema evaluated this
280     // condition to a constant expression, which means the global
281     // had to be declared in a way to be a truly constant value.
282     // We could generalize this to local variables, but it isn't
283     // clear if those truly represent configuration values that
284     // gate unreachable code.
285     if (!VD->hasLocalStorage())
286       return true;
287 
288     // As a heuristic, locals that have been marked 'const' explicitly
289     // can be treated as configuration values as well.
290     return VD->getType().isLocalConstQualified();
291   }
292   return false;
293 }
294 
295 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)296 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
297                                              Preprocessor &PP) {
298   if (const Stmt *Term = B->getTerminatorStmt()) {
299     if (isa<SwitchStmt>(Term))
300       return true;
301     // Specially handle '||' and '&&'.
302     if (isa<BinaryOperator>(Term)) {
303       return isConfigurationValue(Term, PP);
304     }
305     // Do not treat constexpr if statement successors as unreachable in warnings
306     // since the point of these statements is to determine branches at compile
307     // time.
308     if (const auto *IS = dyn_cast<IfStmt>(Term);
309         IS != nullptr && IS->isConstexpr())
310       return true;
311   }
312 
313   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
314   return isConfigurationValue(Cond, PP);
315 }
316 
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)317 static unsigned scanFromBlock(const CFGBlock *Start,
318                               llvm::BitVector &Reachable,
319                               Preprocessor *PP,
320                               bool IncludeSometimesUnreachableEdges) {
321   unsigned count = 0;
322 
323   // Prep work queue
324   SmallVector<const CFGBlock*, 32> WL;
325 
326   // The entry block may have already been marked reachable
327   // by the caller.
328   if (!Reachable[Start->getBlockID()]) {
329     ++count;
330     Reachable[Start->getBlockID()] = true;
331   }
332 
333   WL.push_back(Start);
334 
335   // Find the reachable blocks from 'Start'.
336   while (!WL.empty()) {
337     const CFGBlock *item = WL.pop_back_val();
338 
339     // There are cases where we want to treat all successors as reachable.
340     // The idea is that some "sometimes unreachable" code is not interesting,
341     // and that we should forge ahead and explore those branches anyway.
342     // This allows us to potentially uncover some "always unreachable" code
343     // within the "sometimes unreachable" code.
344     // Look at the successors and mark then reachable.
345     std::optional<bool> TreatAllSuccessorsAsReachable;
346     if (!IncludeSometimesUnreachableEdges)
347       TreatAllSuccessorsAsReachable = false;
348 
349     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
350          E = item->succ_end(); I != E; ++I) {
351       const CFGBlock *B = *I;
352       if (!B) do {
353         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
354         if (!UB)
355           break;
356 
357         if (!TreatAllSuccessorsAsReachable) {
358           assert(PP);
359           TreatAllSuccessorsAsReachable =
360             shouldTreatSuccessorsAsReachable(item, *PP);
361         }
362 
363         if (*TreatAllSuccessorsAsReachable) {
364           B = UB;
365           break;
366         }
367       }
368       while (false);
369 
370       if (B) {
371         unsigned blockID = B->getBlockID();
372         if (!Reachable[blockID]) {
373           Reachable.set(blockID);
374           WL.push_back(B);
375           ++count;
376         }
377       }
378     }
379   }
380   return count;
381 }
382 
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)383 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
384                                             Preprocessor &PP,
385                                             llvm::BitVector &Reachable) {
386   return scanFromBlock(Start, Reachable, &PP, true);
387 }
388 
389 //===----------------------------------------------------------------------===//
390 // Dead Code Scanner.
391 //===----------------------------------------------------------------------===//
392 
393 namespace {
394   class DeadCodeScan {
395     llvm::BitVector Visited;
396     llvm::BitVector &Reachable;
397     SmallVector<const CFGBlock *, 10> WorkList;
398     Preprocessor &PP;
399     ASTContext &C;
400 
401     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
402     DeferredLocsTy;
403 
404     DeferredLocsTy DeferredLocs;
405 
406   public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP,ASTContext & C)407     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
408     : Visited(reachable.size()),
409       Reachable(reachable),
410       PP(PP), C(C) {}
411 
412     void enqueue(const CFGBlock *block);
413     unsigned scanBackwards(const CFGBlock *Start,
414     clang::reachable_code::Callback &CB);
415 
416     bool isDeadCodeRoot(const CFGBlock *Block);
417 
418     const Stmt *findDeadCode(const CFGBlock *Block);
419 
420     void reportDeadCode(const CFGBlock *B,
421                         const Stmt *S,
422                         clang::reachable_code::Callback &CB);
423   };
424 }
425 
enqueue(const CFGBlock * block)426 void DeadCodeScan::enqueue(const CFGBlock *block) {
427   unsigned blockID = block->getBlockID();
428   if (Reachable[blockID] || Visited[blockID])
429     return;
430   Visited[blockID] = true;
431   WorkList.push_back(block);
432 }
433 
isDeadCodeRoot(const clang::CFGBlock * Block)434 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
435   bool isDeadRoot = true;
436 
437   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
438        E = Block->pred_end(); I != E; ++I) {
439     if (const CFGBlock *PredBlock = *I) {
440       unsigned blockID = PredBlock->getBlockID();
441       if (Visited[blockID]) {
442         isDeadRoot = false;
443         continue;
444       }
445       if (!Reachable[blockID]) {
446         isDeadRoot = false;
447         Visited[blockID] = true;
448         WorkList.push_back(PredBlock);
449         continue;
450       }
451     }
452   }
453 
454   return isDeadRoot;
455 }
456 
457 // Check if the given `DeadStmt` is a coroutine statement and is a substmt of
458 // the coroutine statement. `Block` is the CFGBlock containing the `DeadStmt`.
isInCoroutineStmt(const Stmt * DeadStmt,const CFGBlock * Block)459 static bool isInCoroutineStmt(const Stmt *DeadStmt, const CFGBlock *Block) {
460   // The coroutine statement, co_return, co_await, or co_yield.
461   const Stmt *CoroStmt = nullptr;
462   // Find the first coroutine statement after the DeadStmt in the block.
463   bool AfterDeadStmt = false;
464   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I != E;
465        ++I)
466     if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
467       const Stmt *S = CS->getStmt();
468       if (S == DeadStmt)
469         AfterDeadStmt = true;
470       if (AfterDeadStmt &&
471           // For simplicity, we only check simple coroutine statements.
472           (llvm::isa<CoreturnStmt>(S) || llvm::isa<CoroutineSuspendExpr>(S))) {
473         CoroStmt = S;
474         break;
475       }
476     }
477   if (!CoroStmt)
478     return false;
479   struct Checker : RecursiveASTVisitor<Checker> {
480     const Stmt *DeadStmt;
481     bool CoroutineSubStmt = false;
482     Checker(const Stmt *S) : DeadStmt(S) {}
483     bool VisitStmt(const Stmt *S) {
484       if (S == DeadStmt)
485         CoroutineSubStmt = true;
486       return true;
487     }
488     // Statements captured in the CFG can be implicit.
489     bool shouldVisitImplicitCode() const { return true; }
490   };
491   Checker checker(DeadStmt);
492   checker.TraverseStmt(const_cast<Stmt *>(CoroStmt));
493   return checker.CoroutineSubStmt;
494 }
495 
isValidDeadStmt(const Stmt * S,const clang::CFGBlock * Block)496 static bool isValidDeadStmt(const Stmt *S, const clang::CFGBlock *Block) {
497   if (S->getBeginLoc().isInvalid())
498     return false;
499   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
500     return BO->getOpcode() != BO_Comma;
501   // Coroutine statements are never considered dead statements, because removing
502   // them may change the function semantic if it is the only coroutine statement
503   // of the coroutine.
504   return !isInCoroutineStmt(S, Block);
505 }
506 
findDeadCode(const clang::CFGBlock * Block)507 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
508   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
509     if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
510       const Stmt *S = CS->getStmt();
511       if (isValidDeadStmt(S, Block))
512         return S;
513     }
514 
515   CFGTerminator T = Block->getTerminator();
516   if (T.isStmtBranch()) {
517     const Stmt *S = T.getStmt();
518     if (S && isValidDeadStmt(S, Block))
519       return S;
520   }
521 
522   return nullptr;
523 }
524 
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)525 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
526                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
527   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
528     return -1;
529   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
530     return 1;
531   return 0;
532 }
533 
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)534 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
535                                      clang::reachable_code::Callback &CB) {
536 
537   unsigned count = 0;
538   enqueue(Start);
539 
540   while (!WorkList.empty()) {
541     const CFGBlock *Block = WorkList.pop_back_val();
542 
543     // It is possible that this block has been marked reachable after
544     // it was enqueued.
545     if (Reachable[Block->getBlockID()])
546       continue;
547 
548     // Look for any dead code within the block.
549     const Stmt *S = findDeadCode(Block);
550 
551     if (!S) {
552       // No dead code.  Possibly an empty block.  Look at dead predecessors.
553       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
554            E = Block->pred_end(); I != E; ++I) {
555         if (const CFGBlock *predBlock = *I)
556           enqueue(predBlock);
557       }
558       continue;
559     }
560 
561     // Specially handle macro-expanded code.
562     if (S->getBeginLoc().isMacroID()) {
563       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
564       continue;
565     }
566 
567     if (isDeadCodeRoot(Block)) {
568       reportDeadCode(Block, S, CB);
569       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
570     }
571     else {
572       // Record this statement as the possibly best location in a
573       // strongly-connected component of dead code for emitting a
574       // warning.
575       DeferredLocs.push_back(std::make_pair(Block, S));
576     }
577   }
578 
579   // If we didn't find a dead root, then report the dead code with the
580   // earliest location.
581   if (!DeferredLocs.empty()) {
582     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
583     for (const auto &I : DeferredLocs) {
584       const CFGBlock *Block = I.first;
585       if (Reachable[Block->getBlockID()])
586         continue;
587       reportDeadCode(Block, I.second, CB);
588       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
589     }
590   }
591 
592   return count;
593 }
594 
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)595 static SourceLocation GetUnreachableLoc(const Stmt *S,
596                                         SourceRange &R1,
597                                         SourceRange &R2) {
598   R1 = R2 = SourceRange();
599 
600   if (const Expr *Ex = dyn_cast<Expr>(S))
601     S = Ex->IgnoreParenImpCasts();
602 
603   switch (S->getStmtClass()) {
604     case Expr::BinaryOperatorClass: {
605       const BinaryOperator *BO = cast<BinaryOperator>(S);
606       return BO->getOperatorLoc();
607     }
608     case Expr::UnaryOperatorClass: {
609       const UnaryOperator *UO = cast<UnaryOperator>(S);
610       R1 = UO->getSubExpr()->getSourceRange();
611       return UO->getOperatorLoc();
612     }
613     case Expr::CompoundAssignOperatorClass: {
614       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
615       R1 = CAO->getLHS()->getSourceRange();
616       R2 = CAO->getRHS()->getSourceRange();
617       return CAO->getOperatorLoc();
618     }
619     case Expr::BinaryConditionalOperatorClass:
620     case Expr::ConditionalOperatorClass: {
621       const AbstractConditionalOperator *CO =
622       cast<AbstractConditionalOperator>(S);
623       return CO->getQuestionLoc();
624     }
625     case Expr::MemberExprClass: {
626       const MemberExpr *ME = cast<MemberExpr>(S);
627       R1 = ME->getSourceRange();
628       return ME->getMemberLoc();
629     }
630     case Expr::ArraySubscriptExprClass: {
631       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
632       R1 = ASE->getLHS()->getSourceRange();
633       R2 = ASE->getRHS()->getSourceRange();
634       return ASE->getRBracketLoc();
635     }
636     case Expr::CStyleCastExprClass: {
637       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
638       R1 = CSC->getSubExpr()->getSourceRange();
639       return CSC->getLParenLoc();
640     }
641     case Expr::CXXFunctionalCastExprClass: {
642       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
643       R1 = CE->getSubExpr()->getSourceRange();
644       return CE->getBeginLoc();
645     }
646     case Stmt::CXXTryStmtClass: {
647       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
648     }
649     case Expr::ObjCBridgedCastExprClass: {
650       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
651       R1 = CSC->getSubExpr()->getSourceRange();
652       return CSC->getLParenLoc();
653     }
654     default: ;
655   }
656   R1 = S->getSourceRange();
657   return S->getBeginLoc();
658 }
659 
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)660 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
661                                   const Stmt *S,
662                                   clang::reachable_code::Callback &CB) {
663   // Classify the unreachable code found, or suppress it in some cases.
664   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
665 
666   if (isa<BreakStmt>(S)) {
667     UK = reachable_code::UK_Break;
668   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
669              isBuiltinAssumeFalse(B, S, C)) {
670     return;
671   }
672   else if (isDeadReturn(B, S)) {
673     UK = reachable_code::UK_Return;
674   }
675 
676   const auto *AS = dyn_cast<AttributedStmt>(S);
677   bool HasFallThroughAttr =
678       AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs());
679 
680   SourceRange SilenceableCondVal;
681 
682   if (UK == reachable_code::UK_Other) {
683     // Check if the dead code is part of the "loop target" of
684     // a for/for-range loop.  This is the block that contains
685     // the increment code.
686     if (const Stmt *LoopTarget = B->getLoopTarget()) {
687       SourceLocation Loc = LoopTarget->getBeginLoc();
688       SourceRange R1(Loc, Loc), R2;
689 
690       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
691         const Expr *Inc = FS->getInc();
692         Loc = Inc->getBeginLoc();
693         R2 = Inc->getSourceRange();
694       }
695 
696       CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc,
697                            SourceRange(), SourceRange(Loc, Loc), R2,
698                            HasFallThroughAttr);
699       return;
700     }
701 
702     // Check if the dead block has a predecessor whose branch has
703     // a configuration value that *could* be modified to
704     // silence the warning.
705     CFGBlock::const_pred_iterator PI = B->pred_begin();
706     if (PI != B->pred_end()) {
707       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
708         const Stmt *TermCond =
709             PredBlock->getTerminatorCondition(/* strip parens */ false);
710         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
711       }
712     }
713   }
714 
715   SourceRange R1, R2;
716   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
717   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr);
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // Reachability APIs.
722 //===----------------------------------------------------------------------===//
723 
724 namespace clang { namespace reachable_code {
725 
anchor()726 void Callback::anchor() { }
727 
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)728 unsigned ScanReachableFromBlock(const CFGBlock *Start,
729                                 llvm::BitVector &Reachable) {
730   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
731 }
732 
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)733 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
734                          Callback &CB) {
735 
736   CFG *cfg = AC.getCFG();
737   if (!cfg)
738     return;
739 
740   // Scan for reachable blocks from the entrance of the CFG.
741   // If there are no unreachable blocks, we're done.
742   llvm::BitVector reachable(cfg->getNumBlockIDs());
743   unsigned numReachable =
744     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
745   if (numReachable == cfg->getNumBlockIDs())
746     return;
747 
748   // If there aren't explicit EH edges, we should include the 'try' dispatch
749   // blocks as roots.
750   if (!AC.getCFGBuildOptions().AddEHEdges) {
751     for (const CFGBlock *B : cfg->try_blocks())
752       numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
753     if (numReachable == cfg->getNumBlockIDs())
754       return;
755   }
756 
757   // There are some unreachable blocks.  We need to find the root blocks that
758   // contain code that should be considered unreachable.
759   for (const CFGBlock *block : *cfg) {
760     // A block may have been marked reachable during this loop.
761     if (reachable[block->getBlockID()])
762       continue;
763 
764     DeadCodeScan DS(reachable, PP, AC.getASTContext());
765     numReachable += DS.scanBackwards(block, CB);
766 
767     if (numReachable == cfg->getNumBlockIDs())
768       return;
769   }
770 }
771 
772 }} // end namespace clang::reachable_code
773