1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 static DEFINE_MUTEX(mf_mutex);
78
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
83 }
84
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
90 }
91
92 /**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100 { \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
104 } \
105 static DEVICE_ATTR_RO(_name)
106
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112
113 static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120 };
121
122 const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125 };
126
127 static const struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
155 };
156
157 /*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 int ret;
166
167 /*
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
183 }
184
185 return ret;
186 }
187
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 if (hugepage_or_freepage) {
191 /*
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 */
195 if (__page_handle_poison(page) <= 0)
196 /*
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
211
212 return true;
213 }
214
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251 }
252
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263 }
264
265 /*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 if (!hwpoison_filter_memcg)
281 return 0;
282
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
285
286 return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 if (!hwpoison_filter_enable)
295 return 0;
296
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
306 return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 return 0;
313 }
314 #endif
315
316 /*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338 struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
343 };
344
345 /*
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
349 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
355
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
358
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
363 /*
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
368 */
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
375 }
376
377 /*
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
380 */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 if (folio_test_hugetlb(folio))
384 return;
385 /*
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
388 */
389 if (folio_test_slab(folio))
390 return;
391
392 lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 shake_folio(page_folio(page));
399 }
400
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
403 {
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
411
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_trans_huge(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_trans_huge(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
437 }
438
439 /*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444 /*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447 */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
451 {
452 struct to_kill *tk;
453
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
458 }
459
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = folio_shift(page_folio(p));
465
466 /*
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
475 */
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
482 }
483
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487 }
488
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
492 {
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501 {
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510 }
511
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
515 {
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521 * Kill the processes that have been collected earlier.
522 *
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
525 */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
528 {
529 struct to_kill *tk, *next;
530
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 }
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554 }
555
556 /*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
563 */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 struct task_struct *t;
567
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
577 return NULL;
578 }
579
580 /*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
585 *
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
591 */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 if (!tsk->mm)
595 return NULL;
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
603 return find_early_kill_thread(tsk);
604 }
605
606 /*
607 * Collect processes when the error hit an anonymous page.
608 */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
612 {
613 struct task_struct *tsk;
614 struct anon_vma *av;
615 pgoff_t pgoff;
616
617 av = folio_lock_anon_vma_read(folio, NULL);
618 if (av == NULL) /* Not actually mapped anymore */
619 return;
620
621 pgoff = page_pgoff(folio, page);
622 rcu_read_lock();
623 for_each_process(tsk) {
624 struct vm_area_struct *vma;
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627 unsigned long addr;
628
629 if (!t)
630 continue;
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
633 vma = vmac->vma;
634 if (vma->vm_mm != t->mm)
635 continue;
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 }
639 }
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
642 }
643
644 /*
645 * Collect processes when the error hit a file mapped page.
646 */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
650 {
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
653 struct address_space *mapping = folio->mapping;
654 pgoff_t pgoff;
655
656 i_mmap_lock_read(mapping);
657 rcu_read_lock();
658 pgoff = page_pgoff(folio, page);
659 for_each_process(tsk) {
660 struct task_struct *t = task_early_kill(tsk, force_early);
661 unsigned long addr;
662
663 if (!t)
664 continue;
665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 pgoff) {
667 /*
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
670 * mapped in its pte.
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
673 */
674 if (vma->vm_mm != t->mm)
675 continue;
676 addr = page_address_in_vma(folio, page, vma);
677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 }
679 }
680 rcu_read_unlock();
681 i_mmap_unlock_read(mapping);
682 }
683
684 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
688 {
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692
693 /*
694 * Collect processes when the error hit a fsdax page.
695 */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)696 static void collect_procs_fsdax(const struct page *page,
697 struct address_space *mapping, pgoff_t pgoff,
698 struct list_head *to_kill, bool pre_remove)
699 {
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
702
703 i_mmap_lock_read(mapping);
704 rcu_read_lock();
705 for_each_process(tsk) {
706 struct task_struct *t = tsk;
707
708 /*
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
712 */
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 }
721 }
722 rcu_read_unlock();
723 i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726
727 /*
728 * Collect the processes who have the corrupted page mapped to kill.
729 */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)730 static void collect_procs(const struct folio *folio, const struct page *page,
731 struct list_head *tokill, int force_early)
732 {
733 if (!folio->mapping)
734 return;
735 if (unlikely(folio_test_ksm(folio)))
736 collect_procs_ksm(folio, page, tokill, force_early);
737 else if (folio_test_anon(folio))
738 collect_procs_anon(folio, page, tokill, force_early);
739 else
740 collect_procs_file(folio, page, tokill, force_early);
741 }
742
743 struct hwpoison_walk {
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
747 };
748
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 tk->addr = addr;
752 tk->size_shift = shift;
753 }
754
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 unsigned long pfn = 0;
759
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
764
765 if (is_hwpoison_entry(swp))
766 pfn = swp_offset_pfn(swp);
767 }
768
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
771
772 set_to_kill(tk, addr, shift);
773 return 1;
774 }
775
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 struct hwpoison_walk *hwp)
779 {
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
783
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
791 }
792 return 0;
793 }
794 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 struct hwpoison_walk *hwp)
797 {
798 return 0;
799 }
800 #endif
801
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
804 {
805 struct hwpoison_walk *hwp = walk->private;
806 int ret = 0;
807 pte_t *ptep, *mapped_pte;
808 spinlock_t *ptl;
809
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
815 }
816
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
819 if (!ptep)
820 goto out;
821
822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
827 }
828 pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 cond_resched();
831 return ret;
832 }
833
834 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
838 {
839 struct hwpoison_walk *hwp = walk->private;
840 struct hstate *h = hstate_vma(walk->vma);
841 spinlock_t *ptl;
842 pte_t pte;
843 int ret;
844
845 ptl = huge_pte_lock(h, walk->mm, ptep);
846 pte = huge_ptep_get(walk->mm, addr, ptep);
847 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
848 hwp->pfn, &hwp->tk);
849 spin_unlock(ptl);
850 return ret;
851 }
852 #else
853 #define hwpoison_hugetlb_range NULL
854 #endif
855
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)856 static int hwpoison_test_walk(unsigned long start, unsigned long end,
857 struct mm_walk *walk)
858 {
859 /* We also want to consider pages mapped into VM_PFNMAP. */
860 return 0;
861 }
862
863 static const struct mm_walk_ops hwpoison_walk_ops = {
864 .pmd_entry = hwpoison_pte_range,
865 .hugetlb_entry = hwpoison_hugetlb_range,
866 .test_walk = hwpoison_test_walk,
867 .walk_lock = PGWALK_RDLOCK,
868 };
869
870 /*
871 * Sends SIGBUS to the current process with error info.
872 *
873 * This function is intended to handle "Action Required" MCEs on already
874 * hardware poisoned pages. They could happen, for example, when
875 * memory_failure() failed to unmap the error page at the first call, or
876 * when multiple local machine checks happened on different CPUs.
877 *
878 * MCE handler currently has no easy access to the error virtual address,
879 * so this function walks page table to find it. The returned virtual address
880 * is proper in most cases, but it could be wrong when the application
881 * process has multiple entries mapping the error page.
882 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)883 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
884 int flags)
885 {
886 int ret;
887 struct hwpoison_walk priv = {
888 .pfn = pfn,
889 };
890 priv.tk.tsk = p;
891
892 if (!p->mm)
893 return -EFAULT;
894
895 mmap_read_lock(p->mm);
896 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
897 (void *)&priv);
898 /*
899 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
900 * succeeds or fails, then kill the process with SIGBUS.
901 * ret = 0 when poison page is a clean page and it's dropped, no
902 * SIGBUS is needed.
903 */
904 if (ret == 1 && priv.tk.addr)
905 kill_proc(&priv.tk, pfn, flags);
906 mmap_read_unlock(p->mm);
907
908 return ret > 0 ? -EHWPOISON : 0;
909 }
910
911 /*
912 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
913 * But it could not do more to isolate the page from being accessed again,
914 * nor does it kill the process. This is extremely rare and one of the
915 * potential causes is that the page state has been changed due to
916 * underlying race condition. This is the most severe outcomes.
917 *
918 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
919 * It should have killed the process, but it can't isolate the page,
920 * due to conditions such as extra pin, unmap failure, etc. Accessing
921 * the page again may trigger another MCE and the process will be killed
922 * by the m-f() handler immediately.
923 *
924 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
925 * The page is unmapped, and is removed from the LRU or file mapping.
926 * An attempt to access the page again will trigger page fault and the
927 * PF handler will kill the process.
928 *
929 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
930 * The page has been completely isolated, that is, unmapped, taken out of
931 * the buddy system, or hole-punnched out of the file mapping.
932 */
933 static const char *action_name[] = {
934 [MF_IGNORED] = "Ignored",
935 [MF_FAILED] = "Failed",
936 [MF_DELAYED] = "Delayed",
937 [MF_RECOVERED] = "Recovered",
938 };
939
940 static const char * const action_page_types[] = {
941 [MF_MSG_KERNEL] = "reserved kernel page",
942 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
943 [MF_MSG_HUGE] = "huge page",
944 [MF_MSG_FREE_HUGE] = "free huge page",
945 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
946 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
947 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
948 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
949 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
950 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
951 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
952 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
953 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
954 [MF_MSG_CLEAN_LRU] = "clean LRU page",
955 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
956 [MF_MSG_BUDDY] = "free buddy page",
957 [MF_MSG_DAX] = "dax page",
958 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
959 [MF_MSG_ALREADY_POISONED] = "already poisoned",
960 [MF_MSG_UNKNOWN] = "unknown page",
961 };
962
963 /*
964 * XXX: It is possible that a page is isolated from LRU cache,
965 * and then kept in swap cache or failed to remove from page cache.
966 * The page count will stop it from being freed by unpoison.
967 * Stress tests should be aware of this memory leak problem.
968 */
delete_from_lru_cache(struct folio * folio)969 static int delete_from_lru_cache(struct folio *folio)
970 {
971 if (folio_isolate_lru(folio)) {
972 /*
973 * Clear sensible page flags, so that the buddy system won't
974 * complain when the folio is unpoison-and-freed.
975 */
976 folio_clear_active(folio);
977 folio_clear_unevictable(folio);
978
979 /*
980 * Poisoned page might never drop its ref count to 0 so we have
981 * to uncharge it manually from its memcg.
982 */
983 mem_cgroup_uncharge(folio);
984
985 /*
986 * drop the refcount elevated by folio_isolate_lru()
987 */
988 folio_put(folio);
989 return 0;
990 }
991 return -EIO;
992 }
993
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)994 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
995 struct address_space *mapping)
996 {
997 int ret = MF_FAILED;
998
999 if (mapping->a_ops->error_remove_folio) {
1000 int err = mapping->a_ops->error_remove_folio(mapping, folio);
1001
1002 if (err != 0)
1003 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
1004 else if (!filemap_release_folio(folio, GFP_NOIO))
1005 pr_info("%#lx: failed to release buffers\n", pfn);
1006 else
1007 ret = MF_RECOVERED;
1008 } else {
1009 /*
1010 * If the file system doesn't support it just invalidate
1011 * This fails on dirty or anything with private pages
1012 */
1013 if (mapping_evict_folio(mapping, folio))
1014 ret = MF_RECOVERED;
1015 else
1016 pr_info("%#lx: Failed to invalidate\n", pfn);
1017 }
1018
1019 return ret;
1020 }
1021
1022 struct page_state {
1023 unsigned long mask;
1024 unsigned long res;
1025 enum mf_action_page_type type;
1026
1027 /* Callback ->action() has to unlock the relevant page inside it. */
1028 int (*action)(struct page_state *ps, struct page *p);
1029 };
1030
1031 /*
1032 * Return true if page is still referenced by others, otherwise return
1033 * false.
1034 *
1035 * The extra_pins is true when one extra refcount is expected.
1036 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1037 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1038 bool extra_pins)
1039 {
1040 int count = page_count(p) - 1;
1041
1042 if (extra_pins)
1043 count -= folio_nr_pages(page_folio(p));
1044
1045 if (count > 0) {
1046 pr_err("%#lx: %s still referenced by %d users\n",
1047 page_to_pfn(p), action_page_types[ps->type], count);
1048 return true;
1049 }
1050
1051 return false;
1052 }
1053
1054 /*
1055 * Error hit kernel page.
1056 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1057 * could be more sophisticated.
1058 */
me_kernel(struct page_state * ps,struct page * p)1059 static int me_kernel(struct page_state *ps, struct page *p)
1060 {
1061 unlock_page(p);
1062 return MF_IGNORED;
1063 }
1064
1065 /*
1066 * Page in unknown state. Do nothing.
1067 * This is a catch-all in case we fail to make sense of the page state.
1068 */
me_unknown(struct page_state * ps,struct page * p)1069 static int me_unknown(struct page_state *ps, struct page *p)
1070 {
1071 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1072 unlock_page(p);
1073 return MF_IGNORED;
1074 }
1075
1076 /*
1077 * Clean (or cleaned) page cache page.
1078 */
me_pagecache_clean(struct page_state * ps,struct page * p)1079 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1080 {
1081 struct folio *folio = page_folio(p);
1082 int ret;
1083 struct address_space *mapping;
1084 bool extra_pins;
1085
1086 delete_from_lru_cache(folio);
1087
1088 /*
1089 * For anonymous folios the only reference left
1090 * should be the one m_f() holds.
1091 */
1092 if (folio_test_anon(folio)) {
1093 ret = MF_RECOVERED;
1094 goto out;
1095 }
1096
1097 /*
1098 * Now truncate the page in the page cache. This is really
1099 * more like a "temporary hole punch"
1100 * Don't do this for block devices when someone else
1101 * has a reference, because it could be file system metadata
1102 * and that's not safe to truncate.
1103 */
1104 mapping = folio_mapping(folio);
1105 if (!mapping) {
1106 /* Folio has been torn down in the meantime */
1107 ret = MF_FAILED;
1108 goto out;
1109 }
1110
1111 /*
1112 * The shmem page is kept in page cache instead of truncating
1113 * so is expected to have an extra refcount after error-handling.
1114 */
1115 extra_pins = shmem_mapping(mapping);
1116
1117 /*
1118 * Truncation is a bit tricky. Enable it per file system for now.
1119 *
1120 * Open: to take i_rwsem or not for this? Right now we don't.
1121 */
1122 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1123 if (has_extra_refcount(ps, p, extra_pins))
1124 ret = MF_FAILED;
1125
1126 out:
1127 folio_unlock(folio);
1128
1129 return ret;
1130 }
1131
1132 /*
1133 * Dirty pagecache page
1134 * Issues: when the error hit a hole page the error is not properly
1135 * propagated.
1136 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1137 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1138 {
1139 struct folio *folio = page_folio(p);
1140 struct address_space *mapping = folio_mapping(folio);
1141
1142 /* TBD: print more information about the file. */
1143 if (mapping) {
1144 /*
1145 * IO error will be reported by write(), fsync(), etc.
1146 * who check the mapping.
1147 * This way the application knows that something went
1148 * wrong with its dirty file data.
1149 */
1150 mapping_set_error(mapping, -EIO);
1151 }
1152
1153 return me_pagecache_clean(ps, p);
1154 }
1155
1156 /*
1157 * Clean and dirty swap cache.
1158 *
1159 * Dirty swap cache page is tricky to handle. The page could live both in page
1160 * table and swap cache(ie. page is freshly swapped in). So it could be
1161 * referenced concurrently by 2 types of PTEs:
1162 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1163 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1164 * and then
1165 * - clear dirty bit to prevent IO
1166 * - remove from LRU
1167 * - but keep in the swap cache, so that when we return to it on
1168 * a later page fault, we know the application is accessing
1169 * corrupted data and shall be killed (we installed simple
1170 * interception code in do_swap_page to catch it).
1171 *
1172 * Clean swap cache pages can be directly isolated. A later page fault will
1173 * bring in the known good data from disk.
1174 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1175 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1176 {
1177 struct folio *folio = page_folio(p);
1178 int ret;
1179 bool extra_pins = false;
1180
1181 folio_clear_dirty(folio);
1182 /* Trigger EIO in shmem: */
1183 folio_clear_uptodate(folio);
1184
1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1186 folio_unlock(folio);
1187
1188 if (ret == MF_DELAYED)
1189 extra_pins = true;
1190
1191 if (has_extra_refcount(ps, p, extra_pins))
1192 ret = MF_FAILED;
1193
1194 return ret;
1195 }
1196
me_swapcache_clean(struct page_state * ps,struct page * p)1197 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1198 {
1199 struct folio *folio = page_folio(p);
1200 int ret;
1201
1202 delete_from_swap_cache(folio);
1203
1204 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1205 folio_unlock(folio);
1206
1207 if (has_extra_refcount(ps, p, false))
1208 ret = MF_FAILED;
1209
1210 return ret;
1211 }
1212
1213 /*
1214 * Huge pages. Needs work.
1215 * Issues:
1216 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1217 * To narrow down kill region to one page, we need to break up pmd.
1218 */
me_huge_page(struct page_state * ps,struct page * p)1219 static int me_huge_page(struct page_state *ps, struct page *p)
1220 {
1221 struct folio *folio = page_folio(p);
1222 int res;
1223 struct address_space *mapping;
1224 bool extra_pins = false;
1225
1226 mapping = folio_mapping(folio);
1227 if (mapping) {
1228 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1229 /* The page is kept in page cache. */
1230 extra_pins = true;
1231 folio_unlock(folio);
1232 } else {
1233 folio_unlock(folio);
1234 /*
1235 * migration entry prevents later access on error hugepage,
1236 * so we can free and dissolve it into buddy to save healthy
1237 * subpages.
1238 */
1239 folio_put(folio);
1240 if (__page_handle_poison(p) > 0) {
1241 page_ref_inc(p);
1242 res = MF_RECOVERED;
1243 } else {
1244 res = MF_FAILED;
1245 }
1246 }
1247
1248 if (has_extra_refcount(ps, p, extra_pins))
1249 res = MF_FAILED;
1250
1251 return res;
1252 }
1253
1254 /*
1255 * Various page states we can handle.
1256 *
1257 * A page state is defined by its current page->flags bits.
1258 * The table matches them in order and calls the right handler.
1259 *
1260 * This is quite tricky because we can access page at any time
1261 * in its live cycle, so all accesses have to be extremely careful.
1262 *
1263 * This is not complete. More states could be added.
1264 * For any missing state don't attempt recovery.
1265 */
1266
1267 #define dirty (1UL << PG_dirty)
1268 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1269 #define unevict (1UL << PG_unevictable)
1270 #define mlock (1UL << PG_mlocked)
1271 #define lru (1UL << PG_lru)
1272 #define head (1UL << PG_head)
1273 #define reserved (1UL << PG_reserved)
1274
1275 static struct page_state error_states[] = {
1276 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1277 /*
1278 * free pages are specially detected outside this table:
1279 * PG_buddy pages only make a small fraction of all free pages.
1280 */
1281
1282 { head, head, MF_MSG_HUGE, me_huge_page },
1283
1284 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1285 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1286
1287 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1288 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1289
1290 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1291 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1292
1293 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1294 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1295
1296 /*
1297 * Catchall entry: must be at end.
1298 */
1299 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1300 };
1301
1302 #undef dirty
1303 #undef sc
1304 #undef unevict
1305 #undef mlock
1306 #undef lru
1307 #undef head
1308 #undef reserved
1309
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1310 static void update_per_node_mf_stats(unsigned long pfn,
1311 enum mf_result result)
1312 {
1313 int nid = MAX_NUMNODES;
1314 struct memory_failure_stats *mf_stats = NULL;
1315
1316 nid = pfn_to_nid(pfn);
1317 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1318 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1319 return;
1320 }
1321
1322 mf_stats = &NODE_DATA(nid)->mf_stats;
1323 switch (result) {
1324 case MF_IGNORED:
1325 ++mf_stats->ignored;
1326 break;
1327 case MF_FAILED:
1328 ++mf_stats->failed;
1329 break;
1330 case MF_DELAYED:
1331 ++mf_stats->delayed;
1332 break;
1333 case MF_RECOVERED:
1334 ++mf_stats->recovered;
1335 break;
1336 default:
1337 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1338 break;
1339 }
1340 ++mf_stats->total;
1341 }
1342
1343 /*
1344 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1345 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1346 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1347 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1348 enum mf_result result)
1349 {
1350 trace_memory_failure_event(pfn, type, result);
1351
1352 num_poisoned_pages_inc(pfn);
1353
1354 update_per_node_mf_stats(pfn, result);
1355
1356 pr_err("%#lx: recovery action for %s: %s\n",
1357 pfn, action_page_types[type], action_name[result]);
1358
1359 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1360 }
1361
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1362 static int page_action(struct page_state *ps, struct page *p,
1363 unsigned long pfn)
1364 {
1365 int result;
1366
1367 /* page p should be unlocked after returning from ps->action(). */
1368 result = ps->action(ps, p);
1369
1370 /* Could do more checks here if page looks ok */
1371 /*
1372 * Could adjust zone counters here to correct for the missing page.
1373 */
1374
1375 return action_result(pfn, ps->type, result);
1376 }
1377
PageHWPoisonTakenOff(struct page * page)1378 static inline bool PageHWPoisonTakenOff(struct page *page)
1379 {
1380 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1381 }
1382
SetPageHWPoisonTakenOff(struct page * page)1383 void SetPageHWPoisonTakenOff(struct page *page)
1384 {
1385 set_page_private(page, MAGIC_HWPOISON);
1386 }
1387
ClearPageHWPoisonTakenOff(struct page * page)1388 void ClearPageHWPoisonTakenOff(struct page *page)
1389 {
1390 if (PageHWPoison(page))
1391 set_page_private(page, 0);
1392 }
1393
1394 /*
1395 * Return true if a page type of a given page is supported by hwpoison
1396 * mechanism (while handling could fail), otherwise false. This function
1397 * does not return true for hugetlb or device memory pages, so it's assumed
1398 * to be called only in the context where we never have such pages.
1399 */
HWPoisonHandlable(struct page * page,unsigned long flags)1400 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1401 {
1402 if (PageSlab(page))
1403 return false;
1404
1405 /* Soft offline could migrate movable_ops pages */
1406 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1407 return true;
1408
1409 return PageLRU(page) || is_free_buddy_page(page);
1410 }
1411
__get_hwpoison_page(struct page * page,unsigned long flags)1412 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1413 {
1414 struct folio *folio = page_folio(page);
1415 int ret = 0;
1416 bool hugetlb = false;
1417
1418 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1419 if (hugetlb) {
1420 /* Make sure hugetlb demotion did not happen from under us. */
1421 if (folio == page_folio(page))
1422 return ret;
1423 if (ret > 0) {
1424 folio_put(folio);
1425 folio = page_folio(page);
1426 }
1427 }
1428
1429 /*
1430 * This check prevents from calling folio_try_get() for any
1431 * unsupported type of folio in order to reduce the risk of unexpected
1432 * races caused by taking a folio refcount.
1433 */
1434 if (!HWPoisonHandlable(&folio->page, flags))
1435 return -EBUSY;
1436
1437 if (folio_try_get(folio)) {
1438 if (folio == page_folio(page))
1439 return 1;
1440
1441 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1442 folio_put(folio);
1443 }
1444
1445 return 0;
1446 }
1447
1448 #define GET_PAGE_MAX_RETRY_NUM 3
1449
get_any_page(struct page * p,unsigned long flags)1450 static int get_any_page(struct page *p, unsigned long flags)
1451 {
1452 int ret = 0, pass = 0;
1453 bool count_increased = false;
1454
1455 if (flags & MF_COUNT_INCREASED)
1456 count_increased = true;
1457
1458 try_again:
1459 if (!count_increased) {
1460 ret = __get_hwpoison_page(p, flags);
1461 if (!ret) {
1462 if (page_count(p)) {
1463 /* We raced with an allocation, retry. */
1464 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1465 goto try_again;
1466 ret = -EBUSY;
1467 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1468 /* We raced with put_page, retry. */
1469 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1470 goto try_again;
1471 ret = -EIO;
1472 }
1473 goto out;
1474 } else if (ret == -EBUSY) {
1475 /*
1476 * We raced with (possibly temporary) unhandlable
1477 * page, retry.
1478 */
1479 if (pass++ < 3) {
1480 shake_page(p);
1481 goto try_again;
1482 }
1483 ret = -EIO;
1484 goto out;
1485 }
1486 }
1487
1488 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1489 ret = 1;
1490 } else {
1491 /*
1492 * A page we cannot handle. Check whether we can turn
1493 * it into something we can handle.
1494 */
1495 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1496 put_page(p);
1497 shake_page(p);
1498 count_increased = false;
1499 goto try_again;
1500 }
1501 put_page(p);
1502 ret = -EIO;
1503 }
1504 out:
1505 if (ret == -EIO)
1506 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1507
1508 return ret;
1509 }
1510
__get_unpoison_page(struct page * page)1511 static int __get_unpoison_page(struct page *page)
1512 {
1513 struct folio *folio = page_folio(page);
1514 int ret = 0;
1515 bool hugetlb = false;
1516
1517 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1518 if (hugetlb) {
1519 /* Make sure hugetlb demotion did not happen from under us. */
1520 if (folio == page_folio(page))
1521 return ret;
1522 if (ret > 0)
1523 folio_put(folio);
1524 }
1525
1526 /*
1527 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1528 * but also isolated from buddy freelist, so need to identify the
1529 * state and have to cancel both operations to unpoison.
1530 */
1531 if (PageHWPoisonTakenOff(page))
1532 return -EHWPOISON;
1533
1534 return get_page_unless_zero(page) ? 1 : 0;
1535 }
1536
1537 /**
1538 * get_hwpoison_page() - Get refcount for memory error handling
1539 * @p: Raw error page (hit by memory error)
1540 * @flags: Flags controlling behavior of error handling
1541 *
1542 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1543 * error on it, after checking that the error page is in a well-defined state
1544 * (defined as a page-type we can successfully handle the memory error on it,
1545 * such as LRU page and hugetlb page).
1546 *
1547 * Memory error handling could be triggered at any time on any type of page,
1548 * so it's prone to race with typical memory management lifecycle (like
1549 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1550 * extra care for the error page's state (as done in __get_hwpoison_page()),
1551 * and has some retry logic in get_any_page().
1552 *
1553 * When called from unpoison_memory(), the caller should already ensure that
1554 * the given page has PG_hwpoison. So it's never reused for other page
1555 * allocations, and __get_unpoison_page() never races with them.
1556 *
1557 * Return: 0 on failure or free buddy (hugetlb) page,
1558 * 1 on success for in-use pages in a well-defined state,
1559 * -EIO for pages on which we can not handle memory errors,
1560 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1561 * operations like allocation and free,
1562 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1563 */
get_hwpoison_page(struct page * p,unsigned long flags)1564 static int get_hwpoison_page(struct page *p, unsigned long flags)
1565 {
1566 int ret;
1567
1568 zone_pcp_disable(page_zone(p));
1569 if (flags & MF_UNPOISON)
1570 ret = __get_unpoison_page(p);
1571 else
1572 ret = get_any_page(p, flags);
1573 zone_pcp_enable(page_zone(p));
1574
1575 return ret;
1576 }
1577
1578 /*
1579 * The caller must guarantee the folio isn't large folio, except hugetlb.
1580 * try_to_unmap() can't handle it.
1581 */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1582 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1583 {
1584 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1585 struct address_space *mapping;
1586
1587 if (folio_test_swapcache(folio)) {
1588 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1589 ttu &= ~TTU_HWPOISON;
1590 }
1591
1592 /*
1593 * Propagate the dirty bit from PTEs to struct page first, because we
1594 * need this to decide if we should kill or just drop the page.
1595 * XXX: the dirty test could be racy: set_page_dirty() may not always
1596 * be called inside page lock (it's recommended but not enforced).
1597 */
1598 mapping = folio_mapping(folio);
1599 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1600 mapping_can_writeback(mapping)) {
1601 if (folio_mkclean(folio)) {
1602 folio_set_dirty(folio);
1603 } else {
1604 ttu &= ~TTU_HWPOISON;
1605 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1606 pfn);
1607 }
1608 }
1609
1610 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1611 /*
1612 * For hugetlb folios in shared mappings, try_to_unmap
1613 * could potentially call huge_pmd_unshare. Because of
1614 * this, take semaphore in write mode here and set
1615 * TTU_RMAP_LOCKED to indicate we have taken the lock
1616 * at this higher level.
1617 */
1618 mapping = hugetlb_folio_mapping_lock_write(folio);
1619 if (!mapping) {
1620 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1621 folio_pfn(folio));
1622 return -EBUSY;
1623 }
1624
1625 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1626 i_mmap_unlock_write(mapping);
1627 } else {
1628 try_to_unmap(folio, ttu);
1629 }
1630
1631 return folio_mapped(folio) ? -EBUSY : 0;
1632 }
1633
1634 /*
1635 * Do all that is necessary to remove user space mappings. Unmap
1636 * the pages and send SIGBUS to the processes if the data was dirty.
1637 */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1638 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1639 unsigned long pfn, int flags)
1640 {
1641 LIST_HEAD(tokill);
1642 bool unmap_success;
1643 int forcekill;
1644 bool mlocked = folio_test_mlocked(folio);
1645
1646 /*
1647 * Here we are interested only in user-mapped pages, so skip any
1648 * other types of pages.
1649 */
1650 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1651 folio_test_pgtable(folio) || folio_test_offline(folio))
1652 return true;
1653 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1654 return true;
1655
1656 /*
1657 * This check implies we don't kill processes if their pages
1658 * are in the swap cache early. Those are always late kills.
1659 */
1660 if (!folio_mapped(folio))
1661 return true;
1662
1663 /*
1664 * First collect all the processes that have the page
1665 * mapped in dirty form. This has to be done before try_to_unmap,
1666 * because ttu takes the rmap data structures down.
1667 */
1668 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1669
1670 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1671 if (!unmap_success)
1672 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1673 pfn, folio_mapcount(folio));
1674
1675 /*
1676 * try_to_unmap() might put mlocked page in lru cache, so call
1677 * shake_page() again to ensure that it's flushed.
1678 */
1679 if (mlocked)
1680 shake_folio(folio);
1681
1682 /*
1683 * Now that the dirty bit has been propagated to the
1684 * struct page and all unmaps done we can decide if
1685 * killing is needed or not. Only kill when the page
1686 * was dirty or the process is not restartable,
1687 * otherwise the tokill list is merely
1688 * freed. When there was a problem unmapping earlier
1689 * use a more force-full uncatchable kill to prevent
1690 * any accesses to the poisoned memory.
1691 */
1692 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1693 !unmap_success;
1694 kill_procs(&tokill, forcekill, pfn, flags);
1695
1696 return unmap_success;
1697 }
1698
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1699 static int identify_page_state(unsigned long pfn, struct page *p,
1700 unsigned long page_flags)
1701 {
1702 struct page_state *ps;
1703
1704 /*
1705 * The first check uses the current page flags which may not have any
1706 * relevant information. The second check with the saved page flags is
1707 * carried out only if the first check can't determine the page status.
1708 */
1709 for (ps = error_states;; ps++)
1710 if ((p->flags & ps->mask) == ps->res)
1711 break;
1712
1713 page_flags |= (p->flags & (1UL << PG_dirty));
1714
1715 if (!ps->mask)
1716 for (ps = error_states;; ps++)
1717 if ((page_flags & ps->mask) == ps->res)
1718 break;
1719 return page_action(ps, p, pfn);
1720 }
1721
1722 /*
1723 * When 'release' is 'false', it means that if thp split has failed,
1724 * there is still more to do, hence the page refcount we took earlier
1725 * is still needed.
1726 */
try_to_split_thp_page(struct page * page,bool release)1727 static int try_to_split_thp_page(struct page *page, bool release)
1728 {
1729 int ret;
1730
1731 lock_page(page);
1732 ret = split_huge_page(page);
1733 unlock_page(page);
1734
1735 if (ret && release)
1736 put_page(page);
1737
1738 return ret;
1739 }
1740
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1741 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1742 struct address_space *mapping, pgoff_t index, int flags)
1743 {
1744 struct to_kill *tk;
1745 unsigned long size = 0;
1746
1747 list_for_each_entry(tk, to_kill, nd)
1748 if (tk->size_shift)
1749 size = max(size, 1UL << tk->size_shift);
1750
1751 if (size) {
1752 /*
1753 * Unmap the largest mapping to avoid breaking up device-dax
1754 * mappings which are constant size. The actual size of the
1755 * mapping being torn down is communicated in siginfo, see
1756 * kill_proc()
1757 */
1758 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1759
1760 unmap_mapping_range(mapping, start, size, 0);
1761 }
1762
1763 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1764 }
1765
1766 /*
1767 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1768 * either do not claim or fails to claim a hwpoison event, or devdax.
1769 * The fsdax pages are initialized per base page, and the devdax pages
1770 * could be initialized either as base pages, or as compound pages with
1771 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1772 * hwpoison, such that, if a subpage of a compound page is poisoned,
1773 * simply mark the compound head page is by far sufficient.
1774 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1775 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1776 struct dev_pagemap *pgmap)
1777 {
1778 struct folio *folio = pfn_folio(pfn);
1779 LIST_HEAD(to_kill);
1780 dax_entry_t cookie;
1781 int rc = 0;
1782
1783 /*
1784 * Prevent the inode from being freed while we are interrogating
1785 * the address_space, typically this would be handled by
1786 * lock_page(), but dax pages do not use the page lock. This
1787 * also prevents changes to the mapping of this pfn until
1788 * poison signaling is complete.
1789 */
1790 cookie = dax_lock_folio(folio);
1791 if (!cookie)
1792 return -EBUSY;
1793
1794 if (hwpoison_filter(&folio->page)) {
1795 rc = -EOPNOTSUPP;
1796 goto unlock;
1797 }
1798
1799 switch (pgmap->type) {
1800 case MEMORY_DEVICE_PRIVATE:
1801 case MEMORY_DEVICE_COHERENT:
1802 /*
1803 * TODO: Handle device pages which may need coordination
1804 * with device-side memory.
1805 */
1806 rc = -ENXIO;
1807 goto unlock;
1808 default:
1809 break;
1810 }
1811
1812 /*
1813 * Use this flag as an indication that the dax page has been
1814 * remapped UC to prevent speculative consumption of poison.
1815 */
1816 SetPageHWPoison(&folio->page);
1817
1818 /*
1819 * Unlike System-RAM there is no possibility to swap in a
1820 * different physical page at a given virtual address, so all
1821 * userspace consumption of ZONE_DEVICE memory necessitates
1822 * SIGBUS (i.e. MF_MUST_KILL)
1823 */
1824 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1825 collect_procs(folio, &folio->page, &to_kill, true);
1826
1827 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1828 unlock:
1829 dax_unlock_folio(folio, cookie);
1830 return rc;
1831 }
1832
1833 #ifdef CONFIG_FS_DAX
1834 /**
1835 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1836 * @mapping: address_space of the file in use
1837 * @index: start pgoff of the range within the file
1838 * @count: length of the range, in unit of PAGE_SIZE
1839 * @mf_flags: memory failure flags
1840 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1841 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1842 unsigned long count, int mf_flags)
1843 {
1844 LIST_HEAD(to_kill);
1845 dax_entry_t cookie;
1846 struct page *page;
1847 size_t end = index + count;
1848 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1849
1850 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1851
1852 for (; index < end; index++) {
1853 page = NULL;
1854 cookie = dax_lock_mapping_entry(mapping, index, &page);
1855 if (!cookie)
1856 return -EBUSY;
1857 if (!page)
1858 goto unlock;
1859
1860 if (!pre_remove)
1861 SetPageHWPoison(page);
1862
1863 /*
1864 * The pre_remove case is revoking access, the memory is still
1865 * good and could theoretically be put back into service.
1866 */
1867 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1868 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1869 index, mf_flags);
1870 unlock:
1871 dax_unlock_mapping_entry(mapping, index, cookie);
1872 }
1873 return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1876 #endif /* CONFIG_FS_DAX */
1877
1878 #ifdef CONFIG_HUGETLB_PAGE
1879
1880 /*
1881 * Struct raw_hwp_page represents information about "raw error page",
1882 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1883 */
1884 struct raw_hwp_page {
1885 struct llist_node node;
1886 struct page *page;
1887 };
1888
raw_hwp_list_head(struct folio * folio)1889 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1890 {
1891 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1892 }
1893
is_raw_hwpoison_page_in_hugepage(struct page * page)1894 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1895 {
1896 struct llist_head *raw_hwp_head;
1897 struct raw_hwp_page *p;
1898 struct folio *folio = page_folio(page);
1899 bool ret = false;
1900
1901 if (!folio_test_hwpoison(folio))
1902 return false;
1903
1904 if (!folio_test_hugetlb(folio))
1905 return PageHWPoison(page);
1906
1907 /*
1908 * When RawHwpUnreliable is set, kernel lost track of which subpages
1909 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1910 */
1911 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1912 return true;
1913
1914 mutex_lock(&mf_mutex);
1915
1916 raw_hwp_head = raw_hwp_list_head(folio);
1917 llist_for_each_entry(p, raw_hwp_head->first, node) {
1918 if (page == p->page) {
1919 ret = true;
1920 break;
1921 }
1922 }
1923
1924 mutex_unlock(&mf_mutex);
1925
1926 return ret;
1927 }
1928
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1929 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1930 {
1931 struct llist_node *head;
1932 struct raw_hwp_page *p, *next;
1933 unsigned long count = 0;
1934
1935 head = llist_del_all(raw_hwp_list_head(folio));
1936 llist_for_each_entry_safe(p, next, head, node) {
1937 if (move_flag)
1938 SetPageHWPoison(p->page);
1939 else
1940 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1941 kfree(p);
1942 count++;
1943 }
1944 return count;
1945 }
1946
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1947 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1948 {
1949 struct llist_head *head;
1950 struct raw_hwp_page *raw_hwp;
1951 struct raw_hwp_page *p;
1952 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1953
1954 /*
1955 * Once the hwpoison hugepage has lost reliable raw error info,
1956 * there is little meaning to keep additional error info precisely,
1957 * so skip to add additional raw error info.
1958 */
1959 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1960 return -EHWPOISON;
1961 head = raw_hwp_list_head(folio);
1962 llist_for_each_entry(p, head->first, node) {
1963 if (p->page == page)
1964 return -EHWPOISON;
1965 }
1966
1967 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1968 if (raw_hwp) {
1969 raw_hwp->page = page;
1970 llist_add(&raw_hwp->node, head);
1971 /* the first error event will be counted in action_result(). */
1972 if (ret)
1973 num_poisoned_pages_inc(page_to_pfn(page));
1974 } else {
1975 /*
1976 * Failed to save raw error info. We no longer trace all
1977 * hwpoisoned subpages, and we need refuse to free/dissolve
1978 * this hwpoisoned hugepage.
1979 */
1980 folio_set_hugetlb_raw_hwp_unreliable(folio);
1981 /*
1982 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1983 * used any more, so free it.
1984 */
1985 __folio_free_raw_hwp(folio, false);
1986 }
1987 return ret;
1988 }
1989
folio_free_raw_hwp(struct folio * folio,bool move_flag)1990 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1991 {
1992 /*
1993 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1994 * pages for tail pages are required but they don't exist.
1995 */
1996 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1997 return 0;
1998
1999 /*
2000 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
2001 * definition.
2002 */
2003 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2004 return 0;
2005
2006 return __folio_free_raw_hwp(folio, move_flag);
2007 }
2008
folio_clear_hugetlb_hwpoison(struct folio * folio)2009 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2010 {
2011 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2012 return;
2013 if (folio_test_hugetlb_vmemmap_optimized(folio))
2014 return;
2015 folio_clear_hwpoison(folio);
2016 folio_free_raw_hwp(folio, true);
2017 }
2018
2019 /*
2020 * Called from hugetlb code with hugetlb_lock held.
2021 *
2022 * Return values:
2023 * 0 - free hugepage
2024 * 1 - in-use hugepage
2025 * 2 - not a hugepage
2026 * -EBUSY - the hugepage is busy (try to retry)
2027 * -EHWPOISON - the hugepage is already hwpoisoned
2028 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2029 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2030 bool *migratable_cleared)
2031 {
2032 struct page *page = pfn_to_page(pfn);
2033 struct folio *folio = page_folio(page);
2034 int ret = 2; /* fallback to normal page handling */
2035 bool count_increased = false;
2036
2037 if (!folio_test_hugetlb(folio))
2038 goto out;
2039
2040 if (flags & MF_COUNT_INCREASED) {
2041 ret = 1;
2042 count_increased = true;
2043 } else if (folio_test_hugetlb_freed(folio)) {
2044 ret = 0;
2045 } else if (folio_test_hugetlb_migratable(folio)) {
2046 ret = folio_try_get(folio);
2047 if (ret)
2048 count_increased = true;
2049 } else {
2050 ret = -EBUSY;
2051 if (!(flags & MF_NO_RETRY))
2052 goto out;
2053 }
2054
2055 if (folio_set_hugetlb_hwpoison(folio, page)) {
2056 ret = -EHWPOISON;
2057 goto out;
2058 }
2059
2060 /*
2061 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2062 * from being migrated by memory hotremove.
2063 */
2064 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2065 folio_clear_hugetlb_migratable(folio);
2066 *migratable_cleared = true;
2067 }
2068
2069 return ret;
2070 out:
2071 if (count_increased)
2072 folio_put(folio);
2073 return ret;
2074 }
2075
2076 /*
2077 * Taking refcount of hugetlb pages needs extra care about race conditions
2078 * with basic operations like hugepage allocation/free/demotion.
2079 * So some of prechecks for hwpoison (pinning, and testing/setting
2080 * PageHWPoison) should be done in single hugetlb_lock range.
2081 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2082 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2083 {
2084 int res;
2085 struct page *p = pfn_to_page(pfn);
2086 struct folio *folio;
2087 unsigned long page_flags;
2088 bool migratable_cleared = false;
2089
2090 *hugetlb = 1;
2091 retry:
2092 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2093 if (res == 2) { /* fallback to normal page handling */
2094 *hugetlb = 0;
2095 return 0;
2096 } else if (res == -EHWPOISON) {
2097 pr_err("%#lx: already hardware poisoned\n", pfn);
2098 if (flags & MF_ACTION_REQUIRED) {
2099 folio = page_folio(p);
2100 res = kill_accessing_process(current, folio_pfn(folio), flags);
2101 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2102 }
2103 return res;
2104 } else if (res == -EBUSY) {
2105 if (!(flags & MF_NO_RETRY)) {
2106 flags |= MF_NO_RETRY;
2107 goto retry;
2108 }
2109 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2110 }
2111
2112 folio = page_folio(p);
2113 folio_lock(folio);
2114
2115 if (hwpoison_filter(p)) {
2116 folio_clear_hugetlb_hwpoison(folio);
2117 if (migratable_cleared)
2118 folio_set_hugetlb_migratable(folio);
2119 folio_unlock(folio);
2120 if (res == 1)
2121 folio_put(folio);
2122 return -EOPNOTSUPP;
2123 }
2124
2125 /*
2126 * Handling free hugepage. The possible race with hugepage allocation
2127 * or demotion can be prevented by PageHWPoison flag.
2128 */
2129 if (res == 0) {
2130 folio_unlock(folio);
2131 if (__page_handle_poison(p) > 0) {
2132 page_ref_inc(p);
2133 res = MF_RECOVERED;
2134 } else {
2135 res = MF_FAILED;
2136 }
2137 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2138 }
2139
2140 page_flags = folio->flags;
2141
2142 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2143 folio_unlock(folio);
2144 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2145 }
2146
2147 return identify_page_state(pfn, p, page_flags);
2148 }
2149
2150 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2151 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2152 {
2153 return 0;
2154 }
2155
folio_free_raw_hwp(struct folio * folio,bool flag)2156 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2157 {
2158 return 0;
2159 }
2160 #endif /* CONFIG_HUGETLB_PAGE */
2161
2162 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2163 static void put_ref_page(unsigned long pfn, int flags)
2164 {
2165 if (!(flags & MF_COUNT_INCREASED))
2166 return;
2167
2168 put_page(pfn_to_page(pfn));
2169 }
2170
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2171 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2172 struct dev_pagemap *pgmap)
2173 {
2174 int rc = -ENXIO;
2175
2176 /* device metadata space is not recoverable */
2177 if (!pgmap_pfn_valid(pgmap, pfn))
2178 goto out;
2179
2180 /*
2181 * Call driver's implementation to handle the memory failure, otherwise
2182 * fall back to generic handler.
2183 */
2184 if (pgmap_has_memory_failure(pgmap)) {
2185 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2186 /*
2187 * Fall back to generic handler too if operation is not
2188 * supported inside the driver/device/filesystem.
2189 */
2190 if (rc != -EOPNOTSUPP)
2191 goto out;
2192 }
2193
2194 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2195 out:
2196 /* drop pgmap ref acquired in caller */
2197 put_dev_pagemap(pgmap);
2198 if (rc != -EOPNOTSUPP)
2199 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2200 return rc;
2201 }
2202
2203 /*
2204 * The calling condition is as such: thp split failed, page might have
2205 * been RDMA pinned, not much can be done for recovery.
2206 * But a SIGBUS should be delivered with vaddr provided so that the user
2207 * application has a chance to recover. Also, application processes'
2208 * election for MCE early killed will be honored.
2209 */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2210 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2211 struct folio *folio)
2212 {
2213 LIST_HEAD(tokill);
2214
2215 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2216 kill_procs(&tokill, true, pfn, flags);
2217 }
2218
2219 /**
2220 * memory_failure - Handle memory failure of a page.
2221 * @pfn: Page Number of the corrupted page
2222 * @flags: fine tune action taken
2223 *
2224 * This function is called by the low level machine check code
2225 * of an architecture when it detects hardware memory corruption
2226 * of a page. It tries its best to recover, which includes
2227 * dropping pages, killing processes etc.
2228 *
2229 * The function is primarily of use for corruptions that
2230 * happen outside the current execution context (e.g. when
2231 * detected by a background scrubber)
2232 *
2233 * Must run in process context (e.g. a work queue) with interrupts
2234 * enabled and no spinlocks held.
2235 *
2236 * Return:
2237 * 0 - success,
2238 * -ENXIO - memory not managed by the kernel
2239 * -EOPNOTSUPP - hwpoison_filter() filtered the error event,
2240 * -EHWPOISON - the page was already poisoned, potentially
2241 * kill process,
2242 * other negative values - failure.
2243 */
memory_failure(unsigned long pfn,int flags)2244 int memory_failure(unsigned long pfn, int flags)
2245 {
2246 struct page *p;
2247 struct folio *folio;
2248 struct dev_pagemap *pgmap;
2249 int res = 0;
2250 unsigned long page_flags;
2251 bool retry = true;
2252 int hugetlb = 0;
2253
2254 if (!sysctl_memory_failure_recovery)
2255 panic("Memory failure on page %lx", pfn);
2256
2257 mutex_lock(&mf_mutex);
2258
2259 if (!(flags & MF_SW_SIMULATED))
2260 hw_memory_failure = true;
2261
2262 p = pfn_to_online_page(pfn);
2263 if (!p) {
2264 res = arch_memory_failure(pfn, flags);
2265 if (res == 0)
2266 goto unlock_mutex;
2267
2268 if (pfn_valid(pfn)) {
2269 pgmap = get_dev_pagemap(pfn, NULL);
2270 put_ref_page(pfn, flags);
2271 if (pgmap) {
2272 res = memory_failure_dev_pagemap(pfn, flags,
2273 pgmap);
2274 goto unlock_mutex;
2275 }
2276 }
2277 pr_err("%#lx: memory outside kernel control\n", pfn);
2278 res = -ENXIO;
2279 goto unlock_mutex;
2280 }
2281
2282 try_again:
2283 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2284 if (hugetlb)
2285 goto unlock_mutex;
2286
2287 if (TestSetPageHWPoison(p)) {
2288 pr_err("%#lx: already hardware poisoned\n", pfn);
2289 res = -EHWPOISON;
2290 if (flags & MF_ACTION_REQUIRED)
2291 res = kill_accessing_process(current, pfn, flags);
2292 if (flags & MF_COUNT_INCREASED)
2293 put_page(p);
2294 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2295 goto unlock_mutex;
2296 }
2297
2298 /*
2299 * We need/can do nothing about count=0 pages.
2300 * 1) it's a free page, and therefore in safe hand:
2301 * check_new_page() will be the gate keeper.
2302 * 2) it's part of a non-compound high order page.
2303 * Implies some kernel user: cannot stop them from
2304 * R/W the page; let's pray that the page has been
2305 * used and will be freed some time later.
2306 * In fact it's dangerous to directly bump up page count from 0,
2307 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2308 */
2309 if (!(flags & MF_COUNT_INCREASED)) {
2310 res = get_hwpoison_page(p, flags);
2311 if (!res) {
2312 if (is_free_buddy_page(p)) {
2313 if (take_page_off_buddy(p)) {
2314 page_ref_inc(p);
2315 res = MF_RECOVERED;
2316 } else {
2317 /* We lost the race, try again */
2318 if (retry) {
2319 ClearPageHWPoison(p);
2320 retry = false;
2321 goto try_again;
2322 }
2323 res = MF_FAILED;
2324 }
2325 res = action_result(pfn, MF_MSG_BUDDY, res);
2326 } else {
2327 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2328 }
2329 goto unlock_mutex;
2330 } else if (res < 0) {
2331 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2332 goto unlock_mutex;
2333 }
2334 }
2335
2336 folio = page_folio(p);
2337
2338 /* filter pages that are protected from hwpoison test by users */
2339 folio_lock(folio);
2340 if (hwpoison_filter(p)) {
2341 ClearPageHWPoison(p);
2342 folio_unlock(folio);
2343 folio_put(folio);
2344 res = -EOPNOTSUPP;
2345 goto unlock_mutex;
2346 }
2347 folio_unlock(folio);
2348
2349 if (folio_test_large(folio)) {
2350 /*
2351 * The flag must be set after the refcount is bumped
2352 * otherwise it may race with THP split.
2353 * And the flag can't be set in get_hwpoison_page() since
2354 * it is called by soft offline too and it is just called
2355 * for !MF_COUNT_INCREASED. So here seems to be the best
2356 * place.
2357 *
2358 * Don't need care about the above error handling paths for
2359 * get_hwpoison_page() since they handle either free page
2360 * or unhandlable page. The refcount is bumped iff the
2361 * page is a valid handlable page.
2362 */
2363 folio_set_has_hwpoisoned(folio);
2364 if (try_to_split_thp_page(p, false) < 0) {
2365 res = -EHWPOISON;
2366 kill_procs_now(p, pfn, flags, folio);
2367 put_page(p);
2368 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2369 goto unlock_mutex;
2370 }
2371 VM_BUG_ON_PAGE(!page_count(p), p);
2372 folio = page_folio(p);
2373 }
2374
2375 /*
2376 * We ignore non-LRU pages for good reasons.
2377 * - PG_locked is only well defined for LRU pages and a few others
2378 * - to avoid races with __SetPageLocked()
2379 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2380 * The check (unnecessarily) ignores LRU pages being isolated and
2381 * walked by the page reclaim code, however that's not a big loss.
2382 */
2383 shake_folio(folio);
2384
2385 folio_lock(folio);
2386
2387 /*
2388 * We're only intended to deal with the non-Compound page here.
2389 * The page cannot become compound pages again as folio has been
2390 * splited and extra refcnt is held.
2391 */
2392 WARN_ON(folio_test_large(folio));
2393
2394 /*
2395 * We use page flags to determine what action should be taken, but
2396 * the flags can be modified by the error containment action. One
2397 * example is an mlocked page, where PG_mlocked is cleared by
2398 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2399 * status correctly, we save a copy of the page flags at this time.
2400 */
2401 page_flags = folio->flags;
2402
2403 /*
2404 * __munlock_folio() may clear a writeback folio's LRU flag without
2405 * the folio lock. We need to wait for writeback completion for this
2406 * folio or it may trigger a vfs BUG while evicting inode.
2407 */
2408 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2409 goto identify_page_state;
2410
2411 /*
2412 * It's very difficult to mess with pages currently under IO
2413 * and in many cases impossible, so we just avoid it here.
2414 */
2415 folio_wait_writeback(folio);
2416
2417 /*
2418 * Now take care of user space mappings.
2419 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2420 */
2421 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2422 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2423 goto unlock_page;
2424 }
2425
2426 /*
2427 * Torn down by someone else?
2428 */
2429 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2430 folio->mapping == NULL) {
2431 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2432 goto unlock_page;
2433 }
2434
2435 identify_page_state:
2436 res = identify_page_state(pfn, p, page_flags);
2437 mutex_unlock(&mf_mutex);
2438 return res;
2439 unlock_page:
2440 folio_unlock(folio);
2441 unlock_mutex:
2442 mutex_unlock(&mf_mutex);
2443 return res;
2444 }
2445 EXPORT_SYMBOL_GPL(memory_failure);
2446
2447 #define MEMORY_FAILURE_FIFO_ORDER 4
2448 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2449
2450 struct memory_failure_entry {
2451 unsigned long pfn;
2452 int flags;
2453 };
2454
2455 struct memory_failure_cpu {
2456 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2457 MEMORY_FAILURE_FIFO_SIZE);
2458 raw_spinlock_t lock;
2459 struct work_struct work;
2460 };
2461
2462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2463
2464 /**
2465 * memory_failure_queue - Schedule handling memory failure of a page.
2466 * @pfn: Page Number of the corrupted page
2467 * @flags: Flags for memory failure handling
2468 *
2469 * This function is called by the low level hardware error handler
2470 * when it detects hardware memory corruption of a page. It schedules
2471 * the recovering of error page, including dropping pages, killing
2472 * processes etc.
2473 *
2474 * The function is primarily of use for corruptions that
2475 * happen outside the current execution context (e.g. when
2476 * detected by a background scrubber)
2477 *
2478 * Can run in IRQ context.
2479 */
memory_failure_queue(unsigned long pfn,int flags)2480 void memory_failure_queue(unsigned long pfn, int flags)
2481 {
2482 struct memory_failure_cpu *mf_cpu;
2483 unsigned long proc_flags;
2484 bool buffer_overflow;
2485 struct memory_failure_entry entry = {
2486 .pfn = pfn,
2487 .flags = flags,
2488 };
2489
2490 mf_cpu = &get_cpu_var(memory_failure_cpu);
2491 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2492 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2493 if (!buffer_overflow)
2494 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2495 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2496 put_cpu_var(memory_failure_cpu);
2497 if (buffer_overflow)
2498 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2499 pfn);
2500 }
2501 EXPORT_SYMBOL_GPL(memory_failure_queue);
2502
memory_failure_work_func(struct work_struct * work)2503 static void memory_failure_work_func(struct work_struct *work)
2504 {
2505 struct memory_failure_cpu *mf_cpu;
2506 struct memory_failure_entry entry = { 0, };
2507 unsigned long proc_flags;
2508 int gotten;
2509
2510 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2511 for (;;) {
2512 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2513 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2514 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2515 if (!gotten)
2516 break;
2517 if (entry.flags & MF_SOFT_OFFLINE)
2518 soft_offline_page(entry.pfn, entry.flags);
2519 else
2520 memory_failure(entry.pfn, entry.flags);
2521 }
2522 }
2523
memory_failure_init(void)2524 static int __init memory_failure_init(void)
2525 {
2526 struct memory_failure_cpu *mf_cpu;
2527 int cpu;
2528
2529 for_each_possible_cpu(cpu) {
2530 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2531 raw_spin_lock_init(&mf_cpu->lock);
2532 INIT_KFIFO(mf_cpu->fifo);
2533 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2534 }
2535
2536 register_sysctl_init("vm", memory_failure_table);
2537
2538 return 0;
2539 }
2540 core_initcall(memory_failure_init);
2541
2542 #undef pr_fmt
2543 #define pr_fmt(fmt) "Unpoison: " fmt
2544 #define unpoison_pr_info(fmt, pfn, rs) \
2545 ({ \
2546 if (__ratelimit(rs)) \
2547 pr_info(fmt, pfn); \
2548 })
2549
2550 /**
2551 * unpoison_memory - Unpoison a previously poisoned page
2552 * @pfn: Page number of the to be unpoisoned page
2553 *
2554 * Software-unpoison a page that has been poisoned by
2555 * memory_failure() earlier.
2556 *
2557 * This is only done on the software-level, so it only works
2558 * for linux injected failures, not real hardware failures
2559 *
2560 * Returns 0 for success, otherwise -errno.
2561 */
unpoison_memory(unsigned long pfn)2562 int unpoison_memory(unsigned long pfn)
2563 {
2564 struct folio *folio;
2565 struct page *p;
2566 int ret = -EBUSY, ghp;
2567 unsigned long count;
2568 bool huge = false;
2569 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2570 DEFAULT_RATELIMIT_BURST);
2571
2572 if (!pfn_valid(pfn))
2573 return -ENXIO;
2574
2575 p = pfn_to_page(pfn);
2576 folio = page_folio(p);
2577
2578 mutex_lock(&mf_mutex);
2579
2580 if (hw_memory_failure) {
2581 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2582 pfn, &unpoison_rs);
2583 ret = -EOPNOTSUPP;
2584 goto unlock_mutex;
2585 }
2586
2587 if (is_huge_zero_folio(folio)) {
2588 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2589 pfn, &unpoison_rs);
2590 ret = -EOPNOTSUPP;
2591 goto unlock_mutex;
2592 }
2593
2594 if (!PageHWPoison(p)) {
2595 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2596 pfn, &unpoison_rs);
2597 goto unlock_mutex;
2598 }
2599
2600 if (folio_ref_count(folio) > 1) {
2601 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2602 pfn, &unpoison_rs);
2603 goto unlock_mutex;
2604 }
2605
2606 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2607 folio_test_reserved(folio) || folio_test_offline(folio))
2608 goto unlock_mutex;
2609
2610 if (folio_mapped(folio)) {
2611 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2612 pfn, &unpoison_rs);
2613 goto unlock_mutex;
2614 }
2615
2616 if (folio_mapping(folio)) {
2617 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2618 pfn, &unpoison_rs);
2619 goto unlock_mutex;
2620 }
2621
2622 ghp = get_hwpoison_page(p, MF_UNPOISON);
2623 if (!ghp) {
2624 if (folio_test_hugetlb(folio)) {
2625 huge = true;
2626 count = folio_free_raw_hwp(folio, false);
2627 if (count == 0)
2628 goto unlock_mutex;
2629 }
2630 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2631 } else if (ghp < 0) {
2632 if (ghp == -EHWPOISON) {
2633 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2634 } else {
2635 ret = ghp;
2636 unpoison_pr_info("%#lx: failed to grab page\n",
2637 pfn, &unpoison_rs);
2638 }
2639 } else {
2640 if (folio_test_hugetlb(folio)) {
2641 huge = true;
2642 count = folio_free_raw_hwp(folio, false);
2643 if (count == 0) {
2644 folio_put(folio);
2645 goto unlock_mutex;
2646 }
2647 }
2648
2649 folio_put(folio);
2650 if (TestClearPageHWPoison(p)) {
2651 folio_put(folio);
2652 ret = 0;
2653 }
2654 }
2655
2656 unlock_mutex:
2657 mutex_unlock(&mf_mutex);
2658 if (!ret) {
2659 if (!huge)
2660 num_poisoned_pages_sub(pfn, 1);
2661 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2662 page_to_pfn(p), &unpoison_rs);
2663 }
2664 return ret;
2665 }
2666 EXPORT_SYMBOL(unpoison_memory);
2667
2668 #undef pr_fmt
2669 #define pr_fmt(fmt) "Soft offline: " fmt
2670
2671 /*
2672 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2673 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2674 * If the page is mapped, it migrates the contents over.
2675 */
soft_offline_in_use_page(struct page * page)2676 static int soft_offline_in_use_page(struct page *page)
2677 {
2678 long ret = 0;
2679 unsigned long pfn = page_to_pfn(page);
2680 struct folio *folio = page_folio(page);
2681 char const *msg_page[] = {"page", "hugepage"};
2682 bool huge = folio_test_hugetlb(folio);
2683 bool isolated;
2684 LIST_HEAD(pagelist);
2685 struct migration_target_control mtc = {
2686 .nid = NUMA_NO_NODE,
2687 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2688 .reason = MR_MEMORY_FAILURE,
2689 };
2690
2691 if (!huge && folio_test_large(folio)) {
2692 if (try_to_split_thp_page(page, true)) {
2693 pr_info("%#lx: thp split failed\n", pfn);
2694 return -EBUSY;
2695 }
2696 folio = page_folio(page);
2697 }
2698
2699 folio_lock(folio);
2700 if (!huge)
2701 folio_wait_writeback(folio);
2702 if (PageHWPoison(page)) {
2703 folio_unlock(folio);
2704 folio_put(folio);
2705 pr_info("%#lx: page already poisoned\n", pfn);
2706 return 0;
2707 }
2708
2709 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2710 /*
2711 * Try to invalidate first. This should work for
2712 * non dirty unmapped page cache pages.
2713 */
2714 ret = mapping_evict_folio(folio_mapping(folio), folio);
2715 folio_unlock(folio);
2716
2717 if (ret) {
2718 pr_info("%#lx: invalidated\n", pfn);
2719 page_handle_poison(page, false, true);
2720 return 0;
2721 }
2722
2723 isolated = isolate_folio_to_list(folio, &pagelist);
2724
2725 /*
2726 * If we succeed to isolate the folio, we grabbed another refcount on
2727 * the folio, so we can safely drop the one we got from get_any_page().
2728 * If we failed to isolate the folio, it means that we cannot go further
2729 * and we will return an error, so drop the reference we got from
2730 * get_any_page() as well.
2731 */
2732 folio_put(folio);
2733
2734 if (isolated) {
2735 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2736 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2737 if (!ret) {
2738 bool release = !huge;
2739
2740 if (!page_handle_poison(page, huge, release))
2741 ret = -EBUSY;
2742 } else {
2743 if (!list_empty(&pagelist))
2744 putback_movable_pages(&pagelist);
2745
2746 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2747 pfn, msg_page[huge], ret, &page->flags);
2748 if (ret > 0)
2749 ret = -EBUSY;
2750 }
2751 } else {
2752 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2753 pfn, msg_page[huge], page_count(page), &page->flags);
2754 ret = -EBUSY;
2755 }
2756 return ret;
2757 }
2758
2759 /**
2760 * soft_offline_page - Soft offline a page.
2761 * @pfn: pfn to soft-offline
2762 * @flags: flags. Same as memory_failure().
2763 *
2764 * Returns 0 on success,
2765 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2766 * disabled by /proc/sys/vm/enable_soft_offline,
2767 * < 0 otherwise negated errno.
2768 *
2769 * Soft offline a page, by migration or invalidation,
2770 * without killing anything. This is for the case when
2771 * a page is not corrupted yet (so it's still valid to access),
2772 * but has had a number of corrected errors and is better taken
2773 * out.
2774 *
2775 * The actual policy on when to do that is maintained by
2776 * user space.
2777 *
2778 * This should never impact any application or cause data loss,
2779 * however it might take some time.
2780 *
2781 * This is not a 100% solution for all memory, but tries to be
2782 * ``good enough'' for the majority of memory.
2783 */
soft_offline_page(unsigned long pfn,int flags)2784 int soft_offline_page(unsigned long pfn, int flags)
2785 {
2786 int ret;
2787 bool try_again = true;
2788 struct page *page;
2789
2790 if (!pfn_valid(pfn)) {
2791 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2792 return -ENXIO;
2793 }
2794
2795 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2796 page = pfn_to_online_page(pfn);
2797 if (!page) {
2798 put_ref_page(pfn, flags);
2799 return -EIO;
2800 }
2801
2802 if (!sysctl_enable_soft_offline) {
2803 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2804 put_ref_page(pfn, flags);
2805 return -EOPNOTSUPP;
2806 }
2807
2808 mutex_lock(&mf_mutex);
2809
2810 if (PageHWPoison(page)) {
2811 pr_info("%#lx: page already poisoned\n", pfn);
2812 put_ref_page(pfn, flags);
2813 mutex_unlock(&mf_mutex);
2814 return 0;
2815 }
2816
2817 retry:
2818 get_online_mems();
2819 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2820 put_online_mems();
2821
2822 if (hwpoison_filter(page)) {
2823 if (ret > 0)
2824 put_page(page);
2825
2826 mutex_unlock(&mf_mutex);
2827 return -EOPNOTSUPP;
2828 }
2829
2830 if (ret > 0) {
2831 ret = soft_offline_in_use_page(page);
2832 } else if (ret == 0) {
2833 if (!page_handle_poison(page, true, false)) {
2834 if (try_again) {
2835 try_again = false;
2836 flags &= ~MF_COUNT_INCREASED;
2837 goto retry;
2838 }
2839 ret = -EBUSY;
2840 }
2841 }
2842
2843 mutex_unlock(&mf_mutex);
2844
2845 return ret;
2846 }
2847