xref: /freebsd/contrib/llvm-project/lldb/source/Target/Process.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 #include <optional>
13 
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Support/ScopedPrinter.h"
16 #include "llvm/Support/Threading.h"
17 
18 #include "lldb/Breakpoint/BreakpointLocation.h"
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Progress.h"
25 #include "lldb/Expression/DiagnosticManager.h"
26 #include "lldb/Expression/DynamicCheckerFunctions.h"
27 #include "lldb/Expression/UserExpression.h"
28 #include "lldb/Expression/UtilityFunction.h"
29 #include "lldb/Host/ConnectionFileDescriptor.h"
30 #include "lldb/Host/FileSystem.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostInfo.h"
33 #include "lldb/Host/OptionParser.h"
34 #include "lldb/Host/Pipe.h"
35 #include "lldb/Host/Terminal.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Interpreter/CommandInterpreter.h"
38 #include "lldb/Interpreter/OptionArgParser.h"
39 #include "lldb/Interpreter/OptionValueProperties.h"
40 #include "lldb/Symbol/Function.h"
41 #include "lldb/Symbol/Symbol.h"
42 #include "lldb/Target/ABI.h"
43 #include "lldb/Target/AssertFrameRecognizer.h"
44 #include "lldb/Target/DynamicLoader.h"
45 #include "lldb/Target/InstrumentationRuntime.h"
46 #include "lldb/Target/JITLoader.h"
47 #include "lldb/Target/JITLoaderList.h"
48 #include "lldb/Target/Language.h"
49 #include "lldb/Target/LanguageRuntime.h"
50 #include "lldb/Target/MemoryHistory.h"
51 #include "lldb/Target/MemoryRegionInfo.h"
52 #include "lldb/Target/OperatingSystem.h"
53 #include "lldb/Target/Platform.h"
54 #include "lldb/Target/Process.h"
55 #include "lldb/Target/RegisterContext.h"
56 #include "lldb/Target/StopInfo.h"
57 #include "lldb/Target/StructuredDataPlugin.h"
58 #include "lldb/Target/SystemRuntime.h"
59 #include "lldb/Target/Target.h"
60 #include "lldb/Target/TargetList.h"
61 #include "lldb/Target/Thread.h"
62 #include "lldb/Target/ThreadPlan.h"
63 #include "lldb/Target/ThreadPlanBase.h"
64 #include "lldb/Target/ThreadPlanCallFunction.h"
65 #include "lldb/Target/ThreadPlanStack.h"
66 #include "lldb/Target/UnixSignals.h"
67 #include "lldb/Target/VerboseTrapFrameRecognizer.h"
68 #include "lldb/Utility/AddressableBits.h"
69 #include "lldb/Utility/Event.h"
70 #include "lldb/Utility/LLDBLog.h"
71 #include "lldb/Utility/Log.h"
72 #include "lldb/Utility/NameMatches.h"
73 #include "lldb/Utility/ProcessInfo.h"
74 #include "lldb/Utility/SelectHelper.h"
75 #include "lldb/Utility/State.h"
76 #include "lldb/Utility/Timer.h"
77 
78 using namespace lldb;
79 using namespace lldb_private;
80 using namespace std::chrono;
81 
82 // Comment out line below to disable memory caching, overriding the process
83 // setting target.process.disable-memory-cache
84 #define ENABLE_MEMORY_CACHING
85 
86 #ifdef ENABLE_MEMORY_CACHING
87 #define DISABLE_MEM_CACHE_DEFAULT false
88 #else
89 #define DISABLE_MEM_CACHE_DEFAULT true
90 #endif
91 
92 class ProcessOptionValueProperties
93     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
94 public:
ProcessOptionValueProperties(llvm::StringRef name)95   ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
96 
97   const Property *
GetPropertyAtIndex(size_t idx,const ExecutionContext * exe_ctx) const98   GetPropertyAtIndex(size_t idx,
99                      const ExecutionContext *exe_ctx) const override {
100     // When getting the value for a key from the process options, we will
101     // always try and grab the setting from the current process if there is
102     // one. Else we just use the one from this instance.
103     if (exe_ctx) {
104       Process *process = exe_ctx->GetProcessPtr();
105       if (process) {
106         ProcessOptionValueProperties *instance_properties =
107             static_cast<ProcessOptionValueProperties *>(
108                 process->GetValueProperties().get());
109         if (this != instance_properties)
110           return instance_properties->ProtectedGetPropertyAtIndex(idx);
111       }
112     }
113     return ProtectedGetPropertyAtIndex(idx);
114   }
115 };
116 
117 class ProcessMemoryIterator {
118 public:
ProcessMemoryIterator(Process & process,lldb::addr_t base)119   ProcessMemoryIterator(Process &process, lldb::addr_t base)
120       : m_process(process), m_base_addr(base) {}
121 
IsValid()122   bool IsValid() { return m_is_valid; }
123 
operator [](lldb::addr_t offset)124   uint8_t operator[](lldb::addr_t offset) {
125     if (!IsValid())
126       return 0;
127 
128     uint8_t retval = 0;
129     Status error;
130     if (0 == m_process.ReadMemory(m_base_addr + offset, &retval, 1, error)) {
131       m_is_valid = false;
132       return 0;
133     }
134 
135     return retval;
136   }
137 
138 private:
139   Process &m_process;
140   const lldb::addr_t m_base_addr;
141   bool m_is_valid = true;
142 };
143 
144 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
145     {
146         eFollowParent,
147         "parent",
148         "Continue tracing the parent process and detach the child.",
149     },
150     {
151         eFollowChild,
152         "child",
153         "Trace the child process and detach the parent.",
154     },
155 };
156 
157 #define LLDB_PROPERTIES_process
158 #include "TargetProperties.inc"
159 
160 enum {
161 #define LLDB_PROPERTIES_process
162 #include "TargetPropertiesEnum.inc"
163   ePropertyExperimental,
164 };
165 
166 #define LLDB_PROPERTIES_process_experimental
167 #include "TargetProperties.inc"
168 
169 enum {
170 #define LLDB_PROPERTIES_process_experimental
171 #include "TargetPropertiesEnum.inc"
172 };
173 
174 class ProcessExperimentalOptionValueProperties
175     : public Cloneable<ProcessExperimentalOptionValueProperties,
176                        OptionValueProperties> {
177 public:
ProcessExperimentalOptionValueProperties()178   ProcessExperimentalOptionValueProperties()
179       : Cloneable(Properties::GetExperimentalSettingsName()) {}
180 };
181 
ProcessExperimentalProperties()182 ProcessExperimentalProperties::ProcessExperimentalProperties()
183     : Properties(OptionValuePropertiesSP(
184           new ProcessExperimentalOptionValueProperties())) {
185   m_collection_sp->Initialize(g_process_experimental_properties);
186 }
187 
ProcessProperties(lldb_private::Process * process)188 ProcessProperties::ProcessProperties(lldb_private::Process *process)
189     : Properties(),
190       m_process(process) // Can be nullptr for global ProcessProperties
191 {
192   if (process == nullptr) {
193     // Global process properties, set them up one time
194     m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
195     m_collection_sp->Initialize(g_process_properties);
196     m_collection_sp->AppendProperty(
197         "thread", "Settings specific to threads.", true,
198         Thread::GetGlobalProperties().GetValueProperties());
199   } else {
200     m_collection_sp =
201         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
202     m_collection_sp->SetValueChangedCallback(
203         ePropertyPythonOSPluginPath,
204         [this] { m_process->LoadOperatingSystemPlugin(true); });
205   }
206 
207   m_experimental_properties_up =
208       std::make_unique<ProcessExperimentalProperties>();
209   m_collection_sp->AppendProperty(
210       Properties::GetExperimentalSettingsName(),
211       "Experimental settings - setting these won't produce "
212       "errors if the setting is not present.",
213       true, m_experimental_properties_up->GetValueProperties());
214 }
215 
216 ProcessProperties::~ProcessProperties() = default;
217 
GetDisableMemoryCache() const218 bool ProcessProperties::GetDisableMemoryCache() const {
219   const uint32_t idx = ePropertyDisableMemCache;
220   return GetPropertyAtIndexAs<bool>(
221       idx, g_process_properties[idx].default_uint_value != 0);
222 }
223 
GetMemoryCacheLineSize() const224 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
225   const uint32_t idx = ePropertyMemCacheLineSize;
226   return GetPropertyAtIndexAs<uint64_t>(
227       idx, g_process_properties[idx].default_uint_value);
228 }
229 
GetExtraStartupCommands() const230 Args ProcessProperties::GetExtraStartupCommands() const {
231   Args args;
232   const uint32_t idx = ePropertyExtraStartCommand;
233   m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
234   return args;
235 }
236 
SetExtraStartupCommands(const Args & args)237 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
238   const uint32_t idx = ePropertyExtraStartCommand;
239   m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
240 }
241 
GetPythonOSPluginPath() const242 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
243   const uint32_t idx = ePropertyPythonOSPluginPath;
244   return GetPropertyAtIndexAs<FileSpec>(idx, {});
245 }
246 
GetVirtualAddressableBits() const247 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
248   const uint32_t idx = ePropertyVirtualAddressableBits;
249   return GetPropertyAtIndexAs<uint64_t>(
250       idx, g_process_properties[idx].default_uint_value);
251 }
252 
SetVirtualAddressableBits(uint32_t bits)253 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
254   const uint32_t idx = ePropertyVirtualAddressableBits;
255   SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
256 }
257 
GetHighmemVirtualAddressableBits() const258 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
259   const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
260   return GetPropertyAtIndexAs<uint64_t>(
261       idx, g_process_properties[idx].default_uint_value);
262 }
263 
SetHighmemVirtualAddressableBits(uint32_t bits)264 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
265   const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
266   SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
267 }
268 
SetPythonOSPluginPath(const FileSpec & file)269 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
270   const uint32_t idx = ePropertyPythonOSPluginPath;
271   SetPropertyAtIndex(idx, file);
272 }
273 
GetIgnoreBreakpointsInExpressions() const274 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
275   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
276   return GetPropertyAtIndexAs<bool>(
277       idx, g_process_properties[idx].default_uint_value != 0);
278 }
279 
SetIgnoreBreakpointsInExpressions(bool ignore)280 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
281   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
282   SetPropertyAtIndex(idx, ignore);
283 }
284 
GetUnwindOnErrorInExpressions() const285 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
286   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
287   return GetPropertyAtIndexAs<bool>(
288       idx, g_process_properties[idx].default_uint_value != 0);
289 }
290 
SetUnwindOnErrorInExpressions(bool ignore)291 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
292   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
293   SetPropertyAtIndex(idx, ignore);
294 }
295 
GetStopOnSharedLibraryEvents() const296 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
297   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
298   return GetPropertyAtIndexAs<bool>(
299       idx, g_process_properties[idx].default_uint_value != 0);
300 }
301 
SetStopOnSharedLibraryEvents(bool stop)302 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
303   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
304   SetPropertyAtIndex(idx, stop);
305 }
306 
GetDisableLangRuntimeUnwindPlans() const307 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
308   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
309   return GetPropertyAtIndexAs<bool>(
310       idx, g_process_properties[idx].default_uint_value != 0);
311 }
312 
SetDisableLangRuntimeUnwindPlans(bool disable)313 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
314   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
315   SetPropertyAtIndex(idx, disable);
316   m_process->Flush();
317 }
318 
GetDetachKeepsStopped() const319 bool ProcessProperties::GetDetachKeepsStopped() const {
320   const uint32_t idx = ePropertyDetachKeepsStopped;
321   return GetPropertyAtIndexAs<bool>(
322       idx, g_process_properties[idx].default_uint_value != 0);
323 }
324 
SetDetachKeepsStopped(bool stop)325 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
326   const uint32_t idx = ePropertyDetachKeepsStopped;
327   SetPropertyAtIndex(idx, stop);
328 }
329 
GetWarningsOptimization() const330 bool ProcessProperties::GetWarningsOptimization() const {
331   const uint32_t idx = ePropertyWarningOptimization;
332   return GetPropertyAtIndexAs<bool>(
333       idx, g_process_properties[idx].default_uint_value != 0);
334 }
335 
GetWarningsUnsupportedLanguage() const336 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
337   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
338   return GetPropertyAtIndexAs<bool>(
339       idx, g_process_properties[idx].default_uint_value != 0);
340 }
341 
GetStopOnExec() const342 bool ProcessProperties::GetStopOnExec() const {
343   const uint32_t idx = ePropertyStopOnExec;
344   return GetPropertyAtIndexAs<bool>(
345       idx, g_process_properties[idx].default_uint_value != 0);
346 }
347 
GetUtilityExpressionTimeout() const348 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
349   const uint32_t idx = ePropertyUtilityExpressionTimeout;
350   uint64_t value = GetPropertyAtIndexAs<uint64_t>(
351       idx, g_process_properties[idx].default_uint_value);
352   return std::chrono::seconds(value);
353 }
354 
GetInterruptTimeout() const355 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
356   const uint32_t idx = ePropertyInterruptTimeout;
357   uint64_t value = GetPropertyAtIndexAs<uint64_t>(
358       idx, g_process_properties[idx].default_uint_value);
359   return std::chrono::seconds(value);
360 }
361 
GetSteppingRunsAllThreads() const362 bool ProcessProperties::GetSteppingRunsAllThreads() const {
363   const uint32_t idx = ePropertySteppingRunsAllThreads;
364   return GetPropertyAtIndexAs<bool>(
365       idx, g_process_properties[idx].default_uint_value != 0);
366 }
367 
GetOSPluginReportsAllThreads() const368 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
369   const bool fail_value = true;
370   const Property *exp_property =
371       m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
372   OptionValueProperties *exp_values =
373       exp_property->GetValue()->GetAsProperties();
374   if (!exp_values)
375     return fail_value;
376 
377   return exp_values
378       ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
379       .value_or(fail_value);
380 }
381 
SetOSPluginReportsAllThreads(bool does_report)382 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
383   const Property *exp_property =
384       m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
385   OptionValueProperties *exp_values =
386       exp_property->GetValue()->GetAsProperties();
387   if (exp_values)
388     exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
389                                    does_report);
390 }
391 
GetFollowForkMode() const392 FollowForkMode ProcessProperties::GetFollowForkMode() const {
393   const uint32_t idx = ePropertyFollowForkMode;
394   return GetPropertyAtIndexAs<FollowForkMode>(
395       idx, static_cast<FollowForkMode>(
396                g_process_properties[idx].default_uint_value));
397 }
398 
FindPlugin(lldb::TargetSP target_sp,llvm::StringRef plugin_name,ListenerSP listener_sp,const FileSpec * crash_file_path,bool can_connect)399 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
400                               llvm::StringRef plugin_name,
401                               ListenerSP listener_sp,
402                               const FileSpec *crash_file_path,
403                               bool can_connect) {
404   static uint32_t g_process_unique_id = 0;
405 
406   ProcessSP process_sp;
407   ProcessCreateInstance create_callback = nullptr;
408   if (!plugin_name.empty()) {
409     create_callback =
410         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
411     if (create_callback) {
412       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
413                                    can_connect);
414       if (process_sp) {
415         if (process_sp->CanDebug(target_sp, true)) {
416           process_sp->m_process_unique_id = ++g_process_unique_id;
417         } else
418           process_sp.reset();
419       }
420     }
421   } else {
422     for (uint32_t idx = 0;
423          (create_callback =
424               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
425          ++idx) {
426       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
427                                    can_connect);
428       if (process_sp) {
429         if (process_sp->CanDebug(target_sp, false)) {
430           process_sp->m_process_unique_id = ++g_process_unique_id;
431           break;
432         } else
433           process_sp.reset();
434       }
435     }
436   }
437   return process_sp;
438 }
439 
GetStaticBroadcasterClass()440 llvm::StringRef Process::GetStaticBroadcasterClass() {
441   static constexpr llvm::StringLiteral class_name("lldb.process");
442   return class_name;
443 }
444 
Process(lldb::TargetSP target_sp,ListenerSP listener_sp)445 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
446     : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
447   // This constructor just delegates to the full Process constructor,
448   // defaulting to using the Host's UnixSignals.
449 }
450 
Process(lldb::TargetSP target_sp,ListenerSP listener_sp,const UnixSignalsSP & unix_signals_sp)451 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
452                  const UnixSignalsSP &unix_signals_sp)
453     : ProcessProperties(this),
454       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
455                   Process::GetStaticBroadcasterClass().str()),
456       m_target_wp(target_sp), m_public_state(eStateUnloaded),
457       m_private_state(eStateUnloaded),
458       m_private_state_broadcaster(nullptr,
459                                   "lldb.process.internal_state_broadcaster"),
460       m_private_state_control_broadcaster(
461           nullptr, "lldb.process.internal_state_control_broadcaster"),
462       m_private_state_listener_sp(
463           Listener::MakeListener("lldb.process.internal_state_listener")),
464       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
465       m_thread_id_to_index_id_map(), m_exit_status(-1),
466       m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
467       m_extended_thread_list(*this), m_extended_thread_stop_id(0),
468       m_queue_list(this), m_queue_list_stop_id(0),
469       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
470       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
471       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
472       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
473       m_memory_cache(*this), m_allocated_memory_cache(*this),
474       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
475       m_private_run_lock(), m_currently_handling_do_on_removals(false),
476       m_resume_requested(false), m_finalizing(false), m_destructing(false),
477       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
478       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
479       m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
480       m_can_jit(eCanJITDontKnow) {
481   CheckInWithManager();
482 
483   Log *log = GetLog(LLDBLog::Object);
484   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
485 
486   if (!m_unix_signals_sp)
487     m_unix_signals_sp = std::make_shared<UnixSignals>();
488 
489   SetEventName(eBroadcastBitStateChanged, "state-changed");
490   SetEventName(eBroadcastBitInterrupt, "interrupt");
491   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
492   SetEventName(eBroadcastBitSTDERR, "stderr-available");
493   SetEventName(eBroadcastBitProfileData, "profile-data-available");
494   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
495 
496   m_private_state_control_broadcaster.SetEventName(
497       eBroadcastInternalStateControlStop, "control-stop");
498   m_private_state_control_broadcaster.SetEventName(
499       eBroadcastInternalStateControlPause, "control-pause");
500   m_private_state_control_broadcaster.SetEventName(
501       eBroadcastInternalStateControlResume, "control-resume");
502 
503   // The listener passed into process creation is the primary listener:
504   // It always listens for all the event bits for Process:
505   SetPrimaryListener(listener_sp);
506 
507   m_private_state_listener_sp->StartListeningForEvents(
508       &m_private_state_broadcaster,
509       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
510 
511   m_private_state_listener_sp->StartListeningForEvents(
512       &m_private_state_control_broadcaster,
513       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
514           eBroadcastInternalStateControlResume);
515   // We need something valid here, even if just the default UnixSignalsSP.
516   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
517 
518   // Allow the platform to override the default cache line size
519   OptionValueSP value_sp =
520       m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
521           ->GetValue();
522   uint64_t platform_cache_line_size =
523       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
524   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
525     value_sp->SetValueAs(platform_cache_line_size);
526 
527   // FIXME: Frame recognizer registration should not be done in Target.
528   // We should have a plugin do the registration instead, for example, a
529   // common C LanguageRuntime plugin.
530   RegisterAssertFrameRecognizer(this);
531   RegisterVerboseTrapFrameRecognizer(*this);
532 }
533 
~Process()534 Process::~Process() {
535   Log *log = GetLog(LLDBLog::Object);
536   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
537   StopPrivateStateThread();
538 
539   // ThreadList::Clear() will try to acquire this process's mutex, so
540   // explicitly clear the thread list here to ensure that the mutex is not
541   // destroyed before the thread list.
542   m_thread_list.Clear();
543 }
544 
GetGlobalProperties()545 ProcessProperties &Process::GetGlobalProperties() {
546   // NOTE: intentional leak so we don't crash if global destructor chain gets
547   // called as other threads still use the result of this function
548   static ProcessProperties *g_settings_ptr =
549       new ProcessProperties(nullptr);
550   return *g_settings_ptr;
551 }
552 
Finalize(bool destructing)553 void Process::Finalize(bool destructing) {
554   if (m_finalizing.exchange(true))
555     return;
556   if (destructing)
557     m_destructing.exchange(true);
558 
559   // Destroy the process. This will call the virtual function DoDestroy under
560   // the hood, giving our derived class a chance to do the ncessary tear down.
561   DestroyImpl(false);
562 
563   // Clear our broadcaster before we proceed with destroying
564   Broadcaster::Clear();
565 
566   // Do any cleanup needed prior to being destructed... Subclasses that
567   // override this method should call this superclass method as well.
568 
569   // We need to destroy the loader before the derived Process class gets
570   // destroyed since it is very likely that undoing the loader will require
571   // access to the real process.
572   m_dynamic_checkers_up.reset();
573   m_abi_sp.reset();
574   m_os_up.reset();
575   m_system_runtime_up.reset();
576   m_dyld_up.reset();
577   m_jit_loaders_up.reset();
578   m_thread_plans.Clear();
579   m_thread_list_real.Destroy();
580   m_thread_list.Destroy();
581   m_extended_thread_list.Destroy();
582   m_queue_list.Clear();
583   m_queue_list_stop_id = 0;
584   m_watchpoint_resource_list.Clear();
585   std::vector<Notifications> empty_notifications;
586   m_notifications.swap(empty_notifications);
587   m_image_tokens.clear();
588   m_memory_cache.Clear();
589   m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
590   {
591     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
592     m_language_runtimes.clear();
593   }
594   m_instrumentation_runtimes.clear();
595   m_next_event_action_up.reset();
596   // Clear the last natural stop ID since it has a strong reference to this
597   // process
598   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
599   // We have to be very careful here as the m_private_state_listener might
600   // contain events that have ProcessSP values in them which can keep this
601   // process around forever. These events need to be cleared out.
602   m_private_state_listener_sp->Clear();
603   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
604   m_public_run_lock.SetStopped();
605   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
606   m_private_run_lock.SetStopped();
607   m_structured_data_plugin_map.clear();
608 }
609 
RegisterNotificationCallbacks(const Notifications & callbacks)610 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
611   m_notifications.push_back(callbacks);
612   if (callbacks.initialize != nullptr)
613     callbacks.initialize(callbacks.baton, this);
614 }
615 
UnregisterNotificationCallbacks(const Notifications & callbacks)616 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
617   std::vector<Notifications>::iterator pos, end = m_notifications.end();
618   for (pos = m_notifications.begin(); pos != end; ++pos) {
619     if (pos->baton == callbacks.baton &&
620         pos->initialize == callbacks.initialize &&
621         pos->process_state_changed == callbacks.process_state_changed) {
622       m_notifications.erase(pos);
623       return true;
624     }
625   }
626   return false;
627 }
628 
SynchronouslyNotifyStateChanged(StateType state)629 void Process::SynchronouslyNotifyStateChanged(StateType state) {
630   std::vector<Notifications>::iterator notification_pos,
631       notification_end = m_notifications.end();
632   for (notification_pos = m_notifications.begin();
633        notification_pos != notification_end; ++notification_pos) {
634     if (notification_pos->process_state_changed)
635       notification_pos->process_state_changed(notification_pos->baton, this,
636                                               state);
637   }
638 }
639 
640 // FIXME: We need to do some work on events before the general Listener sees
641 // them.
642 // For instance if we are continuing from a breakpoint, we need to ensure that
643 // we do the little "insert real insn, step & stop" trick.  But we can't do
644 // that when the event is delivered by the broadcaster - since that is done on
645 // the thread that is waiting for new events, so if we needed more than one
646 // event for our handling, we would stall.  So instead we do it when we fetch
647 // the event off of the queue.
648 //
649 
GetNextEvent(EventSP & event_sp)650 StateType Process::GetNextEvent(EventSP &event_sp) {
651   StateType state = eStateInvalid;
652 
653   if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
654                                             std::chrono::seconds(0)) &&
655       event_sp)
656     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
657 
658   return state;
659 }
660 
SyncIOHandler(uint32_t iohandler_id,const Timeout<std::micro> & timeout)661 void Process::SyncIOHandler(uint32_t iohandler_id,
662                             const Timeout<std::micro> &timeout) {
663   // don't sync (potentially context switch) in case where there is no process
664   // IO
665   if (!ProcessIOHandlerExists())
666     return;
667 
668   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
669 
670   Log *log = GetLog(LLDBLog::Process);
671   if (Result) {
672     LLDB_LOG(
673         log,
674         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
675         iohandler_id, *Result);
676   } else {
677     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
678              iohandler_id);
679   }
680 }
681 
WaitForProcessToStop(const Timeout<std::micro> & timeout,EventSP * event_sp_ptr,bool wait_always,ListenerSP hijack_listener_sp,Stream * stream,bool use_run_lock,SelectMostRelevant select_most_relevant)682 StateType Process::WaitForProcessToStop(
683     const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
684     ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
685     SelectMostRelevant select_most_relevant) {
686   // We can't just wait for a "stopped" event, because the stopped event may
687   // have restarted the target. We have to actually check each event, and in
688   // the case of a stopped event check the restarted flag on the event.
689   if (event_sp_ptr)
690     event_sp_ptr->reset();
691   StateType state = GetState();
692   // If we are exited or detached, we won't ever get back to any other valid
693   // state...
694   if (state == eStateDetached || state == eStateExited)
695     return state;
696 
697   Log *log = GetLog(LLDBLog::Process);
698   LLDB_LOG(log, "timeout = {0}", timeout);
699 
700   if (!wait_always && StateIsStoppedState(state, true) &&
701       StateIsStoppedState(GetPrivateState(), true)) {
702     LLDB_LOGF(log,
703               "Process::%s returning without waiting for events; process "
704               "private and public states are already 'stopped'.",
705               __FUNCTION__);
706     // We need to toggle the run lock as this won't get done in
707     // SetPublicState() if the process is hijacked.
708     if (hijack_listener_sp && use_run_lock)
709       m_public_run_lock.SetStopped();
710     return state;
711   }
712 
713   while (state != eStateInvalid) {
714     EventSP event_sp;
715     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
716     if (event_sp_ptr && event_sp)
717       *event_sp_ptr = event_sp;
718 
719     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
720     Process::HandleProcessStateChangedEvent(
721         event_sp, stream, select_most_relevant, pop_process_io_handler);
722 
723     switch (state) {
724     case eStateCrashed:
725     case eStateDetached:
726     case eStateExited:
727     case eStateUnloaded:
728       // We need to toggle the run lock as this won't get done in
729       // SetPublicState() if the process is hijacked.
730       if (hijack_listener_sp && use_run_lock)
731         m_public_run_lock.SetStopped();
732       return state;
733     case eStateStopped:
734       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
735         continue;
736       else {
737         // We need to toggle the run lock as this won't get done in
738         // SetPublicState() if the process is hijacked.
739         if (hijack_listener_sp && use_run_lock)
740           m_public_run_lock.SetStopped();
741         return state;
742       }
743     default:
744       continue;
745     }
746   }
747   return state;
748 }
749 
HandleProcessStateChangedEvent(const EventSP & event_sp,Stream * stream,SelectMostRelevant select_most_relevant,bool & pop_process_io_handler)750 bool Process::HandleProcessStateChangedEvent(
751     const EventSP &event_sp, Stream *stream,
752     SelectMostRelevant select_most_relevant,
753     bool &pop_process_io_handler) {
754   const bool handle_pop = pop_process_io_handler;
755 
756   pop_process_io_handler = false;
757   ProcessSP process_sp =
758       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
759 
760   if (!process_sp)
761     return false;
762 
763   StateType event_state =
764       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
765   if (event_state == eStateInvalid)
766     return false;
767 
768   switch (event_state) {
769   case eStateInvalid:
770   case eStateUnloaded:
771   case eStateAttaching:
772   case eStateLaunching:
773   case eStateStepping:
774   case eStateDetached:
775     if (stream)
776       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
777                      StateAsCString(event_state));
778     if (event_state == eStateDetached)
779       pop_process_io_handler = true;
780     break;
781 
782   case eStateConnected:
783   case eStateRunning:
784     // Don't be chatty when we run...
785     break;
786 
787   case eStateExited:
788     if (stream)
789       process_sp->GetStatus(*stream);
790     pop_process_io_handler = true;
791     break;
792 
793   case eStateStopped:
794   case eStateCrashed:
795   case eStateSuspended:
796     // Make sure the program hasn't been auto-restarted:
797     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
798       if (stream) {
799         size_t num_reasons =
800             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
801         if (num_reasons > 0) {
802           // FIXME: Do we want to report this, or would that just be annoyingly
803           // chatty?
804           if (num_reasons == 1) {
805             const char *reason =
806                 Process::ProcessEventData::GetRestartedReasonAtIndex(
807                     event_sp.get(), 0);
808             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
809                            process_sp->GetID(),
810                            reason ? reason : "<UNKNOWN REASON>");
811           } else {
812             stream->Printf("Process %" PRIu64
813                            " stopped and restarted, reasons:\n",
814                            process_sp->GetID());
815 
816             for (size_t i = 0; i < num_reasons; i++) {
817               const char *reason =
818                   Process::ProcessEventData::GetRestartedReasonAtIndex(
819                       event_sp.get(), i);
820               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
821             }
822           }
823         }
824       }
825     } else {
826       StopInfoSP curr_thread_stop_info_sp;
827       // Lock the thread list so it doesn't change on us, this is the scope for
828       // the locker:
829       {
830         ThreadList &thread_list = process_sp->GetThreadList();
831         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
832 
833         ThreadSP curr_thread(thread_list.GetSelectedThread());
834         ThreadSP thread;
835         StopReason curr_thread_stop_reason = eStopReasonInvalid;
836         bool prefer_curr_thread = false;
837         if (curr_thread && curr_thread->IsValid()) {
838           curr_thread_stop_reason = curr_thread->GetStopReason();
839           switch (curr_thread_stop_reason) {
840           case eStopReasonNone:
841           case eStopReasonInvalid:
842             // Don't prefer the current thread if it didn't stop for a reason.
843             break;
844           case eStopReasonSignal: {
845             // We need to do the same computation we do for other threads
846             // below in case the current thread happens to be the one that
847             // stopped for the no-stop signal.
848             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
849             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
850               prefer_curr_thread = true;
851           } break;
852           default:
853             prefer_curr_thread = true;
854             break;
855           }
856           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
857         }
858 
859         if (!prefer_curr_thread) {
860           // Prefer a thread that has just completed its plan over another
861           // thread as current thread.
862           ThreadSP plan_thread;
863           ThreadSP other_thread;
864 
865           const size_t num_threads = thread_list.GetSize();
866           size_t i;
867           for (i = 0; i < num_threads; ++i) {
868             thread = thread_list.GetThreadAtIndex(i);
869             StopReason thread_stop_reason = thread->GetStopReason();
870             switch (thread_stop_reason) {
871             case eStopReasonInvalid:
872             case eStopReasonNone:
873               break;
874 
875             case eStopReasonSignal: {
876               // Don't select a signal thread if we weren't going to stop at
877               // that signal.  We have to have had another reason for stopping
878               // here, and the user doesn't want to see this thread.
879               uint64_t signo = thread->GetStopInfo()->GetValue();
880               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
881                 if (!other_thread)
882                   other_thread = thread;
883               }
884               break;
885             }
886             case eStopReasonTrace:
887             case eStopReasonBreakpoint:
888             case eStopReasonWatchpoint:
889             case eStopReasonException:
890             case eStopReasonExec:
891             case eStopReasonFork:
892             case eStopReasonVFork:
893             case eStopReasonVForkDone:
894             case eStopReasonThreadExiting:
895             case eStopReasonInstrumentation:
896             case eStopReasonProcessorTrace:
897               if (!other_thread)
898                 other_thread = thread;
899               break;
900             case eStopReasonPlanComplete:
901               if (!plan_thread)
902                 plan_thread = thread;
903               break;
904             }
905           }
906           if (plan_thread)
907             thread_list.SetSelectedThreadByID(plan_thread->GetID());
908           else if (other_thread)
909             thread_list.SetSelectedThreadByID(other_thread->GetID());
910           else {
911             if (curr_thread && curr_thread->IsValid())
912               thread = curr_thread;
913             else
914               thread = thread_list.GetThreadAtIndex(0);
915 
916             if (thread)
917               thread_list.SetSelectedThreadByID(thread->GetID());
918           }
919         }
920       }
921       // Drop the ThreadList mutex by here, since GetThreadStatus below might
922       // have to run code, e.g. for Data formatters, and if we hold the
923       // ThreadList mutex, then the process is going to have a hard time
924       // restarting the process.
925       if (stream) {
926         Debugger &debugger = process_sp->GetTarget().GetDebugger();
927         if (debugger.GetTargetList().GetSelectedTarget().get() ==
928             &process_sp->GetTarget()) {
929           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
930 
931           if (!thread_sp || !thread_sp->IsValid())
932             return false;
933 
934           const bool only_threads_with_stop_reason = true;
935           const uint32_t start_frame =
936               thread_sp->GetSelectedFrameIndex(select_most_relevant);
937           const uint32_t num_frames = 1;
938           const uint32_t num_frames_with_source = 1;
939           const bool stop_format = true;
940 
941           process_sp->GetStatus(*stream);
942           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
943                                       start_frame, num_frames,
944                                       num_frames_with_source,
945                                       stop_format);
946           if (curr_thread_stop_info_sp) {
947             lldb::addr_t crashing_address;
948             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
949                 curr_thread_stop_info_sp, &crashing_address);
950             if (valobj_sp) {
951               const ValueObject::GetExpressionPathFormat format =
952                   ValueObject::GetExpressionPathFormat::
953                       eGetExpressionPathFormatHonorPointers;
954               stream->PutCString("Likely cause: ");
955               valobj_sp->GetExpressionPath(*stream, format);
956               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
957             }
958           }
959         } else {
960           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
961               process_sp->GetTarget().shared_from_this());
962           if (target_idx != UINT32_MAX)
963             stream->Printf("Target %d: (", target_idx);
964           else
965             stream->Printf("Target <unknown index>: (");
966           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
967           stream->Printf(") stopped.\n");
968         }
969       }
970 
971       // Pop the process IO handler
972       pop_process_io_handler = true;
973     }
974     break;
975   }
976 
977   if (handle_pop && pop_process_io_handler)
978     process_sp->PopProcessIOHandler();
979 
980   return true;
981 }
982 
HijackProcessEvents(ListenerSP listener_sp)983 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
984   if (listener_sp) {
985     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
986                                               eBroadcastBitInterrupt);
987   } else
988     return false;
989 }
990 
RestoreProcessEvents()991 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
992 
GetStateChangedEvents(EventSP & event_sp,const Timeout<std::micro> & timeout,ListenerSP hijack_listener_sp)993 StateType Process::GetStateChangedEvents(EventSP &event_sp,
994                                          const Timeout<std::micro> &timeout,
995                                          ListenerSP hijack_listener_sp) {
996   Log *log = GetLog(LLDBLog::Process);
997   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
998 
999   ListenerSP listener_sp = hijack_listener_sp;
1000   if (!listener_sp)
1001     listener_sp = GetPrimaryListener();
1002 
1003   StateType state = eStateInvalid;
1004   if (listener_sp->GetEventForBroadcasterWithType(
1005           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1006           timeout)) {
1007     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1008       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1009     else
1010       LLDB_LOG(log, "got no event or was interrupted.");
1011   }
1012 
1013   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
1014   return state;
1015 }
1016 
PeekAtStateChangedEvents()1017 Event *Process::PeekAtStateChangedEvents() {
1018   Log *log = GetLog(LLDBLog::Process);
1019 
1020   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
1021 
1022   Event *event_ptr;
1023   event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1024       this, eBroadcastBitStateChanged);
1025   if (log) {
1026     if (event_ptr) {
1027       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
1028                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
1029     } else {
1030       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
1031     }
1032   }
1033   return event_ptr;
1034 }
1035 
1036 StateType
GetStateChangedEventsPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout)1037 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1038                                       const Timeout<std::micro> &timeout) {
1039   Log *log = GetLog(LLDBLog::Process);
1040   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1041 
1042   StateType state = eStateInvalid;
1043   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1044           &m_private_state_broadcaster,
1045           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1046           timeout))
1047     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1048       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1049 
1050   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1051            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1052   return state;
1053 }
1054 
GetEventsPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout,bool control_only)1055 bool Process::GetEventsPrivate(EventSP &event_sp,
1056                                const Timeout<std::micro> &timeout,
1057                                bool control_only) {
1058   Log *log = GetLog(LLDBLog::Process);
1059   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1060 
1061   if (control_only)
1062     return m_private_state_listener_sp->GetEventForBroadcaster(
1063         &m_private_state_control_broadcaster, event_sp, timeout);
1064   else
1065     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1066 }
1067 
IsRunning() const1068 bool Process::IsRunning() const {
1069   return StateIsRunningState(m_public_state.GetValue());
1070 }
1071 
GetExitStatus()1072 int Process::GetExitStatus() {
1073   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1074 
1075   if (m_public_state.GetValue() == eStateExited)
1076     return m_exit_status;
1077   return -1;
1078 }
1079 
GetExitDescription()1080 const char *Process::GetExitDescription() {
1081   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1082 
1083   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1084     return m_exit_string.c_str();
1085   return nullptr;
1086 }
1087 
SetExitStatus(int status,llvm::StringRef exit_string)1088 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1089   // Use a mutex to protect setting the exit status.
1090   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1091 
1092   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1093   LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1094            GetPluginName(), status, exit_string);
1095 
1096   // We were already in the exited state
1097   if (m_private_state.GetValue() == eStateExited) {
1098     LLDB_LOG(
1099         log,
1100         "(plugin = {0}) ignoring exit status because state was already set "
1101         "to eStateExited",
1102         GetPluginName());
1103     return false;
1104   }
1105 
1106   m_exit_status = status;
1107   if (!exit_string.empty())
1108     m_exit_string = exit_string.str();
1109   else
1110     m_exit_string.clear();
1111 
1112   // Clear the last natural stop ID since it has a strong reference to this
1113   // process
1114   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1115 
1116   SetPrivateState(eStateExited);
1117 
1118   // Allow subclasses to do some cleanup
1119   DidExit();
1120 
1121   return true;
1122 }
1123 
IsAlive()1124 bool Process::IsAlive() {
1125   switch (m_private_state.GetValue()) {
1126   case eStateConnected:
1127   case eStateAttaching:
1128   case eStateLaunching:
1129   case eStateStopped:
1130   case eStateRunning:
1131   case eStateStepping:
1132   case eStateCrashed:
1133   case eStateSuspended:
1134     return true;
1135   default:
1136     return false;
1137   }
1138 }
1139 
1140 // This static callback can be used to watch for local child processes on the
1141 // current host. The child process exits, the process will be found in the
1142 // global target list (we want to be completely sure that the
1143 // lldb_private::Process doesn't go away before we can deliver the signal.
SetProcessExitStatus(lldb::pid_t pid,bool exited,int signo,int exit_status)1144 bool Process::SetProcessExitStatus(
1145     lldb::pid_t pid, bool exited,
1146     int signo,      // Zero for no signal
1147     int exit_status // Exit value of process if signal is zero
1148     ) {
1149   Log *log = GetLog(LLDBLog::Process);
1150   LLDB_LOGF(log,
1151             "Process::SetProcessExitStatus (pid=%" PRIu64
1152             ", exited=%i, signal=%i, exit_status=%i)\n",
1153             pid, exited, signo, exit_status);
1154 
1155   if (exited) {
1156     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1157     if (target_sp) {
1158       ProcessSP process_sp(target_sp->GetProcessSP());
1159       if (process_sp) {
1160         llvm::StringRef signal_str =
1161             process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1162         process_sp->SetExitStatus(exit_status, signal_str);
1163       }
1164     }
1165     return true;
1166   }
1167   return false;
1168 }
1169 
UpdateThreadList(ThreadList & old_thread_list,ThreadList & new_thread_list)1170 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1171                                ThreadList &new_thread_list) {
1172   m_thread_plans.ClearThreadCache();
1173   return DoUpdateThreadList(old_thread_list, new_thread_list);
1174 }
1175 
UpdateThreadListIfNeeded()1176 void Process::UpdateThreadListIfNeeded() {
1177   const uint32_t stop_id = GetStopID();
1178   if (m_thread_list.GetSize(false) == 0 ||
1179       stop_id != m_thread_list.GetStopID()) {
1180     bool clear_unused_threads = true;
1181     const StateType state = GetPrivateState();
1182     if (StateIsStoppedState(state, true)) {
1183       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1184       m_thread_list.SetStopID(stop_id);
1185 
1186       // m_thread_list does have its own mutex, but we need to hold onto the
1187       // mutex between the call to UpdateThreadList(...) and the
1188       // os->UpdateThreadList(...) so it doesn't change on us
1189       ThreadList &old_thread_list = m_thread_list;
1190       ThreadList real_thread_list(*this);
1191       ThreadList new_thread_list(*this);
1192       // Always update the thread list with the protocol specific thread list,
1193       // but only update if "true" is returned
1194       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1195         // Don't call into the OperatingSystem to update the thread list if we
1196         // are shutting down, since that may call back into the SBAPI's,
1197         // requiring the API lock which is already held by whoever is shutting
1198         // us down, causing a deadlock.
1199         OperatingSystem *os = GetOperatingSystem();
1200         if (os && !m_destroy_in_process) {
1201           // Clear any old backing threads where memory threads might have been
1202           // backed by actual threads from the lldb_private::Process subclass
1203           size_t num_old_threads = old_thread_list.GetSize(false);
1204           for (size_t i = 0; i < num_old_threads; ++i)
1205             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1206           // See if the OS plugin reports all threads.  If it does, then
1207           // it is safe to clear unseen thread's plans here.  Otherwise we
1208           // should preserve them in case they show up again:
1209           clear_unused_threads = GetOSPluginReportsAllThreads();
1210 
1211           // Turn off dynamic types to ensure we don't run any expressions.
1212           // Objective-C can run an expression to determine if a SBValue is a
1213           // dynamic type or not and we need to avoid this. OperatingSystem
1214           // plug-ins can't run expressions that require running code...
1215 
1216           Target &target = GetTarget();
1217           const lldb::DynamicValueType saved_prefer_dynamic =
1218               target.GetPreferDynamicValue();
1219           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1220             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1221 
1222           // Now let the OperatingSystem plug-in update the thread list
1223 
1224           os->UpdateThreadList(
1225               old_thread_list, // Old list full of threads created by OS plug-in
1226               real_thread_list, // The actual thread list full of threads
1227                                 // created by each lldb_private::Process
1228                                 // subclass
1229               new_thread_list); // The new thread list that we will show to the
1230                                 // user that gets filled in
1231 
1232           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1233             target.SetPreferDynamicValue(saved_prefer_dynamic);
1234         } else {
1235           // No OS plug-in, the new thread list is the same as the real thread
1236           // list.
1237           new_thread_list = real_thread_list;
1238         }
1239 
1240         m_thread_list_real.Update(real_thread_list);
1241         m_thread_list.Update(new_thread_list);
1242         m_thread_list.SetStopID(stop_id);
1243 
1244         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1245           // Clear any extended threads that we may have accumulated previously
1246           m_extended_thread_list.Clear();
1247           m_extended_thread_stop_id = GetLastNaturalStopID();
1248 
1249           m_queue_list.Clear();
1250           m_queue_list_stop_id = GetLastNaturalStopID();
1251         }
1252       }
1253       // Now update the plan stack map.
1254       // If we do have an OS plugin, any absent real threads in the
1255       // m_thread_list have already been removed from the ThreadPlanStackMap.
1256       // So any remaining threads are OS Plugin threads, and those we want to
1257       // preserve in case they show up again.
1258       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1259     }
1260   }
1261 }
1262 
FindThreadPlans(lldb::tid_t tid)1263 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1264   return m_thread_plans.Find(tid);
1265 }
1266 
PruneThreadPlansForTID(lldb::tid_t tid)1267 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1268   return m_thread_plans.PrunePlansForTID(tid);
1269 }
1270 
PruneThreadPlans()1271 void Process::PruneThreadPlans() {
1272   m_thread_plans.Update(GetThreadList(), true, false);
1273 }
1274 
DumpThreadPlansForTID(Stream & strm,lldb::tid_t tid,lldb::DescriptionLevel desc_level,bool internal,bool condense_trivial,bool skip_unreported_plans)1275 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1276                                     lldb::DescriptionLevel desc_level,
1277                                     bool internal, bool condense_trivial,
1278                                     bool skip_unreported_plans) {
1279   return m_thread_plans.DumpPlansForTID(
1280       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1281 }
DumpThreadPlans(Stream & strm,lldb::DescriptionLevel desc_level,bool internal,bool condense_trivial,bool skip_unreported_plans)1282 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1283                               bool internal, bool condense_trivial,
1284                               bool skip_unreported_plans) {
1285   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1286                            skip_unreported_plans);
1287 }
1288 
UpdateQueueListIfNeeded()1289 void Process::UpdateQueueListIfNeeded() {
1290   if (m_system_runtime_up) {
1291     if (m_queue_list.GetSize() == 0 ||
1292         m_queue_list_stop_id != GetLastNaturalStopID()) {
1293       const StateType state = GetPrivateState();
1294       if (StateIsStoppedState(state, true)) {
1295         m_system_runtime_up->PopulateQueueList(m_queue_list);
1296         m_queue_list_stop_id = GetLastNaturalStopID();
1297       }
1298     }
1299   }
1300 }
1301 
CreateOSPluginThread(lldb::tid_t tid,lldb::addr_t context)1302 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1303   OperatingSystem *os = GetOperatingSystem();
1304   if (os)
1305     return os->CreateThread(tid, context);
1306   return ThreadSP();
1307 }
1308 
GetNextThreadIndexID(uint64_t thread_id)1309 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1310   return AssignIndexIDToThread(thread_id);
1311 }
1312 
HasAssignedIndexIDToThread(uint64_t thread_id)1313 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1314   return (m_thread_id_to_index_id_map.find(thread_id) !=
1315           m_thread_id_to_index_id_map.end());
1316 }
1317 
AssignIndexIDToThread(uint64_t thread_id)1318 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1319   uint32_t result = 0;
1320   std::map<uint64_t, uint32_t>::iterator iterator =
1321       m_thread_id_to_index_id_map.find(thread_id);
1322   if (iterator == m_thread_id_to_index_id_map.end()) {
1323     result = ++m_thread_index_id;
1324     m_thread_id_to_index_id_map[thread_id] = result;
1325   } else {
1326     result = iterator->second;
1327   }
1328 
1329   return result;
1330 }
1331 
GetState()1332 StateType Process::GetState() {
1333   if (CurrentThreadIsPrivateStateThread())
1334     return m_private_state.GetValue();
1335   else
1336     return m_public_state.GetValue();
1337 }
1338 
SetPublicState(StateType new_state,bool restarted)1339 void Process::SetPublicState(StateType new_state, bool restarted) {
1340   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1341   if (new_state_is_stopped) {
1342     // This will only set the time if the public stop time has no value, so
1343     // it is ok to call this multiple times. With a public stop we can't look
1344     // at the stop ID because many private stops might have happened, so we
1345     // can't check for a stop ID of zero. This allows the "statistics" command
1346     // to dump the time it takes to reach somewhere in your code, like a
1347     // breakpoint you set.
1348     GetTarget().GetStatistics().SetFirstPublicStopTime();
1349   }
1350 
1351   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1352   LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1353            GetPluginName().data(), StateAsCString(new_state), restarted);
1354   const StateType old_state = m_public_state.GetValue();
1355   m_public_state.SetValue(new_state);
1356 
1357   // On the transition from Run to Stopped, we unlock the writer end of the run
1358   // lock.  The lock gets locked in Resume, which is the public API to tell the
1359   // program to run.
1360   if (!StateChangedIsExternallyHijacked()) {
1361     if (new_state == eStateDetached) {
1362       LLDB_LOGF(log,
1363                "(plugin = %s, state = %s) -- unlocking run lock for detach",
1364                GetPluginName().data(), StateAsCString(new_state));
1365       m_public_run_lock.SetStopped();
1366     } else {
1367       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1368       if ((old_state_is_stopped != new_state_is_stopped)) {
1369         if (new_state_is_stopped && !restarted) {
1370           LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1371                    GetPluginName().data(), StateAsCString(new_state));
1372           m_public_run_lock.SetStopped();
1373         }
1374       }
1375     }
1376   }
1377 }
1378 
Resume()1379 Status Process::Resume() {
1380   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1381   LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1382   if (!m_public_run_lock.TrySetRunning()) {
1383     Status error("Resume request failed - process still running.");
1384     LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1385              GetPluginName().data());
1386     return error;
1387   }
1388   Status error = PrivateResume();
1389   if (!error.Success()) {
1390     // Undo running state change
1391     m_public_run_lock.SetStopped();
1392   }
1393   return error;
1394 }
1395 
ResumeSynchronous(Stream * stream)1396 Status Process::ResumeSynchronous(Stream *stream) {
1397   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1398   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1399   if (!m_public_run_lock.TrySetRunning()) {
1400     Status error("Resume request failed - process still running.");
1401     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1402     return error;
1403   }
1404 
1405   ListenerSP listener_sp(
1406       Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
1407   HijackProcessEvents(listener_sp);
1408 
1409   Status error = PrivateResume();
1410   if (error.Success()) {
1411     StateType state =
1412         WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1413                              true /* use_run_lock */, SelectMostRelevantFrame);
1414     const bool must_be_alive =
1415         false; // eStateExited is ok, so this must be false
1416     if (!StateIsStoppedState(state, must_be_alive))
1417       error.SetErrorStringWithFormat(
1418           "process not in stopped state after synchronous resume: %s",
1419           StateAsCString(state));
1420   } else {
1421     // Undo running state change
1422     m_public_run_lock.SetStopped();
1423   }
1424 
1425   // Undo the hijacking of process events...
1426   RestoreProcessEvents();
1427 
1428   return error;
1429 }
1430 
StateChangedIsExternallyHijacked()1431 bool Process::StateChangedIsExternallyHijacked() {
1432   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1433     llvm::StringRef hijacking_name = GetHijackingListenerName();
1434     if (!hijacking_name.starts_with("lldb.internal"))
1435       return true;
1436   }
1437   return false;
1438 }
1439 
StateChangedIsHijackedForSynchronousResume()1440 bool Process::StateChangedIsHijackedForSynchronousResume() {
1441   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1442     llvm::StringRef hijacking_name = GetHijackingListenerName();
1443     if (hijacking_name == ResumeSynchronousHijackListenerName)
1444       return true;
1445   }
1446   return false;
1447 }
1448 
GetPrivateState()1449 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1450 
SetPrivateState(StateType new_state)1451 void Process::SetPrivateState(StateType new_state) {
1452   // Use m_destructing not m_finalizing here.  If we are finalizing a process
1453   // that we haven't started tearing down, we'd like to be able to nicely
1454   // detach if asked, but that requires the event system be live.  That will
1455   // not be true for an in-the-middle-of-being-destructed Process, since the
1456   // event system relies on Process::shared_from_this, which may have already
1457   // been destroyed.
1458   if (m_destructing)
1459     return;
1460 
1461   Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1462   bool state_changed = false;
1463 
1464   LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1465            StateAsCString(new_state));
1466 
1467   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1468   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1469 
1470   const StateType old_state = m_private_state.GetValueNoLock();
1471   state_changed = old_state != new_state;
1472 
1473   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1474   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1475   if (old_state_is_stopped != new_state_is_stopped) {
1476     if (new_state_is_stopped)
1477       m_private_run_lock.SetStopped();
1478     else
1479       m_private_run_lock.SetRunning();
1480   }
1481 
1482   if (state_changed) {
1483     m_private_state.SetValueNoLock(new_state);
1484     EventSP event_sp(
1485         new Event(eBroadcastBitStateChanged,
1486                   new ProcessEventData(shared_from_this(), new_state)));
1487     if (StateIsStoppedState(new_state, false)) {
1488       // Note, this currently assumes that all threads in the list stop when
1489       // the process stops.  In the future we will want to support a debugging
1490       // model where some threads continue to run while others are stopped.
1491       // When that happens we will either need a way for the thread list to
1492       // identify which threads are stopping or create a special thread list
1493       // containing only threads which actually stopped.
1494       //
1495       // The process plugin is responsible for managing the actual behavior of
1496       // the threads and should have stopped any threads that are going to stop
1497       // before we get here.
1498       m_thread_list.DidStop();
1499 
1500       if (m_mod_id.BumpStopID() == 0)
1501         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1502 
1503       if (!m_mod_id.IsLastResumeForUserExpression())
1504         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1505       m_memory_cache.Clear();
1506       LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1507                GetPluginName().data(), StateAsCString(new_state),
1508                m_mod_id.GetStopID());
1509     }
1510 
1511     m_private_state_broadcaster.BroadcastEvent(event_sp);
1512   } else {
1513     LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1514              GetPluginName().data(), StateAsCString(new_state));
1515   }
1516 }
1517 
SetRunningUserExpression(bool on)1518 void Process::SetRunningUserExpression(bool on) {
1519   m_mod_id.SetRunningUserExpression(on);
1520 }
1521 
SetRunningUtilityFunction(bool on)1522 void Process::SetRunningUtilityFunction(bool on) {
1523   m_mod_id.SetRunningUtilityFunction(on);
1524 }
1525 
GetImageInfoAddress()1526 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1527 
GetABI()1528 const lldb::ABISP &Process::GetABI() {
1529   if (!m_abi_sp)
1530     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1531   return m_abi_sp;
1532 }
1533 
GetLanguageRuntimes()1534 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1535   std::vector<LanguageRuntime *> language_runtimes;
1536 
1537   if (m_finalizing)
1538     return language_runtimes;
1539 
1540   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1541   // Before we pass off a copy of the language runtimes, we must make sure that
1542   // our collection is properly populated. It's possible that some of the
1543   // language runtimes were not loaded yet, either because nobody requested it
1544   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1545   // hadn't been loaded).
1546   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1547     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1548       language_runtimes.emplace_back(runtime);
1549   }
1550 
1551   return language_runtimes;
1552 }
1553 
GetLanguageRuntime(lldb::LanguageType language)1554 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1555   if (m_finalizing)
1556     return nullptr;
1557 
1558   LanguageRuntime *runtime = nullptr;
1559 
1560   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1561   LanguageRuntimeCollection::iterator pos;
1562   pos = m_language_runtimes.find(language);
1563   if (pos == m_language_runtimes.end() || !pos->second) {
1564     lldb::LanguageRuntimeSP runtime_sp(
1565         LanguageRuntime::FindPlugin(this, language));
1566 
1567     m_language_runtimes[language] = runtime_sp;
1568     runtime = runtime_sp.get();
1569   } else
1570     runtime = pos->second.get();
1571 
1572   if (runtime)
1573     // It's possible that a language runtime can support multiple LanguageTypes,
1574     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1575     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1576     // primary language type and make sure that our runtime supports it.
1577     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1578 
1579   return runtime;
1580 }
1581 
IsPossibleDynamicValue(ValueObject & in_value)1582 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1583   if (m_finalizing)
1584     return false;
1585 
1586   if (in_value.IsDynamic())
1587     return false;
1588   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1589 
1590   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1591     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1592     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1593   }
1594 
1595   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1596     if (runtime->CouldHaveDynamicValue(in_value))
1597       return true;
1598   }
1599 
1600   return false;
1601 }
1602 
SetDynamicCheckers(DynamicCheckerFunctions * dynamic_checkers)1603 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1604   m_dynamic_checkers_up.reset(dynamic_checkers);
1605 }
1606 
GetBreakpointSiteList()1607 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
1608   return m_breakpoint_site_list;
1609 }
1610 
1611 const StopPointSiteList<BreakpointSite> &
GetBreakpointSiteList() const1612 Process::GetBreakpointSiteList() const {
1613   return m_breakpoint_site_list;
1614 }
1615 
DisableAllBreakpointSites()1616 void Process::DisableAllBreakpointSites() {
1617   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1618     //        bp_site->SetEnabled(true);
1619     DisableBreakpointSite(bp_site);
1620   });
1621 }
1622 
ClearBreakpointSiteByID(lldb::user_id_t break_id)1623 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1624   Status error(DisableBreakpointSiteByID(break_id));
1625 
1626   if (error.Success())
1627     m_breakpoint_site_list.Remove(break_id);
1628 
1629   return error;
1630 }
1631 
DisableBreakpointSiteByID(lldb::user_id_t break_id)1632 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1633   Status error;
1634   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1635   if (bp_site_sp) {
1636     if (bp_site_sp->IsEnabled())
1637       error = DisableBreakpointSite(bp_site_sp.get());
1638   } else {
1639     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1640                                    break_id);
1641   }
1642 
1643   return error;
1644 }
1645 
EnableBreakpointSiteByID(lldb::user_id_t break_id)1646 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1647   Status error;
1648   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1649   if (bp_site_sp) {
1650     if (!bp_site_sp->IsEnabled())
1651       error = EnableBreakpointSite(bp_site_sp.get());
1652   } else {
1653     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1654                                    break_id);
1655   }
1656   return error;
1657 }
1658 
1659 lldb::break_id_t
CreateBreakpointSite(const BreakpointLocationSP & constituent,bool use_hardware)1660 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
1661                               bool use_hardware) {
1662   addr_t load_addr = LLDB_INVALID_ADDRESS;
1663 
1664   bool show_error = true;
1665   switch (GetState()) {
1666   case eStateInvalid:
1667   case eStateUnloaded:
1668   case eStateConnected:
1669   case eStateAttaching:
1670   case eStateLaunching:
1671   case eStateDetached:
1672   case eStateExited:
1673     show_error = false;
1674     break;
1675 
1676   case eStateStopped:
1677   case eStateRunning:
1678   case eStateStepping:
1679   case eStateCrashed:
1680   case eStateSuspended:
1681     show_error = IsAlive();
1682     break;
1683   }
1684 
1685   // Reset the IsIndirect flag here, in case the location changes from pointing
1686   // to a indirect symbol to a regular symbol.
1687   constituent->SetIsIndirect(false);
1688 
1689   if (constituent->ShouldResolveIndirectFunctions()) {
1690     Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1691     if (symbol && symbol->IsIndirect()) {
1692       Status error;
1693       Address symbol_address = symbol->GetAddress();
1694       load_addr = ResolveIndirectFunction(&symbol_address, error);
1695       if (!error.Success() && show_error) {
1696         GetTarget().GetDebugger().GetErrorStream().Printf(
1697             "warning: failed to resolve indirect function at 0x%" PRIx64
1698             " for breakpoint %i.%i: %s\n",
1699             symbol->GetLoadAddress(&GetTarget()),
1700             constituent->GetBreakpoint().GetID(), constituent->GetID(),
1701             error.AsCString() ? error.AsCString() : "unknown error");
1702         return LLDB_INVALID_BREAK_ID;
1703       }
1704       Address resolved_address(load_addr);
1705       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1706       constituent->SetIsIndirect(true);
1707     } else
1708       load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1709   } else
1710     load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1711 
1712   if (load_addr != LLDB_INVALID_ADDRESS) {
1713     BreakpointSiteSP bp_site_sp;
1714 
1715     // Look up this breakpoint site.  If it exists, then add this new
1716     // constituent, otherwise create a new breakpoint site and add it.
1717 
1718     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1719 
1720     if (bp_site_sp) {
1721       bp_site_sp->AddConstituent(constituent);
1722       constituent->SetBreakpointSite(bp_site_sp);
1723       return bp_site_sp->GetID();
1724     } else {
1725       bp_site_sp.reset(
1726           new BreakpointSite(constituent, load_addr, use_hardware));
1727       if (bp_site_sp) {
1728         Status error = EnableBreakpointSite(bp_site_sp.get());
1729         if (error.Success()) {
1730           constituent->SetBreakpointSite(bp_site_sp);
1731           return m_breakpoint_site_list.Add(bp_site_sp);
1732         } else {
1733           if (show_error || use_hardware) {
1734             // Report error for setting breakpoint...
1735             GetTarget().GetDebugger().GetErrorStream().Printf(
1736                 "warning: failed to set breakpoint site at 0x%" PRIx64
1737                 " for breakpoint %i.%i: %s\n",
1738                 load_addr, constituent->GetBreakpoint().GetID(),
1739                 constituent->GetID(),
1740                 error.AsCString() ? error.AsCString() : "unknown error");
1741           }
1742         }
1743       }
1744     }
1745   }
1746   // We failed to enable the breakpoint
1747   return LLDB_INVALID_BREAK_ID;
1748 }
1749 
RemoveConstituentFromBreakpointSite(lldb::user_id_t constituent_id,lldb::user_id_t constituent_loc_id,BreakpointSiteSP & bp_site_sp)1750 void Process::RemoveConstituentFromBreakpointSite(
1751     lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1752     BreakpointSiteSP &bp_site_sp) {
1753   uint32_t num_constituents =
1754       bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1755   if (num_constituents == 0) {
1756     // Don't try to disable the site if we don't have a live process anymore.
1757     if (IsAlive())
1758       DisableBreakpointSite(bp_site_sp.get());
1759     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1760   }
1761 }
1762 
RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr,size_t size,uint8_t * buf) const1763 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1764                                                   uint8_t *buf) const {
1765   size_t bytes_removed = 0;
1766   StopPointSiteList<BreakpointSite> bp_sites_in_range;
1767 
1768   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1769                                          bp_sites_in_range)) {
1770     bp_sites_in_range.ForEach([bp_addr, size,
1771                                buf](BreakpointSite *bp_site) -> void {
1772       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1773         addr_t intersect_addr;
1774         size_t intersect_size;
1775         size_t opcode_offset;
1776         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1777                                      &intersect_size, &opcode_offset)) {
1778           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1779           assert(bp_addr < intersect_addr + intersect_size &&
1780                  intersect_addr + intersect_size <= bp_addr + size);
1781           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1782           size_t buf_offset = intersect_addr - bp_addr;
1783           ::memcpy(buf + buf_offset,
1784                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1785                    intersect_size);
1786         }
1787       }
1788     });
1789   }
1790   return bytes_removed;
1791 }
1792 
GetSoftwareBreakpointTrapOpcode(BreakpointSite * bp_site)1793 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1794   PlatformSP platform_sp(GetTarget().GetPlatform());
1795   if (platform_sp)
1796     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1797   return 0;
1798 }
1799 
EnableSoftwareBreakpoint(BreakpointSite * bp_site)1800 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1801   Status error;
1802   assert(bp_site != nullptr);
1803   Log *log = GetLog(LLDBLog::Breakpoints);
1804   const addr_t bp_addr = bp_site->GetLoadAddress();
1805   LLDB_LOGF(
1806       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1807       bp_site->GetID(), (uint64_t)bp_addr);
1808   if (bp_site->IsEnabled()) {
1809     LLDB_LOGF(
1810         log,
1811         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1812         " -- already enabled",
1813         bp_site->GetID(), (uint64_t)bp_addr);
1814     return error;
1815   }
1816 
1817   if (bp_addr == LLDB_INVALID_ADDRESS) {
1818     error.SetErrorString("BreakpointSite contains an invalid load address.");
1819     return error;
1820   }
1821   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1822   // trap for the breakpoint site
1823   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1824 
1825   if (bp_opcode_size == 0) {
1826     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1827                                    "returned zero, unable to get breakpoint "
1828                                    "trap for address 0x%" PRIx64,
1829                                    bp_addr);
1830   } else {
1831     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1832 
1833     if (bp_opcode_bytes == nullptr) {
1834       error.SetErrorString(
1835           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1836       return error;
1837     }
1838 
1839     // Save the original opcode by reading it
1840     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1841                      error) == bp_opcode_size) {
1842       // Write a software breakpoint in place of the original opcode
1843       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1844           bp_opcode_size) {
1845         uint8_t verify_bp_opcode_bytes[64];
1846         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1847                          error) == bp_opcode_size) {
1848           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1849                        bp_opcode_size) == 0) {
1850             bp_site->SetEnabled(true);
1851             bp_site->SetType(BreakpointSite::eSoftware);
1852             LLDB_LOGF(log,
1853                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1854                       "addr = 0x%" PRIx64 " -- SUCCESS",
1855                       bp_site->GetID(), (uint64_t)bp_addr);
1856           } else
1857             error.SetErrorString(
1858                 "failed to verify the breakpoint trap in memory.");
1859         } else
1860           error.SetErrorString(
1861               "Unable to read memory to verify breakpoint trap.");
1862       } else
1863         error.SetErrorString("Unable to write breakpoint trap to memory.");
1864     } else
1865       error.SetErrorString("Unable to read memory at breakpoint address.");
1866   }
1867   if (log && error.Fail())
1868     LLDB_LOGF(
1869         log,
1870         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1871         " -- FAILED: %s",
1872         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1873   return error;
1874 }
1875 
DisableSoftwareBreakpoint(BreakpointSite * bp_site)1876 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1877   Status error;
1878   assert(bp_site != nullptr);
1879   Log *log = GetLog(LLDBLog::Breakpoints);
1880   addr_t bp_addr = bp_site->GetLoadAddress();
1881   lldb::user_id_t breakID = bp_site->GetID();
1882   LLDB_LOGF(log,
1883             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1884             ") addr = 0x%" PRIx64,
1885             breakID, (uint64_t)bp_addr);
1886 
1887   if (bp_site->IsHardware()) {
1888     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1889   } else if (bp_site->IsEnabled()) {
1890     const size_t break_op_size = bp_site->GetByteSize();
1891     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1892     if (break_op_size > 0) {
1893       // Clear a software breakpoint instruction
1894       uint8_t curr_break_op[8];
1895       assert(break_op_size <= sizeof(curr_break_op));
1896       bool break_op_found = false;
1897 
1898       // Read the breakpoint opcode
1899       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1900           break_op_size) {
1901         bool verify = false;
1902         // Make sure the breakpoint opcode exists at this address
1903         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1904           break_op_found = true;
1905           // We found a valid breakpoint opcode at this address, now restore
1906           // the saved opcode.
1907           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1908                             break_op_size, error) == break_op_size) {
1909             verify = true;
1910           } else
1911             error.SetErrorString(
1912                 "Memory write failed when restoring original opcode.");
1913         } else {
1914           error.SetErrorString(
1915               "Original breakpoint trap is no longer in memory.");
1916           // Set verify to true and so we can check if the original opcode has
1917           // already been restored
1918           verify = true;
1919         }
1920 
1921         if (verify) {
1922           uint8_t verify_opcode[8];
1923           assert(break_op_size < sizeof(verify_opcode));
1924           // Verify that our original opcode made it back to the inferior
1925           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1926               break_op_size) {
1927             // compare the memory we just read with the original opcode
1928             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1929                          break_op_size) == 0) {
1930               // SUCCESS
1931               bp_site->SetEnabled(false);
1932               LLDB_LOGF(log,
1933                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1934                         "addr = 0x%" PRIx64 " -- SUCCESS",
1935                         bp_site->GetID(), (uint64_t)bp_addr);
1936               return error;
1937             } else {
1938               if (break_op_found)
1939                 error.SetErrorString("Failed to restore original opcode.");
1940             }
1941           } else
1942             error.SetErrorString("Failed to read memory to verify that "
1943                                  "breakpoint trap was restored.");
1944         }
1945       } else
1946         error.SetErrorString(
1947             "Unable to read memory that should contain the breakpoint trap.");
1948     }
1949   } else {
1950     LLDB_LOGF(
1951         log,
1952         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1953         " -- already disabled",
1954         bp_site->GetID(), (uint64_t)bp_addr);
1955     return error;
1956   }
1957 
1958   LLDB_LOGF(
1959       log,
1960       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1961       " -- FAILED: %s",
1962       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1963   return error;
1964 }
1965 
1966 // Uncomment to verify memory caching works after making changes to caching
1967 // code
1968 //#define VERIFY_MEMORY_READS
1969 
ReadMemory(addr_t addr,void * buf,size_t size,Status & error)1970 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1971   if (ABISP abi_sp = GetABI())
1972     addr = abi_sp->FixAnyAddress(addr);
1973 
1974   error.Clear();
1975   if (!GetDisableMemoryCache()) {
1976 #if defined(VERIFY_MEMORY_READS)
1977     // Memory caching is enabled, with debug verification
1978 
1979     if (buf && size) {
1980       // Uncomment the line below to make sure memory caching is working.
1981       // I ran this through the test suite and got no assertions, so I am
1982       // pretty confident this is working well. If any changes are made to
1983       // memory caching, uncomment the line below and test your changes!
1984 
1985       // Verify all memory reads by using the cache first, then redundantly
1986       // reading the same memory from the inferior and comparing to make sure
1987       // everything is exactly the same.
1988       std::string verify_buf(size, '\0');
1989       assert(verify_buf.size() == size);
1990       const size_t cache_bytes_read =
1991           m_memory_cache.Read(this, addr, buf, size, error);
1992       Status verify_error;
1993       const size_t verify_bytes_read =
1994           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1995                                  verify_buf.size(), verify_error);
1996       assert(cache_bytes_read == verify_bytes_read);
1997       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1998       assert(verify_error.Success() == error.Success());
1999       return cache_bytes_read;
2000     }
2001     return 0;
2002 #else  // !defined(VERIFY_MEMORY_READS)
2003     // Memory caching is enabled, without debug verification
2004 
2005     return m_memory_cache.Read(addr, buf, size, error);
2006 #endif // defined (VERIFY_MEMORY_READS)
2007   } else {
2008     // Memory caching is disabled
2009 
2010     return ReadMemoryFromInferior(addr, buf, size, error);
2011   }
2012 }
2013 
DoFindInMemory(lldb::addr_t start_addr,lldb::addr_t end_addr,const uint8_t * buf,size_t size,AddressRanges & matches,size_t alignment,size_t max_matches)2014 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr,
2015                              const uint8_t *buf, size_t size,
2016                              AddressRanges &matches, size_t alignment,
2017                              size_t max_matches) {
2018   // Inputs are already validated in FindInMemory() functions.
2019   assert(buf != nullptr);
2020   assert(size > 0);
2021   assert(alignment > 0);
2022   assert(max_matches > 0);
2023   assert(start_addr != LLDB_INVALID_ADDRESS);
2024   assert(end_addr != LLDB_INVALID_ADDRESS);
2025   assert(start_addr < end_addr);
2026 
2027   lldb::addr_t start = llvm::alignTo(start_addr, alignment);
2028   while (matches.size() < max_matches && (start + size) < end_addr) {
2029     const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
2030     if (found_addr == LLDB_INVALID_ADDRESS)
2031       break;
2032 
2033     if (found_addr % alignment) {
2034       // We need to check the alignment because the FindInMemory uses a special
2035       // algorithm to efficiently search mememory but doesn't support alignment.
2036       start = llvm::alignTo(start + 1, alignment);
2037       continue;
2038     }
2039 
2040     matches.emplace_back(found_addr, size);
2041     start = found_addr + alignment;
2042   }
2043 }
2044 
FindRangesInMemory(const uint8_t * buf,uint64_t size,const AddressRanges & ranges,size_t alignment,size_t max_matches,Status & error)2045 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
2046                                           const AddressRanges &ranges,
2047                                           size_t alignment, size_t max_matches,
2048                                           Status &error) {
2049   AddressRanges matches;
2050   if (buf == nullptr) {
2051     error.SetErrorString("buffer is null");
2052     return matches;
2053   }
2054   if (size == 0) {
2055     error.SetErrorString("buffer size is zero");
2056     return matches;
2057   }
2058   if (ranges.empty()) {
2059     error.SetErrorString("empty ranges");
2060     return matches;
2061   }
2062   if (alignment == 0) {
2063     error.SetErrorString("alignment must be greater than zero");
2064     return matches;
2065   }
2066   if (max_matches == 0) {
2067     error.SetErrorString("max_matches must be greater than zero");
2068     return matches;
2069   }
2070 
2071   int resolved_ranges = 0;
2072   Target &target = GetTarget();
2073   for (size_t i = 0; i < ranges.size(); ++i) {
2074     if (matches.size() >= max_matches)
2075       break;
2076     const AddressRange &range = ranges[i];
2077     if (range.IsValid() == false)
2078       continue;
2079 
2080     const lldb::addr_t start_addr =
2081         range.GetBaseAddress().GetLoadAddress(&target);
2082     if (start_addr == LLDB_INVALID_ADDRESS)
2083       continue;
2084 
2085     ++resolved_ranges;
2086     const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2087     DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
2088                    max_matches);
2089   }
2090 
2091   if (resolved_ranges > 0)
2092     error.Clear();
2093   else
2094     error.SetErrorString("unable to resolve any ranges");
2095 
2096   return matches;
2097 }
2098 
FindInMemory(const uint8_t * buf,uint64_t size,const AddressRange & range,size_t alignment,Status & error)2099 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
2100                                    const AddressRange &range, size_t alignment,
2101                                    Status &error) {
2102   if (buf == nullptr) {
2103     error.SetErrorString("buffer is null");
2104     return LLDB_INVALID_ADDRESS;
2105   }
2106   if (size == 0) {
2107     error.SetErrorString("buffer size is zero");
2108     return LLDB_INVALID_ADDRESS;
2109   }
2110   if (!range.IsValid()) {
2111     error.SetErrorString("range is invalid");
2112     return LLDB_INVALID_ADDRESS;
2113   }
2114   if (alignment == 0) {
2115     error.SetErrorString("alignment must be greater than zero");
2116     return LLDB_INVALID_ADDRESS;
2117   }
2118 
2119   Target &target = GetTarget();
2120   const lldb::addr_t start_addr =
2121       range.GetBaseAddress().GetLoadAddress(&target);
2122   if (start_addr == LLDB_INVALID_ADDRESS) {
2123     error.SetErrorString("range load address is invalid");
2124     return LLDB_INVALID_ADDRESS;
2125   }
2126   const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2127 
2128   AddressRanges matches;
2129   DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
2130   if (matches.empty())
2131     return LLDB_INVALID_ADDRESS;
2132 
2133   error.Clear();
2134   return matches[0].GetBaseAddress().GetLoadAddress(&target);
2135 }
2136 
ReadCStringFromMemory(addr_t addr,std::string & out_str,Status & error)2137 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2138                                       Status &error) {
2139   char buf[256];
2140   out_str.clear();
2141   addr_t curr_addr = addr;
2142   while (true) {
2143     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2144     if (length == 0)
2145       break;
2146     out_str.append(buf, length);
2147     // If we got "length - 1" bytes, we didn't get the whole C string, we need
2148     // to read some more characters
2149     if (length == sizeof(buf) - 1)
2150       curr_addr += length;
2151     else
2152       break;
2153   }
2154   return out_str.size();
2155 }
2156 
2157 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2158 // correct code to find null terminators.
ReadCStringFromMemory(addr_t addr,char * dst,size_t dst_max_len,Status & result_error)2159 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2160                                       size_t dst_max_len,
2161                                       Status &result_error) {
2162   size_t total_cstr_len = 0;
2163   if (dst && dst_max_len) {
2164     result_error.Clear();
2165     // NULL out everything just to be safe
2166     memset(dst, 0, dst_max_len);
2167     Status error;
2168     addr_t curr_addr = addr;
2169     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2170     size_t bytes_left = dst_max_len - 1;
2171     char *curr_dst = dst;
2172 
2173     while (bytes_left > 0) {
2174       addr_t cache_line_bytes_left =
2175           cache_line_size - (curr_addr % cache_line_size);
2176       addr_t bytes_to_read =
2177           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2178       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2179 
2180       if (bytes_read == 0) {
2181         result_error = error;
2182         dst[total_cstr_len] = '\0';
2183         break;
2184       }
2185       const size_t len = strlen(curr_dst);
2186 
2187       total_cstr_len += len;
2188 
2189       if (len < bytes_to_read)
2190         break;
2191 
2192       curr_dst += bytes_read;
2193       curr_addr += bytes_read;
2194       bytes_left -= bytes_read;
2195     }
2196   } else {
2197     if (dst == nullptr)
2198       result_error.SetErrorString("invalid arguments");
2199     else
2200       result_error.Clear();
2201   }
2202   return total_cstr_len;
2203 }
2204 
ReadMemoryFromInferior(addr_t addr,void * buf,size_t size,Status & error)2205 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2206                                        Status &error) {
2207   LLDB_SCOPED_TIMER();
2208 
2209   if (ABISP abi_sp = GetABI())
2210     addr = abi_sp->FixAnyAddress(addr);
2211 
2212   if (buf == nullptr || size == 0)
2213     return 0;
2214 
2215   size_t bytes_read = 0;
2216   uint8_t *bytes = (uint8_t *)buf;
2217 
2218   while (bytes_read < size) {
2219     const size_t curr_size = size - bytes_read;
2220     const size_t curr_bytes_read =
2221         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2222     bytes_read += curr_bytes_read;
2223     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2224       break;
2225   }
2226 
2227   // Replace any software breakpoint opcodes that fall into this range back
2228   // into "buf" before we return
2229   if (bytes_read > 0)
2230     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2231   return bytes_read;
2232 }
2233 
ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,size_t integer_byte_size,uint64_t fail_value,Status & error)2234 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2235                                                 size_t integer_byte_size,
2236                                                 uint64_t fail_value,
2237                                                 Status &error) {
2238   Scalar scalar;
2239   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2240                                   error))
2241     return scalar.ULongLong(fail_value);
2242   return fail_value;
2243 }
2244 
ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,size_t integer_byte_size,int64_t fail_value,Status & error)2245 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2246                                              size_t integer_byte_size,
2247                                              int64_t fail_value,
2248                                              Status &error) {
2249   Scalar scalar;
2250   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2251                                   error))
2252     return scalar.SLongLong(fail_value);
2253   return fail_value;
2254 }
2255 
ReadPointerFromMemory(lldb::addr_t vm_addr,Status & error)2256 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2257   Scalar scalar;
2258   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2259                                   error))
2260     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2261   return LLDB_INVALID_ADDRESS;
2262 }
2263 
WritePointerToMemory(lldb::addr_t vm_addr,lldb::addr_t ptr_value,Status & error)2264 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2265                                    Status &error) {
2266   Scalar scalar;
2267   const uint32_t addr_byte_size = GetAddressByteSize();
2268   if (addr_byte_size <= 4)
2269     scalar = (uint32_t)ptr_value;
2270   else
2271     scalar = ptr_value;
2272   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2273          addr_byte_size;
2274 }
2275 
WriteMemoryPrivate(addr_t addr,const void * buf,size_t size,Status & error)2276 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2277                                    Status &error) {
2278   size_t bytes_written = 0;
2279   const uint8_t *bytes = (const uint8_t *)buf;
2280 
2281   while (bytes_written < size) {
2282     const size_t curr_size = size - bytes_written;
2283     const size_t curr_bytes_written = DoWriteMemory(
2284         addr + bytes_written, bytes + bytes_written, curr_size, error);
2285     bytes_written += curr_bytes_written;
2286     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2287       break;
2288   }
2289   return bytes_written;
2290 }
2291 
WriteMemory(addr_t addr,const void * buf,size_t size,Status & error)2292 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2293                             Status &error) {
2294   if (ABISP abi_sp = GetABI())
2295     addr = abi_sp->FixAnyAddress(addr);
2296 
2297 #if defined(ENABLE_MEMORY_CACHING)
2298   m_memory_cache.Flush(addr, size);
2299 #endif
2300 
2301   if (buf == nullptr || size == 0)
2302     return 0;
2303 
2304   m_mod_id.BumpMemoryID();
2305 
2306   // We need to write any data that would go where any current software traps
2307   // (enabled software breakpoints) any software traps (breakpoints) that we
2308   // may have placed in our tasks memory.
2309 
2310   StopPointSiteList<BreakpointSite> bp_sites_in_range;
2311   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2312     return WriteMemoryPrivate(addr, buf, size, error);
2313 
2314   // No breakpoint sites overlap
2315   if (bp_sites_in_range.IsEmpty())
2316     return WriteMemoryPrivate(addr, buf, size, error);
2317 
2318   const uint8_t *ubuf = (const uint8_t *)buf;
2319   uint64_t bytes_written = 0;
2320 
2321   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2322                              &error](BreakpointSite *bp) -> void {
2323     if (error.Fail())
2324       return;
2325 
2326     if (bp->GetType() != BreakpointSite::eSoftware)
2327       return;
2328 
2329     addr_t intersect_addr;
2330     size_t intersect_size;
2331     size_t opcode_offset;
2332     const bool intersects = bp->IntersectsRange(
2333         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2334     UNUSED_IF_ASSERT_DISABLED(intersects);
2335     assert(intersects);
2336     assert(addr <= intersect_addr && intersect_addr < addr + size);
2337     assert(addr < intersect_addr + intersect_size &&
2338            intersect_addr + intersect_size <= addr + size);
2339     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2340 
2341     // Check for bytes before this breakpoint
2342     const addr_t curr_addr = addr + bytes_written;
2343     if (intersect_addr > curr_addr) {
2344       // There are some bytes before this breakpoint that we need to just
2345       // write to memory
2346       size_t curr_size = intersect_addr - curr_addr;
2347       size_t curr_bytes_written =
2348           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2349       bytes_written += curr_bytes_written;
2350       if (curr_bytes_written != curr_size) {
2351         // We weren't able to write all of the requested bytes, we are
2352         // done looping and will return the number of bytes that we have
2353         // written so far.
2354         if (error.Success())
2355           error.SetErrorToGenericError();
2356       }
2357     }
2358     // Now write any bytes that would cover up any software breakpoints
2359     // directly into the breakpoint opcode buffer
2360     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2361              intersect_size);
2362     bytes_written += intersect_size;
2363   });
2364 
2365   // Write any remaining bytes after the last breakpoint if we have any left
2366   if (bytes_written < size)
2367     bytes_written +=
2368         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2369                            size - bytes_written, error);
2370 
2371   return bytes_written;
2372 }
2373 
WriteScalarToMemory(addr_t addr,const Scalar & scalar,size_t byte_size,Status & error)2374 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2375                                     size_t byte_size, Status &error) {
2376   if (byte_size == UINT32_MAX)
2377     byte_size = scalar.GetByteSize();
2378   if (byte_size > 0) {
2379     uint8_t buf[32];
2380     const size_t mem_size =
2381         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2382     if (mem_size > 0)
2383       return WriteMemory(addr, buf, mem_size, error);
2384     else
2385       error.SetErrorString("failed to get scalar as memory data");
2386   } else {
2387     error.SetErrorString("invalid scalar value");
2388   }
2389   return 0;
2390 }
2391 
ReadScalarIntegerFromMemory(addr_t addr,uint32_t byte_size,bool is_signed,Scalar & scalar,Status & error)2392 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2393                                             bool is_signed, Scalar &scalar,
2394                                             Status &error) {
2395   uint64_t uval = 0;
2396   if (byte_size == 0) {
2397     error.SetErrorString("byte size is zero");
2398   } else if (byte_size & (byte_size - 1)) {
2399     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2400                                    byte_size);
2401   } else if (byte_size <= sizeof(uval)) {
2402     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2403     if (bytes_read == byte_size) {
2404       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2405                          GetAddressByteSize());
2406       lldb::offset_t offset = 0;
2407       if (byte_size <= 4)
2408         scalar = data.GetMaxU32(&offset, byte_size);
2409       else
2410         scalar = data.GetMaxU64(&offset, byte_size);
2411       if (is_signed)
2412         scalar.SignExtend(byte_size * 8);
2413       return bytes_read;
2414     }
2415   } else {
2416     error.SetErrorStringWithFormat(
2417         "byte size of %u is too large for integer scalar type", byte_size);
2418   }
2419   return 0;
2420 }
2421 
WriteObjectFile(std::vector<ObjectFile::LoadableData> entries)2422 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2423   Status error;
2424   for (const auto &Entry : entries) {
2425     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2426                 error);
2427     if (!error.Success())
2428       break;
2429   }
2430   return error;
2431 }
2432 
2433 #define USE_ALLOCATE_MEMORY_CACHE 1
AllocateMemory(size_t size,uint32_t permissions,Status & error)2434 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2435                                Status &error) {
2436   if (GetPrivateState() != eStateStopped) {
2437     error.SetErrorToGenericError();
2438     return LLDB_INVALID_ADDRESS;
2439   }
2440 
2441 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2442   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2443 #else
2444   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2445   Log *log = GetLog(LLDBLog::Process);
2446   LLDB_LOGF(log,
2447             "Process::AllocateMemory(size=%" PRIu64
2448             ", permissions=%s) => 0x%16.16" PRIx64
2449             " (m_stop_id = %u m_memory_id = %u)",
2450             (uint64_t)size, GetPermissionsAsCString(permissions),
2451             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2452             m_mod_id.GetMemoryID());
2453   return allocated_addr;
2454 #endif
2455 }
2456 
CallocateMemory(size_t size,uint32_t permissions,Status & error)2457 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2458                                 Status &error) {
2459   addr_t return_addr = AllocateMemory(size, permissions, error);
2460   if (error.Success()) {
2461     std::string buffer(size, 0);
2462     WriteMemory(return_addr, buffer.c_str(), size, error);
2463   }
2464   return return_addr;
2465 }
2466 
CanJIT()2467 bool Process::CanJIT() {
2468   if (m_can_jit == eCanJITDontKnow) {
2469     Log *log = GetLog(LLDBLog::Process);
2470     Status err;
2471 
2472     uint64_t allocated_memory = AllocateMemory(
2473         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2474         err);
2475 
2476     if (err.Success()) {
2477       m_can_jit = eCanJITYes;
2478       LLDB_LOGF(log,
2479                 "Process::%s pid %" PRIu64
2480                 " allocation test passed, CanJIT () is true",
2481                 __FUNCTION__, GetID());
2482     } else {
2483       m_can_jit = eCanJITNo;
2484       LLDB_LOGF(log,
2485                 "Process::%s pid %" PRIu64
2486                 " allocation test failed, CanJIT () is false: %s",
2487                 __FUNCTION__, GetID(), err.AsCString());
2488     }
2489 
2490     DeallocateMemory(allocated_memory);
2491   }
2492 
2493   return m_can_jit == eCanJITYes;
2494 }
2495 
SetCanJIT(bool can_jit)2496 void Process::SetCanJIT(bool can_jit) {
2497   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2498 }
2499 
SetCanRunCode(bool can_run_code)2500 void Process::SetCanRunCode(bool can_run_code) {
2501   SetCanJIT(can_run_code);
2502   m_can_interpret_function_calls = can_run_code;
2503 }
2504 
DeallocateMemory(addr_t ptr)2505 Status Process::DeallocateMemory(addr_t ptr) {
2506   Status error;
2507 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2508   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2509     error.SetErrorStringWithFormat(
2510         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2511   }
2512 #else
2513   error = DoDeallocateMemory(ptr);
2514 
2515   Log *log = GetLog(LLDBLog::Process);
2516   LLDB_LOGF(log,
2517             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2518             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2519             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2520             m_mod_id.GetMemoryID());
2521 #endif
2522   return error;
2523 }
2524 
GetWatchpointReportedAfter()2525 bool Process::GetWatchpointReportedAfter() {
2526   if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2527     return *subclass_override;
2528 
2529   bool reported_after = true;
2530   const ArchSpec &arch = GetTarget().GetArchitecture();
2531   if (!arch.IsValid())
2532     return reported_after;
2533   llvm::Triple triple = arch.GetTriple();
2534 
2535   if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2536       triple.isAArch64() || triple.isArmMClass() || triple.isARM())
2537     reported_after = false;
2538 
2539   return reported_after;
2540 }
2541 
ReadModuleFromMemory(const FileSpec & file_spec,lldb::addr_t header_addr,size_t size_to_read)2542 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2543                                        lldb::addr_t header_addr,
2544                                        size_t size_to_read) {
2545   Log *log = GetLog(LLDBLog::Host);
2546   if (log) {
2547     LLDB_LOGF(log,
2548               "Process::ReadModuleFromMemory reading %s binary from memory",
2549               file_spec.GetPath().c_str());
2550   }
2551   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2552   if (module_sp) {
2553     Status error;
2554     std::unique_ptr<Progress> progress_up;
2555     // Reading an ObjectFile from a local corefile is very fast,
2556     // only print a progress update if we're reading from a
2557     // live session which might go over gdb remote serial protocol.
2558     if (IsLiveDebugSession())
2559       progress_up = std::make_unique<Progress>(
2560           "Reading binary from memory", file_spec.GetFilename().GetString());
2561 
2562     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2563         shared_from_this(), header_addr, error, size_to_read);
2564     if (objfile)
2565       return module_sp;
2566   }
2567   return ModuleSP();
2568 }
2569 
GetLoadAddressPermissions(lldb::addr_t load_addr,uint32_t & permissions)2570 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2571                                         uint32_t &permissions) {
2572   MemoryRegionInfo range_info;
2573   permissions = 0;
2574   Status error(GetMemoryRegionInfo(load_addr, range_info));
2575   if (!error.Success())
2576     return false;
2577   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2578       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2579       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2580     return false;
2581   }
2582   permissions = range_info.GetLLDBPermissions();
2583   return true;
2584 }
2585 
EnableWatchpoint(WatchpointSP wp_sp,bool notify)2586 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
2587   Status error;
2588   error.SetErrorString("watchpoints are not supported");
2589   return error;
2590 }
2591 
DisableWatchpoint(WatchpointSP wp_sp,bool notify)2592 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
2593   Status error;
2594   error.SetErrorString("watchpoints are not supported");
2595   return error;
2596 }
2597 
2598 StateType
WaitForProcessStopPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout)2599 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2600                                    const Timeout<std::micro> &timeout) {
2601   StateType state;
2602 
2603   while (true) {
2604     event_sp.reset();
2605     state = GetStateChangedEventsPrivate(event_sp, timeout);
2606 
2607     if (StateIsStoppedState(state, false))
2608       break;
2609 
2610     // If state is invalid, then we timed out
2611     if (state == eStateInvalid)
2612       break;
2613 
2614     if (event_sp)
2615       HandlePrivateEvent(event_sp);
2616   }
2617   return state;
2618 }
2619 
LoadOperatingSystemPlugin(bool flush)2620 void Process::LoadOperatingSystemPlugin(bool flush) {
2621   std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2622   if (flush)
2623     m_thread_list.Clear();
2624   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2625   if (flush)
2626     Flush();
2627 }
2628 
Launch(ProcessLaunchInfo & launch_info)2629 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2630   StateType state_after_launch = eStateInvalid;
2631   EventSP first_stop_event_sp;
2632   Status status =
2633       LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2634   if (status.Fail())
2635     return status;
2636 
2637   if (state_after_launch != eStateStopped &&
2638       state_after_launch != eStateCrashed)
2639     return Status();
2640 
2641   // Note, the stop event was consumed above, but not handled. This
2642   // was done to give DidLaunch a chance to run. The target is either
2643   // stopped or crashed. Directly set the state.  This is done to
2644   // prevent a stop message with a bunch of spurious output on thread
2645   // status, as well as not pop a ProcessIOHandler.
2646   SetPublicState(state_after_launch, false);
2647 
2648   if (PrivateStateThreadIsValid())
2649     ResumePrivateStateThread();
2650   else
2651     StartPrivateStateThread();
2652 
2653   // Target was stopped at entry as was intended. Need to notify the
2654   // listeners about it.
2655   if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2656     HandlePrivateEvent(first_stop_event_sp);
2657 
2658   return Status();
2659 }
2660 
LaunchPrivate(ProcessLaunchInfo & launch_info,StateType & state,EventSP & event_sp)2661 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2662                               EventSP &event_sp) {
2663   Status error;
2664   m_abi_sp.reset();
2665   m_dyld_up.reset();
2666   m_jit_loaders_up.reset();
2667   m_system_runtime_up.reset();
2668   m_os_up.reset();
2669 
2670   {
2671     std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2672     m_process_input_reader.reset();
2673   }
2674 
2675   Module *exe_module = GetTarget().GetExecutableModulePointer();
2676 
2677   // The "remote executable path" is hooked up to the local Executable
2678   // module.  But we should be able to debug a remote process even if the
2679   // executable module only exists on the remote.  However, there needs to
2680   // be a way to express this path, without actually having a module.
2681   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2682   // Figure that out here:
2683 
2684   FileSpec exe_spec_to_use;
2685   if (!exe_module) {
2686     if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2687       error.SetErrorString("executable module does not exist");
2688       return error;
2689     }
2690     exe_spec_to_use = launch_info.GetExecutableFile();
2691   } else
2692     exe_spec_to_use = exe_module->GetFileSpec();
2693 
2694   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2695     // Install anything that might need to be installed prior to launching.
2696     // For host systems, this will do nothing, but if we are connected to a
2697     // remote platform it will install any needed binaries
2698     error = GetTarget().Install(&launch_info);
2699     if (error.Fail())
2700       return error;
2701   }
2702 
2703   // Listen and queue events that are broadcasted during the process launch.
2704   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2705   HijackProcessEvents(listener_sp);
2706   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2707 
2708   if (PrivateStateThreadIsValid())
2709     PausePrivateStateThread();
2710 
2711   error = WillLaunch(exe_module);
2712   if (error.Fail()) {
2713     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2714     return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2715   }
2716 
2717   const bool restarted = false;
2718   SetPublicState(eStateLaunching, restarted);
2719   m_should_detach = false;
2720 
2721   if (m_public_run_lock.TrySetRunning()) {
2722     // Now launch using these arguments.
2723     error = DoLaunch(exe_module, launch_info);
2724   } else {
2725     // This shouldn't happen
2726     error.SetErrorString("failed to acquire process run lock");
2727   }
2728 
2729   if (error.Fail()) {
2730     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2731       SetID(LLDB_INVALID_PROCESS_ID);
2732       const char *error_string = error.AsCString();
2733       if (error_string == nullptr)
2734         error_string = "launch failed";
2735       SetExitStatus(-1, error_string);
2736     }
2737     return error;
2738   }
2739 
2740   // Now wait for the process to launch and return control to us, and then
2741   // call DidLaunch:
2742   state = WaitForProcessStopPrivate(event_sp, seconds(10));
2743 
2744   if (state == eStateInvalid || !event_sp) {
2745     // We were able to launch the process, but we failed to catch the
2746     // initial stop.
2747     error.SetErrorString("failed to catch stop after launch");
2748     SetExitStatus(0, error.AsCString());
2749     Destroy(false);
2750     return error;
2751   }
2752 
2753   if (state == eStateExited) {
2754     // We exited while trying to launch somehow.  Don't call DidLaunch
2755     // as that's not likely to work, and return an invalid pid.
2756     HandlePrivateEvent(event_sp);
2757     return Status();
2758   }
2759 
2760   if (state == eStateStopped || state == eStateCrashed) {
2761     DidLaunch();
2762 
2763     // Now that we know the process type, update its signal responses from the
2764     // ones stored in the Target:
2765     if (m_unix_signals_sp) {
2766       StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2767       GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2768     }
2769 
2770     DynamicLoader *dyld = GetDynamicLoader();
2771     if (dyld)
2772       dyld->DidLaunch();
2773 
2774     GetJITLoaders().DidLaunch();
2775 
2776     SystemRuntime *system_runtime = GetSystemRuntime();
2777     if (system_runtime)
2778       system_runtime->DidLaunch();
2779 
2780     if (!m_os_up)
2781       LoadOperatingSystemPlugin(false);
2782 
2783     // We successfully launched the process and stopped, now it the
2784     // right time to set up signal filters before resuming.
2785     UpdateAutomaticSignalFiltering();
2786     return Status();
2787   }
2788 
2789   return Status("Unexpected process state after the launch: %s, expected %s, "
2790                 "%s, %s or %s",
2791                 StateAsCString(state), StateAsCString(eStateInvalid),
2792                 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2793                 StateAsCString(eStateCrashed));
2794 }
2795 
LoadCore()2796 Status Process::LoadCore() {
2797   Status error = DoLoadCore();
2798   if (error.Success()) {
2799     ListenerSP listener_sp(
2800         Listener::MakeListener("lldb.process.load_core_listener"));
2801     HijackProcessEvents(listener_sp);
2802 
2803     if (PrivateStateThreadIsValid())
2804       ResumePrivateStateThread();
2805     else
2806       StartPrivateStateThread();
2807 
2808     DynamicLoader *dyld = GetDynamicLoader();
2809     if (dyld)
2810       dyld->DidAttach();
2811 
2812     GetJITLoaders().DidAttach();
2813 
2814     SystemRuntime *system_runtime = GetSystemRuntime();
2815     if (system_runtime)
2816       system_runtime->DidAttach();
2817 
2818     if (!m_os_up)
2819       LoadOperatingSystemPlugin(false);
2820 
2821     // We successfully loaded a core file, now pretend we stopped so we can
2822     // show all of the threads in the core file and explore the crashed state.
2823     SetPrivateState(eStateStopped);
2824 
2825     // Wait for a stopped event since we just posted one above...
2826     lldb::EventSP event_sp;
2827     StateType state =
2828         WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2829                              nullptr, true, SelectMostRelevantFrame);
2830 
2831     if (!StateIsStoppedState(state, false)) {
2832       Log *log = GetLog(LLDBLog::Process);
2833       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2834                 StateAsCString(state));
2835       error.SetErrorString(
2836           "Did not get stopped event after loading the core file.");
2837     }
2838     RestoreProcessEvents();
2839   }
2840   return error;
2841 }
2842 
GetDynamicLoader()2843 DynamicLoader *Process::GetDynamicLoader() {
2844   if (!m_dyld_up)
2845     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2846   return m_dyld_up.get();
2847 }
2848 
SetDynamicLoader(DynamicLoaderUP dyld_up)2849 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
2850   m_dyld_up = std::move(dyld_up);
2851 }
2852 
GetAuxvData()2853 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2854 
SaveCore(llvm::StringRef outfile)2855 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2856   return false;
2857 }
2858 
GetJITLoaders()2859 JITLoaderList &Process::GetJITLoaders() {
2860   if (!m_jit_loaders_up) {
2861     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2862     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2863   }
2864   return *m_jit_loaders_up;
2865 }
2866 
GetSystemRuntime()2867 SystemRuntime *Process::GetSystemRuntime() {
2868   if (!m_system_runtime_up)
2869     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2870   return m_system_runtime_up.get();
2871 }
2872 
AttachCompletionHandler(Process * process,uint32_t exec_count)2873 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2874                                                           uint32_t exec_count)
2875     : NextEventAction(process), m_exec_count(exec_count) {
2876   Log *log = GetLog(LLDBLog::Process);
2877   LLDB_LOGF(
2878       log,
2879       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2880       __FUNCTION__, static_cast<void *>(process), exec_count);
2881 }
2882 
2883 Process::NextEventAction::EventActionResult
PerformAction(lldb::EventSP & event_sp)2884 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2885   Log *log = GetLog(LLDBLog::Process);
2886 
2887   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2888   LLDB_LOGF(log,
2889             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2890             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2891 
2892   switch (state) {
2893   case eStateAttaching:
2894     return eEventActionSuccess;
2895 
2896   case eStateRunning:
2897   case eStateConnected:
2898     return eEventActionRetry;
2899 
2900   case eStateStopped:
2901   case eStateCrashed:
2902     // During attach, prior to sending the eStateStopped event,
2903     // lldb_private::Process subclasses must set the new process ID.
2904     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2905     // We don't want these events to be reported, so go set the
2906     // ShouldReportStop here:
2907     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2908 
2909     if (m_exec_count > 0) {
2910       --m_exec_count;
2911 
2912       LLDB_LOGF(log,
2913                 "Process::AttachCompletionHandler::%s state %s: reduced "
2914                 "remaining exec count to %" PRIu32 ", requesting resume",
2915                 __FUNCTION__, StateAsCString(state), m_exec_count);
2916 
2917       RequestResume();
2918       return eEventActionRetry;
2919     } else {
2920       LLDB_LOGF(log,
2921                 "Process::AttachCompletionHandler::%s state %s: no more "
2922                 "execs expected to start, continuing with attach",
2923                 __FUNCTION__, StateAsCString(state));
2924 
2925       m_process->CompleteAttach();
2926       return eEventActionSuccess;
2927     }
2928     break;
2929 
2930   default:
2931   case eStateExited:
2932   case eStateInvalid:
2933     break;
2934   }
2935 
2936   m_exit_string.assign("No valid Process");
2937   return eEventActionExit;
2938 }
2939 
2940 Process::NextEventAction::EventActionResult
HandleBeingInterrupted()2941 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2942   return eEventActionSuccess;
2943 }
2944 
GetExitString()2945 const char *Process::AttachCompletionHandler::GetExitString() {
2946   return m_exit_string.c_str();
2947 }
2948 
GetListenerForProcess(Debugger & debugger)2949 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2950   if (m_listener_sp)
2951     return m_listener_sp;
2952   else
2953     return debugger.GetListener();
2954 }
2955 
WillLaunch(Module * module)2956 Status Process::WillLaunch(Module *module) {
2957   return DoWillLaunch(module);
2958 }
2959 
WillAttachToProcessWithID(lldb::pid_t pid)2960 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
2961   return DoWillAttachToProcessWithID(pid);
2962 }
2963 
WillAttachToProcessWithName(const char * process_name,bool wait_for_launch)2964 Status Process::WillAttachToProcessWithName(const char *process_name,
2965                                             bool wait_for_launch) {
2966   return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2967 }
2968 
Attach(ProcessAttachInfo & attach_info)2969 Status Process::Attach(ProcessAttachInfo &attach_info) {
2970   m_abi_sp.reset();
2971   {
2972     std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2973     m_process_input_reader.reset();
2974   }
2975   m_dyld_up.reset();
2976   m_jit_loaders_up.reset();
2977   m_system_runtime_up.reset();
2978   m_os_up.reset();
2979 
2980   lldb::pid_t attach_pid = attach_info.GetProcessID();
2981   Status error;
2982   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2983     char process_name[PATH_MAX];
2984 
2985     if (attach_info.GetExecutableFile().GetPath(process_name,
2986                                                 sizeof(process_name))) {
2987       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2988 
2989       if (wait_for_launch) {
2990         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2991         if (error.Success()) {
2992           if (m_public_run_lock.TrySetRunning()) {
2993             m_should_detach = true;
2994             const bool restarted = false;
2995             SetPublicState(eStateAttaching, restarted);
2996             // Now attach using these arguments.
2997             error = DoAttachToProcessWithName(process_name, attach_info);
2998           } else {
2999             // This shouldn't happen
3000             error.SetErrorString("failed to acquire process run lock");
3001           }
3002 
3003           if (error.Fail()) {
3004             if (GetID() != LLDB_INVALID_PROCESS_ID) {
3005               SetID(LLDB_INVALID_PROCESS_ID);
3006               if (error.AsCString() == nullptr)
3007                 error.SetErrorString("attach failed");
3008 
3009               SetExitStatus(-1, error.AsCString());
3010             }
3011           } else {
3012             SetNextEventAction(new Process::AttachCompletionHandler(
3013                 this, attach_info.GetResumeCount()));
3014             StartPrivateStateThread();
3015           }
3016           return error;
3017         }
3018       } else {
3019         ProcessInstanceInfoList process_infos;
3020         PlatformSP platform_sp(GetTarget().GetPlatform());
3021 
3022         if (platform_sp) {
3023           ProcessInstanceInfoMatch match_info;
3024           match_info.GetProcessInfo() = attach_info;
3025           match_info.SetNameMatchType(NameMatch::Equals);
3026           platform_sp->FindProcesses(match_info, process_infos);
3027           const uint32_t num_matches = process_infos.size();
3028           if (num_matches == 1) {
3029             attach_pid = process_infos[0].GetProcessID();
3030             // Fall through and attach using the above process ID
3031           } else {
3032             match_info.GetProcessInfo().GetExecutableFile().GetPath(
3033                 process_name, sizeof(process_name));
3034             if (num_matches > 1) {
3035               StreamString s;
3036               ProcessInstanceInfo::DumpTableHeader(s, true, false);
3037               for (size_t i = 0; i < num_matches; i++) {
3038                 process_infos[i].DumpAsTableRow(
3039                     s, platform_sp->GetUserIDResolver(), true, false);
3040               }
3041               error.SetErrorStringWithFormat(
3042                   "more than one process named %s:\n%s", process_name,
3043                   s.GetData());
3044             } else
3045               error.SetErrorStringWithFormat(
3046                   "could not find a process named %s", process_name);
3047           }
3048         } else {
3049           error.SetErrorString(
3050               "invalid platform, can't find processes by name");
3051           return error;
3052         }
3053       }
3054     } else {
3055       error.SetErrorString("invalid process name");
3056     }
3057   }
3058 
3059   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
3060     error = WillAttachToProcessWithID(attach_pid);
3061     if (error.Success()) {
3062 
3063       if (m_public_run_lock.TrySetRunning()) {
3064         // Now attach using these arguments.
3065         m_should_detach = true;
3066         const bool restarted = false;
3067         SetPublicState(eStateAttaching, restarted);
3068         error = DoAttachToProcessWithID(attach_pid, attach_info);
3069       } else {
3070         // This shouldn't happen
3071         error.SetErrorString("failed to acquire process run lock");
3072       }
3073 
3074       if (error.Success()) {
3075         SetNextEventAction(new Process::AttachCompletionHandler(
3076             this, attach_info.GetResumeCount()));
3077         StartPrivateStateThread();
3078       } else {
3079         if (GetID() != LLDB_INVALID_PROCESS_ID)
3080           SetID(LLDB_INVALID_PROCESS_ID);
3081 
3082         const char *error_string = error.AsCString();
3083         if (error_string == nullptr)
3084           error_string = "attach failed";
3085 
3086         SetExitStatus(-1, error_string);
3087       }
3088     }
3089   }
3090   return error;
3091 }
3092 
CompleteAttach()3093 void Process::CompleteAttach() {
3094   Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
3095   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
3096 
3097   // Let the process subclass figure out at much as it can about the process
3098   // before we go looking for a dynamic loader plug-in.
3099   ArchSpec process_arch;
3100   DidAttach(process_arch);
3101 
3102   if (process_arch.IsValid()) {
3103     LLDB_LOG(log,
3104              "Process::{0} replacing process architecture with DidAttach() "
3105              "architecture: \"{1}\"",
3106              __FUNCTION__, process_arch.GetTriple().getTriple());
3107     GetTarget().SetArchitecture(process_arch);
3108   }
3109 
3110   // We just attached.  If we have a platform, ask it for the process
3111   // architecture, and if it isn't the same as the one we've already set,
3112   // switch architectures.
3113   PlatformSP platform_sp(GetTarget().GetPlatform());
3114   assert(platform_sp);
3115   ArchSpec process_host_arch = GetSystemArchitecture();
3116   if (platform_sp) {
3117     const ArchSpec &target_arch = GetTarget().GetArchitecture();
3118     if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
3119                                      target_arch, process_host_arch,
3120                                      ArchSpec::CompatibleMatch, nullptr)) {
3121       ArchSpec platform_arch;
3122       platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
3123           target_arch, process_host_arch, &platform_arch);
3124       if (platform_sp) {
3125         GetTarget().SetPlatform(platform_sp);
3126         GetTarget().SetArchitecture(platform_arch);
3127         LLDB_LOG(log,
3128                  "switching platform to {0} and architecture to {1} based on "
3129                  "info from attach",
3130                  platform_sp->GetName(), platform_arch.GetTriple().getTriple());
3131       }
3132     } else if (!process_arch.IsValid()) {
3133       ProcessInstanceInfo process_info;
3134       GetProcessInfo(process_info);
3135       const ArchSpec &process_arch = process_info.GetArchitecture();
3136       const ArchSpec &target_arch = GetTarget().GetArchitecture();
3137       if (process_arch.IsValid() &&
3138           target_arch.IsCompatibleMatch(process_arch) &&
3139           !target_arch.IsExactMatch(process_arch)) {
3140         GetTarget().SetArchitecture(process_arch);
3141         LLDB_LOGF(log,
3142                   "Process::%s switching architecture to %s based on info "
3143                   "the platform retrieved for pid %" PRIu64,
3144                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
3145                   GetID());
3146       }
3147     }
3148   }
3149   // Now that we know the process type, update its signal responses from the
3150   // ones stored in the Target:
3151   if (m_unix_signals_sp) {
3152     StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
3153     GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
3154   }
3155 
3156   // We have completed the attach, now it is time to find the dynamic loader
3157   // plug-in
3158   DynamicLoader *dyld = GetDynamicLoader();
3159   if (dyld) {
3160     dyld->DidAttach();
3161     if (log) {
3162       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3163       LLDB_LOG(log,
3164                "after DynamicLoader::DidAttach(), target "
3165                "executable is {0} (using {1} plugin)",
3166                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3167                dyld->GetPluginName());
3168     }
3169   }
3170 
3171   GetJITLoaders().DidAttach();
3172 
3173   SystemRuntime *system_runtime = GetSystemRuntime();
3174   if (system_runtime) {
3175     system_runtime->DidAttach();
3176     if (log) {
3177       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3178       LLDB_LOG(log,
3179                "after SystemRuntime::DidAttach(), target "
3180                "executable is {0} (using {1} plugin)",
3181                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3182                system_runtime->GetPluginName());
3183     }
3184   }
3185 
3186   if (!m_os_up) {
3187     LoadOperatingSystemPlugin(false);
3188     if (m_os_up) {
3189       // Somebody might have gotten threads before now, but we need to force the
3190       // update after we've loaded the OperatingSystem plugin or it won't get a
3191       // chance to process the threads.
3192       m_thread_list.Clear();
3193       UpdateThreadListIfNeeded();
3194     }
3195   }
3196   // Figure out which one is the executable, and set that in our target:
3197   ModuleSP new_executable_module_sp;
3198   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3199     if (module_sp && module_sp->IsExecutable()) {
3200       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3201         new_executable_module_sp = module_sp;
3202       break;
3203     }
3204   }
3205   if (new_executable_module_sp) {
3206     GetTarget().SetExecutableModule(new_executable_module_sp,
3207                                     eLoadDependentsNo);
3208     if (log) {
3209       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3210       LLDB_LOGF(
3211           log,
3212           "Process::%s after looping through modules, target executable is %s",
3213           __FUNCTION__,
3214           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3215                         : "<none>");
3216     }
3217   }
3218 }
3219 
ConnectRemote(llvm::StringRef remote_url)3220 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3221   m_abi_sp.reset();
3222   {
3223     std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3224     m_process_input_reader.reset();
3225   }
3226 
3227   // Find the process and its architecture.  Make sure it matches the
3228   // architecture of the current Target, and if not adjust it.
3229 
3230   Status error(DoConnectRemote(remote_url));
3231   if (error.Success()) {
3232     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3233       EventSP event_sp;
3234       StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3235 
3236       if (state == eStateStopped || state == eStateCrashed) {
3237         // If we attached and actually have a process on the other end, then
3238         // this ended up being the equivalent of an attach.
3239         CompleteAttach();
3240 
3241         // This delays passing the stopped event to listeners till
3242         // CompleteAttach gets a chance to complete...
3243         HandlePrivateEvent(event_sp);
3244       }
3245     }
3246 
3247     if (PrivateStateThreadIsValid())
3248       ResumePrivateStateThread();
3249     else
3250       StartPrivateStateThread();
3251   }
3252   return error;
3253 }
3254 
PrivateResume()3255 Status Process::PrivateResume() {
3256   Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3257   LLDB_LOGF(log,
3258             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3259             "private state: %s",
3260             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3261             StateAsCString(m_private_state.GetValue()));
3262 
3263   // If signals handing status changed we might want to update our signal
3264   // filters before resuming.
3265   UpdateAutomaticSignalFiltering();
3266 
3267   Status error(WillResume());
3268   // Tell the process it is about to resume before the thread list
3269   if (error.Success()) {
3270     // Now let the thread list know we are about to resume so it can let all of
3271     // our threads know that they are about to be resumed. Threads will each be
3272     // called with Thread::WillResume(StateType) where StateType contains the
3273     // state that they are supposed to have when the process is resumed
3274     // (suspended/running/stepping). Threads should also check their resume
3275     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3276     // start back up with a signal.
3277     if (m_thread_list.WillResume()) {
3278       // Last thing, do the PreResumeActions.
3279       if (!RunPreResumeActions()) {
3280         error.SetErrorString(
3281             "Process::PrivateResume PreResumeActions failed, not resuming.");
3282       } else {
3283         m_mod_id.BumpResumeID();
3284         error = DoResume();
3285         if (error.Success()) {
3286           DidResume();
3287           m_thread_list.DidResume();
3288           LLDB_LOGF(log, "Process thinks the process has resumed.");
3289         } else {
3290           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3291           return error;
3292         }
3293       }
3294     } else {
3295       // Somebody wanted to run without running (e.g. we were faking a step
3296       // from one frame of a set of inlined frames that share the same PC to
3297       // another.)  So generate a continue & a stopped event, and let the world
3298       // handle them.
3299       LLDB_LOGF(log,
3300                 "Process::PrivateResume() asked to simulate a start & stop.");
3301 
3302       SetPrivateState(eStateRunning);
3303       SetPrivateState(eStateStopped);
3304     }
3305   } else
3306     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3307               error.AsCString("<unknown error>"));
3308   return error;
3309 }
3310 
Halt(bool clear_thread_plans,bool use_run_lock)3311 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3312   if (!StateIsRunningState(m_public_state.GetValue()))
3313     return Status("Process is not running.");
3314 
3315   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3316   // case it was already set and some thread plan logic calls halt on its own.
3317   m_clear_thread_plans_on_stop |= clear_thread_plans;
3318 
3319   ListenerSP halt_listener_sp(
3320       Listener::MakeListener("lldb.process.halt_listener"));
3321   HijackProcessEvents(halt_listener_sp);
3322 
3323   EventSP event_sp;
3324 
3325   SendAsyncInterrupt();
3326 
3327   if (m_public_state.GetValue() == eStateAttaching) {
3328     // Don't hijack and eat the eStateExited as the code that was doing the
3329     // attach will be waiting for this event...
3330     RestoreProcessEvents();
3331     Destroy(false);
3332     SetExitStatus(SIGKILL, "Cancelled async attach.");
3333     return Status();
3334   }
3335 
3336   // Wait for the process halt timeout seconds for the process to stop.
3337   // If we are going to use the run lock, that means we're stopping out to the
3338   // user, so we should also select the most relevant frame.
3339   SelectMostRelevant select_most_relevant =
3340       use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
3341   StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3342                                          halt_listener_sp, nullptr,
3343                                          use_run_lock, select_most_relevant);
3344   RestoreProcessEvents();
3345 
3346   if (state == eStateInvalid || !event_sp) {
3347     // We timed out and didn't get a stop event...
3348     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3349   }
3350 
3351   BroadcastEvent(event_sp);
3352 
3353   return Status();
3354 }
3355 
FindInMemory(lldb::addr_t low,lldb::addr_t high,const uint8_t * buf,size_t size)3356 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high,
3357                                    const uint8_t *buf, size_t size) {
3358   const size_t region_size = high - low;
3359 
3360   if (region_size < size)
3361     return LLDB_INVALID_ADDRESS;
3362 
3363   std::vector<size_t> bad_char_heuristic(256, size);
3364   ProcessMemoryIterator iterator(*this, low);
3365 
3366   for (size_t idx = 0; idx < size - 1; idx++) {
3367     decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
3368     bad_char_heuristic[bcu_idx] = size - idx - 1;
3369   }
3370   for (size_t s = 0; s <= (region_size - size);) {
3371     int64_t j = size - 1;
3372     while (j >= 0 && buf[j] == iterator[s + j])
3373       j--;
3374     if (j < 0)
3375       return low + s;
3376     else
3377       s += bad_char_heuristic[iterator[s + size - 1]];
3378   }
3379 
3380   return LLDB_INVALID_ADDRESS;
3381 }
3382 
StopForDestroyOrDetach(lldb::EventSP & exit_event_sp)3383 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3384   Status error;
3385 
3386   // Check both the public & private states here.  If we're hung evaluating an
3387   // expression, for instance, then the public state will be stopped, but we
3388   // still need to interrupt.
3389   if (m_public_state.GetValue() == eStateRunning ||
3390       m_private_state.GetValue() == eStateRunning) {
3391     Log *log = GetLog(LLDBLog::Process);
3392     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3393 
3394     ListenerSP listener_sp(
3395         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3396     HijackProcessEvents(listener_sp);
3397 
3398     SendAsyncInterrupt();
3399 
3400     // Consume the interrupt event.
3401     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3402                                            &exit_event_sp, true, listener_sp);
3403 
3404     RestoreProcessEvents();
3405 
3406     // If the process exited while we were waiting for it to stop, put the
3407     // exited event into the shared pointer passed in and return.  Our caller
3408     // doesn't need to do anything else, since they don't have a process
3409     // anymore...
3410 
3411     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3412       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3413                 __FUNCTION__);
3414       return error;
3415     } else
3416       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3417 
3418     if (state != eStateStopped) {
3419       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3420                 StateAsCString(state));
3421       // If we really couldn't stop the process then we should just error out
3422       // here, but if the lower levels just bobbled sending the event and we
3423       // really are stopped, then continue on.
3424       StateType private_state = m_private_state.GetValue();
3425       if (private_state != eStateStopped) {
3426         return Status(
3427             "Attempt to stop the target in order to detach timed out. "
3428             "State = %s",
3429             StateAsCString(GetState()));
3430       }
3431     }
3432   }
3433   return error;
3434 }
3435 
Detach(bool keep_stopped)3436 Status Process::Detach(bool keep_stopped) {
3437   EventSP exit_event_sp;
3438   Status error;
3439   m_destroy_in_process = true;
3440 
3441   error = WillDetach();
3442 
3443   if (error.Success()) {
3444     if (DetachRequiresHalt()) {
3445       error = StopForDestroyOrDetach(exit_event_sp);
3446       if (!error.Success()) {
3447         m_destroy_in_process = false;
3448         return error;
3449       } else if (exit_event_sp) {
3450         // We shouldn't need to do anything else here.  There's no process left
3451         // to detach from...
3452         StopPrivateStateThread();
3453         m_destroy_in_process = false;
3454         return error;
3455       }
3456     }
3457 
3458     m_thread_list.DiscardThreadPlans();
3459     DisableAllBreakpointSites();
3460 
3461     error = DoDetach(keep_stopped);
3462     if (error.Success()) {
3463       DidDetach();
3464       StopPrivateStateThread();
3465     } else {
3466       return error;
3467     }
3468   }
3469   m_destroy_in_process = false;
3470 
3471   // If we exited when we were waiting for a process to stop, then forward the
3472   // event here so we don't lose the event
3473   if (exit_event_sp) {
3474     // Directly broadcast our exited event because we shut down our private
3475     // state thread above
3476     BroadcastEvent(exit_event_sp);
3477   }
3478 
3479   // If we have been interrupted (to kill us) in the middle of running, we may
3480   // not end up propagating the last events through the event system, in which
3481   // case we might strand the write lock.  Unlock it here so when we do to tear
3482   // down the process we don't get an error destroying the lock.
3483 
3484   m_public_run_lock.SetStopped();
3485   return error;
3486 }
3487 
Destroy(bool force_kill)3488 Status Process::Destroy(bool force_kill) {
3489   // If we've already called Process::Finalize then there's nothing useful to
3490   // be done here.  Finalize has actually called Destroy already.
3491   if (m_finalizing)
3492     return {};
3493   return DestroyImpl(force_kill);
3494 }
3495 
DestroyImpl(bool force_kill)3496 Status Process::DestroyImpl(bool force_kill) {
3497   // Tell ourselves we are in the process of destroying the process, so that we
3498   // don't do any unnecessary work that might hinder the destruction.  Remember
3499   // to set this back to false when we are done.  That way if the attempt
3500   // failed and the process stays around for some reason it won't be in a
3501   // confused state.
3502 
3503   if (force_kill)
3504     m_should_detach = false;
3505 
3506   if (GetShouldDetach()) {
3507     // FIXME: This will have to be a process setting:
3508     bool keep_stopped = false;
3509     Detach(keep_stopped);
3510   }
3511 
3512   m_destroy_in_process = true;
3513 
3514   Status error(WillDestroy());
3515   if (error.Success()) {
3516     EventSP exit_event_sp;
3517     if (DestroyRequiresHalt()) {
3518       error = StopForDestroyOrDetach(exit_event_sp);
3519     }
3520 
3521     if (m_public_state.GetValue() == eStateStopped) {
3522       // Ditch all thread plans, and remove all our breakpoints: in case we
3523       // have to restart the target to kill it, we don't want it hitting a
3524       // breakpoint... Only do this if we've stopped, however, since if we
3525       // didn't manage to halt it above, then we're not going to have much luck
3526       // doing this now.
3527       m_thread_list.DiscardThreadPlans();
3528       DisableAllBreakpointSites();
3529     }
3530 
3531     error = DoDestroy();
3532     if (error.Success()) {
3533       DidDestroy();
3534       StopPrivateStateThread();
3535     }
3536     m_stdio_communication.StopReadThread();
3537     m_stdio_communication.Disconnect();
3538     m_stdin_forward = false;
3539 
3540     {
3541       std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3542       if (m_process_input_reader) {
3543         m_process_input_reader->SetIsDone(true);
3544         m_process_input_reader->Cancel();
3545         m_process_input_reader.reset();
3546       }
3547     }
3548 
3549     // If we exited when we were waiting for a process to stop, then forward
3550     // the event here so we don't lose the event
3551     if (exit_event_sp) {
3552       // Directly broadcast our exited event because we shut down our private
3553       // state thread above
3554       BroadcastEvent(exit_event_sp);
3555     }
3556 
3557     // If we have been interrupted (to kill us) in the middle of running, we
3558     // may not end up propagating the last events through the event system, in
3559     // which case we might strand the write lock.  Unlock it here so when we do
3560     // to tear down the process we don't get an error destroying the lock.
3561     m_public_run_lock.SetStopped();
3562   }
3563 
3564   m_destroy_in_process = false;
3565 
3566   return error;
3567 }
3568 
Signal(int signal)3569 Status Process::Signal(int signal) {
3570   Status error(WillSignal());
3571   if (error.Success()) {
3572     error = DoSignal(signal);
3573     if (error.Success())
3574       DidSignal();
3575   }
3576   return error;
3577 }
3578 
SetUnixSignals(UnixSignalsSP && signals_sp)3579 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3580   assert(signals_sp && "null signals_sp");
3581   m_unix_signals_sp = std::move(signals_sp);
3582 }
3583 
GetUnixSignals()3584 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3585   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3586   return m_unix_signals_sp;
3587 }
3588 
GetByteOrder() const3589 lldb::ByteOrder Process::GetByteOrder() const {
3590   return GetTarget().GetArchitecture().GetByteOrder();
3591 }
3592 
GetAddressByteSize() const3593 uint32_t Process::GetAddressByteSize() const {
3594   return GetTarget().GetArchitecture().GetAddressByteSize();
3595 }
3596 
ShouldBroadcastEvent(Event * event_ptr)3597 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3598   const StateType state =
3599       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3600   bool return_value = true;
3601   Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3602 
3603   switch (state) {
3604   case eStateDetached:
3605   case eStateExited:
3606   case eStateUnloaded:
3607     m_stdio_communication.SynchronizeWithReadThread();
3608     m_stdio_communication.StopReadThread();
3609     m_stdio_communication.Disconnect();
3610     m_stdin_forward = false;
3611 
3612     [[fallthrough]];
3613   case eStateConnected:
3614   case eStateAttaching:
3615   case eStateLaunching:
3616     // These events indicate changes in the state of the debugging session,
3617     // always report them.
3618     return_value = true;
3619     break;
3620   case eStateInvalid:
3621     // We stopped for no apparent reason, don't report it.
3622     return_value = false;
3623     break;
3624   case eStateRunning:
3625   case eStateStepping:
3626     // If we've started the target running, we handle the cases where we are
3627     // already running and where there is a transition from stopped to running
3628     // differently. running -> running: Automatically suppress extra running
3629     // events stopped -> running: Report except when there is one or more no
3630     // votes
3631     //     and no yes votes.
3632     SynchronouslyNotifyStateChanged(state);
3633     if (m_force_next_event_delivery)
3634       return_value = true;
3635     else {
3636       switch (m_last_broadcast_state) {
3637       case eStateRunning:
3638       case eStateStepping:
3639         // We always suppress multiple runnings with no PUBLIC stop in between.
3640         return_value = false;
3641         break;
3642       default:
3643         // TODO: make this work correctly. For now always report
3644         // run if we aren't running so we don't miss any running events. If I
3645         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3646         // and hit the breakpoints on multiple threads, then somehow during the
3647         // stepping over of all breakpoints no run gets reported.
3648 
3649         // This is a transition from stop to run.
3650         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3651         case eVoteYes:
3652         case eVoteNoOpinion:
3653           return_value = true;
3654           break;
3655         case eVoteNo:
3656           return_value = false;
3657           break;
3658         }
3659         break;
3660       }
3661     }
3662     break;
3663   case eStateStopped:
3664   case eStateCrashed:
3665   case eStateSuspended:
3666     // We've stopped.  First see if we're going to restart the target. If we
3667     // are going to stop, then we always broadcast the event. If we aren't
3668     // going to stop, let the thread plans decide if we're going to report this
3669     // event. If no thread has an opinion, we don't report it.
3670 
3671     m_stdio_communication.SynchronizeWithReadThread();
3672     RefreshStateAfterStop();
3673     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3674       LLDB_LOGF(log,
3675                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3676                 "interrupt, state: %s",
3677                 static_cast<void *>(event_ptr), StateAsCString(state));
3678       // Even though we know we are going to stop, we should let the threads
3679       // have a look at the stop, so they can properly set their state.
3680       m_thread_list.ShouldStop(event_ptr);
3681       return_value = true;
3682     } else {
3683       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3684       bool should_resume = false;
3685 
3686       // It makes no sense to ask "ShouldStop" if we've already been
3687       // restarted... Asking the thread list is also not likely to go well,
3688       // since we are running again. So in that case just report the event.
3689 
3690       if (!was_restarted)
3691         should_resume = !m_thread_list.ShouldStop(event_ptr);
3692 
3693       if (was_restarted || should_resume || m_resume_requested) {
3694         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3695         LLDB_LOGF(log,
3696                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3697                   "%s was_restarted: %i report_stop_vote: %d.",
3698                   should_resume, StateAsCString(state), was_restarted,
3699                   report_stop_vote);
3700 
3701         switch (report_stop_vote) {
3702         case eVoteYes:
3703           return_value = true;
3704           break;
3705         case eVoteNoOpinion:
3706         case eVoteNo:
3707           return_value = false;
3708           break;
3709         }
3710 
3711         if (!was_restarted) {
3712           LLDB_LOGF(log,
3713                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3714                     "from state: %s",
3715                     static_cast<void *>(event_ptr), StateAsCString(state));
3716           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3717           PrivateResume();
3718         }
3719       } else {
3720         return_value = true;
3721         SynchronouslyNotifyStateChanged(state);
3722       }
3723     }
3724     break;
3725   }
3726 
3727   // Forcing the next event delivery is a one shot deal.  So reset it here.
3728   m_force_next_event_delivery = false;
3729 
3730   // We do some coalescing of events (for instance two consecutive running
3731   // events get coalesced.) But we only coalesce against events we actually
3732   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3733   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3734   // done, because the PublicState reflects the last event pulled off the
3735   // queue, and there may be several events stacked up on the queue unserviced.
3736   // So the PublicState may not reflect the last broadcasted event yet.
3737   // m_last_broadcast_state gets updated here.
3738 
3739   if (return_value)
3740     m_last_broadcast_state = state;
3741 
3742   LLDB_LOGF(log,
3743             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3744             "broadcast state: %s - %s",
3745             static_cast<void *>(event_ptr), StateAsCString(state),
3746             StateAsCString(m_last_broadcast_state),
3747             return_value ? "YES" : "NO");
3748   return return_value;
3749 }
3750 
StartPrivateStateThread(bool is_secondary_thread)3751 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3752   Log *log = GetLog(LLDBLog::Events);
3753 
3754   bool already_running = PrivateStateThreadIsValid();
3755   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3756             already_running ? " already running"
3757                             : " starting private state thread");
3758 
3759   if (!is_secondary_thread && already_running)
3760     return true;
3761 
3762   // Create a thread that watches our internal state and controls which events
3763   // make it to clients (into the DCProcess event queue).
3764   char thread_name[1024];
3765   uint32_t max_len = llvm::get_max_thread_name_length();
3766   if (max_len > 0 && max_len <= 30) {
3767     // On platforms with abbreviated thread name lengths, choose thread names
3768     // that fit within the limit.
3769     if (already_running)
3770       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3771     else
3772       snprintf(thread_name, sizeof(thread_name), "intern-state");
3773   } else {
3774     if (already_running)
3775       snprintf(thread_name, sizeof(thread_name),
3776                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3777                GetID());
3778     else
3779       snprintf(thread_name, sizeof(thread_name),
3780                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3781   }
3782 
3783   llvm::Expected<HostThread> private_state_thread =
3784       ThreadLauncher::LaunchThread(
3785           thread_name,
3786           [this, is_secondary_thread] {
3787             return RunPrivateStateThread(is_secondary_thread);
3788           },
3789           8 * 1024 * 1024);
3790   if (!private_state_thread) {
3791     LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3792                    "failed to launch host thread: {0}");
3793     return false;
3794   }
3795 
3796   assert(private_state_thread->IsJoinable());
3797   m_private_state_thread = *private_state_thread;
3798   ResumePrivateStateThread();
3799   return true;
3800 }
3801 
PausePrivateStateThread()3802 void Process::PausePrivateStateThread() {
3803   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3804 }
3805 
ResumePrivateStateThread()3806 void Process::ResumePrivateStateThread() {
3807   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3808 }
3809 
StopPrivateStateThread()3810 void Process::StopPrivateStateThread() {
3811   if (m_private_state_thread.IsJoinable())
3812     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3813   else {
3814     Log *log = GetLog(LLDBLog::Process);
3815     LLDB_LOGF(
3816         log,
3817         "Went to stop the private state thread, but it was already invalid.");
3818   }
3819 }
3820 
ControlPrivateStateThread(uint32_t signal)3821 void Process::ControlPrivateStateThread(uint32_t signal) {
3822   Log *log = GetLog(LLDBLog::Process);
3823 
3824   assert(signal == eBroadcastInternalStateControlStop ||
3825          signal == eBroadcastInternalStateControlPause ||
3826          signal == eBroadcastInternalStateControlResume);
3827 
3828   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3829 
3830   // Signal the private state thread
3831   if (m_private_state_thread.IsJoinable()) {
3832     // Broadcast the event.
3833     // It is important to do this outside of the if below, because it's
3834     // possible that the thread state is invalid but that the thread is waiting
3835     // on a control event instead of simply being on its way out (this should
3836     // not happen, but it apparently can).
3837     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3838     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3839     m_private_state_control_broadcaster.BroadcastEvent(signal,
3840                                                        event_receipt_sp);
3841 
3842     // Wait for the event receipt or for the private state thread to exit
3843     bool receipt_received = false;
3844     if (PrivateStateThreadIsValid()) {
3845       while (!receipt_received) {
3846         // Check for a receipt for n seconds and then check if the private
3847         // state thread is still around.
3848         receipt_received =
3849           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3850         if (!receipt_received) {
3851           // Check if the private state thread is still around. If it isn't
3852           // then we are done waiting
3853           if (!PrivateStateThreadIsValid())
3854             break; // Private state thread exited or is exiting, we are done
3855         }
3856       }
3857     }
3858 
3859     if (signal == eBroadcastInternalStateControlStop) {
3860       thread_result_t result = {};
3861       m_private_state_thread.Join(&result);
3862       m_private_state_thread.Reset();
3863     }
3864   } else {
3865     LLDB_LOGF(
3866         log,
3867         "Private state thread already dead, no need to signal it to stop.");
3868   }
3869 }
3870 
SendAsyncInterrupt()3871 void Process::SendAsyncInterrupt() {
3872   if (PrivateStateThreadIsValid())
3873     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3874                                                nullptr);
3875   else
3876     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3877 }
3878 
HandlePrivateEvent(EventSP & event_sp)3879 void Process::HandlePrivateEvent(EventSP &event_sp) {
3880   Log *log = GetLog(LLDBLog::Process);
3881   m_resume_requested = false;
3882 
3883   const StateType new_state =
3884       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3885 
3886   // First check to see if anybody wants a shot at this event:
3887   if (m_next_event_action_up) {
3888     NextEventAction::EventActionResult action_result =
3889         m_next_event_action_up->PerformAction(event_sp);
3890     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3891 
3892     switch (action_result) {
3893     case NextEventAction::eEventActionSuccess:
3894       SetNextEventAction(nullptr);
3895       break;
3896 
3897     case NextEventAction::eEventActionRetry:
3898       break;
3899 
3900     case NextEventAction::eEventActionExit:
3901       // Handle Exiting Here.  If we already got an exited event, we should
3902       // just propagate it.  Otherwise, swallow this event, and set our state
3903       // to exit so the next event will kill us.
3904       if (new_state != eStateExited) {
3905         // FIXME: should cons up an exited event, and discard this one.
3906         SetExitStatus(0, m_next_event_action_up->GetExitString());
3907         SetNextEventAction(nullptr);
3908         return;
3909       }
3910       SetNextEventAction(nullptr);
3911       break;
3912     }
3913   }
3914 
3915   // See if we should broadcast this state to external clients?
3916   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3917 
3918   if (should_broadcast) {
3919     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3920     if (log) {
3921       LLDB_LOGF(log,
3922                 "Process::%s (pid = %" PRIu64
3923                 ") broadcasting new state %s (old state %s) to %s",
3924                 __FUNCTION__, GetID(), StateAsCString(new_state),
3925                 StateAsCString(GetState()),
3926                 is_hijacked ? "hijacked" : "public");
3927     }
3928     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3929     if (StateIsRunningState(new_state)) {
3930       // Only push the input handler if we aren't fowarding events, as this
3931       // means the curses GUI is in use... Or don't push it if we are launching
3932       // since it will come up stopped.
3933       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3934           new_state != eStateLaunching && new_state != eStateAttaching) {
3935         PushProcessIOHandler();
3936         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3937                                   eBroadcastAlways);
3938         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3939                   __FUNCTION__, m_iohandler_sync.GetValue());
3940       }
3941     } else if (StateIsStoppedState(new_state, false)) {
3942       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3943         // If the lldb_private::Debugger is handling the events, we don't want
3944         // to pop the process IOHandler here, we want to do it when we receive
3945         // the stopped event so we can carefully control when the process
3946         // IOHandler is popped because when we stop we want to display some
3947         // text stating how and why we stopped, then maybe some
3948         // process/thread/frame info, and then we want the "(lldb) " prompt to
3949         // show up. If we pop the process IOHandler here, then we will cause
3950         // the command interpreter to become the top IOHandler after the
3951         // process pops off and it will update its prompt right away... See the
3952         // Debugger.cpp file where it calls the function as
3953         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3954         // Otherwise we end up getting overlapping "(lldb) " prompts and
3955         // garbled output.
3956         //
3957         // If we aren't handling the events in the debugger (which is indicated
3958         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3959         // we are hijacked, then we always pop the process IO handler manually.
3960         // Hijacking happens when the internal process state thread is running
3961         // thread plans, or when commands want to run in synchronous mode and
3962         // they call "process->WaitForProcessToStop()". An example of something
3963         // that will hijack the events is a simple expression:
3964         //
3965         //  (lldb) expr (int)puts("hello")
3966         //
3967         // This will cause the internal process state thread to resume and halt
3968         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3969         // events) and we do need the IO handler to be pushed and popped
3970         // correctly.
3971 
3972         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3973           PopProcessIOHandler();
3974       }
3975     }
3976 
3977     BroadcastEvent(event_sp);
3978   } else {
3979     if (log) {
3980       LLDB_LOGF(
3981           log,
3982           "Process::%s (pid = %" PRIu64
3983           ") suppressing state %s (old state %s): should_broadcast == false",
3984           __FUNCTION__, GetID(), StateAsCString(new_state),
3985           StateAsCString(GetState()));
3986     }
3987   }
3988 }
3989 
HaltPrivate()3990 Status Process::HaltPrivate() {
3991   EventSP event_sp;
3992   Status error(WillHalt());
3993   if (error.Fail())
3994     return error;
3995 
3996   // Ask the process subclass to actually halt our process
3997   bool caused_stop;
3998   error = DoHalt(caused_stop);
3999 
4000   DidHalt();
4001   return error;
4002 }
4003 
RunPrivateStateThread(bool is_secondary_thread)4004 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
4005   bool control_only = true;
4006 
4007   Log *log = GetLog(LLDBLog::Process);
4008   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
4009             __FUNCTION__, static_cast<void *>(this), GetID());
4010 
4011   bool exit_now = false;
4012   bool interrupt_requested = false;
4013   while (!exit_now) {
4014     EventSP event_sp;
4015     GetEventsPrivate(event_sp, std::nullopt, control_only);
4016     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
4017       LLDB_LOGF(log,
4018                 "Process::%s (arg = %p, pid = %" PRIu64
4019                 ") got a control event: %d",
4020                 __FUNCTION__, static_cast<void *>(this), GetID(),
4021                 event_sp->GetType());
4022 
4023       switch (event_sp->GetType()) {
4024       case eBroadcastInternalStateControlStop:
4025         exit_now = true;
4026         break; // doing any internal state management below
4027 
4028       case eBroadcastInternalStateControlPause:
4029         control_only = true;
4030         break;
4031 
4032       case eBroadcastInternalStateControlResume:
4033         control_only = false;
4034         break;
4035       }
4036 
4037       continue;
4038     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
4039       if (m_public_state.GetValue() == eStateAttaching) {
4040         LLDB_LOGF(log,
4041                   "Process::%s (arg = %p, pid = %" PRIu64
4042                   ") woke up with an interrupt while attaching - "
4043                   "forwarding interrupt.",
4044                   __FUNCTION__, static_cast<void *>(this), GetID());
4045         // The server may be spinning waiting for a process to appear, in which
4046         // case we should tell it to stop doing that.  Normally, we don't NEED
4047         // to do that because we will next close the communication to the stub
4048         // and that will get it to shut down.  But there are remote debugging
4049         // cases where relying on that side-effect causes the shutdown to be
4050         // flakey, so we should send a positive signal to interrupt the wait.
4051         Status error = HaltPrivate();
4052         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
4053       } else if (StateIsRunningState(m_last_broadcast_state)) {
4054         LLDB_LOGF(log,
4055                   "Process::%s (arg = %p, pid = %" PRIu64
4056                   ") woke up with an interrupt - Halting.",
4057                   __FUNCTION__, static_cast<void *>(this), GetID());
4058         Status error = HaltPrivate();
4059         if (error.Fail() && log)
4060           LLDB_LOGF(log,
4061                     "Process::%s (arg = %p, pid = %" PRIu64
4062                     ") failed to halt the process: %s",
4063                     __FUNCTION__, static_cast<void *>(this), GetID(),
4064                     error.AsCString());
4065         // Halt should generate a stopped event. Make a note of the fact that
4066         // we were doing the interrupt, so we can set the interrupted flag
4067         // after we receive the event. We deliberately set this to true even if
4068         // HaltPrivate failed, so that we can interrupt on the next natural
4069         // stop.
4070         interrupt_requested = true;
4071       } else {
4072         // This can happen when someone (e.g. Process::Halt) sees that we are
4073         // running and sends an interrupt request, but the process actually
4074         // stops before we receive it. In that case, we can just ignore the
4075         // request. We use m_last_broadcast_state, because the Stopped event
4076         // may not have been popped of the event queue yet, which is when the
4077         // public state gets updated.
4078         LLDB_LOGF(log,
4079                   "Process::%s ignoring interrupt as we have already stopped.",
4080                   __FUNCTION__);
4081       }
4082       continue;
4083     }
4084 
4085     const StateType internal_state =
4086         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4087 
4088     if (internal_state != eStateInvalid) {
4089       if (m_clear_thread_plans_on_stop &&
4090           StateIsStoppedState(internal_state, true)) {
4091         m_clear_thread_plans_on_stop = false;
4092         m_thread_list.DiscardThreadPlans();
4093       }
4094 
4095       if (interrupt_requested) {
4096         if (StateIsStoppedState(internal_state, true)) {
4097           // We requested the interrupt, so mark this as such in the stop event
4098           // so clients can tell an interrupted process from a natural stop
4099           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
4100           interrupt_requested = false;
4101         } else if (log) {
4102           LLDB_LOGF(log,
4103                     "Process::%s interrupt_requested, but a non-stopped "
4104                     "state '%s' received.",
4105                     __FUNCTION__, StateAsCString(internal_state));
4106         }
4107       }
4108 
4109       HandlePrivateEvent(event_sp);
4110     }
4111 
4112     if (internal_state == eStateInvalid || internal_state == eStateExited ||
4113         internal_state == eStateDetached) {
4114       LLDB_LOGF(log,
4115                 "Process::%s (arg = %p, pid = %" PRIu64
4116                 ") about to exit with internal state %s...",
4117                 __FUNCTION__, static_cast<void *>(this), GetID(),
4118                 StateAsCString(internal_state));
4119 
4120       break;
4121     }
4122   }
4123 
4124   // Verify log is still enabled before attempting to write to it...
4125   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
4126             __FUNCTION__, static_cast<void *>(this), GetID());
4127 
4128   // If we are a secondary thread, then the primary thread we are working for
4129   // will have already acquired the public_run_lock, and isn't done with what
4130   // it was doing yet, so don't try to change it on the way out.
4131   if (!is_secondary_thread)
4132     m_public_run_lock.SetStopped();
4133   return {};
4134 }
4135 
4136 // Process Event Data
4137 
ProcessEventData()4138 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
4139 
ProcessEventData(const ProcessSP & process_sp,StateType state)4140 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
4141                                             StateType state)
4142     : EventData(), m_process_wp(), m_state(state) {
4143   if (process_sp)
4144     m_process_wp = process_sp;
4145 }
4146 
4147 Process::ProcessEventData::~ProcessEventData() = default;
4148 
GetFlavorString()4149 llvm::StringRef Process::ProcessEventData::GetFlavorString() {
4150   return "Process::ProcessEventData";
4151 }
4152 
GetFlavor() const4153 llvm::StringRef Process::ProcessEventData::GetFlavor() const {
4154   return ProcessEventData::GetFlavorString();
4155 }
4156 
ShouldStop(Event * event_ptr,bool & found_valid_stopinfo)4157 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
4158                                            bool &found_valid_stopinfo) {
4159   found_valid_stopinfo = false;
4160 
4161   ProcessSP process_sp(m_process_wp.lock());
4162   if (!process_sp)
4163     return false;
4164 
4165   ThreadList &curr_thread_list = process_sp->GetThreadList();
4166   uint32_t num_threads = curr_thread_list.GetSize();
4167 
4168   // The actions might change one of the thread's stop_info's opinions about
4169   // whether we should stop the process, so we need to query that as we go.
4170 
4171   // One other complication here, is that we try to catch any case where the
4172   // target has run (except for expressions) and immediately exit, but if we
4173   // get that wrong (which is possible) then the thread list might have
4174   // changed, and that would cause our iteration here to crash.  We could
4175   // make a copy of the thread list, but we'd really like to also know if it
4176   // has changed at all, so we store the original thread ID's of all threads and
4177   // check what we get back against this list & bag out if anything differs.
4178   std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
4179   for (uint32_t idx = 0; idx < num_threads; ++idx) {
4180     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4181 
4182     /*
4183      Filter out all suspended threads, they could not be the reason
4184      of stop and no need to perform any actions on them.
4185      */
4186     if (thread_sp->GetResumeState() != eStateSuspended)
4187       not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
4188   }
4189 
4190   // Use this to track whether we should continue from here.  We will only
4191   // continue the target running if no thread says we should stop.  Of course
4192   // if some thread's PerformAction actually sets the target running, then it
4193   // doesn't matter what the other threads say...
4194 
4195   bool still_should_stop = false;
4196 
4197   // Sometimes - for instance if we have a bug in the stub we are talking to,
4198   // we stop but no thread has a valid stop reason.  In that case we should
4199   // just stop, because we have no way of telling what the right thing to do
4200   // is, and it's better to let the user decide than continue behind their
4201   // backs.
4202 
4203   for (auto [thread_sp, thread_index] : not_suspended_threads) {
4204     if (curr_thread_list.GetSize() != num_threads) {
4205       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4206       LLDB_LOGF(
4207           log,
4208           "Number of threads changed from %u to %u while processing event.",
4209           num_threads, curr_thread_list.GetSize());
4210       break;
4211     }
4212 
4213     if (thread_sp->GetIndexID() != thread_index) {
4214       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4215       LLDB_LOG(log,
4216                "The thread {0} changed from {1} to {2} while processing event.",
4217                thread_sp.get(), thread_index, thread_sp->GetIndexID());
4218       break;
4219     }
4220 
4221     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4222     if (stop_info_sp && stop_info_sp->IsValid()) {
4223       found_valid_stopinfo = true;
4224       bool this_thread_wants_to_stop;
4225       if (stop_info_sp->GetOverrideShouldStop()) {
4226         this_thread_wants_to_stop =
4227             stop_info_sp->GetOverriddenShouldStopValue();
4228       } else {
4229         stop_info_sp->PerformAction(event_ptr);
4230         // The stop action might restart the target.  If it does, then we
4231         // want to mark that in the event so that whoever is receiving it
4232         // will know to wait for the running event and reflect that state
4233         // appropriately. We also need to stop processing actions, since they
4234         // aren't expecting the target to be running.
4235 
4236         // FIXME: we might have run.
4237         if (stop_info_sp->HasTargetRunSinceMe()) {
4238           SetRestarted(true);
4239           break;
4240         }
4241 
4242         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4243       }
4244 
4245       if (!still_should_stop)
4246         still_should_stop = this_thread_wants_to_stop;
4247     }
4248   }
4249 
4250   return still_should_stop;
4251 }
4252 
ForwardEventToPendingListeners(Event * event_ptr)4253 bool Process::ProcessEventData::ForwardEventToPendingListeners(
4254     Event *event_ptr) {
4255   // STDIO and the other async event notifications should always be forwarded.
4256   if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4257     return true;
4258 
4259   // For state changed events, if the update state is zero, we are handling
4260   // this on the private state thread.  We should wait for the public event.
4261   return m_update_state == 1;
4262 }
4263 
DoOnRemoval(Event * event_ptr)4264 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4265   // We only have work to do for state changed events:
4266   if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4267     return;
4268 
4269   ProcessSP process_sp(m_process_wp.lock());
4270 
4271   if (!process_sp)
4272     return;
4273 
4274   // This function gets called twice for each event, once when the event gets
4275   // pulled off of the private process event queue, and then any number of
4276   // times, first when it gets pulled off of the public event queue, then other
4277   // times when we're pretending that this is where we stopped at the end of
4278   // expression evaluation.  m_update_state is used to distinguish these three
4279   // cases; it is 0 when we're just pulling it off for private handling, and >
4280   // 1 for expression evaluation, and we don't want to do the breakpoint
4281   // command handling then.
4282   if (m_update_state != 1)
4283     return;
4284 
4285   process_sp->SetPublicState(
4286       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4287 
4288   if (m_state == eStateStopped && !m_restarted) {
4289     // Let process subclasses know we are about to do a public stop and do
4290     // anything they might need to in order to speed up register and memory
4291     // accesses.
4292     process_sp->WillPublicStop();
4293   }
4294 
4295   // If this is a halt event, even if the halt stopped with some reason other
4296   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4297   // the halt request came through) don't do the StopInfo actions, as they may
4298   // end up restarting the process.
4299   if (m_interrupted)
4300     return;
4301 
4302   // If we're not stopped or have restarted, then skip the StopInfo actions:
4303   if (m_state != eStateStopped || m_restarted) {
4304     return;
4305   }
4306 
4307   bool does_anybody_have_an_opinion = false;
4308   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4309 
4310   if (GetRestarted()) {
4311     return;
4312   }
4313 
4314   if (!still_should_stop && does_anybody_have_an_opinion) {
4315     // We've been asked to continue, so do that here.
4316     SetRestarted(true);
4317     // Use the private resume method here, since we aren't changing the run
4318     // lock state.
4319     process_sp->PrivateResume();
4320   } else {
4321     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4322                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4323 
4324     if (!hijacked) {
4325       // If we didn't restart, run the Stop Hooks here.
4326       // Don't do that if state changed events aren't hooked up to the
4327       // public (or SyncResume) broadcasters.  StopHooks are just for
4328       // real public stops.  They might also restart the target,
4329       // so watch for that.
4330       if (process_sp->GetTarget().RunStopHooks())
4331         SetRestarted(true);
4332     }
4333   }
4334 }
4335 
Dump(Stream * s) const4336 void Process::ProcessEventData::Dump(Stream *s) const {
4337   ProcessSP process_sp(m_process_wp.lock());
4338 
4339   if (process_sp)
4340     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4341               static_cast<void *>(process_sp.get()), process_sp->GetID());
4342   else
4343     s->PutCString(" process = NULL, ");
4344 
4345   s->Printf("state = %s", StateAsCString(GetState()));
4346 }
4347 
4348 const Process::ProcessEventData *
GetEventDataFromEvent(const Event * event_ptr)4349 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4350   if (event_ptr) {
4351     const EventData *event_data = event_ptr->GetData();
4352     if (event_data &&
4353         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4354       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4355   }
4356   return nullptr;
4357 }
4358 
4359 ProcessSP
GetProcessFromEvent(const Event * event_ptr)4360 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4361   ProcessSP process_sp;
4362   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4363   if (data)
4364     process_sp = data->GetProcessSP();
4365   return process_sp;
4366 }
4367 
GetStateFromEvent(const Event * event_ptr)4368 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4369   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4370   if (data == nullptr)
4371     return eStateInvalid;
4372   else
4373     return data->GetState();
4374 }
4375 
GetRestartedFromEvent(const Event * event_ptr)4376 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4377   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4378   if (data == nullptr)
4379     return false;
4380   else
4381     return data->GetRestarted();
4382 }
4383 
SetRestartedInEvent(Event * event_ptr,bool new_value)4384 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4385                                                     bool new_value) {
4386   ProcessEventData *data =
4387       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4388   if (data != nullptr)
4389     data->SetRestarted(new_value);
4390 }
4391 
4392 size_t
GetNumRestartedReasons(const Event * event_ptr)4393 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4394   ProcessEventData *data =
4395       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4396   if (data != nullptr)
4397     return data->GetNumRestartedReasons();
4398   else
4399     return 0;
4400 }
4401 
4402 const char *
GetRestartedReasonAtIndex(const Event * event_ptr,size_t idx)4403 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4404                                                      size_t idx) {
4405   ProcessEventData *data =
4406       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4407   if (data != nullptr)
4408     return data->GetRestartedReasonAtIndex(idx);
4409   else
4410     return nullptr;
4411 }
4412 
AddRestartedReason(Event * event_ptr,const char * reason)4413 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4414                                                    const char *reason) {
4415   ProcessEventData *data =
4416       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4417   if (data != nullptr)
4418     data->AddRestartedReason(reason);
4419 }
4420 
GetInterruptedFromEvent(const Event * event_ptr)4421 bool Process::ProcessEventData::GetInterruptedFromEvent(
4422     const Event *event_ptr) {
4423   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4424   if (data == nullptr)
4425     return false;
4426   else
4427     return data->GetInterrupted();
4428 }
4429 
SetInterruptedInEvent(Event * event_ptr,bool new_value)4430 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4431                                                       bool new_value) {
4432   ProcessEventData *data =
4433       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4434   if (data != nullptr)
4435     data->SetInterrupted(new_value);
4436 }
4437 
SetUpdateStateOnRemoval(Event * event_ptr)4438 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4439   ProcessEventData *data =
4440       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4441   if (data) {
4442     data->SetUpdateStateOnRemoval();
4443     return true;
4444   }
4445   return false;
4446 }
4447 
CalculateTarget()4448 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4449 
CalculateExecutionContext(ExecutionContext & exe_ctx)4450 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4451   exe_ctx.SetTargetPtr(&GetTarget());
4452   exe_ctx.SetProcessPtr(this);
4453   exe_ctx.SetThreadPtr(nullptr);
4454   exe_ctx.SetFramePtr(nullptr);
4455 }
4456 
4457 // uint32_t
4458 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4459 // std::vector<lldb::pid_t> &pids)
4460 //{
4461 //    return 0;
4462 //}
4463 //
4464 // ArchSpec
4465 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4466 //{
4467 //    return Host::GetArchSpecForExistingProcess (pid);
4468 //}
4469 //
4470 // ArchSpec
4471 // Process::GetArchSpecForExistingProcess (const char *process_name)
4472 //{
4473 //    return Host::GetArchSpecForExistingProcess (process_name);
4474 //}
4475 
CreateEventFromProcessState(uint32_t event_type)4476 EventSP Process::CreateEventFromProcessState(uint32_t event_type) {
4477   auto event_data_sp =
4478       std::make_shared<ProcessEventData>(shared_from_this(), GetState());
4479   return std::make_shared<Event>(event_type, event_data_sp);
4480 }
4481 
AppendSTDOUT(const char * s,size_t len)4482 void Process::AppendSTDOUT(const char *s, size_t len) {
4483   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4484   m_stdout_data.append(s, len);
4485   auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT);
4486   BroadcastEventIfUnique(event_sp);
4487 }
4488 
AppendSTDERR(const char * s,size_t len)4489 void Process::AppendSTDERR(const char *s, size_t len) {
4490   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4491   m_stderr_data.append(s, len);
4492   auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR);
4493   BroadcastEventIfUnique(event_sp);
4494 }
4495 
BroadcastAsyncProfileData(const std::string & one_profile_data)4496 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4497   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4498   m_profile_data.push_back(one_profile_data);
4499   auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData);
4500   BroadcastEventIfUnique(event_sp);
4501 }
4502 
BroadcastStructuredData(const StructuredData::ObjectSP & object_sp,const StructuredDataPluginSP & plugin_sp)4503 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4504                                       const StructuredDataPluginSP &plugin_sp) {
4505   auto data_sp = std::make_shared<EventDataStructuredData>(
4506       shared_from_this(), object_sp, plugin_sp);
4507   BroadcastEvent(eBroadcastBitStructuredData, data_sp);
4508 }
4509 
4510 StructuredDataPluginSP
GetStructuredDataPlugin(llvm::StringRef type_name) const4511 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4512   auto find_it = m_structured_data_plugin_map.find(type_name);
4513   if (find_it != m_structured_data_plugin_map.end())
4514     return find_it->second;
4515   else
4516     return StructuredDataPluginSP();
4517 }
4518 
GetAsyncProfileData(char * buf,size_t buf_size,Status & error)4519 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4520   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4521   if (m_profile_data.empty())
4522     return 0;
4523 
4524   std::string &one_profile_data = m_profile_data.front();
4525   size_t bytes_available = one_profile_data.size();
4526   if (bytes_available > 0) {
4527     Log *log = GetLog(LLDBLog::Process);
4528     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4529               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4530     if (bytes_available > buf_size) {
4531       memcpy(buf, one_profile_data.c_str(), buf_size);
4532       one_profile_data.erase(0, buf_size);
4533       bytes_available = buf_size;
4534     } else {
4535       memcpy(buf, one_profile_data.c_str(), bytes_available);
4536       m_profile_data.erase(m_profile_data.begin());
4537     }
4538   }
4539   return bytes_available;
4540 }
4541 
4542 // Process STDIO
4543 
GetSTDOUT(char * buf,size_t buf_size,Status & error)4544 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4545   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4546   size_t bytes_available = m_stdout_data.size();
4547   if (bytes_available > 0) {
4548     Log *log = GetLog(LLDBLog::Process);
4549     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4550               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4551     if (bytes_available > buf_size) {
4552       memcpy(buf, m_stdout_data.c_str(), buf_size);
4553       m_stdout_data.erase(0, buf_size);
4554       bytes_available = buf_size;
4555     } else {
4556       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4557       m_stdout_data.clear();
4558     }
4559   }
4560   return bytes_available;
4561 }
4562 
GetSTDERR(char * buf,size_t buf_size,Status & error)4563 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4564   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4565   size_t bytes_available = m_stderr_data.size();
4566   if (bytes_available > 0) {
4567     Log *log = GetLog(LLDBLog::Process);
4568     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4569               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4570     if (bytes_available > buf_size) {
4571       memcpy(buf, m_stderr_data.c_str(), buf_size);
4572       m_stderr_data.erase(0, buf_size);
4573       bytes_available = buf_size;
4574     } else {
4575       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4576       m_stderr_data.clear();
4577     }
4578   }
4579   return bytes_available;
4580 }
4581 
STDIOReadThreadBytesReceived(void * baton,const void * src,size_t src_len)4582 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4583                                            size_t src_len) {
4584   Process *process = (Process *)baton;
4585   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4586 }
4587 
4588 class IOHandlerProcessSTDIO : public IOHandler {
4589 public:
IOHandlerProcessSTDIO(Process * process,int write_fd)4590   IOHandlerProcessSTDIO(Process *process, int write_fd)
4591       : IOHandler(process->GetTarget().GetDebugger(),
4592                   IOHandler::Type::ProcessIO),
4593         m_process(process),
4594         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4595         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4596     m_pipe.CreateNew(false);
4597   }
4598 
4599   ~IOHandlerProcessSTDIO() override = default;
4600 
SetIsRunning(bool running)4601   void SetIsRunning(bool running) {
4602     std::lock_guard<std::mutex> guard(m_mutex);
4603     SetIsDone(!running);
4604     m_is_running = running;
4605   }
4606 
4607   // Each IOHandler gets to run until it is done. It should read data from the
4608   // "in" and place output into "out" and "err and return when done.
Run()4609   void Run() override {
4610     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4611         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4612       SetIsDone(true);
4613       return;
4614     }
4615 
4616     SetIsDone(false);
4617     const int read_fd = m_read_file.GetDescriptor();
4618     Terminal terminal(read_fd);
4619     TerminalState terminal_state(terminal, false);
4620     // FIXME: error handling?
4621     llvm::consumeError(terminal.SetCanonical(false));
4622     llvm::consumeError(terminal.SetEcho(false));
4623 // FD_ZERO, FD_SET are not supported on windows
4624 #ifndef _WIN32
4625     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4626     SetIsRunning(true);
4627     while (true) {
4628       {
4629         std::lock_guard<std::mutex> guard(m_mutex);
4630         if (GetIsDone())
4631           break;
4632       }
4633 
4634       SelectHelper select_helper;
4635       select_helper.FDSetRead(read_fd);
4636       select_helper.FDSetRead(pipe_read_fd);
4637       Status error = select_helper.Select();
4638 
4639       if (error.Fail())
4640         break;
4641 
4642       char ch = 0;
4643       size_t n;
4644       if (select_helper.FDIsSetRead(read_fd)) {
4645         n = 1;
4646         if (m_read_file.Read(&ch, n).Success() && n == 1) {
4647           if (m_write_file.Write(&ch, n).Fail() || n != 1)
4648             break;
4649         } else
4650           break;
4651       }
4652 
4653       if (select_helper.FDIsSetRead(pipe_read_fd)) {
4654         size_t bytes_read;
4655         // Consume the interrupt byte
4656         Status error = m_pipe.Read(&ch, 1, bytes_read);
4657         if (error.Success()) {
4658           if (ch == 'q')
4659             break;
4660           if (ch == 'i')
4661             if (StateIsRunningState(m_process->GetState()))
4662               m_process->SendAsyncInterrupt();
4663         }
4664       }
4665     }
4666     SetIsRunning(false);
4667 #endif
4668   }
4669 
Cancel()4670   void Cancel() override {
4671     std::lock_guard<std::mutex> guard(m_mutex);
4672     SetIsDone(true);
4673     // Only write to our pipe to cancel if we are in
4674     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4675     // is being run from the command interpreter:
4676     //
4677     // (lldb) step_process_thousands_of_times
4678     //
4679     // In this case the command interpreter will be in the middle of handling
4680     // the command and if the process pushes and pops the IOHandler thousands
4681     // of times, we can end up writing to m_pipe without ever consuming the
4682     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4683     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4684     if (m_is_running) {
4685       char ch = 'q'; // Send 'q' for quit
4686       size_t bytes_written = 0;
4687       m_pipe.Write(&ch, 1, bytes_written);
4688     }
4689   }
4690 
Interrupt()4691   bool Interrupt() override {
4692     // Do only things that are safe to do in an interrupt context (like in a
4693     // SIGINT handler), like write 1 byte to a file descriptor. This will
4694     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4695     // that was written to the pipe and then call
4696     // m_process->SendAsyncInterrupt() from a much safer location in code.
4697     if (m_active) {
4698       char ch = 'i'; // Send 'i' for interrupt
4699       size_t bytes_written = 0;
4700       Status result = m_pipe.Write(&ch, 1, bytes_written);
4701       return result.Success();
4702     } else {
4703       // This IOHandler might be pushed on the stack, but not being run
4704       // currently so do the right thing if we aren't actively watching for
4705       // STDIN by sending the interrupt to the process. Otherwise the write to
4706       // the pipe above would do nothing. This can happen when the command
4707       // interpreter is running and gets a "expression ...". It will be on the
4708       // IOHandler thread and sending the input is complete to the delegate
4709       // which will cause the expression to run, which will push the process IO
4710       // handler, but not run it.
4711 
4712       if (StateIsRunningState(m_process->GetState())) {
4713         m_process->SendAsyncInterrupt();
4714         return true;
4715       }
4716     }
4717     return false;
4718   }
4719 
GotEOF()4720   void GotEOF() override {}
4721 
4722 protected:
4723   Process *m_process;
4724   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4725   NativeFile m_write_file; // Write to this file (usually the primary pty for
4726                            // getting io to debuggee)
4727   Pipe m_pipe;
4728   std::mutex m_mutex;
4729   bool m_is_running = false;
4730 };
4731 
SetSTDIOFileDescriptor(int fd)4732 void Process::SetSTDIOFileDescriptor(int fd) {
4733   // First set up the Read Thread for reading/handling process I/O
4734   m_stdio_communication.SetConnection(
4735       std::make_unique<ConnectionFileDescriptor>(fd, true));
4736   if (m_stdio_communication.IsConnected()) {
4737     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4738         STDIOReadThreadBytesReceived, this);
4739     m_stdio_communication.StartReadThread();
4740 
4741     // Now read thread is set up, set up input reader.
4742     {
4743       std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4744       if (!m_process_input_reader)
4745         m_process_input_reader =
4746             std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4747     }
4748   }
4749 }
4750 
ProcessIOHandlerIsActive()4751 bool Process::ProcessIOHandlerIsActive() {
4752   std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4753   IOHandlerSP io_handler_sp(m_process_input_reader);
4754   if (io_handler_sp)
4755     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4756   return false;
4757 }
4758 
PushProcessIOHandler()4759 bool Process::PushProcessIOHandler() {
4760   std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4761   IOHandlerSP io_handler_sp(m_process_input_reader);
4762   if (io_handler_sp) {
4763     Log *log = GetLog(LLDBLog::Process);
4764     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4765 
4766     io_handler_sp->SetIsDone(false);
4767     // If we evaluate an utility function, then we don't cancel the current
4768     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4769     // existing IOHandler that potentially provides the user interface (e.g.
4770     // the IOHandler for Editline).
4771     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4772     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4773                                                 cancel_top_handler);
4774     return true;
4775   }
4776   return false;
4777 }
4778 
PopProcessIOHandler()4779 bool Process::PopProcessIOHandler() {
4780   std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4781   IOHandlerSP io_handler_sp(m_process_input_reader);
4782   if (io_handler_sp)
4783     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4784   return false;
4785 }
4786 
4787 // The process needs to know about installed plug-ins
SettingsInitialize()4788 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4789 
SettingsTerminate()4790 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4791 
4792 namespace {
4793 // RestorePlanState is used to record the "is private", "is controlling" and
4794 // "okay
4795 // to discard" fields of the plan we are running, and reset it on Clean or on
4796 // destruction. It will only reset the state once, so you can call Clean and
4797 // then monkey with the state and it won't get reset on you again.
4798 
4799 class RestorePlanState {
4800 public:
RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)4801   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4802       : m_thread_plan_sp(thread_plan_sp) {
4803     if (m_thread_plan_sp) {
4804       m_private = m_thread_plan_sp->GetPrivate();
4805       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4806       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4807     }
4808   }
4809 
~RestorePlanState()4810   ~RestorePlanState() { Clean(); }
4811 
Clean()4812   void Clean() {
4813     if (!m_already_reset && m_thread_plan_sp) {
4814       m_already_reset = true;
4815       m_thread_plan_sp->SetPrivate(m_private);
4816       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4817       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4818     }
4819   }
4820 
4821 private:
4822   lldb::ThreadPlanSP m_thread_plan_sp;
4823   bool m_already_reset = false;
4824   bool m_private = false;
4825   bool m_is_controlling = false;
4826   bool m_okay_to_discard = false;
4827 };
4828 } // anonymous namespace
4829 
4830 static microseconds
GetOneThreadExpressionTimeout(const EvaluateExpressionOptions & options)4831 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4832   const milliseconds default_one_thread_timeout(250);
4833 
4834   // If the overall wait is forever, then we don't need to worry about it.
4835   if (!options.GetTimeout()) {
4836     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4837                                          : default_one_thread_timeout;
4838   }
4839 
4840   // If the one thread timeout is set, use it.
4841   if (options.GetOneThreadTimeout())
4842     return *options.GetOneThreadTimeout();
4843 
4844   // Otherwise use half the total timeout, bounded by the
4845   // default_one_thread_timeout.
4846   return std::min<microseconds>(default_one_thread_timeout,
4847                                 *options.GetTimeout() / 2);
4848 }
4849 
4850 static Timeout<std::micro>
GetExpressionTimeout(const EvaluateExpressionOptions & options,bool before_first_timeout)4851 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4852                      bool before_first_timeout) {
4853   // If we are going to run all threads the whole time, or if we are only going
4854   // to run one thread, we can just return the overall timeout.
4855   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4856     return options.GetTimeout();
4857 
4858   if (before_first_timeout)
4859     return GetOneThreadExpressionTimeout(options);
4860 
4861   if (!options.GetTimeout())
4862     return std::nullopt;
4863   else
4864     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4865 }
4866 
4867 static std::optional<ExpressionResults>
HandleStoppedEvent(lldb::tid_t thread_id,const ThreadPlanSP & thread_plan_sp,RestorePlanState & restorer,const EventSP & event_sp,EventSP & event_to_broadcast_sp,const EvaluateExpressionOptions & options,bool handle_interrupts)4868 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4869                    RestorePlanState &restorer, const EventSP &event_sp,
4870                    EventSP &event_to_broadcast_sp,
4871                    const EvaluateExpressionOptions &options,
4872                    bool handle_interrupts) {
4873   Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4874 
4875   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4876                            .GetProcessSP()
4877                            ->GetThreadList()
4878                            .FindThreadByID(thread_id);
4879   if (!thread_sp) {
4880     LLDB_LOG(log,
4881              "The thread on which we were running the "
4882              "expression: tid = {0}, exited while "
4883              "the expression was running.",
4884              thread_id);
4885     return eExpressionThreadVanished;
4886   }
4887 
4888   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4889   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4890     LLDB_LOG(log, "execution completed successfully");
4891 
4892     // Restore the plan state so it will get reported as intended when we are
4893     // done.
4894     restorer.Clean();
4895     return eExpressionCompleted;
4896   }
4897 
4898   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4899   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4900       stop_info_sp->ShouldNotify(event_sp.get())) {
4901     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4902     if (!options.DoesIgnoreBreakpoints()) {
4903       // Restore the plan state and then force Private to false.  We are going
4904       // to stop because of this plan so we need it to become a public plan or
4905       // it won't report correctly when we continue to its termination later
4906       // on.
4907       restorer.Clean();
4908       thread_plan_sp->SetPrivate(false);
4909       event_to_broadcast_sp = event_sp;
4910     }
4911     return eExpressionHitBreakpoint;
4912   }
4913 
4914   if (!handle_interrupts &&
4915       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4916     return std::nullopt;
4917 
4918   LLDB_LOG(log, "thread plan did not successfully complete");
4919   if (!options.DoesUnwindOnError())
4920     event_to_broadcast_sp = event_sp;
4921   return eExpressionInterrupted;
4922 }
4923 
4924 ExpressionResults
RunThreadPlan(ExecutionContext & exe_ctx,lldb::ThreadPlanSP & thread_plan_sp,const EvaluateExpressionOptions & options,DiagnosticManager & diagnostic_manager)4925 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4926                        lldb::ThreadPlanSP &thread_plan_sp,
4927                        const EvaluateExpressionOptions &options,
4928                        DiagnosticManager &diagnostic_manager) {
4929   ExpressionResults return_value = eExpressionSetupError;
4930 
4931   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4932 
4933   if (!thread_plan_sp) {
4934     diagnostic_manager.PutString(
4935         lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");
4936     return eExpressionSetupError;
4937   }
4938 
4939   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4940     diagnostic_manager.PutString(
4941         lldb::eSeverityError,
4942         "RunThreadPlan called with an invalid thread plan.");
4943     return eExpressionSetupError;
4944   }
4945 
4946   if (exe_ctx.GetProcessPtr() != this) {
4947     diagnostic_manager.PutString(lldb::eSeverityError,
4948                                  "RunThreadPlan called on wrong process.");
4949     return eExpressionSetupError;
4950   }
4951 
4952   Thread *thread = exe_ctx.GetThreadPtr();
4953   if (thread == nullptr) {
4954     diagnostic_manager.PutString(lldb::eSeverityError,
4955                                  "RunThreadPlan called with invalid thread.");
4956     return eExpressionSetupError;
4957   }
4958 
4959   // Record the thread's id so we can tell when a thread we were using
4960   // to run the expression exits during the expression evaluation.
4961   lldb::tid_t expr_thread_id = thread->GetID();
4962 
4963   // We need to change some of the thread plan attributes for the thread plan
4964   // runner.  This will restore them when we are done:
4965 
4966   RestorePlanState thread_plan_restorer(thread_plan_sp);
4967 
4968   // We rely on the thread plan we are running returning "PlanCompleted" if
4969   // when it successfully completes. For that to be true the plan can't be
4970   // private - since private plans suppress themselves in the GetCompletedPlan
4971   // call.
4972 
4973   thread_plan_sp->SetPrivate(false);
4974 
4975   // The plans run with RunThreadPlan also need to be terminal controlling plans
4976   // or when they are done we will end up asking the plan above us whether we
4977   // should stop, which may give the wrong answer.
4978 
4979   thread_plan_sp->SetIsControllingPlan(true);
4980   thread_plan_sp->SetOkayToDiscard(false);
4981 
4982   // If we are running some utility expression for LLDB, we now have to mark
4983   // this in the ProcesModID of this process. This RAII takes care of marking
4984   // and reverting the mark it once we are done running the expression.
4985   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4986 
4987   if (m_private_state.GetValue() != eStateStopped) {
4988     diagnostic_manager.PutString(
4989         lldb::eSeverityError,
4990         "RunThreadPlan called while the private state was not stopped.");
4991     return eExpressionSetupError;
4992   }
4993 
4994   // Save the thread & frame from the exe_ctx for restoration after we run
4995   const uint32_t thread_idx_id = thread->GetIndexID();
4996   StackFrameSP selected_frame_sp =
4997       thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
4998   if (!selected_frame_sp) {
4999     thread->SetSelectedFrame(nullptr);
5000     selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
5001     if (!selected_frame_sp) {
5002       diagnostic_manager.Printf(
5003           lldb::eSeverityError,
5004           "RunThreadPlan called without a selected frame on thread %d",
5005           thread_idx_id);
5006       return eExpressionSetupError;
5007     }
5008   }
5009 
5010   // Make sure the timeout values make sense. The one thread timeout needs to
5011   // be smaller than the overall timeout.
5012   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
5013       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
5014     diagnostic_manager.PutString(lldb::eSeverityError,
5015                                  "RunThreadPlan called with one thread "
5016                                  "timeout greater than total timeout");
5017     return eExpressionSetupError;
5018   }
5019 
5020   StackID ctx_frame_id = selected_frame_sp->GetStackID();
5021 
5022   // N.B. Running the target may unset the currently selected thread and frame.
5023   // We don't want to do that either, so we should arrange to reset them as
5024   // well.
5025 
5026   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
5027 
5028   uint32_t selected_tid;
5029   StackID selected_stack_id;
5030   if (selected_thread_sp) {
5031     selected_tid = selected_thread_sp->GetIndexID();
5032     selected_stack_id =
5033         selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
5034             ->GetStackID();
5035   } else {
5036     selected_tid = LLDB_INVALID_THREAD_ID;
5037   }
5038 
5039   HostThread backup_private_state_thread;
5040   lldb::StateType old_state = eStateInvalid;
5041   lldb::ThreadPlanSP stopper_base_plan_sp;
5042 
5043   Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
5044   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
5045     // Yikes, we are running on the private state thread!  So we can't wait for
5046     // public events on this thread, since we are the thread that is generating
5047     // public events. The simplest thing to do is to spin up a temporary thread
5048     // to handle private state thread events while we are fielding public
5049     // events here.
5050     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
5051                    "another state thread to handle the events.");
5052 
5053     backup_private_state_thread = m_private_state_thread;
5054 
5055     // One other bit of business: we want to run just this thread plan and
5056     // anything it pushes, and then stop, returning control here. But in the
5057     // normal course of things, the plan above us on the stack would be given a
5058     // shot at the stop event before deciding to stop, and we don't want that.
5059     // So we insert a "stopper" base plan on the stack before the plan we want
5060     // to run.  Since base plans always stop and return control to the user,
5061     // that will do just what we want.
5062     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
5063     thread->QueueThreadPlan(stopper_base_plan_sp, false);
5064     // Have to make sure our public state is stopped, since otherwise the
5065     // reporting logic below doesn't work correctly.
5066     old_state = m_public_state.GetValue();
5067     m_public_state.SetValueNoLock(eStateStopped);
5068 
5069     // Now spin up the private state thread:
5070     StartPrivateStateThread(true);
5071   }
5072 
5073   thread->QueueThreadPlan(
5074       thread_plan_sp, false); // This used to pass "true" does that make sense?
5075 
5076   if (options.GetDebug()) {
5077     // In this case, we aren't actually going to run, we just want to stop
5078     // right away. Flush this thread so we will refetch the stacks and show the
5079     // correct backtrace.
5080     // FIXME: To make this prettier we should invent some stop reason for this,
5081     // but that
5082     // is only cosmetic, and this functionality is only of use to lldb
5083     // developers who can live with not pretty...
5084     thread->Flush();
5085     return eExpressionStoppedForDebug;
5086   }
5087 
5088   ListenerSP listener_sp(
5089       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
5090 
5091   lldb::EventSP event_to_broadcast_sp;
5092 
5093   {
5094     // This process event hijacker Hijacks the Public events and its destructor
5095     // makes sure that the process events get restored on exit to the function.
5096     //
5097     // If the event needs to propagate beyond the hijacker (e.g., the process
5098     // exits during execution), then the event is put into
5099     // event_to_broadcast_sp for rebroadcasting.
5100 
5101     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
5102 
5103     if (log) {
5104       StreamString s;
5105       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
5106       LLDB_LOGF(log,
5107                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
5108                 " to run thread plan \"%s\".",
5109                 thread_idx_id, expr_thread_id, s.GetData());
5110     }
5111 
5112     bool got_event;
5113     lldb::EventSP event_sp;
5114     lldb::StateType stop_state = lldb::eStateInvalid;
5115 
5116     bool before_first_timeout = true; // This is set to false the first time
5117                                       // that we have to halt the target.
5118     bool do_resume = true;
5119     bool handle_running_event = true;
5120 
5121     // This is just for accounting:
5122     uint32_t num_resumes = 0;
5123 
5124     // If we are going to run all threads the whole time, or if we are only
5125     // going to run one thread, then we don't need the first timeout.  So we
5126     // pretend we are after the first timeout already.
5127     if (!options.GetStopOthers() || !options.GetTryAllThreads())
5128       before_first_timeout = false;
5129 
5130     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
5131               options.GetStopOthers(), options.GetTryAllThreads(),
5132               before_first_timeout);
5133 
5134     // This isn't going to work if there are unfetched events on the queue. Are
5135     // there cases where we might want to run the remaining events here, and
5136     // then try to call the function?  That's probably being too tricky for our
5137     // own good.
5138 
5139     Event *other_events = listener_sp->PeekAtNextEvent();
5140     if (other_events != nullptr) {
5141       diagnostic_manager.PutString(
5142           lldb::eSeverityError,
5143           "RunThreadPlan called with pending events on the queue.");
5144       return eExpressionSetupError;
5145     }
5146 
5147     // We also need to make sure that the next event is delivered.  We might be
5148     // calling a function as part of a thread plan, in which case the last
5149     // delivered event could be the running event, and we don't want event
5150     // coalescing to cause us to lose OUR running event...
5151     ForceNextEventDelivery();
5152 
5153 // This while loop must exit out the bottom, there's cleanup that we need to do
5154 // when we are done. So don't call return anywhere within it.
5155 
5156 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5157     // It's pretty much impossible to write test cases for things like: One
5158     // thread timeout expires, I go to halt, but the process already stopped on
5159     // the function call stop breakpoint.  Turning on this define will make us
5160     // not fetch the first event till after the halt.  So if you run a quick
5161     // function, it will have completed, and the completion event will be
5162     // waiting, when you interrupt for halt. The expression evaluation should
5163     // still succeed.
5164     bool miss_first_event = true;
5165 #endif
5166     while (true) {
5167       // We usually want to resume the process if we get to the top of the
5168       // loop. The only exception is if we get two running events with no
5169       // intervening stop, which can happen, we will just wait for then next
5170       // stop event.
5171       LLDB_LOGF(log,
5172                 "Top of while loop: do_resume: %i handle_running_event: %i "
5173                 "before_first_timeout: %i.",
5174                 do_resume, handle_running_event, before_first_timeout);
5175 
5176       if (do_resume || handle_running_event) {
5177         // Do the initial resume and wait for the running event before going
5178         // further.
5179 
5180         if (do_resume) {
5181           num_resumes++;
5182           Status resume_error = PrivateResume();
5183           if (!resume_error.Success()) {
5184             diagnostic_manager.Printf(
5185                 lldb::eSeverityError,
5186                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
5187                 resume_error.AsCString());
5188             return_value = eExpressionSetupError;
5189             break;
5190           }
5191         }
5192 
5193         got_event =
5194             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5195         if (!got_event) {
5196           LLDB_LOGF(log,
5197                     "Process::RunThreadPlan(): didn't get any event after "
5198                     "resume %" PRIu32 ", exiting.",
5199                     num_resumes);
5200 
5201           diagnostic_manager.Printf(lldb::eSeverityError,
5202                                     "didn't get any event after resume %" PRIu32
5203                                     ", exiting.",
5204                                     num_resumes);
5205           return_value = eExpressionSetupError;
5206           break;
5207         }
5208 
5209         stop_state =
5210             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5211 
5212         if (stop_state != eStateRunning) {
5213           bool restarted = false;
5214 
5215           if (stop_state == eStateStopped) {
5216             restarted = Process::ProcessEventData::GetRestartedFromEvent(
5217                 event_sp.get());
5218             LLDB_LOGF(
5219                 log,
5220                 "Process::RunThreadPlan(): didn't get running event after "
5221                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
5222                 "handle_running_event: %i).",
5223                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
5224                 handle_running_event);
5225           }
5226 
5227           if (restarted) {
5228             // This is probably an overabundance of caution, I don't think I
5229             // should ever get a stopped & restarted event here.  But if I do,
5230             // the best thing is to Halt and then get out of here.
5231             const bool clear_thread_plans = false;
5232             const bool use_run_lock = false;
5233             Halt(clear_thread_plans, use_run_lock);
5234           }
5235 
5236           diagnostic_manager.Printf(
5237               lldb::eSeverityError,
5238               "didn't get running event after initial resume, got %s instead.",
5239               StateAsCString(stop_state));
5240           return_value = eExpressionSetupError;
5241           break;
5242         }
5243 
5244         if (log)
5245           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5246         // We need to call the function synchronously, so spin waiting for it
5247         // to return. If we get interrupted while executing, we're going to
5248         // lose our context, and won't be able to gather the result at this
5249         // point. We set the timeout AFTER the resume, since the resume takes
5250         // some time and we don't want to charge that to the timeout.
5251       } else {
5252         if (log)
5253           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
5254       }
5255 
5256       do_resume = true;
5257       handle_running_event = true;
5258 
5259       // Now wait for the process to stop again:
5260       event_sp.reset();
5261 
5262       Timeout<std::micro> timeout =
5263           GetExpressionTimeout(options, before_first_timeout);
5264       if (log) {
5265         if (timeout) {
5266           auto now = system_clock::now();
5267           LLDB_LOGF(log,
5268                     "Process::RunThreadPlan(): about to wait - now is %s - "
5269                     "endpoint is %s",
5270                     llvm::to_string(now).c_str(),
5271                     llvm::to_string(now + *timeout).c_str());
5272         } else {
5273           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5274         }
5275       }
5276 
5277 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5278       // See comment above...
5279       if (miss_first_event) {
5280         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5281         miss_first_event = false;
5282         got_event = false;
5283       } else
5284 #endif
5285         got_event = listener_sp->GetEvent(event_sp, timeout);
5286 
5287       if (got_event) {
5288         if (event_sp) {
5289           bool keep_going = false;
5290           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5291             const bool clear_thread_plans = false;
5292             const bool use_run_lock = false;
5293             Halt(clear_thread_plans, use_run_lock);
5294             return_value = eExpressionInterrupted;
5295             diagnostic_manager.PutString(lldb::eSeverityInfo,
5296                                          "execution halted by user interrupt.");
5297             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5298                            "eBroadcastBitInterrupted, exiting.");
5299             break;
5300           } else {
5301             stop_state =
5302                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5303             LLDB_LOGF(log,
5304                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5305                       StateAsCString(stop_state));
5306 
5307             switch (stop_state) {
5308             case lldb::eStateStopped: {
5309               if (Process::ProcessEventData::GetRestartedFromEvent(
5310                       event_sp.get())) {
5311                 // If we were restarted, we just need to go back up to fetch
5312                 // another event.
5313                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5314                                "restart, so we'll continue waiting.");
5315                 keep_going = true;
5316                 do_resume = false;
5317                 handle_running_event = true;
5318               } else {
5319                 const bool handle_interrupts = true;
5320                 return_value = *HandleStoppedEvent(
5321                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5322                     event_sp, event_to_broadcast_sp, options,
5323                     handle_interrupts);
5324                 if (return_value == eExpressionThreadVanished)
5325                   keep_going = false;
5326               }
5327             } break;
5328 
5329             case lldb::eStateRunning:
5330               // This shouldn't really happen, but sometimes we do get two
5331               // running events without an intervening stop, and in that case
5332               // we should just go back to waiting for the stop.
5333               do_resume = false;
5334               keep_going = true;
5335               handle_running_event = false;
5336               break;
5337 
5338             default:
5339               LLDB_LOGF(log,
5340                         "Process::RunThreadPlan(): execution stopped with "
5341                         "unexpected state: %s.",
5342                         StateAsCString(stop_state));
5343 
5344               if (stop_state == eStateExited)
5345                 event_to_broadcast_sp = event_sp;
5346 
5347               diagnostic_manager.PutString(
5348                   lldb::eSeverityError,
5349                   "execution stopped with unexpected state.");
5350               return_value = eExpressionInterrupted;
5351               break;
5352             }
5353           }
5354 
5355           if (keep_going)
5356             continue;
5357           else
5358             break;
5359         } else {
5360           if (log)
5361             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5362                             "the event pointer was null.  How odd...");
5363           return_value = eExpressionInterrupted;
5364           break;
5365         }
5366       } else {
5367         // If we didn't get an event that means we've timed out... We will
5368         // interrupt the process here.  Depending on what we were asked to do
5369         // we will either exit, or try with all threads running for the same
5370         // timeout.
5371 
5372         if (log) {
5373           if (options.GetTryAllThreads()) {
5374             if (before_first_timeout) {
5375               LLDB_LOG(log,
5376                        "Running function with one thread timeout timed out.");
5377             } else
5378               LLDB_LOG(log, "Restarting function with all threads enabled and "
5379                             "timeout: {0} timed out, abandoning execution.",
5380                        timeout);
5381           } else
5382             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5383                           "abandoning execution.",
5384                      timeout);
5385         }
5386 
5387         // It is possible that between the time we issued the Halt, and we get
5388         // around to calling Halt the target could have stopped.  That's fine,
5389         // Halt will figure that out and send the appropriate Stopped event.
5390         // BUT it is also possible that we stopped & restarted (e.g. hit a
5391         // signal with "stop" set to false.)  In
5392         // that case, we'll get the stopped & restarted event, and we should go
5393         // back to waiting for the Halt's stopped event.  That's what this
5394         // while loop does.
5395 
5396         bool back_to_top = true;
5397         uint32_t try_halt_again = 0;
5398         bool do_halt = true;
5399         const uint32_t num_retries = 5;
5400         while (try_halt_again < num_retries) {
5401           Status halt_error;
5402           if (do_halt) {
5403             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5404             const bool clear_thread_plans = false;
5405             const bool use_run_lock = false;
5406             Halt(clear_thread_plans, use_run_lock);
5407           }
5408           if (halt_error.Success()) {
5409             if (log)
5410               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5411 
5412             got_event =
5413                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5414 
5415             if (got_event) {
5416               stop_state =
5417                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5418               if (log) {
5419                 LLDB_LOGF(log,
5420                           "Process::RunThreadPlan(): Stopped with event: %s",
5421                           StateAsCString(stop_state));
5422                 if (stop_state == lldb::eStateStopped &&
5423                     Process::ProcessEventData::GetInterruptedFromEvent(
5424                         event_sp.get()))
5425                   log->PutCString("    Event was the Halt interruption event.");
5426               }
5427 
5428               if (stop_state == lldb::eStateStopped) {
5429                 if (Process::ProcessEventData::GetRestartedFromEvent(
5430                         event_sp.get())) {
5431                   if (log)
5432                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5433                                     "but got a restarted event, there must be "
5434                                     "an un-restarted stopped event so try "
5435                                     "again...  "
5436                                     "Exiting wait loop.");
5437                   try_halt_again++;
5438                   do_halt = false;
5439                   continue;
5440                 }
5441 
5442                 // Between the time we initiated the Halt and the time we
5443                 // delivered it, the process could have already finished its
5444                 // job.  Check that here:
5445                 const bool handle_interrupts = false;
5446                 if (auto result = HandleStoppedEvent(
5447                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5448                         event_sp, event_to_broadcast_sp, options,
5449                         handle_interrupts)) {
5450                   return_value = *result;
5451                   back_to_top = false;
5452                   break;
5453                 }
5454 
5455                 if (!options.GetTryAllThreads()) {
5456                   if (log)
5457                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5458                                     "was false, we stopped so now we're "
5459                                     "quitting.");
5460                   return_value = eExpressionInterrupted;
5461                   back_to_top = false;
5462                   break;
5463                 }
5464 
5465                 if (before_first_timeout) {
5466                   // Set all the other threads to run, and return to the top of
5467                   // the loop, which will continue;
5468                   before_first_timeout = false;
5469                   thread_plan_sp->SetStopOthers(false);
5470                   if (log)
5471                     log->PutCString(
5472                         "Process::RunThreadPlan(): about to resume.");
5473 
5474                   back_to_top = true;
5475                   break;
5476                 } else {
5477                   // Running all threads failed, so return Interrupted.
5478                   if (log)
5479                     log->PutCString("Process::RunThreadPlan(): running all "
5480                                     "threads timed out.");
5481                   return_value = eExpressionInterrupted;
5482                   back_to_top = false;
5483                   break;
5484                 }
5485               }
5486             } else {
5487               if (log)
5488                 log->PutCString("Process::RunThreadPlan(): halt said it "
5489                                 "succeeded, but I got no event.  "
5490                                 "I'm getting out of here passing Interrupted.");
5491               return_value = eExpressionInterrupted;
5492               back_to_top = false;
5493               break;
5494             }
5495           } else {
5496             try_halt_again++;
5497             continue;
5498           }
5499         }
5500 
5501         if (!back_to_top || try_halt_again > num_retries)
5502           break;
5503         else
5504           continue;
5505       }
5506     } // END WAIT LOOP
5507 
5508     // If we had to start up a temporary private state thread to run this
5509     // thread plan, shut it down now.
5510     if (backup_private_state_thread.IsJoinable()) {
5511       StopPrivateStateThread();
5512       Status error;
5513       m_private_state_thread = backup_private_state_thread;
5514       if (stopper_base_plan_sp) {
5515         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5516       }
5517       if (old_state != eStateInvalid)
5518         m_public_state.SetValueNoLock(old_state);
5519     }
5520 
5521     // If our thread went away on us, we need to get out of here without
5522     // doing any more work.  We don't have to clean up the thread plan, that
5523     // will have happened when the Thread was destroyed.
5524     if (return_value == eExpressionThreadVanished) {
5525       return return_value;
5526     }
5527 
5528     if (return_value != eExpressionCompleted && log) {
5529       // Print a backtrace into the log so we can figure out where we are:
5530       StreamString s;
5531       s.PutCString("Thread state after unsuccessful completion: \n");
5532       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5533       log->PutString(s.GetString());
5534     }
5535     // Restore the thread state if we are going to discard the plan execution.
5536     // There are three cases where this could happen: 1) The execution
5537     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5538     // was true 3) We got some other error, and discard_on_error was true
5539     bool should_unwind = (return_value == eExpressionInterrupted &&
5540                           options.DoesUnwindOnError()) ||
5541                          (return_value == eExpressionHitBreakpoint &&
5542                           options.DoesIgnoreBreakpoints());
5543 
5544     if (return_value == eExpressionCompleted || should_unwind) {
5545       thread_plan_sp->RestoreThreadState();
5546     }
5547 
5548     // Now do some processing on the results of the run:
5549     if (return_value == eExpressionInterrupted ||
5550         return_value == eExpressionHitBreakpoint) {
5551       if (log) {
5552         StreamString s;
5553         if (event_sp)
5554           event_sp->Dump(&s);
5555         else {
5556           log->PutCString("Process::RunThreadPlan(): Stop event that "
5557                           "interrupted us is NULL.");
5558         }
5559 
5560         StreamString ts;
5561 
5562         const char *event_explanation = nullptr;
5563 
5564         do {
5565           if (!event_sp) {
5566             event_explanation = "<no event>";
5567             break;
5568           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5569             event_explanation = "<user interrupt>";
5570             break;
5571           } else {
5572             const Process::ProcessEventData *event_data =
5573                 Process::ProcessEventData::GetEventDataFromEvent(
5574                     event_sp.get());
5575 
5576             if (!event_data) {
5577               event_explanation = "<no event data>";
5578               break;
5579             }
5580 
5581             Process *process = event_data->GetProcessSP().get();
5582 
5583             if (!process) {
5584               event_explanation = "<no process>";
5585               break;
5586             }
5587 
5588             ThreadList &thread_list = process->GetThreadList();
5589 
5590             uint32_t num_threads = thread_list.GetSize();
5591             uint32_t thread_index;
5592 
5593             ts.Printf("<%u threads> ", num_threads);
5594 
5595             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5596               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5597 
5598               if (!thread) {
5599                 ts.Printf("<?> ");
5600                 continue;
5601               }
5602 
5603               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5604               RegisterContext *register_context =
5605                   thread->GetRegisterContext().get();
5606 
5607               if (register_context)
5608                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5609               else
5610                 ts.Printf("[ip unknown] ");
5611 
5612               // Show the private stop info here, the public stop info will be
5613               // from the last natural stop.
5614               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5615               if (stop_info_sp) {
5616                 const char *stop_desc = stop_info_sp->GetDescription();
5617                 if (stop_desc)
5618                   ts.PutCString(stop_desc);
5619               }
5620               ts.Printf(">");
5621             }
5622 
5623             event_explanation = ts.GetData();
5624           }
5625         } while (false);
5626 
5627         if (event_explanation)
5628           LLDB_LOGF(log,
5629                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5630                     s.GetData(), event_explanation);
5631         else
5632           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5633                     s.GetData());
5634       }
5635 
5636       if (should_unwind) {
5637         LLDB_LOGF(log,
5638                   "Process::RunThreadPlan: ExecutionInterrupted - "
5639                   "discarding thread plans up to %p.",
5640                   static_cast<void *>(thread_plan_sp.get()));
5641         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5642       } else {
5643         LLDB_LOGF(log,
5644                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5645                   "plan: %p not discarding.",
5646                   static_cast<void *>(thread_plan_sp.get()));
5647       }
5648     } else if (return_value == eExpressionSetupError) {
5649       if (log)
5650         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5651 
5652       if (options.DoesUnwindOnError()) {
5653         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5654       }
5655     } else {
5656       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5657         if (log)
5658           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5659         return_value = eExpressionCompleted;
5660       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5661         if (log)
5662           log->PutCString(
5663               "Process::RunThreadPlan(): thread plan was discarded");
5664         return_value = eExpressionDiscarded;
5665       } else {
5666         if (log)
5667           log->PutCString(
5668               "Process::RunThreadPlan(): thread plan stopped in mid course");
5669         if (options.DoesUnwindOnError() && thread_plan_sp) {
5670           if (log)
5671             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5672                             "'cause unwind_on_error is set.");
5673           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5674         }
5675       }
5676     }
5677 
5678     // Thread we ran the function in may have gone away because we ran the
5679     // target Check that it's still there, and if it is put it back in the
5680     // context. Also restore the frame in the context if it is still present.
5681     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5682     if (thread) {
5683       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5684     }
5685 
5686     // Also restore the current process'es selected frame & thread, since this
5687     // function calling may be done behind the user's back.
5688 
5689     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5690       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5691           selected_stack_id.IsValid()) {
5692         // We were able to restore the selected thread, now restore the frame:
5693         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5694         StackFrameSP old_frame_sp =
5695             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5696                 selected_stack_id);
5697         if (old_frame_sp)
5698           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5699               old_frame_sp.get());
5700       }
5701     }
5702   }
5703 
5704   // If the process exited during the run of the thread plan, notify everyone.
5705 
5706   if (event_to_broadcast_sp) {
5707     if (log)
5708       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5709     BroadcastEvent(event_to_broadcast_sp);
5710   }
5711 
5712   return return_value;
5713 }
5714 
ExecutionResultAsCString(ExpressionResults result)5715 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5716   const char *result_name = "<unknown>";
5717 
5718   switch (result) {
5719   case eExpressionCompleted:
5720     result_name = "eExpressionCompleted";
5721     break;
5722   case eExpressionDiscarded:
5723     result_name = "eExpressionDiscarded";
5724     break;
5725   case eExpressionInterrupted:
5726     result_name = "eExpressionInterrupted";
5727     break;
5728   case eExpressionHitBreakpoint:
5729     result_name = "eExpressionHitBreakpoint";
5730     break;
5731   case eExpressionSetupError:
5732     result_name = "eExpressionSetupError";
5733     break;
5734   case eExpressionParseError:
5735     result_name = "eExpressionParseError";
5736     break;
5737   case eExpressionResultUnavailable:
5738     result_name = "eExpressionResultUnavailable";
5739     break;
5740   case eExpressionTimedOut:
5741     result_name = "eExpressionTimedOut";
5742     break;
5743   case eExpressionStoppedForDebug:
5744     result_name = "eExpressionStoppedForDebug";
5745     break;
5746   case eExpressionThreadVanished:
5747     result_name = "eExpressionThreadVanished";
5748   }
5749   return result_name;
5750 }
5751 
GetStatus(Stream & strm)5752 void Process::GetStatus(Stream &strm) {
5753   const StateType state = GetState();
5754   if (StateIsStoppedState(state, false)) {
5755     if (state == eStateExited) {
5756       int exit_status = GetExitStatus();
5757       const char *exit_description = GetExitDescription();
5758       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5759                   GetID(), exit_status, exit_status,
5760                   exit_description ? exit_description : "");
5761     } else {
5762       if (state == eStateConnected)
5763         strm.Printf("Connected to remote target.\n");
5764       else
5765         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5766     }
5767   } else {
5768     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5769   }
5770 }
5771 
GetThreadStatus(Stream & strm,bool only_threads_with_stop_reason,uint32_t start_frame,uint32_t num_frames,uint32_t num_frames_with_source,bool stop_format)5772 size_t Process::GetThreadStatus(Stream &strm,
5773                                 bool only_threads_with_stop_reason,
5774                                 uint32_t start_frame, uint32_t num_frames,
5775                                 uint32_t num_frames_with_source,
5776                                 bool stop_format) {
5777   size_t num_thread_infos_dumped = 0;
5778 
5779   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5780   // very well might run code (e.g. if we need it to get return values or
5781   // arguments.)  For that to work the process has to be able to acquire it.
5782   // So instead copy the thread ID's, and look them up one by one:
5783 
5784   uint32_t num_threads;
5785   std::vector<lldb::tid_t> thread_id_array;
5786   // Scope for thread list locker;
5787   {
5788     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5789     ThreadList &curr_thread_list = GetThreadList();
5790     num_threads = curr_thread_list.GetSize();
5791     uint32_t idx;
5792     thread_id_array.resize(num_threads);
5793     for (idx = 0; idx < num_threads; ++idx)
5794       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5795   }
5796 
5797   for (uint32_t i = 0; i < num_threads; i++) {
5798     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5799     if (thread_sp) {
5800       if (only_threads_with_stop_reason) {
5801         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5802         if (!stop_info_sp || !stop_info_sp->IsValid())
5803           continue;
5804       }
5805       thread_sp->GetStatus(strm, start_frame, num_frames,
5806                            num_frames_with_source,
5807                            stop_format);
5808       ++num_thread_infos_dumped;
5809     } else {
5810       Log *log = GetLog(LLDBLog::Process);
5811       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5812                      " vanished while running Thread::GetStatus.");
5813     }
5814   }
5815   return num_thread_infos_dumped;
5816 }
5817 
AddInvalidMemoryRegion(const LoadRange & region)5818 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5819   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5820 }
5821 
RemoveInvalidMemoryRange(const LoadRange & region)5822 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5823   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5824                                            region.GetByteSize());
5825 }
5826 
AddPreResumeAction(PreResumeActionCallback callback,void * baton)5827 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5828                                  void *baton) {
5829   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5830 }
5831 
RunPreResumeActions()5832 bool Process::RunPreResumeActions() {
5833   bool result = true;
5834   while (!m_pre_resume_actions.empty()) {
5835     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5836     m_pre_resume_actions.pop_back();
5837     bool this_result = action.callback(action.baton);
5838     if (result)
5839       result = this_result;
5840   }
5841   return result;
5842 }
5843 
ClearPreResumeActions()5844 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5845 
ClearPreResumeAction(PreResumeActionCallback callback,void * baton)5846 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5847 {
5848     PreResumeCallbackAndBaton element(callback, baton);
5849     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5850     if (found_iter != m_pre_resume_actions.end())
5851     {
5852         m_pre_resume_actions.erase(found_iter);
5853     }
5854 }
5855 
GetRunLock()5856 ProcessRunLock &Process::GetRunLock() {
5857   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5858     return m_private_run_lock;
5859   else
5860     return m_public_run_lock;
5861 }
5862 
CurrentThreadIsPrivateStateThread()5863 bool Process::CurrentThreadIsPrivateStateThread()
5864 {
5865   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5866 }
5867 
5868 
Flush()5869 void Process::Flush() {
5870   m_thread_list.Flush();
5871   m_extended_thread_list.Flush();
5872   m_extended_thread_stop_id = 0;
5873   m_queue_list.Clear();
5874   m_queue_list_stop_id = 0;
5875 }
5876 
GetCodeAddressMask()5877 lldb::addr_t Process::GetCodeAddressMask() {
5878   if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5879     return AddressableBits::AddressableBitToMask(num_bits_setting);
5880 
5881   return m_code_address_mask;
5882 }
5883 
GetDataAddressMask()5884 lldb::addr_t Process::GetDataAddressMask() {
5885   if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5886     return AddressableBits::AddressableBitToMask(num_bits_setting);
5887 
5888   return m_data_address_mask;
5889 }
5890 
GetHighmemCodeAddressMask()5891 lldb::addr_t Process::GetHighmemCodeAddressMask() {
5892   if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5893     return AddressableBits::AddressableBitToMask(num_bits_setting);
5894 
5895   if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK)
5896     return m_highmem_code_address_mask;
5897   return GetCodeAddressMask();
5898 }
5899 
GetHighmemDataAddressMask()5900 lldb::addr_t Process::GetHighmemDataAddressMask() {
5901   if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5902     return AddressableBits::AddressableBitToMask(num_bits_setting);
5903 
5904   if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK)
5905     return m_highmem_data_address_mask;
5906   return GetDataAddressMask();
5907 }
5908 
SetCodeAddressMask(lldb::addr_t code_address_mask)5909 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
5910   LLDB_LOG(GetLog(LLDBLog::Process),
5911            "Setting Process code address mask to {0:x}", code_address_mask);
5912   m_code_address_mask = code_address_mask;
5913 }
5914 
SetDataAddressMask(lldb::addr_t data_address_mask)5915 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
5916   LLDB_LOG(GetLog(LLDBLog::Process),
5917            "Setting Process data address mask to {0:x}", data_address_mask);
5918   m_data_address_mask = data_address_mask;
5919 }
5920 
SetHighmemCodeAddressMask(lldb::addr_t code_address_mask)5921 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
5922   LLDB_LOG(GetLog(LLDBLog::Process),
5923            "Setting Process highmem code address mask to {0:x}",
5924            code_address_mask);
5925   m_highmem_code_address_mask = code_address_mask;
5926 }
5927 
SetHighmemDataAddressMask(lldb::addr_t data_address_mask)5928 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
5929   LLDB_LOG(GetLog(LLDBLog::Process),
5930            "Setting Process highmem data address mask to {0:x}",
5931            data_address_mask);
5932   m_highmem_data_address_mask = data_address_mask;
5933 }
5934 
FixCodeAddress(addr_t addr)5935 addr_t Process::FixCodeAddress(addr_t addr) {
5936   if (ABISP abi_sp = GetABI())
5937     addr = abi_sp->FixCodeAddress(addr);
5938   return addr;
5939 }
5940 
FixDataAddress(addr_t addr)5941 addr_t Process::FixDataAddress(addr_t addr) {
5942   if (ABISP abi_sp = GetABI())
5943     addr = abi_sp->FixDataAddress(addr);
5944   return addr;
5945 }
5946 
FixAnyAddress(addr_t addr)5947 addr_t Process::FixAnyAddress(addr_t addr) {
5948   if (ABISP abi_sp = GetABI())
5949     addr = abi_sp->FixAnyAddress(addr);
5950   return addr;
5951 }
5952 
DidExec()5953 void Process::DidExec() {
5954   Log *log = GetLog(LLDBLog::Process);
5955   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5956 
5957   Target &target = GetTarget();
5958   target.CleanupProcess();
5959   target.ClearModules(false);
5960   m_dynamic_checkers_up.reset();
5961   m_abi_sp.reset();
5962   m_system_runtime_up.reset();
5963   m_os_up.reset();
5964   m_dyld_up.reset();
5965   m_jit_loaders_up.reset();
5966   m_image_tokens.clear();
5967   // After an exec, the inferior is a new process and these memory regions are
5968   // no longer allocated.
5969   m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
5970   {
5971     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5972     m_language_runtimes.clear();
5973   }
5974   m_instrumentation_runtimes.clear();
5975   m_thread_list.DiscardThreadPlans();
5976   m_memory_cache.Clear(true);
5977   DoDidExec();
5978   CompleteAttach();
5979   // Flush the process (threads and all stack frames) after running
5980   // CompleteAttach() in case the dynamic loader loaded things in new
5981   // locations.
5982   Flush();
5983 
5984   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5985   // let the target know so it can do any cleanup it needs to.
5986   target.DidExec();
5987 }
5988 
ResolveIndirectFunction(const Address * address,Status & error)5989 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5990   if (address == nullptr) {
5991     error.SetErrorString("Invalid address argument");
5992     return LLDB_INVALID_ADDRESS;
5993   }
5994 
5995   addr_t function_addr = LLDB_INVALID_ADDRESS;
5996 
5997   addr_t addr = address->GetLoadAddress(&GetTarget());
5998   std::map<addr_t, addr_t>::const_iterator iter =
5999       m_resolved_indirect_addresses.find(addr);
6000   if (iter != m_resolved_indirect_addresses.end()) {
6001     function_addr = (*iter).second;
6002   } else {
6003     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
6004       Symbol *symbol = address->CalculateSymbolContextSymbol();
6005       error.SetErrorStringWithFormat(
6006           "Unable to call resolver for indirect function %s",
6007           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
6008       function_addr = LLDB_INVALID_ADDRESS;
6009     } else {
6010       if (ABISP abi_sp = GetABI())
6011         function_addr = abi_sp->FixCodeAddress(function_addr);
6012       m_resolved_indirect_addresses.insert(
6013           std::pair<addr_t, addr_t>(addr, function_addr));
6014     }
6015   }
6016   return function_addr;
6017 }
6018 
ModulesDidLoad(ModuleList & module_list)6019 void Process::ModulesDidLoad(ModuleList &module_list) {
6020   // Inform the system runtime of the modified modules.
6021   SystemRuntime *sys_runtime = GetSystemRuntime();
6022   if (sys_runtime)
6023     sys_runtime->ModulesDidLoad(module_list);
6024 
6025   GetJITLoaders().ModulesDidLoad(module_list);
6026 
6027   // Give the instrumentation runtimes a chance to be created before informing
6028   // them of the modified modules.
6029   InstrumentationRuntime::ModulesDidLoad(module_list, this,
6030                                          m_instrumentation_runtimes);
6031   for (auto &runtime : m_instrumentation_runtimes)
6032     runtime.second->ModulesDidLoad(module_list);
6033 
6034   // Give the language runtimes a chance to be created before informing them of
6035   // the modified modules.
6036   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
6037     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
6038       runtime->ModulesDidLoad(module_list);
6039   }
6040 
6041   // If we don't have an operating system plug-in, try to load one since
6042   // loading shared libraries might cause a new one to try and load
6043   if (!m_os_up)
6044     LoadOperatingSystemPlugin(false);
6045 
6046   // Inform the structured-data plugins of the modified modules.
6047   for (auto &pair : m_structured_data_plugin_map) {
6048     if (pair.second)
6049       pair.second->ModulesDidLoad(*this, module_list);
6050   }
6051 }
6052 
PrintWarningOptimization(const SymbolContext & sc)6053 void Process::PrintWarningOptimization(const SymbolContext &sc) {
6054   if (!GetWarningsOptimization())
6055     return;
6056   if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
6057     return;
6058   sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
6059 }
6060 
PrintWarningUnsupportedLanguage(const SymbolContext & sc)6061 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
6062   if (!GetWarningsUnsupportedLanguage())
6063     return;
6064   if (!sc.module_sp)
6065     return;
6066   LanguageType language = sc.GetLanguage();
6067   if (language == eLanguageTypeUnknown ||
6068       language == lldb::eLanguageTypeAssembly ||
6069       language == lldb::eLanguageTypeMipsAssembler)
6070     return;
6071   LanguageSet plugins =
6072       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
6073   if (plugins[language])
6074     return;
6075   sc.module_sp->ReportWarningUnsupportedLanguage(
6076       language, GetTarget().GetDebugger().GetID());
6077 }
6078 
GetProcessInfo(ProcessInstanceInfo & info)6079 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
6080   info.Clear();
6081 
6082   PlatformSP platform_sp = GetTarget().GetPlatform();
6083   if (!platform_sp)
6084     return false;
6085 
6086   return platform_sp->GetProcessInfo(GetID(), info);
6087 }
6088 
GetHistoryThreads(lldb::addr_t addr)6089 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
6090   ThreadCollectionSP threads;
6091 
6092   const MemoryHistorySP &memory_history =
6093       MemoryHistory::FindPlugin(shared_from_this());
6094 
6095   if (!memory_history) {
6096     return threads;
6097   }
6098 
6099   threads = std::make_shared<ThreadCollection>(
6100       memory_history->GetHistoryThreads(addr));
6101 
6102   return threads;
6103 }
6104 
6105 InstrumentationRuntimeSP
GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type)6106 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
6107   InstrumentationRuntimeCollection::iterator pos;
6108   pos = m_instrumentation_runtimes.find(type);
6109   if (pos == m_instrumentation_runtimes.end()) {
6110     return InstrumentationRuntimeSP();
6111   } else
6112     return (*pos).second;
6113 }
6114 
GetModuleSpec(const FileSpec & module_file_spec,const ArchSpec & arch,ModuleSpec & module_spec)6115 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
6116                             const ArchSpec &arch, ModuleSpec &module_spec) {
6117   module_spec.Clear();
6118   return false;
6119 }
6120 
AddImageToken(lldb::addr_t image_ptr)6121 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
6122   m_image_tokens.push_back(image_ptr);
6123   return m_image_tokens.size() - 1;
6124 }
6125 
GetImagePtrFromToken(size_t token) const6126 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
6127   if (token < m_image_tokens.size())
6128     return m_image_tokens[token];
6129   return LLDB_INVALID_IMAGE_TOKEN;
6130 }
6131 
ResetImageToken(size_t token)6132 void Process::ResetImageToken(size_t token) {
6133   if (token < m_image_tokens.size())
6134     m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
6135 }
6136 
6137 Address
AdvanceAddressToNextBranchInstruction(Address default_stop_addr,AddressRange range_bounds)6138 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
6139                                                AddressRange range_bounds) {
6140   Target &target = GetTarget();
6141   DisassemblerSP disassembler_sp;
6142   InstructionList *insn_list = nullptr;
6143 
6144   Address retval = default_stop_addr;
6145 
6146   if (!target.GetUseFastStepping())
6147     return retval;
6148   if (!default_stop_addr.IsValid())
6149     return retval;
6150 
6151   const char *plugin_name = nullptr;
6152   const char *flavor = nullptr;
6153   disassembler_sp = Disassembler::DisassembleRange(
6154       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
6155   if (disassembler_sp)
6156     insn_list = &disassembler_sp->GetInstructionList();
6157 
6158   if (insn_list == nullptr) {
6159     return retval;
6160   }
6161 
6162   size_t insn_offset =
6163       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
6164   if (insn_offset == UINT32_MAX) {
6165     return retval;
6166   }
6167 
6168   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
6169       insn_offset, false /* ignore_calls*/, nullptr);
6170   if (branch_index == UINT32_MAX) {
6171     return retval;
6172   }
6173 
6174   if (branch_index > insn_offset) {
6175     Address next_branch_insn_address =
6176         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
6177     if (next_branch_insn_address.IsValid() &&
6178         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
6179       retval = next_branch_insn_address;
6180     }
6181   }
6182 
6183   return retval;
6184 }
6185 
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)6186 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
6187                                     MemoryRegionInfo &range_info) {
6188   if (const lldb::ABISP &abi = GetABI())
6189     load_addr = abi->FixAnyAddress(load_addr);
6190   return DoGetMemoryRegionInfo(load_addr, range_info);
6191 }
6192 
GetMemoryRegions(lldb_private::MemoryRegionInfos & region_list)6193 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
6194   Status error;
6195 
6196   lldb::addr_t range_end = 0;
6197   const lldb::ABISP &abi = GetABI();
6198 
6199   region_list.clear();
6200   do {
6201     lldb_private::MemoryRegionInfo region_info;
6202     error = GetMemoryRegionInfo(range_end, region_info);
6203     // GetMemoryRegionInfo should only return an error if it is unimplemented.
6204     if (error.Fail()) {
6205       region_list.clear();
6206       break;
6207     }
6208 
6209     // We only check the end address, not start and end, because we assume that
6210     // the start will not have non-address bits until the first unmappable
6211     // region. We will have exited the loop by that point because the previous
6212     // region, the last mappable region, will have non-address bits in its end
6213     // address.
6214     range_end = region_info.GetRange().GetRangeEnd();
6215     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
6216       region_list.push_back(std::move(region_info));
6217     }
6218   } while (
6219       // For a process with no non-address bits, all address bits
6220       // set means the end of memory.
6221       range_end != LLDB_INVALID_ADDRESS &&
6222       // If we have non-address bits and some are set then the end
6223       // is at or beyond the end of mappable memory.
6224       !(abi && (abi->FixAnyAddress(range_end) != range_end)));
6225 
6226   return error;
6227 }
6228 
6229 Status
ConfigureStructuredData(llvm::StringRef type_name,const StructuredData::ObjectSP & config_sp)6230 Process::ConfigureStructuredData(llvm::StringRef type_name,
6231                                  const StructuredData::ObjectSP &config_sp) {
6232   // If you get this, the Process-derived class needs to implement a method to
6233   // enable an already-reported asynchronous structured data feature. See
6234   // ProcessGDBRemote for an example implementation over gdb-remote.
6235   return Status("unimplemented");
6236 }
6237 
MapSupportedStructuredDataPlugins(const StructuredData::Array & supported_type_names)6238 void Process::MapSupportedStructuredDataPlugins(
6239     const StructuredData::Array &supported_type_names) {
6240   Log *log = GetLog(LLDBLog::Process);
6241 
6242   // Bail out early if there are no type names to map.
6243   if (supported_type_names.GetSize() == 0) {
6244     LLDB_LOG(log, "no structured data types supported");
6245     return;
6246   }
6247 
6248   // These StringRefs are backed by the input parameter.
6249   std::set<llvm::StringRef> type_names;
6250 
6251   LLDB_LOG(log,
6252            "the process supports the following async structured data types:");
6253 
6254   supported_type_names.ForEach(
6255       [&type_names, &log](StructuredData::Object *object) {
6256         // There shouldn't be null objects in the array.
6257         if (!object)
6258           return false;
6259 
6260         // All type names should be strings.
6261         const llvm::StringRef type_name = object->GetStringValue();
6262         if (type_name.empty())
6263           return false;
6264 
6265         type_names.insert(type_name);
6266         LLDB_LOG(log, "- {0}", type_name);
6267         return true;
6268       });
6269 
6270   // For each StructuredDataPlugin, if the plugin handles any of the types in
6271   // the supported_type_names, map that type name to that plugin. Stop when
6272   // we've consumed all the type names.
6273   // FIXME: should we return an error if there are type names nobody
6274   // supports?
6275   for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
6276     auto create_instance =
6277         PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6278             plugin_index);
6279     if (!create_instance)
6280       break;
6281 
6282     // Create the plugin.
6283     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6284     if (!plugin_sp) {
6285       // This plugin doesn't think it can work with the process. Move on to the
6286       // next.
6287       continue;
6288     }
6289 
6290     // For any of the remaining type names, map any that this plugin supports.
6291     std::vector<llvm::StringRef> names_to_remove;
6292     for (llvm::StringRef type_name : type_names) {
6293       if (plugin_sp->SupportsStructuredDataType(type_name)) {
6294         m_structured_data_plugin_map.insert(
6295             std::make_pair(type_name, plugin_sp));
6296         names_to_remove.push_back(type_name);
6297         LLDB_LOG(log, "using plugin {0} for type name {1}",
6298                  plugin_sp->GetPluginName(), type_name);
6299       }
6300     }
6301 
6302     // Remove the type names that were consumed by this plugin.
6303     for (llvm::StringRef type_name : names_to_remove)
6304       type_names.erase(type_name);
6305   }
6306 }
6307 
RouteAsyncStructuredData(const StructuredData::ObjectSP object_sp)6308 bool Process::RouteAsyncStructuredData(
6309     const StructuredData::ObjectSP object_sp) {
6310   // Nothing to do if there's no data.
6311   if (!object_sp)
6312     return false;
6313 
6314   // The contract is this must be a dictionary, so we can look up the routing
6315   // key via the top-level 'type' string value within the dictionary.
6316   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6317   if (!dictionary)
6318     return false;
6319 
6320   // Grab the async structured type name (i.e. the feature/plugin name).
6321   llvm::StringRef type_name;
6322   if (!dictionary->GetValueForKeyAsString("type", type_name))
6323     return false;
6324 
6325   // Check if there's a plugin registered for this type name.
6326   auto find_it = m_structured_data_plugin_map.find(type_name);
6327   if (find_it == m_structured_data_plugin_map.end()) {
6328     // We don't have a mapping for this structured data type.
6329     return false;
6330   }
6331 
6332   // Route the structured data to the plugin.
6333   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6334   return true;
6335 }
6336 
UpdateAutomaticSignalFiltering()6337 Status Process::UpdateAutomaticSignalFiltering() {
6338   // Default implementation does nothign.
6339   // No automatic signal filtering to speak of.
6340   return Status();
6341 }
6342 
GetLoadImageUtilityFunction(Platform * platform,llvm::function_ref<std::unique_ptr<UtilityFunction> ()> factory)6343 UtilityFunction *Process::GetLoadImageUtilityFunction(
6344     Platform *platform,
6345     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6346   if (platform != GetTarget().GetPlatform().get())
6347     return nullptr;
6348   llvm::call_once(m_dlopen_utility_func_flag_once,
6349                   [&] { m_dlopen_utility_func_up = factory(); });
6350   return m_dlopen_utility_func_up.get();
6351 }
6352 
TraceSupported()6353 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6354   if (!IsLiveDebugSession())
6355     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6356                                    "Can't trace a non-live process.");
6357   return llvm::make_error<UnimplementedError>();
6358 }
6359 
CallVoidArgVoidPtrReturn(const Address * address,addr_t & returned_func,bool trap_exceptions)6360 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6361                                        addr_t &returned_func,
6362                                        bool trap_exceptions) {
6363   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6364   if (thread == nullptr || address == nullptr)
6365     return false;
6366 
6367   EvaluateExpressionOptions options;
6368   options.SetStopOthers(true);
6369   options.SetUnwindOnError(true);
6370   options.SetIgnoreBreakpoints(true);
6371   options.SetTryAllThreads(true);
6372   options.SetDebug(false);
6373   options.SetTimeout(GetUtilityExpressionTimeout());
6374   options.SetTrapExceptions(trap_exceptions);
6375 
6376   auto type_system_or_err =
6377       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6378   if (!type_system_or_err) {
6379     llvm::consumeError(type_system_or_err.takeError());
6380     return false;
6381   }
6382   auto ts = *type_system_or_err;
6383   if (!ts)
6384     return false;
6385   CompilerType void_ptr_type =
6386       ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6387   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6388       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6389   if (call_plan_sp) {
6390     DiagnosticManager diagnostics;
6391 
6392     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6393     if (frame) {
6394       ExecutionContext exe_ctx;
6395       frame->CalculateExecutionContext(exe_ctx);
6396       ExpressionResults result =
6397           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6398       if (result == eExpressionCompleted) {
6399         returned_func =
6400             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6401                 LLDB_INVALID_ADDRESS);
6402 
6403         if (GetAddressByteSize() == 4) {
6404           if (returned_func == UINT32_MAX)
6405             return false;
6406         } else if (GetAddressByteSize() == 8) {
6407           if (returned_func == UINT64_MAX)
6408             return false;
6409         }
6410         return true;
6411       }
6412     }
6413   }
6414 
6415   return false;
6416 }
6417 
GetMemoryTagManager()6418 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6419   Architecture *arch = GetTarget().GetArchitecturePlugin();
6420   const MemoryTagManager *tag_manager =
6421       arch ? arch->GetMemoryTagManager() : nullptr;
6422   if (!arch || !tag_manager) {
6423     return llvm::createStringError(
6424         llvm::inconvertibleErrorCode(),
6425         "This architecture does not support memory tagging");
6426   }
6427 
6428   if (!SupportsMemoryTagging()) {
6429     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6430                                    "Process does not support memory tagging");
6431   }
6432 
6433   return tag_manager;
6434 }
6435 
6436 llvm::Expected<std::vector<lldb::addr_t>>
ReadMemoryTags(lldb::addr_t addr,size_t len)6437 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6438   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6439       GetMemoryTagManager();
6440   if (!tag_manager_or_err)
6441     return tag_manager_or_err.takeError();
6442 
6443   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6444   llvm::Expected<std::vector<uint8_t>> tag_data =
6445       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6446   if (!tag_data)
6447     return tag_data.takeError();
6448 
6449   return tag_manager->UnpackTagsData(*tag_data,
6450                                      len / tag_manager->GetGranuleSize());
6451 }
6452 
WriteMemoryTags(lldb::addr_t addr,size_t len,const std::vector<lldb::addr_t> & tags)6453 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6454                                 const std::vector<lldb::addr_t> &tags) {
6455   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6456       GetMemoryTagManager();
6457   if (!tag_manager_or_err)
6458     return Status(tag_manager_or_err.takeError());
6459 
6460   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6461   llvm::Expected<std::vector<uint8_t>> packed_tags =
6462       tag_manager->PackTags(tags);
6463   if (!packed_tags) {
6464     return Status(packed_tags.takeError());
6465   }
6466 
6467   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6468                            *packed_tags);
6469 }
6470 
6471 // Create a CoreFileMemoryRange from a MemoryRegionInfo
6472 static Process::CoreFileMemoryRange
CreateCoreFileMemoryRange(const MemoryRegionInfo & region)6473 CreateCoreFileMemoryRange(const MemoryRegionInfo &region) {
6474   const addr_t addr = region.GetRange().GetRangeBase();
6475   llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
6476   return {range, region.GetLLDBPermissions()};
6477 }
6478 
6479 // Add dirty pages to the core file ranges and return true if dirty pages
6480 // were added. Return false if the dirty page information is not valid or in
6481 // the region.
AddDirtyPages(const MemoryRegionInfo & region,Process::CoreFileMemoryRanges & ranges)6482 static bool AddDirtyPages(const MemoryRegionInfo &region,
6483                           Process::CoreFileMemoryRanges &ranges) {
6484   const auto &dirty_page_list = region.GetDirtyPageList();
6485   if (!dirty_page_list)
6486     return false;
6487   const uint32_t lldb_permissions = region.GetLLDBPermissions();
6488   const addr_t page_size = region.GetPageSize();
6489   if (page_size == 0)
6490     return false;
6491   llvm::AddressRange range(0, 0);
6492   for (addr_t page_addr : *dirty_page_list) {
6493     if (range.empty()) {
6494       // No range yet, initialize the range with the current dirty page.
6495       range = llvm::AddressRange(page_addr, page_addr + page_size);
6496     } else {
6497       if (range.end() == page_addr) {
6498         // Combine consective ranges.
6499         range = llvm::AddressRange(range.start(), page_addr + page_size);
6500       } else {
6501         // Add previous contiguous range and init the new range with the
6502         // current dirty page.
6503         ranges.push_back({range, lldb_permissions});
6504         range = llvm::AddressRange(page_addr, page_addr + page_size);
6505       }
6506     }
6507   }
6508   // The last range
6509   if (!range.empty())
6510     ranges.push_back({range, lldb_permissions});
6511   return true;
6512 }
6513 
6514 // Given a region, add the region to \a ranges.
6515 //
6516 // Only add the region if it isn't empty and if it has some permissions.
6517 // If \a try_dirty_pages is true, then try to add only the dirty pages for a
6518 // given region. If the region has dirty page information, only dirty pages
6519 // will be added to \a ranges, else the entire range will be added to \a
6520 // ranges.
AddRegion(const MemoryRegionInfo & region,bool try_dirty_pages,Process::CoreFileMemoryRanges & ranges)6521 static void AddRegion(const MemoryRegionInfo &region, bool try_dirty_pages,
6522                       Process::CoreFileMemoryRanges &ranges) {
6523   // Don't add empty ranges.
6524   if (region.GetRange().GetByteSize() == 0)
6525     return;
6526   // Don't add ranges with no read permissions.
6527   if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0)
6528     return;
6529   if (try_dirty_pages && AddDirtyPages(region, ranges))
6530     return;
6531   ranges.push_back(CreateCoreFileMemoryRange(region));
6532 }
6533 
SaveOffRegionsWithStackPointers(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6534 static void SaveOffRegionsWithStackPointers(
6535     Process &process, const MemoryRegionInfos &regions,
6536     Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6537   const bool try_dirty_pages = true;
6538 
6539   // Before we take any dump, we want to save off the used portions of the
6540   // stacks and mark those memory regions as saved. This prevents us from saving
6541   // the unused portion of the stack below the stack pointer. Saving space on
6542   // the dump.
6543   for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
6544     if (!thread_sp)
6545       continue;
6546     StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
6547     if (!frame_sp)
6548       continue;
6549     RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
6550     if (!reg_ctx_sp)
6551       continue;
6552     const addr_t sp = reg_ctx_sp->GetSP();
6553     const size_t red_zone = process.GetABI()->GetRedZoneSize();
6554     lldb_private::MemoryRegionInfo sp_region;
6555     if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
6556       const size_t stack_head = (sp - red_zone);
6557       const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head;
6558       sp_region.GetRange().SetRangeBase(stack_head);
6559       sp_region.GetRange().SetByteSize(stack_size);
6560       stack_ends.insert(sp_region.GetRange().GetRangeEnd());
6561       AddRegion(sp_region, try_dirty_pages, ranges);
6562     }
6563   }
6564 }
6565 
6566 // Save all memory regions that are not empty or have at least some permissions
6567 // for a full core file style.
GetCoreFileSaveRangesFull(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6568 static void GetCoreFileSaveRangesFull(Process &process,
6569                                       const MemoryRegionInfos &regions,
6570                                       Process::CoreFileMemoryRanges &ranges,
6571                                       std::set<addr_t> &stack_ends) {
6572 
6573   // Don't add only dirty pages, add full regions.
6574 const bool try_dirty_pages = false;
6575   for (const auto &region : regions)
6576     if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
6577       AddRegion(region, try_dirty_pages, ranges);
6578 }
6579 
6580 // Save only the dirty pages to the core file. Make sure the process has at
6581 // least some dirty pages, as some OS versions don't support reporting what
6582 // pages are dirty within an memory region. If no memory regions have dirty
6583 // page information fall back to saving out all ranges with write permissions.
GetCoreFileSaveRangesDirtyOnly(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6584 static void GetCoreFileSaveRangesDirtyOnly(
6585     Process &process, const MemoryRegionInfos &regions,
6586     Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6587 
6588   // Iterate over the regions and find all dirty pages.
6589   bool have_dirty_page_info = false;
6590   for (const auto &region : regions) {
6591     if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6592         AddDirtyPages(region, ranges))
6593       have_dirty_page_info = true;
6594   }
6595 
6596   if (!have_dirty_page_info) {
6597     // We didn't find support for reporting dirty pages from the process
6598     // plug-in so fall back to any region with write access permissions.
6599     const bool try_dirty_pages = false;
6600     for (const auto &region : regions)
6601       if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6602           region.GetWritable() == MemoryRegionInfo::eYes)
6603         AddRegion(region, try_dirty_pages, ranges);
6604   }
6605 }
6606 
6607 // Save all thread stacks to the core file. Some OS versions support reporting
6608 // when a memory region is stack related. We check on this information, but we
6609 // also use the stack pointers of each thread and add those in case the OS
6610 // doesn't support reporting stack memory. This function also attempts to only
6611 // emit dirty pages from the stack if the memory regions support reporting
6612 // dirty regions as this will make the core file smaller. If the process
6613 // doesn't support dirty regions, then it will fall back to adding the full
6614 // stack region.
GetCoreFileSaveRangesStackOnly(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6615 static void GetCoreFileSaveRangesStackOnly(
6616     Process &process, const MemoryRegionInfos &regions,
6617     Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6618   const bool try_dirty_pages = true;
6619   // Some platforms support annotating the region information that tell us that
6620   // it comes from a thread stack. So look for those regions first.
6621 
6622   for (const auto &region : regions) {
6623     // Save all the stack memory ranges not associated with a stack pointer.
6624     if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6625         region.IsStackMemory() == MemoryRegionInfo::eYes)
6626       AddRegion(region, try_dirty_pages, ranges);
6627   }
6628 }
6629 
CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,CoreFileMemoryRanges & ranges)6630 Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,
6631                                             CoreFileMemoryRanges &ranges) {
6632   lldb_private::MemoryRegionInfos regions;
6633   Status err = GetMemoryRegions(regions);
6634   if (err.Fail())
6635     return err;
6636   if (regions.empty())
6637     return Status("failed to get any valid memory regions from the process");
6638   if (core_style == eSaveCoreUnspecified)
6639     return Status("callers must set the core_style to something other than "
6640                   "eSaveCoreUnspecified");
6641 
6642   std::set<addr_t> stack_ends;
6643   SaveOffRegionsWithStackPointers(*this, regions, ranges, stack_ends);
6644 
6645   switch (core_style) {
6646   case eSaveCoreUnspecified:
6647     break;
6648 
6649   case eSaveCoreFull:
6650     GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends);
6651     break;
6652 
6653   case eSaveCoreDirtyOnly:
6654     GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends);
6655     break;
6656 
6657   case eSaveCoreStackOnly:
6658     GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends);
6659     break;
6660   }
6661 
6662   if (err.Fail())
6663     return err;
6664 
6665   if (ranges.empty())
6666     return Status("no valid address ranges found for core style");
6667 
6668   return Status(); // Success!
6669 }
6670 
SetAddressableBitMasks(AddressableBits bit_masks)6671 void Process::SetAddressableBitMasks(AddressableBits bit_masks) {
6672   uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits();
6673   uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits();
6674 
6675   if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0)
6676     return;
6677 
6678   if (low_memory_addr_bits != 0) {
6679     addr_t low_addr_mask =
6680         AddressableBits::AddressableBitToMask(low_memory_addr_bits);
6681     SetCodeAddressMask(low_addr_mask);
6682     SetDataAddressMask(low_addr_mask);
6683   }
6684 
6685   if (high_memory_addr_bits != 0) {
6686     addr_t high_addr_mask =
6687         AddressableBits::AddressableBitToMask(high_memory_addr_bits);
6688     SetHighmemCodeAddressMask(high_addr_mask);
6689     SetHighmemDataAddressMask(high_addr_mask);
6690   }
6691 }
6692