xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "block-placement"
79 
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83           "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85           "Potential frequency of taking unconditional branches");
86 
87 static cl::opt<unsigned> AlignAllBlock(
88     "align-all-blocks",
89     cl::desc("Force the alignment of all blocks in the function in log2 format "
90              "(e.g 4 means align on 16B boundaries)."),
91     cl::init(0), cl::Hidden);
92 
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94     "align-all-nofallthru-blocks",
95     cl::desc("Force the alignment of all blocks that have no fall-through "
96              "predecessors (i.e. don't add nops that are executed). In log2 "
97              "format (e.g 4 means align on 16B boundaries)."),
98     cl::init(0), cl::Hidden);
99 
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101     "max-bytes-for-alignment",
102     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103              "alignment"),
104     cl::init(0), cl::Hidden);
105 
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108     "block-placement-exit-block-bias",
109     cl::desc("Block frequency percentage a loop exit block needs "
110              "over the original exit to be considered the new exit."),
111     cl::init(0), cl::Hidden);
112 
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115 
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117     "loop-to-cold-block-ratio",
118     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119              "(frequency of block) is greater than this ratio"),
120     cl::init(5), cl::Hidden);
121 
122 static cl::opt<bool> ForceLoopColdBlock(
123     "force-loop-cold-block",
124     cl::desc("Force outlining cold blocks from loops."),
125     cl::init(false), cl::Hidden);
126 
127 static cl::opt<bool>
128     PreciseRotationCost("precise-rotation-cost",
129                         cl::desc("Model the cost of loop rotation more "
130                                  "precisely by using profile data."),
131                         cl::init(false), cl::Hidden);
132 
133 static cl::opt<bool>
134     ForcePreciseRotationCost("force-precise-rotation-cost",
135                              cl::desc("Force the use of precise cost "
136                                       "loop rotation strategy."),
137                              cl::init(false), cl::Hidden);
138 
139 static cl::opt<unsigned> MisfetchCost(
140     "misfetch-cost",
141     cl::desc("Cost that models the probabilistic risk of an instruction "
142              "misfetch due to a jump comparing to falling through, whose cost "
143              "is zero."),
144     cl::init(1), cl::Hidden);
145 
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147                                       cl::desc("Cost of jump instructions."),
148                                       cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150 TailDupPlacement("tail-dup-placement",
151               cl::desc("Perform tail duplication during placement. "
152                        "Creates more fallthrough opportunites in "
153                        "outline branches."),
154               cl::init(true), cl::Hidden);
155 
156 static cl::opt<bool>
157 BranchFoldPlacement("branch-fold-placement",
158               cl::desc("Perform branch folding during placement. "
159                        "Reduces code size."),
160               cl::init(true), cl::Hidden);
161 
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164     "tail-dup-placement-threshold",
165     cl::desc("Instruction cutoff for tail duplication during layout. "
166              "Tail merging during layout is forced to have a threshold "
167              "that won't conflict."), cl::init(2),
168     cl::Hidden);
169 
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172     "tail-dup-placement-aggressive-threshold",
173     cl::desc("Instruction cutoff for aggressive tail duplication during "
174              "layout. Used at -O3. Tail merging during layout is forced to "
175              "have a threshold that won't conflict."), cl::init(4),
176     cl::Hidden);
177 
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180     "tail-dup-placement-penalty",
181     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182              "Copying can increase fallthrough, but it also increases icache "
183              "pressure. This parameter controls the penalty to account for that. "
184              "Percent as integer."),
185     cl::init(2),
186     cl::Hidden);
187 
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190     "tail-dup-profile-percent-threshold",
191     cl::desc("If profile count information is used in tail duplication cost "
192              "model, the gained fall through number from tail duplication "
193              "should be at least this percent of hot count."),
194     cl::init(50), cl::Hidden);
195 
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198     "triangle-chain-count",
199     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200              "triangle tail duplication heuristic to kick in. 0 to disable."),
201     cl::init(2),
202     cl::Hidden);
203 
204 // Use case: When block layout is visualized after MBP pass, the basic blocks
205 // are labeled in layout order; meanwhile blocks could be numbered in a
206 // different order. It's hard to map between the graph and pass output.
207 // With this option on, the basic blocks are renumbered in function layout
208 // order. For debugging only.
209 static cl::opt<bool> RenumberBlocksBeforeView(
210     "renumber-blocks-before-view",
211     cl::desc(
212         "If true, basic blocks are re-numbered before MBP layout is printed "
213         "into a dot graph. Only used when a function is being printed."),
214     cl::init(false), cl::Hidden);
215 
216 namespace llvm {
217 extern cl::opt<bool> EnableExtTspBlockPlacement;
218 extern cl::opt<bool> ApplyExtTspWithoutProfile;
219 extern cl::opt<unsigned> StaticLikelyProb;
220 extern cl::opt<unsigned> ProfileLikelyProb;
221 
222 // Internal option used to control BFI display only after MBP pass.
223 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
224 // -view-block-layout-with-bfi=
225 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
226 
227 // Command line option to specify the name of the function for CFG dump
228 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
229 extern cl::opt<std::string> ViewBlockFreqFuncName;
230 } // namespace llvm
231 
232 namespace {
233 
234 class BlockChain;
235 
236 /// Type for our function-wide basic block -> block chain mapping.
237 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
238 
239 /// A chain of blocks which will be laid out contiguously.
240 ///
241 /// This is the datastructure representing a chain of consecutive blocks that
242 /// are profitable to layout together in order to maximize fallthrough
243 /// probabilities and code locality. We also can use a block chain to represent
244 /// a sequence of basic blocks which have some external (correctness)
245 /// requirement for sequential layout.
246 ///
247 /// Chains can be built around a single basic block and can be merged to grow
248 /// them. They participate in a block-to-chain mapping, which is updated
249 /// automatically as chains are merged together.
250 class BlockChain {
251   /// The sequence of blocks belonging to this chain.
252   ///
253   /// This is the sequence of blocks for a particular chain. These will be laid
254   /// out in-order within the function.
255   SmallVector<MachineBasicBlock *, 4> Blocks;
256 
257   /// A handle to the function-wide basic block to block chain mapping.
258   ///
259   /// This is retained in each block chain to simplify the computation of child
260   /// block chains for SCC-formation and iteration. We store the edges to child
261   /// basic blocks, and map them back to their associated chains using this
262   /// structure.
263   BlockToChainMapType &BlockToChain;
264 
265 public:
266   /// Construct a new BlockChain.
267   ///
268   /// This builds a new block chain representing a single basic block in the
269   /// function. It also registers itself as the chain that block participates
270   /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)271   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
272       : Blocks(1, BB), BlockToChain(BlockToChain) {
273     assert(BB && "Cannot create a chain with a null basic block");
274     BlockToChain[BB] = this;
275   }
276 
277   /// Iterator over blocks within the chain.
278   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
279   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
280 
281   /// Beginning of blocks within the chain.
begin()282   iterator begin() { return Blocks.begin(); }
begin() const283   const_iterator begin() const { return Blocks.begin(); }
284 
285   /// End of blocks within the chain.
end()286   iterator end() { return Blocks.end(); }
end() const287   const_iterator end() const { return Blocks.end(); }
288 
remove(MachineBasicBlock * BB)289   bool remove(MachineBasicBlock* BB) {
290     for(iterator i = begin(); i != end(); ++i) {
291       if (*i == BB) {
292         Blocks.erase(i);
293         return true;
294       }
295     }
296     return false;
297   }
298 
299   /// Merge a block chain into this one.
300   ///
301   /// This routine merges a block chain into this one. It takes care of forming
302   /// a contiguous sequence of basic blocks, updating the edge list, and
303   /// updating the block -> chain mapping. It does not free or tear down the
304   /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)305   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
306     assert(BB && "Can't merge a null block.");
307     assert(!Blocks.empty() && "Can't merge into an empty chain.");
308 
309     // Fast path in case we don't have a chain already.
310     if (!Chain) {
311       assert(!BlockToChain[BB] &&
312              "Passed chain is null, but BB has entry in BlockToChain.");
313       Blocks.push_back(BB);
314       BlockToChain[BB] = this;
315       return;
316     }
317 
318     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
319     assert(Chain->begin() != Chain->end());
320 
321     // Update the incoming blocks to point to this chain, and add them to the
322     // chain structure.
323     for (MachineBasicBlock *ChainBB : *Chain) {
324       Blocks.push_back(ChainBB);
325       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
326       BlockToChain[ChainBB] = this;
327     }
328   }
329 
330 #ifndef NDEBUG
331   /// Dump the blocks in this chain.
dump()332   LLVM_DUMP_METHOD void dump() {
333     for (MachineBasicBlock *MBB : *this)
334       MBB->dump();
335   }
336 #endif // NDEBUG
337 
338   /// Count of predecessors of any block within the chain which have not
339   /// yet been scheduled.  In general, we will delay scheduling this chain
340   /// until those predecessors are scheduled (or we find a sufficiently good
341   /// reason to override this heuristic.)  Note that when forming loop chains,
342   /// blocks outside the loop are ignored and treated as if they were already
343   /// scheduled.
344   ///
345   /// Note: This field is reinitialized multiple times - once for each loop,
346   /// and then once for the function as a whole.
347   unsigned UnscheduledPredecessors = 0;
348 };
349 
350 class MachineBlockPlacement : public MachineFunctionPass {
351   /// A type for a block filter set.
352   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
353 
354   /// Pair struct containing basic block and taildup profitability
355   struct BlockAndTailDupResult {
356     MachineBasicBlock *BB = nullptr;
357     bool ShouldTailDup;
358   };
359 
360   /// Triple struct containing edge weight and the edge.
361   struct WeightedEdge {
362     BlockFrequency Weight;
363     MachineBasicBlock *Src = nullptr;
364     MachineBasicBlock *Dest = nullptr;
365   };
366 
367   /// work lists of blocks that are ready to be laid out
368   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
369   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
370 
371   /// Edges that have already been computed as optimal.
372   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
373 
374   /// Machine Function
375   MachineFunction *F = nullptr;
376 
377   /// A handle to the branch probability pass.
378   const MachineBranchProbabilityInfo *MBPI = nullptr;
379 
380   /// A handle to the function-wide block frequency pass.
381   std::unique_ptr<MBFIWrapper> MBFI;
382 
383   /// A handle to the loop info.
384   MachineLoopInfo *MLI = nullptr;
385 
386   /// Preferred loop exit.
387   /// Member variable for convenience. It may be removed by duplication deep
388   /// in the call stack.
389   MachineBasicBlock *PreferredLoopExit = nullptr;
390 
391   /// A handle to the target's instruction info.
392   const TargetInstrInfo *TII = nullptr;
393 
394   /// A handle to the target's lowering info.
395   const TargetLoweringBase *TLI = nullptr;
396 
397   /// A handle to the post dominator tree.
398   MachinePostDominatorTree *MPDT = nullptr;
399 
400   ProfileSummaryInfo *PSI = nullptr;
401 
402   /// Duplicator used to duplicate tails during placement.
403   ///
404   /// Placement decisions can open up new tail duplication opportunities, but
405   /// since tail duplication affects placement decisions of later blocks, it
406   /// must be done inline.
407   TailDuplicator TailDup;
408 
409   /// Partial tail duplication threshold.
410   BlockFrequency DupThreshold;
411 
412   /// True:  use block profile count to compute tail duplication cost.
413   /// False: use block frequency to compute tail duplication cost.
414   bool UseProfileCount = false;
415 
416   /// Allocator and owner of BlockChain structures.
417   ///
418   /// We build BlockChains lazily while processing the loop structure of
419   /// a function. To reduce malloc traffic, we allocate them using this
420   /// slab-like allocator, and destroy them after the pass completes. An
421   /// important guarantee is that this allocator produces stable pointers to
422   /// the chains.
423   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
424 
425   /// Function wide BasicBlock to BlockChain mapping.
426   ///
427   /// This mapping allows efficiently moving from any given basic block to the
428   /// BlockChain it participates in, if any. We use it to, among other things,
429   /// allow implicitly defining edges between chains as the existing edges
430   /// between basic blocks.
431   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
432 
433 #ifndef NDEBUG
434   /// The set of basic blocks that have terminators that cannot be fully
435   /// analyzed.  These basic blocks cannot be re-ordered safely by
436   /// MachineBlockPlacement, and we must preserve physical layout of these
437   /// blocks and their successors through the pass.
438   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
439 #endif
440 
441   /// Get block profile count or frequency according to UseProfileCount.
442   /// The return value is used to model tail duplication cost.
getBlockCountOrFrequency(const MachineBasicBlock * BB)443   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
444     if (UseProfileCount) {
445       auto Count = MBFI->getBlockProfileCount(BB);
446       if (Count)
447         return BlockFrequency(*Count);
448       else
449         return BlockFrequency(0);
450     } else
451       return MBFI->getBlockFreq(BB);
452   }
453 
454   /// Scale the DupThreshold according to basic block size.
455   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
456   void initDupThreshold();
457 
458   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
459   /// if the count goes to 0, add them to the appropriate work list.
460   void markChainSuccessors(
461       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
462       const BlockFilterSet *BlockFilter = nullptr);
463 
464   /// Decrease the UnscheduledPredecessors count for a single block, and
465   /// if the count goes to 0, add them to the appropriate work list.
466   void markBlockSuccessors(
467       const BlockChain &Chain, const MachineBasicBlock *BB,
468       const MachineBasicBlock *LoopHeaderBB,
469       const BlockFilterSet *BlockFilter = nullptr);
470 
471   BranchProbability
472   collectViableSuccessors(
473       const MachineBasicBlock *BB, const BlockChain &Chain,
474       const BlockFilterSet *BlockFilter,
475       SmallVector<MachineBasicBlock *, 4> &Successors);
476   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
477                        BlockFilterSet *BlockFilter);
478   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
479                                MachineBasicBlock *BB,
480                                BlockFilterSet *BlockFilter);
481   bool repeatedlyTailDuplicateBlock(
482       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
483       const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
484       BlockFilterSet *BlockFilter,
485       MachineFunction::iterator &PrevUnplacedBlockIt,
486       BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt);
487   bool
488   maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
489                           BlockChain &Chain, BlockFilterSet *BlockFilter,
490                           MachineFunction::iterator &PrevUnplacedBlockIt,
491                           BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
492                           bool &DuplicatedToLPred);
493   bool hasBetterLayoutPredecessor(
494       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
495       const BlockChain &SuccChain, BranchProbability SuccProb,
496       BranchProbability RealSuccProb, const BlockChain &Chain,
497       const BlockFilterSet *BlockFilter);
498   BlockAndTailDupResult selectBestSuccessor(
499       const MachineBasicBlock *BB, const BlockChain &Chain,
500       const BlockFilterSet *BlockFilter);
501   MachineBasicBlock *selectBestCandidateBlock(
502       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
503   MachineBasicBlock *
504   getFirstUnplacedBlock(const BlockChain &PlacedChain,
505                         MachineFunction::iterator &PrevUnplacedBlockIt);
506   MachineBasicBlock *
507   getFirstUnplacedBlock(const BlockChain &PlacedChain,
508                         BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
509                         const BlockFilterSet *BlockFilter);
510 
511   /// Add a basic block to the work list if it is appropriate.
512   ///
513   /// If the optional parameter BlockFilter is provided, only MBB
514   /// present in the set will be added to the worklist. If nullptr
515   /// is provided, no filtering occurs.
516   void fillWorkLists(const MachineBasicBlock *MBB,
517                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
518                      const BlockFilterSet *BlockFilter);
519 
520   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
521                   BlockFilterSet *BlockFilter = nullptr);
522   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
523                                const MachineBasicBlock *OldTop);
524   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
525                                const BlockFilterSet &LoopBlockSet);
526   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
527                                     const BlockFilterSet &LoopBlockSet);
528   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
529                                   const MachineBasicBlock *OldTop,
530                                   const MachineBasicBlock *ExitBB,
531                                   const BlockFilterSet &LoopBlockSet);
532   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
533       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
534   MachineBasicBlock *findBestLoopTop(
535       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
536   MachineBasicBlock *findBestLoopExit(
537       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
538       BlockFrequency &ExitFreq);
539   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
540   void buildLoopChains(const MachineLoop &L);
541   void rotateLoop(
542       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
543       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
544   void rotateLoopWithProfile(
545       BlockChain &LoopChain, const MachineLoop &L,
546       const BlockFilterSet &LoopBlockSet);
547   void buildCFGChains();
548   void optimizeBranches();
549   void alignBlocks();
550   /// Returns true if a block should be tail-duplicated to increase fallthrough
551   /// opportunities.
552   bool shouldTailDuplicate(MachineBasicBlock *BB);
553   /// Check the edge frequencies to see if tail duplication will increase
554   /// fallthroughs.
555   bool isProfitableToTailDup(
556     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
557     BranchProbability QProb,
558     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
559 
560   /// Check for a trellis layout.
561   bool isTrellis(const MachineBasicBlock *BB,
562                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
563                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
564 
565   /// Get the best successor given a trellis layout.
566   BlockAndTailDupResult getBestTrellisSuccessor(
567       const MachineBasicBlock *BB,
568       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
569       BranchProbability AdjustedSumProb, const BlockChain &Chain,
570       const BlockFilterSet *BlockFilter);
571 
572   /// Get the best pair of non-conflicting edges.
573   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
574       const MachineBasicBlock *BB,
575       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
576 
577   /// Returns true if a block can tail duplicate into all unplaced
578   /// predecessors. Filters based on loop.
579   bool canTailDuplicateUnplacedPreds(
580       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
581       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
582 
583   /// Find chains of triangles to tail-duplicate where a global analysis works,
584   /// but a local analysis would not find them.
585   void precomputeTriangleChains();
586 
587   /// Apply a post-processing step optimizing block placement.
588   void applyExtTsp();
589 
590   /// Modify the existing block placement in the function and adjust all jumps.
591   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
592 
593   /// Create a single CFG chain from the current block order.
594   void createCFGChainExtTsp();
595 
596 public:
597   static char ID; // Pass identification, replacement for typeid
598 
MachineBlockPlacement()599   MachineBlockPlacement() : MachineFunctionPass(ID) {
600     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
601   }
602 
603   bool runOnMachineFunction(MachineFunction &F) override;
604 
allowTailDupPlacement() const605   bool allowTailDupPlacement() const {
606     assert(F);
607     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
608   }
609 
getAnalysisUsage(AnalysisUsage & AU) const610   void getAnalysisUsage(AnalysisUsage &AU) const override {
611     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
612     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
613     if (TailDupPlacement)
614       AU.addRequired<MachinePostDominatorTreeWrapperPass>();
615     AU.addRequired<MachineLoopInfoWrapperPass>();
616     AU.addRequired<ProfileSummaryInfoWrapperPass>();
617     AU.addRequired<TargetPassConfig>();
618     MachineFunctionPass::getAnalysisUsage(AU);
619   }
620 };
621 
622 } // end anonymous namespace
623 
624 char MachineBlockPlacement::ID = 0;
625 
626 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
627 
628 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
629                       "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)630 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
631 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
632 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
633 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
634 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
635 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
636                     "Branch Probability Basic Block Placement", false, false)
637 
638 #ifndef NDEBUG
639 /// Helper to print the name of a MBB.
640 ///
641 /// Only used by debug logging.
642 static std::string getBlockName(const MachineBasicBlock *BB) {
643   std::string Result;
644   raw_string_ostream OS(Result);
645   OS << printMBBReference(*BB);
646   OS << " ('" << BB->getName() << "')";
647   OS.flush();
648   return Result;
649 }
650 #endif
651 
652 /// Mark a chain's successors as having one fewer preds.
653 ///
654 /// When a chain is being merged into the "placed" chain, this routine will
655 /// quickly walk the successors of each block in the chain and mark them as
656 /// having one fewer active predecessor. It also adds any successors of this
657 /// chain which reach the zero-predecessor state to the appropriate worklist.
markChainSuccessors(const BlockChain & Chain,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)658 void MachineBlockPlacement::markChainSuccessors(
659     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
660     const BlockFilterSet *BlockFilter) {
661   // Walk all the blocks in this chain, marking their successors as having
662   // a predecessor placed.
663   for (MachineBasicBlock *MBB : Chain) {
664     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
665   }
666 }
667 
668 /// Mark a single block's successors as having one fewer preds.
669 ///
670 /// Under normal circumstances, this is only called by markChainSuccessors,
671 /// but if a block that was to be placed is completely tail-duplicated away,
672 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
673 /// for just that block.
markBlockSuccessors(const BlockChain & Chain,const MachineBasicBlock * MBB,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)674 void MachineBlockPlacement::markBlockSuccessors(
675     const BlockChain &Chain, const MachineBasicBlock *MBB,
676     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
677   // Add any successors for which this is the only un-placed in-loop
678   // predecessor to the worklist as a viable candidate for CFG-neutral
679   // placement. No subsequent placement of this block will violate the CFG
680   // shape, so we get to use heuristics to choose a favorable placement.
681   for (MachineBasicBlock *Succ : MBB->successors()) {
682     if (BlockFilter && !BlockFilter->count(Succ))
683       continue;
684     BlockChain &SuccChain = *BlockToChain[Succ];
685     // Disregard edges within a fixed chain, or edges to the loop header.
686     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
687       continue;
688 
689     // This is a cross-chain edge that is within the loop, so decrement the
690     // loop predecessor count of the destination chain.
691     if (SuccChain.UnscheduledPredecessors == 0 ||
692         --SuccChain.UnscheduledPredecessors > 0)
693       continue;
694 
695     auto *NewBB = *SuccChain.begin();
696     if (NewBB->isEHPad())
697       EHPadWorkList.push_back(NewBB);
698     else
699       BlockWorkList.push_back(NewBB);
700   }
701 }
702 
703 /// This helper function collects the set of successors of block
704 /// \p BB that are allowed to be its layout successors, and return
705 /// the total branch probability of edges from \p BB to those
706 /// blocks.
collectViableSuccessors(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter,SmallVector<MachineBasicBlock *,4> & Successors)707 BranchProbability MachineBlockPlacement::collectViableSuccessors(
708     const MachineBasicBlock *BB, const BlockChain &Chain,
709     const BlockFilterSet *BlockFilter,
710     SmallVector<MachineBasicBlock *, 4> &Successors) {
711   // Adjust edge probabilities by excluding edges pointing to blocks that is
712   // either not in BlockFilter or is already in the current chain. Consider the
713   // following CFG:
714   //
715   //     --->A
716   //     |  / \
717   //     | B   C
718   //     |  \ / \
719   //     ----D   E
720   //
721   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
722   // A->C is chosen as a fall-through, D won't be selected as a successor of C
723   // due to CFG constraint (the probability of C->D is not greater than
724   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
725   // when calculating the probability of C->D, D will be selected and we
726   // will get A C D B as the layout of this loop.
727   auto AdjustedSumProb = BranchProbability::getOne();
728   for (MachineBasicBlock *Succ : BB->successors()) {
729     bool SkipSucc = false;
730     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
731       SkipSucc = true;
732     } else {
733       BlockChain *SuccChain = BlockToChain[Succ];
734       if (SuccChain == &Chain) {
735         SkipSucc = true;
736       } else if (Succ != *SuccChain->begin()) {
737         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
738                           << " -> Mid chain!\n");
739         continue;
740       }
741     }
742     if (SkipSucc)
743       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
744     else
745       Successors.push_back(Succ);
746   }
747 
748   return AdjustedSumProb;
749 }
750 
751 /// The helper function returns the branch probability that is adjusted
752 /// or normalized over the new total \p AdjustedSumProb.
753 static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,BranchProbability AdjustedSumProb)754 getAdjustedProbability(BranchProbability OrigProb,
755                        BranchProbability AdjustedSumProb) {
756   BranchProbability SuccProb;
757   uint32_t SuccProbN = OrigProb.getNumerator();
758   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
759   if (SuccProbN >= SuccProbD)
760     SuccProb = BranchProbability::getOne();
761   else
762     SuccProb = BranchProbability(SuccProbN, SuccProbD);
763 
764   return SuccProb;
765 }
766 
767 /// Check if \p BB has exactly the successors in \p Successors.
768 static bool
hasSameSuccessors(MachineBasicBlock & BB,SmallPtrSetImpl<const MachineBasicBlock * > & Successors)769 hasSameSuccessors(MachineBasicBlock &BB,
770                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
771   if (BB.succ_size() != Successors.size())
772     return false;
773   // We don't want to count self-loops
774   if (Successors.count(&BB))
775     return false;
776   for (MachineBasicBlock *Succ : BB.successors())
777     if (!Successors.count(Succ))
778       return false;
779   return true;
780 }
781 
782 /// Check if a block should be tail duplicated to increase fallthrough
783 /// opportunities.
784 /// \p BB Block to check.
shouldTailDuplicate(MachineBasicBlock * BB)785 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
786   // Blocks with single successors don't create additional fallthrough
787   // opportunities. Don't duplicate them. TODO: When conditional exits are
788   // analyzable, allow them to be duplicated.
789   bool IsSimple = TailDup.isSimpleBB(BB);
790 
791   if (BB->succ_size() == 1)
792     return false;
793   return TailDup.shouldTailDuplicate(IsSimple, *BB);
794 }
795 
796 /// Compare 2 BlockFrequency's with a small penalty for \p A.
797 /// In order to be conservative, we apply a X% penalty to account for
798 /// increased icache pressure and static heuristics. For small frequencies
799 /// we use only the numerators to improve accuracy. For simplicity, we assume the
800 /// penalty is less than 100%
801 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
greaterWithBias(BlockFrequency A,BlockFrequency B,BlockFrequency EntryFreq)802 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
803                             BlockFrequency EntryFreq) {
804   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
805   BlockFrequency Gain = A - B;
806   return (Gain / ThresholdProb) >= EntryFreq;
807 }
808 
809 /// Check the edge frequencies to see if tail duplication will increase
810 /// fallthroughs. It only makes sense to call this function when
811 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
812 /// always locally profitable if we would have picked \p Succ without
813 /// considering duplication.
isProfitableToTailDup(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,BranchProbability QProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)814 bool MachineBlockPlacement::isProfitableToTailDup(
815     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
816     BranchProbability QProb,
817     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
818   // We need to do a probability calculation to make sure this is profitable.
819   // First: does succ have a successor that post-dominates? This affects the
820   // calculation. The 2 relevant cases are:
821   //    BB         BB
822   //    | \Qout    | \Qout
823   //   P|  C       |P C
824   //    =   C'     =   C'
825   //    |  /Qin    |  /Qin
826   //    | /        | /
827   //    Succ       Succ
828   //    / \        | \  V
829   //  U/   =V      |U \
830   //  /     \      =   D
831   //  D      E     |  /
832   //               | /
833   //               |/
834   //               PDom
835   //  '=' : Branch taken for that CFG edge
836   // In the second case, Placing Succ while duplicating it into C prevents the
837   // fallthrough of Succ into either D or PDom, because they now have C as an
838   // unplaced predecessor
839 
840   // Start by figuring out which case we fall into
841   MachineBasicBlock *PDom = nullptr;
842   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
843   // Only scan the relevant successors
844   auto AdjustedSuccSumProb =
845       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
846   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
847   auto BBFreq = MBFI->getBlockFreq(BB);
848   auto SuccFreq = MBFI->getBlockFreq(Succ);
849   BlockFrequency P = BBFreq * PProb;
850   BlockFrequency Qout = BBFreq * QProb;
851   BlockFrequency EntryFreq = MBFI->getEntryFreq();
852   // If there are no more successors, it is profitable to copy, as it strictly
853   // increases fallthrough.
854   if (SuccSuccs.size() == 0)
855     return greaterWithBias(P, Qout, EntryFreq);
856 
857   auto BestSuccSucc = BranchProbability::getZero();
858   // Find the PDom or the best Succ if no PDom exists.
859   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
860     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
861     if (Prob > BestSuccSucc)
862       BestSuccSucc = Prob;
863     if (PDom == nullptr)
864       if (MPDT->dominates(SuccSucc, Succ)) {
865         PDom = SuccSucc;
866         break;
867       }
868   }
869   // For the comparisons, we need to know Succ's best incoming edge that isn't
870   // from BB.
871   auto SuccBestPred = BlockFrequency(0);
872   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
873     if (SuccPred == Succ || SuccPred == BB
874         || BlockToChain[SuccPred] == &Chain
875         || (BlockFilter && !BlockFilter->count(SuccPred)))
876       continue;
877     auto Freq = MBFI->getBlockFreq(SuccPred)
878         * MBPI->getEdgeProbability(SuccPred, Succ);
879     if (Freq > SuccBestPred)
880       SuccBestPred = Freq;
881   }
882   // Qin is Succ's best unplaced incoming edge that isn't BB
883   BlockFrequency Qin = SuccBestPred;
884   // If it doesn't have a post-dominating successor, here is the calculation:
885   //    BB        BB
886   //    | \Qout   |  \
887   //   P|  C      |   =
888   //    =   C'    |    C
889   //    |  /Qin   |     |
890   //    | /       |     C' (+Succ)
891   //    Succ      Succ /|
892   //    / \       |  \/ |
893   //  U/   =V     |  == |
894   //  /     \     | /  \|
895   //  D      E    D     E
896   //  '=' : Branch taken for that CFG edge
897   //  Cost in the first case is: P + V
898   //  For this calculation, we always assume P > Qout. If Qout > P
899   //  The result of this function will be ignored at the caller.
900   //  Let F = SuccFreq - Qin
901   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
902 
903   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
904     BranchProbability UProb = BestSuccSucc;
905     BranchProbability VProb = AdjustedSuccSumProb - UProb;
906     BlockFrequency F = SuccFreq - Qin;
907     BlockFrequency V = SuccFreq * VProb;
908     BlockFrequency QinU = std::min(Qin, F) * UProb;
909     BlockFrequency BaseCost = P + V;
910     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
911     return greaterWithBias(BaseCost, DupCost, EntryFreq);
912   }
913   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
914   BranchProbability VProb = AdjustedSuccSumProb - UProb;
915   BlockFrequency U = SuccFreq * UProb;
916   BlockFrequency V = SuccFreq * VProb;
917   BlockFrequency F = SuccFreq - Qin;
918   // If there is a post-dominating successor, here is the calculation:
919   // BB         BB                 BB          BB
920   // | \Qout    |   \               | \Qout     |  \
921   // |P C       |    =              |P C        |   =
922   // =   C'     |P    C             =   C'      |P   C
923   // |  /Qin    |      |            |  /Qin     |     |
924   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
925   // Succ       Succ  /|            Succ        Succ /|
926   // | \  V     |   \/ |            | \  V      |  \/ |
927   // |U \       |U  /\ =?           |U =        |U /\ |
928   // =   D      = =  =?|            |   D       | =  =|
929   // |  /       |/     D            |  /        |/    D
930   // | /        |     /             | =         |    /
931   // |/         |    /              |/          |   =
932   // Dom         Dom                Dom         Dom
933   //  '=' : Branch taken for that CFG edge
934   // The cost for taken branches in the first case is P + U
935   // Let F = SuccFreq - Qin
936   // The cost in the second case (assuming independence), given the layout:
937   // BB, Succ, (C+Succ), D, Dom or the layout:
938   // BB, Succ, D, Dom, (C+Succ)
939   // is Qout + max(F, Qin) * U + min(F, Qin)
940   // compare P + U vs Qout + P * U + Qin.
941   //
942   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
943   //
944   // For the 3rd case, the cost is P + 2 * V
945   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
946   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
947   if (UProb > AdjustedSuccSumProb / 2 &&
948       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
949                                   Chain, BlockFilter))
950     // Cases 3 & 4
951     return greaterWithBias(
952         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
953         EntryFreq);
954   // Cases 1 & 2
955   return greaterWithBias((P + U),
956                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
957                           std::max(Qin, F) * UProb),
958                          EntryFreq);
959 }
960 
961 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
962 /// successors form the lower part of a trellis. A successor set S forms the
963 /// lower part of a trellis if all of the predecessors of S are either in S or
964 /// have all of S as successors. We ignore trellises where BB doesn't have 2
965 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
966 /// are very uncommon and complex to compute optimally. Allowing edges within S
967 /// is not strictly a trellis, but the same algorithm works, so we allow it.
isTrellis(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,const BlockChain & Chain,const BlockFilterSet * BlockFilter)968 bool MachineBlockPlacement::isTrellis(
969     const MachineBasicBlock *BB,
970     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
971     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
972   // Technically BB could form a trellis with branching factor higher than 2.
973   // But that's extremely uncommon.
974   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
975     return false;
976 
977   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
978                                                        BB->succ_end());
979   // To avoid reviewing the same predecessors twice.
980   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
981 
982   for (MachineBasicBlock *Succ : ViableSuccs) {
983     int PredCount = 0;
984     for (auto *SuccPred : Succ->predecessors()) {
985       // Allow triangle successors, but don't count them.
986       if (Successors.count(SuccPred)) {
987         // Make sure that it is actually a triangle.
988         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
989           if (!Successors.count(CheckSucc))
990             return false;
991         continue;
992       }
993       const BlockChain *PredChain = BlockToChain[SuccPred];
994       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
995           PredChain == &Chain || PredChain == BlockToChain[Succ])
996         continue;
997       ++PredCount;
998       // Perform the successor check only once.
999       if (!SeenPreds.insert(SuccPred).second)
1000         continue;
1001       if (!hasSameSuccessors(*SuccPred, Successors))
1002         return false;
1003     }
1004     // If one of the successors has only BB as a predecessor, it is not a
1005     // trellis.
1006     if (PredCount < 1)
1007       return false;
1008   }
1009   return true;
1010 }
1011 
1012 /// Pick the highest total weight pair of edges that can both be laid out.
1013 /// The edges in \p Edges[0] are assumed to have a different destination than
1014 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1015 /// the individual highest weight edges to the 2 different destinations, or in
1016 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1017 std::pair<MachineBlockPlacement::WeightedEdge,
1018           MachineBlockPlacement::WeightedEdge>
getBestNonConflictingEdges(const MachineBasicBlock * BB,MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge,8>> Edges)1019 MachineBlockPlacement::getBestNonConflictingEdges(
1020     const MachineBasicBlock *BB,
1021     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1022         Edges) {
1023   // Sort the edges, and then for each successor, find the best incoming
1024   // predecessor. If the best incoming predecessors aren't the same,
1025   // then that is clearly the best layout. If there is a conflict, one of the
1026   // successors will have to fallthrough from the second best predecessor. We
1027   // compare which combination is better overall.
1028 
1029   // Sort for highest frequency.
1030   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1031 
1032   llvm::stable_sort(Edges[0], Cmp);
1033   llvm::stable_sort(Edges[1], Cmp);
1034   auto BestA = Edges[0].begin();
1035   auto BestB = Edges[1].begin();
1036   // Arrange for the correct answer to be in BestA and BestB
1037   // If the 2 best edges don't conflict, the answer is already there.
1038   if (BestA->Src == BestB->Src) {
1039     // Compare the total fallthrough of (Best + Second Best) for both pairs
1040     auto SecondBestA = std::next(BestA);
1041     auto SecondBestB = std::next(BestB);
1042     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1043     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1044     if (BestAScore < BestBScore)
1045       BestA = SecondBestA;
1046     else
1047       BestB = SecondBestB;
1048   }
1049   // Arrange for the BB edge to be in BestA if it exists.
1050   if (BestB->Src == BB)
1051     std::swap(BestA, BestB);
1052   return std::make_pair(*BestA, *BestB);
1053 }
1054 
1055 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1056 /// We only handle trellises with 2 successors, so the algorithm is
1057 /// straightforward: Find the best pair of edges that don't conflict. We find
1058 /// the best incoming edge for each successor in the trellis. If those conflict,
1059 /// we consider which of them should be replaced with the second best.
1060 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1061 /// comes from \p BB, it will be in \p BestEdges[0]
1062 MachineBlockPlacement::BlockAndTailDupResult
getBestTrellisSuccessor(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,BranchProbability AdjustedSumProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1063 MachineBlockPlacement::getBestTrellisSuccessor(
1064     const MachineBasicBlock *BB,
1065     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1066     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1067     const BlockFilterSet *BlockFilter) {
1068 
1069   BlockAndTailDupResult Result = {nullptr, false};
1070   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1071                                                        BB->succ_end());
1072 
1073   // We assume size 2 because it's common. For general n, we would have to do
1074   // the Hungarian algorithm, but it's not worth the complexity because more
1075   // than 2 successors is fairly uncommon, and a trellis even more so.
1076   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1077     return Result;
1078 
1079   // Collect the edge frequencies of all edges that form the trellis.
1080   SmallVector<WeightedEdge, 8> Edges[2];
1081   int SuccIndex = 0;
1082   for (auto *Succ : ViableSuccs) {
1083     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1084       // Skip any placed predecessors that are not BB
1085       if (SuccPred != BB)
1086         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1087             BlockToChain[SuccPred] == &Chain ||
1088             BlockToChain[SuccPred] == BlockToChain[Succ])
1089           continue;
1090       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1091                                 MBPI->getEdgeProbability(SuccPred, Succ);
1092       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1093     }
1094     ++SuccIndex;
1095   }
1096 
1097   // Pick the best combination of 2 edges from all the edges in the trellis.
1098   WeightedEdge BestA, BestB;
1099   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1100 
1101   if (BestA.Src != BB) {
1102     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1103     // we shouldn't choose any successor. We've already looked and there's a
1104     // better fallthrough edge for all the successors.
1105     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1106     return Result;
1107   }
1108 
1109   // Did we pick the triangle edge? If tail-duplication is profitable, do
1110   // that instead. Otherwise merge the triangle edge now while we know it is
1111   // optimal.
1112   if (BestA.Dest == BestB.Src) {
1113     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1114     // would be better.
1115     MachineBasicBlock *Succ1 = BestA.Dest;
1116     MachineBasicBlock *Succ2 = BestB.Dest;
1117     // Check to see if tail-duplication would be profitable.
1118     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1119         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1120         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1121                               Chain, BlockFilter)) {
1122       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1123                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1124                  dbgs() << "    Selected: " << getBlockName(Succ2)
1125                         << ", probability: " << Succ2Prob
1126                         << " (Tail Duplicate)\n");
1127       Result.BB = Succ2;
1128       Result.ShouldTailDup = true;
1129       return Result;
1130     }
1131   }
1132   // We have already computed the optimal edge for the other side of the
1133   // trellis.
1134   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1135 
1136   auto TrellisSucc = BestA.Dest;
1137   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1138                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1139              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1140                     << ", probability: " << SuccProb << " (Trellis)\n");
1141   Result.BB = TrellisSucc;
1142   return Result;
1143 }
1144 
1145 /// When the option allowTailDupPlacement() is on, this method checks if the
1146 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1147 /// into all of its unplaced, unfiltered predecessors, that are not BB.
canTailDuplicateUnplacedPreds(const MachineBasicBlock * BB,MachineBasicBlock * Succ,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1148 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1149     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1150     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1151   if (!shouldTailDuplicate(Succ))
1152     return false;
1153 
1154   // The result of canTailDuplicate.
1155   bool Duplicate = true;
1156   // Number of possible duplication.
1157   unsigned int NumDup = 0;
1158 
1159   // For CFG checking.
1160   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1161                                                        BB->succ_end());
1162   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1163     // Make sure all unplaced and unfiltered predecessors can be
1164     // tail-duplicated into.
1165     // Skip any blocks that are already placed or not in this loop.
1166     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1167         || (BlockToChain[Pred] == &Chain && !Succ->succ_empty()))
1168       continue;
1169     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1170       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1171         // This will result in a trellis after tail duplication, so we don't
1172         // need to copy Succ into this predecessor. In the presence
1173         // of a trellis tail duplication can continue to be profitable.
1174         // For example:
1175         // A            A
1176         // |\           |\
1177         // | \          | \
1178         // |  C         |  C+BB
1179         // | /          |  |
1180         // |/           |  |
1181         // BB    =>     BB |
1182         // |\           |\/|
1183         // | \          |/\|
1184         // |  D         |  D
1185         // | /          | /
1186         // |/           |/
1187         // Succ         Succ
1188         //
1189         // After BB was duplicated into C, the layout looks like the one on the
1190         // right. BB and C now have the same successors. When considering
1191         // whether Succ can be duplicated into all its unplaced predecessors, we
1192         // ignore C.
1193         // We can do this because C already has a profitable fallthrough, namely
1194         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1195         // duplication and for this test.
1196         //
1197         // This allows trellises to be laid out in 2 separate chains
1198         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1199         // because it allows the creation of 2 fallthrough paths with links
1200         // between them, and we correctly identify the best layout for these
1201         // CFGs. We want to extend trellises that the user created in addition
1202         // to trellises created by tail-duplication, so we just look for the
1203         // CFG.
1204         continue;
1205       Duplicate = false;
1206       continue;
1207     }
1208     NumDup++;
1209   }
1210 
1211   // No possible duplication in current filter set.
1212   if (NumDup == 0)
1213     return false;
1214 
1215   // If profile information is available, findDuplicateCandidates can do more
1216   // precise benefit analysis.
1217   if (F->getFunction().hasProfileData())
1218     return true;
1219 
1220   // This is mainly for function exit BB.
1221   // The integrated tail duplication is really designed for increasing
1222   // fallthrough from predecessors from Succ to its successors. We may need
1223   // other machanism to handle different cases.
1224   if (Succ->succ_empty())
1225     return true;
1226 
1227   // Plus the already placed predecessor.
1228   NumDup++;
1229 
1230   // If the duplication candidate has more unplaced predecessors than
1231   // successors, the extra duplication can't bring more fallthrough.
1232   //
1233   //     Pred1 Pred2 Pred3
1234   //         \   |   /
1235   //          \  |  /
1236   //           \ | /
1237   //            Dup
1238   //            / \
1239   //           /   \
1240   //       Succ1  Succ2
1241   //
1242   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1243   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1244   // but the duplication into Pred3 can't increase fallthrough.
1245   //
1246   // A small number of extra duplication may not hurt too much. We need a better
1247   // heuristic to handle it.
1248   if ((NumDup > Succ->succ_size()) || !Duplicate)
1249     return false;
1250 
1251   return true;
1252 }
1253 
1254 /// Find chains of triangles where we believe it would be profitable to
1255 /// tail-duplicate them all, but a local analysis would not find them.
1256 /// There are 3 ways this can be profitable:
1257 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1258 ///    longer chains)
1259 /// 2) The chains are statically correlated. Branch probabilities have a very
1260 ///    U-shaped distribution.
1261 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1262 ///    If the branches in a chain are likely to be from the same side of the
1263 ///    distribution as their predecessor, but are independent at runtime, this
1264 ///    transformation is profitable. (Because the cost of being wrong is a small
1265 ///    fixed cost, unlike the standard triangle layout where the cost of being
1266 ///    wrong scales with the # of triangles.)
1267 /// 3) The chains are dynamically correlated. If the probability that a previous
1268 ///    branch was taken positively influences whether the next branch will be
1269 ///    taken
1270 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
precomputeTriangleChains()1271 void MachineBlockPlacement::precomputeTriangleChains() {
1272   struct TriangleChain {
1273     std::vector<MachineBasicBlock *> Edges;
1274 
1275     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1276         : Edges({src, dst}) {}
1277 
1278     void append(MachineBasicBlock *dst) {
1279       assert(getKey()->isSuccessor(dst) &&
1280              "Attempting to append a block that is not a successor.");
1281       Edges.push_back(dst);
1282     }
1283 
1284     unsigned count() const { return Edges.size() - 1; }
1285 
1286     MachineBasicBlock *getKey() const {
1287       return Edges.back();
1288     }
1289   };
1290 
1291   if (TriangleChainCount == 0)
1292     return;
1293 
1294   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1295   // Map from last block to the chain that contains it. This allows us to extend
1296   // chains as we find new triangles.
1297   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1298   for (MachineBasicBlock &BB : *F) {
1299     // If BB doesn't have 2 successors, it doesn't start a triangle.
1300     if (BB.succ_size() != 2)
1301       continue;
1302     MachineBasicBlock *PDom = nullptr;
1303     for (MachineBasicBlock *Succ : BB.successors()) {
1304       if (!MPDT->dominates(Succ, &BB))
1305         continue;
1306       PDom = Succ;
1307       break;
1308     }
1309     // If BB doesn't have a post-dominating successor, it doesn't form a
1310     // triangle.
1311     if (PDom == nullptr)
1312       continue;
1313     // If PDom has a hint that it is low probability, skip this triangle.
1314     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1315       continue;
1316     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1317     // we're looking for.
1318     if (!shouldTailDuplicate(PDom))
1319       continue;
1320     bool CanTailDuplicate = true;
1321     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1322     // isn't the kind of triangle we're looking for.
1323     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1324       if (Pred == &BB)
1325         continue;
1326       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1327         CanTailDuplicate = false;
1328         break;
1329       }
1330     }
1331     // If we can't tail-duplicate PDom to its predecessors, then skip this
1332     // triangle.
1333     if (!CanTailDuplicate)
1334       continue;
1335 
1336     // Now we have an interesting triangle. Insert it if it's not part of an
1337     // existing chain.
1338     // Note: This cannot be replaced with a call insert() or emplace() because
1339     // the find key is BB, but the insert/emplace key is PDom.
1340     auto Found = TriangleChainMap.find(&BB);
1341     // If it is, remove the chain from the map, grow it, and put it back in the
1342     // map with the end as the new key.
1343     if (Found != TriangleChainMap.end()) {
1344       TriangleChain Chain = std::move(Found->second);
1345       TriangleChainMap.erase(Found);
1346       Chain.append(PDom);
1347       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1348     } else {
1349       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1350       assert(InsertResult.second && "Block seen twice.");
1351       (void)InsertResult;
1352     }
1353   }
1354 
1355   // Iterating over a DenseMap is safe here, because the only thing in the body
1356   // of the loop is inserting into another DenseMap (ComputedEdges).
1357   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1358   for (auto &ChainPair : TriangleChainMap) {
1359     TriangleChain &Chain = ChainPair.second;
1360     // Benchmarking has shown that due to branch correlation duplicating 2 or
1361     // more triangles is profitable, despite the calculations assuming
1362     // independence.
1363     if (Chain.count() < TriangleChainCount)
1364       continue;
1365     MachineBasicBlock *dst = Chain.Edges.back();
1366     Chain.Edges.pop_back();
1367     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1368       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1369                         << getBlockName(dst)
1370                         << " as pre-computed based on triangles.\n");
1371 
1372       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1373       assert(InsertResult.second && "Block seen twice.");
1374       (void)InsertResult;
1375 
1376       dst = src;
1377     }
1378   }
1379 }
1380 
1381 // When profile is not present, return the StaticLikelyProb.
1382 // When profile is available, we need to handle the triangle-shape CFG.
getLayoutSuccessorProbThreshold(const MachineBasicBlock * BB)1383 static BranchProbability getLayoutSuccessorProbThreshold(
1384       const MachineBasicBlock *BB) {
1385   if (!BB->getParent()->getFunction().hasProfileData())
1386     return BranchProbability(StaticLikelyProb, 100);
1387   if (BB->succ_size() == 2) {
1388     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1389     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1390     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1391       /* See case 1 below for the cost analysis. For BB->Succ to
1392        * be taken with smaller cost, the following needs to hold:
1393        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1394        *   So the threshold T in the calculation below
1395        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1396        *   So T / (1 - T) = 2, Yielding T = 2/3
1397        * Also adding user specified branch bias, we have
1398        *   T = (2/3)*(ProfileLikelyProb/50)
1399        *     = (2*ProfileLikelyProb)/150)
1400        */
1401       return BranchProbability(2 * ProfileLikelyProb, 150);
1402     }
1403   }
1404   return BranchProbability(ProfileLikelyProb, 100);
1405 }
1406 
1407 /// Checks to see if the layout candidate block \p Succ has a better layout
1408 /// predecessor than \c BB. If yes, returns true.
1409 /// \p SuccProb: The probability adjusted for only remaining blocks.
1410 ///   Only used for logging
1411 /// \p RealSuccProb: The un-adjusted probability.
1412 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1413 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1414 ///    considered
hasBetterLayoutPredecessor(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,const BlockChain & SuccChain,BranchProbability SuccProb,BranchProbability RealSuccProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1415 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1416     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1417     const BlockChain &SuccChain, BranchProbability SuccProb,
1418     BranchProbability RealSuccProb, const BlockChain &Chain,
1419     const BlockFilterSet *BlockFilter) {
1420 
1421   // There isn't a better layout when there are no unscheduled predecessors.
1422   if (SuccChain.UnscheduledPredecessors == 0)
1423     return false;
1424 
1425   // There are two basic scenarios here:
1426   // -------------------------------------
1427   // Case 1: triangular shape CFG (if-then):
1428   //     BB
1429   //     | \
1430   //     |  \
1431   //     |   Pred
1432   //     |   /
1433   //     Succ
1434   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1435   // set Succ as the layout successor of BB. Picking Succ as BB's
1436   // successor breaks the CFG constraints (FIXME: define these constraints).
1437   // With this layout, Pred BB
1438   // is forced to be outlined, so the overall cost will be cost of the
1439   // branch taken from BB to Pred, plus the cost of back taken branch
1440   // from Pred to Succ, as well as the additional cost associated
1441   // with the needed unconditional jump instruction from Pred To Succ.
1442 
1443   // The cost of the topological order layout is the taken branch cost
1444   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1445   // must hold:
1446   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1447   //      < freq(BB->Succ) *  taken_branch_cost.
1448   // Ignoring unconditional jump cost, we get
1449   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1450   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1451   //
1452   // When real profile data is available, we can precisely compute the
1453   // probability threshold that is needed for edge BB->Succ to be considered.
1454   // Without profile data, the heuristic requires the branch bias to be
1455   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1456   // -----------------------------------------------------------------
1457   // Case 2: diamond like CFG (if-then-else):
1458   //     S
1459   //    / \
1460   //   |   \
1461   //  BB    Pred
1462   //   \    /
1463   //    Succ
1464   //    ..
1465   //
1466   // The current block is BB and edge BB->Succ is now being evaluated.
1467   // Note that edge S->BB was previously already selected because
1468   // prob(S->BB) > prob(S->Pred).
1469   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1470   // choose Pred, we will have a topological ordering as shown on the left
1471   // in the picture below. If we choose Succ, we have the solution as shown
1472   // on the right:
1473   //
1474   //   topo-order:
1475   //
1476   //       S-----                             ---S
1477   //       |    |                             |  |
1478   //    ---BB   |                             |  BB
1479   //    |       |                             |  |
1480   //    |  Pred--                             |  Succ--
1481   //    |  |                                  |       |
1482   //    ---Succ                               ---Pred--
1483   //
1484   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1485   //      = freq(S->Pred) + freq(S->BB)
1486   //
1487   // If we have profile data (i.e, branch probabilities can be trusted), the
1488   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1489   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1490   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1491   // means the cost of topological order is greater.
1492   // When profile data is not available, however, we need to be more
1493   // conservative. If the branch prediction is wrong, breaking the topo-order
1494   // will actually yield a layout with large cost. For this reason, we need
1495   // strong biased branch at block S with Prob(S->BB) in order to select
1496   // BB->Succ. This is equivalent to looking the CFG backward with backward
1497   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1498   // profile data).
1499   // --------------------------------------------------------------------------
1500   // Case 3: forked diamond
1501   //       S
1502   //      / \
1503   //     /   \
1504   //   BB    Pred
1505   //   | \   / |
1506   //   |  \ /  |
1507   //   |   X   |
1508   //   |  / \  |
1509   //   | /   \ |
1510   //   S1     S2
1511   //
1512   // The current block is BB and edge BB->S1 is now being evaluated.
1513   // As above S->BB was already selected because
1514   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1515   //
1516   // topo-order:
1517   //
1518   //     S-------|                     ---S
1519   //     |       |                     |  |
1520   //  ---BB      |                     |  BB
1521   //  |          |                     |  |
1522   //  |  Pred----|                     |  S1----
1523   //  |  |                             |       |
1524   //  --(S1 or S2)                     ---Pred--
1525   //                                        |
1526   //                                       S2
1527   //
1528   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1529   //    + min(freq(Pred->S1), freq(Pred->S2))
1530   // Non-topo-order cost:
1531   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1532   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1533   // is 0. Then the non topo layout is better when
1534   // freq(S->Pred) < freq(BB->S1).
1535   // This is exactly what is checked below.
1536   // Note there are other shapes that apply (Pred may not be a single block,
1537   // but they all fit this general pattern.)
1538   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1539 
1540   // Make sure that a hot successor doesn't have a globally more
1541   // important predecessor.
1542   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1543   bool BadCFGConflict = false;
1544 
1545   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1546     BlockChain *PredChain = BlockToChain[Pred];
1547     if (Pred == Succ || PredChain == &SuccChain ||
1548         (BlockFilter && !BlockFilter->count(Pred)) ||
1549         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1550         // This check is redundant except for look ahead. This function is
1551         // called for lookahead by isProfitableToTailDup when BB hasn't been
1552         // placed yet.
1553         (Pred == BB))
1554       continue;
1555     // Do backward checking.
1556     // For all cases above, we need a backward checking to filter out edges that
1557     // are not 'strongly' biased.
1558     // BB  Pred
1559     //  \ /
1560     //  Succ
1561     // We select edge BB->Succ if
1562     //      freq(BB->Succ) > freq(Succ) * HotProb
1563     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1564     //      HotProb
1565     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1566     // Case 1 is covered too, because the first equation reduces to:
1567     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1568     BlockFrequency PredEdgeFreq =
1569         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1570     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1571       BadCFGConflict = true;
1572       break;
1573     }
1574   }
1575 
1576   if (BadCFGConflict) {
1577     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1578                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1579     return true;
1580   }
1581 
1582   return false;
1583 }
1584 
1585 /// Select the best successor for a block.
1586 ///
1587 /// This looks across all successors of a particular block and attempts to
1588 /// select the "best" one to be the layout successor. It only considers direct
1589 /// successors which also pass the block filter. It will attempt to avoid
1590 /// breaking CFG structure, but cave and break such structures in the case of
1591 /// very hot successor edges.
1592 ///
1593 /// \returns The best successor block found, or null if none are viable, along
1594 /// with a boolean indicating if tail duplication is necessary.
1595 MachineBlockPlacement::BlockAndTailDupResult
selectBestSuccessor(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1596 MachineBlockPlacement::selectBestSuccessor(
1597     const MachineBasicBlock *BB, const BlockChain &Chain,
1598     const BlockFilterSet *BlockFilter) {
1599   const BranchProbability HotProb(StaticLikelyProb, 100);
1600 
1601   BlockAndTailDupResult BestSucc = { nullptr, false };
1602   auto BestProb = BranchProbability::getZero();
1603 
1604   SmallVector<MachineBasicBlock *, 4> Successors;
1605   auto AdjustedSumProb =
1606       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1607 
1608   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1609                     << "\n");
1610 
1611   // if we already precomputed the best successor for BB, return that if still
1612   // applicable.
1613   auto FoundEdge = ComputedEdges.find(BB);
1614   if (FoundEdge != ComputedEdges.end()) {
1615     MachineBasicBlock *Succ = FoundEdge->second.BB;
1616     ComputedEdges.erase(FoundEdge);
1617     BlockChain *SuccChain = BlockToChain[Succ];
1618     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1619         SuccChain != &Chain && Succ == *SuccChain->begin())
1620       return FoundEdge->second;
1621   }
1622 
1623   // if BB is part of a trellis, Use the trellis to determine the optimal
1624   // fallthrough edges
1625   if (isTrellis(BB, Successors, Chain, BlockFilter))
1626     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1627                                    BlockFilter);
1628 
1629   // For blocks with CFG violations, we may be able to lay them out anyway with
1630   // tail-duplication. We keep this vector so we can perform the probability
1631   // calculations the minimum number of times.
1632   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1633       DupCandidates;
1634   for (MachineBasicBlock *Succ : Successors) {
1635     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1636     BranchProbability SuccProb =
1637         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1638 
1639     BlockChain &SuccChain = *BlockToChain[Succ];
1640     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1641     // predecessor that yields lower global cost.
1642     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1643                                    Chain, BlockFilter)) {
1644       // If tail duplication would make Succ profitable, place it.
1645       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1646         DupCandidates.emplace_back(SuccProb, Succ);
1647       continue;
1648     }
1649 
1650     LLVM_DEBUG(
1651         dbgs() << "    Candidate: " << getBlockName(Succ)
1652                << ", probability: " << SuccProb
1653                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1654                << "\n");
1655 
1656     if (BestSucc.BB && BestProb >= SuccProb) {
1657       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1658       continue;
1659     }
1660 
1661     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1662     BestSucc.BB = Succ;
1663     BestProb = SuccProb;
1664   }
1665   // Handle the tail duplication candidates in order of decreasing probability.
1666   // Stop at the first one that is profitable. Also stop if they are less
1667   // profitable than BestSucc. Position is important because we preserve it and
1668   // prefer first best match. Here we aren't comparing in order, so we capture
1669   // the position instead.
1670   llvm::stable_sort(DupCandidates,
1671                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1672                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1673                       return std::get<0>(L) > std::get<0>(R);
1674                     });
1675   for (auto &Tup : DupCandidates) {
1676     BranchProbability DupProb;
1677     MachineBasicBlock *Succ;
1678     std::tie(DupProb, Succ) = Tup;
1679     if (DupProb < BestProb)
1680       break;
1681     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1682         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1683       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1684                         << ", probability: " << DupProb
1685                         << " (Tail Duplicate)\n");
1686       BestSucc.BB = Succ;
1687       BestSucc.ShouldTailDup = true;
1688       break;
1689     }
1690   }
1691 
1692   if (BestSucc.BB)
1693     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1694 
1695   return BestSucc;
1696 }
1697 
1698 /// Select the best block from a worklist.
1699 ///
1700 /// This looks through the provided worklist as a list of candidate basic
1701 /// blocks and select the most profitable one to place. The definition of
1702 /// profitable only really makes sense in the context of a loop. This returns
1703 /// the most frequently visited block in the worklist, which in the case of
1704 /// a loop, is the one most desirable to be physically close to the rest of the
1705 /// loop body in order to improve i-cache behavior.
1706 ///
1707 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(const BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList)1708 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1709     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1710   // Once we need to walk the worklist looking for a candidate, cleanup the
1711   // worklist of already placed entries.
1712   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1713   // some code complexity) into the loop below.
1714   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1715     return BlockToChain.lookup(BB) == &Chain;
1716   });
1717 
1718   if (WorkList.empty())
1719     return nullptr;
1720 
1721   bool IsEHPad = WorkList[0]->isEHPad();
1722 
1723   MachineBasicBlock *BestBlock = nullptr;
1724   BlockFrequency BestFreq;
1725   for (MachineBasicBlock *MBB : WorkList) {
1726     assert(MBB->isEHPad() == IsEHPad &&
1727            "EHPad mismatch between block and work list.");
1728 
1729     BlockChain &SuccChain = *BlockToChain[MBB];
1730     if (&SuccChain == &Chain)
1731       continue;
1732 
1733     assert(SuccChain.UnscheduledPredecessors == 0 &&
1734            "Found CFG-violating block");
1735 
1736     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1737     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> "
1738                       << printBlockFreq(MBFI->getMBFI(), CandidateFreq)
1739                       << " (freq)\n");
1740 
1741     // For ehpad, we layout the least probable first as to avoid jumping back
1742     // from least probable landingpads to more probable ones.
1743     //
1744     // FIXME: Using probability is probably (!) not the best way to achieve
1745     // this. We should probably have a more principled approach to layout
1746     // cleanup code.
1747     //
1748     // The goal is to get:
1749     //
1750     //                 +--------------------------+
1751     //                 |                          V
1752     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1753     //
1754     // Rather than:
1755     //
1756     //                 +-------------------------------------+
1757     //                 V                                     |
1758     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1759     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1760       continue;
1761 
1762     BestBlock = MBB;
1763     BestFreq = CandidateFreq;
1764   }
1765 
1766   return BestBlock;
1767 }
1768 
1769 /// Retrieve the first unplaced basic block in the entire function.
1770 ///
1771 /// This routine is called when we are unable to use the CFG to walk through
1772 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1773 /// We walk through the function's blocks in order, starting from the
1774 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1775 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt)1776 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1777     const BlockChain &PlacedChain,
1778     MachineFunction::iterator &PrevUnplacedBlockIt) {
1779 
1780   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1781        ++I) {
1782     if (BlockToChain[&*I] != &PlacedChain) {
1783       PrevUnplacedBlockIt = I;
1784       // Now select the head of the chain to which the unplaced block belongs
1785       // as the block to place. This will force the entire chain to be placed,
1786       // and satisfies the requirements of merging chains.
1787       return *BlockToChain[&*I]->begin();
1788     }
1789   }
1790   return nullptr;
1791 }
1792 
1793 /// Retrieve the first unplaced basic block among the blocks in BlockFilter.
1794 ///
1795 /// This is similar to getFirstUnplacedBlock for the entire function, but since
1796 /// the size of BlockFilter is typically far less than the number of blocks in
1797 /// the entire function, iterating through the BlockFilter is more efficient.
1798 /// When processing the entire funciton, using the version without BlockFilter
1799 /// has a complexity of #(loops in function) * #(blocks in function), while this
1800 /// version has a complexity of sum(#(loops in block) foreach block in function)
1801 /// which is always smaller. For long function mostly sequential in structure,
1802 /// the complexity is amortized to 1 * #(blocks in function).
getFirstUnplacedBlock(const BlockChain & PlacedChain,BlockFilterSet::iterator & PrevUnplacedBlockInFilterIt,const BlockFilterSet * BlockFilter)1803 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1804     const BlockChain &PlacedChain,
1805     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
1806     const BlockFilterSet *BlockFilter) {
1807   assert(BlockFilter);
1808   for (; PrevUnplacedBlockInFilterIt != BlockFilter->end();
1809        ++PrevUnplacedBlockInFilterIt) {
1810     BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt];
1811     if (C != &PlacedChain) {
1812       return *C->begin();
1813     }
1814   }
1815   return nullptr;
1816 }
1817 
fillWorkLists(const MachineBasicBlock * MBB,SmallPtrSetImpl<BlockChain * > & UpdatedPreds,const BlockFilterSet * BlockFilter=nullptr)1818 void MachineBlockPlacement::fillWorkLists(
1819     const MachineBasicBlock *MBB,
1820     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1821     const BlockFilterSet *BlockFilter = nullptr) {
1822   BlockChain &Chain = *BlockToChain[MBB];
1823   if (!UpdatedPreds.insert(&Chain).second)
1824     return;
1825 
1826   assert(
1827       Chain.UnscheduledPredecessors == 0 &&
1828       "Attempting to place block with unscheduled predecessors in worklist.");
1829   for (MachineBasicBlock *ChainBB : Chain) {
1830     assert(BlockToChain[ChainBB] == &Chain &&
1831            "Block in chain doesn't match BlockToChain map.");
1832     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1833       if (BlockFilter && !BlockFilter->count(Pred))
1834         continue;
1835       if (BlockToChain[Pred] == &Chain)
1836         continue;
1837       ++Chain.UnscheduledPredecessors;
1838     }
1839   }
1840 
1841   if (Chain.UnscheduledPredecessors != 0)
1842     return;
1843 
1844   MachineBasicBlock *BB = *Chain.begin();
1845   if (BB->isEHPad())
1846     EHPadWorkList.push_back(BB);
1847   else
1848     BlockWorkList.push_back(BB);
1849 }
1850 
buildChain(const MachineBasicBlock * HeadBB,BlockChain & Chain,BlockFilterSet * BlockFilter)1851 void MachineBlockPlacement::buildChain(
1852     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1853     BlockFilterSet *BlockFilter) {
1854   assert(HeadBB && "BB must not be null.\n");
1855   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1856   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1857   BlockFilterSet::iterator PrevUnplacedBlockInFilterIt;
1858   if (BlockFilter)
1859     PrevUnplacedBlockInFilterIt = BlockFilter->begin();
1860 
1861   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1862   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1863   MachineBasicBlock *BB = *std::prev(Chain.end());
1864   while (true) {
1865     assert(BB && "null block found at end of chain in loop.");
1866     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1867     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1868 
1869 
1870     // Look for the best viable successor if there is one to place immediately
1871     // after this block.
1872     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1873     MachineBasicBlock* BestSucc = Result.BB;
1874     bool ShouldTailDup = Result.ShouldTailDup;
1875     if (allowTailDupPlacement())
1876       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1877                                                                   Chain,
1878                                                                   BlockFilter));
1879 
1880     // If an immediate successor isn't available, look for the best viable
1881     // block among those we've identified as not violating the loop's CFG at
1882     // this point. This won't be a fallthrough, but it will increase locality.
1883     if (!BestSucc)
1884       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1885     if (!BestSucc)
1886       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1887 
1888     if (!BestSucc) {
1889       if (BlockFilter)
1890         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt,
1891                                          BlockFilter);
1892       else
1893         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt);
1894       if (!BestSucc)
1895         break;
1896 
1897       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1898                            "layout successor until the CFG reduces\n");
1899     }
1900 
1901     // Placement may have changed tail duplication opportunities.
1902     // Check for that now.
1903     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1904       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1905                                    BlockFilter, PrevUnplacedBlockIt,
1906                                    PrevUnplacedBlockInFilterIt);
1907       // If the chosen successor was duplicated into BB, don't bother laying
1908       // it out, just go round the loop again with BB as the chain end.
1909       if (!BB->isSuccessor(BestSucc))
1910         continue;
1911     }
1912 
1913     // Place this block, updating the datastructures to reflect its placement.
1914     BlockChain &SuccChain = *BlockToChain[BestSucc];
1915     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1916     // we selected a successor that didn't fit naturally into the CFG.
1917     SuccChain.UnscheduledPredecessors = 0;
1918     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1919                       << getBlockName(BestSucc) << "\n");
1920     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1921     Chain.merge(BestSucc, &SuccChain);
1922     BB = *std::prev(Chain.end());
1923   }
1924 
1925   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1926                     << getBlockName(*Chain.begin()) << "\n");
1927 }
1928 
1929 // If bottom of block BB has only one successor OldTop, in most cases it is
1930 // profitable to move it before OldTop, except the following case:
1931 //
1932 //     -->OldTop<-
1933 //     |    .    |
1934 //     |    .    |
1935 //     |    .    |
1936 //     ---Pred   |
1937 //          |    |
1938 //         BB-----
1939 //
1940 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1941 // layout the other successor below it, so it can't reduce taken branch.
1942 // In this case we keep its original layout.
1943 bool
canMoveBottomBlockToTop(const MachineBasicBlock * BottomBlock,const MachineBasicBlock * OldTop)1944 MachineBlockPlacement::canMoveBottomBlockToTop(
1945     const MachineBasicBlock *BottomBlock,
1946     const MachineBasicBlock *OldTop) {
1947   if (BottomBlock->pred_size() != 1)
1948     return true;
1949   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1950   if (Pred->succ_size() != 2)
1951     return true;
1952 
1953   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1954   if (OtherBB == BottomBlock)
1955     OtherBB = *Pred->succ_rbegin();
1956   if (OtherBB == OldTop)
1957     return false;
1958 
1959   return true;
1960 }
1961 
1962 // Find out the possible fall through frequence to the top of a loop.
1963 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)1964 MachineBlockPlacement::TopFallThroughFreq(
1965     const MachineBasicBlock *Top,
1966     const BlockFilterSet &LoopBlockSet) {
1967   BlockFrequency MaxFreq = BlockFrequency(0);
1968   for (MachineBasicBlock *Pred : Top->predecessors()) {
1969     BlockChain *PredChain = BlockToChain[Pred];
1970     if (!LoopBlockSet.count(Pred) &&
1971         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1972       // Found a Pred block can be placed before Top.
1973       // Check if Top is the best successor of Pred.
1974       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1975       bool TopOK = true;
1976       for (MachineBasicBlock *Succ : Pred->successors()) {
1977         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1978         BlockChain *SuccChain = BlockToChain[Succ];
1979         // Check if Succ can be placed after Pred.
1980         // Succ should not be in any chain, or it is the head of some chain.
1981         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1982             (!SuccChain || Succ == *SuccChain->begin())) {
1983           TopOK = false;
1984           break;
1985         }
1986       }
1987       if (TopOK) {
1988         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1989                                   MBPI->getEdgeProbability(Pred, Top);
1990         if (EdgeFreq > MaxFreq)
1991           MaxFreq = EdgeFreq;
1992       }
1993     }
1994   }
1995   return MaxFreq;
1996 }
1997 
1998 // Compute the fall through gains when move NewTop before OldTop.
1999 //
2000 // In following diagram, edges marked as "-" are reduced fallthrough, edges
2001 // marked as "+" are increased fallthrough, this function computes
2002 //
2003 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
2004 //
2005 //              |
2006 //              | -
2007 //              V
2008 //        --->OldTop
2009 //        |     .
2010 //        |     .
2011 //       +|     .    +
2012 //        |   Pred --->
2013 //        |     |-
2014 //        |     V
2015 //        --- NewTop <---
2016 //              |-
2017 //              V
2018 //
2019 BlockFrequency
FallThroughGains(const MachineBasicBlock * NewTop,const MachineBasicBlock * OldTop,const MachineBasicBlock * ExitBB,const BlockFilterSet & LoopBlockSet)2020 MachineBlockPlacement::FallThroughGains(
2021     const MachineBasicBlock *NewTop,
2022     const MachineBasicBlock *OldTop,
2023     const MachineBasicBlock *ExitBB,
2024     const BlockFilterSet &LoopBlockSet) {
2025   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
2026   BlockFrequency FallThrough2Exit = BlockFrequency(0);
2027   if (ExitBB)
2028     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
2029         MBPI->getEdgeProbability(NewTop, ExitBB);
2030   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
2031       MBPI->getEdgeProbability(NewTop, OldTop);
2032 
2033   // Find the best Pred of NewTop.
2034   MachineBasicBlock *BestPred = nullptr;
2035   BlockFrequency FallThroughFromPred = BlockFrequency(0);
2036   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2037     if (!LoopBlockSet.count(Pred))
2038       continue;
2039     BlockChain *PredChain = BlockToChain[Pred];
2040     if (!PredChain || Pred == *std::prev(PredChain->end())) {
2041       BlockFrequency EdgeFreq =
2042           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop);
2043       if (EdgeFreq > FallThroughFromPred) {
2044         FallThroughFromPred = EdgeFreq;
2045         BestPred = Pred;
2046       }
2047     }
2048   }
2049 
2050   // If NewTop is not placed after Pred, another successor can be placed
2051   // after Pred.
2052   BlockFrequency NewFreq = BlockFrequency(0);
2053   if (BestPred) {
2054     for (MachineBasicBlock *Succ : BestPred->successors()) {
2055       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2056         continue;
2057       if (ComputedEdges.contains(Succ))
2058         continue;
2059       BlockChain *SuccChain = BlockToChain[Succ];
2060       if ((SuccChain && (Succ != *SuccChain->begin())) ||
2061           (SuccChain == BlockToChain[BestPred]))
2062         continue;
2063       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2064                                 MBPI->getEdgeProbability(BestPred, Succ);
2065       if (EdgeFreq > NewFreq)
2066         NewFreq = EdgeFreq;
2067     }
2068     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2069                                   MBPI->getEdgeProbability(BestPred, NewTop);
2070     if (NewFreq > OrigEdgeFreq) {
2071       // If NewTop is not the best successor of Pred, then Pred doesn't
2072       // fallthrough to NewTop. So there is no FallThroughFromPred and
2073       // NewFreq.
2074       NewFreq = BlockFrequency(0);
2075       FallThroughFromPred = BlockFrequency(0);
2076     }
2077   }
2078 
2079   BlockFrequency Result = BlockFrequency(0);
2080   BlockFrequency Gains = BackEdgeFreq + NewFreq;
2081   BlockFrequency Lost =
2082       FallThrough2Top + FallThrough2Exit + FallThroughFromPred;
2083   if (Gains > Lost)
2084     Result = Gains - Lost;
2085   return Result;
2086 }
2087 
2088 /// Helper function of findBestLoopTop. Find the best loop top block
2089 /// from predecessors of old top.
2090 ///
2091 /// Look for a block which is strictly better than the old top for laying
2092 /// out before the old top of the loop. This looks for only two patterns:
2093 ///
2094 ///     1. a block has only one successor, the old loop top
2095 ///
2096 ///        Because such a block will always result in an unconditional jump,
2097 ///        rotating it in front of the old top is always profitable.
2098 ///
2099 ///     2. a block has two successors, one is old top, another is exit
2100 ///        and it has more than one predecessors
2101 ///
2102 ///        If it is below one of its predecessors P, only P can fall through to
2103 ///        it, all other predecessors need a jump to it, and another conditional
2104 ///        jump to loop header. If it is moved before loop header, all its
2105 ///        predecessors jump to it, then fall through to loop header. So all its
2106 ///        predecessors except P can reduce one taken branch.
2107 ///        At the same time, move it before old top increases the taken branch
2108 ///        to loop exit block, so the reduced taken branch will be compared with
2109 ///        the increased taken branch to the loop exit block.
2110 MachineBasicBlock *
findBestLoopTopHelper(MachineBasicBlock * OldTop,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2111 MachineBlockPlacement::findBestLoopTopHelper(
2112     MachineBasicBlock *OldTop,
2113     const MachineLoop &L,
2114     const BlockFilterSet &LoopBlockSet) {
2115   // Check that the header hasn't been fused with a preheader block due to
2116   // crazy branches. If it has, we need to start with the header at the top to
2117   // prevent pulling the preheader into the loop body.
2118   BlockChain &HeaderChain = *BlockToChain[OldTop];
2119   if (!LoopBlockSet.count(*HeaderChain.begin()))
2120     return OldTop;
2121   if (OldTop != *HeaderChain.begin())
2122     return OldTop;
2123 
2124   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2125                     << "\n");
2126 
2127   BlockFrequency BestGains = BlockFrequency(0);
2128   MachineBasicBlock *BestPred = nullptr;
2129   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2130     if (!LoopBlockSet.count(Pred))
2131       continue;
2132     if (Pred == L.getHeader())
2133       continue;
2134     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2135                       << Pred->succ_size() << " successors, "
2136                       << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n");
2137     if (Pred->succ_size() > 2)
2138       continue;
2139 
2140     MachineBasicBlock *OtherBB = nullptr;
2141     if (Pred->succ_size() == 2) {
2142       OtherBB = *Pred->succ_begin();
2143       if (OtherBB == OldTop)
2144         OtherBB = *Pred->succ_rbegin();
2145     }
2146 
2147     if (!canMoveBottomBlockToTop(Pred, OldTop))
2148       continue;
2149 
2150     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2151                                             LoopBlockSet);
2152     if ((Gains > BlockFrequency(0)) &&
2153         (Gains > BestGains ||
2154          ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2155       BestPred = Pred;
2156       BestGains = Gains;
2157     }
2158   }
2159 
2160   // If no direct predecessor is fine, just use the loop header.
2161   if (!BestPred) {
2162     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2163     return OldTop;
2164   }
2165 
2166   // Walk backwards through any straight line of predecessors.
2167   while (BestPred->pred_size() == 1 &&
2168          (*BestPred->pred_begin())->succ_size() == 1 &&
2169          *BestPred->pred_begin() != L.getHeader())
2170     BestPred = *BestPred->pred_begin();
2171 
2172   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2173   return BestPred;
2174 }
2175 
2176 /// Find the best loop top block for layout.
2177 ///
2178 /// This function iteratively calls findBestLoopTopHelper, until no new better
2179 /// BB can be found.
2180 MachineBasicBlock *
findBestLoopTop(const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2181 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2182                                        const BlockFilterSet &LoopBlockSet) {
2183   // Placing the latch block before the header may introduce an extra branch
2184   // that skips this block the first time the loop is executed, which we want
2185   // to avoid when optimising for size.
2186   // FIXME: in theory there is a case that does not introduce a new branch,
2187   // i.e. when the layout predecessor does not fallthrough to the loop header.
2188   // In practice this never happens though: there always seems to be a preheader
2189   // that can fallthrough and that is also placed before the header.
2190   bool OptForSize = F->getFunction().hasOptSize() ||
2191                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2192   if (OptForSize)
2193     return L.getHeader();
2194 
2195   MachineBasicBlock *OldTop = nullptr;
2196   MachineBasicBlock *NewTop = L.getHeader();
2197   while (NewTop != OldTop) {
2198     OldTop = NewTop;
2199     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2200     if (NewTop != OldTop)
2201       ComputedEdges[NewTop] = { OldTop, false };
2202   }
2203   return NewTop;
2204 }
2205 
2206 /// Find the best loop exiting block for layout.
2207 ///
2208 /// This routine implements the logic to analyze the loop looking for the best
2209 /// block to layout at the top of the loop. Typically this is done to maximize
2210 /// fallthrough opportunities.
2211 MachineBasicBlock *
findBestLoopExit(const MachineLoop & L,const BlockFilterSet & LoopBlockSet,BlockFrequency & ExitFreq)2212 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2213                                         const BlockFilterSet &LoopBlockSet,
2214                                         BlockFrequency &ExitFreq) {
2215   // We don't want to layout the loop linearly in all cases. If the loop header
2216   // is just a normal basic block in the loop, we want to look for what block
2217   // within the loop is the best one to layout at the top. However, if the loop
2218   // header has be pre-merged into a chain due to predecessors not having
2219   // analyzable branches, *and* the predecessor it is merged with is *not* part
2220   // of the loop, rotating the header into the middle of the loop will create
2221   // a non-contiguous range of blocks which is Very Bad. So start with the
2222   // header and only rotate if safe.
2223   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2224   if (!LoopBlockSet.count(*HeaderChain.begin()))
2225     return nullptr;
2226 
2227   BlockFrequency BestExitEdgeFreq;
2228   unsigned BestExitLoopDepth = 0;
2229   MachineBasicBlock *ExitingBB = nullptr;
2230   // If there are exits to outer loops, loop rotation can severely limit
2231   // fallthrough opportunities unless it selects such an exit. Keep a set of
2232   // blocks where rotating to exit with that block will reach an outer loop.
2233   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2234 
2235   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2236                     << getBlockName(L.getHeader()) << "\n");
2237   for (MachineBasicBlock *MBB : L.getBlocks()) {
2238     BlockChain &Chain = *BlockToChain[MBB];
2239     // Ensure that this block is at the end of a chain; otherwise it could be
2240     // mid-way through an inner loop or a successor of an unanalyzable branch.
2241     if (MBB != *std::prev(Chain.end()))
2242       continue;
2243 
2244     // Now walk the successors. We need to establish whether this has a viable
2245     // exiting successor and whether it has a viable non-exiting successor.
2246     // We store the old exiting state and restore it if a viable looping
2247     // successor isn't found.
2248     MachineBasicBlock *OldExitingBB = ExitingBB;
2249     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2250     bool HasLoopingSucc = false;
2251     for (MachineBasicBlock *Succ : MBB->successors()) {
2252       if (Succ->isEHPad())
2253         continue;
2254       if (Succ == MBB)
2255         continue;
2256       BlockChain &SuccChain = *BlockToChain[Succ];
2257       // Don't split chains, either this chain or the successor's chain.
2258       if (&Chain == &SuccChain) {
2259         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2260                           << getBlockName(Succ) << " (chain conflict)\n");
2261         continue;
2262       }
2263 
2264       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2265       if (LoopBlockSet.count(Succ)) {
2266         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2267                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2268         HasLoopingSucc = true;
2269         continue;
2270       }
2271 
2272       unsigned SuccLoopDepth = 0;
2273       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2274         SuccLoopDepth = ExitLoop->getLoopDepth();
2275         if (ExitLoop->contains(&L))
2276           BlocksExitingToOuterLoop.insert(MBB);
2277       }
2278 
2279       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2280       LLVM_DEBUG(
2281           dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2282                  << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("
2283                  << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n");
2284       // Note that we bias this toward an existing layout successor to retain
2285       // incoming order in the absence of better information. The exit must have
2286       // a frequency higher than the current exit before we consider breaking
2287       // the layout.
2288       BranchProbability Bias(100 - ExitBlockBias, 100);
2289       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2290           ExitEdgeFreq > BestExitEdgeFreq ||
2291           (MBB->isLayoutSuccessor(Succ) &&
2292            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2293         BestExitEdgeFreq = ExitEdgeFreq;
2294         ExitingBB = MBB;
2295       }
2296     }
2297 
2298     if (!HasLoopingSucc) {
2299       // Restore the old exiting state, no viable looping successor was found.
2300       ExitingBB = OldExitingBB;
2301       BestExitEdgeFreq = OldBestExitEdgeFreq;
2302     }
2303   }
2304   // Without a candidate exiting block or with only a single block in the
2305   // loop, just use the loop header to layout the loop.
2306   if (!ExitingBB) {
2307     LLVM_DEBUG(
2308         dbgs() << "    No other candidate exit blocks, using loop header\n");
2309     return nullptr;
2310   }
2311   if (L.getNumBlocks() == 1) {
2312     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2313     return nullptr;
2314   }
2315 
2316   // Also, if we have exit blocks which lead to outer loops but didn't select
2317   // one of them as the exiting block we are rotating toward, disable loop
2318   // rotation altogether.
2319   if (!BlocksExitingToOuterLoop.empty() &&
2320       !BlocksExitingToOuterLoop.count(ExitingBB))
2321     return nullptr;
2322 
2323   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2324                     << "\n");
2325   ExitFreq = BestExitEdgeFreq;
2326   return ExitingBB;
2327 }
2328 
2329 /// Check if there is a fallthrough to loop header Top.
2330 ///
2331 ///   1. Look for a Pred that can be layout before Top.
2332 ///   2. Check if Top is the most possible successor of Pred.
2333 bool
hasViableTopFallthrough(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)2334 MachineBlockPlacement::hasViableTopFallthrough(
2335     const MachineBasicBlock *Top,
2336     const BlockFilterSet &LoopBlockSet) {
2337   for (MachineBasicBlock *Pred : Top->predecessors()) {
2338     BlockChain *PredChain = BlockToChain[Pred];
2339     if (!LoopBlockSet.count(Pred) &&
2340         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2341       // Found a Pred block can be placed before Top.
2342       // Check if Top is the best successor of Pred.
2343       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2344       bool TopOK = true;
2345       for (MachineBasicBlock *Succ : Pred->successors()) {
2346         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2347         BlockChain *SuccChain = BlockToChain[Succ];
2348         // Check if Succ can be placed after Pred.
2349         // Succ should not be in any chain, or it is the head of some chain.
2350         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2351           TopOK = false;
2352           break;
2353         }
2354       }
2355       if (TopOK)
2356         return true;
2357     }
2358   }
2359   return false;
2360 }
2361 
2362 /// Attempt to rotate an exiting block to the bottom of the loop.
2363 ///
2364 /// Once we have built a chain, try to rotate it to line up the hot exit block
2365 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2366 /// branches. For example, if the loop has fallthrough into its header and out
2367 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,const MachineBasicBlock * ExitingBB,BlockFrequency ExitFreq,const BlockFilterSet & LoopBlockSet)2368 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2369                                        const MachineBasicBlock *ExitingBB,
2370                                        BlockFrequency ExitFreq,
2371                                        const BlockFilterSet &LoopBlockSet) {
2372   if (!ExitingBB)
2373     return;
2374 
2375   MachineBasicBlock *Top = *LoopChain.begin();
2376   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2377 
2378   // If ExitingBB is already the last one in a chain then nothing to do.
2379   if (Bottom == ExitingBB)
2380     return;
2381 
2382   // The entry block should always be the first BB in a function.
2383   if (Top->isEntryBlock())
2384     return;
2385 
2386   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2387 
2388   // If the header has viable fallthrough, check whether the current loop
2389   // bottom is a viable exiting block. If so, bail out as rotating will
2390   // introduce an unnecessary branch.
2391   if (ViableTopFallthrough) {
2392     for (MachineBasicBlock *Succ : Bottom->successors()) {
2393       BlockChain *SuccChain = BlockToChain[Succ];
2394       if (!LoopBlockSet.count(Succ) &&
2395           (!SuccChain || Succ == *SuccChain->begin()))
2396         return;
2397     }
2398 
2399     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2400     // frequency is larger than top fallthrough.
2401     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2402     if (FallThrough2Top >= ExitFreq)
2403       return;
2404   }
2405 
2406   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2407   if (ExitIt == LoopChain.end())
2408     return;
2409 
2410   // Rotating a loop exit to the bottom when there is a fallthrough to top
2411   // trades the entry fallthrough for an exit fallthrough.
2412   // If there is no bottom->top edge, but the chosen exit block does have
2413   // a fallthrough, we break that fallthrough for nothing in return.
2414 
2415   // Let's consider an example. We have a built chain of basic blocks
2416   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2417   // By doing a rotation we get
2418   // Bk+1, ..., Bn, B1, ..., Bk
2419   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2420   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2421   // It might be compensated by fallthrough Bn -> B1.
2422   // So we have a condition to avoid creation of extra branch by loop rotation.
2423   // All below must be true to avoid loop rotation:
2424   //   If there is a fallthrough to top (B1)
2425   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2426   //   There is no fallthrough from bottom (Bn) to top (B1).
2427   // Please note that there is no exit fallthrough from Bn because we checked it
2428   // above.
2429   if (ViableTopFallthrough) {
2430     assert(std::next(ExitIt) != LoopChain.end() &&
2431            "Exit should not be last BB");
2432     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2433     if (ExitingBB->isSuccessor(NextBlockInChain))
2434       if (!Bottom->isSuccessor(Top))
2435         return;
2436   }
2437 
2438   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2439                     << " at bottom\n");
2440   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2441 }
2442 
2443 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2444 ///
2445 /// With profile data, we can determine the cost in terms of missed fall through
2446 /// opportunities when rotating a loop chain and select the best rotation.
2447 /// Basically, there are three kinds of cost to consider for each rotation:
2448 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2449 ///    the loop to the loop header.
2450 ///    2. The possibly missed fall through edges (if they exist) from the loop
2451 ///    exits to BB out of the loop.
2452 ///    3. The missed fall through edge (if it exists) from the last BB to the
2453 ///    first BB in the loop chain.
2454 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2455 ///  We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2456 void MachineBlockPlacement::rotateLoopWithProfile(
2457     BlockChain &LoopChain, const MachineLoop &L,
2458     const BlockFilterSet &LoopBlockSet) {
2459   auto RotationPos = LoopChain.end();
2460   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2461 
2462   // The entry block should always be the first BB in a function.
2463   if (ChainHeaderBB->isEntryBlock())
2464     return;
2465 
2466   BlockFrequency SmallestRotationCost = BlockFrequency::max();
2467 
2468   // A utility lambda that scales up a block frequency by dividing it by a
2469   // branch probability which is the reciprocal of the scale.
2470   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2471                                 unsigned Scale) -> BlockFrequency {
2472     if (Scale == 0)
2473       return BlockFrequency(0);
2474     // Use operator / between BlockFrequency and BranchProbability to implement
2475     // saturating multiplication.
2476     return Freq / BranchProbability(1, Scale);
2477   };
2478 
2479   // Compute the cost of the missed fall-through edge to the loop header if the
2480   // chain head is not the loop header. As we only consider natural loops with
2481   // single header, this computation can be done only once.
2482   BlockFrequency HeaderFallThroughCost(0);
2483   for (auto *Pred : ChainHeaderBB->predecessors()) {
2484     BlockChain *PredChain = BlockToChain[Pred];
2485     if (!LoopBlockSet.count(Pred) &&
2486         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2487       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2488           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2489       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2490       // If the predecessor has only an unconditional jump to the header, we
2491       // need to consider the cost of this jump.
2492       if (Pred->succ_size() == 1)
2493         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2494       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2495     }
2496   }
2497 
2498   // Here we collect all exit blocks in the loop, and for each exit we find out
2499   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2500   // as the sum of frequencies of exit edges we collect here, excluding the exit
2501   // edge from the tail of the loop chain.
2502   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2503   for (auto *BB : LoopChain) {
2504     auto LargestExitEdgeProb = BranchProbability::getZero();
2505     for (auto *Succ : BB->successors()) {
2506       BlockChain *SuccChain = BlockToChain[Succ];
2507       if (!LoopBlockSet.count(Succ) &&
2508           (!SuccChain || Succ == *SuccChain->begin())) {
2509         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2510         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2511       }
2512     }
2513     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2514       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2515       ExitsWithFreq.emplace_back(BB, ExitFreq);
2516     }
2517   }
2518 
2519   // In this loop we iterate every block in the loop chain and calculate the
2520   // cost assuming the block is the head of the loop chain. When the loop ends,
2521   // we should have found the best candidate as the loop chain's head.
2522   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2523             EndIter = LoopChain.end();
2524        Iter != EndIter; Iter++, TailIter++) {
2525     // TailIter is used to track the tail of the loop chain if the block we are
2526     // checking (pointed by Iter) is the head of the chain.
2527     if (TailIter == LoopChain.end())
2528       TailIter = LoopChain.begin();
2529 
2530     auto TailBB = *TailIter;
2531 
2532     // Calculate the cost by putting this BB to the top.
2533     BlockFrequency Cost = BlockFrequency(0);
2534 
2535     // If the current BB is the loop header, we need to take into account the
2536     // cost of the missed fall through edge from outside of the loop to the
2537     // header.
2538     if (Iter != LoopChain.begin())
2539       Cost += HeaderFallThroughCost;
2540 
2541     // Collect the loop exit cost by summing up frequencies of all exit edges
2542     // except the one from the chain tail.
2543     for (auto &ExitWithFreq : ExitsWithFreq)
2544       if (TailBB != ExitWithFreq.first)
2545         Cost += ExitWithFreq.second;
2546 
2547     // The cost of breaking the once fall-through edge from the tail to the top
2548     // of the loop chain. Here we need to consider three cases:
2549     // 1. If the tail node has only one successor, then we will get an
2550     //    additional jmp instruction. So the cost here is (MisfetchCost +
2551     //    JumpInstCost) * tail node frequency.
2552     // 2. If the tail node has two successors, then we may still get an
2553     //    additional jmp instruction if the layout successor after the loop
2554     //    chain is not its CFG successor. Note that the more frequently executed
2555     //    jmp instruction will be put ahead of the other one. Assume the
2556     //    frequency of those two branches are x and y, where x is the frequency
2557     //    of the edge to the chain head, then the cost will be
2558     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2559     // 3. If the tail node has more than two successors (this rarely happens),
2560     //    we won't consider any additional cost.
2561     if (TailBB->isSuccessor(*Iter)) {
2562       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2563       if (TailBB->succ_size() == 1)
2564         Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost);
2565       else if (TailBB->succ_size() == 2) {
2566         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2567         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2568         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2569                                   ? TailBBFreq * TailToHeadProb.getCompl()
2570                                   : TailToHeadFreq;
2571         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2572                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2573       }
2574     }
2575 
2576     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2577                       << getBlockName(*Iter) << " to the top: "
2578                       << printBlockFreq(MBFI->getMBFI(), Cost) << "\n");
2579 
2580     if (Cost < SmallestRotationCost) {
2581       SmallestRotationCost = Cost;
2582       RotationPos = Iter;
2583     }
2584   }
2585 
2586   if (RotationPos != LoopChain.end()) {
2587     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2588                       << " to the top\n");
2589     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2590   }
2591 }
2592 
2593 /// Collect blocks in the given loop that are to be placed.
2594 ///
2595 /// When profile data is available, exclude cold blocks from the returned set;
2596 /// otherwise, collect all blocks in the loop.
2597 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(const MachineLoop & L)2598 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2599   BlockFilterSet LoopBlockSet;
2600 
2601   // Filter cold blocks off from LoopBlockSet when profile data is available.
2602   // Collect the sum of frequencies of incoming edges to the loop header from
2603   // outside. If we treat the loop as a super block, this is the frequency of
2604   // the loop. Then for each block in the loop, we calculate the ratio between
2605   // its frequency and the frequency of the loop block. When it is too small,
2606   // don't add it to the loop chain. If there are outer loops, then this block
2607   // will be merged into the first outer loop chain for which this block is not
2608   // cold anymore. This needs precise profile data and we only do this when
2609   // profile data is available.
2610   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2611     BlockFrequency LoopFreq(0);
2612     for (auto *LoopPred : L.getHeader()->predecessors())
2613       if (!L.contains(LoopPred))
2614         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2615                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2616 
2617     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2618       if (LoopBlockSet.count(LoopBB))
2619         continue;
2620       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2621       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2622         continue;
2623       BlockChain *Chain = BlockToChain[LoopBB];
2624       for (MachineBasicBlock *ChainBB : *Chain)
2625         LoopBlockSet.insert(ChainBB);
2626     }
2627   } else
2628     LoopBlockSet.insert(L.block_begin(), L.block_end());
2629 
2630   return LoopBlockSet;
2631 }
2632 
2633 /// Forms basic block chains from the natural loop structures.
2634 ///
2635 /// These chains are designed to preserve the existing *structure* of the code
2636 /// as much as possible. We can then stitch the chains together in a way which
2637 /// both preserves the topological structure and minimizes taken conditional
2638 /// branches.
buildLoopChains(const MachineLoop & L)2639 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2640   // First recurse through any nested loops, building chains for those inner
2641   // loops.
2642   for (const MachineLoop *InnerLoop : L)
2643     buildLoopChains(*InnerLoop);
2644 
2645   assert(BlockWorkList.empty() &&
2646          "BlockWorkList not empty when starting to build loop chains.");
2647   assert(EHPadWorkList.empty() &&
2648          "EHPadWorkList not empty when starting to build loop chains.");
2649   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2650 
2651   // Check if we have profile data for this function. If yes, we will rotate
2652   // this loop by modeling costs more precisely which requires the profile data
2653   // for better layout.
2654   bool RotateLoopWithProfile =
2655       ForcePreciseRotationCost ||
2656       (PreciseRotationCost && F->getFunction().hasProfileData());
2657 
2658   // First check to see if there is an obviously preferable top block for the
2659   // loop. This will default to the header, but may end up as one of the
2660   // predecessors to the header if there is one which will result in strictly
2661   // fewer branches in the loop body.
2662   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2663 
2664   // If we selected just the header for the loop top, look for a potentially
2665   // profitable exit block in the event that rotating the loop can eliminate
2666   // branches by placing an exit edge at the bottom.
2667   //
2668   // Loops are processed innermost to uttermost, make sure we clear
2669   // PreferredLoopExit before processing a new loop.
2670   PreferredLoopExit = nullptr;
2671   BlockFrequency ExitFreq;
2672   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2673     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2674 
2675   BlockChain &LoopChain = *BlockToChain[LoopTop];
2676 
2677   // FIXME: This is a really lame way of walking the chains in the loop: we
2678   // walk the blocks, and use a set to prevent visiting a particular chain
2679   // twice.
2680   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2681   assert(LoopChain.UnscheduledPredecessors == 0 &&
2682          "LoopChain should not have unscheduled predecessors.");
2683   UpdatedPreds.insert(&LoopChain);
2684 
2685   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2686     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2687 
2688   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2689 
2690   if (RotateLoopWithProfile)
2691     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2692   else
2693     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2694 
2695   LLVM_DEBUG({
2696     // Crash at the end so we get all of the debugging output first.
2697     bool BadLoop = false;
2698     if (LoopChain.UnscheduledPredecessors) {
2699       BadLoop = true;
2700       dbgs() << "Loop chain contains a block without its preds placed!\n"
2701              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2702              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2703     }
2704     for (MachineBasicBlock *ChainBB : LoopChain) {
2705       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2706       if (!LoopBlockSet.remove(ChainBB)) {
2707         // We don't mark the loop as bad here because there are real situations
2708         // where this can occur. For example, with an unanalyzable fallthrough
2709         // from a loop block to a non-loop block or vice versa.
2710         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2711                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2712                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2713                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2714       }
2715     }
2716 
2717     if (!LoopBlockSet.empty()) {
2718       BadLoop = true;
2719       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2720         dbgs() << "Loop contains blocks never placed into a chain!\n"
2721                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2722                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2723                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2724     }
2725     assert(!BadLoop && "Detected problems with the placement of this loop.");
2726   });
2727 
2728   BlockWorkList.clear();
2729   EHPadWorkList.clear();
2730 }
2731 
buildCFGChains()2732 void MachineBlockPlacement::buildCFGChains() {
2733   // Ensure that every BB in the function has an associated chain to simplify
2734   // the assumptions of the remaining algorithm.
2735   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2736   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2737        ++FI) {
2738     MachineBasicBlock *BB = &*FI;
2739     BlockChain *Chain =
2740         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2741     // Also, merge any blocks which we cannot reason about and must preserve
2742     // the exact fallthrough behavior for.
2743     while (true) {
2744       Cond.clear();
2745       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2746       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2747         break;
2748 
2749       MachineFunction::iterator NextFI = std::next(FI);
2750       MachineBasicBlock *NextBB = &*NextFI;
2751       // Ensure that the layout successor is a viable block, as we know that
2752       // fallthrough is a possibility.
2753       assert(NextFI != FE && "Can't fallthrough past the last block.");
2754       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2755                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2756                         << "\n");
2757       Chain->merge(NextBB, nullptr);
2758 #ifndef NDEBUG
2759       BlocksWithUnanalyzableExits.insert(&*BB);
2760 #endif
2761       FI = NextFI;
2762       BB = NextBB;
2763     }
2764   }
2765 
2766   // Build any loop-based chains.
2767   PreferredLoopExit = nullptr;
2768   for (MachineLoop *L : *MLI)
2769     buildLoopChains(*L);
2770 
2771   assert(BlockWorkList.empty() &&
2772          "BlockWorkList should be empty before building final chain.");
2773   assert(EHPadWorkList.empty() &&
2774          "EHPadWorkList should be empty before building final chain.");
2775 
2776   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2777   for (MachineBasicBlock &MBB : *F)
2778     fillWorkLists(&MBB, UpdatedPreds);
2779 
2780   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2781   buildChain(&F->front(), FunctionChain);
2782 
2783 #ifndef NDEBUG
2784   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2785 #endif
2786   LLVM_DEBUG({
2787     // Crash at the end so we get all of the debugging output first.
2788     bool BadFunc = false;
2789     FunctionBlockSetType FunctionBlockSet;
2790     for (MachineBasicBlock &MBB : *F)
2791       FunctionBlockSet.insert(&MBB);
2792 
2793     for (MachineBasicBlock *ChainBB : FunctionChain)
2794       if (!FunctionBlockSet.erase(ChainBB)) {
2795         BadFunc = true;
2796         dbgs() << "Function chain contains a block not in the function!\n"
2797                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2798       }
2799 
2800     if (!FunctionBlockSet.empty()) {
2801       BadFunc = true;
2802       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2803         dbgs() << "Function contains blocks never placed into a chain!\n"
2804                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2805     }
2806     assert(!BadFunc && "Detected problems with the block placement.");
2807   });
2808 
2809   // Remember original layout ordering, so we can update terminators after
2810   // reordering to point to the original layout successor.
2811   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2812       F->getNumBlockIDs());
2813   {
2814     MachineBasicBlock *LastMBB = nullptr;
2815     for (auto &MBB : *F) {
2816       if (LastMBB != nullptr)
2817         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2818       LastMBB = &MBB;
2819     }
2820     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2821   }
2822 
2823   // Splice the blocks into place.
2824   MachineFunction::iterator InsertPos = F->begin();
2825   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2826   for (MachineBasicBlock *ChainBB : FunctionChain) {
2827     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2828                                                             : "          ... ")
2829                       << getBlockName(ChainBB) << "\n");
2830     if (InsertPos != MachineFunction::iterator(ChainBB))
2831       F->splice(InsertPos, ChainBB);
2832     else
2833       ++InsertPos;
2834 
2835     // Update the terminator of the previous block.
2836     if (ChainBB == *FunctionChain.begin())
2837       continue;
2838     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2839 
2840     // FIXME: It would be awesome of updateTerminator would just return rather
2841     // than assert when the branch cannot be analyzed in order to remove this
2842     // boiler plate.
2843     Cond.clear();
2844     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2845 
2846 #ifndef NDEBUG
2847     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2848       // Given the exact block placement we chose, we may actually not _need_ to
2849       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2850       // do that at this point is a bug.
2851       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2852               !PrevBB->canFallThrough()) &&
2853              "Unexpected block with un-analyzable fallthrough!");
2854       Cond.clear();
2855       TBB = FBB = nullptr;
2856     }
2857 #endif
2858 
2859     // The "PrevBB" is not yet updated to reflect current code layout, so,
2860     //   o. it may fall-through to a block without explicit "goto" instruction
2861     //      before layout, and no longer fall-through it after layout; or
2862     //   o. just opposite.
2863     //
2864     // analyzeBranch() may return erroneous value for FBB when these two
2865     // situations take place. For the first scenario FBB is mistakenly set NULL;
2866     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2867     // mistakenly pointing to "*BI".
2868     // Thus, if the future change needs to use FBB before the layout is set, it
2869     // has to correct FBB first by using the code similar to the following:
2870     //
2871     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2872     //   PrevBB->updateTerminator();
2873     //   Cond.clear();
2874     //   TBB = FBB = nullptr;
2875     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2876     //     // FIXME: This should never take place.
2877     //     TBB = FBB = nullptr;
2878     //   }
2879     // }
2880     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2881       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2882     }
2883   }
2884 
2885   // Fixup the last block.
2886   Cond.clear();
2887   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2888   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2889     MachineBasicBlock *PrevBB = &F->back();
2890     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2891   }
2892 
2893   BlockWorkList.clear();
2894   EHPadWorkList.clear();
2895 }
2896 
optimizeBranches()2897 void MachineBlockPlacement::optimizeBranches() {
2898   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2899   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2900 
2901   // Now that all the basic blocks in the chain have the proper layout,
2902   // make a final call to analyzeBranch with AllowModify set.
2903   // Indeed, the target may be able to optimize the branches in a way we
2904   // cannot because all branches may not be analyzable.
2905   // E.g., the target may be able to remove an unconditional branch to
2906   // a fallthrough when it occurs after predicated terminators.
2907   for (MachineBasicBlock *ChainBB : FunctionChain) {
2908     Cond.clear();
2909     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2910     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2911       // If PrevBB has a two-way branch, try to re-order the branches
2912       // such that we branch to the successor with higher probability first.
2913       if (TBB && !Cond.empty() && FBB &&
2914           MBPI->getEdgeProbability(ChainBB, FBB) >
2915               MBPI->getEdgeProbability(ChainBB, TBB) &&
2916           !TII->reverseBranchCondition(Cond)) {
2917         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2918                           << getBlockName(ChainBB) << "\n");
2919         LLVM_DEBUG(dbgs() << "    Edge probability: "
2920                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2921                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2922         DebugLoc dl; // FIXME: this is nowhere
2923         TII->removeBranch(*ChainBB);
2924         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2925       }
2926     }
2927   }
2928 }
2929 
alignBlocks()2930 void MachineBlockPlacement::alignBlocks() {
2931   // Walk through the backedges of the function now that we have fully laid out
2932   // the basic blocks and align the destination of each backedge. We don't rely
2933   // exclusively on the loop info here so that we can align backedges in
2934   // unnatural CFGs and backedges that were introduced purely because of the
2935   // loop rotations done during this layout pass.
2936   if (F->getFunction().hasMinSize() ||
2937       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2938     return;
2939   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2940   if (FunctionChain.begin() == FunctionChain.end())
2941     return; // Empty chain.
2942 
2943   const BranchProbability ColdProb(1, 5); // 20%
2944   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2945   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2946   for (MachineBasicBlock *ChainBB : FunctionChain) {
2947     if (ChainBB == *FunctionChain.begin())
2948       continue;
2949 
2950     // Don't align non-looping basic blocks. These are unlikely to execute
2951     // enough times to matter in practice. Note that we'll still handle
2952     // unnatural CFGs inside of a natural outer loop (the common case) and
2953     // rotated loops.
2954     MachineLoop *L = MLI->getLoopFor(ChainBB);
2955     if (!L)
2956       continue;
2957 
2958     const Align TLIAlign = TLI->getPrefLoopAlignment(L);
2959     unsigned MDAlign = 1;
2960     MDNode *LoopID = L->getLoopID();
2961     if (LoopID) {
2962       for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
2963         MDNode *MD = dyn_cast<MDNode>(MDO);
2964         if (MD == nullptr)
2965           continue;
2966         MDString *S = dyn_cast<MDString>(MD->getOperand(0));
2967         if (S == nullptr)
2968           continue;
2969         if (S->getString() == "llvm.loop.align") {
2970           assert(MD->getNumOperands() == 2 &&
2971                  "per-loop align metadata should have two operands.");
2972           MDAlign =
2973               mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
2974           assert(MDAlign >= 1 && "per-loop align value must be positive.");
2975         }
2976       }
2977     }
2978 
2979     // Use max of the TLIAlign and MDAlign
2980     const Align LoopAlign = std::max(TLIAlign, Align(MDAlign));
2981     if (LoopAlign == 1)
2982       continue; // Don't care about loop alignment.
2983 
2984     // If the block is cold relative to the function entry don't waste space
2985     // aligning it.
2986     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2987     if (Freq < WeightedEntryFreq)
2988       continue;
2989 
2990     // If the block is cold relative to its loop header, don't align it
2991     // regardless of what edges into the block exist.
2992     MachineBasicBlock *LoopHeader = L->getHeader();
2993     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2994     if (Freq < (LoopHeaderFreq * ColdProb))
2995       continue;
2996 
2997     // If the global profiles indicates so, don't align it.
2998     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2999         !TLI->alignLoopsWithOptSize())
3000       continue;
3001 
3002     // Check for the existence of a non-layout predecessor which would benefit
3003     // from aligning this block.
3004     MachineBasicBlock *LayoutPred =
3005         &*std::prev(MachineFunction::iterator(ChainBB));
3006 
3007     auto DetermineMaxAlignmentPadding = [&]() {
3008       // Set the maximum bytes allowed to be emitted for alignment.
3009       unsigned MaxBytes;
3010       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
3011         MaxBytes = MaxBytesForAlignmentOverride;
3012       else
3013         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
3014       ChainBB->setMaxBytesForAlignment(MaxBytes);
3015     };
3016 
3017     // Force alignment if all the predecessors are jumps. We already checked
3018     // that the block isn't cold above.
3019     if (!LayoutPred->isSuccessor(ChainBB)) {
3020       ChainBB->setAlignment(LoopAlign);
3021       DetermineMaxAlignmentPadding();
3022       continue;
3023     }
3024 
3025     // Align this block if the layout predecessor's edge into this block is
3026     // cold relative to the block. When this is true, other predecessors make up
3027     // all of the hot entries into the block and thus alignment is likely to be
3028     // important.
3029     BranchProbability LayoutProb =
3030         MBPI->getEdgeProbability(LayoutPred, ChainBB);
3031     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
3032     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
3033       ChainBB->setAlignment(LoopAlign);
3034       DetermineMaxAlignmentPadding();
3035     }
3036   }
3037 }
3038 
3039 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
3040 /// it was duplicated into its chain predecessor and removed.
3041 /// \p BB    - Basic block that may be duplicated.
3042 ///
3043 /// \p LPred - Chosen layout predecessor of \p BB.
3044 ///            Updated to be the chain end if LPred is removed.
3045 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3046 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3047 ///                  Used to identify which blocks to update predecessor
3048 ///                  counts.
3049 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3050 ///                          chosen in the given order due to unnatural CFG
3051 ///                          only needed if \p BB is removed and
3052 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3053 /// @return true if \p BB was removed.
repeatedlyTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * & LPred,const MachineBasicBlock * LoopHeaderBB,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt,BlockFilterSet::iterator & PrevUnplacedBlockInFilterIt)3054 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
3055     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
3056     const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
3057     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3058     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) {
3059   bool Removed, DuplicatedToLPred;
3060   bool DuplicatedToOriginalLPred;
3061   Removed = maybeTailDuplicateBlock(
3062       BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3063       PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3064   if (!Removed)
3065     return false;
3066   DuplicatedToOriginalLPred = DuplicatedToLPred;
3067   // Iteratively try to duplicate again. It can happen that a block that is
3068   // duplicated into is still small enough to be duplicated again.
3069   // No need to call markBlockSuccessors in this case, as the blocks being
3070   // duplicated from here on are already scheduled.
3071   while (DuplicatedToLPred && Removed) {
3072     MachineBasicBlock *DupBB, *DupPred;
3073     // The removal callback causes Chain.end() to be updated when a block is
3074     // removed. On the first pass through the loop, the chain end should be the
3075     // same as it was on function entry. On subsequent passes, because we are
3076     // duplicating the block at the end of the chain, if it is removed the
3077     // chain will have shrunk by one block.
3078     BlockChain::iterator ChainEnd = Chain.end();
3079     DupBB = *(--ChainEnd);
3080     // Now try to duplicate again.
3081     if (ChainEnd == Chain.begin())
3082       break;
3083     DupPred = *std::prev(ChainEnd);
3084     Removed = maybeTailDuplicateBlock(
3085         DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3086         PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3087   }
3088   // If BB was duplicated into LPred, it is now scheduled. But because it was
3089   // removed, markChainSuccessors won't be called for its chain. Instead we
3090   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3091   // at the end because repeating the tail duplication can increase the number
3092   // of unscheduled predecessors.
3093   LPred = *std::prev(Chain.end());
3094   if (DuplicatedToOriginalLPred)
3095     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3096   return true;
3097 }
3098 
3099 /// Tail duplicate \p BB into (some) predecessors if profitable.
3100 /// \p BB    - Basic block that may be duplicated
3101 /// \p LPred - Chosen layout predecessor of \p BB
3102 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3103 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3104 ///                  Used to identify which blocks to update predecessor
3105 ///                  counts.
3106 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3107 ///                          chosen in the given order due to unnatural CFG
3108 ///                          only needed if \p BB is removed and
3109 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3110 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3111 /// \return  - True if the block was duplicated into all preds and removed.
maybeTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * LPred,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt,BlockFilterSet::iterator & PrevUnplacedBlockInFilterIt,bool & DuplicatedToLPred)3112 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3113     MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain,
3114     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3115     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
3116     bool &DuplicatedToLPred) {
3117   DuplicatedToLPred = false;
3118   if (!shouldTailDuplicate(BB))
3119     return false;
3120 
3121   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3122                     << "\n");
3123 
3124   // This has to be a callback because none of it can be done after
3125   // BB is deleted.
3126   bool Removed = false;
3127   auto RemovalCallback =
3128       [&](MachineBasicBlock *RemBB) {
3129         // Signal to outer function
3130         Removed = true;
3131 
3132         // Conservative default.
3133         bool InWorkList = true;
3134         // Remove from the Chain and Chain Map
3135         if (BlockToChain.count(RemBB)) {
3136           BlockChain *Chain = BlockToChain[RemBB];
3137           InWorkList = Chain->UnscheduledPredecessors == 0;
3138           Chain->remove(RemBB);
3139           BlockToChain.erase(RemBB);
3140         }
3141 
3142         // Handle the unplaced block iterator
3143         if (&(*PrevUnplacedBlockIt) == RemBB) {
3144           PrevUnplacedBlockIt++;
3145         }
3146 
3147         // Handle the Work Lists
3148         if (InWorkList) {
3149           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3150           if (RemBB->isEHPad())
3151             RemoveList = EHPadWorkList;
3152           llvm::erase(RemoveList, RemBB);
3153         }
3154 
3155         // Handle the filter set
3156         if (BlockFilter) {
3157           auto It = llvm::find(*BlockFilter, RemBB);
3158           // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt
3159           // pointing to the same element as before.
3160           if (It != BlockFilter->end()) {
3161             if (It < PrevUnplacedBlockInFilterIt) {
3162               const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt;
3163               // BlockFilter is a SmallVector so all elements after RemBB are
3164               // shifted to the front by 1 after its deletion.
3165               auto Distance = PrevUnplacedBlockInFilterIt - It - 1;
3166               PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance;
3167               assert(*PrevUnplacedBlockInFilterIt == PrevBB);
3168               (void)PrevBB;
3169             } else if (It == PrevUnplacedBlockInFilterIt)
3170               // The block pointed by PrevUnplacedBlockInFilterIt is erased, we
3171               // have to set it to the next element.
3172               PrevUnplacedBlockInFilterIt = BlockFilter->erase(It);
3173             else
3174               BlockFilter->erase(It);
3175           }
3176         }
3177 
3178         // Remove the block from loop info.
3179         MLI->removeBlock(RemBB);
3180         if (RemBB == PreferredLoopExit)
3181           PreferredLoopExit = nullptr;
3182 
3183         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3184                           << getBlockName(RemBB) << "\n");
3185       };
3186   auto RemovalCallbackRef =
3187       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3188 
3189   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3190   bool IsSimple = TailDup.isSimpleBB(BB);
3191   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3192   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3193   if (F->getFunction().hasProfileData()) {
3194     // We can do partial duplication with precise profile information.
3195     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3196     if (CandidatePreds.size() == 0)
3197       return false;
3198     if (CandidatePreds.size() < BB->pred_size())
3199       CandidatePtr = &CandidatePreds;
3200   }
3201   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3202                                  &RemovalCallbackRef, CandidatePtr);
3203 
3204   // Update UnscheduledPredecessors to reflect tail-duplication.
3205   DuplicatedToLPred = false;
3206   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3207     // We're only looking for unscheduled predecessors that match the filter.
3208     BlockChain* PredChain = BlockToChain[Pred];
3209     if (Pred == LPred)
3210       DuplicatedToLPred = true;
3211     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3212         || PredChain == &Chain)
3213       continue;
3214     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3215       if (BlockFilter && !BlockFilter->count(NewSucc))
3216         continue;
3217       BlockChain *NewChain = BlockToChain[NewSucc];
3218       if (NewChain != &Chain && NewChain != PredChain)
3219         NewChain->UnscheduledPredecessors++;
3220     }
3221   }
3222   return Removed;
3223 }
3224 
3225 // Count the number of actual machine instructions.
countMBBInstruction(MachineBasicBlock * MBB)3226 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3227   uint64_t InstrCount = 0;
3228   for (MachineInstr &MI : *MBB) {
3229     if (!MI.isPHI() && !MI.isMetaInstruction())
3230       InstrCount += 1;
3231   }
3232   return InstrCount;
3233 }
3234 
3235 // The size cost of duplication is the instruction size of the duplicated block.
3236 // So we should scale the threshold accordingly. But the instruction size is not
3237 // available on all targets, so we use the number of instructions instead.
scaleThreshold(MachineBasicBlock * BB)3238 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3239   return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB));
3240 }
3241 
3242 // Returns true if BB is Pred's best successor.
isBestSuccessor(MachineBasicBlock * BB,MachineBasicBlock * Pred,BlockFilterSet * BlockFilter)3243 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3244                                             MachineBasicBlock *Pred,
3245                                             BlockFilterSet *BlockFilter) {
3246   if (BB == Pred)
3247     return false;
3248   if (BlockFilter && !BlockFilter->count(Pred))
3249     return false;
3250   BlockChain *PredChain = BlockToChain[Pred];
3251   if (PredChain && (Pred != *std::prev(PredChain->end())))
3252     return false;
3253 
3254   // Find the successor with largest probability excluding BB.
3255   BranchProbability BestProb = BranchProbability::getZero();
3256   for (MachineBasicBlock *Succ : Pred->successors())
3257     if (Succ != BB) {
3258       if (BlockFilter && !BlockFilter->count(Succ))
3259         continue;
3260       BlockChain *SuccChain = BlockToChain[Succ];
3261       if (SuccChain && (Succ != *SuccChain->begin()))
3262         continue;
3263       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3264       if (SuccProb > BestProb)
3265         BestProb = SuccProb;
3266     }
3267 
3268   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3269   if (BBProb <= BestProb)
3270     return false;
3271 
3272   // Compute the number of reduced taken branches if Pred falls through to BB
3273   // instead of another successor. Then compare it with threshold.
3274   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3275   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3276   return Gain > scaleThreshold(BB);
3277 }
3278 
3279 // Find out the predecessors of BB and BB can be beneficially duplicated into
3280 // them.
findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock * > & Candidates,MachineBasicBlock * BB,BlockFilterSet * BlockFilter)3281 void MachineBlockPlacement::findDuplicateCandidates(
3282     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3283     MachineBasicBlock *BB,
3284     BlockFilterSet *BlockFilter) {
3285   MachineBasicBlock *Fallthrough = nullptr;
3286   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3287   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3288   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3289   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3290 
3291   // Sort for highest frequency.
3292   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3293     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3294   };
3295   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3296     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3297   };
3298   llvm::stable_sort(Succs, CmpSucc);
3299   llvm::stable_sort(Preds, CmpPred);
3300 
3301   auto SuccIt = Succs.begin();
3302   if (SuccIt != Succs.end()) {
3303     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3304   }
3305 
3306   // For each predecessors of BB, compute the benefit of duplicating BB,
3307   // if it is larger than the threshold, add it into Candidates.
3308   //
3309   // If we have following control flow.
3310   //
3311   //     PB1 PB2 PB3 PB4
3312   //      \   |  /    /\
3313   //       \  | /    /  \
3314   //        \ |/    /    \
3315   //         BB----/     OB
3316   //         /\
3317   //        /  \
3318   //      SB1 SB2
3319   //
3320   // And it can be partially duplicated as
3321   //
3322   //   PB2+BB
3323   //      |  PB1 PB3 PB4
3324   //      |   |  /    /\
3325   //      |   | /    /  \
3326   //      |   |/    /    \
3327   //      |  BB----/     OB
3328   //      |\ /|
3329   //      | X |
3330   //      |/ \|
3331   //     SB2 SB1
3332   //
3333   // The benefit of duplicating into a predecessor is defined as
3334   //         Orig_taken_branch - Duplicated_taken_branch
3335   //
3336   // The Orig_taken_branch is computed with the assumption that predecessor
3337   // jumps to BB and the most possible successor is laid out after BB.
3338   //
3339   // The Duplicated_taken_branch is computed with the assumption that BB is
3340   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3341   // SB2 for PB2 in our case). If there is no available successor, the combined
3342   // block jumps to all BB's successor, like PB3 in this example.
3343   //
3344   // If a predecessor has multiple successors, so BB can't be duplicated into
3345   // it. But it can beneficially fall through to BB, and duplicate BB into other
3346   // predecessors.
3347   for (MachineBasicBlock *Pred : Preds) {
3348     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3349 
3350     if (!TailDup.canTailDuplicate(BB, Pred)) {
3351       // BB can't be duplicated into Pred, but it is possible to be layout
3352       // below Pred.
3353       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3354         Fallthrough = Pred;
3355         if (SuccIt != Succs.end())
3356           SuccIt++;
3357       }
3358       continue;
3359     }
3360 
3361     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3362     BlockFrequency DupCost;
3363     if (SuccIt == Succs.end()) {
3364       // Jump to all successors;
3365       if (Succs.size() > 0)
3366         DupCost += PredFreq;
3367     } else {
3368       // Fallthrough to *SuccIt, jump to all other successors;
3369       DupCost += PredFreq;
3370       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3371     }
3372 
3373     assert(OrigCost >= DupCost);
3374     OrigCost -= DupCost;
3375     if (OrigCost > BBDupThreshold) {
3376       Candidates.push_back(Pred);
3377       if (SuccIt != Succs.end())
3378         SuccIt++;
3379     }
3380   }
3381 
3382   // No predecessors can optimally fallthrough to BB.
3383   // So we can change one duplication into fallthrough.
3384   if (!Fallthrough) {
3385     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3386       Candidates[0] = Candidates.back();
3387       Candidates.pop_back();
3388     }
3389   }
3390 }
3391 
initDupThreshold()3392 void MachineBlockPlacement::initDupThreshold() {
3393   DupThreshold = BlockFrequency(0);
3394   if (!F->getFunction().hasProfileData())
3395     return;
3396 
3397   // We prefer to use prifile count.
3398   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3399   if (HotThreshold != UINT64_MAX) {
3400     UseProfileCount = true;
3401     DupThreshold =
3402         BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100);
3403     return;
3404   }
3405 
3406   // Profile count is not available, we can use block frequency instead.
3407   BlockFrequency MaxFreq = BlockFrequency(0);
3408   for (MachineBasicBlock &MBB : *F) {
3409     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3410     if (Freq > MaxFreq)
3411       MaxFreq = Freq;
3412   }
3413 
3414   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3415   DupThreshold = BlockFrequency(MaxFreq * ThresholdProb);
3416   UseProfileCount = false;
3417 }
3418 
runOnMachineFunction(MachineFunction & MF)3419 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3420   if (skipFunction(MF.getFunction()))
3421     return false;
3422 
3423   // Check for single-block functions and skip them.
3424   if (std::next(MF.begin()) == MF.end())
3425     return false;
3426 
3427   F = &MF;
3428   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3429   MBFI = std::make_unique<MBFIWrapper>(
3430       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI());
3431   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
3432   TII = MF.getSubtarget().getInstrInfo();
3433   TLI = MF.getSubtarget().getTargetLowering();
3434   MPDT = nullptr;
3435   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3436 
3437   initDupThreshold();
3438 
3439   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3440   // there are no MachineLoops.
3441   PreferredLoopExit = nullptr;
3442 
3443   assert(BlockToChain.empty() &&
3444          "BlockToChain map should be empty before starting placement.");
3445   assert(ComputedEdges.empty() &&
3446          "Computed Edge map should be empty before starting placement.");
3447 
3448   unsigned TailDupSize = TailDupPlacementThreshold;
3449   // If only the aggressive threshold is explicitly set, use it.
3450   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3451       TailDupPlacementThreshold.getNumOccurrences() == 0)
3452     TailDupSize = TailDupPlacementAggressiveThreshold;
3453 
3454   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3455   // For aggressive optimization, we can adjust some thresholds to be less
3456   // conservative.
3457   if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) {
3458     // At O3 we should be more willing to copy blocks for tail duplication. This
3459     // increases size pressure, so we only do it at O3
3460     // Do this unless only the regular threshold is explicitly set.
3461     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3462         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3463       TailDupSize = TailDupPlacementAggressiveThreshold;
3464   }
3465 
3466   // If there's no threshold provided through options, query the target
3467   // information for a threshold instead.
3468   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3469       (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive ||
3470        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3471     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3472 
3473   if (allowTailDupPlacement()) {
3474     MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
3475     bool OptForSize = MF.getFunction().hasOptSize() ||
3476                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3477     if (OptForSize)
3478       TailDupSize = 1;
3479     bool PreRegAlloc = false;
3480     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3481                    /* LayoutMode */ true, TailDupSize);
3482     precomputeTriangleChains();
3483   }
3484 
3485   buildCFGChains();
3486 
3487   // Changing the layout can create new tail merging opportunities.
3488   // TailMerge can create jump into if branches that make CFG irreducible for
3489   // HW that requires structured CFG.
3490   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3491                          PassConfig->getEnableTailMerge() &&
3492                          BranchFoldPlacement;
3493   // No tail merging opportunities if the block number is less than four.
3494   if (MF.size() > 3 && EnableTailMerge) {
3495     unsigned TailMergeSize = TailDupSize + 1;
3496     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3497                     *MBFI, *MBPI, PSI, TailMergeSize);
3498 
3499     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3500                             /*AfterPlacement=*/true)) {
3501       // Redo the layout if tail merging creates/removes/moves blocks.
3502       BlockToChain.clear();
3503       ComputedEdges.clear();
3504       // Must redo the post-dominator tree if blocks were changed.
3505       if (MPDT)
3506         MPDT->recalculate(MF);
3507       ChainAllocator.DestroyAll();
3508       buildCFGChains();
3509     }
3510   }
3511 
3512   // Apply a post-processing optimizing block placement.
3513   if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3514       (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) {
3515     // Find a new placement and modify the layout of the blocks in the function.
3516     applyExtTsp();
3517 
3518     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3519     createCFGChainExtTsp();
3520   }
3521 
3522   optimizeBranches();
3523   alignBlocks();
3524 
3525   BlockToChain.clear();
3526   ComputedEdges.clear();
3527   ChainAllocator.DestroyAll();
3528 
3529   bool HasMaxBytesOverride =
3530       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3531 
3532   if (AlignAllBlock)
3533     // Align all of the blocks in the function to a specific alignment.
3534     for (MachineBasicBlock &MBB : MF) {
3535       if (HasMaxBytesOverride)
3536         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3537                          MaxBytesForAlignmentOverride);
3538       else
3539         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3540     }
3541   else if (AlignAllNonFallThruBlocks) {
3542     // Align all of the blocks that have no fall-through predecessors to a
3543     // specific alignment.
3544     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3545       auto LayoutPred = std::prev(MBI);
3546       if (!LayoutPred->isSuccessor(&*MBI)) {
3547         if (HasMaxBytesOverride)
3548           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3549                             MaxBytesForAlignmentOverride);
3550         else
3551           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3552       }
3553     }
3554   }
3555   if (ViewBlockLayoutWithBFI != GVDT_None &&
3556       (ViewBlockFreqFuncName.empty() ||
3557        F->getFunction().getName() == ViewBlockFreqFuncName)) {
3558     if (RenumberBlocksBeforeView)
3559       MF.RenumberBlocks();
3560     MBFI->view("MBP." + MF.getName(), false);
3561   }
3562 
3563   // We always return true as we have no way to track whether the final order
3564   // differs from the original order.
3565   return true;
3566 }
3567 
applyExtTsp()3568 void MachineBlockPlacement::applyExtTsp() {
3569   // Prepare data; blocks are indexed by their index in the current ordering.
3570   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3571   BlockIndex.reserve(F->size());
3572   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3573   CurrentBlockOrder.reserve(F->size());
3574   size_t NumBlocks = 0;
3575   for (const MachineBasicBlock &MBB : *F) {
3576     BlockIndex[&MBB] = NumBlocks++;
3577     CurrentBlockOrder.push_back(&MBB);
3578   }
3579 
3580   auto BlockSizes = std::vector<uint64_t>(F->size());
3581   auto BlockCounts = std::vector<uint64_t>(F->size());
3582   std::vector<codelayout::EdgeCount> JumpCounts;
3583   for (MachineBasicBlock &MBB : *F) {
3584     // Getting the block frequency.
3585     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3586     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3587     // Getting the block size:
3588     // - approximate the size of an instruction by 4 bytes, and
3589     // - ignore debug instructions.
3590     // Note: getting the exact size of each block is target-dependent and can be
3591     // done by extending the interface of MCCodeEmitter. Experimentally we do
3592     // not see a perf improvement with the exact block sizes.
3593     auto NonDbgInsts =
3594         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3595     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3596     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3597     // Getting jump frequencies.
3598     for (MachineBasicBlock *Succ : MBB.successors()) {
3599       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3600       BlockFrequency JumpFreq = BlockFreq * EP;
3601       JumpCounts.push_back(
3602           {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()});
3603     }
3604   }
3605 
3606   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3607                     << " with profile = " << F->getFunction().hasProfileData()
3608                     << " (" << F->getName().str() << ")"
3609                     << "\n");
3610   LLVM_DEBUG(
3611       dbgs() << format("  original  layout score: %0.2f\n",
3612                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3613 
3614   // Run the layout algorithm.
3615   auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3616   std::vector<const MachineBasicBlock *> NewBlockOrder;
3617   NewBlockOrder.reserve(F->size());
3618   for (uint64_t Node : NewOrder) {
3619     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3620   }
3621   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3622                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3623                                               JumpCounts)));
3624 
3625   // Assign new block order.
3626   assignBlockOrder(NewBlockOrder);
3627 }
3628 
assignBlockOrder(const std::vector<const MachineBasicBlock * > & NewBlockOrder)3629 void MachineBlockPlacement::assignBlockOrder(
3630     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3631   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3632   F->RenumberBlocks();
3633 
3634   bool HasChanges = false;
3635   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3636     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3637       HasChanges = true;
3638       break;
3639     }
3640   }
3641   // Stop early if the new block order is identical to the existing one.
3642   if (!HasChanges)
3643     return;
3644 
3645   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3646   for (auto &MBB : *F) {
3647     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3648   }
3649 
3650   // Sort basic blocks in the function according to the computed order.
3651   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3652   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3653     NewIndex[MBB] = NewIndex.size();
3654   }
3655   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3656     return NewIndex[&L] < NewIndex[&R];
3657   });
3658 
3659   // Update basic block branches by inserting explicit fallthrough branches
3660   // when required and re-optimize branches when possible.
3661   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3662   SmallVector<MachineOperand, 4> Cond;
3663   for (auto &MBB : *F) {
3664     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3665     MachineFunction::iterator EndIt = MBB.getParent()->end();
3666     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3667     // If this block had a fallthrough before we need an explicit unconditional
3668     // branch to that block if the fallthrough block is not adjacent to the
3669     // block in the new order.
3670     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3671       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3672     }
3673 
3674     // It might be possible to optimize branches by flipping the condition.
3675     Cond.clear();
3676     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3677     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3678       continue;
3679     MBB.updateTerminator(FTMBB);
3680   }
3681 
3682 #ifndef NDEBUG
3683   // Make sure we correctly constructed all branches.
3684   F->verify(this, "After optimized block reordering");
3685 #endif
3686 }
3687 
createCFGChainExtTsp()3688 void MachineBlockPlacement::createCFGChainExtTsp() {
3689   BlockToChain.clear();
3690   ComputedEdges.clear();
3691   ChainAllocator.DestroyAll();
3692 
3693   MachineBasicBlock *HeadBB = &F->front();
3694   BlockChain *FunctionChain =
3695       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3696 
3697   for (MachineBasicBlock &MBB : *F) {
3698     if (HeadBB == &MBB)
3699       continue; // Ignore head of the chain
3700     FunctionChain->merge(&MBB, nullptr);
3701   }
3702 }
3703 
3704 namespace {
3705 
3706 /// A pass to compute block placement statistics.
3707 ///
3708 /// A separate pass to compute interesting statistics for evaluating block
3709 /// placement. This is separate from the actual placement pass so that they can
3710 /// be computed in the absence of any placement transformations or when using
3711 /// alternative placement strategies.
3712 class MachineBlockPlacementStats : public MachineFunctionPass {
3713   /// A handle to the branch probability pass.
3714   const MachineBranchProbabilityInfo *MBPI;
3715 
3716   /// A handle to the function-wide block frequency pass.
3717   const MachineBlockFrequencyInfo *MBFI;
3718 
3719 public:
3720   static char ID; // Pass identification, replacement for typeid
3721 
MachineBlockPlacementStats()3722   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3723     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3724   }
3725 
3726   bool runOnMachineFunction(MachineFunction &F) override;
3727 
getAnalysisUsage(AnalysisUsage & AU) const3728   void getAnalysisUsage(AnalysisUsage &AU) const override {
3729     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
3730     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
3731     AU.setPreservesAll();
3732     MachineFunctionPass::getAnalysisUsage(AU);
3733   }
3734 };
3735 
3736 } // end anonymous namespace
3737 
3738 char MachineBlockPlacementStats::ID = 0;
3739 
3740 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3741 
3742 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3743                       "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)3744 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
3745 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
3746 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3747                     "Basic Block Placement Stats", false, false)
3748 
3749 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3750   // Check for single-block functions and skip them.
3751   if (std::next(F.begin()) == F.end())
3752     return false;
3753 
3754   if (!isFunctionInPrintList(F.getName()))
3755     return false;
3756 
3757   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3758   MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
3759 
3760   for (MachineBasicBlock &MBB : F) {
3761     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3762     Statistic &NumBranches =
3763         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3764     Statistic &BranchTakenFreq =
3765         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3766     for (MachineBasicBlock *Succ : MBB.successors()) {
3767       // Skip if this successor is a fallthrough.
3768       if (MBB.isLayoutSuccessor(Succ))
3769         continue;
3770 
3771       BlockFrequency EdgeFreq =
3772           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3773       ++NumBranches;
3774       BranchTakenFreq += EdgeFreq.getFrequency();
3775     }
3776   }
3777 
3778   return false;
3779 }
3780