1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1998 Matthew Dillon, 5 * Copyright (c) 1994 John S. Dyson 6 * Copyright (c) 1990 University of Utah. 7 * Copyright (c) 1982, 1986, 1989, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * New Swap System 43 * Matthew Dillon 44 * 45 * Radix Bitmap 'blists'. 46 * 47 * - The new swapper uses the new radix bitmap code. This should scale 48 * to arbitrarily small or arbitrarily large swap spaces and an almost 49 * arbitrary degree of fragmentation. 50 * 51 * Features: 52 * 53 * - on the fly reallocation of swap during putpages. The new system 54 * does not try to keep previously allocated swap blocks for dirty 55 * pages. 56 * 57 * - on the fly deallocation of swap 58 * 59 * - No more garbage collection required. Unnecessarily allocated swap 60 * blocks only exist for dirty vm_page_t's now and these are already 61 * cycled (in a high-load system) by the pager. We also do on-the-fly 62 * removal of invalidated swap blocks when a page is destroyed 63 * or renamed. 64 * 65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 66 */ 67 68 #include <sys/cdefs.h> 69 #include "opt_vm.h" 70 71 #include <sys/param.h> 72 #include <sys/bio.h> 73 #include <sys/blist.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/disk.h> 77 #include <sys/disklabel.h> 78 #include <sys/eventhandler.h> 79 #include <sys/fcntl.h> 80 #include <sys/limits.h> 81 #include <sys/lock.h> 82 #include <sys/kernel.h> 83 #include <sys/mount.h> 84 #include <sys/namei.h> 85 #include <sys/malloc.h> 86 #include <sys/pctrie.h> 87 #include <sys/priv.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sbuf.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysproto.h> 96 #include <sys/systm.h> 97 #include <sys/sx.h> 98 #include <sys/unistd.h> 99 #include <sys/user.h> 100 #include <sys/vmmeter.h> 101 #include <sys/vnode.h> 102 103 #include <security/mac/mac_framework.h> 104 105 #include <vm/vm.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_page.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_pageout.h> 113 #include <vm/vm_param.h> 114 #include <vm/vm_radix.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 #include <geom/geom.h> 120 121 /* 122 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 123 * The 64-page limit is due to the radix code (kern/subr_blist.c). 124 */ 125 #ifndef MAX_PAGEOUT_CLUSTER 126 #define MAX_PAGEOUT_CLUSTER 32 127 #endif 128 129 #if !defined(SWB_NPAGES) 130 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 131 #endif 132 133 #define SWAP_META_PAGES PCTRIE_COUNT 134 135 /* 136 * A swblk structure maps each page index within a 137 * SWAP_META_PAGES-aligned and sized range to the address of an 138 * on-disk swap block (or SWAPBLK_NONE). The collection of these 139 * mappings for an entire vm object is implemented as a pc-trie. 140 */ 141 struct swblk { 142 vm_pindex_t p; 143 daddr_t d[SWAP_META_PAGES]; 144 }; 145 146 /* 147 * A page_range structure records the start address and length of a sequence of 148 * mapped page addresses. 149 */ 150 struct page_range { 151 daddr_t start; 152 daddr_t num; 153 }; 154 155 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 156 static struct mtx sw_dev_mtx; 157 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 158 static struct swdevt *swdevhd; /* Allocate from here next */ 159 static int nswapdev; /* Number of swap devices */ 160 int swap_pager_avail; 161 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 162 163 static __exclusive_cache_line u_long swap_reserved; 164 static u_long swap_total; 165 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS); 166 167 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 168 "VM swap stats"); 169 170 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 171 &swap_reserved, 0, sysctl_page_shift, "QU", 172 "Amount of swap storage needed to back all allocated anonymous memory."); 173 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 174 &swap_total, 0, sysctl_page_shift, "QU", 175 "Total amount of available swap storage."); 176 177 int vm_overcommit __read_mostly = 0; 178 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0, 179 "Configure virtual memory overcommit behavior. See tuning(7) " 180 "for details."); 181 static unsigned long swzone; 182 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 183 "Actual size of swap metadata zone"); 184 static unsigned long swap_maxpages; 185 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 186 "Maximum amount of swap supported"); 187 188 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred); 189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred, 190 CTLFLAG_RD, &swap_free_deferred, 191 "Number of pages that deferred freeing swap space"); 192 193 static COUNTER_U64_DEFINE_EARLY(swap_free_completed); 194 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed, 195 CTLFLAG_RD, &swap_free_completed, 196 "Number of deferred frees completed"); 197 198 static int 199 sysctl_page_shift(SYSCTL_HANDLER_ARGS) 200 { 201 uint64_t newval; 202 u_long value = *(u_long *)arg1; 203 204 newval = ((uint64_t)value) << PAGE_SHIFT; 205 return (sysctl_handle_64(oidp, &newval, 0, req)); 206 } 207 208 static bool 209 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc) 210 { 211 struct uidinfo *uip; 212 u_long prev; 213 214 uip = cred->cr_ruidinfo; 215 216 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr); 217 if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 && 218 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) && 219 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) { 220 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr); 221 KASSERT(prev >= pincr, 222 ("negative vmsize for uid %d\n", uip->ui_uid)); 223 return (false); 224 } 225 return (true); 226 } 227 228 static void 229 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred) 230 { 231 struct uidinfo *uip; 232 #ifdef INVARIANTS 233 u_long prev; 234 #endif 235 236 uip = cred->cr_ruidinfo; 237 238 #ifdef INVARIANTS 239 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr); 240 KASSERT(prev >= pdecr, 241 ("negative vmsize for uid %d\n", uip->ui_uid)); 242 #else 243 atomic_subtract_long(&uip->ui_vmsize, pdecr); 244 #endif 245 } 246 247 static void 248 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred) 249 { 250 struct uidinfo *uip; 251 252 uip = cred->cr_ruidinfo; 253 atomic_add_long(&uip->ui_vmsize, pincr); 254 } 255 256 bool 257 swap_reserve(vm_ooffset_t incr) 258 { 259 260 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 261 } 262 263 bool 264 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 265 { 266 u_long r, s, prev, pincr; 267 #ifdef RACCT 268 int error; 269 #endif 270 int oc; 271 static int curfail; 272 static struct timeval lastfail; 273 274 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", 275 __func__, (uintmax_t)incr)); 276 277 #ifdef RACCT 278 if (RACCT_ENABLED()) { 279 PROC_LOCK(curproc); 280 error = racct_add(curproc, RACCT_SWAP, incr); 281 PROC_UNLOCK(curproc); 282 if (error != 0) 283 return (false); 284 } 285 #endif 286 287 pincr = atop(incr); 288 prev = atomic_fetchadd_long(&swap_reserved, pincr); 289 r = prev + pincr; 290 s = swap_total; 291 oc = atomic_load_int(&vm_overcommit); 292 if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) { 293 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved - 294 vm_wire_count(); 295 } 296 if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s && 297 priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) { 298 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 299 KASSERT(prev >= pincr, 300 ("swap_reserved < incr on overcommit fail")); 301 goto out_error; 302 } 303 304 if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) { 305 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 306 KASSERT(prev >= pincr, 307 ("swap_reserved < incr on overcommit fail")); 308 goto out_error; 309 } 310 311 return (true); 312 313 out_error: 314 if (ppsratecheck(&lastfail, &curfail, 1)) { 315 printf("uid %d, pid %d: swap reservation " 316 "for %jd bytes failed\n", 317 cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr); 318 } 319 #ifdef RACCT 320 if (RACCT_ENABLED()) { 321 PROC_LOCK(curproc); 322 racct_sub(curproc, RACCT_SWAP, incr); 323 PROC_UNLOCK(curproc); 324 } 325 #endif 326 327 return (false); 328 } 329 330 void 331 swap_reserve_force(vm_ooffset_t incr) 332 { 333 u_long pincr; 334 335 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", 336 __func__, (uintmax_t)incr)); 337 338 #ifdef RACCT 339 if (RACCT_ENABLED()) { 340 PROC_LOCK(curproc); 341 racct_add_force(curproc, RACCT_SWAP, incr); 342 PROC_UNLOCK(curproc); 343 } 344 #endif 345 pincr = atop(incr); 346 atomic_add_long(&swap_reserved, pincr); 347 swap_reserve_force_rlimit(pincr, curthread->td_ucred); 348 } 349 350 void 351 swap_release(vm_ooffset_t decr) 352 { 353 struct ucred *cred; 354 355 PROC_LOCK(curproc); 356 cred = curproc->p_ucred; 357 swap_release_by_cred(decr, cred); 358 PROC_UNLOCK(curproc); 359 } 360 361 void 362 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 363 { 364 u_long pdecr; 365 #ifdef INVARIANTS 366 u_long prev; 367 #endif 368 369 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", 370 __func__, (uintmax_t)decr)); 371 372 pdecr = atop(decr); 373 #ifdef INVARIANTS 374 prev = atomic_fetchadd_long(&swap_reserved, -pdecr); 375 KASSERT(prev >= pdecr, ("swap_reserved < decr")); 376 #else 377 atomic_subtract_long(&swap_reserved, pdecr); 378 #endif 379 380 swap_release_by_cred_rlimit(pdecr, cred); 381 #ifdef RACCT 382 if (racct_enable) 383 racct_sub_cred(cred, RACCT_SWAP, decr); 384 #endif 385 } 386 387 static bool swap_pager_full = true; /* swap space exhaustion (task killing) */ 388 static bool swap_pager_almost_full = true; /* swap space exhaustion (w/hysteresis) */ 389 static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */ 390 static int nsw_wcount_async; /* limit async write buffers */ 391 static int nsw_wcount_async_max;/* assigned maximum */ 392 int nsw_cluster_max; /* maximum VOP I/O allowed */ 393 394 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 395 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 396 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 397 "Maximum running async swap ops"); 398 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS); 399 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD | 400 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A", 401 "Swap Fragmentation Info"); 402 403 static struct sx sw_alloc_sx; 404 405 /* 406 * "named" and "unnamed" anon region objects. Try to reduce the overhead 407 * of searching a named list by hashing it just a little. 408 */ 409 410 #define NOBJLISTS 8 411 412 #define NOBJLIST(handle) \ 413 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 414 415 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 416 static uma_zone_t swwbuf_zone; 417 static uma_zone_t swrbuf_zone; 418 static uma_zone_t swblk_zone; 419 static uma_zone_t swpctrie_zone; 420 421 /* 422 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 423 * calls hooked from other parts of the VM system and do not appear here. 424 * (see vm/swap_pager.h). 425 */ 426 static vm_object_t 427 swap_pager_alloc(void *handle, vm_ooffset_t size, 428 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 429 static void swap_pager_dealloc(vm_object_t object); 430 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 431 int *); 432 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 433 int *, pgo_getpages_iodone_t, void *); 434 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 435 static boolean_t 436 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 437 static void swap_pager_init(void); 438 static void swap_pager_unswapped(vm_page_t); 439 static void swap_pager_swapoff(struct swdevt *sp); 440 static void swap_pager_update_writecount(vm_object_t object, 441 vm_offset_t start, vm_offset_t end); 442 static void swap_pager_release_writecount(vm_object_t object, 443 vm_offset_t start, vm_offset_t end); 444 static void swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, 445 vm_size_t size); 446 447 const struct pagerops swappagerops = { 448 .pgo_kvme_type = KVME_TYPE_SWAP, 449 .pgo_init = swap_pager_init, /* early system initialization of pager */ 450 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 451 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 452 .pgo_getpages = swap_pager_getpages, /* pagein */ 453 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 454 .pgo_putpages = swap_pager_putpages, /* pageout */ 455 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 456 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 457 .pgo_update_writecount = swap_pager_update_writecount, 458 .pgo_release_writecount = swap_pager_release_writecount, 459 .pgo_freespace = swap_pager_freespace_pgo, 460 }; 461 462 /* 463 * swap_*() routines are externally accessible. swp_*() routines are 464 * internal. 465 */ 466 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 467 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 468 469 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 470 "Maximum size of a swap block in pages"); 471 472 static void swp_sizecheck(void); 473 static void swp_pager_async_iodone(struct buf *bp); 474 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit); 475 static void swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb); 476 static int swapongeom(struct vnode *); 477 static int swaponvp(struct thread *, struct vnode *, u_long); 478 static int swapoff_one(struct swdevt *sp, struct ucred *cred, 479 u_int flags); 480 481 /* 482 * Swap bitmap functions 483 */ 484 static void swp_pager_freeswapspace(const struct page_range *range); 485 static daddr_t swp_pager_getswapspace(int *npages); 486 487 /* 488 * Metadata functions 489 */ 490 static daddr_t swp_pager_meta_build(struct pctrie_iter *, vm_object_t object, 491 vm_pindex_t, daddr_t, bool); 492 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t, 493 vm_size_t *); 494 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst, 495 vm_pindex_t pindex, vm_pindex_t count); 496 static void swp_pager_meta_free_all(vm_object_t); 497 static daddr_t swp_pager_meta_lookup(struct pctrie_iter *, vm_pindex_t); 498 499 static void 500 swp_pager_init_freerange(struct page_range *range) 501 { 502 range->start = SWAPBLK_NONE; 503 range->num = 0; 504 } 505 506 static void 507 swp_pager_update_freerange(struct page_range *range, daddr_t addr) 508 { 509 if (range->start + range->num == addr) { 510 range->num++; 511 } else { 512 swp_pager_freeswapspace(range); 513 range->start = addr; 514 range->num = 1; 515 } 516 } 517 518 static void * 519 swblk_trie_alloc(struct pctrie *ptree) 520 { 521 522 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ? 523 M_USE_RESERVE : 0))); 524 } 525 526 static void 527 swblk_trie_free(struct pctrie *ptree, void *node) 528 { 529 530 uma_zfree(swpctrie_zone, node); 531 } 532 533 static int 534 swblk_start(struct swblk *sb, vm_pindex_t pindex) 535 { 536 return (sb == NULL || sb->p >= pindex ? 537 0 : pindex % SWAP_META_PAGES); 538 } 539 540 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free); 541 542 static struct swblk * 543 swblk_lookup(vm_object_t object, vm_pindex_t pindex) 544 { 545 return (SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 546 rounddown(pindex, SWAP_META_PAGES))); 547 } 548 549 static void 550 swblk_lookup_remove(vm_object_t object, struct swblk *sb) 551 { 552 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 553 } 554 555 static bool 556 swblk_is_empty(vm_object_t object) 557 { 558 return (pctrie_is_empty(&object->un_pager.swp.swp_blks)); 559 } 560 561 static struct swblk * 562 swblk_iter_lookup_ge(struct pctrie_iter *blks, vm_pindex_t pindex) 563 { 564 return (SWAP_PCTRIE_ITER_LOOKUP_GE(blks, 565 rounddown(pindex, SWAP_META_PAGES))); 566 } 567 568 static void 569 swblk_iter_init_only(struct pctrie_iter *blks, vm_object_t object) 570 { 571 VM_OBJECT_ASSERT_LOCKED(object); 572 MPASS((object->flags & OBJ_SWAP) != 0); 573 pctrie_iter_init(blks, &object->un_pager.swp.swp_blks); 574 } 575 576 577 static struct swblk * 578 swblk_iter_init(struct pctrie_iter *blks, vm_object_t object, 579 vm_pindex_t pindex) 580 { 581 swblk_iter_init_only(blks, object); 582 return (swblk_iter_lookup_ge(blks, pindex)); 583 } 584 585 static struct swblk * 586 swblk_iter_reinit(struct pctrie_iter *blks, vm_object_t object, 587 vm_pindex_t pindex) 588 { 589 swblk_iter_init_only(blks, object); 590 return (SWAP_PCTRIE_ITER_LOOKUP(blks, 591 rounddown(pindex, SWAP_META_PAGES))); 592 } 593 594 static struct swblk * 595 swblk_iter_limit_init(struct pctrie_iter *blks, vm_object_t object, 596 vm_pindex_t pindex, vm_pindex_t limit) 597 { 598 VM_OBJECT_ASSERT_LOCKED(object); 599 MPASS((object->flags & OBJ_SWAP) != 0); 600 pctrie_iter_limit_init(blks, &object->un_pager.swp.swp_blks, limit); 601 return (swblk_iter_lookup_ge(blks, pindex)); 602 } 603 604 static struct swblk * 605 swblk_iter_next(struct pctrie_iter *blks) 606 { 607 return (SWAP_PCTRIE_ITER_JUMP_GE(blks, SWAP_META_PAGES)); 608 } 609 610 static struct swblk * 611 swblk_iter_lookup(struct pctrie_iter *blks, vm_pindex_t pindex) 612 { 613 return (SWAP_PCTRIE_ITER_LOOKUP(blks, 614 rounddown(pindex, SWAP_META_PAGES))); 615 } 616 617 static int 618 swblk_iter_insert(struct pctrie_iter *blks, struct swblk *sb) 619 { 620 return (SWAP_PCTRIE_ITER_INSERT(blks, sb)); 621 } 622 623 static void 624 swblk_iter_remove(struct pctrie_iter *blks) 625 { 626 SWAP_PCTRIE_ITER_REMOVE(blks); 627 } 628 629 /* 630 * SWP_SIZECHECK() - update swap_pager_full indication 631 * 632 * update the swap_pager_almost_full indication and warn when we are 633 * about to run out of swap space, using lowat/hiwat hysteresis. 634 * 635 * Clear swap_pager_full ( task killing ) indication when lowat is met. 636 * 637 * No restrictions on call 638 * This routine may not block. 639 */ 640 static void 641 swp_sizecheck(void) 642 { 643 644 if (swap_pager_avail < nswap_lowat) { 645 if (!swap_pager_almost_full) { 646 printf("swap_pager: out of swap space\n"); 647 swap_pager_almost_full = true; 648 } 649 } else { 650 swap_pager_full = false; 651 if (swap_pager_avail > nswap_hiwat) 652 swap_pager_almost_full = false; 653 } 654 } 655 656 /* 657 * SWAP_PAGER_INIT() - initialize the swap pager! 658 * 659 * Expected to be started from system init. NOTE: This code is run 660 * before much else so be careful what you depend on. Most of the VM 661 * system has yet to be initialized at this point. 662 */ 663 static void 664 swap_pager_init(void) 665 { 666 /* 667 * Initialize object lists 668 */ 669 int i; 670 671 for (i = 0; i < NOBJLISTS; ++i) 672 TAILQ_INIT(&swap_pager_object_list[i]); 673 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 674 sx_init(&sw_alloc_sx, "swspsx"); 675 sx_init(&swdev_syscall_lock, "swsysc"); 676 677 /* 678 * The nsw_cluster_max is constrained by the bp->b_pages[] 679 * array, which has maxphys / PAGE_SIZE entries, and our locally 680 * defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 681 * constrained by the swap device interleave stripe size. 682 * 683 * Initialized early so that GEOM_ELI can see it. 684 */ 685 nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER); 686 } 687 688 /* 689 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 690 * 691 * Expected to be started from pageout process once, prior to entering 692 * its main loop. 693 */ 694 void 695 swap_pager_swap_init(void) 696 { 697 unsigned long n, n2; 698 699 /* 700 * Number of in-transit swap bp operations. Don't 701 * exhaust the pbufs completely. Make sure we 702 * initialize workable values (0 will work for hysteresis 703 * but it isn't very efficient). 704 * 705 * Currently we hardwire nsw_wcount_async to 4. This limit is 706 * designed to prevent other I/O from having high latencies due to 707 * our pageout I/O. The value 4 works well for one or two active swap 708 * devices but is probably a little low if you have more. Even so, 709 * a higher value would probably generate only a limited improvement 710 * with three or four active swap devices since the system does not 711 * typically have to pageout at extreme bandwidths. We will want 712 * at least 2 per swap devices, and 4 is a pretty good value if you 713 * have one NFS swap device due to the command/ack latency over NFS. 714 * So it all works out pretty well. 715 * 716 * nsw_cluster_max is initialized in swap_pager_init(). 717 */ 718 719 nsw_wcount_async = 4; 720 nsw_wcount_async_max = nsw_wcount_async; 721 mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF); 722 723 swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4); 724 swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2); 725 726 /* 727 * Initialize our zone, taking the user's requested size or 728 * estimating the number we need based on the number of pages 729 * in the system. 730 */ 731 n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) : 732 vm_cnt.v_page_count / 2; 733 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL, 734 pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0); 735 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL, 736 NULL, NULL, _Alignof(struct swblk) - 1, 0); 737 n2 = n; 738 do { 739 if (uma_zone_reserve_kva(swblk_zone, n)) 740 break; 741 /* 742 * if the allocation failed, try a zone two thirds the 743 * size of the previous attempt. 744 */ 745 n -= ((n + 2) / 3); 746 } while (n > 0); 747 748 /* 749 * Often uma_zone_reserve_kva() cannot reserve exactly the 750 * requested size. Account for the difference when 751 * calculating swap_maxpages. 752 */ 753 n = uma_zone_get_max(swblk_zone); 754 755 if (n < n2) 756 printf("Swap blk zone entries changed from %lu to %lu.\n", 757 n2, n); 758 /* absolute maximum we can handle assuming 100% efficiency */ 759 swap_maxpages = n * SWAP_META_PAGES; 760 swzone = n * sizeof(struct swblk); 761 if (!uma_zone_reserve_kva(swpctrie_zone, n)) 762 printf("Cannot reserve swap pctrie zone, " 763 "reduce kern.maxswzone.\n"); 764 } 765 766 bool 767 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred, 768 vm_ooffset_t size, vm_ooffset_t offset) 769 { 770 if (cred != NULL) { 771 if (!swap_reserve_by_cred(size, cred)) 772 return (false); 773 crhold(cred); 774 } 775 776 object->un_pager.swp.writemappings = 0; 777 object->handle = handle; 778 if (cred != NULL) { 779 object->cred = cred; 780 object->charge = size; 781 } 782 return (true); 783 } 784 785 static vm_object_t 786 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred, 787 vm_ooffset_t size, vm_ooffset_t offset) 788 { 789 vm_object_t object; 790 791 /* 792 * The un_pager.swp.swp_blks trie is initialized by 793 * vm_object_allocate() to ensure the correct order of 794 * visibility to other threads. 795 */ 796 object = vm_object_allocate(otype, OFF_TO_IDX(offset + 797 PAGE_MASK + size)); 798 799 if (!swap_pager_init_object(object, handle, cred, size, offset)) { 800 vm_object_deallocate(object); 801 return (NULL); 802 } 803 return (object); 804 } 805 806 /* 807 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 808 * its metadata structures. 809 * 810 * This routine is called from the mmap and fork code to create a new 811 * OBJT_SWAP object. 812 * 813 * This routine must ensure that no live duplicate is created for 814 * the named object request, which is protected against by 815 * holding the sw_alloc_sx lock in case handle != NULL. 816 */ 817 static vm_object_t 818 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 819 vm_ooffset_t offset, struct ucred *cred) 820 { 821 vm_object_t object; 822 823 if (handle != NULL) { 824 /* 825 * Reference existing named region or allocate new one. There 826 * should not be a race here against swp_pager_meta_build() 827 * as called from vm_page_remove() in regards to the lookup 828 * of the handle. 829 */ 830 sx_xlock(&sw_alloc_sx); 831 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 832 if (object == NULL) { 833 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred, 834 size, offset); 835 if (object != NULL) { 836 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 837 object, pager_object_list); 838 } 839 } 840 sx_xunlock(&sw_alloc_sx); 841 } else { 842 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred, 843 size, offset); 844 } 845 return (object); 846 } 847 848 /* 849 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 850 * 851 * The swap backing for the object is destroyed. The code is 852 * designed such that we can reinstantiate it later, but this 853 * routine is typically called only when the entire object is 854 * about to be destroyed. 855 * 856 * The object must be locked. 857 */ 858 static void 859 swap_pager_dealloc(vm_object_t object) 860 { 861 862 VM_OBJECT_ASSERT_WLOCKED(object); 863 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 864 865 /* 866 * Remove from list right away so lookups will fail if we block for 867 * pageout completion. 868 */ 869 if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) { 870 VM_OBJECT_WUNLOCK(object); 871 sx_xlock(&sw_alloc_sx); 872 TAILQ_REMOVE(NOBJLIST(object->handle), object, 873 pager_object_list); 874 sx_xunlock(&sw_alloc_sx); 875 VM_OBJECT_WLOCK(object); 876 } 877 878 vm_object_pip_wait(object, "swpdea"); 879 880 /* 881 * Free all remaining metadata. We only bother to free it from 882 * the swap meta data. We do not attempt to free swapblk's still 883 * associated with vm_page_t's for this object. We do not care 884 * if paging is still in progress on some objects. 885 */ 886 swp_pager_meta_free_all(object); 887 object->handle = NULL; 888 object->type = OBJT_DEAD; 889 890 /* 891 * Release the allocation charge. 892 */ 893 if (object->cred != NULL) { 894 swap_release_by_cred(object->charge, object->cred); 895 object->charge = 0; 896 crfree(object->cred); 897 object->cred = NULL; 898 } 899 900 /* 901 * Hide the object from swap_pager_swapoff(). 902 */ 903 vm_object_clear_flag(object, OBJ_SWAP); 904 } 905 906 /************************************************************************ 907 * SWAP PAGER BITMAP ROUTINES * 908 ************************************************************************/ 909 910 /* 911 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 912 * 913 * Allocate swap for up to the requested number of pages. The 914 * starting swap block number (a page index) is returned or 915 * SWAPBLK_NONE if the allocation failed. 916 * 917 * Also has the side effect of advising that somebody made a mistake 918 * when they configured swap and didn't configure enough. 919 * 920 * This routine may not sleep. 921 * 922 * We allocate in round-robin fashion from the configured devices. 923 */ 924 static daddr_t 925 swp_pager_getswapspace(int *io_npages) 926 { 927 daddr_t blk; 928 struct swdevt *sp; 929 int mpages, npages; 930 931 KASSERT(*io_npages >= 1, 932 ("%s: npages not positive", __func__)); 933 blk = SWAPBLK_NONE; 934 mpages = *io_npages; 935 npages = imin(BLIST_MAX_ALLOC, mpages); 936 mtx_lock(&sw_dev_mtx); 937 sp = swdevhd; 938 while (!TAILQ_EMPTY(&swtailq)) { 939 if (sp == NULL) 940 sp = TAILQ_FIRST(&swtailq); 941 if ((sp->sw_flags & SW_CLOSING) == 0) 942 blk = blist_alloc(sp->sw_blist, &npages, mpages); 943 if (blk != SWAPBLK_NONE) 944 break; 945 sp = TAILQ_NEXT(sp, sw_list); 946 if (swdevhd == sp) { 947 if (npages == 1) 948 break; 949 mpages = npages - 1; 950 npages >>= 1; 951 } 952 } 953 if (blk != SWAPBLK_NONE) { 954 *io_npages = npages; 955 blk += sp->sw_first; 956 sp->sw_used += npages; 957 swap_pager_avail -= npages; 958 swp_sizecheck(); 959 swdevhd = TAILQ_NEXT(sp, sw_list); 960 } else { 961 if (!swap_pager_full) { 962 printf("swp_pager_getswapspace(%d): failed\n", 963 *io_npages); 964 swap_pager_full = swap_pager_almost_full = true; 965 } 966 swdevhd = NULL; 967 } 968 mtx_unlock(&sw_dev_mtx); 969 return (blk); 970 } 971 972 static bool 973 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 974 { 975 976 return (blk >= sp->sw_first && blk < sp->sw_end); 977 } 978 979 static void 980 swp_pager_strategy(struct buf *bp) 981 { 982 struct swdevt *sp; 983 984 mtx_lock(&sw_dev_mtx); 985 TAILQ_FOREACH(sp, &swtailq, sw_list) { 986 if (swp_pager_isondev(bp->b_blkno, sp)) { 987 mtx_unlock(&sw_dev_mtx); 988 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 989 unmapped_buf_allowed) { 990 bp->b_data = unmapped_buf; 991 bp->b_offset = 0; 992 } else { 993 pmap_qenter((vm_offset_t)bp->b_data, 994 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 995 } 996 sp->sw_strategy(bp, sp); 997 return; 998 } 999 } 1000 panic("Swapdev not found"); 1001 } 1002 1003 /* 1004 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 1005 * 1006 * This routine returns the specified swap blocks back to the bitmap. 1007 * 1008 * This routine may not sleep. 1009 */ 1010 static void 1011 swp_pager_freeswapspace(const struct page_range *range) 1012 { 1013 daddr_t blk, npages; 1014 struct swdevt *sp; 1015 1016 blk = range->start; 1017 npages = range->num; 1018 if (npages == 0) 1019 return; 1020 mtx_lock(&sw_dev_mtx); 1021 TAILQ_FOREACH(sp, &swtailq, sw_list) { 1022 if (swp_pager_isondev(blk, sp)) { 1023 sp->sw_used -= npages; 1024 /* 1025 * If we are attempting to stop swapping on 1026 * this device, we don't want to mark any 1027 * blocks free lest they be reused. 1028 */ 1029 if ((sp->sw_flags & SW_CLOSING) == 0) { 1030 blist_free(sp->sw_blist, blk - sp->sw_first, 1031 npages); 1032 swap_pager_avail += npages; 1033 swp_sizecheck(); 1034 } 1035 mtx_unlock(&sw_dev_mtx); 1036 return; 1037 } 1038 } 1039 panic("Swapdev not found"); 1040 } 1041 1042 /* 1043 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats 1044 */ 1045 static int 1046 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS) 1047 { 1048 struct sbuf sbuf; 1049 struct swdevt *sp; 1050 const char *devname; 1051 int error; 1052 1053 error = sysctl_wire_old_buffer(req, 0); 1054 if (error != 0) 1055 return (error); 1056 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1057 mtx_lock(&sw_dev_mtx); 1058 TAILQ_FOREACH(sp, &swtailq, sw_list) { 1059 if (vn_isdisk(sp->sw_vp)) 1060 devname = devtoname(sp->sw_vp->v_rdev); 1061 else 1062 devname = "[file]"; 1063 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname); 1064 blist_stats(sp->sw_blist, &sbuf); 1065 } 1066 mtx_unlock(&sw_dev_mtx); 1067 error = sbuf_finish(&sbuf); 1068 sbuf_delete(&sbuf); 1069 return (error); 1070 } 1071 1072 /* 1073 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 1074 * range within an object. 1075 * 1076 * This routine removes swapblk assignments from swap metadata. 1077 * 1078 * The external callers of this routine typically have already destroyed 1079 * or renamed vm_page_t's associated with this range in the object so 1080 * we should be ok. 1081 * 1082 * The object must be locked. 1083 */ 1084 void 1085 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size, 1086 vm_size_t *freed) 1087 { 1088 MPASS((object->flags & OBJ_SWAP) != 0); 1089 1090 swp_pager_meta_free(object, start, size, freed); 1091 } 1092 1093 static void 1094 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size) 1095 { 1096 MPASS((object->flags & OBJ_SWAP) != 0); 1097 1098 swp_pager_meta_free(object, start, size, NULL); 1099 } 1100 1101 /* 1102 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 1103 * 1104 * Assigns swap blocks to the specified range within the object. The 1105 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 1106 * 1107 * Returns 0 on success, -1 on failure. 1108 */ 1109 int 1110 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size) 1111 { 1112 struct pctrie_iter blks; 1113 struct page_range range; 1114 daddr_t addr, blk; 1115 vm_pindex_t i, j; 1116 int n; 1117 1118 swp_pager_init_freerange(&range); 1119 VM_OBJECT_WLOCK(object); 1120 swblk_iter_init_only(&blks, object); 1121 for (i = 0; i < size; i += n) { 1122 n = MIN(size - i, INT_MAX); 1123 blk = swp_pager_getswapspace(&n); 1124 if (blk == SWAPBLK_NONE) { 1125 swp_pager_meta_free(object, start, i, NULL); 1126 VM_OBJECT_WUNLOCK(object); 1127 return (-1); 1128 } 1129 for (j = 0; j < n; ++j) { 1130 addr = swp_pager_meta_build(&blks, object, 1131 start + i + j, blk + j, false); 1132 if (addr != SWAPBLK_NONE) 1133 swp_pager_update_freerange(&range, addr); 1134 } 1135 } 1136 swp_pager_freeswapspace(&range); 1137 VM_OBJECT_WUNLOCK(object); 1138 return (0); 1139 } 1140 1141 /* 1142 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 1143 * and destroy the source. 1144 * 1145 * Copy any valid swapblks from the source to the destination. In 1146 * cases where both the source and destination have a valid swapblk, 1147 * we keep the destination's. 1148 * 1149 * This routine is allowed to sleep. It may sleep allocating metadata 1150 * indirectly through swp_pager_meta_build(). 1151 * 1152 * The source object contains no vm_page_t's (which is just as well) 1153 * 1154 * The source and destination objects must be locked. 1155 * Both object locks may temporarily be released. 1156 */ 1157 void 1158 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 1159 vm_pindex_t offset, int destroysource) 1160 { 1161 VM_OBJECT_ASSERT_WLOCKED(srcobject); 1162 VM_OBJECT_ASSERT_WLOCKED(dstobject); 1163 1164 /* 1165 * If destroysource is set, we remove the source object from the 1166 * swap_pager internal queue now. 1167 */ 1168 if (destroysource && (srcobject->flags & OBJ_ANON) == 0 && 1169 srcobject->handle != NULL) { 1170 VM_OBJECT_WUNLOCK(srcobject); 1171 VM_OBJECT_WUNLOCK(dstobject); 1172 sx_xlock(&sw_alloc_sx); 1173 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 1174 pager_object_list); 1175 sx_xunlock(&sw_alloc_sx); 1176 VM_OBJECT_WLOCK(dstobject); 1177 VM_OBJECT_WLOCK(srcobject); 1178 } 1179 1180 /* 1181 * Transfer source to destination. 1182 */ 1183 swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size); 1184 1185 /* 1186 * Free left over swap blocks in source. 1187 */ 1188 if (destroysource) 1189 swp_pager_meta_free_all(srcobject); 1190 } 1191 1192 /* 1193 * SWP_PAGER_HASPAGE_ITER() - determine if we have good backing store for 1194 * the requested page, accessed with the given 1195 * iterator. 1196 * 1197 * We determine whether good backing store exists for the requested 1198 * page and return TRUE if it does, FALSE if it doesn't. 1199 * 1200 * If TRUE, we also try to determine how much valid, contiguous backing 1201 * store exists before and after the requested page. 1202 */ 1203 static boolean_t 1204 swp_pager_haspage_iter(vm_pindex_t pindex, int *before, int *after, 1205 struct pctrie_iter *blks) 1206 { 1207 daddr_t blk, blk0; 1208 int i; 1209 1210 /* 1211 * do we have good backing store at the requested index ? 1212 */ 1213 blk0 = swp_pager_meta_lookup(blks, pindex); 1214 if (blk0 == SWAPBLK_NONE) { 1215 if (before) 1216 *before = 0; 1217 if (after) 1218 *after = 0; 1219 return (FALSE); 1220 } 1221 1222 /* 1223 * find backwards-looking contiguous good backing store 1224 */ 1225 if (before != NULL) { 1226 for (i = 1; i < SWB_NPAGES; i++) { 1227 if (i > pindex) 1228 break; 1229 blk = swp_pager_meta_lookup(blks, pindex - i); 1230 if (blk != blk0 - i) 1231 break; 1232 } 1233 *before = i - 1; 1234 } 1235 1236 /* 1237 * find forward-looking contiguous good backing store 1238 */ 1239 if (after != NULL) { 1240 for (i = 1; i < SWB_NPAGES; i++) { 1241 blk = swp_pager_meta_lookup(blks, pindex + i); 1242 if (blk != blk0 + i) 1243 break; 1244 } 1245 *after = i - 1; 1246 } 1247 return (TRUE); 1248 } 1249 1250 /* 1251 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 1252 * the requested page, in the given object. 1253 * 1254 * We determine whether good backing store exists for the requested 1255 * page and return TRUE if it does, FALSE if it doesn't. 1256 * 1257 * If TRUE, we also try to determine how much valid, contiguous backing 1258 * store exists before and after the requested page. 1259 */ 1260 static boolean_t 1261 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 1262 int *after) 1263 { 1264 struct pctrie_iter blks; 1265 1266 swblk_iter_init_only(&blks, object); 1267 return (swp_pager_haspage_iter(pindex, before, after, &blks)); 1268 } 1269 1270 static void 1271 swap_pager_unswapped_acct(vm_page_t m) 1272 { 1273 KASSERT((m->object->flags & OBJ_SWAP) != 0, 1274 ("Free object not swappable")); 1275 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1276 counter_u64_add(swap_free_completed, 1); 1277 vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE); 1278 1279 /* 1280 * The meta data only exists if the object is OBJT_SWAP 1281 * and even then might not be allocated yet. 1282 */ 1283 } 1284 1285 /* 1286 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1287 * 1288 * This removes any associated swap backing store, whether valid or 1289 * not, from the page. 1290 * 1291 * This routine is typically called when a page is made dirty, at 1292 * which point any associated swap can be freed. MADV_FREE also 1293 * calls us in a special-case situation 1294 * 1295 * NOTE!!! If the page is clean and the swap was valid, the caller 1296 * should make the page dirty before calling this routine. This routine 1297 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1298 * depends on it. 1299 * 1300 * This routine may not sleep. 1301 * 1302 * The object containing the page may be locked. 1303 */ 1304 static void 1305 swap_pager_unswapped(vm_page_t m) 1306 { 1307 struct page_range range; 1308 struct swblk *sb; 1309 vm_object_t obj; 1310 1311 /* 1312 * Handle enqueing deferred frees first. If we do not have the 1313 * object lock we wait for the page daemon to clear the space. 1314 */ 1315 obj = m->object; 1316 if (!VM_OBJECT_WOWNED(obj)) { 1317 VM_PAGE_OBJECT_BUSY_ASSERT(m); 1318 /* 1319 * The caller is responsible for synchronization but we 1320 * will harmlessly handle races. This is typically provided 1321 * by only calling unswapped() when a page transitions from 1322 * clean to dirty. 1323 */ 1324 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) == 1325 PGA_SWAP_SPACE) { 1326 vm_page_aflag_set(m, PGA_SWAP_FREE); 1327 counter_u64_add(swap_free_deferred, 1); 1328 } 1329 return; 1330 } 1331 swap_pager_unswapped_acct(m); 1332 1333 sb = swblk_lookup(m->object, m->pindex); 1334 if (sb == NULL) 1335 return; 1336 range.start = sb->d[m->pindex % SWAP_META_PAGES]; 1337 if (range.start == SWAPBLK_NONE) 1338 return; 1339 range.num = 1; 1340 swp_pager_freeswapspace(&range); 1341 sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE; 1342 swp_pager_free_empty_swblk(m->object, sb); 1343 } 1344 1345 /* 1346 * swap_pager_getpages_locked() - bring pages in from swap 1347 * 1348 * Attempt to page in the pages in array "ma" of length "count". The 1349 * caller may optionally specify that additional pages preceding and 1350 * succeeding the specified range be paged in. The number of such pages 1351 * is returned in the "a_rbehind" and "a_rahead" parameters, and they will 1352 * be in the inactive queue upon return. 1353 * 1354 * The pages in "ma" must be busied and will remain busied upon return. 1355 */ 1356 static int 1357 swap_pager_getpages_locked(struct pctrie_iter *blks, vm_object_t object, 1358 vm_page_t *ma, int count, int *a_rbehind, int *a_rahead, struct buf *bp) 1359 { 1360 vm_pindex_t pindex; 1361 int rahead, rbehind; 1362 1363 VM_OBJECT_ASSERT_WLOCKED(object); 1364 1365 KASSERT((object->flags & OBJ_SWAP) != 0, 1366 ("%s: object not swappable", __func__)); 1367 pindex = ma[0]->pindex; 1368 if (!swp_pager_haspage_iter(pindex, &rbehind, &rahead, blks)) { 1369 VM_OBJECT_WUNLOCK(object); 1370 uma_zfree(swrbuf_zone, bp); 1371 return (VM_PAGER_FAIL); 1372 } 1373 1374 KASSERT(count - 1 <= rahead, 1375 ("page count %d extends beyond swap block", count)); 1376 1377 /* 1378 * Do not transfer any pages other than those that are xbusied 1379 * when running during a split or collapse operation. This 1380 * prevents clustering from re-creating pages which are being 1381 * moved into another object. 1382 */ 1383 if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) { 1384 rahead = count - 1; 1385 rbehind = 0; 1386 } 1387 /* Clip readbehind/ahead ranges to exclude already resident pages. */ 1388 rbehind = a_rbehind != NULL ? imin(*a_rbehind, rbehind) : 0; 1389 rahead = a_rahead != NULL ? imin(*a_rahead, rahead - count + 1) : 0; 1390 /* Allocate pages. */ 1391 vm_object_prepare_buf_pages(object, bp->b_pages, count, &rbehind, 1392 &rahead, ma); 1393 bp->b_npages = rbehind + count + rahead; 1394 for (int i = 0; i < bp->b_npages; i++) 1395 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1396 bp->b_blkno = swp_pager_meta_lookup(blks, pindex - rbehind); 1397 KASSERT(bp->b_blkno != SWAPBLK_NONE, 1398 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1399 1400 vm_object_pip_add(object, bp->b_npages); 1401 VM_OBJECT_WUNLOCK(object); 1402 MPASS((bp->b_flags & B_MAXPHYS) != 0); 1403 1404 /* Report back actual behind/ahead read. */ 1405 if (a_rbehind != NULL) 1406 *a_rbehind = rbehind; 1407 if (a_rahead != NULL) 1408 *a_rahead = rahead; 1409 1410 bp->b_flags |= B_PAGING; 1411 bp->b_iocmd = BIO_READ; 1412 bp->b_iodone = swp_pager_async_iodone; 1413 bp->b_rcred = crhold(thread0.td_ucred); 1414 bp->b_wcred = crhold(thread0.td_ucred); 1415 bp->b_bufsize = bp->b_bcount = ptoa(bp->b_npages); 1416 bp->b_pgbefore = rbehind; 1417 bp->b_pgafter = rahead; 1418 1419 VM_CNT_INC(v_swapin); 1420 VM_CNT_ADD(v_swappgsin, bp->b_npages); 1421 1422 /* 1423 * perform the I/O. NOTE!!! bp cannot be considered valid after 1424 * this point because we automatically release it on completion. 1425 * Instead, we look at the one page we are interested in which we 1426 * still hold a lock on even through the I/O completion. 1427 * 1428 * The other pages in our ma[] array are also released on completion, 1429 * so we cannot assume they are valid anymore either. 1430 * 1431 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1432 */ 1433 BUF_KERNPROC(bp); 1434 swp_pager_strategy(bp); 1435 1436 /* 1437 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1438 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1439 * is set in the metadata for each page in the request. 1440 */ 1441 VM_OBJECT_WLOCK(object); 1442 /* This could be implemented more efficiently with aflags */ 1443 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) { 1444 ma[0]->oflags |= VPO_SWAPSLEEP; 1445 VM_CNT_INC(v_intrans); 1446 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP, 1447 "swread", hz * 20)) { 1448 printf( 1449 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1450 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1451 } 1452 } 1453 VM_OBJECT_WUNLOCK(object); 1454 1455 /* 1456 * If we had an unrecoverable read error pages will not be valid. 1457 */ 1458 for (int i = 0; i < count; i++) 1459 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1460 return (VM_PAGER_ERROR); 1461 1462 return (VM_PAGER_OK); 1463 1464 /* 1465 * A final note: in a low swap situation, we cannot deallocate swap 1466 * and mark a page dirty here because the caller is likely to mark 1467 * the page clean when we return, causing the page to possibly revert 1468 * to all-zero's later. 1469 */ 1470 } 1471 1472 static int 1473 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, 1474 int *rbehind, int *rahead) 1475 { 1476 struct buf *bp; 1477 struct pctrie_iter blks; 1478 1479 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1480 VM_OBJECT_WLOCK(object); 1481 swblk_iter_init_only(&blks, object); 1482 return (swap_pager_getpages_locked(&blks, object, ma, count, rbehind, 1483 rahead, bp)); 1484 } 1485 1486 /* 1487 * swap_pager_getpages_async(): 1488 * 1489 * Right now this is emulation of asynchronous operation on top of 1490 * swap_pager_getpages(). 1491 */ 1492 static int 1493 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count, 1494 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1495 { 1496 int r, error; 1497 1498 r = swap_pager_getpages(object, ma, count, rbehind, rahead); 1499 switch (r) { 1500 case VM_PAGER_OK: 1501 error = 0; 1502 break; 1503 case VM_PAGER_ERROR: 1504 error = EIO; 1505 break; 1506 case VM_PAGER_FAIL: 1507 error = EINVAL; 1508 break; 1509 default: 1510 panic("unhandled swap_pager_getpages() error %d", r); 1511 } 1512 (iodone)(arg, ma, count, error); 1513 1514 return (r); 1515 } 1516 1517 /* 1518 * swap_pager_putpages: 1519 * 1520 * Assign swap (if necessary) and initiate I/O on the specified pages. 1521 * 1522 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1523 * vm_page reservation system coupled with properly written VFS devices 1524 * should ensure that no low-memory deadlock occurs. This is an area 1525 * which needs work. 1526 * 1527 * The parent has N vm_object_pip_add() references prior to 1528 * calling us and will remove references for rtvals[] that are 1529 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1530 * completion. 1531 * 1532 * The parent has soft-busy'd the pages it passes us and will unbusy 1533 * those whose rtvals[] entry is not set to VM_PAGER_PEND on return. 1534 * We need to unbusy the rest on I/O completion. 1535 */ 1536 static void 1537 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count, 1538 int flags, int *rtvals) 1539 { 1540 struct pctrie_iter blks; 1541 struct page_range range; 1542 struct buf *bp; 1543 daddr_t addr, blk; 1544 vm_page_t mreq; 1545 int i, j, n; 1546 bool async; 1547 1548 KASSERT(count == 0 || ma[0]->object == object, 1549 ("%s: object mismatch %p/%p", 1550 __func__, object, ma[0]->object)); 1551 1552 VM_OBJECT_WUNLOCK(object); 1553 async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0; 1554 swp_pager_init_freerange(&range); 1555 1556 /* 1557 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1558 * The page is left dirty until the pageout operation completes 1559 * successfully. 1560 */ 1561 for (i = 0; i < count; i += n) { 1562 /* Maximum I/O size is limited by maximum swap block size. */ 1563 n = min(count - i, nsw_cluster_max); 1564 1565 if (async) { 1566 mtx_lock(&swbuf_mtx); 1567 while (nsw_wcount_async == 0) 1568 msleep(&nsw_wcount_async, &swbuf_mtx, PVM, 1569 "swbufa", 0); 1570 nsw_wcount_async--; 1571 mtx_unlock(&swbuf_mtx); 1572 } 1573 1574 /* Get a block of swap of size up to size n. */ 1575 blk = swp_pager_getswapspace(&n); 1576 if (blk == SWAPBLK_NONE) { 1577 mtx_lock(&swbuf_mtx); 1578 if (++nsw_wcount_async == 1) 1579 wakeup(&nsw_wcount_async); 1580 mtx_unlock(&swbuf_mtx); 1581 for (j = 0; j < n; ++j) 1582 rtvals[i + j] = VM_PAGER_FAIL; 1583 continue; 1584 } 1585 VM_OBJECT_WLOCK(object); 1586 swblk_iter_init_only(&blks, object); 1587 for (j = 0; j < n; ++j) { 1588 mreq = ma[i + j]; 1589 vm_page_aflag_clear(mreq, PGA_SWAP_FREE); 1590 KASSERT(mreq->object == object, 1591 ("%s: object mismatch %p/%p", 1592 __func__, mreq->object, object)); 1593 addr = swp_pager_meta_build(&blks, object, 1594 mreq->pindex, blk + j, false); 1595 if (addr != SWAPBLK_NONE) 1596 swp_pager_update_freerange(&range, addr); 1597 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1598 mreq->oflags |= VPO_SWAPINPROG; 1599 } 1600 VM_OBJECT_WUNLOCK(object); 1601 1602 bp = uma_zalloc(swwbuf_zone, M_WAITOK); 1603 MPASS((bp->b_flags & B_MAXPHYS) != 0); 1604 if (async) 1605 bp->b_flags |= B_ASYNC; 1606 bp->b_flags |= B_PAGING; 1607 bp->b_iocmd = BIO_WRITE; 1608 1609 bp->b_rcred = crhold(thread0.td_ucred); 1610 bp->b_wcred = crhold(thread0.td_ucred); 1611 bp->b_bcount = PAGE_SIZE * n; 1612 bp->b_bufsize = PAGE_SIZE * n; 1613 bp->b_blkno = blk; 1614 for (j = 0; j < n; j++) 1615 bp->b_pages[j] = ma[i + j]; 1616 bp->b_npages = n; 1617 1618 /* 1619 * Must set dirty range for NFS to work. 1620 */ 1621 bp->b_dirtyoff = 0; 1622 bp->b_dirtyend = bp->b_bcount; 1623 1624 VM_CNT_INC(v_swapout); 1625 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1626 1627 /* 1628 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1629 * can call the async completion routine at the end of a 1630 * synchronous I/O operation. Otherwise, our caller would 1631 * perform duplicate unbusy and wakeup operations on the page 1632 * and object, respectively. 1633 */ 1634 for (j = 0; j < n; j++) 1635 rtvals[i + j] = VM_PAGER_PEND; 1636 1637 /* 1638 * asynchronous 1639 * 1640 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1641 */ 1642 if (async) { 1643 bp->b_iodone = swp_pager_async_iodone; 1644 BUF_KERNPROC(bp); 1645 swp_pager_strategy(bp); 1646 continue; 1647 } 1648 1649 /* 1650 * synchronous 1651 * 1652 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1653 */ 1654 bp->b_iodone = bdone; 1655 swp_pager_strategy(bp); 1656 1657 /* 1658 * Wait for the sync I/O to complete. 1659 */ 1660 bwait(bp, PVM, "swwrt"); 1661 1662 /* 1663 * Now that we are through with the bp, we can call the 1664 * normal async completion, which frees everything up. 1665 */ 1666 swp_pager_async_iodone(bp); 1667 } 1668 swp_pager_freeswapspace(&range); 1669 VM_OBJECT_WLOCK(object); 1670 } 1671 1672 /* 1673 * swp_pager_async_iodone: 1674 * 1675 * Completion routine for asynchronous reads and writes from/to swap. 1676 * Also called manually by synchronous code to finish up a bp. 1677 * 1678 * This routine may not sleep. 1679 */ 1680 static void 1681 swp_pager_async_iodone(struct buf *bp) 1682 { 1683 int i; 1684 vm_object_t object = NULL; 1685 1686 /* 1687 * Report error - unless we ran out of memory, in which case 1688 * we've already logged it in swapgeom_strategy(). 1689 */ 1690 if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) { 1691 printf( 1692 "swap_pager: I/O error - %s failed; blkno %ld," 1693 "size %ld, error %d\n", 1694 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1695 (long)bp->b_blkno, 1696 (long)bp->b_bcount, 1697 bp->b_error 1698 ); 1699 } 1700 1701 /* 1702 * remove the mapping for kernel virtual 1703 */ 1704 if (buf_mapped(bp)) 1705 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1706 else 1707 bp->b_data = bp->b_kvabase; 1708 1709 if (bp->b_npages) { 1710 object = bp->b_pages[0]->object; 1711 VM_OBJECT_WLOCK(object); 1712 } 1713 1714 /* 1715 * cleanup pages. If an error occurs writing to swap, we are in 1716 * very serious trouble. If it happens to be a disk error, though, 1717 * we may be able to recover by reassigning the swap later on. So 1718 * in this case we remove the m->swapblk assignment for the page 1719 * but do not free it in the rlist. The errornous block(s) are thus 1720 * never reallocated as swap. Redirty the page and continue. 1721 */ 1722 for (i = 0; i < bp->b_npages; ++i) { 1723 vm_page_t m = bp->b_pages[i]; 1724 1725 m->oflags &= ~VPO_SWAPINPROG; 1726 if (m->oflags & VPO_SWAPSLEEP) { 1727 m->oflags &= ~VPO_SWAPSLEEP; 1728 wakeup(&object->handle); 1729 } 1730 1731 /* We always have space after I/O, successful or not. */ 1732 vm_page_aflag_set(m, PGA_SWAP_SPACE); 1733 1734 if (bp->b_ioflags & BIO_ERROR) { 1735 /* 1736 * If an error occurs I'd love to throw the swapblk 1737 * away without freeing it back to swapspace, so it 1738 * can never be used again. But I can't from an 1739 * interrupt. 1740 */ 1741 if (bp->b_iocmd == BIO_READ) { 1742 /* 1743 * NOTE: for reads, m->dirty will probably 1744 * be overridden by the original caller of 1745 * getpages so don't play cute tricks here. 1746 */ 1747 vm_page_invalid(m); 1748 if (i < bp->b_pgbefore || 1749 i >= bp->b_npages - bp->b_pgafter) 1750 vm_page_free_invalid(m); 1751 } else { 1752 /* 1753 * If a write error occurs, reactivate page 1754 * so it doesn't clog the inactive list, 1755 * then finish the I/O. 1756 */ 1757 MPASS(m->dirty == VM_PAGE_BITS_ALL); 1758 1759 /* PQ_UNSWAPPABLE? */ 1760 vm_page_activate(m); 1761 vm_page_sunbusy(m); 1762 } 1763 } else if (bp->b_iocmd == BIO_READ) { 1764 /* 1765 * NOTE: for reads, m->dirty will probably be 1766 * overridden by the original caller of getpages so 1767 * we cannot set them in order to free the underlying 1768 * swap in a low-swap situation. I don't think we'd 1769 * want to do that anyway, but it was an optimization 1770 * that existed in the old swapper for a time before 1771 * it got ripped out due to precisely this problem. 1772 */ 1773 KASSERT(!pmap_page_is_mapped(m), 1774 ("swp_pager_async_iodone: page %p is mapped", m)); 1775 KASSERT(m->dirty == 0, 1776 ("swp_pager_async_iodone: page %p is dirty", m)); 1777 1778 vm_page_valid(m); 1779 if (i < bp->b_pgbefore || 1780 i >= bp->b_npages - bp->b_pgafter) 1781 vm_page_readahead_finish(m); 1782 } else { 1783 /* 1784 * For write success, clear the dirty 1785 * status, then finish the I/O ( which decrements the 1786 * busy count and possibly wakes waiter's up ). 1787 * A page is only written to swap after a period of 1788 * inactivity. Therefore, we do not expect it to be 1789 * reused. 1790 */ 1791 KASSERT(!pmap_page_is_write_mapped(m), 1792 ("swp_pager_async_iodone: page %p is not write" 1793 " protected", m)); 1794 vm_page_undirty(m); 1795 vm_page_deactivate_noreuse(m); 1796 vm_page_sunbusy(m); 1797 } 1798 } 1799 1800 /* 1801 * adjust pip. NOTE: the original parent may still have its own 1802 * pip refs on the object. 1803 */ 1804 if (object != NULL) { 1805 vm_object_pip_wakeupn(object, bp->b_npages); 1806 VM_OBJECT_WUNLOCK(object); 1807 } 1808 1809 /* 1810 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1811 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1812 * trigger a KASSERT in relpbuf(). 1813 */ 1814 if (bp->b_vp) { 1815 bp->b_vp = NULL; 1816 bp->b_bufobj = NULL; 1817 } 1818 /* 1819 * release the physical I/O buffer 1820 */ 1821 if (bp->b_flags & B_ASYNC) { 1822 mtx_lock(&swbuf_mtx); 1823 if (++nsw_wcount_async == 1) 1824 wakeup(&nsw_wcount_async); 1825 mtx_unlock(&swbuf_mtx); 1826 } 1827 uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp); 1828 } 1829 1830 int 1831 swap_pager_nswapdev(void) 1832 { 1833 1834 return (nswapdev); 1835 } 1836 1837 static void 1838 swp_pager_force_dirty(struct page_range *range, vm_page_t m, daddr_t *blk) 1839 { 1840 vm_page_dirty(m); 1841 swap_pager_unswapped_acct(m); 1842 swp_pager_update_freerange(range, *blk); 1843 *blk = SWAPBLK_NONE; 1844 vm_page_launder(m); 1845 } 1846 1847 u_long 1848 swap_pager_swapped_pages(vm_object_t object) 1849 { 1850 struct pctrie_iter blks; 1851 struct swblk *sb; 1852 u_long res; 1853 int i; 1854 1855 VM_OBJECT_ASSERT_LOCKED(object); 1856 1857 if (swblk_is_empty(object)) 1858 return (0); 1859 1860 res = 0; 1861 for (sb = swblk_iter_init(&blks, object, 0); sb != NULL; 1862 sb = swblk_iter_next(&blks)) { 1863 for (i = 0; i < SWAP_META_PAGES; i++) { 1864 if (sb->d[i] != SWAPBLK_NONE) 1865 res++; 1866 } 1867 } 1868 return (res); 1869 } 1870 1871 /* 1872 * swap_pager_swapoff_object: 1873 * 1874 * Page in all of the pages that have been paged out for an object 1875 * to a swap device. 1876 */ 1877 static void 1878 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object, 1879 struct buf **bp) 1880 { 1881 struct pctrie_iter blks, pages; 1882 struct page_range range; 1883 struct swblk *sb; 1884 vm_page_t m; 1885 int i, rahead, rv; 1886 bool sb_empty; 1887 1888 VM_OBJECT_ASSERT_WLOCKED(object); 1889 KASSERT((object->flags & OBJ_SWAP) != 0, 1890 ("%s: Object not swappable", __func__)); 1891 KASSERT((object->flags & OBJ_DEAD) == 0, 1892 ("%s: Object already dead", __func__)); 1893 KASSERT((sp->sw_flags & SW_CLOSING) != 0, 1894 ("%s: Device not blocking further allocations", __func__)); 1895 1896 vm_page_iter_init(&pages, object); 1897 swp_pager_init_freerange(&range); 1898 sb = swblk_iter_init(&blks, object, 0); 1899 while (sb != NULL) { 1900 sb_empty = true; 1901 for (i = 0; i < SWAP_META_PAGES; i++) { 1902 /* Skip an invalid block. */ 1903 if (sb->d[i] == SWAPBLK_NONE) 1904 continue; 1905 /* Skip a block not of this device. */ 1906 if (!swp_pager_isondev(sb->d[i], sp)) { 1907 sb_empty = false; 1908 continue; 1909 } 1910 1911 /* 1912 * Look for a page corresponding to this block. If the 1913 * found page has pending operations, sleep and restart 1914 * the scan. 1915 */ 1916 m = vm_radix_iter_lookup(&pages, blks.index + i); 1917 if (m != NULL && (m->oflags & VPO_SWAPINPROG) != 0) { 1918 m->oflags |= VPO_SWAPSLEEP; 1919 VM_OBJECT_SLEEP(object, &object->handle, PSWP, 1920 "swpoff", 0); 1921 break; 1922 } 1923 1924 /* 1925 * If the found page is valid, mark it dirty and free 1926 * the swap block. 1927 */ 1928 if (m != NULL && vm_page_all_valid(m)) { 1929 swp_pager_force_dirty(&range, m, &sb->d[i]); 1930 continue; 1931 } 1932 /* Is there a page we can acquire or allocate? */ 1933 if (m != NULL) { 1934 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL)) 1935 break; 1936 } else { 1937 m = vm_page_alloc_iter(object, blks.index + i, 1938 VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL, 1939 &pages); 1940 if (m == NULL) 1941 break; 1942 } 1943 1944 /* Get the page from swap, and restart the scan. */ 1945 vm_object_pip_add(object, 1); 1946 rahead = SWAP_META_PAGES; 1947 rv = swap_pager_getpages_locked(&blks, object, &m, 1, 1948 NULL, &rahead, *bp); 1949 if (rv != VM_PAGER_OK) 1950 panic("%s: read from swap failed: %d", 1951 __func__, rv); 1952 *bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1953 VM_OBJECT_WLOCK(object); 1954 vm_object_pip_wakeupn(object, 1); 1955 KASSERT(vm_page_all_valid(m), 1956 ("%s: Page %p not all valid", __func__, m)); 1957 vm_page_deactivate_noreuse(m); 1958 vm_page_xunbusy(m); 1959 break; 1960 } 1961 if (i < SWAP_META_PAGES) { 1962 /* 1963 * The object lock has been released and regained. 1964 * Perhaps the object is now dead. 1965 */ 1966 if ((object->flags & OBJ_DEAD) != 0) { 1967 /* 1968 * Make sure that pending writes finish before 1969 * returning. 1970 */ 1971 vm_object_pip_wait(object, "swpoff"); 1972 swp_pager_meta_free_all(object); 1973 break; 1974 } 1975 1976 /* 1977 * The swapblk could have been freed, so reset the pages 1978 * iterator and search again for the first swblk at or 1979 * after blks.index. 1980 */ 1981 pctrie_iter_reset(&pages); 1982 sb = swblk_iter_init(&blks, object, blks.index); 1983 continue; 1984 } 1985 if (sb_empty) { 1986 swblk_iter_remove(&blks); 1987 uma_zfree(swblk_zone, sb); 1988 } 1989 1990 /* 1991 * It is safe to advance to the next block. No allocations 1992 * before blk.index have happened, even with the lock released, 1993 * because allocations on this device are blocked. 1994 */ 1995 sb = swblk_iter_next(&blks); 1996 } 1997 swp_pager_freeswapspace(&range); 1998 } 1999 2000 /* 2001 * swap_pager_swapoff: 2002 * 2003 * Page in all of the pages that have been paged out to the 2004 * given device. The corresponding blocks in the bitmap must be 2005 * marked as allocated and the device must be flagged SW_CLOSING. 2006 * There may be no processes swapped out to the device. 2007 * 2008 * This routine may block. 2009 */ 2010 static void 2011 swap_pager_swapoff(struct swdevt *sp) 2012 { 2013 vm_object_t object; 2014 struct buf *bp; 2015 int retries; 2016 2017 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2018 2019 retries = 0; 2020 full_rescan: 2021 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 2022 mtx_lock(&vm_object_list_mtx); 2023 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2024 if ((object->flags & OBJ_SWAP) == 0) 2025 continue; 2026 mtx_unlock(&vm_object_list_mtx); 2027 /* Depends on type-stability. */ 2028 VM_OBJECT_WLOCK(object); 2029 2030 /* 2031 * Dead objects are eventually terminated on their own. 2032 */ 2033 if ((object->flags & OBJ_DEAD) != 0) 2034 goto next_obj; 2035 2036 /* 2037 * Sync with fences placed after pctrie 2038 * initialization. We must not access pctrie below 2039 * unless we checked that our object is swap and not 2040 * dead. 2041 */ 2042 atomic_thread_fence_acq(); 2043 if ((object->flags & OBJ_SWAP) == 0) 2044 goto next_obj; 2045 2046 swap_pager_swapoff_object(sp, object, &bp); 2047 next_obj: 2048 VM_OBJECT_WUNLOCK(object); 2049 mtx_lock(&vm_object_list_mtx); 2050 } 2051 mtx_unlock(&vm_object_list_mtx); 2052 uma_zfree(swrbuf_zone, bp); 2053 2054 if (sp->sw_used) { 2055 /* 2056 * Objects may be locked or paging to the device being 2057 * removed, so we will miss their pages and need to 2058 * make another pass. We have marked this device as 2059 * SW_CLOSING, so the activity should finish soon. 2060 */ 2061 retries++; 2062 if (retries > 100) { 2063 panic("swapoff: failed to locate %d swap blocks", 2064 sp->sw_used); 2065 } 2066 pause("swpoff", hz / 20); 2067 goto full_rescan; 2068 } 2069 EVENTHANDLER_INVOKE(swapoff, sp); 2070 } 2071 2072 /************************************************************************ 2073 * SWAP META DATA * 2074 ************************************************************************ 2075 * 2076 * These routines manipulate the swap metadata stored in the 2077 * OBJT_SWAP object. 2078 * 2079 * Swap metadata is implemented with a global hash and not directly 2080 * linked into the object. Instead the object simply contains 2081 * appropriate tracking counters. 2082 */ 2083 2084 /* 2085 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free? 2086 */ 2087 static bool 2088 swp_pager_swblk_empty(struct swblk *sb, int start, int limit) 2089 { 2090 int i; 2091 2092 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES); 2093 for (i = start; i < limit; i++) { 2094 if (sb->d[i] != SWAPBLK_NONE) 2095 return (false); 2096 } 2097 return (true); 2098 } 2099 2100 /* 2101 * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free 2102 * 2103 * Nothing is done if the block is still in use. 2104 */ 2105 static void 2106 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb) 2107 { 2108 2109 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2110 swblk_lookup_remove(object, sb); 2111 uma_zfree(swblk_zone, sb); 2112 } 2113 } 2114 2115 /* 2116 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 2117 * 2118 * Try to add the specified swapblk to the object's swap metadata. If 2119 * nowait_noreplace is set, add the specified swapblk only if there is no 2120 * previously assigned swapblk at pindex. If the swapblk is invalid, and 2121 * replaces a valid swapblk, empty swap metadata is freed. If memory 2122 * allocation fails, and nowait_noreplace is set, return the specified 2123 * swapblk immediately to indicate failure; otherwise, wait and retry until 2124 * memory allocation succeeds. Return the previously assigned swapblk, if 2125 * any. 2126 */ 2127 static daddr_t 2128 swp_pager_meta_build(struct pctrie_iter *blks, vm_object_t object, 2129 vm_pindex_t pindex, daddr_t swapblk, bool nowait_noreplace) 2130 { 2131 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted; 2132 struct swblk *sb, *sb1; 2133 vm_pindex_t modpi; 2134 daddr_t prev_swapblk; 2135 int error, i; 2136 2137 VM_OBJECT_ASSERT_WLOCKED(object); 2138 2139 sb = swblk_iter_lookup(blks, pindex); 2140 if (sb == NULL) { 2141 if (swapblk == SWAPBLK_NONE) 2142 return (SWAPBLK_NONE); 2143 for (;;) { 2144 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc == 2145 pageproc ? M_USE_RESERVE : 0)); 2146 if (sb != NULL) { 2147 sb->p = rounddown(pindex, SWAP_META_PAGES); 2148 for (i = 0; i < SWAP_META_PAGES; i++) 2149 sb->d[i] = SWAPBLK_NONE; 2150 if (atomic_cmpset_int(&swblk_zone_exhausted, 2151 1, 0)) 2152 printf("swblk zone ok\n"); 2153 break; 2154 } 2155 if (nowait_noreplace) 2156 return (swapblk); 2157 VM_OBJECT_WUNLOCK(object); 2158 if (uma_zone_exhausted(swblk_zone)) { 2159 if (atomic_cmpset_int(&swblk_zone_exhausted, 2160 0, 1)) 2161 printf("swap blk zone exhausted, " 2162 "increase kern.maxswzone\n"); 2163 vm_pageout_oom(VM_OOM_SWAPZ); 2164 pause("swzonxb", 10); 2165 } else 2166 uma_zwait(swblk_zone); 2167 VM_OBJECT_WLOCK(object); 2168 sb = swblk_iter_reinit(blks, object, pindex); 2169 if (sb != NULL) 2170 /* 2171 * Somebody swapped out a nearby page, 2172 * allocating swblk at the pindex index, 2173 * while we dropped the object lock. 2174 */ 2175 goto allocated; 2176 } 2177 for (;;) { 2178 error = swblk_iter_insert(blks, sb); 2179 if (error == 0) { 2180 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2181 1, 0)) 2182 printf("swpctrie zone ok\n"); 2183 break; 2184 } 2185 if (nowait_noreplace) { 2186 uma_zfree(swblk_zone, sb); 2187 return (swapblk); 2188 } 2189 VM_OBJECT_WUNLOCK(object); 2190 if (uma_zone_exhausted(swpctrie_zone)) { 2191 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2192 0, 1)) 2193 printf("swap pctrie zone exhausted, " 2194 "increase kern.maxswzone\n"); 2195 vm_pageout_oom(VM_OOM_SWAPZ); 2196 pause("swzonxp", 10); 2197 } else 2198 uma_zwait(swpctrie_zone); 2199 VM_OBJECT_WLOCK(object); 2200 sb1 = swblk_iter_reinit(blks, object, pindex); 2201 if (sb1 != NULL) { 2202 uma_zfree(swblk_zone, sb); 2203 sb = sb1; 2204 goto allocated; 2205 } 2206 } 2207 } 2208 allocated: 2209 MPASS(sb->p == rounddown(pindex, SWAP_META_PAGES)); 2210 2211 modpi = pindex % SWAP_META_PAGES; 2212 /* Return prior contents of metadata. */ 2213 prev_swapblk = sb->d[modpi]; 2214 if (!nowait_noreplace || prev_swapblk == SWAPBLK_NONE) { 2215 /* Enter block into metadata. */ 2216 sb->d[modpi] = swapblk; 2217 2218 /* 2219 * Free the swblk if we end up with the empty page run. 2220 */ 2221 if (swapblk == SWAPBLK_NONE && 2222 swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2223 swblk_iter_remove(blks); 2224 uma_zfree(swblk_zone, sb); 2225 } 2226 } 2227 return (prev_swapblk); 2228 } 2229 2230 /* 2231 * SWP_PAGER_META_TRANSFER() - transfer a range of blocks in the srcobject's 2232 * swap metadata into dstobject. 2233 * 2234 * Blocks in src that correspond to holes in dst are transferred. Blocks 2235 * in src that correspond to blocks in dst are freed. 2236 */ 2237 static void 2238 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject, 2239 vm_pindex_t pindex, vm_pindex_t count) 2240 { 2241 struct pctrie_iter dstblks, srcblks; 2242 struct page_range range; 2243 struct swblk *sb; 2244 daddr_t blk, d[SWAP_META_PAGES]; 2245 vm_pindex_t last; 2246 int d_mask, i, limit, start; 2247 _Static_assert(8 * sizeof(d_mask) >= SWAP_META_PAGES, 2248 "d_mask not big enough"); 2249 2250 VM_OBJECT_ASSERT_WLOCKED(srcobject); 2251 VM_OBJECT_ASSERT_WLOCKED(dstobject); 2252 2253 if (count == 0 || swblk_is_empty(srcobject)) 2254 return; 2255 2256 swp_pager_init_freerange(&range); 2257 d_mask = 0; 2258 last = pindex + count; 2259 swblk_iter_init_only(&dstblks, dstobject); 2260 for (sb = swblk_iter_limit_init(&srcblks, srcobject, pindex, last), 2261 start = swblk_start(sb, pindex); 2262 sb != NULL; sb = swblk_iter_next(&srcblks), start = 0) { 2263 limit = MIN(last - srcblks.index, SWAP_META_PAGES); 2264 for (i = start; i < limit; i++) { 2265 if (sb->d[i] == SWAPBLK_NONE) 2266 continue; 2267 blk = swp_pager_meta_build(&dstblks, dstobject, 2268 srcblks.index + i - pindex, sb->d[i], true); 2269 if (blk == sb->d[i]) { 2270 /* 2271 * Failed memory allocation stopped transfer; 2272 * save this block for transfer with lock 2273 * released. 2274 */ 2275 d[i] = blk; 2276 d_mask |= 1 << i; 2277 } else if (blk != SWAPBLK_NONE) { 2278 /* Dst has a block at pindex, so free block. */ 2279 swp_pager_update_freerange(&range, sb->d[i]); 2280 } 2281 sb->d[i] = SWAPBLK_NONE; 2282 } 2283 if (swp_pager_swblk_empty(sb, 0, start) && 2284 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2285 swblk_iter_remove(&srcblks); 2286 uma_zfree(swblk_zone, sb); 2287 } 2288 if (d_mask != 0) { 2289 /* Finish block transfer, with the lock released. */ 2290 VM_OBJECT_WUNLOCK(srcobject); 2291 do { 2292 i = ffs(d_mask) - 1; 2293 swp_pager_meta_build(&dstblks, dstobject, 2294 srcblks.index + i - pindex, d[i], false); 2295 d_mask &= ~(1 << i); 2296 } while (d_mask != 0); 2297 VM_OBJECT_WLOCK(srcobject); 2298 2299 /* 2300 * While the lock was not held, the iterator path could 2301 * have become stale, so discard it. 2302 */ 2303 pctrie_iter_reset(&srcblks); 2304 } 2305 } 2306 swp_pager_freeswapspace(&range); 2307 } 2308 2309 /* 2310 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2311 * 2312 * Return freed swap blocks to the swap bitmap, and free emptied swblk 2313 * metadata. With 'freed' set, provide a count of freed blocks that were 2314 * not associated with valid resident pages. 2315 */ 2316 static void 2317 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count, 2318 vm_size_t *freed) 2319 { 2320 struct pctrie_iter blks, pages; 2321 struct page_range range; 2322 struct swblk *sb; 2323 vm_page_t m; 2324 vm_pindex_t last; 2325 vm_size_t fc; 2326 int i, limit, start; 2327 2328 VM_OBJECT_ASSERT_WLOCKED(object); 2329 2330 fc = 0; 2331 if (count == 0 || swblk_is_empty(object)) 2332 goto out; 2333 2334 swp_pager_init_freerange(&range); 2335 vm_page_iter_init(&pages, object); 2336 last = pindex + count; 2337 for (sb = swblk_iter_limit_init(&blks, object, pindex, last), 2338 start = swblk_start(sb, pindex); 2339 sb != NULL; sb = swblk_iter_next(&blks), start = 0) { 2340 limit = MIN(last - blks.index, SWAP_META_PAGES); 2341 for (i = start; i < limit; i++) { 2342 if (sb->d[i] == SWAPBLK_NONE) 2343 continue; 2344 swp_pager_update_freerange(&range, sb->d[i]); 2345 if (freed != NULL) { 2346 m = vm_radix_iter_lookup(&pages, blks.index + i); 2347 if (m == NULL || vm_page_none_valid(m)) 2348 fc++; 2349 } 2350 sb->d[i] = SWAPBLK_NONE; 2351 } 2352 if (swp_pager_swblk_empty(sb, 0, start) && 2353 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2354 swblk_iter_remove(&blks); 2355 uma_zfree(swblk_zone, sb); 2356 } 2357 } 2358 swp_pager_freeswapspace(&range); 2359 out: 2360 if (freed != NULL) 2361 *freed = fc; 2362 } 2363 2364 static void 2365 swp_pager_meta_free_block(struct swblk *sb, void *rangev) 2366 { 2367 struct page_range *range = rangev; 2368 2369 for (int i = 0; i < SWAP_META_PAGES; i++) { 2370 if (sb->d[i] != SWAPBLK_NONE) 2371 swp_pager_update_freerange(range, sb->d[i]); 2372 } 2373 uma_zfree(swblk_zone, sb); 2374 } 2375 2376 /* 2377 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2378 * 2379 * This routine locates and destroys all swap metadata associated with 2380 * an object. 2381 */ 2382 static void 2383 swp_pager_meta_free_all(vm_object_t object) 2384 { 2385 struct page_range range; 2386 2387 VM_OBJECT_ASSERT_WLOCKED(object); 2388 2389 swp_pager_init_freerange(&range); 2390 SWAP_PCTRIE_RECLAIM_CALLBACK(&object->un_pager.swp.swp_blks, 2391 swp_pager_meta_free_block, &range); 2392 swp_pager_freeswapspace(&range); 2393 } 2394 2395 /* 2396 * SWP_PAGER_METACTL() - misc control of swap meta data. 2397 * 2398 * This routine is capable of looking up, or removing swapblk 2399 * assignments in the swap meta data. It returns the swapblk being 2400 * looked-up, popped, or SWAPBLK_NONE if the block was invalid. 2401 * 2402 * When acting on a busy resident page and paging is in progress, we 2403 * have to wait until paging is complete but otherwise can act on the 2404 * busy page. 2405 */ 2406 static daddr_t 2407 swp_pager_meta_lookup(struct pctrie_iter *blks, vm_pindex_t pindex) 2408 { 2409 struct swblk *sb; 2410 2411 sb = swblk_iter_lookup(blks, pindex); 2412 if (sb == NULL) 2413 return (SWAPBLK_NONE); 2414 return (sb->d[pindex % SWAP_META_PAGES]); 2415 } 2416 2417 /* 2418 * Returns the least page index which is greater than or equal to the parameter 2419 * pindex and for which there is a swap block allocated. Returns OBJ_MAX_SIZE 2420 * if are no allocated swap blocks for the object after the requested pindex. 2421 */ 2422 static vm_pindex_t 2423 swap_pager_iter_find_least(struct pctrie_iter *blks, vm_pindex_t pindex) 2424 { 2425 struct swblk *sb; 2426 int i; 2427 2428 if ((sb = swblk_iter_lookup_ge(blks, pindex)) == NULL) 2429 return (OBJ_MAX_SIZE); 2430 if (blks->index < pindex) { 2431 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) { 2432 if (sb->d[i] != SWAPBLK_NONE) 2433 return (blks->index + i); 2434 } 2435 if ((sb = swblk_iter_next(blks)) == NULL) 2436 return (OBJ_MAX_SIZE); 2437 } 2438 for (i = 0; i < SWAP_META_PAGES; i++) { 2439 if (sb->d[i] != SWAPBLK_NONE) 2440 return (blks->index + i); 2441 } 2442 2443 /* 2444 * We get here if a swblk is present in the trie but it 2445 * doesn't map any blocks. 2446 */ 2447 MPASS(0); 2448 return (OBJ_MAX_SIZE); 2449 } 2450 2451 /* 2452 * Find the first index >= pindex that has either a valid page or a swap 2453 * block. 2454 */ 2455 vm_pindex_t 2456 swap_pager_seek_data(vm_object_t object, vm_pindex_t pindex) 2457 { 2458 struct pctrie_iter blks, pages; 2459 vm_page_t m; 2460 vm_pindex_t swap_index; 2461 2462 VM_OBJECT_ASSERT_RLOCKED(object); 2463 vm_page_iter_init(&pages, object); 2464 m = vm_radix_iter_lookup_ge(&pages, pindex); 2465 if (m != NULL && pages.index == pindex && vm_page_any_valid(m)) 2466 return (pages.index); 2467 swblk_iter_init_only(&blks, object); 2468 swap_index = swap_pager_iter_find_least(&blks, pindex); 2469 if (swap_index == pindex) 2470 return (swap_index); 2471 2472 /* 2473 * Find the first resident page after m, before swap_index. 2474 */ 2475 while (m != NULL && pages.index < swap_index) { 2476 if (vm_page_any_valid(m)) 2477 return (pages.index); 2478 m = vm_radix_iter_step(&pages); 2479 } 2480 if (swap_index == OBJ_MAX_SIZE) 2481 swap_index = object->size; 2482 return (swap_index); 2483 } 2484 2485 /* 2486 * Find the first index >= pindex that has neither a valid page nor a swap 2487 * block. 2488 */ 2489 vm_pindex_t 2490 swap_pager_seek_hole(vm_object_t object, vm_pindex_t pindex) 2491 { 2492 struct pctrie_iter blks, pages; 2493 struct swblk *sb; 2494 vm_page_t m; 2495 2496 VM_OBJECT_ASSERT_RLOCKED(object); 2497 vm_page_iter_init(&pages, object); 2498 swblk_iter_init_only(&blks, object); 2499 while (((m = vm_radix_iter_lookup(&pages, pindex)) != NULL && 2500 vm_page_any_valid(m)) || 2501 ((sb = swblk_iter_lookup(&blks, pindex)) != NULL && 2502 sb->d[pindex % SWAP_META_PAGES] != SWAPBLK_NONE)) 2503 pindex++; 2504 return (pindex); 2505 } 2506 2507 /* 2508 * Is every page in the backing object or swap shadowed in the parent, and 2509 * unbusy and valid in swap? 2510 */ 2511 bool 2512 swap_pager_scan_all_shadowed(vm_object_t object) 2513 { 2514 struct pctrie_iter backing_blks, backing_pages, blks, pages; 2515 vm_object_t backing_object; 2516 vm_page_t p, pp; 2517 vm_pindex_t backing_offset_index, new_pindex, pi, pi_ubound, ps, pv; 2518 2519 VM_OBJECT_ASSERT_WLOCKED(object); 2520 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 2521 2522 backing_object = object->backing_object; 2523 2524 if ((backing_object->flags & OBJ_ANON) == 0) 2525 return (false); 2526 2527 KASSERT((object->flags & OBJ_ANON) != 0, 2528 ("Shadow object is not anonymous")); 2529 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 2530 pi_ubound = MIN(backing_object->size, 2531 backing_offset_index + object->size); 2532 vm_page_iter_init(&pages, object); 2533 vm_page_iter_init(&backing_pages, backing_object); 2534 swblk_iter_init_only(&blks, object); 2535 swblk_iter_init_only(&backing_blks, backing_object); 2536 2537 /* 2538 * Only check pages inside the parent object's range and inside the 2539 * parent object's mapping of the backing object. 2540 */ 2541 pv = ps = pi = backing_offset_index - 1; 2542 for (;;) { 2543 if (pi == pv) { 2544 p = vm_radix_iter_lookup_ge(&backing_pages, pv + 1); 2545 pv = p != NULL ? p->pindex : backing_object->size; 2546 } 2547 if (pi == ps) 2548 ps = swap_pager_iter_find_least(&backing_blks, ps + 1); 2549 pi = MIN(pv, ps); 2550 if (pi >= pi_ubound) 2551 break; 2552 2553 if (pi == pv) { 2554 /* 2555 * If the backing object page is busy a grandparent or 2556 * older page may still be undergoing CoW. It is not 2557 * safe to collapse the backing object until it is 2558 * quiesced. 2559 */ 2560 if (vm_page_tryxbusy(p) == 0) 2561 return (false); 2562 2563 /* 2564 * We raced with the fault handler that left newly 2565 * allocated invalid page on the object queue and 2566 * retried. 2567 */ 2568 if (!vm_page_all_valid(p)) 2569 break; 2570 2571 /* 2572 * Busy of p disallows fault handler to validate parent 2573 * page (pp, below). 2574 */ 2575 } 2576 2577 /* 2578 * See if the parent has the page or if the parent's object 2579 * pager has the page. If the parent has the page but the page 2580 * is not valid, the parent's object pager must have the page. 2581 * 2582 * If this fails, the parent does not completely shadow the 2583 * object and we might as well give up now. 2584 */ 2585 new_pindex = pi - backing_offset_index; 2586 pp = vm_radix_iter_lookup(&pages, new_pindex); 2587 2588 /* 2589 * The valid check here is stable due to object lock being 2590 * required to clear valid and initiate paging. 2591 */ 2592 if ((pp == NULL || vm_page_none_valid(pp)) && 2593 !swp_pager_haspage_iter(new_pindex, NULL, NULL, &blks)) 2594 break; 2595 if (pi == pv) 2596 vm_page_xunbusy(p); 2597 } 2598 if (pi < pi_ubound) { 2599 if (pi == pv) 2600 vm_page_xunbusy(p); 2601 return (false); 2602 } 2603 return (true); 2604 } 2605 2606 /* 2607 * System call swapon(name) enables swapping on device name, 2608 * which must be in the swdevsw. Return EBUSY 2609 * if already swapping on this device. 2610 */ 2611 #ifndef _SYS_SYSPROTO_H_ 2612 struct swapon_args { 2613 char *name; 2614 }; 2615 #endif 2616 2617 int 2618 sys_swapon(struct thread *td, struct swapon_args *uap) 2619 { 2620 struct vattr attr; 2621 struct vnode *vp; 2622 struct nameidata nd; 2623 int error; 2624 2625 error = priv_check(td, PRIV_SWAPON); 2626 if (error) 2627 return (error); 2628 2629 sx_xlock(&swdev_syscall_lock); 2630 2631 /* 2632 * Swap metadata may not fit in the KVM if we have physical 2633 * memory of >1GB. 2634 */ 2635 if (swblk_zone == NULL) { 2636 error = ENOMEM; 2637 goto done; 2638 } 2639 2640 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 2641 UIO_USERSPACE, uap->name); 2642 error = namei(&nd); 2643 if (error) 2644 goto done; 2645 2646 NDFREE_PNBUF(&nd); 2647 vp = nd.ni_vp; 2648 2649 if (vn_isdisk_error(vp, &error)) { 2650 error = swapongeom(vp); 2651 } else if (vp->v_type == VREG && 2652 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2653 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2654 /* 2655 * Allow direct swapping to NFS regular files in the same 2656 * way that nfs_mountroot() sets up diskless swapping. 2657 */ 2658 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2659 } 2660 2661 if (error != 0) 2662 vput(vp); 2663 else 2664 VOP_UNLOCK(vp); 2665 done: 2666 sx_xunlock(&swdev_syscall_lock); 2667 return (error); 2668 } 2669 2670 /* 2671 * Check that the total amount of swap currently configured does not 2672 * exceed half the theoretical maximum. If it does, print a warning 2673 * message. 2674 */ 2675 static void 2676 swapon_check_swzone(void) 2677 { 2678 2679 /* recommend using no more than half that amount */ 2680 if (swap_total > swap_maxpages / 2) { 2681 printf("warning: total configured swap (%lu pages) " 2682 "exceeds maximum recommended amount (%lu pages).\n", 2683 swap_total, swap_maxpages / 2); 2684 printf("warning: increase kern.maxswzone " 2685 "or reduce amount of swap.\n"); 2686 } 2687 } 2688 2689 static void 2690 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2691 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2692 { 2693 struct swdevt *sp, *tsp; 2694 daddr_t dvbase; 2695 2696 /* 2697 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2698 * First chop nblks off to page-align it, then convert. 2699 * 2700 * sw->sw_nblks is in page-sized chunks now too. 2701 */ 2702 nblks &= ~(ctodb(1) - 1); 2703 nblks = dbtoc(nblks); 2704 2705 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2706 sp->sw_blist = blist_create(nblks, M_WAITOK); 2707 sp->sw_vp = vp; 2708 sp->sw_id = id; 2709 sp->sw_dev = dev; 2710 sp->sw_nblks = nblks; 2711 sp->sw_used = 0; 2712 sp->sw_strategy = strategy; 2713 sp->sw_close = close; 2714 sp->sw_flags = flags; 2715 2716 /* 2717 * Do not free the first blocks in order to avoid overwriting 2718 * any bsd label at the front of the partition 2719 */ 2720 blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE), 2721 nblks - howmany(BBSIZE, PAGE_SIZE)); 2722 2723 dvbase = 0; 2724 mtx_lock(&sw_dev_mtx); 2725 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2726 if (tsp->sw_end >= dvbase) { 2727 /* 2728 * We put one uncovered page between the devices 2729 * in order to definitively prevent any cross-device 2730 * I/O requests 2731 */ 2732 dvbase = tsp->sw_end + 1; 2733 } 2734 } 2735 sp->sw_first = dvbase; 2736 sp->sw_end = dvbase + nblks; 2737 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2738 nswapdev++; 2739 swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE); 2740 swap_total += nblks; 2741 swapon_check_swzone(); 2742 swp_sizecheck(); 2743 mtx_unlock(&sw_dev_mtx); 2744 EVENTHANDLER_INVOKE(swapon, sp); 2745 } 2746 2747 /* 2748 * SYSCALL: swapoff(devname) 2749 * 2750 * Disable swapping on the given device. 2751 * 2752 * XXX: Badly designed system call: it should use a device index 2753 * rather than filename as specification. We keep sw_vp around 2754 * only to make this work. 2755 */ 2756 static int 2757 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg, 2758 u_int flags) 2759 { 2760 struct vnode *vp; 2761 struct nameidata nd; 2762 struct swdevt *sp; 2763 int error; 2764 2765 error = priv_check(td, PRIV_SWAPOFF); 2766 if (error != 0) 2767 return (error); 2768 if ((flags & ~(SWAPOFF_FORCE)) != 0) 2769 return (EINVAL); 2770 2771 sx_xlock(&swdev_syscall_lock); 2772 2773 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name); 2774 error = namei(&nd); 2775 if (error) 2776 goto done; 2777 NDFREE_PNBUF(&nd); 2778 vp = nd.ni_vp; 2779 2780 mtx_lock(&sw_dev_mtx); 2781 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2782 if (sp->sw_vp == vp) 2783 break; 2784 } 2785 mtx_unlock(&sw_dev_mtx); 2786 if (sp == NULL) { 2787 error = EINVAL; 2788 goto done; 2789 } 2790 error = swapoff_one(sp, td->td_ucred, flags); 2791 done: 2792 sx_xunlock(&swdev_syscall_lock); 2793 return (error); 2794 } 2795 2796 2797 #ifdef COMPAT_FREEBSD13 2798 int 2799 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap) 2800 { 2801 return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0)); 2802 } 2803 #endif 2804 2805 int 2806 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2807 { 2808 return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags)); 2809 } 2810 2811 static int 2812 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags) 2813 { 2814 u_long nblks; 2815 #ifdef MAC 2816 int error; 2817 #endif 2818 2819 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2820 #ifdef MAC 2821 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2822 error = mac_system_check_swapoff(cred, sp->sw_vp); 2823 (void) VOP_UNLOCK(sp->sw_vp); 2824 if (error != 0) 2825 return (error); 2826 #endif 2827 nblks = sp->sw_nblks; 2828 2829 /* 2830 * We can turn off this swap device safely only if the 2831 * available virtual memory in the system will fit the amount 2832 * of data we will have to page back in, plus an epsilon so 2833 * the system doesn't become critically low on swap space. 2834 * The vm_free_count() part does not account e.g. for clean 2835 * pages that can be immediately reclaimed without paging, so 2836 * this is a very rough estimation. 2837 * 2838 * On the other hand, not turning swap off on swapoff_all() 2839 * means that we can lose swap data when filesystems go away, 2840 * which is arguably worse. 2841 */ 2842 if ((flags & SWAPOFF_FORCE) == 0 && 2843 vm_free_count() + swap_pager_avail < nblks + nswap_lowat) 2844 return (ENOMEM); 2845 2846 /* 2847 * Prevent further allocations on this device. 2848 */ 2849 mtx_lock(&sw_dev_mtx); 2850 sp->sw_flags |= SW_CLOSING; 2851 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2852 swap_total -= nblks; 2853 mtx_unlock(&sw_dev_mtx); 2854 2855 /* 2856 * Page in the contents of the device and close it. 2857 */ 2858 swap_pager_swapoff(sp); 2859 2860 sp->sw_close(curthread, sp); 2861 mtx_lock(&sw_dev_mtx); 2862 sp->sw_id = NULL; 2863 TAILQ_REMOVE(&swtailq, sp, sw_list); 2864 nswapdev--; 2865 if (nswapdev == 0) 2866 swap_pager_full = swap_pager_almost_full = true; 2867 if (swdevhd == sp) 2868 swdevhd = NULL; 2869 mtx_unlock(&sw_dev_mtx); 2870 blist_destroy(sp->sw_blist); 2871 free(sp, M_VMPGDATA); 2872 return (0); 2873 } 2874 2875 void 2876 swapoff_all(void) 2877 { 2878 struct swdevt *sp, *spt; 2879 const char *devname; 2880 int error; 2881 2882 sx_xlock(&swdev_syscall_lock); 2883 2884 mtx_lock(&sw_dev_mtx); 2885 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2886 mtx_unlock(&sw_dev_mtx); 2887 if (vn_isdisk(sp->sw_vp)) 2888 devname = devtoname(sp->sw_vp->v_rdev); 2889 else 2890 devname = "[file]"; 2891 error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE); 2892 if (error != 0) { 2893 printf("Cannot remove swap device %s (error=%d), " 2894 "skipping.\n", devname, error); 2895 } else if (bootverbose) { 2896 printf("Swap device %s removed.\n", devname); 2897 } 2898 mtx_lock(&sw_dev_mtx); 2899 } 2900 mtx_unlock(&sw_dev_mtx); 2901 2902 sx_xunlock(&swdev_syscall_lock); 2903 } 2904 2905 void 2906 swap_pager_status(int *total, int *used) 2907 { 2908 2909 *total = swap_total; 2910 *used = swap_total - swap_pager_avail - 2911 nswapdev * howmany(BBSIZE, PAGE_SIZE); 2912 } 2913 2914 int 2915 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2916 { 2917 struct swdevt *sp; 2918 const char *tmp_devname; 2919 int error, n; 2920 2921 n = 0; 2922 error = ENOENT; 2923 mtx_lock(&sw_dev_mtx); 2924 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2925 if (n != name) { 2926 n++; 2927 continue; 2928 } 2929 xs->xsw_version = XSWDEV_VERSION; 2930 xs->xsw_dev = sp->sw_dev; 2931 xs->xsw_flags = sp->sw_flags; 2932 xs->xsw_nblks = sp->sw_nblks; 2933 xs->xsw_used = sp->sw_used; 2934 if (devname != NULL) { 2935 if (vn_isdisk(sp->sw_vp)) 2936 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2937 else 2938 tmp_devname = "[file]"; 2939 strncpy(devname, tmp_devname, len); 2940 } 2941 error = 0; 2942 break; 2943 } 2944 mtx_unlock(&sw_dev_mtx); 2945 return (error); 2946 } 2947 2948 #if defined(COMPAT_FREEBSD11) 2949 #define XSWDEV_VERSION_11 1 2950 struct xswdev11 { 2951 u_int xsw_version; 2952 uint32_t xsw_dev; 2953 int xsw_flags; 2954 int xsw_nblks; 2955 int xsw_used; 2956 }; 2957 #endif 2958 2959 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2960 struct xswdev32 { 2961 u_int xsw_version; 2962 u_int xsw_dev1, xsw_dev2; 2963 int xsw_flags; 2964 int xsw_nblks; 2965 int xsw_used; 2966 }; 2967 #endif 2968 2969 static int 2970 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2971 { 2972 struct xswdev xs; 2973 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2974 struct xswdev32 xs32; 2975 #endif 2976 #if defined(COMPAT_FREEBSD11) 2977 struct xswdev11 xs11; 2978 #endif 2979 int error; 2980 2981 if (arg2 != 1) /* name length */ 2982 return (EINVAL); 2983 2984 memset(&xs, 0, sizeof(xs)); 2985 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2986 if (error != 0) 2987 return (error); 2988 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2989 if (req->oldlen == sizeof(xs32)) { 2990 memset(&xs32, 0, sizeof(xs32)); 2991 xs32.xsw_version = XSWDEV_VERSION; 2992 xs32.xsw_dev1 = xs.xsw_dev; 2993 xs32.xsw_dev2 = xs.xsw_dev >> 32; 2994 xs32.xsw_flags = xs.xsw_flags; 2995 xs32.xsw_nblks = xs.xsw_nblks; 2996 xs32.xsw_used = xs.xsw_used; 2997 error = SYSCTL_OUT(req, &xs32, sizeof(xs32)); 2998 return (error); 2999 } 3000 #endif 3001 #if defined(COMPAT_FREEBSD11) 3002 if (req->oldlen == sizeof(xs11)) { 3003 memset(&xs11, 0, sizeof(xs11)); 3004 xs11.xsw_version = XSWDEV_VERSION_11; 3005 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 3006 xs11.xsw_flags = xs.xsw_flags; 3007 xs11.xsw_nblks = xs.xsw_nblks; 3008 xs11.xsw_used = xs.xsw_used; 3009 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 3010 return (error); 3011 } 3012 #endif 3013 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 3014 return (error); 3015 } 3016 3017 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 3018 "Number of swap devices"); 3019 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 3020 sysctl_vm_swap_info, 3021 "Swap statistics by device"); 3022 3023 /* 3024 * Count the approximate swap usage in pages for a vmspace. The 3025 * shadowed or not yet copied on write swap blocks are not accounted. 3026 * The map must be locked. 3027 */ 3028 long 3029 vmspace_swap_count(struct vmspace *vmspace) 3030 { 3031 struct pctrie_iter blks; 3032 vm_map_t map; 3033 vm_map_entry_t cur; 3034 vm_object_t object; 3035 struct swblk *sb; 3036 vm_pindex_t e, pi; 3037 long count; 3038 int i, limit, start; 3039 3040 map = &vmspace->vm_map; 3041 count = 0; 3042 3043 VM_MAP_ENTRY_FOREACH(cur, map) { 3044 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3045 continue; 3046 object = cur->object.vm_object; 3047 if (object == NULL || (object->flags & OBJ_SWAP) == 0) 3048 continue; 3049 VM_OBJECT_RLOCK(object); 3050 if ((object->flags & OBJ_SWAP) == 0) 3051 goto unlock; 3052 pi = OFF_TO_IDX(cur->offset); 3053 e = pi + OFF_TO_IDX(cur->end - cur->start); 3054 for (sb = swblk_iter_limit_init(&blks, object, pi, e), 3055 start = swblk_start(sb, pi); 3056 sb != NULL; sb = swblk_iter_next(&blks), start = 0) { 3057 limit = MIN(e - blks.index, SWAP_META_PAGES); 3058 for (i = start; i < limit; i++) { 3059 if (sb->d[i] != SWAPBLK_NONE) 3060 count++; 3061 } 3062 } 3063 unlock: 3064 VM_OBJECT_RUNLOCK(object); 3065 } 3066 return (count); 3067 } 3068 3069 /* 3070 * GEOM backend 3071 * 3072 * Swapping onto disk devices. 3073 * 3074 */ 3075 3076 static g_orphan_t swapgeom_orphan; 3077 3078 static struct g_class g_swap_class = { 3079 .name = "SWAP", 3080 .version = G_VERSION, 3081 .orphan = swapgeom_orphan, 3082 }; 3083 3084 DECLARE_GEOM_CLASS(g_swap_class, g_class); 3085 3086 static void 3087 swapgeom_close_ev(void *arg, int flags) 3088 { 3089 struct g_consumer *cp; 3090 3091 cp = arg; 3092 g_access(cp, -1, -1, 0); 3093 g_detach(cp); 3094 g_destroy_consumer(cp); 3095 } 3096 3097 /* 3098 * Add a reference to the g_consumer for an inflight transaction. 3099 */ 3100 static void 3101 swapgeom_acquire(struct g_consumer *cp) 3102 { 3103 3104 mtx_assert(&sw_dev_mtx, MA_OWNED); 3105 cp->index++; 3106 } 3107 3108 /* 3109 * Remove a reference from the g_consumer. Post a close event if all 3110 * references go away, since the function might be called from the 3111 * biodone context. 3112 */ 3113 static void 3114 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 3115 { 3116 3117 mtx_assert(&sw_dev_mtx, MA_OWNED); 3118 cp->index--; 3119 if (cp->index == 0) { 3120 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 3121 sp->sw_id = NULL; 3122 } 3123 } 3124 3125 static void 3126 swapgeom_done(struct bio *bp2) 3127 { 3128 struct swdevt *sp; 3129 struct buf *bp; 3130 struct g_consumer *cp; 3131 3132 bp = bp2->bio_caller2; 3133 cp = bp2->bio_from; 3134 bp->b_ioflags = bp2->bio_flags; 3135 if (bp2->bio_error) 3136 bp->b_ioflags |= BIO_ERROR; 3137 bp->b_resid = bp->b_bcount - bp2->bio_completed; 3138 bp->b_error = bp2->bio_error; 3139 bp->b_caller1 = NULL; 3140 bufdone(bp); 3141 sp = bp2->bio_caller1; 3142 mtx_lock(&sw_dev_mtx); 3143 swapgeom_release(cp, sp); 3144 mtx_unlock(&sw_dev_mtx); 3145 g_destroy_bio(bp2); 3146 } 3147 3148 static void 3149 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 3150 { 3151 struct bio *bio; 3152 struct g_consumer *cp; 3153 3154 mtx_lock(&sw_dev_mtx); 3155 cp = sp->sw_id; 3156 if (cp == NULL) { 3157 mtx_unlock(&sw_dev_mtx); 3158 bp->b_error = ENXIO; 3159 bp->b_ioflags |= BIO_ERROR; 3160 bufdone(bp); 3161 return; 3162 } 3163 swapgeom_acquire(cp); 3164 mtx_unlock(&sw_dev_mtx); 3165 if (bp->b_iocmd == BIO_WRITE) 3166 bio = g_new_bio(); 3167 else 3168 bio = g_alloc_bio(); 3169 if (bio == NULL) { 3170 mtx_lock(&sw_dev_mtx); 3171 swapgeom_release(cp, sp); 3172 mtx_unlock(&sw_dev_mtx); 3173 bp->b_error = ENOMEM; 3174 bp->b_ioflags |= BIO_ERROR; 3175 printf("swap_pager: cannot allocate bio\n"); 3176 bufdone(bp); 3177 return; 3178 } 3179 3180 bp->b_caller1 = bio; 3181 bio->bio_caller1 = sp; 3182 bio->bio_caller2 = bp; 3183 bio->bio_cmd = bp->b_iocmd; 3184 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 3185 bio->bio_length = bp->b_bcount; 3186 bio->bio_done = swapgeom_done; 3187 bio->bio_flags |= BIO_SWAP; 3188 if (!buf_mapped(bp)) { 3189 bio->bio_ma = bp->b_pages; 3190 bio->bio_data = unmapped_buf; 3191 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 3192 bio->bio_ma_n = bp->b_npages; 3193 bio->bio_flags |= BIO_UNMAPPED; 3194 } else { 3195 bio->bio_data = bp->b_data; 3196 bio->bio_ma = NULL; 3197 } 3198 g_io_request(bio, cp); 3199 return; 3200 } 3201 3202 static void 3203 swapgeom_orphan(struct g_consumer *cp) 3204 { 3205 struct swdevt *sp; 3206 int destroy; 3207 3208 mtx_lock(&sw_dev_mtx); 3209 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3210 if (sp->sw_id == cp) { 3211 sp->sw_flags |= SW_CLOSING; 3212 break; 3213 } 3214 } 3215 /* 3216 * Drop reference we were created with. Do directly since we're in a 3217 * special context where we don't have to queue the call to 3218 * swapgeom_close_ev(). 3219 */ 3220 cp->index--; 3221 destroy = ((sp != NULL) && (cp->index == 0)); 3222 if (destroy) 3223 sp->sw_id = NULL; 3224 mtx_unlock(&sw_dev_mtx); 3225 if (destroy) 3226 swapgeom_close_ev(cp, 0); 3227 } 3228 3229 static void 3230 swapgeom_close(struct thread *td, struct swdevt *sw) 3231 { 3232 struct g_consumer *cp; 3233 3234 mtx_lock(&sw_dev_mtx); 3235 cp = sw->sw_id; 3236 sw->sw_id = NULL; 3237 mtx_unlock(&sw_dev_mtx); 3238 3239 /* 3240 * swapgeom_close() may be called from the biodone context, 3241 * where we cannot perform topology changes. Delegate the 3242 * work to the events thread. 3243 */ 3244 if (cp != NULL) 3245 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 3246 } 3247 3248 static int 3249 swapongeom_locked(struct cdev *dev, struct vnode *vp) 3250 { 3251 struct g_provider *pp; 3252 struct g_consumer *cp; 3253 static struct g_geom *gp; 3254 struct swdevt *sp; 3255 u_long nblks; 3256 int error; 3257 3258 pp = g_dev_getprovider(dev); 3259 if (pp == NULL) 3260 return (ENODEV); 3261 mtx_lock(&sw_dev_mtx); 3262 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3263 cp = sp->sw_id; 3264 if (cp != NULL && cp->provider == pp) { 3265 mtx_unlock(&sw_dev_mtx); 3266 return (EBUSY); 3267 } 3268 } 3269 mtx_unlock(&sw_dev_mtx); 3270 if (gp == NULL) 3271 gp = g_new_geomf(&g_swap_class, "swap"); 3272 cp = g_new_consumer(gp); 3273 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 3274 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 3275 g_attach(cp, pp); 3276 /* 3277 * XXX: Every time you think you can improve the margin for 3278 * footshooting, somebody depends on the ability to do so: 3279 * savecore(8) wants to write to our swapdev so we cannot 3280 * set an exclusive count :-( 3281 */ 3282 error = g_access(cp, 1, 1, 0); 3283 if (error != 0) { 3284 g_detach(cp); 3285 g_destroy_consumer(cp); 3286 return (error); 3287 } 3288 nblks = pp->mediasize / DEV_BSIZE; 3289 swaponsomething(vp, cp, nblks, swapgeom_strategy, 3290 swapgeom_close, dev2udev(dev), 3291 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 3292 return (0); 3293 } 3294 3295 static int 3296 swapongeom(struct vnode *vp) 3297 { 3298 int error; 3299 3300 ASSERT_VOP_ELOCKED(vp, "swapongeom"); 3301 if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) { 3302 error = ENOENT; 3303 } else { 3304 g_topology_lock(); 3305 error = swapongeom_locked(vp->v_rdev, vp); 3306 g_topology_unlock(); 3307 } 3308 return (error); 3309 } 3310 3311 /* 3312 * VNODE backend 3313 * 3314 * This is used mainly for network filesystem (read: probably only tested 3315 * with NFS) swapfiles. 3316 * 3317 */ 3318 3319 static void 3320 swapdev_strategy(struct buf *bp, struct swdevt *sp) 3321 { 3322 struct vnode *vp2; 3323 3324 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 3325 3326 vp2 = sp->sw_id; 3327 vhold(vp2); 3328 if (bp->b_iocmd == BIO_WRITE) { 3329 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); 3330 if (bp->b_bufobj) 3331 bufobj_wdrop(bp->b_bufobj); 3332 bufobj_wref(&vp2->v_bufobj); 3333 } else { 3334 vn_lock(vp2, LK_SHARED | LK_RETRY); 3335 } 3336 if (bp->b_bufobj != &vp2->v_bufobj) 3337 bp->b_bufobj = &vp2->v_bufobj; 3338 bp->b_vp = vp2; 3339 bp->b_iooffset = dbtob(bp->b_blkno); 3340 bstrategy(bp); 3341 VOP_UNLOCK(vp2); 3342 } 3343 3344 static void 3345 swapdev_close(struct thread *td, struct swdevt *sp) 3346 { 3347 struct vnode *vp; 3348 3349 vp = sp->sw_vp; 3350 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3351 VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); 3352 vput(vp); 3353 } 3354 3355 static int 3356 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 3357 { 3358 struct swdevt *sp; 3359 int error; 3360 3361 ASSERT_VOP_ELOCKED(vp, "swaponvp"); 3362 if (nblks == 0) 3363 return (ENXIO); 3364 mtx_lock(&sw_dev_mtx); 3365 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3366 if (sp->sw_id == vp) { 3367 mtx_unlock(&sw_dev_mtx); 3368 return (EBUSY); 3369 } 3370 } 3371 mtx_unlock(&sw_dev_mtx); 3372 3373 #ifdef MAC 3374 error = mac_system_check_swapon(td->td_ucred, vp); 3375 if (error == 0) 3376 #endif 3377 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 3378 if (error != 0) 3379 return (error); 3380 3381 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 3382 NODEV, 0); 3383 return (0); 3384 } 3385 3386 static int 3387 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 3388 { 3389 int error, new, n; 3390 3391 new = nsw_wcount_async_max; 3392 error = sysctl_handle_int(oidp, &new, 0, req); 3393 if (error != 0 || req->newptr == NULL) 3394 return (error); 3395 3396 if (new > nswbuf / 2 || new < 1) 3397 return (EINVAL); 3398 3399 mtx_lock(&swbuf_mtx); 3400 while (nsw_wcount_async_max != new) { 3401 /* 3402 * Adjust difference. If the current async count is too low, 3403 * we will need to sqeeze our update slowly in. Sleep with a 3404 * higher priority than getpbuf() to finish faster. 3405 */ 3406 n = new - nsw_wcount_async_max; 3407 if (nsw_wcount_async + n >= 0) { 3408 nsw_wcount_async += n; 3409 nsw_wcount_async_max += n; 3410 wakeup(&nsw_wcount_async); 3411 } else { 3412 nsw_wcount_async_max -= nsw_wcount_async; 3413 nsw_wcount_async = 0; 3414 msleep(&nsw_wcount_async, &swbuf_mtx, PSWP, 3415 "swpsysctl", 0); 3416 } 3417 } 3418 mtx_unlock(&swbuf_mtx); 3419 3420 return (0); 3421 } 3422 3423 static void 3424 swap_pager_update_writecount(vm_object_t object, vm_offset_t start, 3425 vm_offset_t end) 3426 { 3427 3428 VM_OBJECT_WLOCK(object); 3429 KASSERT((object->flags & OBJ_ANON) == 0, 3430 ("Splittable object with writecount")); 3431 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 3432 VM_OBJECT_WUNLOCK(object); 3433 } 3434 3435 static void 3436 swap_pager_release_writecount(vm_object_t object, vm_offset_t start, 3437 vm_offset_t end) 3438 { 3439 3440 VM_OBJECT_WLOCK(object); 3441 KASSERT((object->flags & OBJ_ANON) == 0, 3442 ("Splittable object with writecount")); 3443 KASSERT(object->un_pager.swp.writemappings >= (vm_ooffset_t)end - start, 3444 ("swap obj %p writecount %jx dec %jx", object, 3445 (uintmax_t)object->un_pager.swp.writemappings, 3446 (uintmax_t)((vm_ooffset_t)end - start))); 3447 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 3448 VM_OBJECT_WUNLOCK(object); 3449 } 3450