1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
57 unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
59 unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster_or_swap_info(
62 struct swap_info_struct *si, unsigned long offset);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
64 struct swap_cluster_info *ci);
65
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70 * Some modules use swappable objects and may try to swap them out under
71 * memory pressure (via the shrinker). Before doing so, they may wish to
72 * check to see if any swap space is available.
73 */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif /* CONFIG_MIGRATION */
82
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87
88 /*
89 * all active swap_info_structs
90 * protected with swap_lock, and ordered by priority.
91 */
92 static PLIST_HEAD(swap_active_head);
93
94 /*
95 * all available (active, not full) swap_info_structs
96 * protected with swap_avail_lock, ordered by priority.
97 * This is used by folio_alloc_swap() instead of swap_active_head
98 * because swap_active_head includes all swap_info_structs,
99 * but folio_alloc_swap() doesn't need to look at full ones.
100 * This uses its own lock instead of swap_lock because when a
101 * swap_info_struct changes between not-full/full, it needs to
102 * add/remove itself to/from this list, but the swap_info_struct->lock
103 * is held and the locking order requires swap_lock to be taken
104 * before any swap_info_struct->lock.
105 */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110
111 static DEFINE_MUTEX(swapon_mutex);
112
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118
swap_type_to_swap_info(int type)119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 if (type >= MAX_SWAPFILES)
122 return NULL;
123
124 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126
swap_count(unsigned char ent)127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
130 }
131
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY 0x1
134 /*
135 * Reclaim the swap entry if there are no more mappings of the
136 * corresponding page
137 */
138 #define TTRS_UNMAPPED 0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL 0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT 0x8
143
swap_is_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)144 static bool swap_is_has_cache(struct swap_info_struct *si,
145 unsigned long offset, int nr_pages)
146 {
147 unsigned char *map = si->swap_map + offset;
148 unsigned char *map_end = map + nr_pages;
149
150 do {
151 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
152 if (*map != SWAP_HAS_CACHE)
153 return false;
154 } while (++map < map_end);
155
156 return true;
157 }
158
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)159 static bool swap_is_last_map(struct swap_info_struct *si,
160 unsigned long offset, int nr_pages, bool *has_cache)
161 {
162 unsigned char *map = si->swap_map + offset;
163 unsigned char *map_end = map + nr_pages;
164 unsigned char count = *map;
165
166 if (swap_count(count) != 1)
167 return false;
168
169 while (++map < map_end) {
170 if (*map != count)
171 return false;
172 }
173
174 *has_cache = !!(count & SWAP_HAS_CACHE);
175 return true;
176 }
177
178 /*
179 * returns number of pages in the folio that backs the swap entry. If positive,
180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181 * folio was associated with the swap entry.
182 */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)183 static int __try_to_reclaim_swap(struct swap_info_struct *si,
184 unsigned long offset, unsigned long flags)
185 {
186 swp_entry_t entry = swp_entry(si->type, offset);
187 struct address_space *address_space = swap_address_space(entry);
188 struct swap_cluster_info *ci;
189 struct folio *folio;
190 int ret, nr_pages;
191 bool need_reclaim;
192
193 folio = filemap_get_folio(address_space, swap_cache_index(entry));
194 if (IS_ERR(folio))
195 return 0;
196
197 nr_pages = folio_nr_pages(folio);
198 ret = -nr_pages;
199
200 /*
201 * When this function is called from scan_swap_map_slots() and it's
202 * called by vmscan.c at reclaiming folios. So we hold a folio lock
203 * here. We have to use trylock for avoiding deadlock. This is a special
204 * case and you should use folio_free_swap() with explicit folio_lock()
205 * in usual operations.
206 */
207 if (!folio_trylock(folio))
208 goto out;
209
210 /* offset could point to the middle of a large folio */
211 entry = folio->swap;
212 offset = swp_offset(entry);
213
214 need_reclaim = ((flags & TTRS_ANYWAY) ||
215 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
216 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
217 if (!need_reclaim || !folio_swapcache_freeable(folio))
218 goto out_unlock;
219
220 /*
221 * It's safe to delete the folio from swap cache only if the folio's
222 * swap_map is HAS_CACHE only, which means the slots have no page table
223 * reference or pending writeback, and can't be allocated to others.
224 */
225 ci = lock_cluster_or_swap_info(si, offset);
226 need_reclaim = swap_is_has_cache(si, offset, nr_pages);
227 unlock_cluster_or_swap_info(si, ci);
228 if (!need_reclaim)
229 goto out_unlock;
230
231 if (!(flags & TTRS_DIRECT)) {
232 /* Free through slot cache */
233 delete_from_swap_cache(folio);
234 folio_set_dirty(folio);
235 ret = nr_pages;
236 goto out_unlock;
237 }
238
239 xa_lock_irq(&address_space->i_pages);
240 __delete_from_swap_cache(folio, entry, NULL);
241 xa_unlock_irq(&address_space->i_pages);
242 folio_ref_sub(folio, nr_pages);
243 folio_set_dirty(folio);
244
245 spin_lock(&si->lock);
246 /* Only sinple page folio can be backed by zswap */
247 if (nr_pages == 1)
248 zswap_invalidate(entry);
249 swap_entry_range_free(si, entry, nr_pages);
250 spin_unlock(&si->lock);
251 ret = nr_pages;
252 out_unlock:
253 folio_unlock(folio);
254 out:
255 folio_put(folio);
256 return ret;
257 }
258
first_se(struct swap_info_struct * sis)259 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
260 {
261 struct rb_node *rb = rb_first(&sis->swap_extent_root);
262 return rb_entry(rb, struct swap_extent, rb_node);
263 }
264
next_se(struct swap_extent * se)265 static inline struct swap_extent *next_se(struct swap_extent *se)
266 {
267 struct rb_node *rb = rb_next(&se->rb_node);
268 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
269 }
270
271 /*
272 * swapon tell device that all the old swap contents can be discarded,
273 * to allow the swap device to optimize its wear-levelling.
274 */
discard_swap(struct swap_info_struct * si)275 static int discard_swap(struct swap_info_struct *si)
276 {
277 struct swap_extent *se;
278 sector_t start_block;
279 sector_t nr_blocks;
280 int err = 0;
281
282 /* Do not discard the swap header page! */
283 se = first_se(si);
284 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
285 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
286 if (nr_blocks) {
287 err = blkdev_issue_discard(si->bdev, start_block,
288 nr_blocks, GFP_KERNEL);
289 if (err)
290 return err;
291 cond_resched();
292 }
293
294 for (se = next_se(se); se; se = next_se(se)) {
295 start_block = se->start_block << (PAGE_SHIFT - 9);
296 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
297
298 err = blkdev_issue_discard(si->bdev, start_block,
299 nr_blocks, GFP_KERNEL);
300 if (err)
301 break;
302
303 cond_resched();
304 }
305 return err; /* That will often be -EOPNOTSUPP */
306 }
307
308 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)309 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
310 {
311 struct swap_extent *se;
312 struct rb_node *rb;
313
314 rb = sis->swap_extent_root.rb_node;
315 while (rb) {
316 se = rb_entry(rb, struct swap_extent, rb_node);
317 if (offset < se->start_page)
318 rb = rb->rb_left;
319 else if (offset >= se->start_page + se->nr_pages)
320 rb = rb->rb_right;
321 else
322 return se;
323 }
324 /* It *must* be present */
325 BUG();
326 }
327
swap_folio_sector(struct folio * folio)328 sector_t swap_folio_sector(struct folio *folio)
329 {
330 struct swap_info_struct *sis = swp_swap_info(folio->swap);
331 struct swap_extent *se;
332 sector_t sector;
333 pgoff_t offset;
334
335 offset = swp_offset(folio->swap);
336 se = offset_to_swap_extent(sis, offset);
337 sector = se->start_block + (offset - se->start_page);
338 return sector << (PAGE_SHIFT - 9);
339 }
340
341 /*
342 * swap allocation tell device that a cluster of swap can now be discarded,
343 * to allow the swap device to optimize its wear-levelling.
344 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)345 static void discard_swap_cluster(struct swap_info_struct *si,
346 pgoff_t start_page, pgoff_t nr_pages)
347 {
348 struct swap_extent *se = offset_to_swap_extent(si, start_page);
349
350 while (nr_pages) {
351 pgoff_t offset = start_page - se->start_page;
352 sector_t start_block = se->start_block + offset;
353 sector_t nr_blocks = se->nr_pages - offset;
354
355 if (nr_blocks > nr_pages)
356 nr_blocks = nr_pages;
357 start_page += nr_blocks;
358 nr_pages -= nr_blocks;
359
360 start_block <<= PAGE_SHIFT - 9;
361 nr_blocks <<= PAGE_SHIFT - 9;
362 if (blkdev_issue_discard(si->bdev, start_block,
363 nr_blocks, GFP_NOIO))
364 break;
365
366 se = next_se(se);
367 }
368 }
369
370 #ifdef CONFIG_THP_SWAP
371 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
372
373 #define swap_entry_order(order) (order)
374 #else
375 #define SWAPFILE_CLUSTER 256
376
377 /*
378 * Define swap_entry_order() as constant to let compiler to optimize
379 * out some code if !CONFIG_THP_SWAP
380 */
381 #define swap_entry_order(order) 0
382 #endif
383 #define LATENCY_LIMIT 256
384
cluster_is_free(struct swap_cluster_info * info)385 static inline bool cluster_is_free(struct swap_cluster_info *info)
386 {
387 return info->flags & CLUSTER_FLAG_FREE;
388 }
389
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)390 static inline unsigned int cluster_index(struct swap_info_struct *si,
391 struct swap_cluster_info *ci)
392 {
393 return ci - si->cluster_info;
394 }
395
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)396 static inline unsigned int cluster_offset(struct swap_info_struct *si,
397 struct swap_cluster_info *ci)
398 {
399 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
400 }
401
lock_cluster(struct swap_info_struct * si,unsigned long offset)402 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
403 unsigned long offset)
404 {
405 struct swap_cluster_info *ci;
406
407 ci = si->cluster_info;
408 if (ci) {
409 ci += offset / SWAPFILE_CLUSTER;
410 spin_lock(&ci->lock);
411 }
412 return ci;
413 }
414
unlock_cluster(struct swap_cluster_info * ci)415 static inline void unlock_cluster(struct swap_cluster_info *ci)
416 {
417 if (ci)
418 spin_unlock(&ci->lock);
419 }
420
421 /*
422 * Determine the locking method in use for this device. Return
423 * swap_cluster_info if SSD-style cluster-based locking is in place.
424 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)425 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
426 struct swap_info_struct *si, unsigned long offset)
427 {
428 struct swap_cluster_info *ci;
429
430 /* Try to use fine-grained SSD-style locking if available: */
431 ci = lock_cluster(si, offset);
432 /* Otherwise, fall back to traditional, coarse locking: */
433 if (!ci)
434 spin_lock(&si->lock);
435
436 return ci;
437 }
438
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
440 struct swap_cluster_info *ci)
441 {
442 if (ci)
443 unlock_cluster(ci);
444 else
445 spin_unlock(&si->lock);
446 }
447
448 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)449 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
450 struct swap_cluster_info *ci)
451 {
452 unsigned int idx = cluster_index(si, ci);
453 /*
454 * If scan_swap_map_slots() can't find a free cluster, it will check
455 * si->swap_map directly. To make sure the discarding cluster isn't
456 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
457 * It will be cleared after discard
458 */
459 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
460 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
461
462 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
463 list_move_tail(&ci->list, &si->discard_clusters);
464 ci->flags = 0;
465 schedule_work(&si->discard_work);
466 }
467
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)468 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
469 {
470 lockdep_assert_held(&si->lock);
471 lockdep_assert_held(&ci->lock);
472
473 if (ci->flags)
474 list_move_tail(&ci->list, &si->free_clusters);
475 else
476 list_add_tail(&ci->list, &si->free_clusters);
477 ci->flags = CLUSTER_FLAG_FREE;
478 ci->order = 0;
479 }
480
481 /*
482 * Doing discard actually. After a cluster discard is finished, the cluster
483 * will be added to free cluster list. caller should hold si->lock.
484 */
swap_do_scheduled_discard(struct swap_info_struct * si)485 static void swap_do_scheduled_discard(struct swap_info_struct *si)
486 {
487 struct swap_cluster_info *ci;
488 unsigned int idx;
489
490 while (!list_empty(&si->discard_clusters)) {
491 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
492 list_del(&ci->list);
493 idx = cluster_index(si, ci);
494 spin_unlock(&si->lock);
495
496 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
497 SWAPFILE_CLUSTER);
498
499 spin_lock(&si->lock);
500 spin_lock(&ci->lock);
501 __free_cluster(si, ci);
502 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
503 0, SWAPFILE_CLUSTER);
504 spin_unlock(&ci->lock);
505 }
506 }
507
swap_discard_work(struct work_struct * work)508 static void swap_discard_work(struct work_struct *work)
509 {
510 struct swap_info_struct *si;
511
512 si = container_of(work, struct swap_info_struct, discard_work);
513
514 spin_lock(&si->lock);
515 swap_do_scheduled_discard(si);
516 spin_unlock(&si->lock);
517 }
518
swap_users_ref_free(struct percpu_ref * ref)519 static void swap_users_ref_free(struct percpu_ref *ref)
520 {
521 struct swap_info_struct *si;
522
523 si = container_of(ref, struct swap_info_struct, users);
524 complete(&si->comp);
525 }
526
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)527 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
528 {
529 VM_BUG_ON(ci->count != 0);
530 lockdep_assert_held(&si->lock);
531 lockdep_assert_held(&ci->lock);
532
533 if (ci->flags & CLUSTER_FLAG_FRAG)
534 si->frag_cluster_nr[ci->order]--;
535
536 /*
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
539 * after discard.
540 */
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, ci);
544 return;
545 }
546
547 __free_cluster(si, ci);
548 }
549
550 /*
551 * The cluster corresponding to page_nr will be used. The cluster will not be
552 * added to free cluster list and its usage counter will be increased by 1.
553 * Only used for initialization.
554 */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)555 static void inc_cluster_info_page(struct swap_info_struct *si,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 struct swap_cluster_info *ci;
560
561 if (!cluster_info)
562 return;
563
564 ci = cluster_info + idx;
565 ci->count++;
566
567 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
568 VM_BUG_ON(ci->flags);
569 }
570
571 /*
572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
573 * which means no page in the cluster is in use, we can optionally discard
574 * the cluster and add it to free cluster list.
575 */
dec_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * ci,int nr_pages)576 static void dec_cluster_info_page(struct swap_info_struct *si,
577 struct swap_cluster_info *ci, int nr_pages)
578 {
579 if (!si->cluster_info)
580 return;
581
582 VM_BUG_ON(ci->count < nr_pages);
583 VM_BUG_ON(cluster_is_free(ci));
584 lockdep_assert_held(&si->lock);
585 lockdep_assert_held(&ci->lock);
586 ci->count -= nr_pages;
587
588 if (!ci->count) {
589 free_cluster(si, ci);
590 return;
591 }
592
593 if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
594 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
595 if (ci->flags & CLUSTER_FLAG_FRAG)
596 si->frag_cluster_nr[ci->order]--;
597 list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
598 ci->flags = CLUSTER_FLAG_NONFULL;
599 }
600 }
601
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)602 static bool cluster_reclaim_range(struct swap_info_struct *si,
603 struct swap_cluster_info *ci,
604 unsigned long start, unsigned long end)
605 {
606 unsigned char *map = si->swap_map;
607 unsigned long offset;
608
609 spin_unlock(&ci->lock);
610 spin_unlock(&si->lock);
611
612 for (offset = start; offset < end; offset++) {
613 switch (READ_ONCE(map[offset])) {
614 case 0:
615 continue;
616 case SWAP_HAS_CACHE:
617 if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
618 continue;
619 goto out;
620 default:
621 goto out;
622 }
623 }
624 out:
625 spin_lock(&si->lock);
626 spin_lock(&ci->lock);
627
628 /*
629 * Recheck the range no matter reclaim succeeded or not, the slot
630 * could have been be freed while we are not holding the lock.
631 */
632 for (offset = start; offset < end; offset++)
633 if (READ_ONCE(map[offset]))
634 return false;
635
636 return true;
637 }
638
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages)639 static bool cluster_scan_range(struct swap_info_struct *si,
640 struct swap_cluster_info *ci,
641 unsigned long start, unsigned int nr_pages)
642 {
643 unsigned long offset, end = start + nr_pages;
644 unsigned char *map = si->swap_map;
645 bool need_reclaim = false;
646
647 for (offset = start; offset < end; offset++) {
648 switch (READ_ONCE(map[offset])) {
649 case 0:
650 continue;
651 case SWAP_HAS_CACHE:
652 if (!vm_swap_full())
653 return false;
654 need_reclaim = true;
655 continue;
656 default:
657 return false;
658 }
659 }
660
661 if (need_reclaim)
662 return cluster_reclaim_range(si, ci, start, end);
663
664 return true;
665 }
666
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)667 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
668 unsigned int start, unsigned char usage,
669 unsigned int order)
670 {
671 unsigned int nr_pages = 1 << order;
672
673 if (cluster_is_free(ci)) {
674 if (nr_pages < SWAPFILE_CLUSTER) {
675 list_move_tail(&ci->list, &si->nonfull_clusters[order]);
676 ci->flags = CLUSTER_FLAG_NONFULL;
677 }
678 ci->order = order;
679 }
680
681 memset(si->swap_map + start, usage, nr_pages);
682 swap_range_alloc(si, start, nr_pages);
683 ci->count += nr_pages;
684
685 if (ci->count == SWAPFILE_CLUSTER) {
686 VM_BUG_ON(!(ci->flags &
687 (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
688 if (ci->flags & CLUSTER_FLAG_FRAG)
689 si->frag_cluster_nr[ci->order]--;
690 list_move_tail(&ci->list, &si->full_clusters);
691 ci->flags = CLUSTER_FLAG_FULL;
692 }
693 }
694
alloc_swap_scan_cluster(struct swap_info_struct * si,unsigned long offset,unsigned int * foundp,unsigned int order,unsigned char usage)695 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
696 unsigned int *foundp, unsigned int order,
697 unsigned char usage)
698 {
699 unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
700 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
701 unsigned int nr_pages = 1 << order;
702 struct swap_cluster_info *ci;
703
704 if (end < nr_pages)
705 return SWAP_NEXT_INVALID;
706 end -= nr_pages;
707
708 ci = lock_cluster(si, offset);
709 if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
710 offset = SWAP_NEXT_INVALID;
711 goto done;
712 }
713
714 while (offset <= end) {
715 if (cluster_scan_range(si, ci, offset, nr_pages)) {
716 cluster_alloc_range(si, ci, offset, usage, order);
717 *foundp = offset;
718 if (ci->count == SWAPFILE_CLUSTER) {
719 offset = SWAP_NEXT_INVALID;
720 goto done;
721 }
722 offset += nr_pages;
723 break;
724 }
725 offset += nr_pages;
726 }
727 if (offset > end)
728 offset = SWAP_NEXT_INVALID;
729 done:
730 unlock_cluster(ci);
731 return offset;
732 }
733
734 /* Return true if reclaimed a whole cluster */
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)735 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
736 {
737 long to_scan = 1;
738 unsigned long offset, end;
739 struct swap_cluster_info *ci;
740 unsigned char *map = si->swap_map;
741 int nr_reclaim;
742
743 if (force)
744 to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
745
746 while (!list_empty(&si->full_clusters)) {
747 ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
748 list_move_tail(&ci->list, &si->full_clusters);
749 offset = cluster_offset(si, ci);
750 end = min(si->max, offset + SWAPFILE_CLUSTER);
751 to_scan--;
752
753 spin_unlock(&si->lock);
754 while (offset < end) {
755 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
756 nr_reclaim = __try_to_reclaim_swap(si, offset,
757 TTRS_ANYWAY | TTRS_DIRECT);
758 if (nr_reclaim) {
759 offset += abs(nr_reclaim);
760 continue;
761 }
762 }
763 offset++;
764 }
765 spin_lock(&si->lock);
766
767 if (to_scan <= 0)
768 break;
769 }
770 }
771
swap_reclaim_work(struct work_struct * work)772 static void swap_reclaim_work(struct work_struct *work)
773 {
774 struct swap_info_struct *si;
775
776 si = container_of(work, struct swap_info_struct, reclaim_work);
777
778 spin_lock(&si->lock);
779 swap_reclaim_full_clusters(si, true);
780 spin_unlock(&si->lock);
781 }
782
783 /*
784 * Try to get swap entries with specified order from current cpu's swap entry
785 * pool (a cluster). This might involve allocating a new cluster for current CPU
786 * too.
787 */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)788 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
789 unsigned char usage)
790 {
791 struct percpu_cluster *cluster;
792 struct swap_cluster_info *ci;
793 unsigned int offset, found = 0;
794
795 new_cluster:
796 lockdep_assert_held(&si->lock);
797 cluster = this_cpu_ptr(si->percpu_cluster);
798 offset = cluster->next[order];
799 if (offset) {
800 offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
801 if (found)
802 goto done;
803 }
804
805 if (!list_empty(&si->free_clusters)) {
806 ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
807 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
808 VM_BUG_ON(!found);
809 goto done;
810 }
811
812 /* Try reclaim from full clusters if free clusters list is drained */
813 if (vm_swap_full())
814 swap_reclaim_full_clusters(si, false);
815
816 if (order < PMD_ORDER) {
817 unsigned int frags = 0;
818
819 while (!list_empty(&si->nonfull_clusters[order])) {
820 ci = list_first_entry(&si->nonfull_clusters[order],
821 struct swap_cluster_info, list);
822 list_move_tail(&ci->list, &si->frag_clusters[order]);
823 ci->flags = CLUSTER_FLAG_FRAG;
824 si->frag_cluster_nr[order]++;
825 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
826 &found, order, usage);
827 frags++;
828 if (found)
829 break;
830 }
831
832 if (!found) {
833 /*
834 * Nonfull clusters are moved to frag tail if we reached
835 * here, count them too, don't over scan the frag list.
836 */
837 while (frags < si->frag_cluster_nr[order]) {
838 ci = list_first_entry(&si->frag_clusters[order],
839 struct swap_cluster_info, list);
840 /*
841 * Rotate the frag list to iterate, they were all failing
842 * high order allocation or moved here due to per-CPU usage,
843 * this help keeping usable cluster ahead.
844 */
845 list_move_tail(&ci->list, &si->frag_clusters[order]);
846 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
847 &found, order, usage);
848 frags++;
849 if (found)
850 break;
851 }
852 }
853 }
854
855 if (found)
856 goto done;
857
858 if (!list_empty(&si->discard_clusters)) {
859 /*
860 * we don't have free cluster but have some clusters in
861 * discarding, do discard now and reclaim them, then
862 * reread cluster_next_cpu since we dropped si->lock
863 */
864 swap_do_scheduled_discard(si);
865 goto new_cluster;
866 }
867
868 if (order)
869 goto done;
870
871 /* Order 0 stealing from higher order */
872 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
873 /*
874 * Clusters here have at least one usable slots and can't fail order 0
875 * allocation, but reclaim may drop si->lock and race with another user.
876 */
877 while (!list_empty(&si->frag_clusters[o])) {
878 ci = list_first_entry(&si->frag_clusters[o],
879 struct swap_cluster_info, list);
880 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
881 &found, 0, usage);
882 if (found)
883 goto done;
884 }
885
886 while (!list_empty(&si->nonfull_clusters[o])) {
887 ci = list_first_entry(&si->nonfull_clusters[o],
888 struct swap_cluster_info, list);
889 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
890 &found, 0, usage);
891 if (found)
892 goto done;
893 }
894 }
895
896 done:
897 cluster->next[order] = offset;
898 return found;
899 }
900
__del_from_avail_list(struct swap_info_struct * si)901 static void __del_from_avail_list(struct swap_info_struct *si)
902 {
903 int nid;
904
905 assert_spin_locked(&si->lock);
906 for_each_node(nid)
907 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
908 }
909
del_from_avail_list(struct swap_info_struct * si)910 static void del_from_avail_list(struct swap_info_struct *si)
911 {
912 spin_lock(&swap_avail_lock);
913 __del_from_avail_list(si);
914 spin_unlock(&swap_avail_lock);
915 }
916
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)917 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
918 unsigned int nr_entries)
919 {
920 unsigned int end = offset + nr_entries - 1;
921
922 if (offset == si->lowest_bit)
923 si->lowest_bit += nr_entries;
924 if (end == si->highest_bit)
925 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
926 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
927 if (si->inuse_pages == si->pages) {
928 si->lowest_bit = si->max;
929 si->highest_bit = 0;
930 del_from_avail_list(si);
931
932 if (vm_swap_full())
933 schedule_work(&si->reclaim_work);
934 }
935 }
936
add_to_avail_list(struct swap_info_struct * si)937 static void add_to_avail_list(struct swap_info_struct *si)
938 {
939 int nid;
940
941 spin_lock(&swap_avail_lock);
942 for_each_node(nid)
943 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
944 spin_unlock(&swap_avail_lock);
945 }
946
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)947 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
948 unsigned int nr_entries)
949 {
950 unsigned long begin = offset;
951 unsigned long end = offset + nr_entries - 1;
952 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
953 unsigned int i;
954
955 /*
956 * Use atomic clear_bit operations only on zeromap instead of non-atomic
957 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
958 */
959 for (i = 0; i < nr_entries; i++)
960 clear_bit(offset + i, si->zeromap);
961
962 if (offset < si->lowest_bit)
963 si->lowest_bit = offset;
964 if (end > si->highest_bit) {
965 bool was_full = !si->highest_bit;
966
967 WRITE_ONCE(si->highest_bit, end);
968 if (was_full && (si->flags & SWP_WRITEOK))
969 add_to_avail_list(si);
970 }
971 if (si->flags & SWP_BLKDEV)
972 swap_slot_free_notify =
973 si->bdev->bd_disk->fops->swap_slot_free_notify;
974 else
975 swap_slot_free_notify = NULL;
976 while (offset <= end) {
977 arch_swap_invalidate_page(si->type, offset);
978 if (swap_slot_free_notify)
979 swap_slot_free_notify(si->bdev, offset);
980 offset++;
981 }
982 clear_shadow_from_swap_cache(si->type, begin, end);
983
984 /*
985 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
986 * only after the above cleanups are done.
987 */
988 smp_wmb();
989 atomic_long_add(nr_entries, &nr_swap_pages);
990 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
991 }
992
set_cluster_next(struct swap_info_struct * si,unsigned long next)993 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
994 {
995 unsigned long prev;
996
997 if (!(si->flags & SWP_SOLIDSTATE)) {
998 si->cluster_next = next;
999 return;
1000 }
1001
1002 prev = this_cpu_read(*si->cluster_next_cpu);
1003 /*
1004 * Cross the swap address space size aligned trunk, choose
1005 * another trunk randomly to avoid lock contention on swap
1006 * address space if possible.
1007 */
1008 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1009 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1010 /* No free swap slots available */
1011 if (si->highest_bit <= si->lowest_bit)
1012 return;
1013 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1014 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1015 next = max_t(unsigned int, next, si->lowest_bit);
1016 }
1017 this_cpu_write(*si->cluster_next_cpu, next);
1018 }
1019
swap_offset_available_and_locked(struct swap_info_struct * si,unsigned long offset)1020 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1021 unsigned long offset)
1022 {
1023 if (data_race(!si->swap_map[offset])) {
1024 spin_lock(&si->lock);
1025 return true;
1026 }
1027
1028 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1029 spin_lock(&si->lock);
1030 return true;
1031 }
1032
1033 return false;
1034 }
1035
cluster_alloc_swap(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1036 static int cluster_alloc_swap(struct swap_info_struct *si,
1037 unsigned char usage, int nr,
1038 swp_entry_t slots[], int order)
1039 {
1040 int n_ret = 0;
1041
1042 VM_BUG_ON(!si->cluster_info);
1043
1044 while (n_ret < nr) {
1045 unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1046
1047 if (!offset)
1048 break;
1049 slots[n_ret++] = swp_entry(si->type, offset);
1050 }
1051
1052 return n_ret;
1053 }
1054
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1055 static int scan_swap_map_slots(struct swap_info_struct *si,
1056 unsigned char usage, int nr,
1057 swp_entry_t slots[], int order)
1058 {
1059 unsigned long offset;
1060 unsigned long scan_base;
1061 unsigned long last_in_cluster = 0;
1062 int latency_ration = LATENCY_LIMIT;
1063 unsigned int nr_pages = 1 << order;
1064 int n_ret = 0;
1065 bool scanned_many = false;
1066
1067 /*
1068 * We try to cluster swap pages by allocating them sequentially
1069 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
1070 * way, however, we resort to first-free allocation, starting
1071 * a new cluster. This prevents us from scattering swap pages
1072 * all over the entire swap partition, so that we reduce
1073 * overall disk seek times between swap pages. -- sct
1074 * But we do now try to find an empty cluster. -Andrea
1075 * And we let swap pages go all over an SSD partition. Hugh
1076 */
1077
1078 if (order > 0) {
1079 /*
1080 * Should not even be attempting large allocations when huge
1081 * page swap is disabled. Warn and fail the allocation.
1082 */
1083 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1084 nr_pages > SWAPFILE_CLUSTER) {
1085 VM_WARN_ON_ONCE(1);
1086 return 0;
1087 }
1088
1089 /*
1090 * Swapfile is not block device or not using clusters so unable
1091 * to allocate large entries.
1092 */
1093 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1094 return 0;
1095 }
1096
1097 if (si->cluster_info)
1098 return cluster_alloc_swap(si, usage, nr, slots, order);
1099
1100 si->flags += SWP_SCANNING;
1101
1102 /* For HDD, sequential access is more important. */
1103 scan_base = si->cluster_next;
1104 offset = scan_base;
1105
1106 if (unlikely(!si->cluster_nr--)) {
1107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1108 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1109 goto checks;
1110 }
1111
1112 spin_unlock(&si->lock);
1113
1114 /*
1115 * If seek is expensive, start searching for new cluster from
1116 * start of partition, to minimize the span of allocated swap.
1117 */
1118 scan_base = offset = si->lowest_bit;
1119 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1120
1121 /* Locate the first empty (unaligned) cluster */
1122 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1123 if (si->swap_map[offset])
1124 last_in_cluster = offset + SWAPFILE_CLUSTER;
1125 else if (offset == last_in_cluster) {
1126 spin_lock(&si->lock);
1127 offset -= SWAPFILE_CLUSTER - 1;
1128 si->cluster_next = offset;
1129 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1130 goto checks;
1131 }
1132 if (unlikely(--latency_ration < 0)) {
1133 cond_resched();
1134 latency_ration = LATENCY_LIMIT;
1135 }
1136 }
1137
1138 offset = scan_base;
1139 spin_lock(&si->lock);
1140 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1141 }
1142
1143 checks:
1144 if (!(si->flags & SWP_WRITEOK))
1145 goto no_page;
1146 if (!si->highest_bit)
1147 goto no_page;
1148 if (offset > si->highest_bit)
1149 scan_base = offset = si->lowest_bit;
1150
1151 /* reuse swap entry of cache-only swap if not busy. */
1152 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1153 int swap_was_freed;
1154 spin_unlock(&si->lock);
1155 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1156 spin_lock(&si->lock);
1157 /* entry was freed successfully, try to use this again */
1158 if (swap_was_freed > 0)
1159 goto checks;
1160 goto scan; /* check next one */
1161 }
1162
1163 if (si->swap_map[offset]) {
1164 if (!n_ret)
1165 goto scan;
1166 else
1167 goto done;
1168 }
1169 memset(si->swap_map + offset, usage, nr_pages);
1170
1171 swap_range_alloc(si, offset, nr_pages);
1172 slots[n_ret++] = swp_entry(si->type, offset);
1173
1174 /* got enough slots or reach max slots? */
1175 if ((n_ret == nr) || (offset >= si->highest_bit))
1176 goto done;
1177
1178 /* search for next available slot */
1179
1180 /* time to take a break? */
1181 if (unlikely(--latency_ration < 0)) {
1182 if (n_ret)
1183 goto done;
1184 spin_unlock(&si->lock);
1185 cond_resched();
1186 spin_lock(&si->lock);
1187 latency_ration = LATENCY_LIMIT;
1188 }
1189
1190 if (si->cluster_nr && !si->swap_map[++offset]) {
1191 /* non-ssd case, still more slots in cluster? */
1192 --si->cluster_nr;
1193 goto checks;
1194 }
1195
1196 /*
1197 * Even if there's no free clusters available (fragmented),
1198 * try to scan a little more quickly with lock held unless we
1199 * have scanned too many slots already.
1200 */
1201 if (!scanned_many) {
1202 unsigned long scan_limit;
1203
1204 if (offset < scan_base)
1205 scan_limit = scan_base;
1206 else
1207 scan_limit = si->highest_bit;
1208 for (; offset <= scan_limit && --latency_ration > 0;
1209 offset++) {
1210 if (!si->swap_map[offset])
1211 goto checks;
1212 }
1213 }
1214
1215 done:
1216 if (order == 0)
1217 set_cluster_next(si, offset + 1);
1218 si->flags -= SWP_SCANNING;
1219 return n_ret;
1220
1221 scan:
1222 VM_WARN_ON(order > 0);
1223 spin_unlock(&si->lock);
1224 while (++offset <= READ_ONCE(si->highest_bit)) {
1225 if (unlikely(--latency_ration < 0)) {
1226 cond_resched();
1227 latency_ration = LATENCY_LIMIT;
1228 scanned_many = true;
1229 }
1230 if (swap_offset_available_and_locked(si, offset))
1231 goto checks;
1232 }
1233 offset = si->lowest_bit;
1234 while (offset < scan_base) {
1235 if (unlikely(--latency_ration < 0)) {
1236 cond_resched();
1237 latency_ration = LATENCY_LIMIT;
1238 scanned_many = true;
1239 }
1240 if (swap_offset_available_and_locked(si, offset))
1241 goto checks;
1242 offset++;
1243 }
1244 spin_lock(&si->lock);
1245
1246 no_page:
1247 si->flags -= SWP_SCANNING;
1248 return n_ret;
1249 }
1250
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_order)1251 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1252 {
1253 int order = swap_entry_order(entry_order);
1254 unsigned long size = 1 << order;
1255 struct swap_info_struct *si, *next;
1256 long avail_pgs;
1257 int n_ret = 0;
1258 int node;
1259
1260 spin_lock(&swap_avail_lock);
1261
1262 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1263 if (avail_pgs <= 0) {
1264 spin_unlock(&swap_avail_lock);
1265 goto noswap;
1266 }
1267
1268 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1269
1270 atomic_long_sub(n_goal * size, &nr_swap_pages);
1271
1272 start_over:
1273 node = numa_node_id();
1274 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1275 /* requeue si to after same-priority siblings */
1276 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1277 spin_unlock(&swap_avail_lock);
1278 spin_lock(&si->lock);
1279 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1280 spin_lock(&swap_avail_lock);
1281 if (plist_node_empty(&si->avail_lists[node])) {
1282 spin_unlock(&si->lock);
1283 goto nextsi;
1284 }
1285 WARN(!si->highest_bit,
1286 "swap_info %d in list but !highest_bit\n",
1287 si->type);
1288 WARN(!(si->flags & SWP_WRITEOK),
1289 "swap_info %d in list but !SWP_WRITEOK\n",
1290 si->type);
1291 __del_from_avail_list(si);
1292 spin_unlock(&si->lock);
1293 goto nextsi;
1294 }
1295 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1296 n_goal, swp_entries, order);
1297 spin_unlock(&si->lock);
1298 if (n_ret || size > 1)
1299 goto check_out;
1300 cond_resched();
1301
1302 spin_lock(&swap_avail_lock);
1303 nextsi:
1304 /*
1305 * if we got here, it's likely that si was almost full before,
1306 * and since scan_swap_map_slots() can drop the si->lock,
1307 * multiple callers probably all tried to get a page from the
1308 * same si and it filled up before we could get one; or, the si
1309 * filled up between us dropping swap_avail_lock and taking
1310 * si->lock. Since we dropped the swap_avail_lock, the
1311 * swap_avail_head list may have been modified; so if next is
1312 * still in the swap_avail_head list then try it, otherwise
1313 * start over if we have not gotten any slots.
1314 */
1315 if (plist_node_empty(&next->avail_lists[node]))
1316 goto start_over;
1317 }
1318
1319 spin_unlock(&swap_avail_lock);
1320
1321 check_out:
1322 if (n_ret < n_goal)
1323 atomic_long_add((long)(n_goal - n_ret) * size,
1324 &nr_swap_pages);
1325 noswap:
1326 return n_ret;
1327 }
1328
_swap_info_get(swp_entry_t entry)1329 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1330 {
1331 struct swap_info_struct *si;
1332 unsigned long offset;
1333
1334 if (!entry.val)
1335 goto out;
1336 si = swp_swap_info(entry);
1337 if (!si)
1338 goto bad_nofile;
1339 if (data_race(!(si->flags & SWP_USED)))
1340 goto bad_device;
1341 offset = swp_offset(entry);
1342 if (offset >= si->max)
1343 goto bad_offset;
1344 if (data_race(!si->swap_map[swp_offset(entry)]))
1345 goto bad_free;
1346 return si;
1347
1348 bad_free:
1349 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1350 goto out;
1351 bad_offset:
1352 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1353 goto out;
1354 bad_device:
1355 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1356 goto out;
1357 bad_nofile:
1358 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1359 out:
1360 return NULL;
1361 }
1362
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1363 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1364 struct swap_info_struct *q)
1365 {
1366 struct swap_info_struct *p;
1367
1368 p = _swap_info_get(entry);
1369
1370 if (p != q) {
1371 if (q != NULL)
1372 spin_unlock(&q->lock);
1373 if (p != NULL)
1374 spin_lock(&p->lock);
1375 }
1376 return p;
1377 }
1378
__swap_entry_free_locked(struct swap_info_struct * si,unsigned long offset,unsigned char usage)1379 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1380 unsigned long offset,
1381 unsigned char usage)
1382 {
1383 unsigned char count;
1384 unsigned char has_cache;
1385
1386 count = si->swap_map[offset];
1387
1388 has_cache = count & SWAP_HAS_CACHE;
1389 count &= ~SWAP_HAS_CACHE;
1390
1391 if (usage == SWAP_HAS_CACHE) {
1392 VM_BUG_ON(!has_cache);
1393 has_cache = 0;
1394 } else if (count == SWAP_MAP_SHMEM) {
1395 /*
1396 * Or we could insist on shmem.c using a special
1397 * swap_shmem_free() and free_shmem_swap_and_cache()...
1398 */
1399 count = 0;
1400 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1401 if (count == COUNT_CONTINUED) {
1402 if (swap_count_continued(si, offset, count))
1403 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1404 else
1405 count = SWAP_MAP_MAX;
1406 } else
1407 count--;
1408 }
1409
1410 usage = count | has_cache;
1411 if (usage)
1412 WRITE_ONCE(si->swap_map[offset], usage);
1413 else
1414 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1415
1416 return usage;
1417 }
1418
1419 /*
1420 * When we get a swap entry, if there aren't some other ways to
1421 * prevent swapoff, such as the folio in swap cache is locked, RCU
1422 * reader side is locked, etc., the swap entry may become invalid
1423 * because of swapoff. Then, we need to enclose all swap related
1424 * functions with get_swap_device() and put_swap_device(), unless the
1425 * swap functions call get/put_swap_device() by themselves.
1426 *
1427 * RCU reader side lock (including any spinlock) is sufficient to
1428 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1429 * before freeing data structures.
1430 *
1431 * Check whether swap entry is valid in the swap device. If so,
1432 * return pointer to swap_info_struct, and keep the swap entry valid
1433 * via preventing the swap device from being swapoff, until
1434 * put_swap_device() is called. Otherwise return NULL.
1435 *
1436 * Notice that swapoff or swapoff+swapon can still happen before the
1437 * percpu_ref_tryget_live() in get_swap_device() or after the
1438 * percpu_ref_put() in put_swap_device() if there isn't any other way
1439 * to prevent swapoff. The caller must be prepared for that. For
1440 * example, the following situation is possible.
1441 *
1442 * CPU1 CPU2
1443 * do_swap_page()
1444 * ... swapoff+swapon
1445 * __read_swap_cache_async()
1446 * swapcache_prepare()
1447 * __swap_duplicate()
1448 * // check swap_map
1449 * // verify PTE not changed
1450 *
1451 * In __swap_duplicate(), the swap_map need to be checked before
1452 * changing partly because the specified swap entry may be for another
1453 * swap device which has been swapoff. And in do_swap_page(), after
1454 * the page is read from the swap device, the PTE is verified not
1455 * changed with the page table locked to check whether the swap device
1456 * has been swapoff or swapoff+swapon.
1457 */
get_swap_device(swp_entry_t entry)1458 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1459 {
1460 struct swap_info_struct *si;
1461 unsigned long offset;
1462
1463 if (!entry.val)
1464 goto out;
1465 si = swp_swap_info(entry);
1466 if (!si)
1467 goto bad_nofile;
1468 if (!percpu_ref_tryget_live(&si->users))
1469 goto out;
1470 /*
1471 * Guarantee the si->users are checked before accessing other
1472 * fields of swap_info_struct.
1473 *
1474 * Paired with the spin_unlock() after setup_swap_info() in
1475 * enable_swap_info().
1476 */
1477 smp_rmb();
1478 offset = swp_offset(entry);
1479 if (offset >= si->max)
1480 goto put_out;
1481
1482 return si;
1483 bad_nofile:
1484 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1485 out:
1486 return NULL;
1487 put_out:
1488 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1489 percpu_ref_put(&si->users);
1490 return NULL;
1491 }
1492
__swap_entry_free(struct swap_info_struct * si,swp_entry_t entry)1493 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1494 swp_entry_t entry)
1495 {
1496 struct swap_cluster_info *ci;
1497 unsigned long offset = swp_offset(entry);
1498 unsigned char usage;
1499
1500 ci = lock_cluster_or_swap_info(si, offset);
1501 usage = __swap_entry_free_locked(si, offset, 1);
1502 unlock_cluster_or_swap_info(si, ci);
1503 if (!usage)
1504 free_swap_slot(entry);
1505
1506 return usage;
1507 }
1508
__swap_entries_free(struct swap_info_struct * si,swp_entry_t entry,int nr)1509 static bool __swap_entries_free(struct swap_info_struct *si,
1510 swp_entry_t entry, int nr)
1511 {
1512 unsigned long offset = swp_offset(entry);
1513 unsigned int type = swp_type(entry);
1514 struct swap_cluster_info *ci;
1515 bool has_cache = false;
1516 unsigned char count;
1517 int i;
1518
1519 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1520 goto fallback;
1521 /* cross into another cluster */
1522 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1523 goto fallback;
1524
1525 ci = lock_cluster_or_swap_info(si, offset);
1526 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1527 unlock_cluster_or_swap_info(si, ci);
1528 goto fallback;
1529 }
1530 for (i = 0; i < nr; i++)
1531 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1532 unlock_cluster_or_swap_info(si, ci);
1533
1534 if (!has_cache) {
1535 for (i = 0; i < nr; i++)
1536 zswap_invalidate(swp_entry(si->type, offset + i));
1537 spin_lock(&si->lock);
1538 swap_entry_range_free(si, entry, nr);
1539 spin_unlock(&si->lock);
1540 }
1541 return has_cache;
1542
1543 fallback:
1544 for (i = 0; i < nr; i++) {
1545 if (data_race(si->swap_map[offset + i])) {
1546 count = __swap_entry_free(si, swp_entry(type, offset + i));
1547 if (count == SWAP_HAS_CACHE)
1548 has_cache = true;
1549 } else {
1550 WARN_ON_ONCE(1);
1551 }
1552 }
1553 return has_cache;
1554 }
1555
1556 /*
1557 * Drop the last HAS_CACHE flag of swap entries, caller have to
1558 * ensure all entries belong to the same cgroup.
1559 */
swap_entry_range_free(struct swap_info_struct * si,swp_entry_t entry,unsigned int nr_pages)1560 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1561 unsigned int nr_pages)
1562 {
1563 unsigned long offset = swp_offset(entry);
1564 unsigned char *map = si->swap_map + offset;
1565 unsigned char *map_end = map + nr_pages;
1566 struct swap_cluster_info *ci;
1567
1568 ci = lock_cluster(si, offset);
1569 do {
1570 VM_BUG_ON(*map != SWAP_HAS_CACHE);
1571 *map = 0;
1572 } while (++map < map_end);
1573 dec_cluster_info_page(si, ci, nr_pages);
1574 unlock_cluster(ci);
1575
1576 mem_cgroup_uncharge_swap(entry, nr_pages);
1577 swap_range_free(si, offset, nr_pages);
1578 }
1579
cluster_swap_free_nr(struct swap_info_struct * si,unsigned long offset,int nr_pages,unsigned char usage)1580 static void cluster_swap_free_nr(struct swap_info_struct *si,
1581 unsigned long offset, int nr_pages,
1582 unsigned char usage)
1583 {
1584 struct swap_cluster_info *ci;
1585 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1586 int i, nr;
1587
1588 ci = lock_cluster_or_swap_info(si, offset);
1589 while (nr_pages) {
1590 nr = min(BITS_PER_LONG, nr_pages);
1591 for (i = 0; i < nr; i++) {
1592 if (!__swap_entry_free_locked(si, offset + i, usage))
1593 bitmap_set(to_free, i, 1);
1594 }
1595 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1596 unlock_cluster_or_swap_info(si, ci);
1597 for_each_set_bit(i, to_free, BITS_PER_LONG)
1598 free_swap_slot(swp_entry(si->type, offset + i));
1599 if (nr == nr_pages)
1600 return;
1601 bitmap_clear(to_free, 0, BITS_PER_LONG);
1602 ci = lock_cluster_or_swap_info(si, offset);
1603 }
1604 offset += nr;
1605 nr_pages -= nr;
1606 }
1607 unlock_cluster_or_swap_info(si, ci);
1608 }
1609
1610 /*
1611 * Caller has made sure that the swap device corresponding to entry
1612 * is still around or has not been recycled.
1613 */
swap_free_nr(swp_entry_t entry,int nr_pages)1614 void swap_free_nr(swp_entry_t entry, int nr_pages)
1615 {
1616 int nr;
1617 struct swap_info_struct *sis;
1618 unsigned long offset = swp_offset(entry);
1619
1620 sis = _swap_info_get(entry);
1621 if (!sis)
1622 return;
1623
1624 while (nr_pages) {
1625 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1626 cluster_swap_free_nr(sis, offset, nr, 1);
1627 offset += nr;
1628 nr_pages -= nr;
1629 }
1630 }
1631
1632 /*
1633 * Called after dropping swapcache to decrease refcnt to swap entries.
1634 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1635 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1636 {
1637 unsigned long offset = swp_offset(entry);
1638 struct swap_cluster_info *ci;
1639 struct swap_info_struct *si;
1640 int size = 1 << swap_entry_order(folio_order(folio));
1641
1642 si = _swap_info_get(entry);
1643 if (!si)
1644 return;
1645
1646 ci = lock_cluster_or_swap_info(si, offset);
1647 if (size > 1 && swap_is_has_cache(si, offset, size)) {
1648 unlock_cluster_or_swap_info(si, ci);
1649 spin_lock(&si->lock);
1650 swap_entry_range_free(si, entry, size);
1651 spin_unlock(&si->lock);
1652 return;
1653 }
1654 for (int i = 0; i < size; i++, entry.val++) {
1655 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1656 unlock_cluster_or_swap_info(si, ci);
1657 free_swap_slot(entry);
1658 if (i == size - 1)
1659 return;
1660 lock_cluster_or_swap_info(si, offset);
1661 }
1662 }
1663 unlock_cluster_or_swap_info(si, ci);
1664 }
1665
swp_entry_cmp(const void * ent1,const void * ent2)1666 static int swp_entry_cmp(const void *ent1, const void *ent2)
1667 {
1668 const swp_entry_t *e1 = ent1, *e2 = ent2;
1669
1670 return (int)swp_type(*e1) - (int)swp_type(*e2);
1671 }
1672
swapcache_free_entries(swp_entry_t * entries,int n)1673 void swapcache_free_entries(swp_entry_t *entries, int n)
1674 {
1675 struct swap_info_struct *p, *prev;
1676 int i;
1677
1678 if (n <= 0)
1679 return;
1680
1681 prev = NULL;
1682 p = NULL;
1683
1684 /*
1685 * Sort swap entries by swap device, so each lock is only taken once.
1686 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1687 * so low that it isn't necessary to optimize further.
1688 */
1689 if (nr_swapfiles > 1)
1690 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1691 for (i = 0; i < n; ++i) {
1692 p = swap_info_get_cont(entries[i], prev);
1693 if (p)
1694 swap_entry_range_free(p, entries[i], 1);
1695 prev = p;
1696 }
1697 if (p)
1698 spin_unlock(&p->lock);
1699 }
1700
__swap_count(swp_entry_t entry)1701 int __swap_count(swp_entry_t entry)
1702 {
1703 struct swap_info_struct *si = swp_swap_info(entry);
1704 pgoff_t offset = swp_offset(entry);
1705
1706 return swap_count(si->swap_map[offset]);
1707 }
1708
1709 /*
1710 * How many references to @entry are currently swapped out?
1711 * This does not give an exact answer when swap count is continued,
1712 * but does include the high COUNT_CONTINUED flag to allow for that.
1713 */
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1714 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1715 {
1716 pgoff_t offset = swp_offset(entry);
1717 struct swap_cluster_info *ci;
1718 int count;
1719
1720 ci = lock_cluster_or_swap_info(si, offset);
1721 count = swap_count(si->swap_map[offset]);
1722 unlock_cluster_or_swap_info(si, ci);
1723 return count;
1724 }
1725
1726 /*
1727 * How many references to @entry are currently swapped out?
1728 * This considers COUNT_CONTINUED so it returns exact answer.
1729 */
swp_swapcount(swp_entry_t entry)1730 int swp_swapcount(swp_entry_t entry)
1731 {
1732 int count, tmp_count, n;
1733 struct swap_info_struct *si;
1734 struct swap_cluster_info *ci;
1735 struct page *page;
1736 pgoff_t offset;
1737 unsigned char *map;
1738
1739 si = _swap_info_get(entry);
1740 if (!si)
1741 return 0;
1742
1743 offset = swp_offset(entry);
1744
1745 ci = lock_cluster_or_swap_info(si, offset);
1746
1747 count = swap_count(si->swap_map[offset]);
1748 if (!(count & COUNT_CONTINUED))
1749 goto out;
1750
1751 count &= ~COUNT_CONTINUED;
1752 n = SWAP_MAP_MAX + 1;
1753
1754 page = vmalloc_to_page(si->swap_map + offset);
1755 offset &= ~PAGE_MASK;
1756 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1757
1758 do {
1759 page = list_next_entry(page, lru);
1760 map = kmap_local_page(page);
1761 tmp_count = map[offset];
1762 kunmap_local(map);
1763
1764 count += (tmp_count & ~COUNT_CONTINUED) * n;
1765 n *= (SWAP_CONT_MAX + 1);
1766 } while (tmp_count & COUNT_CONTINUED);
1767 out:
1768 unlock_cluster_or_swap_info(si, ci);
1769 return count;
1770 }
1771
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1772 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1773 swp_entry_t entry, int order)
1774 {
1775 struct swap_cluster_info *ci;
1776 unsigned char *map = si->swap_map;
1777 unsigned int nr_pages = 1 << order;
1778 unsigned long roffset = swp_offset(entry);
1779 unsigned long offset = round_down(roffset, nr_pages);
1780 int i;
1781 bool ret = false;
1782
1783 ci = lock_cluster_or_swap_info(si, offset);
1784 if (!ci || nr_pages == 1) {
1785 if (swap_count(map[roffset]))
1786 ret = true;
1787 goto unlock_out;
1788 }
1789 for (i = 0; i < nr_pages; i++) {
1790 if (swap_count(map[offset + i])) {
1791 ret = true;
1792 break;
1793 }
1794 }
1795 unlock_out:
1796 unlock_cluster_or_swap_info(si, ci);
1797 return ret;
1798 }
1799
folio_swapped(struct folio * folio)1800 static bool folio_swapped(struct folio *folio)
1801 {
1802 swp_entry_t entry = folio->swap;
1803 struct swap_info_struct *si = _swap_info_get(entry);
1804
1805 if (!si)
1806 return false;
1807
1808 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1809 return swap_swapcount(si, entry) != 0;
1810
1811 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1812 }
1813
folio_swapcache_freeable(struct folio * folio)1814 static bool folio_swapcache_freeable(struct folio *folio)
1815 {
1816 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1817
1818 if (!folio_test_swapcache(folio))
1819 return false;
1820 if (folio_test_writeback(folio))
1821 return false;
1822
1823 /*
1824 * Once hibernation has begun to create its image of memory,
1825 * there's a danger that one of the calls to folio_free_swap()
1826 * - most probably a call from __try_to_reclaim_swap() while
1827 * hibernation is allocating its own swap pages for the image,
1828 * but conceivably even a call from memory reclaim - will free
1829 * the swap from a folio which has already been recorded in the
1830 * image as a clean swapcache folio, and then reuse its swap for
1831 * another page of the image. On waking from hibernation, the
1832 * original folio might be freed under memory pressure, then
1833 * later read back in from swap, now with the wrong data.
1834 *
1835 * Hibernation suspends storage while it is writing the image
1836 * to disk so check that here.
1837 */
1838 if (pm_suspended_storage())
1839 return false;
1840
1841 return true;
1842 }
1843
1844 /**
1845 * folio_free_swap() - Free the swap space used for this folio.
1846 * @folio: The folio to remove.
1847 *
1848 * If swap is getting full, or if there are no more mappings of this folio,
1849 * then call folio_free_swap to free its swap space.
1850 *
1851 * Return: true if we were able to release the swap space.
1852 */
folio_free_swap(struct folio * folio)1853 bool folio_free_swap(struct folio *folio)
1854 {
1855 if (!folio_swapcache_freeable(folio))
1856 return false;
1857 if (folio_swapped(folio))
1858 return false;
1859
1860 delete_from_swap_cache(folio);
1861 folio_set_dirty(folio);
1862 return true;
1863 }
1864
1865 /**
1866 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1867 * reclaim their cache if no more references remain.
1868 * @entry: First entry of range.
1869 * @nr: Number of entries in range.
1870 *
1871 * For each swap entry in the contiguous range, release a reference. If any swap
1872 * entries become free, try to reclaim their underlying folios, if present. The
1873 * offset range is defined by [entry.offset, entry.offset + nr).
1874 */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1875 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1876 {
1877 const unsigned long start_offset = swp_offset(entry);
1878 const unsigned long end_offset = start_offset + nr;
1879 struct swap_info_struct *si;
1880 bool any_only_cache = false;
1881 unsigned long offset;
1882
1883 if (non_swap_entry(entry))
1884 return;
1885
1886 si = get_swap_device(entry);
1887 if (!si)
1888 return;
1889
1890 if (WARN_ON(end_offset > si->max))
1891 goto out;
1892
1893 /*
1894 * First free all entries in the range.
1895 */
1896 any_only_cache = __swap_entries_free(si, entry, nr);
1897
1898 /*
1899 * Short-circuit the below loop if none of the entries had their
1900 * reference drop to zero.
1901 */
1902 if (!any_only_cache)
1903 goto out;
1904
1905 /*
1906 * Now go back over the range trying to reclaim the swap cache. This is
1907 * more efficient for large folios because we will only try to reclaim
1908 * the swap once per folio in the common case. If we do
1909 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1910 * latter will get a reference and lock the folio for every individual
1911 * page but will only succeed once the swap slot for every subpage is
1912 * zero.
1913 */
1914 for (offset = start_offset; offset < end_offset; offset += nr) {
1915 nr = 1;
1916 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1917 /*
1918 * Folios are always naturally aligned in swap so
1919 * advance forward to the next boundary. Zero means no
1920 * folio was found for the swap entry, so advance by 1
1921 * in this case. Negative value means folio was found
1922 * but could not be reclaimed. Here we can still advance
1923 * to the next boundary.
1924 */
1925 nr = __try_to_reclaim_swap(si, offset,
1926 TTRS_UNMAPPED | TTRS_FULL);
1927 if (nr == 0)
1928 nr = 1;
1929 else if (nr < 0)
1930 nr = -nr;
1931 nr = ALIGN(offset + 1, nr) - offset;
1932 }
1933 }
1934
1935 out:
1936 put_swap_device(si);
1937 }
1938
1939 #ifdef CONFIG_HIBERNATION
1940
get_swap_page_of_type(int type)1941 swp_entry_t get_swap_page_of_type(int type)
1942 {
1943 struct swap_info_struct *si = swap_type_to_swap_info(type);
1944 swp_entry_t entry = {0};
1945
1946 if (!si)
1947 goto fail;
1948
1949 /* This is called for allocating swap entry, not cache */
1950 spin_lock(&si->lock);
1951 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1952 atomic_long_dec(&nr_swap_pages);
1953 spin_unlock(&si->lock);
1954 fail:
1955 return entry;
1956 }
1957
1958 /*
1959 * Find the swap type that corresponds to given device (if any).
1960 *
1961 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1962 * from 0, in which the swap header is expected to be located.
1963 *
1964 * This is needed for the suspend to disk (aka swsusp).
1965 */
swap_type_of(dev_t device,sector_t offset)1966 int swap_type_of(dev_t device, sector_t offset)
1967 {
1968 int type;
1969
1970 if (!device)
1971 return -1;
1972
1973 spin_lock(&swap_lock);
1974 for (type = 0; type < nr_swapfiles; type++) {
1975 struct swap_info_struct *sis = swap_info[type];
1976
1977 if (!(sis->flags & SWP_WRITEOK))
1978 continue;
1979
1980 if (device == sis->bdev->bd_dev) {
1981 struct swap_extent *se = first_se(sis);
1982
1983 if (se->start_block == offset) {
1984 spin_unlock(&swap_lock);
1985 return type;
1986 }
1987 }
1988 }
1989 spin_unlock(&swap_lock);
1990 return -ENODEV;
1991 }
1992
find_first_swap(dev_t * device)1993 int find_first_swap(dev_t *device)
1994 {
1995 int type;
1996
1997 spin_lock(&swap_lock);
1998 for (type = 0; type < nr_swapfiles; type++) {
1999 struct swap_info_struct *sis = swap_info[type];
2000
2001 if (!(sis->flags & SWP_WRITEOK))
2002 continue;
2003 *device = sis->bdev->bd_dev;
2004 spin_unlock(&swap_lock);
2005 return type;
2006 }
2007 spin_unlock(&swap_lock);
2008 return -ENODEV;
2009 }
2010
2011 /*
2012 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2013 * corresponding to given index in swap_info (swap type).
2014 */
swapdev_block(int type,pgoff_t offset)2015 sector_t swapdev_block(int type, pgoff_t offset)
2016 {
2017 struct swap_info_struct *si = swap_type_to_swap_info(type);
2018 struct swap_extent *se;
2019
2020 if (!si || !(si->flags & SWP_WRITEOK))
2021 return 0;
2022 se = offset_to_swap_extent(si, offset);
2023 return se->start_block + (offset - se->start_page);
2024 }
2025
2026 /*
2027 * Return either the total number of swap pages of given type, or the number
2028 * of free pages of that type (depending on @free)
2029 *
2030 * This is needed for software suspend
2031 */
count_swap_pages(int type,int free)2032 unsigned int count_swap_pages(int type, int free)
2033 {
2034 unsigned int n = 0;
2035
2036 spin_lock(&swap_lock);
2037 if ((unsigned int)type < nr_swapfiles) {
2038 struct swap_info_struct *sis = swap_info[type];
2039
2040 spin_lock(&sis->lock);
2041 if (sis->flags & SWP_WRITEOK) {
2042 n = sis->pages;
2043 if (free)
2044 n -= sis->inuse_pages;
2045 }
2046 spin_unlock(&sis->lock);
2047 }
2048 spin_unlock(&swap_lock);
2049 return n;
2050 }
2051 #endif /* CONFIG_HIBERNATION */
2052
pte_same_as_swp(pte_t pte,pte_t swp_pte)2053 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2054 {
2055 return pte_same(pte_swp_clear_flags(pte), swp_pte);
2056 }
2057
2058 /*
2059 * No need to decide whether this PTE shares the swap entry with others,
2060 * just let do_wp_page work it out if a write is requested later - to
2061 * force COW, vm_page_prot omits write permission from any private vma.
2062 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)2063 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2064 unsigned long addr, swp_entry_t entry, struct folio *folio)
2065 {
2066 struct page *page;
2067 struct folio *swapcache;
2068 spinlock_t *ptl;
2069 pte_t *pte, new_pte, old_pte;
2070 bool hwpoisoned = false;
2071 int ret = 1;
2072
2073 swapcache = folio;
2074 folio = ksm_might_need_to_copy(folio, vma, addr);
2075 if (unlikely(!folio))
2076 return -ENOMEM;
2077 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2078 hwpoisoned = true;
2079 folio = swapcache;
2080 }
2081
2082 page = folio_file_page(folio, swp_offset(entry));
2083 if (PageHWPoison(page))
2084 hwpoisoned = true;
2085
2086 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2087 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2088 swp_entry_to_pte(entry)))) {
2089 ret = 0;
2090 goto out;
2091 }
2092
2093 old_pte = ptep_get(pte);
2094
2095 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2096 swp_entry_t swp_entry;
2097
2098 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2099 if (hwpoisoned) {
2100 swp_entry = make_hwpoison_entry(page);
2101 } else {
2102 swp_entry = make_poisoned_swp_entry();
2103 }
2104 new_pte = swp_entry_to_pte(swp_entry);
2105 ret = 0;
2106 goto setpte;
2107 }
2108
2109 /*
2110 * Some architectures may have to restore extra metadata to the page
2111 * when reading from swap. This metadata may be indexed by swap entry
2112 * so this must be called before swap_free().
2113 */
2114 arch_swap_restore(folio_swap(entry, folio), folio);
2115
2116 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2117 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2118 folio_get(folio);
2119 if (folio == swapcache) {
2120 rmap_t rmap_flags = RMAP_NONE;
2121
2122 /*
2123 * See do_swap_page(): writeback would be problematic.
2124 * However, we do a folio_wait_writeback() just before this
2125 * call and have the folio locked.
2126 */
2127 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2128 if (pte_swp_exclusive(old_pte))
2129 rmap_flags |= RMAP_EXCLUSIVE;
2130 /*
2131 * We currently only expect small !anon folios, which are either
2132 * fully exclusive or fully shared. If we ever get large folios
2133 * here, we have to be careful.
2134 */
2135 if (!folio_test_anon(folio)) {
2136 VM_WARN_ON_ONCE(folio_test_large(folio));
2137 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2138 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2139 } else {
2140 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2141 }
2142 } else { /* ksm created a completely new copy */
2143 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2144 folio_add_lru_vma(folio, vma);
2145 }
2146 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2147 if (pte_swp_soft_dirty(old_pte))
2148 new_pte = pte_mksoft_dirty(new_pte);
2149 if (pte_swp_uffd_wp(old_pte))
2150 new_pte = pte_mkuffd_wp(new_pte);
2151 setpte:
2152 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2153 swap_free(entry);
2154 out:
2155 if (pte)
2156 pte_unmap_unlock(pte, ptl);
2157 if (folio != swapcache) {
2158 folio_unlock(folio);
2159 folio_put(folio);
2160 }
2161 return ret;
2162 }
2163
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2164 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2165 unsigned long addr, unsigned long end,
2166 unsigned int type)
2167 {
2168 pte_t *pte = NULL;
2169 struct swap_info_struct *si;
2170
2171 si = swap_info[type];
2172 do {
2173 struct folio *folio;
2174 unsigned long offset;
2175 unsigned char swp_count;
2176 swp_entry_t entry;
2177 int ret;
2178 pte_t ptent;
2179
2180 if (!pte++) {
2181 pte = pte_offset_map(pmd, addr);
2182 if (!pte)
2183 break;
2184 }
2185
2186 ptent = ptep_get_lockless(pte);
2187
2188 if (!is_swap_pte(ptent))
2189 continue;
2190
2191 entry = pte_to_swp_entry(ptent);
2192 if (swp_type(entry) != type)
2193 continue;
2194
2195 offset = swp_offset(entry);
2196 pte_unmap(pte);
2197 pte = NULL;
2198
2199 folio = swap_cache_get_folio(entry, vma, addr);
2200 if (!folio) {
2201 struct vm_fault vmf = {
2202 .vma = vma,
2203 .address = addr,
2204 .real_address = addr,
2205 .pmd = pmd,
2206 };
2207
2208 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2209 &vmf);
2210 }
2211 if (!folio) {
2212 swp_count = READ_ONCE(si->swap_map[offset]);
2213 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2214 continue;
2215 return -ENOMEM;
2216 }
2217
2218 folio_lock(folio);
2219 folio_wait_writeback(folio);
2220 ret = unuse_pte(vma, pmd, addr, entry, folio);
2221 if (ret < 0) {
2222 folio_unlock(folio);
2223 folio_put(folio);
2224 return ret;
2225 }
2226
2227 folio_free_swap(folio);
2228 folio_unlock(folio);
2229 folio_put(folio);
2230 } while (addr += PAGE_SIZE, addr != end);
2231
2232 if (pte)
2233 pte_unmap(pte);
2234 return 0;
2235 }
2236
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2237 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2238 unsigned long addr, unsigned long end,
2239 unsigned int type)
2240 {
2241 pmd_t *pmd;
2242 unsigned long next;
2243 int ret;
2244
2245 pmd = pmd_offset(pud, addr);
2246 do {
2247 cond_resched();
2248 next = pmd_addr_end(addr, end);
2249 ret = unuse_pte_range(vma, pmd, addr, next, type);
2250 if (ret)
2251 return ret;
2252 } while (pmd++, addr = next, addr != end);
2253 return 0;
2254 }
2255
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2256 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2257 unsigned long addr, unsigned long end,
2258 unsigned int type)
2259 {
2260 pud_t *pud;
2261 unsigned long next;
2262 int ret;
2263
2264 pud = pud_offset(p4d, addr);
2265 do {
2266 next = pud_addr_end(addr, end);
2267 if (pud_none_or_clear_bad(pud))
2268 continue;
2269 ret = unuse_pmd_range(vma, pud, addr, next, type);
2270 if (ret)
2271 return ret;
2272 } while (pud++, addr = next, addr != end);
2273 return 0;
2274 }
2275
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2276 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2277 unsigned long addr, unsigned long end,
2278 unsigned int type)
2279 {
2280 p4d_t *p4d;
2281 unsigned long next;
2282 int ret;
2283
2284 p4d = p4d_offset(pgd, addr);
2285 do {
2286 next = p4d_addr_end(addr, end);
2287 if (p4d_none_or_clear_bad(p4d))
2288 continue;
2289 ret = unuse_pud_range(vma, p4d, addr, next, type);
2290 if (ret)
2291 return ret;
2292 } while (p4d++, addr = next, addr != end);
2293 return 0;
2294 }
2295
unuse_vma(struct vm_area_struct * vma,unsigned int type)2296 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2297 {
2298 pgd_t *pgd;
2299 unsigned long addr, end, next;
2300 int ret;
2301
2302 addr = vma->vm_start;
2303 end = vma->vm_end;
2304
2305 pgd = pgd_offset(vma->vm_mm, addr);
2306 do {
2307 next = pgd_addr_end(addr, end);
2308 if (pgd_none_or_clear_bad(pgd))
2309 continue;
2310 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2311 if (ret)
2312 return ret;
2313 } while (pgd++, addr = next, addr != end);
2314 return 0;
2315 }
2316
unuse_mm(struct mm_struct * mm,unsigned int type)2317 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2318 {
2319 struct vm_area_struct *vma;
2320 int ret = 0;
2321 VMA_ITERATOR(vmi, mm, 0);
2322
2323 mmap_read_lock(mm);
2324 for_each_vma(vmi, vma) {
2325 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2326 ret = unuse_vma(vma, type);
2327 if (ret)
2328 break;
2329 }
2330
2331 cond_resched();
2332 }
2333 mmap_read_unlock(mm);
2334 return ret;
2335 }
2336
2337 /*
2338 * Scan swap_map from current position to next entry still in use.
2339 * Return 0 if there are no inuse entries after prev till end of
2340 * the map.
2341 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2342 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2343 unsigned int prev)
2344 {
2345 unsigned int i;
2346 unsigned char count;
2347
2348 /*
2349 * No need for swap_lock here: we're just looking
2350 * for whether an entry is in use, not modifying it; false
2351 * hits are okay, and sys_swapoff() has already prevented new
2352 * allocations from this area (while holding swap_lock).
2353 */
2354 for (i = prev + 1; i < si->max; i++) {
2355 count = READ_ONCE(si->swap_map[i]);
2356 if (count && swap_count(count) != SWAP_MAP_BAD)
2357 break;
2358 if ((i % LATENCY_LIMIT) == 0)
2359 cond_resched();
2360 }
2361
2362 if (i == si->max)
2363 i = 0;
2364
2365 return i;
2366 }
2367
try_to_unuse(unsigned int type)2368 static int try_to_unuse(unsigned int type)
2369 {
2370 struct mm_struct *prev_mm;
2371 struct mm_struct *mm;
2372 struct list_head *p;
2373 int retval = 0;
2374 struct swap_info_struct *si = swap_info[type];
2375 struct folio *folio;
2376 swp_entry_t entry;
2377 unsigned int i;
2378
2379 if (!READ_ONCE(si->inuse_pages))
2380 goto success;
2381
2382 retry:
2383 retval = shmem_unuse(type);
2384 if (retval)
2385 return retval;
2386
2387 prev_mm = &init_mm;
2388 mmget(prev_mm);
2389
2390 spin_lock(&mmlist_lock);
2391 p = &init_mm.mmlist;
2392 while (READ_ONCE(si->inuse_pages) &&
2393 !signal_pending(current) &&
2394 (p = p->next) != &init_mm.mmlist) {
2395
2396 mm = list_entry(p, struct mm_struct, mmlist);
2397 if (!mmget_not_zero(mm))
2398 continue;
2399 spin_unlock(&mmlist_lock);
2400 mmput(prev_mm);
2401 prev_mm = mm;
2402 retval = unuse_mm(mm, type);
2403 if (retval) {
2404 mmput(prev_mm);
2405 return retval;
2406 }
2407
2408 /*
2409 * Make sure that we aren't completely killing
2410 * interactive performance.
2411 */
2412 cond_resched();
2413 spin_lock(&mmlist_lock);
2414 }
2415 spin_unlock(&mmlist_lock);
2416
2417 mmput(prev_mm);
2418
2419 i = 0;
2420 while (READ_ONCE(si->inuse_pages) &&
2421 !signal_pending(current) &&
2422 (i = find_next_to_unuse(si, i)) != 0) {
2423
2424 entry = swp_entry(type, i);
2425 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2426 if (IS_ERR(folio))
2427 continue;
2428
2429 /*
2430 * It is conceivable that a racing task removed this folio from
2431 * swap cache just before we acquired the page lock. The folio
2432 * might even be back in swap cache on another swap area. But
2433 * that is okay, folio_free_swap() only removes stale folios.
2434 */
2435 folio_lock(folio);
2436 folio_wait_writeback(folio);
2437 folio_free_swap(folio);
2438 folio_unlock(folio);
2439 folio_put(folio);
2440 }
2441
2442 /*
2443 * Lets check again to see if there are still swap entries in the map.
2444 * If yes, we would need to do retry the unuse logic again.
2445 * Under global memory pressure, swap entries can be reinserted back
2446 * into process space after the mmlist loop above passes over them.
2447 *
2448 * Limit the number of retries? No: when mmget_not_zero()
2449 * above fails, that mm is likely to be freeing swap from
2450 * exit_mmap(), which proceeds at its own independent pace;
2451 * and even shmem_writepage() could have been preempted after
2452 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2453 * and robust (though cpu-intensive) just to keep retrying.
2454 */
2455 if (READ_ONCE(si->inuse_pages)) {
2456 if (!signal_pending(current))
2457 goto retry;
2458 return -EINTR;
2459 }
2460
2461 success:
2462 /*
2463 * Make sure that further cleanups after try_to_unuse() returns happen
2464 * after swap_range_free() reduces si->inuse_pages to 0.
2465 */
2466 smp_mb();
2467 return 0;
2468 }
2469
2470 /*
2471 * After a successful try_to_unuse, if no swap is now in use, we know
2472 * we can empty the mmlist. swap_lock must be held on entry and exit.
2473 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2474 * added to the mmlist just after page_duplicate - before would be racy.
2475 */
drain_mmlist(void)2476 static void drain_mmlist(void)
2477 {
2478 struct list_head *p, *next;
2479 unsigned int type;
2480
2481 for (type = 0; type < nr_swapfiles; type++)
2482 if (swap_info[type]->inuse_pages)
2483 return;
2484 spin_lock(&mmlist_lock);
2485 list_for_each_safe(p, next, &init_mm.mmlist)
2486 list_del_init(p);
2487 spin_unlock(&mmlist_lock);
2488 }
2489
2490 /*
2491 * Free all of a swapdev's extent information
2492 */
destroy_swap_extents(struct swap_info_struct * sis)2493 static void destroy_swap_extents(struct swap_info_struct *sis)
2494 {
2495 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2496 struct rb_node *rb = sis->swap_extent_root.rb_node;
2497 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2498
2499 rb_erase(rb, &sis->swap_extent_root);
2500 kfree(se);
2501 }
2502
2503 if (sis->flags & SWP_ACTIVATED) {
2504 struct file *swap_file = sis->swap_file;
2505 struct address_space *mapping = swap_file->f_mapping;
2506
2507 sis->flags &= ~SWP_ACTIVATED;
2508 if (mapping->a_ops->swap_deactivate)
2509 mapping->a_ops->swap_deactivate(swap_file);
2510 }
2511 }
2512
2513 /*
2514 * Add a block range (and the corresponding page range) into this swapdev's
2515 * extent tree.
2516 *
2517 * This function rather assumes that it is called in ascending page order.
2518 */
2519 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2520 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2521 unsigned long nr_pages, sector_t start_block)
2522 {
2523 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2524 struct swap_extent *se;
2525 struct swap_extent *new_se;
2526
2527 /*
2528 * place the new node at the right most since the
2529 * function is called in ascending page order.
2530 */
2531 while (*link) {
2532 parent = *link;
2533 link = &parent->rb_right;
2534 }
2535
2536 if (parent) {
2537 se = rb_entry(parent, struct swap_extent, rb_node);
2538 BUG_ON(se->start_page + se->nr_pages != start_page);
2539 if (se->start_block + se->nr_pages == start_block) {
2540 /* Merge it */
2541 se->nr_pages += nr_pages;
2542 return 0;
2543 }
2544 }
2545
2546 /* No merge, insert a new extent. */
2547 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2548 if (new_se == NULL)
2549 return -ENOMEM;
2550 new_se->start_page = start_page;
2551 new_se->nr_pages = nr_pages;
2552 new_se->start_block = start_block;
2553
2554 rb_link_node(&new_se->rb_node, parent, link);
2555 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2556 return 1;
2557 }
2558 EXPORT_SYMBOL_GPL(add_swap_extent);
2559
2560 /*
2561 * A `swap extent' is a simple thing which maps a contiguous range of pages
2562 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2563 * built at swapon time and is then used at swap_writepage/swap_read_folio
2564 * time for locating where on disk a page belongs.
2565 *
2566 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2567 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2568 * swap files identically.
2569 *
2570 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2571 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2572 * swapfiles are handled *identically* after swapon time.
2573 *
2574 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2575 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2576 * blocks are found which do not fall within the PAGE_SIZE alignment
2577 * requirements, they are simply tossed out - we will never use those blocks
2578 * for swapping.
2579 *
2580 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2581 * prevents users from writing to the swap device, which will corrupt memory.
2582 *
2583 * The amount of disk space which a single swap extent represents varies.
2584 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2585 * extents in the rbtree. - akpm.
2586 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2587 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2588 {
2589 struct file *swap_file = sis->swap_file;
2590 struct address_space *mapping = swap_file->f_mapping;
2591 struct inode *inode = mapping->host;
2592 int ret;
2593
2594 if (S_ISBLK(inode->i_mode)) {
2595 ret = add_swap_extent(sis, 0, sis->max, 0);
2596 *span = sis->pages;
2597 return ret;
2598 }
2599
2600 if (mapping->a_ops->swap_activate) {
2601 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2602 if (ret < 0)
2603 return ret;
2604 sis->flags |= SWP_ACTIVATED;
2605 if ((sis->flags & SWP_FS_OPS) &&
2606 sio_pool_init() != 0) {
2607 destroy_swap_extents(sis);
2608 return -ENOMEM;
2609 }
2610 return ret;
2611 }
2612
2613 return generic_swapfile_activate(sis, swap_file, span);
2614 }
2615
swap_node(struct swap_info_struct * si)2616 static int swap_node(struct swap_info_struct *si)
2617 {
2618 struct block_device *bdev;
2619
2620 if (si->bdev)
2621 bdev = si->bdev;
2622 else
2623 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2624
2625 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2626 }
2627
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2628 static void setup_swap_info(struct swap_info_struct *si, int prio,
2629 unsigned char *swap_map,
2630 struct swap_cluster_info *cluster_info,
2631 unsigned long *zeromap)
2632 {
2633 int i;
2634
2635 if (prio >= 0)
2636 si->prio = prio;
2637 else
2638 si->prio = --least_priority;
2639 /*
2640 * the plist prio is negated because plist ordering is
2641 * low-to-high, while swap ordering is high-to-low
2642 */
2643 si->list.prio = -si->prio;
2644 for_each_node(i) {
2645 if (si->prio >= 0)
2646 si->avail_lists[i].prio = -si->prio;
2647 else {
2648 if (swap_node(si) == i)
2649 si->avail_lists[i].prio = 1;
2650 else
2651 si->avail_lists[i].prio = -si->prio;
2652 }
2653 }
2654 si->swap_map = swap_map;
2655 si->cluster_info = cluster_info;
2656 si->zeromap = zeromap;
2657 }
2658
_enable_swap_info(struct swap_info_struct * si)2659 static void _enable_swap_info(struct swap_info_struct *si)
2660 {
2661 si->flags |= SWP_WRITEOK;
2662 atomic_long_add(si->pages, &nr_swap_pages);
2663 total_swap_pages += si->pages;
2664
2665 assert_spin_locked(&swap_lock);
2666 /*
2667 * both lists are plists, and thus priority ordered.
2668 * swap_active_head needs to be priority ordered for swapoff(),
2669 * which on removal of any swap_info_struct with an auto-assigned
2670 * (i.e. negative) priority increments the auto-assigned priority
2671 * of any lower-priority swap_info_structs.
2672 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2673 * which allocates swap pages from the highest available priority
2674 * swap_info_struct.
2675 */
2676 plist_add(&si->list, &swap_active_head);
2677
2678 /* add to available list iff swap device is not full */
2679 if (si->highest_bit)
2680 add_to_avail_list(si);
2681 }
2682
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2683 static void enable_swap_info(struct swap_info_struct *si, int prio,
2684 unsigned char *swap_map,
2685 struct swap_cluster_info *cluster_info,
2686 unsigned long *zeromap)
2687 {
2688 spin_lock(&swap_lock);
2689 spin_lock(&si->lock);
2690 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2691 spin_unlock(&si->lock);
2692 spin_unlock(&swap_lock);
2693 /*
2694 * Finished initializing swap device, now it's safe to reference it.
2695 */
2696 percpu_ref_resurrect(&si->users);
2697 spin_lock(&swap_lock);
2698 spin_lock(&si->lock);
2699 _enable_swap_info(si);
2700 spin_unlock(&si->lock);
2701 spin_unlock(&swap_lock);
2702 }
2703
reinsert_swap_info(struct swap_info_struct * si)2704 static void reinsert_swap_info(struct swap_info_struct *si)
2705 {
2706 spin_lock(&swap_lock);
2707 spin_lock(&si->lock);
2708 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2709 _enable_swap_info(si);
2710 spin_unlock(&si->lock);
2711 spin_unlock(&swap_lock);
2712 }
2713
__has_usable_swap(void)2714 static bool __has_usable_swap(void)
2715 {
2716 return !plist_head_empty(&swap_active_head);
2717 }
2718
has_usable_swap(void)2719 bool has_usable_swap(void)
2720 {
2721 bool ret;
2722
2723 spin_lock(&swap_lock);
2724 ret = __has_usable_swap();
2725 spin_unlock(&swap_lock);
2726 return ret;
2727 }
2728
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2729 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2730 {
2731 struct swap_info_struct *p = NULL;
2732 unsigned char *swap_map;
2733 unsigned long *zeromap;
2734 struct swap_cluster_info *cluster_info;
2735 struct file *swap_file, *victim;
2736 struct address_space *mapping;
2737 struct inode *inode;
2738 struct filename *pathname;
2739 int err, found = 0;
2740
2741 if (!capable(CAP_SYS_ADMIN))
2742 return -EPERM;
2743
2744 BUG_ON(!current->mm);
2745
2746 pathname = getname(specialfile);
2747 if (IS_ERR(pathname))
2748 return PTR_ERR(pathname);
2749
2750 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2751 err = PTR_ERR(victim);
2752 if (IS_ERR(victim))
2753 goto out;
2754
2755 mapping = victim->f_mapping;
2756 spin_lock(&swap_lock);
2757 plist_for_each_entry(p, &swap_active_head, list) {
2758 if (p->flags & SWP_WRITEOK) {
2759 if (p->swap_file->f_mapping == mapping) {
2760 found = 1;
2761 break;
2762 }
2763 }
2764 }
2765 if (!found) {
2766 err = -EINVAL;
2767 spin_unlock(&swap_lock);
2768 goto out_dput;
2769 }
2770 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2771 vm_unacct_memory(p->pages);
2772 else {
2773 err = -ENOMEM;
2774 spin_unlock(&swap_lock);
2775 goto out_dput;
2776 }
2777 spin_lock(&p->lock);
2778 del_from_avail_list(p);
2779 if (p->prio < 0) {
2780 struct swap_info_struct *si = p;
2781 int nid;
2782
2783 plist_for_each_entry_continue(si, &swap_active_head, list) {
2784 si->prio++;
2785 si->list.prio--;
2786 for_each_node(nid) {
2787 if (si->avail_lists[nid].prio != 1)
2788 si->avail_lists[nid].prio--;
2789 }
2790 }
2791 least_priority++;
2792 }
2793 plist_del(&p->list, &swap_active_head);
2794 atomic_long_sub(p->pages, &nr_swap_pages);
2795 total_swap_pages -= p->pages;
2796 p->flags &= ~SWP_WRITEOK;
2797 spin_unlock(&p->lock);
2798 spin_unlock(&swap_lock);
2799
2800 disable_swap_slots_cache_lock();
2801
2802 set_current_oom_origin();
2803 err = try_to_unuse(p->type);
2804 clear_current_oom_origin();
2805
2806 if (err) {
2807 /* re-insert swap space back into swap_list */
2808 reinsert_swap_info(p);
2809 reenable_swap_slots_cache_unlock();
2810 goto out_dput;
2811 }
2812
2813 reenable_swap_slots_cache_unlock();
2814
2815 /*
2816 * Wait for swap operations protected by get/put_swap_device()
2817 * to complete. Because of synchronize_rcu() here, all swap
2818 * operations protected by RCU reader side lock (including any
2819 * spinlock) will be waited too. This makes it easy to
2820 * prevent folio_test_swapcache() and the following swap cache
2821 * operations from racing with swapoff.
2822 */
2823 percpu_ref_kill(&p->users);
2824 synchronize_rcu();
2825 wait_for_completion(&p->comp);
2826
2827 flush_work(&p->discard_work);
2828 flush_work(&p->reclaim_work);
2829
2830 destroy_swap_extents(p);
2831 if (p->flags & SWP_CONTINUED)
2832 free_swap_count_continuations(p);
2833
2834 if (!p->bdev || !bdev_nonrot(p->bdev))
2835 atomic_dec(&nr_rotate_swap);
2836
2837 mutex_lock(&swapon_mutex);
2838 spin_lock(&swap_lock);
2839 spin_lock(&p->lock);
2840 drain_mmlist();
2841
2842 /* wait for anyone still in scan_swap_map_slots */
2843 p->highest_bit = 0; /* cuts scans short */
2844 while (p->flags >= SWP_SCANNING) {
2845 spin_unlock(&p->lock);
2846 spin_unlock(&swap_lock);
2847 schedule_timeout_uninterruptible(1);
2848 spin_lock(&swap_lock);
2849 spin_lock(&p->lock);
2850 }
2851
2852 swap_file = p->swap_file;
2853 p->swap_file = NULL;
2854 p->max = 0;
2855 swap_map = p->swap_map;
2856 p->swap_map = NULL;
2857 zeromap = p->zeromap;
2858 p->zeromap = NULL;
2859 cluster_info = p->cluster_info;
2860 p->cluster_info = NULL;
2861 spin_unlock(&p->lock);
2862 spin_unlock(&swap_lock);
2863 arch_swap_invalidate_area(p->type);
2864 zswap_swapoff(p->type);
2865 mutex_unlock(&swapon_mutex);
2866 free_percpu(p->percpu_cluster);
2867 p->percpu_cluster = NULL;
2868 free_percpu(p->cluster_next_cpu);
2869 p->cluster_next_cpu = NULL;
2870 vfree(swap_map);
2871 kvfree(zeromap);
2872 kvfree(cluster_info);
2873 /* Destroy swap account information */
2874 swap_cgroup_swapoff(p->type);
2875 exit_swap_address_space(p->type);
2876
2877 inode = mapping->host;
2878
2879 inode_lock(inode);
2880 inode->i_flags &= ~S_SWAPFILE;
2881 inode_unlock(inode);
2882 filp_close(swap_file, NULL);
2883
2884 /*
2885 * Clear the SWP_USED flag after all resources are freed so that swapon
2886 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2887 * not hold p->lock after we cleared its SWP_WRITEOK.
2888 */
2889 spin_lock(&swap_lock);
2890 p->flags = 0;
2891 spin_unlock(&swap_lock);
2892
2893 err = 0;
2894 atomic_inc(&proc_poll_event);
2895 wake_up_interruptible(&proc_poll_wait);
2896
2897 out_dput:
2898 filp_close(victim, NULL);
2899 out:
2900 putname(pathname);
2901 return err;
2902 }
2903
2904 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2905 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2906 {
2907 struct seq_file *seq = file->private_data;
2908
2909 poll_wait(file, &proc_poll_wait, wait);
2910
2911 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2912 seq->poll_event = atomic_read(&proc_poll_event);
2913 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2914 }
2915
2916 return EPOLLIN | EPOLLRDNORM;
2917 }
2918
2919 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2920 static void *swap_start(struct seq_file *swap, loff_t *pos)
2921 {
2922 struct swap_info_struct *si;
2923 int type;
2924 loff_t l = *pos;
2925
2926 mutex_lock(&swapon_mutex);
2927
2928 if (!l)
2929 return SEQ_START_TOKEN;
2930
2931 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2932 if (!(si->flags & SWP_USED) || !si->swap_map)
2933 continue;
2934 if (!--l)
2935 return si;
2936 }
2937
2938 return NULL;
2939 }
2940
swap_next(struct seq_file * swap,void * v,loff_t * pos)2941 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2942 {
2943 struct swap_info_struct *si = v;
2944 int type;
2945
2946 if (v == SEQ_START_TOKEN)
2947 type = 0;
2948 else
2949 type = si->type + 1;
2950
2951 ++(*pos);
2952 for (; (si = swap_type_to_swap_info(type)); type++) {
2953 if (!(si->flags & SWP_USED) || !si->swap_map)
2954 continue;
2955 return si;
2956 }
2957
2958 return NULL;
2959 }
2960
swap_stop(struct seq_file * swap,void * v)2961 static void swap_stop(struct seq_file *swap, void *v)
2962 {
2963 mutex_unlock(&swapon_mutex);
2964 }
2965
swap_show(struct seq_file * swap,void * v)2966 static int swap_show(struct seq_file *swap, void *v)
2967 {
2968 struct swap_info_struct *si = v;
2969 struct file *file;
2970 int len;
2971 unsigned long bytes, inuse;
2972
2973 if (si == SEQ_START_TOKEN) {
2974 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2975 return 0;
2976 }
2977
2978 bytes = K(si->pages);
2979 inuse = K(READ_ONCE(si->inuse_pages));
2980
2981 file = si->swap_file;
2982 len = seq_file_path(swap, file, " \t\n\\");
2983 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2984 len < 40 ? 40 - len : 1, " ",
2985 S_ISBLK(file_inode(file)->i_mode) ?
2986 "partition" : "file\t",
2987 bytes, bytes < 10000000 ? "\t" : "",
2988 inuse, inuse < 10000000 ? "\t" : "",
2989 si->prio);
2990 return 0;
2991 }
2992
2993 static const struct seq_operations swaps_op = {
2994 .start = swap_start,
2995 .next = swap_next,
2996 .stop = swap_stop,
2997 .show = swap_show
2998 };
2999
swaps_open(struct inode * inode,struct file * file)3000 static int swaps_open(struct inode *inode, struct file *file)
3001 {
3002 struct seq_file *seq;
3003 int ret;
3004
3005 ret = seq_open(file, &swaps_op);
3006 if (ret)
3007 return ret;
3008
3009 seq = file->private_data;
3010 seq->poll_event = atomic_read(&proc_poll_event);
3011 return 0;
3012 }
3013
3014 static const struct proc_ops swaps_proc_ops = {
3015 .proc_flags = PROC_ENTRY_PERMANENT,
3016 .proc_open = swaps_open,
3017 .proc_read = seq_read,
3018 .proc_lseek = seq_lseek,
3019 .proc_release = seq_release,
3020 .proc_poll = swaps_poll,
3021 };
3022
procswaps_init(void)3023 static int __init procswaps_init(void)
3024 {
3025 proc_create("swaps", 0, NULL, &swaps_proc_ops);
3026 return 0;
3027 }
3028 __initcall(procswaps_init);
3029 #endif /* CONFIG_PROC_FS */
3030
3031 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)3032 static int __init max_swapfiles_check(void)
3033 {
3034 MAX_SWAPFILES_CHECK();
3035 return 0;
3036 }
3037 late_initcall(max_swapfiles_check);
3038 #endif
3039
alloc_swap_info(void)3040 static struct swap_info_struct *alloc_swap_info(void)
3041 {
3042 struct swap_info_struct *p;
3043 struct swap_info_struct *defer = NULL;
3044 unsigned int type;
3045 int i;
3046
3047 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3048 if (!p)
3049 return ERR_PTR(-ENOMEM);
3050
3051 if (percpu_ref_init(&p->users, swap_users_ref_free,
3052 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3053 kvfree(p);
3054 return ERR_PTR(-ENOMEM);
3055 }
3056
3057 spin_lock(&swap_lock);
3058 for (type = 0; type < nr_swapfiles; type++) {
3059 if (!(swap_info[type]->flags & SWP_USED))
3060 break;
3061 }
3062 if (type >= MAX_SWAPFILES) {
3063 spin_unlock(&swap_lock);
3064 percpu_ref_exit(&p->users);
3065 kvfree(p);
3066 return ERR_PTR(-EPERM);
3067 }
3068 if (type >= nr_swapfiles) {
3069 p->type = type;
3070 /*
3071 * Publish the swap_info_struct after initializing it.
3072 * Note that kvzalloc() above zeroes all its fields.
3073 */
3074 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3075 nr_swapfiles++;
3076 } else {
3077 defer = p;
3078 p = swap_info[type];
3079 /*
3080 * Do not memset this entry: a racing procfs swap_next()
3081 * would be relying on p->type to remain valid.
3082 */
3083 }
3084 p->swap_extent_root = RB_ROOT;
3085 plist_node_init(&p->list, 0);
3086 for_each_node(i)
3087 plist_node_init(&p->avail_lists[i], 0);
3088 p->flags = SWP_USED;
3089 spin_unlock(&swap_lock);
3090 if (defer) {
3091 percpu_ref_exit(&defer->users);
3092 kvfree(defer);
3093 }
3094 spin_lock_init(&p->lock);
3095 spin_lock_init(&p->cont_lock);
3096 init_completion(&p->comp);
3097
3098 return p;
3099 }
3100
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3101 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3102 {
3103 if (S_ISBLK(inode->i_mode)) {
3104 si->bdev = I_BDEV(inode);
3105 /*
3106 * Zoned block devices contain zones that have a sequential
3107 * write only restriction. Hence zoned block devices are not
3108 * suitable for swapping. Disallow them here.
3109 */
3110 if (bdev_is_zoned(si->bdev))
3111 return -EINVAL;
3112 si->flags |= SWP_BLKDEV;
3113 } else if (S_ISREG(inode->i_mode)) {
3114 si->bdev = inode->i_sb->s_bdev;
3115 }
3116
3117 return 0;
3118 }
3119
3120
3121 /*
3122 * Find out how many pages are allowed for a single swap device. There
3123 * are two limiting factors:
3124 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3125 * 2) the number of bits in the swap pte, as defined by the different
3126 * architectures.
3127 *
3128 * In order to find the largest possible bit mask, a swap entry with
3129 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3130 * decoded to a swp_entry_t again, and finally the swap offset is
3131 * extracted.
3132 *
3133 * This will mask all the bits from the initial ~0UL mask that can't
3134 * be encoded in either the swp_entry_t or the architecture definition
3135 * of a swap pte.
3136 */
generic_max_swapfile_size(void)3137 unsigned long generic_max_swapfile_size(void)
3138 {
3139 return swp_offset(pte_to_swp_entry(
3140 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3141 }
3142
3143 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3144 __weak unsigned long arch_max_swapfile_size(void)
3145 {
3146 return generic_max_swapfile_size();
3147 }
3148
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3149 static unsigned long read_swap_header(struct swap_info_struct *si,
3150 union swap_header *swap_header,
3151 struct inode *inode)
3152 {
3153 int i;
3154 unsigned long maxpages;
3155 unsigned long swapfilepages;
3156 unsigned long last_page;
3157
3158 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3159 pr_err("Unable to find swap-space signature\n");
3160 return 0;
3161 }
3162
3163 /* swap partition endianness hack... */
3164 if (swab32(swap_header->info.version) == 1) {
3165 swab32s(&swap_header->info.version);
3166 swab32s(&swap_header->info.last_page);
3167 swab32s(&swap_header->info.nr_badpages);
3168 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3169 return 0;
3170 for (i = 0; i < swap_header->info.nr_badpages; i++)
3171 swab32s(&swap_header->info.badpages[i]);
3172 }
3173 /* Check the swap header's sub-version */
3174 if (swap_header->info.version != 1) {
3175 pr_warn("Unable to handle swap header version %d\n",
3176 swap_header->info.version);
3177 return 0;
3178 }
3179
3180 si->lowest_bit = 1;
3181 si->cluster_next = 1;
3182 si->cluster_nr = 0;
3183
3184 maxpages = swapfile_maximum_size;
3185 last_page = swap_header->info.last_page;
3186 if (!last_page) {
3187 pr_warn("Empty swap-file\n");
3188 return 0;
3189 }
3190 if (last_page > maxpages) {
3191 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3192 K(maxpages), K(last_page));
3193 }
3194 if (maxpages > last_page) {
3195 maxpages = last_page + 1;
3196 /* p->max is an unsigned int: don't overflow it */
3197 if ((unsigned int)maxpages == 0)
3198 maxpages = UINT_MAX;
3199 }
3200 si->highest_bit = maxpages - 1;
3201
3202 if (!maxpages)
3203 return 0;
3204 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3205 if (swapfilepages && maxpages > swapfilepages) {
3206 pr_warn("Swap area shorter than signature indicates\n");
3207 return 0;
3208 }
3209 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3210 return 0;
3211 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3212 return 0;
3213
3214 return maxpages;
3215 }
3216
3217 #define SWAP_CLUSTER_INFO_COLS \
3218 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3219 #define SWAP_CLUSTER_SPACE_COLS \
3220 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3221 #define SWAP_CLUSTER_COLS \
3222 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3223
setup_swap_map_and_extents(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages,sector_t * span)3224 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3225 union swap_header *swap_header,
3226 unsigned char *swap_map,
3227 unsigned long maxpages,
3228 sector_t *span)
3229 {
3230 unsigned int nr_good_pages;
3231 unsigned long i;
3232 int nr_extents;
3233
3234 nr_good_pages = maxpages - 1; /* omit header page */
3235
3236 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3237 unsigned int page_nr = swap_header->info.badpages[i];
3238 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3239 return -EINVAL;
3240 if (page_nr < maxpages) {
3241 swap_map[page_nr] = SWAP_MAP_BAD;
3242 nr_good_pages--;
3243 }
3244 }
3245
3246 if (nr_good_pages) {
3247 swap_map[0] = SWAP_MAP_BAD;
3248 si->max = maxpages;
3249 si->pages = nr_good_pages;
3250 nr_extents = setup_swap_extents(si, span);
3251 if (nr_extents < 0)
3252 return nr_extents;
3253 nr_good_pages = si->pages;
3254 }
3255 if (!nr_good_pages) {
3256 pr_warn("Empty swap-file\n");
3257 return -EINVAL;
3258 }
3259
3260 return nr_extents;
3261 }
3262
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3263 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3264 union swap_header *swap_header,
3265 unsigned long maxpages)
3266 {
3267 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3268 unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3269 struct swap_cluster_info *cluster_info;
3270 unsigned long i, j, k, idx;
3271 int cpu, err = -ENOMEM;
3272
3273 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3274 if (!cluster_info)
3275 goto err;
3276
3277 for (i = 0; i < nr_clusters; i++)
3278 spin_lock_init(&cluster_info[i].lock);
3279
3280 si->cluster_next_cpu = alloc_percpu(unsigned int);
3281 if (!si->cluster_next_cpu)
3282 goto err_free;
3283
3284 /* Random start position to help with wear leveling */
3285 for_each_possible_cpu(cpu)
3286 per_cpu(*si->cluster_next_cpu, cpu) =
3287 get_random_u32_inclusive(1, si->highest_bit);
3288
3289 si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3290 if (!si->percpu_cluster)
3291 goto err_free;
3292
3293 for_each_possible_cpu(cpu) {
3294 struct percpu_cluster *cluster;
3295
3296 cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3297 for (i = 0; i < SWAP_NR_ORDERS; i++)
3298 cluster->next[i] = SWAP_NEXT_INVALID;
3299 }
3300
3301 /*
3302 * Mark unusable pages as unavailable. The clusters aren't
3303 * marked free yet, so no list operations are involved yet.
3304 *
3305 * See setup_swap_map_and_extents(): header page, bad pages,
3306 * and the EOF part of the last cluster.
3307 */
3308 inc_cluster_info_page(si, cluster_info, 0);
3309 for (i = 0; i < swap_header->info.nr_badpages; i++)
3310 inc_cluster_info_page(si, cluster_info,
3311 swap_header->info.badpages[i]);
3312 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3313 inc_cluster_info_page(si, cluster_info, i);
3314
3315 INIT_LIST_HEAD(&si->free_clusters);
3316 INIT_LIST_HEAD(&si->full_clusters);
3317 INIT_LIST_HEAD(&si->discard_clusters);
3318
3319 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3320 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3321 INIT_LIST_HEAD(&si->frag_clusters[i]);
3322 si->frag_cluster_nr[i] = 0;
3323 }
3324
3325 /*
3326 * Reduce false cache line sharing between cluster_info and
3327 * sharing same address space.
3328 */
3329 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3330 j = (k + col) % SWAP_CLUSTER_COLS;
3331 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3332 struct swap_cluster_info *ci;
3333 idx = i * SWAP_CLUSTER_COLS + j;
3334 ci = cluster_info + idx;
3335 if (idx >= nr_clusters)
3336 continue;
3337 if (ci->count) {
3338 ci->flags = CLUSTER_FLAG_NONFULL;
3339 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3340 continue;
3341 }
3342 ci->flags = CLUSTER_FLAG_FREE;
3343 list_add_tail(&ci->list, &si->free_clusters);
3344 }
3345 }
3346
3347 return cluster_info;
3348
3349 err_free:
3350 kvfree(cluster_info);
3351 err:
3352 return ERR_PTR(err);
3353 }
3354
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3355 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3356 {
3357 struct swap_info_struct *si;
3358 struct filename *name;
3359 struct file *swap_file = NULL;
3360 struct address_space *mapping;
3361 struct dentry *dentry;
3362 int prio;
3363 int error;
3364 union swap_header *swap_header;
3365 int nr_extents;
3366 sector_t span;
3367 unsigned long maxpages;
3368 unsigned char *swap_map = NULL;
3369 unsigned long *zeromap = NULL;
3370 struct swap_cluster_info *cluster_info = NULL;
3371 struct folio *folio = NULL;
3372 struct inode *inode = NULL;
3373 bool inced_nr_rotate_swap = false;
3374
3375 if (swap_flags & ~SWAP_FLAGS_VALID)
3376 return -EINVAL;
3377
3378 if (!capable(CAP_SYS_ADMIN))
3379 return -EPERM;
3380
3381 if (!swap_avail_heads)
3382 return -ENOMEM;
3383
3384 si = alloc_swap_info();
3385 if (IS_ERR(si))
3386 return PTR_ERR(si);
3387
3388 INIT_WORK(&si->discard_work, swap_discard_work);
3389 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3390
3391 name = getname(specialfile);
3392 if (IS_ERR(name)) {
3393 error = PTR_ERR(name);
3394 name = NULL;
3395 goto bad_swap;
3396 }
3397 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3398 if (IS_ERR(swap_file)) {
3399 error = PTR_ERR(swap_file);
3400 swap_file = NULL;
3401 goto bad_swap;
3402 }
3403
3404 si->swap_file = swap_file;
3405 mapping = swap_file->f_mapping;
3406 dentry = swap_file->f_path.dentry;
3407 inode = mapping->host;
3408
3409 error = claim_swapfile(si, inode);
3410 if (unlikely(error))
3411 goto bad_swap;
3412
3413 inode_lock(inode);
3414 if (d_unlinked(dentry) || cant_mount(dentry)) {
3415 error = -ENOENT;
3416 goto bad_swap_unlock_inode;
3417 }
3418 if (IS_SWAPFILE(inode)) {
3419 error = -EBUSY;
3420 goto bad_swap_unlock_inode;
3421 }
3422
3423 /*
3424 * Read the swap header.
3425 */
3426 if (!mapping->a_ops->read_folio) {
3427 error = -EINVAL;
3428 goto bad_swap_unlock_inode;
3429 }
3430 folio = read_mapping_folio(mapping, 0, swap_file);
3431 if (IS_ERR(folio)) {
3432 error = PTR_ERR(folio);
3433 goto bad_swap_unlock_inode;
3434 }
3435 swap_header = kmap_local_folio(folio, 0);
3436
3437 maxpages = read_swap_header(si, swap_header, inode);
3438 if (unlikely(!maxpages)) {
3439 error = -EINVAL;
3440 goto bad_swap_unlock_inode;
3441 }
3442
3443 /* OK, set up the swap map and apply the bad block list */
3444 swap_map = vzalloc(maxpages);
3445 if (!swap_map) {
3446 error = -ENOMEM;
3447 goto bad_swap_unlock_inode;
3448 }
3449
3450 error = swap_cgroup_swapon(si->type, maxpages);
3451 if (error)
3452 goto bad_swap_unlock_inode;
3453
3454 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3455 maxpages, &span);
3456 if (unlikely(nr_extents < 0)) {
3457 error = nr_extents;
3458 goto bad_swap_unlock_inode;
3459 }
3460
3461 /*
3462 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3463 * be above MAX_PAGE_ORDER incase of a large swap file.
3464 */
3465 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3466 GFP_KERNEL | __GFP_ZERO);
3467 if (!zeromap) {
3468 error = -ENOMEM;
3469 goto bad_swap_unlock_inode;
3470 }
3471
3472 if (si->bdev && bdev_stable_writes(si->bdev))
3473 si->flags |= SWP_STABLE_WRITES;
3474
3475 if (si->bdev && bdev_synchronous(si->bdev))
3476 si->flags |= SWP_SYNCHRONOUS_IO;
3477
3478 if (si->bdev && bdev_nonrot(si->bdev)) {
3479 si->flags |= SWP_SOLIDSTATE;
3480
3481 cluster_info = setup_clusters(si, swap_header, maxpages);
3482 if (IS_ERR(cluster_info)) {
3483 error = PTR_ERR(cluster_info);
3484 cluster_info = NULL;
3485 goto bad_swap_unlock_inode;
3486 }
3487 } else {
3488 atomic_inc(&nr_rotate_swap);
3489 inced_nr_rotate_swap = true;
3490 }
3491
3492 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3493 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3494 /*
3495 * When discard is enabled for swap with no particular
3496 * policy flagged, we set all swap discard flags here in
3497 * order to sustain backward compatibility with older
3498 * swapon(8) releases.
3499 */
3500 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3501 SWP_PAGE_DISCARD);
3502
3503 /*
3504 * By flagging sys_swapon, a sysadmin can tell us to
3505 * either do single-time area discards only, or to just
3506 * perform discards for released swap page-clusters.
3507 * Now it's time to adjust the p->flags accordingly.
3508 */
3509 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3510 si->flags &= ~SWP_PAGE_DISCARD;
3511 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3512 si->flags &= ~SWP_AREA_DISCARD;
3513
3514 /* issue a swapon-time discard if it's still required */
3515 if (si->flags & SWP_AREA_DISCARD) {
3516 int err = discard_swap(si);
3517 if (unlikely(err))
3518 pr_err("swapon: discard_swap(%p): %d\n",
3519 si, err);
3520 }
3521 }
3522
3523 error = init_swap_address_space(si->type, maxpages);
3524 if (error)
3525 goto bad_swap_unlock_inode;
3526
3527 error = zswap_swapon(si->type, maxpages);
3528 if (error)
3529 goto free_swap_address_space;
3530
3531 /*
3532 * Flush any pending IO and dirty mappings before we start using this
3533 * swap device.
3534 */
3535 inode->i_flags |= S_SWAPFILE;
3536 error = inode_drain_writes(inode);
3537 if (error) {
3538 inode->i_flags &= ~S_SWAPFILE;
3539 goto free_swap_zswap;
3540 }
3541
3542 mutex_lock(&swapon_mutex);
3543 prio = -1;
3544 if (swap_flags & SWAP_FLAG_PREFER)
3545 prio =
3546 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3547 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3548
3549 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3550 K(si->pages), name->name, si->prio, nr_extents,
3551 K((unsigned long long)span),
3552 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3553 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3554 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3555 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3556
3557 mutex_unlock(&swapon_mutex);
3558 atomic_inc(&proc_poll_event);
3559 wake_up_interruptible(&proc_poll_wait);
3560
3561 error = 0;
3562 goto out;
3563 free_swap_zswap:
3564 zswap_swapoff(si->type);
3565 free_swap_address_space:
3566 exit_swap_address_space(si->type);
3567 bad_swap_unlock_inode:
3568 inode_unlock(inode);
3569 bad_swap:
3570 free_percpu(si->percpu_cluster);
3571 si->percpu_cluster = NULL;
3572 free_percpu(si->cluster_next_cpu);
3573 si->cluster_next_cpu = NULL;
3574 inode = NULL;
3575 destroy_swap_extents(si);
3576 swap_cgroup_swapoff(si->type);
3577 spin_lock(&swap_lock);
3578 si->swap_file = NULL;
3579 si->flags = 0;
3580 spin_unlock(&swap_lock);
3581 vfree(swap_map);
3582 kvfree(zeromap);
3583 kvfree(cluster_info);
3584 if (inced_nr_rotate_swap)
3585 atomic_dec(&nr_rotate_swap);
3586 if (swap_file)
3587 filp_close(swap_file, NULL);
3588 out:
3589 if (!IS_ERR_OR_NULL(folio))
3590 folio_release_kmap(folio, swap_header);
3591 if (name)
3592 putname(name);
3593 if (inode)
3594 inode_unlock(inode);
3595 if (!error)
3596 enable_swap_slots_cache();
3597 return error;
3598 }
3599
si_swapinfo(struct sysinfo * val)3600 void si_swapinfo(struct sysinfo *val)
3601 {
3602 unsigned int type;
3603 unsigned long nr_to_be_unused = 0;
3604
3605 spin_lock(&swap_lock);
3606 for (type = 0; type < nr_swapfiles; type++) {
3607 struct swap_info_struct *si = swap_info[type];
3608
3609 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3610 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3611 }
3612 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3613 val->totalswap = total_swap_pages + nr_to_be_unused;
3614 spin_unlock(&swap_lock);
3615 }
3616
3617 /*
3618 * Verify that nr swap entries are valid and increment their swap map counts.
3619 *
3620 * Returns error code in following case.
3621 * - success -> 0
3622 * - swp_entry is invalid -> EINVAL
3623 * - swp_entry is migration entry -> EINVAL
3624 * - swap-cache reference is requested but there is already one. -> EEXIST
3625 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3626 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3627 */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3628 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3629 {
3630 struct swap_info_struct *si;
3631 struct swap_cluster_info *ci;
3632 unsigned long offset;
3633 unsigned char count;
3634 unsigned char has_cache;
3635 int err, i;
3636
3637 si = swp_swap_info(entry);
3638
3639 offset = swp_offset(entry);
3640 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3641 VM_WARN_ON(usage == 1 && nr > 1);
3642 ci = lock_cluster_or_swap_info(si, offset);
3643
3644 err = 0;
3645 for (i = 0; i < nr; i++) {
3646 count = si->swap_map[offset + i];
3647
3648 /*
3649 * swapin_readahead() doesn't check if a swap entry is valid, so the
3650 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3651 */
3652 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3653 err = -ENOENT;
3654 goto unlock_out;
3655 }
3656
3657 has_cache = count & SWAP_HAS_CACHE;
3658 count &= ~SWAP_HAS_CACHE;
3659
3660 if (!count && !has_cache) {
3661 err = -ENOENT;
3662 } else if (usage == SWAP_HAS_CACHE) {
3663 if (has_cache)
3664 err = -EEXIST;
3665 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3666 err = -EINVAL;
3667 }
3668
3669 if (err)
3670 goto unlock_out;
3671 }
3672
3673 for (i = 0; i < nr; i++) {
3674 count = si->swap_map[offset + i];
3675 has_cache = count & SWAP_HAS_CACHE;
3676 count &= ~SWAP_HAS_CACHE;
3677
3678 if (usage == SWAP_HAS_CACHE)
3679 has_cache = SWAP_HAS_CACHE;
3680 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3681 count += usage;
3682 else if (swap_count_continued(si, offset + i, count))
3683 count = COUNT_CONTINUED;
3684 else {
3685 /*
3686 * Don't need to rollback changes, because if
3687 * usage == 1, there must be nr == 1.
3688 */
3689 err = -ENOMEM;
3690 goto unlock_out;
3691 }
3692
3693 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3694 }
3695
3696 unlock_out:
3697 unlock_cluster_or_swap_info(si, ci);
3698 return err;
3699 }
3700
3701 /*
3702 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3703 * (in which case its reference count is never incremented).
3704 */
swap_shmem_alloc(swp_entry_t entry,int nr)3705 void swap_shmem_alloc(swp_entry_t entry, int nr)
3706 {
3707 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3708 }
3709
3710 /*
3711 * Increase reference count of swap entry by 1.
3712 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3713 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3714 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3715 * might occur if a page table entry has got corrupted.
3716 */
swap_duplicate(swp_entry_t entry)3717 int swap_duplicate(swp_entry_t entry)
3718 {
3719 int err = 0;
3720
3721 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3722 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3723 return err;
3724 }
3725
3726 /*
3727 * @entry: first swap entry from which we allocate nr swap cache.
3728 *
3729 * Called when allocating swap cache for existing swap entries,
3730 * This can return error codes. Returns 0 at success.
3731 * -EEXIST means there is a swap cache.
3732 * Note: return code is different from swap_duplicate().
3733 */
swapcache_prepare(swp_entry_t entry,int nr)3734 int swapcache_prepare(swp_entry_t entry, int nr)
3735 {
3736 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3737 }
3738
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3739 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3740 {
3741 unsigned long offset = swp_offset(entry);
3742
3743 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3744 }
3745
swp_swap_info(swp_entry_t entry)3746 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3747 {
3748 return swap_type_to_swap_info(swp_type(entry));
3749 }
3750
3751 /*
3752 * out-of-line methods to avoid include hell.
3753 */
swapcache_mapping(struct folio * folio)3754 struct address_space *swapcache_mapping(struct folio *folio)
3755 {
3756 return swp_swap_info(folio->swap)->swap_file->f_mapping;
3757 }
3758 EXPORT_SYMBOL_GPL(swapcache_mapping);
3759
__folio_swap_cache_index(struct folio * folio)3760 pgoff_t __folio_swap_cache_index(struct folio *folio)
3761 {
3762 return swap_cache_index(folio->swap);
3763 }
3764 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3765
3766 /*
3767 * add_swap_count_continuation - called when a swap count is duplicated
3768 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3769 * page of the original vmalloc'ed swap_map, to hold the continuation count
3770 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3771 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3772 *
3773 * These continuation pages are seldom referenced: the common paths all work
3774 * on the original swap_map, only referring to a continuation page when the
3775 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3776 *
3777 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3778 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3779 * can be called after dropping locks.
3780 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3781 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3782 {
3783 struct swap_info_struct *si;
3784 struct swap_cluster_info *ci;
3785 struct page *head;
3786 struct page *page;
3787 struct page *list_page;
3788 pgoff_t offset;
3789 unsigned char count;
3790 int ret = 0;
3791
3792 /*
3793 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3794 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3795 */
3796 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3797
3798 si = get_swap_device(entry);
3799 if (!si) {
3800 /*
3801 * An acceptable race has occurred since the failing
3802 * __swap_duplicate(): the swap device may be swapoff
3803 */
3804 goto outer;
3805 }
3806 spin_lock(&si->lock);
3807
3808 offset = swp_offset(entry);
3809
3810 ci = lock_cluster(si, offset);
3811
3812 count = swap_count(si->swap_map[offset]);
3813
3814 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3815 /*
3816 * The higher the swap count, the more likely it is that tasks
3817 * will race to add swap count continuation: we need to avoid
3818 * over-provisioning.
3819 */
3820 goto out;
3821 }
3822
3823 if (!page) {
3824 ret = -ENOMEM;
3825 goto out;
3826 }
3827
3828 head = vmalloc_to_page(si->swap_map + offset);
3829 offset &= ~PAGE_MASK;
3830
3831 spin_lock(&si->cont_lock);
3832 /*
3833 * Page allocation does not initialize the page's lru field,
3834 * but it does always reset its private field.
3835 */
3836 if (!page_private(head)) {
3837 BUG_ON(count & COUNT_CONTINUED);
3838 INIT_LIST_HEAD(&head->lru);
3839 set_page_private(head, SWP_CONTINUED);
3840 si->flags |= SWP_CONTINUED;
3841 }
3842
3843 list_for_each_entry(list_page, &head->lru, lru) {
3844 unsigned char *map;
3845
3846 /*
3847 * If the previous map said no continuation, but we've found
3848 * a continuation page, free our allocation and use this one.
3849 */
3850 if (!(count & COUNT_CONTINUED))
3851 goto out_unlock_cont;
3852
3853 map = kmap_local_page(list_page) + offset;
3854 count = *map;
3855 kunmap_local(map);
3856
3857 /*
3858 * If this continuation count now has some space in it,
3859 * free our allocation and use this one.
3860 */
3861 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3862 goto out_unlock_cont;
3863 }
3864
3865 list_add_tail(&page->lru, &head->lru);
3866 page = NULL; /* now it's attached, don't free it */
3867 out_unlock_cont:
3868 spin_unlock(&si->cont_lock);
3869 out:
3870 unlock_cluster(ci);
3871 spin_unlock(&si->lock);
3872 put_swap_device(si);
3873 outer:
3874 if (page)
3875 __free_page(page);
3876 return ret;
3877 }
3878
3879 /*
3880 * swap_count_continued - when the original swap_map count is incremented
3881 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3882 * into, carry if so, or else fail until a new continuation page is allocated;
3883 * when the original swap_map count is decremented from 0 with continuation,
3884 * borrow from the continuation and report whether it still holds more.
3885 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3886 * lock.
3887 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3888 static bool swap_count_continued(struct swap_info_struct *si,
3889 pgoff_t offset, unsigned char count)
3890 {
3891 struct page *head;
3892 struct page *page;
3893 unsigned char *map;
3894 bool ret;
3895
3896 head = vmalloc_to_page(si->swap_map + offset);
3897 if (page_private(head) != SWP_CONTINUED) {
3898 BUG_ON(count & COUNT_CONTINUED);
3899 return false; /* need to add count continuation */
3900 }
3901
3902 spin_lock(&si->cont_lock);
3903 offset &= ~PAGE_MASK;
3904 page = list_next_entry(head, lru);
3905 map = kmap_local_page(page) + offset;
3906
3907 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3908 goto init_map; /* jump over SWAP_CONT_MAX checks */
3909
3910 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3911 /*
3912 * Think of how you add 1 to 999
3913 */
3914 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3915 kunmap_local(map);
3916 page = list_next_entry(page, lru);
3917 BUG_ON(page == head);
3918 map = kmap_local_page(page) + offset;
3919 }
3920 if (*map == SWAP_CONT_MAX) {
3921 kunmap_local(map);
3922 page = list_next_entry(page, lru);
3923 if (page == head) {
3924 ret = false; /* add count continuation */
3925 goto out;
3926 }
3927 map = kmap_local_page(page) + offset;
3928 init_map: *map = 0; /* we didn't zero the page */
3929 }
3930 *map += 1;
3931 kunmap_local(map);
3932 while ((page = list_prev_entry(page, lru)) != head) {
3933 map = kmap_local_page(page) + offset;
3934 *map = COUNT_CONTINUED;
3935 kunmap_local(map);
3936 }
3937 ret = true; /* incremented */
3938
3939 } else { /* decrementing */
3940 /*
3941 * Think of how you subtract 1 from 1000
3942 */
3943 BUG_ON(count != COUNT_CONTINUED);
3944 while (*map == COUNT_CONTINUED) {
3945 kunmap_local(map);
3946 page = list_next_entry(page, lru);
3947 BUG_ON(page == head);
3948 map = kmap_local_page(page) + offset;
3949 }
3950 BUG_ON(*map == 0);
3951 *map -= 1;
3952 if (*map == 0)
3953 count = 0;
3954 kunmap_local(map);
3955 while ((page = list_prev_entry(page, lru)) != head) {
3956 map = kmap_local_page(page) + offset;
3957 *map = SWAP_CONT_MAX | count;
3958 count = COUNT_CONTINUED;
3959 kunmap_local(map);
3960 }
3961 ret = count == COUNT_CONTINUED;
3962 }
3963 out:
3964 spin_unlock(&si->cont_lock);
3965 return ret;
3966 }
3967
3968 /*
3969 * free_swap_count_continuations - swapoff free all the continuation pages
3970 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3971 */
free_swap_count_continuations(struct swap_info_struct * si)3972 static void free_swap_count_continuations(struct swap_info_struct *si)
3973 {
3974 pgoff_t offset;
3975
3976 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3977 struct page *head;
3978 head = vmalloc_to_page(si->swap_map + offset);
3979 if (page_private(head)) {
3980 struct page *page, *next;
3981
3982 list_for_each_entry_safe(page, next, &head->lru, lru) {
3983 list_del(&page->lru);
3984 __free_page(page);
3985 }
3986 }
3987 }
3988 }
3989
3990 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3991 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3992 {
3993 struct swap_info_struct *si, *next;
3994 int nid = folio_nid(folio);
3995
3996 if (!(gfp & __GFP_IO))
3997 return;
3998
3999 if (!__has_usable_swap())
4000 return;
4001
4002 if (!blk_cgroup_congested())
4003 return;
4004
4005 /*
4006 * We've already scheduled a throttle, avoid taking the global swap
4007 * lock.
4008 */
4009 if (current->throttle_disk)
4010 return;
4011
4012 spin_lock(&swap_avail_lock);
4013 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4014 avail_lists[nid]) {
4015 if (si->bdev) {
4016 blkcg_schedule_throttle(si->bdev->bd_disk, true);
4017 break;
4018 }
4019 }
4020 spin_unlock(&swap_avail_lock);
4021 }
4022 #endif
4023
swapfile_init(void)4024 static int __init swapfile_init(void)
4025 {
4026 int nid;
4027
4028 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4029 GFP_KERNEL);
4030 if (!swap_avail_heads) {
4031 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4032 return -ENOMEM;
4033 }
4034
4035 for_each_node(nid)
4036 plist_head_init(&swap_avail_heads[nid]);
4037
4038 swapfile_maximum_size = arch_max_swapfile_size();
4039
4040 #ifdef CONFIG_MIGRATION
4041 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4042 swap_migration_ad_supported = true;
4043 #endif /* CONFIG_MIGRATION */
4044
4045 return 0;
4046 }
4047 subsys_initcall(swapfile_init);
4048