xref: /freebsd/sys/contrib/zstd/lib/compress/zstd_compress_internal.h (revision 5ff13fbc199bdf5f0572845351c68ee5ca828e71)
1 /*
2  * Copyright (c) Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 /* This header contains definitions
12  * that shall **only** be used by modules within lib/compress.
13  */
14 
15 #ifndef ZSTD_COMPRESS_H
16 #define ZSTD_COMPRESS_H
17 
18 /*-*************************************
19 *  Dependencies
20 ***************************************/
21 #include "../common/zstd_internal.h"
22 #include "zstd_cwksp.h"
23 #ifdef ZSTD_MULTITHREAD
24 #  include "zstdmt_compress.h"
25 #endif
26 
27 #if defined (__cplusplus)
28 extern "C" {
29 #endif
30 
31 /*-*************************************
32 *  Constants
33 ***************************************/
34 #define kSearchStrength      8
35 #define HASH_READ_SIZE       8
36 #define ZSTD_DUBT_UNSORTED_MARK 1   /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
37                                        It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
38                                        It's not a big deal though : candidate will just be sorted again.
39                                        Additionally, candidate position 1 will be lost.
40                                        But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
41                                        The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
42                                        This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
43 
44 
45 /*-*************************************
46 *  Context memory management
47 ***************************************/
48 typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
49 typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
50 
51 typedef struct ZSTD_prefixDict_s {
52     const void* dict;
53     size_t dictSize;
54     ZSTD_dictContentType_e dictContentType;
55 } ZSTD_prefixDict;
56 
57 typedef struct {
58     void* dictBuffer;
59     void const* dict;
60     size_t dictSize;
61     ZSTD_dictContentType_e dictContentType;
62     ZSTD_CDict* cdict;
63 } ZSTD_localDict;
64 
65 typedef struct {
66     HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)];
67     HUF_repeat repeatMode;
68 } ZSTD_hufCTables_t;
69 
70 typedef struct {
71     FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
72     FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
73     FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
74     FSE_repeat offcode_repeatMode;
75     FSE_repeat matchlength_repeatMode;
76     FSE_repeat litlength_repeatMode;
77 } ZSTD_fseCTables_t;
78 
79 typedef struct {
80     ZSTD_hufCTables_t huf;
81     ZSTD_fseCTables_t fse;
82 } ZSTD_entropyCTables_t;
83 
84 /***********************************************
85 *  Entropy buffer statistics structs and funcs *
86 ***********************************************/
87 /** ZSTD_hufCTablesMetadata_t :
88  *  Stores Literals Block Type for a super-block in hType, and
89  *  huffman tree description in hufDesBuffer.
90  *  hufDesSize refers to the size of huffman tree description in bytes.
91  *  This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */
92 typedef struct {
93     symbolEncodingType_e hType;
94     BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
95     size_t hufDesSize;
96 } ZSTD_hufCTablesMetadata_t;
97 
98 /** ZSTD_fseCTablesMetadata_t :
99  *  Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
100  *  fse tables in fseTablesBuffer.
101  *  fseTablesSize refers to the size of fse tables in bytes.
102  *  This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */
103 typedef struct {
104     symbolEncodingType_e llType;
105     symbolEncodingType_e ofType;
106     symbolEncodingType_e mlType;
107     BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
108     size_t fseTablesSize;
109     size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
110 } ZSTD_fseCTablesMetadata_t;
111 
112 typedef struct {
113     ZSTD_hufCTablesMetadata_t hufMetadata;
114     ZSTD_fseCTablesMetadata_t fseMetadata;
115 } ZSTD_entropyCTablesMetadata_t;
116 
117 /** ZSTD_buildBlockEntropyStats() :
118  *  Builds entropy for the block.
119  *  @return : 0 on success or error code */
120 size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
121                              const ZSTD_entropyCTables_t* prevEntropy,
122                                    ZSTD_entropyCTables_t* nextEntropy,
123                              const ZSTD_CCtx_params* cctxParams,
124                                    ZSTD_entropyCTablesMetadata_t* entropyMetadata,
125                                    void* workspace, size_t wkspSize);
126 
127 /*********************************
128 *  Compression internals structs *
129 *********************************/
130 
131 typedef struct {
132     U32 off;            /* Offset sumtype code for the match, using ZSTD_storeSeq() format */
133     U32 len;            /* Raw length of match */
134 } ZSTD_match_t;
135 
136 typedef struct {
137     U32 offset;         /* Offset of sequence */
138     U32 litLength;      /* Length of literals prior to match */
139     U32 matchLength;    /* Raw length of match */
140 } rawSeq;
141 
142 typedef struct {
143   rawSeq* seq;          /* The start of the sequences */
144   size_t pos;           /* The index in seq where reading stopped. pos <= size. */
145   size_t posInSequence; /* The position within the sequence at seq[pos] where reading
146                            stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
147   size_t size;          /* The number of sequences. <= capacity. */
148   size_t capacity;      /* The capacity starting from `seq` pointer */
149 } rawSeqStore_t;
150 
151 UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
152 
153 typedef struct {
154     int price;
155     U32 off;
156     U32 mlen;
157     U32 litlen;
158     U32 rep[ZSTD_REP_NUM];
159 } ZSTD_optimal_t;
160 
161 typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
162 
163 typedef struct {
164     /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
165     unsigned* litFreq;           /* table of literals statistics, of size 256 */
166     unsigned* litLengthFreq;     /* table of litLength statistics, of size (MaxLL+1) */
167     unsigned* matchLengthFreq;   /* table of matchLength statistics, of size (MaxML+1) */
168     unsigned* offCodeFreq;       /* table of offCode statistics, of size (MaxOff+1) */
169     ZSTD_match_t* matchTable;    /* list of found matches, of size ZSTD_OPT_NUM+1 */
170     ZSTD_optimal_t* priceTable;  /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
171 
172     U32  litSum;                 /* nb of literals */
173     U32  litLengthSum;           /* nb of litLength codes */
174     U32  matchLengthSum;         /* nb of matchLength codes */
175     U32  offCodeSum;             /* nb of offset codes */
176     U32  litSumBasePrice;        /* to compare to log2(litfreq) */
177     U32  litLengthSumBasePrice;  /* to compare to log2(llfreq)  */
178     U32  matchLengthSumBasePrice;/* to compare to log2(mlfreq)  */
179     U32  offCodeSumBasePrice;    /* to compare to log2(offreq)  */
180     ZSTD_OptPrice_e priceType;   /* prices can be determined dynamically, or follow a pre-defined cost structure */
181     const ZSTD_entropyCTables_t* symbolCosts;  /* pre-calculated dictionary statistics */
182     ZSTD_paramSwitch_e literalCompressionMode;
183 } optState_t;
184 
185 typedef struct {
186   ZSTD_entropyCTables_t entropy;
187   U32 rep[ZSTD_REP_NUM];
188 } ZSTD_compressedBlockState_t;
189 
190 typedef struct {
191     BYTE const* nextSrc;       /* next block here to continue on current prefix */
192     BYTE const* base;          /* All regular indexes relative to this position */
193     BYTE const* dictBase;      /* extDict indexes relative to this position */
194     U32 dictLimit;             /* below that point, need extDict */
195     U32 lowLimit;              /* below that point, no more valid data */
196     U32 nbOverflowCorrections; /* Number of times overflow correction has run since
197                                 * ZSTD_window_init(). Useful for debugging coredumps
198                                 * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY.
199                                 */
200 } ZSTD_window_t;
201 
202 #define ZSTD_WINDOW_START_INDEX 2
203 
204 typedef struct ZSTD_matchState_t ZSTD_matchState_t;
205 
206 #define ZSTD_ROW_HASH_CACHE_SIZE 8       /* Size of prefetching hash cache for row-based matchfinder */
207 
208 struct ZSTD_matchState_t {
209     ZSTD_window_t window;   /* State for window round buffer management */
210     U32 loadedDictEnd;      /* index of end of dictionary, within context's referential.
211                              * When loadedDictEnd != 0, a dictionary is in use, and still valid.
212                              * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
213                              * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
214                              * When dict referential is copied into active context (i.e. not attached),
215                              * loadedDictEnd == dictSize, since referential starts from zero.
216                              */
217     U32 nextToUpdate;       /* index from which to continue table update */
218     U32 hashLog3;           /* dispatch table for matches of len==3 : larger == faster, more memory */
219 
220     U32 rowHashLog;                          /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
221     U16* tagTable;                           /* For row-based matchFinder: A row-based table containing the hashes and head index. */
222     U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
223 
224     U32* hashTable;
225     U32* hashTable3;
226     U32* chainTable;
227 
228     U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */
229 
230     int dedicatedDictSearch;  /* Indicates whether this matchState is using the
231                                * dedicated dictionary search structure.
232                                */
233     optState_t opt;         /* optimal parser state */
234     const ZSTD_matchState_t* dictMatchState;
235     ZSTD_compressionParameters cParams;
236     const rawSeqStore_t* ldmSeqStore;
237 };
238 
239 typedef struct {
240     ZSTD_compressedBlockState_t* prevCBlock;
241     ZSTD_compressedBlockState_t* nextCBlock;
242     ZSTD_matchState_t matchState;
243 } ZSTD_blockState_t;
244 
245 typedef struct {
246     U32 offset;
247     U32 checksum;
248 } ldmEntry_t;
249 
250 typedef struct {
251     BYTE const* split;
252     U32 hash;
253     U32 checksum;
254     ldmEntry_t* bucket;
255 } ldmMatchCandidate_t;
256 
257 #define LDM_BATCH_SIZE 64
258 
259 typedef struct {
260     ZSTD_window_t window;   /* State for the window round buffer management */
261     ldmEntry_t* hashTable;
262     U32 loadedDictEnd;
263     BYTE* bucketOffsets;    /* Next position in bucket to insert entry */
264     size_t splitIndices[LDM_BATCH_SIZE];
265     ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
266 } ldmState_t;
267 
268 typedef struct {
269     ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */
270     U32 hashLog;            /* Log size of hashTable */
271     U32 bucketSizeLog;      /* Log bucket size for collision resolution, at most 8 */
272     U32 minMatchLength;     /* Minimum match length */
273     U32 hashRateLog;       /* Log number of entries to skip */
274     U32 windowLog;          /* Window log for the LDM */
275 } ldmParams_t;
276 
277 typedef struct {
278     int collectSequences;
279     ZSTD_Sequence* seqStart;
280     size_t seqIndex;
281     size_t maxSequences;
282 } SeqCollector;
283 
284 struct ZSTD_CCtx_params_s {
285     ZSTD_format_e format;
286     ZSTD_compressionParameters cParams;
287     ZSTD_frameParameters fParams;
288 
289     int compressionLevel;
290     int forceWindow;           /* force back-references to respect limit of
291                                 * 1<<wLog, even for dictionary */
292     size_t targetCBlockSize;   /* Tries to fit compressed block size to be around targetCBlockSize.
293                                 * No target when targetCBlockSize == 0.
294                                 * There is no guarantee on compressed block size */
295     int srcSizeHint;           /* User's best guess of source size.
296                                 * Hint is not valid when srcSizeHint == 0.
297                                 * There is no guarantee that hint is close to actual source size */
298 
299     ZSTD_dictAttachPref_e attachDictPref;
300     ZSTD_paramSwitch_e literalCompressionMode;
301 
302     /* Multithreading: used to pass parameters to mtctx */
303     int nbWorkers;
304     size_t jobSize;
305     int overlapLog;
306     int rsyncable;
307 
308     /* Long distance matching parameters */
309     ldmParams_t ldmParams;
310 
311     /* Dedicated dict search algorithm trigger */
312     int enableDedicatedDictSearch;
313 
314     /* Input/output buffer modes */
315     ZSTD_bufferMode_e inBufferMode;
316     ZSTD_bufferMode_e outBufferMode;
317 
318     /* Sequence compression API */
319     ZSTD_sequenceFormat_e blockDelimiters;
320     int validateSequences;
321 
322     /* Block splitting */
323     ZSTD_paramSwitch_e useBlockSplitter;
324 
325     /* Param for deciding whether to use row-based matchfinder */
326     ZSTD_paramSwitch_e useRowMatchFinder;
327 
328     /* Always load a dictionary in ext-dict mode (not prefix mode)? */
329     int deterministicRefPrefix;
330 
331     /* Internal use, for createCCtxParams() and freeCCtxParams() only */
332     ZSTD_customMem customMem;
333 };  /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
334 
335 #define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
336 #define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
337 
338 /**
339  * Indicates whether this compression proceeds directly from user-provided
340  * source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
341  * whether the context needs to buffer the input/output (ZSTDb_buffered).
342  */
343 typedef enum {
344     ZSTDb_not_buffered,
345     ZSTDb_buffered
346 } ZSTD_buffered_policy_e;
347 
348 /**
349  * Struct that contains all elements of block splitter that should be allocated
350  * in a wksp.
351  */
352 #define ZSTD_MAX_NB_BLOCK_SPLITS 196
353 typedef struct {
354     seqStore_t fullSeqStoreChunk;
355     seqStore_t firstHalfSeqStore;
356     seqStore_t secondHalfSeqStore;
357     seqStore_t currSeqStore;
358     seqStore_t nextSeqStore;
359 
360     U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS];
361     ZSTD_entropyCTablesMetadata_t entropyMetadata;
362 } ZSTD_blockSplitCtx;
363 
364 struct ZSTD_CCtx_s {
365     ZSTD_compressionStage_e stage;
366     int cParamsChanged;                  /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
367     int bmi2;                            /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
368     ZSTD_CCtx_params requestedParams;
369     ZSTD_CCtx_params appliedParams;
370     ZSTD_CCtx_params simpleApiParams;    /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */
371     U32   dictID;
372     size_t dictContentSize;
373 
374     ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
375     size_t blockSize;
376     unsigned long long pledgedSrcSizePlusOne;  /* this way, 0 (default) == unknown */
377     unsigned long long consumedSrcSize;
378     unsigned long long producedCSize;
379     XXH64_state_t xxhState;
380     ZSTD_customMem customMem;
381     ZSTD_threadPool* pool;
382     size_t staticSize;
383     SeqCollector seqCollector;
384     int isFirstBlock;
385     int initialized;
386 
387     seqStore_t seqStore;      /* sequences storage ptrs */
388     ldmState_t ldmState;      /* long distance matching state */
389     rawSeq* ldmSequences;     /* Storage for the ldm output sequences */
390     size_t maxNbLdmSequences;
391     rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
392     ZSTD_blockState_t blockState;
393     U32* entropyWorkspace;  /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
394 
395     /* Whether we are streaming or not */
396     ZSTD_buffered_policy_e bufferedPolicy;
397 
398     /* streaming */
399     char*  inBuff;
400     size_t inBuffSize;
401     size_t inToCompress;
402     size_t inBuffPos;
403     size_t inBuffTarget;
404     char*  outBuff;
405     size_t outBuffSize;
406     size_t outBuffContentSize;
407     size_t outBuffFlushedSize;
408     ZSTD_cStreamStage streamStage;
409     U32    frameEnded;
410 
411     /* Stable in/out buffer verification */
412     ZSTD_inBuffer expectedInBuffer;
413     size_t expectedOutBufferSize;
414 
415     /* Dictionary */
416     ZSTD_localDict localDict;
417     const ZSTD_CDict* cdict;
418     ZSTD_prefixDict prefixDict;   /* single-usage dictionary */
419 
420     /* Multi-threading */
421 #ifdef ZSTD_MULTITHREAD
422     ZSTDMT_CCtx* mtctx;
423 #endif
424 
425     /* Tracing */
426 #if ZSTD_TRACE
427     ZSTD_TraceCtx traceCtx;
428 #endif
429 
430     /* Workspace for block splitter */
431     ZSTD_blockSplitCtx blockSplitCtx;
432 };
433 
434 typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
435 
436 typedef enum {
437     ZSTD_noDict = 0,
438     ZSTD_extDict = 1,
439     ZSTD_dictMatchState = 2,
440     ZSTD_dedicatedDictSearch = 3
441 } ZSTD_dictMode_e;
442 
443 typedef enum {
444     ZSTD_cpm_noAttachDict = 0,  /* Compression with ZSTD_noDict or ZSTD_extDict.
445                                  * In this mode we use both the srcSize and the dictSize
446                                  * when selecting and adjusting parameters.
447                                  */
448     ZSTD_cpm_attachDict = 1,    /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
449                                  * In this mode we only take the srcSize into account when selecting
450                                  * and adjusting parameters.
451                                  */
452     ZSTD_cpm_createCDict = 2,   /* Creating a CDict.
453                                  * In this mode we take both the source size and the dictionary size
454                                  * into account when selecting and adjusting the parameters.
455                                  */
456     ZSTD_cpm_unknown = 3,       /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
457                                  * We don't know what these parameters are for. We default to the legacy
458                                  * behavior of taking both the source size and the dict size into account
459                                  * when selecting and adjusting parameters.
460                                  */
461 } ZSTD_cParamMode_e;
462 
463 typedef size_t (*ZSTD_blockCompressor) (
464         ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
465         void const* src, size_t srcSize);
466 ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);
467 
468 
ZSTD_LLcode(U32 litLength)469 MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
470 {
471     static const BYTE LL_Code[64] = {  0,  1,  2,  3,  4,  5,  6,  7,
472                                        8,  9, 10, 11, 12, 13, 14, 15,
473                                       16, 16, 17, 17, 18, 18, 19, 19,
474                                       20, 20, 20, 20, 21, 21, 21, 21,
475                                       22, 22, 22, 22, 22, 22, 22, 22,
476                                       23, 23, 23, 23, 23, 23, 23, 23,
477                                       24, 24, 24, 24, 24, 24, 24, 24,
478                                       24, 24, 24, 24, 24, 24, 24, 24 };
479     static const U32 LL_deltaCode = 19;
480     return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
481 }
482 
483 /* ZSTD_MLcode() :
484  * note : mlBase = matchLength - MINMATCH;
485  *        because it's the format it's stored in seqStore->sequences */
ZSTD_MLcode(U32 mlBase)486 MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
487 {
488     static const BYTE ML_Code[128] = { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
489                                       16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
490                                       32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
491                                       38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
492                                       40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
493                                       41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
494                                       42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
495                                       42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
496     static const U32 ML_deltaCode = 36;
497     return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
498 }
499 
500 /* ZSTD_cParam_withinBounds:
501  * @return 1 if value is within cParam bounds,
502  * 0 otherwise */
ZSTD_cParam_withinBounds(ZSTD_cParameter cParam,int value)503 MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
504 {
505     ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
506     if (ZSTD_isError(bounds.error)) return 0;
507     if (value < bounds.lowerBound) return 0;
508     if (value > bounds.upperBound) return 0;
509     return 1;
510 }
511 
512 /* ZSTD_noCompressBlock() :
513  * Writes uncompressed block to dst buffer from given src.
514  * Returns the size of the block */
ZSTD_noCompressBlock(void * dst,size_t dstCapacity,const void * src,size_t srcSize,U32 lastBlock)515 MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
516 {
517     U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
518     RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
519                     dstSize_tooSmall, "dst buf too small for uncompressed block");
520     MEM_writeLE24(dst, cBlockHeader24);
521     ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
522     return ZSTD_blockHeaderSize + srcSize;
523 }
524 
ZSTD_rleCompressBlock(void * dst,size_t dstCapacity,BYTE src,size_t srcSize,U32 lastBlock)525 MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
526 {
527     BYTE* const op = (BYTE*)dst;
528     U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
529     RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
530     MEM_writeLE24(op, cBlockHeader);
531     op[3] = src;
532     return 4;
533 }
534 
535 
536 /* ZSTD_minGain() :
537  * minimum compression required
538  * to generate a compress block or a compressed literals section.
539  * note : use same formula for both situations */
ZSTD_minGain(size_t srcSize,ZSTD_strategy strat)540 MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
541 {
542     U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
543     ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
544     assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
545     return (srcSize >> minlog) + 2;
546 }
547 
ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params * cctxParams)548 MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams)
549 {
550     switch (cctxParams->literalCompressionMode) {
551     case ZSTD_ps_enable:
552         return 0;
553     case ZSTD_ps_disable:
554         return 1;
555     default:
556         assert(0 /* impossible: pre-validated */);
557         ZSTD_FALLTHROUGH;
558     case ZSTD_ps_auto:
559         return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
560     }
561 }
562 
563 /*! ZSTD_safecopyLiterals() :
564  *  memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
565  *  Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
566  *  large copies.
567  */
568 static void
ZSTD_safecopyLiterals(BYTE * op,BYTE const * ip,BYTE const * const iend,BYTE const * ilimit_w)569 ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w)
570 {
571     assert(iend > ilimit_w);
572     if (ip <= ilimit_w) {
573         ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
574         op += ilimit_w - ip;
575         ip = ilimit_w;
576     }
577     while (ip < iend) *op++ = *ip++;
578 }
579 
580 #define ZSTD_REP_MOVE     (ZSTD_REP_NUM-1)
581 #define STORE_REPCODE_1 STORE_REPCODE(1)
582 #define STORE_REPCODE_2 STORE_REPCODE(2)
583 #define STORE_REPCODE_3 STORE_REPCODE(3)
584 #define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1)
585 #define STORE_OFFSET(o)  (assert((o)>0), o + ZSTD_REP_MOVE)
586 #define STORED_IS_OFFSET(o)  ((o) > ZSTD_REP_MOVE)
587 #define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE)
588 #define STORED_OFFSET(o)  (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE)
589 #define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1)  /* returns ID 1,2,3 */
590 #define STORED_TO_OFFBASE(o) ((o)+1)
591 #define OFFBASE_TO_STORED(o) ((o)-1)
592 
593 /*! ZSTD_storeSeq() :
594  *  Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t.
595  *  @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET().
596  *  @matchLength : must be >= MINMATCH
597  *  Allowed to overread literals up to litLimit.
598 */
599 HINT_INLINE UNUSED_ATTR void
ZSTD_storeSeq(seqStore_t * seqStorePtr,size_t litLength,const BYTE * literals,const BYTE * litLimit,U32 offBase_minus1,size_t matchLength)600 ZSTD_storeSeq(seqStore_t* seqStorePtr,
601               size_t litLength, const BYTE* literals, const BYTE* litLimit,
602               U32 offBase_minus1,
603               size_t matchLength)
604 {
605     BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
606     BYTE const* const litEnd = literals + litLength;
607 #if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
608     static const BYTE* g_start = NULL;
609     if (g_start==NULL) g_start = (const BYTE*)literals;  /* note : index only works for compression within a single segment */
610     {   U32 const pos = (U32)((const BYTE*)literals - g_start);
611         DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
612                pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1);
613     }
614 #endif
615     assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
616     /* copy Literals */
617     assert(seqStorePtr->maxNbLit <= 128 KB);
618     assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
619     assert(literals + litLength <= litLimit);
620     if (litEnd <= litLimit_w) {
621         /* Common case we can use wildcopy.
622 	 * First copy 16 bytes, because literals are likely short.
623 	 */
624         assert(WILDCOPY_OVERLENGTH >= 16);
625         ZSTD_copy16(seqStorePtr->lit, literals);
626         if (litLength > 16) {
627             ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
628         }
629     } else {
630         ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
631     }
632     seqStorePtr->lit += litLength;
633 
634     /* literal Length */
635     if (litLength>0xFFFF) {
636         assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
637         seqStorePtr->longLengthType = ZSTD_llt_literalLength;
638         seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
639     }
640     seqStorePtr->sequences[0].litLength = (U16)litLength;
641 
642     /* match offset */
643     seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1);
644 
645     /* match Length */
646     assert(matchLength >= MINMATCH);
647     {   size_t const mlBase = matchLength - MINMATCH;
648         if (mlBase>0xFFFF) {
649             assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
650             seqStorePtr->longLengthType = ZSTD_llt_matchLength;
651             seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
652         }
653         seqStorePtr->sequences[0].mlBase = (U16)mlBase;
654     }
655 
656     seqStorePtr->sequences++;
657 }
658 
659 /* ZSTD_updateRep() :
660  * updates in-place @rep (array of repeat offsets)
661  * @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq()
662  */
663 MEM_STATIC void
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM],U32 const offBase_minus1,U32 const ll0)664 ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
665 {
666     if (STORED_IS_OFFSET(offBase_minus1)) {  /* full offset */
667         rep[2] = rep[1];
668         rep[1] = rep[0];
669         rep[0] = STORED_OFFSET(offBase_minus1);
670     } else {   /* repcode */
671         U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0;
672         if (repCode > 0) {  /* note : if repCode==0, no change */
673             U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
674             rep[2] = (repCode >= 2) ? rep[1] : rep[2];
675             rep[1] = rep[0];
676             rep[0] = currentOffset;
677         } else {   /* repCode == 0 */
678             /* nothing to do */
679         }
680     }
681 }
682 
683 typedef struct repcodes_s {
684     U32 rep[3];
685 } repcodes_t;
686 
687 MEM_STATIC repcodes_t
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM],U32 const offBase_minus1,U32 const ll0)688 ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
689 {
690     repcodes_t newReps;
691     ZSTD_memcpy(&newReps, rep, sizeof(newReps));
692     ZSTD_updateRep(newReps.rep, offBase_minus1, ll0);
693     return newReps;
694 }
695 
696 
697 /*-*************************************
698 *  Match length counter
699 ***************************************/
ZSTD_NbCommonBytes(size_t val)700 static unsigned ZSTD_NbCommonBytes (size_t val)
701 {
702     if (MEM_isLittleEndian()) {
703         if (MEM_64bits()) {
704 #       if defined(_MSC_VER) && defined(_WIN64)
705 #           if STATIC_BMI2
706                 return _tzcnt_u64(val) >> 3;
707 #           else
708                 if (val != 0) {
709                     unsigned long r;
710                     _BitScanForward64(&r, (U64)val);
711                     return (unsigned)(r >> 3);
712                 } else {
713                     /* Should not reach this code path */
714                     __assume(0);
715                 }
716 #           endif
717 #       elif defined(__GNUC__) && (__GNUC__ >= 4)
718             return (__builtin_ctzll((U64)val) >> 3);
719 #       else
720             static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
721                                                      0, 3, 1, 3, 1, 4, 2, 7,
722                                                      0, 2, 3, 6, 1, 5, 3, 5,
723                                                      1, 3, 4, 4, 2, 5, 6, 7,
724                                                      7, 0, 1, 2, 3, 3, 4, 6,
725                                                      2, 6, 5, 5, 3, 4, 5, 6,
726                                                      7, 1, 2, 4, 6, 4, 4, 5,
727                                                      7, 2, 6, 5, 7, 6, 7, 7 };
728             return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
729 #       endif
730         } else { /* 32 bits */
731 #       if defined(_MSC_VER)
732             if (val != 0) {
733                 unsigned long r;
734                 _BitScanForward(&r, (U32)val);
735                 return (unsigned)(r >> 3);
736             } else {
737                 /* Should not reach this code path */
738                 __assume(0);
739             }
740 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
741             return (__builtin_ctz((U32)val) >> 3);
742 #       else
743             static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
744                                                      3, 2, 2, 1, 3, 2, 0, 1,
745                                                      3, 3, 1, 2, 2, 2, 2, 0,
746                                                      3, 1, 2, 0, 1, 0, 1, 1 };
747             return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
748 #       endif
749         }
750     } else {  /* Big Endian CPU */
751         if (MEM_64bits()) {
752 #       if defined(_MSC_VER) && defined(_WIN64)
753 #           if STATIC_BMI2
754 			    return _lzcnt_u64(val) >> 3;
755 #           else
756                 if (val != 0) {
757                     unsigned long r;
758                     _BitScanReverse64(&r, (U64)val);
759                     return (unsigned)(r >> 3);
760                 } else {
761                     /* Should not reach this code path */
762                     __assume(0);
763                 }
764 #           endif
765 #       elif defined(__GNUC__) && (__GNUC__ >= 4)
766             return (__builtin_clzll(val) >> 3);
767 #       else
768             unsigned r;
769             const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
770             if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
771             if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
772             r += (!val);
773             return r;
774 #       endif
775         } else { /* 32 bits */
776 #       if defined(_MSC_VER)
777             if (val != 0) {
778                 unsigned long r;
779                 _BitScanReverse(&r, (unsigned long)val);
780                 return (unsigned)(r >> 3);
781             } else {
782                 /* Should not reach this code path */
783                 __assume(0);
784             }
785 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
786             return (__builtin_clz((U32)val) >> 3);
787 #       else
788             unsigned r;
789             if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
790             r += (!val);
791             return r;
792 #       endif
793     }   }
794 }
795 
796 
ZSTD_count(const BYTE * pIn,const BYTE * pMatch,const BYTE * const pInLimit)797 MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
798 {
799     const BYTE* const pStart = pIn;
800     const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
801 
802     if (pIn < pInLoopLimit) {
803         { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
804           if (diff) return ZSTD_NbCommonBytes(diff); }
805         pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
806         while (pIn < pInLoopLimit) {
807             size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
808             if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
809             pIn += ZSTD_NbCommonBytes(diff);
810             return (size_t)(pIn - pStart);
811     }   }
812     if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
813     if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
814     if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
815     return (size_t)(pIn - pStart);
816 }
817 
818 /** ZSTD_count_2segments() :
819  *  can count match length with `ip` & `match` in 2 different segments.
820  *  convention : on reaching mEnd, match count continue starting from iStart
821  */
822 MEM_STATIC size_t
ZSTD_count_2segments(const BYTE * ip,const BYTE * match,const BYTE * iEnd,const BYTE * mEnd,const BYTE * iStart)823 ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
824                      const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
825 {
826     const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
827     size_t const matchLength = ZSTD_count(ip, match, vEnd);
828     if (match + matchLength != mEnd) return matchLength;
829     DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
830     DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
831     DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
832     DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
833     DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
834     return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
835 }
836 
837 
838 /*-*************************************
839  *  Hashes
840  ***************************************/
841 static const U32 prime3bytes = 506832829U;
ZSTD_hash3(U32 u,U32 h)842 static U32    ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes)  >> (32-h) ; }
ZSTD_hash3Ptr(const void * ptr,U32 h)843 MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
844 
845 static const U32 prime4bytes = 2654435761U;
ZSTD_hash4(U32 u,U32 h)846 static U32    ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
ZSTD_hash4Ptr(const void * ptr,U32 h)847 static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
848 
849 static const U64 prime5bytes = 889523592379ULL;
ZSTD_hash5(U64 u,U32 h)850 static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u  << (64-40)) * prime5bytes) >> (64-h)) ; }
ZSTD_hash5Ptr(const void * p,U32 h)851 static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
852 
853 static const U64 prime6bytes = 227718039650203ULL;
ZSTD_hash6(U64 u,U32 h)854 static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u  << (64-48)) * prime6bytes) >> (64-h)) ; }
ZSTD_hash6Ptr(const void * p,U32 h)855 static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
856 
857 static const U64 prime7bytes = 58295818150454627ULL;
ZSTD_hash7(U64 u,U32 h)858 static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u  << (64-56)) * prime7bytes) >> (64-h)) ; }
ZSTD_hash7Ptr(const void * p,U32 h)859 static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
860 
861 static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
ZSTD_hash8(U64 u,U32 h)862 static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
ZSTD_hash8Ptr(const void * p,U32 h)863 static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
864 
865 MEM_STATIC FORCE_INLINE_ATTR
ZSTD_hashPtr(const void * p,U32 hBits,U32 mls)866 size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
867 {
868     switch(mls)
869     {
870     default:
871     case 4: return ZSTD_hash4Ptr(p, hBits);
872     case 5: return ZSTD_hash5Ptr(p, hBits);
873     case 6: return ZSTD_hash6Ptr(p, hBits);
874     case 7: return ZSTD_hash7Ptr(p, hBits);
875     case 8: return ZSTD_hash8Ptr(p, hBits);
876     }
877 }
878 
879 /** ZSTD_ipow() :
880  * Return base^exponent.
881  */
ZSTD_ipow(U64 base,U64 exponent)882 static U64 ZSTD_ipow(U64 base, U64 exponent)
883 {
884     U64 power = 1;
885     while (exponent) {
886       if (exponent & 1) power *= base;
887       exponent >>= 1;
888       base *= base;
889     }
890     return power;
891 }
892 
893 #define ZSTD_ROLL_HASH_CHAR_OFFSET 10
894 
895 /** ZSTD_rollingHash_append() :
896  * Add the buffer to the hash value.
897  */
ZSTD_rollingHash_append(U64 hash,void const * buf,size_t size)898 static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
899 {
900     BYTE const* istart = (BYTE const*)buf;
901     size_t pos;
902     for (pos = 0; pos < size; ++pos) {
903         hash *= prime8bytes;
904         hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
905     }
906     return hash;
907 }
908 
909 /** ZSTD_rollingHash_compute() :
910  * Compute the rolling hash value of the buffer.
911  */
ZSTD_rollingHash_compute(void const * buf,size_t size)912 MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
913 {
914     return ZSTD_rollingHash_append(0, buf, size);
915 }
916 
917 /** ZSTD_rollingHash_primePower() :
918  * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
919  * over a window of length bytes.
920  */
ZSTD_rollingHash_primePower(U32 length)921 MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
922 {
923     return ZSTD_ipow(prime8bytes, length - 1);
924 }
925 
926 /** ZSTD_rollingHash_rotate() :
927  * Rotate the rolling hash by one byte.
928  */
ZSTD_rollingHash_rotate(U64 hash,BYTE toRemove,BYTE toAdd,U64 primePower)929 MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
930 {
931     hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
932     hash *= prime8bytes;
933     hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
934     return hash;
935 }
936 
937 /*-*************************************
938 *  Round buffer management
939 ***************************************/
940 #if (ZSTD_WINDOWLOG_MAX_64 > 31)
941 # error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
942 #endif
943 /* Max current allowed */
944 #define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
945 /* Maximum chunk size before overflow correction needs to be called again */
946 #define ZSTD_CHUNKSIZE_MAX                                                     \
947     ( ((U32)-1)                  /* Maximum ending current index */            \
948     - ZSTD_CURRENT_MAX)          /* Maximum beginning lowLimit */
949 
950 /**
951  * ZSTD_window_clear():
952  * Clears the window containing the history by simply setting it to empty.
953  */
ZSTD_window_clear(ZSTD_window_t * window)954 MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
955 {
956     size_t const endT = (size_t)(window->nextSrc - window->base);
957     U32 const end = (U32)endT;
958 
959     window->lowLimit = end;
960     window->dictLimit = end;
961 }
962 
ZSTD_window_isEmpty(ZSTD_window_t const window)963 MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
964 {
965     return window.dictLimit == ZSTD_WINDOW_START_INDEX &&
966            window.lowLimit == ZSTD_WINDOW_START_INDEX &&
967            (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX;
968 }
969 
970 /**
971  * ZSTD_window_hasExtDict():
972  * Returns non-zero if the window has a non-empty extDict.
973  */
ZSTD_window_hasExtDict(ZSTD_window_t const window)974 MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
975 {
976     return window.lowLimit < window.dictLimit;
977 }
978 
979 /**
980  * ZSTD_matchState_dictMode():
981  * Inspects the provided matchState and figures out what dictMode should be
982  * passed to the compressor.
983  */
ZSTD_matchState_dictMode(const ZSTD_matchState_t * ms)984 MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
985 {
986     return ZSTD_window_hasExtDict(ms->window) ?
987         ZSTD_extDict :
988         ms->dictMatchState != NULL ?
989             (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
990             ZSTD_noDict;
991 }
992 
993 /* Defining this macro to non-zero tells zstd to run the overflow correction
994  * code much more frequently. This is very inefficient, and should only be
995  * used for tests and fuzzers.
996  */
997 #ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY
998 #  ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
999 #    define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1
1000 #  else
1001 #    define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0
1002 #  endif
1003 #endif
1004 
1005 /**
1006  * ZSTD_window_canOverflowCorrect():
1007  * Returns non-zero if the indices are large enough for overflow correction
1008  * to work correctly without impacting compression ratio.
1009  */
ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,U32 cycleLog,U32 maxDist,U32 loadedDictEnd,void const * src)1010 MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
1011                                               U32 cycleLog,
1012                                               U32 maxDist,
1013                                               U32 loadedDictEnd,
1014                                               void const* src)
1015 {
1016     U32 const cycleSize = 1u << cycleLog;
1017     U32 const curr = (U32)((BYTE const*)src - window.base);
1018     U32 const minIndexToOverflowCorrect = cycleSize
1019                                         + MAX(maxDist, cycleSize)
1020                                         + ZSTD_WINDOW_START_INDEX;
1021 
1022     /* Adjust the min index to backoff the overflow correction frequency,
1023      * so we don't waste too much CPU in overflow correction. If this
1024      * computation overflows we don't really care, we just need to make
1025      * sure it is at least minIndexToOverflowCorrect.
1026      */
1027     U32 const adjustment = window.nbOverflowCorrections + 1;
1028     U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment,
1029                                   minIndexToOverflowCorrect);
1030     U32 const indexLargeEnough = curr > adjustedIndex;
1031 
1032     /* Only overflow correct early if the dictionary is invalidated already,
1033      * so we don't hurt compression ratio.
1034      */
1035     U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd;
1036 
1037     return indexLargeEnough && dictionaryInvalidated;
1038 }
1039 
1040 /**
1041  * ZSTD_window_needOverflowCorrection():
1042  * Returns non-zero if the indices are getting too large and need overflow
1043  * protection.
1044  */
ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,U32 cycleLog,U32 maxDist,U32 loadedDictEnd,void const * src,void const * srcEnd)1045 MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
1046                                                   U32 cycleLog,
1047                                                   U32 maxDist,
1048                                                   U32 loadedDictEnd,
1049                                                   void const* src,
1050                                                   void const* srcEnd)
1051 {
1052     U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
1053     if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
1054         if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) {
1055             return 1;
1056         }
1057     }
1058     return curr > ZSTD_CURRENT_MAX;
1059 }
1060 
1061 /**
1062  * ZSTD_window_correctOverflow():
1063  * Reduces the indices to protect from index overflow.
1064  * Returns the correction made to the indices, which must be applied to every
1065  * stored index.
1066  *
1067  * The least significant cycleLog bits of the indices must remain the same,
1068  * which may be 0. Every index up to maxDist in the past must be valid.
1069  */
ZSTD_window_correctOverflow(ZSTD_window_t * window,U32 cycleLog,U32 maxDist,void const * src)1070 MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
1071                                            U32 maxDist, void const* src)
1072 {
1073     /* preemptive overflow correction:
1074      * 1. correction is large enough:
1075      *    lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
1076      *    1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
1077      *
1078      *    current - newCurrent
1079      *    > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
1080      *    > (3<<29) - (1<<chainLog)
1081      *    > (3<<29) - (1<<30)             (NOTE: chainLog <= 30)
1082      *    > 1<<29
1083      *
1084      * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
1085      *    After correction, current is less than (1<<chainLog + 1<<windowLog).
1086      *    In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
1087      *    In 32-bit mode we are safe, because (chainLog <= 29), so
1088      *    ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
1089      * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
1090      *    windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
1091      */
1092     U32 const cycleSize = 1u << cycleLog;
1093     U32 const cycleMask = cycleSize - 1;
1094     U32 const curr = (U32)((BYTE const*)src - window->base);
1095     U32 const currentCycle = curr & cycleMask;
1096     /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */
1097     U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX
1098                                      ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX)
1099                                      : 0;
1100     U32 const newCurrent = currentCycle
1101                          + currentCycleCorrection
1102                          + MAX(maxDist, cycleSize);
1103     U32 const correction = curr - newCurrent;
1104     /* maxDist must be a power of two so that:
1105      *   (newCurrent & cycleMask) == (curr & cycleMask)
1106      * This is required to not corrupt the chains / binary tree.
1107      */
1108     assert((maxDist & (maxDist - 1)) == 0);
1109     assert((curr & cycleMask) == (newCurrent & cycleMask));
1110     assert(curr > newCurrent);
1111     if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
1112         /* Loose bound, should be around 1<<29 (see above) */
1113         assert(correction > 1<<28);
1114     }
1115 
1116     window->base += correction;
1117     window->dictBase += correction;
1118     if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) {
1119         window->lowLimit = ZSTD_WINDOW_START_INDEX;
1120     } else {
1121         window->lowLimit -= correction;
1122     }
1123     if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) {
1124         window->dictLimit = ZSTD_WINDOW_START_INDEX;
1125     } else {
1126         window->dictLimit -= correction;
1127     }
1128 
1129     /* Ensure we can still reference the full window. */
1130     assert(newCurrent >= maxDist);
1131     assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX);
1132     /* Ensure that lowLimit and dictLimit didn't underflow. */
1133     assert(window->lowLimit <= newCurrent);
1134     assert(window->dictLimit <= newCurrent);
1135 
1136     ++window->nbOverflowCorrections;
1137 
1138     DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
1139              window->lowLimit);
1140     return correction;
1141 }
1142 
1143 /**
1144  * ZSTD_window_enforceMaxDist():
1145  * Updates lowLimit so that:
1146  *    (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
1147  *
1148  * It ensures index is valid as long as index >= lowLimit.
1149  * This must be called before a block compression call.
1150  *
1151  * loadedDictEnd is only defined if a dictionary is in use for current compression.
1152  * As the name implies, loadedDictEnd represents the index at end of dictionary.
1153  * The value lies within context's referential, it can be directly compared to blockEndIdx.
1154  *
1155  * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
1156  * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
1157  * This is because dictionaries are allowed to be referenced fully
1158  * as long as the last byte of the dictionary is in the window.
1159  * Once input has progressed beyond window size, dictionary cannot be referenced anymore.
1160  *
1161  * In normal dict mode, the dictionary lies between lowLimit and dictLimit.
1162  * In dictMatchState mode, lowLimit and dictLimit are the same,
1163  * and the dictionary is below them.
1164  * forceWindow and dictMatchState are therefore incompatible.
1165  */
1166 MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t * window,const void * blockEnd,U32 maxDist,U32 * loadedDictEndPtr,const ZSTD_matchState_t ** dictMatchStatePtr)1167 ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
1168                      const void* blockEnd,
1169                            U32   maxDist,
1170                            U32*  loadedDictEndPtr,
1171                      const ZSTD_matchState_t** dictMatchStatePtr)
1172 {
1173     U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
1174     U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
1175     DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
1176                 (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
1177 
1178     /* - When there is no dictionary : loadedDictEnd == 0.
1179          In which case, the test (blockEndIdx > maxDist) is merely to avoid
1180          overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
1181        - When there is a standard dictionary :
1182          Index referential is copied from the dictionary,
1183          which means it starts from 0.
1184          In which case, loadedDictEnd == dictSize,
1185          and it makes sense to compare `blockEndIdx > maxDist + dictSize`
1186          since `blockEndIdx` also starts from zero.
1187        - When there is an attached dictionary :
1188          loadedDictEnd is expressed within the referential of the context,
1189          so it can be directly compared against blockEndIdx.
1190     */
1191     if (blockEndIdx > maxDist + loadedDictEnd) {
1192         U32 const newLowLimit = blockEndIdx - maxDist;
1193         if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
1194         if (window->dictLimit < window->lowLimit) {
1195             DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
1196                         (unsigned)window->dictLimit, (unsigned)window->lowLimit);
1197             window->dictLimit = window->lowLimit;
1198         }
1199         /* On reaching window size, dictionaries are invalidated */
1200         if (loadedDictEndPtr) *loadedDictEndPtr = 0;
1201         if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
1202     }
1203 }
1204 
1205 /* Similar to ZSTD_window_enforceMaxDist(),
1206  * but only invalidates dictionary
1207  * when input progresses beyond window size.
1208  * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
1209  *              loadedDictEnd uses same referential as window->base
1210  *              maxDist is the window size */
1211 MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t * window,const void * blockEnd,U32 maxDist,U32 * loadedDictEndPtr,const ZSTD_matchState_t ** dictMatchStatePtr)1212 ZSTD_checkDictValidity(const ZSTD_window_t* window,
1213                        const void* blockEnd,
1214                              U32   maxDist,
1215                              U32*  loadedDictEndPtr,
1216                        const ZSTD_matchState_t** dictMatchStatePtr)
1217 {
1218     assert(loadedDictEndPtr != NULL);
1219     assert(dictMatchStatePtr != NULL);
1220     {   U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
1221         U32 const loadedDictEnd = *loadedDictEndPtr;
1222         DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
1223                     (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
1224         assert(blockEndIdx >= loadedDictEnd);
1225 
1226         if (blockEndIdx > loadedDictEnd + maxDist) {
1227             /* On reaching window size, dictionaries are invalidated.
1228              * For simplification, if window size is reached anywhere within next block,
1229              * the dictionary is invalidated for the full block.
1230              */
1231             DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
1232             *loadedDictEndPtr = 0;
1233             *dictMatchStatePtr = NULL;
1234         } else {
1235             if (*loadedDictEndPtr != 0) {
1236                 DEBUGLOG(6, "dictionary considered valid for current block");
1237     }   }   }
1238 }
1239 
ZSTD_window_init(ZSTD_window_t * window)1240 MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
1241     ZSTD_memset(window, 0, sizeof(*window));
1242     window->base = (BYTE const*)" ";
1243     window->dictBase = (BYTE const*)" ";
1244     ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */
1245     window->dictLimit = ZSTD_WINDOW_START_INDEX;    /* start from >0, so that 1st position is valid */
1246     window->lowLimit = ZSTD_WINDOW_START_INDEX;     /* it ensures first and later CCtx usages compress the same */
1247     window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX;   /* see issue #1241 */
1248     window->nbOverflowCorrections = 0;
1249 }
1250 
1251 /**
1252  * ZSTD_window_update():
1253  * Updates the window by appending [src, src + srcSize) to the window.
1254  * If it is not contiguous, the current prefix becomes the extDict, and we
1255  * forget about the extDict. Handles overlap of the prefix and extDict.
1256  * Returns non-zero if the segment is contiguous.
1257  */
ZSTD_window_update(ZSTD_window_t * window,void const * src,size_t srcSize,int forceNonContiguous)1258 MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
1259                                   void const* src, size_t srcSize,
1260                                   int forceNonContiguous)
1261 {
1262     BYTE const* const ip = (BYTE const*)src;
1263     U32 contiguous = 1;
1264     DEBUGLOG(5, "ZSTD_window_update");
1265     if (srcSize == 0)
1266         return contiguous;
1267     assert(window->base != NULL);
1268     assert(window->dictBase != NULL);
1269     /* Check if blocks follow each other */
1270     if (src != window->nextSrc || forceNonContiguous) {
1271         /* not contiguous */
1272         size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
1273         DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
1274         window->lowLimit = window->dictLimit;
1275         assert(distanceFromBase == (size_t)(U32)distanceFromBase);  /* should never overflow */
1276         window->dictLimit = (U32)distanceFromBase;
1277         window->dictBase = window->base;
1278         window->base = ip - distanceFromBase;
1279         /* ms->nextToUpdate = window->dictLimit; */
1280         if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit;   /* too small extDict */
1281         contiguous = 0;
1282     }
1283     window->nextSrc = ip + srcSize;
1284     /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
1285     if ( (ip+srcSize > window->dictBase + window->lowLimit)
1286        & (ip < window->dictBase + window->dictLimit)) {
1287         ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
1288         U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
1289         window->lowLimit = lowLimitMax;
1290         DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
1291     }
1292     return contiguous;
1293 }
1294 
1295 /**
1296  * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
1297  */
ZSTD_getLowestMatchIndex(const ZSTD_matchState_t * ms,U32 curr,unsigned windowLog)1298 MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
1299 {
1300     U32 const maxDistance = 1U << windowLog;
1301     U32 const lowestValid = ms->window.lowLimit;
1302     U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1303     U32 const isDictionary = (ms->loadedDictEnd != 0);
1304     /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
1305      * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
1306      * valid for the entire block. So this check is sufficient to find the lowest valid match index.
1307      */
1308     U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
1309     return matchLowest;
1310 }
1311 
1312 /**
1313  * Returns the lowest allowed match index in the prefix.
1314  */
ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t * ms,U32 curr,unsigned windowLog)1315 MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
1316 {
1317     U32    const maxDistance = 1U << windowLog;
1318     U32    const lowestValid = ms->window.dictLimit;
1319     U32    const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1320     U32    const isDictionary = (ms->loadedDictEnd != 0);
1321     /* When computing the lowest prefix index we need to take the dictionary into account to handle
1322      * the edge case where the dictionary and the source are contiguous in memory.
1323      */
1324     U32    const matchLowest = isDictionary ? lowestValid : withinWindow;
1325     return matchLowest;
1326 }
1327 
1328 
1329 
1330 /* debug functions */
1331 #if (DEBUGLEVEL>=2)
1332 
ZSTD_fWeight(U32 rawStat)1333 MEM_STATIC double ZSTD_fWeight(U32 rawStat)
1334 {
1335     U32 const fp_accuracy = 8;
1336     U32 const fp_multiplier = (1 << fp_accuracy);
1337     U32 const newStat = rawStat + 1;
1338     U32 const hb = ZSTD_highbit32(newStat);
1339     U32 const BWeight = hb * fp_multiplier;
1340     U32 const FWeight = (newStat << fp_accuracy) >> hb;
1341     U32 const weight = BWeight + FWeight;
1342     assert(hb + fp_accuracy < 31);
1343     return (double)weight / fp_multiplier;
1344 }
1345 
1346 /* display a table content,
1347  * listing each element, its frequency, and its predicted bit cost */
ZSTD_debugTable(const U32 * table,U32 max)1348 MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
1349 {
1350     unsigned u, sum;
1351     for (u=0, sum=0; u<=max; u++) sum += table[u];
1352     DEBUGLOG(2, "total nb elts: %u", sum);
1353     for (u=0; u<=max; u++) {
1354         DEBUGLOG(2, "%2u: %5u  (%.2f)",
1355                 u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
1356     }
1357 }
1358 
1359 #endif
1360 
1361 
1362 #if defined (__cplusplus)
1363 }
1364 #endif
1365 
1366 /* ===============================================================
1367  * Shared internal declarations
1368  * These prototypes may be called from sources not in lib/compress
1369  * =============================================================== */
1370 
1371 /* ZSTD_loadCEntropy() :
1372  * dict : must point at beginning of a valid zstd dictionary.
1373  * return : size of dictionary header (size of magic number + dict ID + entropy tables)
1374  * assumptions : magic number supposed already checked
1375  *               and dictSize >= 8 */
1376 size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
1377                          const void* const dict, size_t dictSize);
1378 
1379 void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
1380 
1381 /* ==============================================================
1382  * Private declarations
1383  * These prototypes shall only be called from within lib/compress
1384  * ============================================================== */
1385 
1386 /* ZSTD_getCParamsFromCCtxParams() :
1387  * cParams are built depending on compressionLevel, src size hints,
1388  * LDM and manually set compression parameters.
1389  * Note: srcSizeHint == 0 means 0!
1390  */
1391 ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
1392         const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
1393 
1394 /*! ZSTD_initCStream_internal() :
1395  *  Private use only. Init streaming operation.
1396  *  expects params to be valid.
1397  *  must receive dict, or cdict, or none, but not both.
1398  *  @return : 0, or an error code */
1399 size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
1400                      const void* dict, size_t dictSize,
1401                      const ZSTD_CDict* cdict,
1402                      const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
1403 
1404 void ZSTD_resetSeqStore(seqStore_t* ssPtr);
1405 
1406 /*! ZSTD_getCParamsFromCDict() :
1407  *  as the name implies */
1408 ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
1409 
1410 /* ZSTD_compressBegin_advanced_internal() :
1411  * Private use only. To be called from zstdmt_compress.c. */
1412 size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
1413                                     const void* dict, size_t dictSize,
1414                                     ZSTD_dictContentType_e dictContentType,
1415                                     ZSTD_dictTableLoadMethod_e dtlm,
1416                                     const ZSTD_CDict* cdict,
1417                                     const ZSTD_CCtx_params* params,
1418                                     unsigned long long pledgedSrcSize);
1419 
1420 /* ZSTD_compress_advanced_internal() :
1421  * Private use only. To be called from zstdmt_compress.c. */
1422 size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
1423                                        void* dst, size_t dstCapacity,
1424                                  const void* src, size_t srcSize,
1425                                  const void* dict,size_t dictSize,
1426                                  const ZSTD_CCtx_params* params);
1427 
1428 
1429 /* ZSTD_writeLastEmptyBlock() :
1430  * output an empty Block with end-of-frame mark to complete a frame
1431  * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
1432  *           or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
1433  */
1434 size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
1435 
1436 
1437 /* ZSTD_referenceExternalSequences() :
1438  * Must be called before starting a compression operation.
1439  * seqs must parse a prefix of the source.
1440  * This cannot be used when long range matching is enabled.
1441  * Zstd will use these sequences, and pass the literals to a secondary block
1442  * compressor.
1443  * @return : An error code on failure.
1444  * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
1445  * access and data corruption.
1446  */
1447 size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
1448 
1449 /** ZSTD_cycleLog() :
1450  *  condition for correct operation : hashLog > 1 */
1451 /* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
1452 ZSTDLIB_API
1453 /* End FreeBSD */
1454 U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
1455 
1456 /** ZSTD_CCtx_trace() :
1457  *  Trace the end of a compression call.
1458  */
1459 void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
1460 
1461 #endif /* ZSTD_COMPRESS_H */
1462