xref: /freebsd/crypto/openssl/ssl/ssl_ciph.c (revision e7be843b4a162e68651d3911f0357ed464915629)
1 /*
2  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  * Copyright 2005 Nokia. All rights reserved.
5  *
6  * Licensed under the Apache License 2.0 (the "License").  You may not use
7  * this file except in compliance with the License.  You can obtain a copy
8  * in the file LICENSE in the source distribution or at
9  * https://www.openssl.org/source/license.html
10  */
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 #include "internal/comp.h"
25 #include "internal/ssl_unwrap.h"
26 
27 /* NB: make sure indices in these tables match values above */
28 
29 typedef struct {
30     uint32_t mask;
31     int nid;
32 } ssl_cipher_table;
33 
34 /* Table of NIDs for each cipher */
35 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
36     {SSL_DES, NID_des_cbc},     /* SSL_ENC_DES_IDX 0 */
37     {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
38     {SSL_RC4, NID_rc4},         /* SSL_ENC_RC4_IDX 2 */
39     {SSL_RC2, NID_rc2_cbc},     /* SSL_ENC_RC2_IDX 3 */
40     {SSL_IDEA, NID_idea_cbc},   /* SSL_ENC_IDEA_IDX 4 */
41     {SSL_eNULL, NID_undef},     /* SSL_ENC_NULL_IDX 5 */
42     {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
43     {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
44     {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
45     {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
46     {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
47     {SSL_SEED, NID_seed_cbc},   /* SSL_ENC_SEED_IDX 11 */
48     {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
49     {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
50     {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
51     {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
52     {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
53     {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
54     {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
55     {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
56     {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
57     {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
58     {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
59     {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
60 };
61 
62 /* NB: make sure indices in this table matches values above */
63 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
64     {SSL_MD5, NID_md5},         /* SSL_MD_MD5_IDX 0 */
65     {SSL_SHA1, NID_sha1},       /* SSL_MD_SHA1_IDX 1 */
66     {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
67     {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
68     {SSL_SHA256, NID_sha256},   /* SSL_MD_SHA256_IDX 4 */
69     {SSL_SHA384, NID_sha384},   /* SSL_MD_SHA384_IDX 5 */
70     {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
71     {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
72     {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
73     {0, NID_md5_sha1},          /* SSL_MD_MD5_SHA1_IDX 9 */
74     {0, NID_sha224},            /* SSL_MD_SHA224_IDX 10 */
75     {0, NID_sha512},            /* SSL_MD_SHA512_IDX 11 */
76     {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
77     {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
78 };
79 
80 /* *INDENT-OFF* */
81 static const ssl_cipher_table ssl_cipher_table_kx[] = {
82     {SSL_kRSA,      NID_kx_rsa},
83     {SSL_kECDHE,    NID_kx_ecdhe},
84     {SSL_kDHE,      NID_kx_dhe},
85     {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
86     {SSL_kDHEPSK,   NID_kx_dhe_psk},
87     {SSL_kRSAPSK,   NID_kx_rsa_psk},
88     {SSL_kPSK,      NID_kx_psk},
89     {SSL_kSRP,      NID_kx_srp},
90     {SSL_kGOST,     NID_kx_gost},
91     {SSL_kGOST18,   NID_kx_gost18},
92     {SSL_kANY,      NID_kx_any}
93 };
94 
95 static const ssl_cipher_table ssl_cipher_table_auth[] = {
96     {SSL_aRSA,    NID_auth_rsa},
97     {SSL_aECDSA,  NID_auth_ecdsa},
98     {SSL_aPSK,    NID_auth_psk},
99     {SSL_aDSS,    NID_auth_dss},
100     {SSL_aGOST01, NID_auth_gost01},
101     {SSL_aGOST12, NID_auth_gost12},
102     {SSL_aSRP,    NID_auth_srp},
103     {SSL_aNULL,   NID_auth_null},
104     {SSL_aANY,    NID_auth_any}
105 };
106 /* *INDENT-ON* */
107 
108 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)109 static int ssl_cipher_info_find(const ssl_cipher_table *table,
110                                 size_t table_cnt, uint32_t mask)
111 {
112     size_t i;
113     for (i = 0; i < table_cnt; i++, table++) {
114         if (table->mask == mask)
115             return (int)i;
116     }
117     return -1;
118 }
119 
120 #define ssl_cipher_info_lookup(table, x) \
121     ssl_cipher_info_find(table, OSSL_NELEM(table), x)
122 
123 /*
124  * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
125  * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
126  * found
127  */
128 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
129     /* MD5, SHA, GOST94, MAC89 */
130     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
131     /* SHA256, SHA384, GOST2012_256, MAC89-12 */
132     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
133     /* GOST2012_512 */
134     EVP_PKEY_HMAC,
135     /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
136     NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
137 };
138 
139 #define CIPHER_ADD      1
140 #define CIPHER_KILL     2
141 #define CIPHER_DEL      3
142 #define CIPHER_ORD      4
143 #define CIPHER_SPECIAL  5
144 /*
145  * Bump the ciphers to the top of the list.
146  * This rule isn't currently supported by the public cipherstring API.
147  */
148 #define CIPHER_BUMP     6
149 
150 typedef struct cipher_order_st {
151     const SSL_CIPHER *cipher;
152     int active;
153     int dead;
154     struct cipher_order_st *next, *prev;
155 } CIPHER_ORDER;
156 
157 static const SSL_CIPHER cipher_aliases[] = {
158     /* "ALL" doesn't include eNULL (must be specifically enabled) */
159     {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
160     /* "COMPLEMENTOFALL" */
161     {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
162 
163     /*
164      * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
165      * ALL!)
166      */
167     {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
168 
169     /*
170      * key exchange aliases (some of those using only a single bit here
171      * combine multiple key exchange algs according to the RFCs, e.g. kDHE
172      * combines DHE_DSS and DHE_RSA)
173      */
174     {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
175 
176     {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
177     {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
178     {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
179 
180     {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
181     {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
182     {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
183 
184     {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
185     {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
186     {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
187     {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
188     {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
189     {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
190     {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
191 
192     /* server authentication aliases */
193     {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
194     {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
195     {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
196     {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
197     {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
198     {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
199     {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
200     {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
201     {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
202     {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
203     {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
204 
205     /* aliases combining key exchange and server authentication */
206     {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
207     {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
208     {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
209     {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
210     {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
211     {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
212     {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
213     {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
214     {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
215     {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
216 
217     /* symmetric encryption aliases */
218     {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
219     {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
220     {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
221     {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
222     {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
223     {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
224     {0, SSL_TXT_GOST, NULL, 0, 0, 0,
225      SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
226     {0, SSL_TXT_AES128, NULL, 0, 0, 0,
227      SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
228     {0, SSL_TXT_AES256, NULL, 0, 0, 0,
229      SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
230     {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
231     {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
232     {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
233      SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
234     {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
235     {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
236     {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
237     {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
238     {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
239     {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
240 
241     {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
242     {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
243     {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
244     {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
245     {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
246 
247     /* MAC aliases */
248     {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
249     {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
250     {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
251     {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
252     {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
253     {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
254     {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
255     {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
256 
257     /* protocol version aliases */
258     {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
259     {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
260     {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
261     {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
262 
263     /* strength classes */
264     {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
265     {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
266     {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
267     /* FIPS 140-2 approved ciphersuite */
268     {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
269 
270     /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
271     {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
272      SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
273     {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
274      SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
275 
276 };
277 
278 /*
279  * Search for public key algorithm with given name and return its pkey_id if
280  * it is available. Otherwise return 0
281  */
282 #ifdef OPENSSL_NO_ENGINE
283 
get_optional_pkey_id(const char * pkey_name)284 static int get_optional_pkey_id(const char *pkey_name)
285 {
286     const EVP_PKEY_ASN1_METHOD *ameth;
287     int pkey_id = 0;
288     ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
289     if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
290                                          ameth) > 0)
291         return pkey_id;
292     return 0;
293 }
294 
295 #else
296 
get_optional_pkey_id(const char * pkey_name)297 static int get_optional_pkey_id(const char *pkey_name)
298 {
299     const EVP_PKEY_ASN1_METHOD *ameth;
300     ENGINE *tmpeng = NULL;
301     int pkey_id = 0;
302     ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
303     if (ameth) {
304         if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
305                                     ameth) <= 0)
306             pkey_id = 0;
307     }
308     tls_engine_finish(tmpeng);
309     return pkey_id;
310 }
311 
312 #endif
313 
ssl_load_ciphers(SSL_CTX * ctx)314 int ssl_load_ciphers(SSL_CTX *ctx)
315 {
316     size_t i;
317     const ssl_cipher_table *t;
318     EVP_KEYEXCH *kex = NULL;
319     EVP_SIGNATURE *sig = NULL;
320 
321     ctx->disabled_enc_mask = 0;
322     for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
323         if (t->nid != NID_undef) {
324             const EVP_CIPHER *cipher
325                 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
326 
327             ctx->ssl_cipher_methods[i] = cipher;
328             if (cipher == NULL)
329                 ctx->disabled_enc_mask |= t->mask;
330         }
331     }
332     ctx->disabled_mac_mask = 0;
333     for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
334         const EVP_MD *md
335             = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
336 
337         ctx->ssl_digest_methods[i] = md;
338         if (md == NULL) {
339             ctx->disabled_mac_mask |= t->mask;
340         } else {
341             int tmpsize = EVP_MD_get_size(md);
342 
343             if (!ossl_assert(tmpsize > 0))
344                 return 0;
345             ctx->ssl_mac_secret_size[i] = tmpsize;
346         }
347     }
348 
349     ctx->disabled_mkey_mask = 0;
350     ctx->disabled_auth_mask = 0;
351 
352     /*
353      * We ignore any errors from the fetches below. They are expected to fail
354      * if these algorithms are not available.
355      */
356     ERR_set_mark();
357     sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
358     if (sig == NULL)
359         ctx->disabled_auth_mask |= SSL_aDSS;
360     else
361         EVP_SIGNATURE_free(sig);
362     kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
363     if (kex == NULL)
364         ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
365     else
366         EVP_KEYEXCH_free(kex);
367     kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
368     if (kex == NULL)
369         ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
370     else
371         EVP_KEYEXCH_free(kex);
372     sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
373     if (sig == NULL)
374         ctx->disabled_auth_mask |= SSL_aECDSA;
375     else
376         EVP_SIGNATURE_free(sig);
377     ERR_pop_to_mark();
378 
379 #ifdef OPENSSL_NO_PSK
380     ctx->disabled_mkey_mask |= SSL_PSK;
381     ctx->disabled_auth_mask |= SSL_aPSK;
382 #endif
383 #ifdef OPENSSL_NO_SRP
384     ctx->disabled_mkey_mask |= SSL_kSRP;
385 #endif
386 
387     /*
388      * Check for presence of GOST 34.10 algorithms, and if they are not
389      * present, disable appropriate auth and key exchange
390      */
391     memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
392            sizeof(ctx->ssl_mac_pkey_id));
393 
394     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
395         get_optional_pkey_id(SN_id_Gost28147_89_MAC);
396     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
397         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
398     else
399         ctx->disabled_mac_mask |= SSL_GOST89MAC;
400 
401     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
402         get_optional_pkey_id(SN_gost_mac_12);
403     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
404         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
405     else
406         ctx->disabled_mac_mask |= SSL_GOST89MAC12;
407 
408     ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
409         get_optional_pkey_id(SN_magma_mac);
410     if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
411         ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
412     else
413         ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
414 
415     ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
416         get_optional_pkey_id(SN_kuznyechik_mac);
417     if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
418         ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
419     else
420         ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
421 
422     if (!get_optional_pkey_id(SN_id_GostR3410_2001))
423         ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
424     if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
425         ctx->disabled_auth_mask |= SSL_aGOST12;
426     if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
427         ctx->disabled_auth_mask |= SSL_aGOST12;
428     /*
429      * Disable GOST key exchange if no GOST signature algs are available *
430      */
431     if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
432         (SSL_aGOST01 | SSL_aGOST12))
433         ctx->disabled_mkey_mask |= SSL_kGOST;
434 
435     if ((ctx->disabled_auth_mask & SSL_aGOST12) ==  SSL_aGOST12)
436         ctx->disabled_mkey_mask |= SSL_kGOST18;
437 
438     return 1;
439 }
440 
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)441 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
442                               const EVP_CIPHER **enc)
443 {
444     int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
445                                    sslc->algorithm_enc);
446 
447     if (i == -1) {
448         *enc = NULL;
449     } else {
450         if (i == SSL_ENC_NULL_IDX) {
451             /*
452              * We assume we don't care about this coming from an ENGINE so
453              * just do a normal EVP_CIPHER_fetch instead of
454              * ssl_evp_cipher_fetch()
455              */
456             *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
457             if (*enc == NULL)
458                 return 0;
459         } else {
460             const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
461 
462             if (cipher == NULL
463                     || !ssl_evp_cipher_up_ref(cipher))
464                 return 0;
465             *enc = ctx->ssl_cipher_methods[i];
466         }
467     }
468     return 1;
469 }
470 
ssl_cipher_get_evp_md_mac(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size)471 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
472                               const EVP_MD **md,
473                               int *mac_pkey_type, size_t *mac_secret_size)
474 {
475     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
476 
477     if (i == -1) {
478         *md = NULL;
479         if (mac_pkey_type != NULL)
480             *mac_pkey_type = NID_undef;
481         if (mac_secret_size != NULL)
482             *mac_secret_size = 0;
483     } else {
484         const EVP_MD *digest = ctx->ssl_digest_methods[i];
485 
486         if (digest == NULL || !ssl_evp_md_up_ref(digest))
487             return 0;
488 
489         *md = digest;
490         if (mac_pkey_type != NULL)
491             *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
492         if (mac_secret_size != NULL)
493             *mac_secret_size = ctx->ssl_mac_secret_size[i];
494     }
495     return 1;
496 }
497 
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)498 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
499                        const EVP_CIPHER **enc, const EVP_MD **md,
500                        int *mac_pkey_type, size_t *mac_secret_size,
501                        SSL_COMP **comp, int use_etm)
502 {
503     int i;
504     const SSL_CIPHER *c;
505 
506     c = s->cipher;
507     if (c == NULL)
508         return 0;
509     if (comp != NULL) {
510         SSL_COMP ctmp;
511         STACK_OF(SSL_COMP) *comp_methods;
512 
513         *comp = NULL;
514         ctmp.id = s->compress_meth;
515         comp_methods = SSL_COMP_get_compression_methods();
516         if (comp_methods != NULL) {
517             i = sk_SSL_COMP_find(comp_methods, &ctmp);
518             if (i >= 0)
519                 *comp = sk_SSL_COMP_value(comp_methods, i);
520         }
521         /* If were only interested in comp then return success */
522         if ((enc == NULL) && (md == NULL))
523             return 1;
524     }
525 
526     if ((enc == NULL) || (md == NULL))
527         return 0;
528 
529     if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
530         return 0;
531 
532     if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
533                                    mac_secret_size)) {
534         ssl_evp_cipher_free(*enc);
535         return 0;
536     }
537 
538     if ((*enc != NULL)
539         && (*md != NULL
540             || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
541         && (c->algorithm_mac == SSL_AEAD
542             || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
543         const EVP_CIPHER *evp = NULL;
544 
545         if (use_etm
546                 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
547                 || s->ssl_version < TLS1_VERSION)
548             return 1;
549 
550         if (c->algorithm_enc == SSL_RC4
551                 && c->algorithm_mac == SSL_MD5)
552             evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
553                                        ctx->propq);
554         else if (c->algorithm_enc == SSL_AES128
555                     && c->algorithm_mac == SSL_SHA1)
556             evp = ssl_evp_cipher_fetch(ctx->libctx,
557                                        NID_aes_128_cbc_hmac_sha1,
558                                        ctx->propq);
559         else if (c->algorithm_enc == SSL_AES256
560                     && c->algorithm_mac == SSL_SHA1)
561              evp = ssl_evp_cipher_fetch(ctx->libctx,
562                                         NID_aes_256_cbc_hmac_sha1,
563                                         ctx->propq);
564         else if (c->algorithm_enc == SSL_AES128
565                     && c->algorithm_mac == SSL_SHA256)
566             evp = ssl_evp_cipher_fetch(ctx->libctx,
567                                        NID_aes_128_cbc_hmac_sha256,
568                                        ctx->propq);
569         else if (c->algorithm_enc == SSL_AES256
570                     && c->algorithm_mac == SSL_SHA256)
571             evp = ssl_evp_cipher_fetch(ctx->libctx,
572                                        NID_aes_256_cbc_hmac_sha256,
573                                        ctx->propq);
574 
575         if (evp != NULL) {
576             ssl_evp_cipher_free(*enc);
577             ssl_evp_md_free(*md);
578             *enc = evp;
579             *md = NULL;
580         }
581         return 1;
582     }
583 
584     return 0;
585 }
586 
ssl_md(SSL_CTX * ctx,int idx)587 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
588 {
589     idx &= SSL_HANDSHAKE_MAC_MASK;
590     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
591         return NULL;
592     return ctx->ssl_digest_methods[idx];
593 }
594 
ssl_handshake_md(SSL_CONNECTION * s)595 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
596 {
597     return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
598 }
599 
ssl_prf_md(SSL_CONNECTION * s)600 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
601 {
602     return ssl_md(SSL_CONNECTION_GET_CTX(s),
603                   ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
604 }
605 
606 
607 #define ITEM_SEP(a) \
608         (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
609 
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)610 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
611                            CIPHER_ORDER **tail)
612 {
613     if (curr == *tail)
614         return;
615     if (curr == *head)
616         *head = curr->next;
617     if (curr->prev != NULL)
618         curr->prev->next = curr->next;
619     if (curr->next != NULL)
620         curr->next->prev = curr->prev;
621     (*tail)->next = curr;
622     curr->prev = *tail;
623     curr->next = NULL;
624     *tail = curr;
625 }
626 
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)627 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
628                            CIPHER_ORDER **tail)
629 {
630     if (curr == *head)
631         return;
632     if (curr == *tail)
633         *tail = curr->prev;
634     if (curr->next != NULL)
635         curr->next->prev = curr->prev;
636     if (curr->prev != NULL)
637         curr->prev->next = curr->next;
638     (*head)->prev = curr;
639     curr->next = *head;
640     curr->prev = NULL;
641     *head = curr;
642 }
643 
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)644 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
645                                        int num_of_ciphers,
646                                        uint32_t disabled_mkey,
647                                        uint32_t disabled_auth,
648                                        uint32_t disabled_enc,
649                                        uint32_t disabled_mac,
650                                        CIPHER_ORDER *co_list,
651                                        CIPHER_ORDER **head_p,
652                                        CIPHER_ORDER **tail_p)
653 {
654     int i, co_list_num;
655     const SSL_CIPHER *c;
656 
657     /*
658      * We have num_of_ciphers descriptions compiled in, depending on the
659      * method selected (SSLv3, TLSv1 etc).
660      * These will later be sorted in a linked list with at most num
661      * entries.
662      */
663 
664     /* Get the initial list of ciphers */
665     co_list_num = 0;            /* actual count of ciphers */
666     for (i = 0; i < num_of_ciphers; i++) {
667         c = ssl_method->get_cipher(i);
668         /* drop those that use any of that is not available */
669         if (c == NULL || !c->valid)
670             continue;
671         if ((c->algorithm_mkey & disabled_mkey) ||
672             (c->algorithm_auth & disabled_auth) ||
673             (c->algorithm_enc & disabled_enc) ||
674             (c->algorithm_mac & disabled_mac))
675             continue;
676         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
677             c->min_tls == 0)
678             continue;
679         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
680             c->min_dtls == 0)
681             continue;
682 
683         co_list[co_list_num].cipher = c;
684         co_list[co_list_num].next = NULL;
685         co_list[co_list_num].prev = NULL;
686         co_list[co_list_num].active = 0;
687         co_list_num++;
688     }
689 
690     /*
691      * Prepare linked list from list entries
692      */
693     if (co_list_num > 0) {
694         co_list[0].prev = NULL;
695 
696         if (co_list_num > 1) {
697             co_list[0].next = &co_list[1];
698 
699             for (i = 1; i < co_list_num - 1; i++) {
700                 co_list[i].prev = &co_list[i - 1];
701                 co_list[i].next = &co_list[i + 1];
702             }
703 
704             co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
705         }
706 
707         co_list[co_list_num - 1].next = NULL;
708 
709         *head_p = &co_list[0];
710         *tail_p = &co_list[co_list_num - 1];
711     }
712 }
713 
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)714 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
715                                        int num_of_group_aliases,
716                                        uint32_t disabled_mkey,
717                                        uint32_t disabled_auth,
718                                        uint32_t disabled_enc,
719                                        uint32_t disabled_mac,
720                                        CIPHER_ORDER *head)
721 {
722     CIPHER_ORDER *ciph_curr;
723     const SSL_CIPHER **ca_curr;
724     int i;
725     uint32_t mask_mkey = ~disabled_mkey;
726     uint32_t mask_auth = ~disabled_auth;
727     uint32_t mask_enc = ~disabled_enc;
728     uint32_t mask_mac = ~disabled_mac;
729 
730     /*
731      * First, add the real ciphers as already collected
732      */
733     ciph_curr = head;
734     ca_curr = ca_list;
735     while (ciph_curr != NULL) {
736         *ca_curr = ciph_curr->cipher;
737         ca_curr++;
738         ciph_curr = ciph_curr->next;
739     }
740 
741     /*
742      * Now we add the available ones from the cipher_aliases[] table.
743      * They represent either one or more algorithms, some of which
744      * in any affected category must be supported (set in enabled_mask),
745      * or represent a cipher strength value (will be added in any case because algorithms=0).
746      */
747     for (i = 0; i < num_of_group_aliases; i++) {
748         uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
749         uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
750         uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
751         uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
752 
753         if (algorithm_mkey)
754             if ((algorithm_mkey & mask_mkey) == 0)
755                 continue;
756 
757         if (algorithm_auth)
758             if ((algorithm_auth & mask_auth) == 0)
759                 continue;
760 
761         if (algorithm_enc)
762             if ((algorithm_enc & mask_enc) == 0)
763                 continue;
764 
765         if (algorithm_mac)
766             if ((algorithm_mac & mask_mac) == 0)
767                 continue;
768 
769         *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
770         ca_curr++;
771     }
772 
773     *ca_curr = NULL;            /* end of list */
774 }
775 
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)776 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
777                                   uint32_t alg_auth, uint32_t alg_enc,
778                                   uint32_t alg_mac, int min_tls,
779                                   uint32_t algo_strength, int rule,
780                                   int32_t strength_bits, CIPHER_ORDER **head_p,
781                                   CIPHER_ORDER **tail_p)
782 {
783     CIPHER_ORDER *head, *tail, *curr, *next, *last;
784     const SSL_CIPHER *cp;
785     int reverse = 0;
786 
787     OSSL_TRACE_BEGIN(TLS_CIPHER) {
788         BIO_printf(trc_out,
789                    "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
790                    rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
791                    (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
792                    (unsigned int)algo_strength, (int)strength_bits);
793     }
794 
795     if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
796         reverse = 1;            /* needed to maintain sorting between currently
797                                  * deleted ciphers */
798 
799     head = *head_p;
800     tail = *tail_p;
801 
802     if (reverse) {
803         next = tail;
804         last = head;
805     } else {
806         next = head;
807         last = tail;
808     }
809 
810     curr = NULL;
811     for (;;) {
812         if (curr == last)
813             break;
814 
815         curr = next;
816 
817         if (curr == NULL)
818             break;
819 
820         next = reverse ? curr->prev : curr->next;
821 
822         cp = curr->cipher;
823 
824         /*
825          * Selection criteria is either the value of strength_bits
826          * or the algorithms used.
827          */
828         if (strength_bits >= 0) {
829             if (strength_bits != cp->strength_bits)
830                 continue;
831         } else {
832             if (trc_out != NULL) {
833                 BIO_printf(trc_out,
834                            "\nName: %s:"
835                            "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
836                            cp->name,
837                            (unsigned int)cp->algorithm_mkey,
838                            (unsigned int)cp->algorithm_auth,
839                            (unsigned int)cp->algorithm_enc,
840                            (unsigned int)cp->algorithm_mac,
841                            cp->min_tls,
842                            (unsigned int)cp->algo_strength);
843             }
844             if (cipher_id != 0 && (cipher_id != cp->id))
845                 continue;
846             if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
847                 continue;
848             if (alg_auth && !(alg_auth & cp->algorithm_auth))
849                 continue;
850             if (alg_enc && !(alg_enc & cp->algorithm_enc))
851                 continue;
852             if (alg_mac && !(alg_mac & cp->algorithm_mac))
853                 continue;
854             if (min_tls && (min_tls != cp->min_tls))
855                 continue;
856             if ((algo_strength & SSL_STRONG_MASK)
857                 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
858                 continue;
859             if ((algo_strength & SSL_DEFAULT_MASK)
860                 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
861                 continue;
862         }
863 
864         if (trc_out != NULL)
865             BIO_printf(trc_out, "Action = %d\n", rule);
866 
867         /* add the cipher if it has not been added yet. */
868         if (rule == CIPHER_ADD) {
869             /* reverse == 0 */
870             if (!curr->active) {
871                 ll_append_tail(&head, curr, &tail);
872                 curr->active = 1;
873             }
874         }
875         /* Move the added cipher to this location */
876         else if (rule == CIPHER_ORD) {
877             /* reverse == 0 */
878             if (curr->active) {
879                 ll_append_tail(&head, curr, &tail);
880             }
881         } else if (rule == CIPHER_DEL) {
882             /* reverse == 1 */
883             if (curr->active) {
884                 /*
885                  * most recently deleted ciphersuites get best positions for
886                  * any future CIPHER_ADD (note that the CIPHER_DEL loop works
887                  * in reverse to maintain the order)
888                  */
889                 ll_append_head(&head, curr, &tail);
890                 curr->active = 0;
891             }
892         } else if (rule == CIPHER_BUMP) {
893             if (curr->active)
894                 ll_append_head(&head, curr, &tail);
895         } else if (rule == CIPHER_KILL) {
896             /* reverse == 0 */
897             if (head == curr)
898                 head = curr->next;
899             else
900                 curr->prev->next = curr->next;
901             if (tail == curr)
902                 tail = curr->prev;
903             curr->active = 0;
904             if (curr->next != NULL)
905                 curr->next->prev = curr->prev;
906             if (curr->prev != NULL)
907                 curr->prev->next = curr->next;
908             curr->next = NULL;
909             curr->prev = NULL;
910         }
911     }
912 
913     *head_p = head;
914     *tail_p = tail;
915 
916     OSSL_TRACE_END(TLS_CIPHER);
917 }
918 
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)919 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
920                                     CIPHER_ORDER **tail_p)
921 {
922     int32_t max_strength_bits;
923     int i, *number_uses;
924     CIPHER_ORDER *curr;
925 
926     /*
927      * This routine sorts the ciphers with descending strength. The sorting
928      * must keep the pre-sorted sequence, so we apply the normal sorting
929      * routine as '+' movement to the end of the list.
930      */
931     max_strength_bits = 0;
932     curr = *head_p;
933     while (curr != NULL) {
934         if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
935             max_strength_bits = curr->cipher->strength_bits;
936         curr = curr->next;
937     }
938 
939     number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
940     if (number_uses == NULL)
941         return 0;
942 
943     /*
944      * Now find the strength_bits values actually used
945      */
946     curr = *head_p;
947     while (curr != NULL) {
948         if (curr->active)
949             number_uses[curr->cipher->strength_bits]++;
950         curr = curr->next;
951     }
952     /*
953      * Go through the list of used strength_bits values in descending
954      * order.
955      */
956     for (i = max_strength_bits; i >= 0; i--)
957         if (number_uses[i] > 0)
958             ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
959                                   tail_p);
960 
961     OPENSSL_free(number_uses);
962     return 1;
963 }
964 
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)965 static int ssl_cipher_process_rulestr(const char *rule_str,
966                                       CIPHER_ORDER **head_p,
967                                       CIPHER_ORDER **tail_p,
968                                       const SSL_CIPHER **ca_list, CERT *c)
969 {
970     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
971     int min_tls;
972     const char *l, *buf;
973     int j, multi, found, rule, retval, ok, buflen;
974     uint32_t cipher_id = 0;
975     char ch;
976 
977     retval = 1;
978     l = rule_str;
979     for (;;) {
980         ch = *l;
981 
982         if (ch == '\0')
983             break;              /* done */
984         if (ch == '-') {
985             rule = CIPHER_DEL;
986             l++;
987         } else if (ch == '+') {
988             rule = CIPHER_ORD;
989             l++;
990         } else if (ch == '!') {
991             rule = CIPHER_KILL;
992             l++;
993         } else if (ch == '@') {
994             rule = CIPHER_SPECIAL;
995             l++;
996         } else {
997             rule = CIPHER_ADD;
998         }
999 
1000         if (ITEM_SEP(ch)) {
1001             l++;
1002             continue;
1003         }
1004 
1005         alg_mkey = 0;
1006         alg_auth = 0;
1007         alg_enc = 0;
1008         alg_mac = 0;
1009         min_tls = 0;
1010         algo_strength = 0;
1011 
1012         for (;;) {
1013             ch = *l;
1014             buf = l;
1015             buflen = 0;
1016 #ifndef CHARSET_EBCDIC
1017             while (((ch >= 'A') && (ch <= 'Z')) ||
1018                    ((ch >= '0') && (ch <= '9')) ||
1019                    ((ch >= 'a') && (ch <= 'z')) ||
1020                    (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1021 #else
1022             while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1023                    || (ch == '='))
1024 #endif
1025             {
1026                 ch = *(++l);
1027                 buflen++;
1028             }
1029 
1030             if (buflen == 0) {
1031                 /*
1032                  * We hit something we cannot deal with,
1033                  * it is no command or separator nor
1034                  * alphanumeric, so we call this an error.
1035                  */
1036                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1037                 return 0;
1038             }
1039 
1040             if (rule == CIPHER_SPECIAL) {
1041                 found = 0;      /* unused -- avoid compiler warning */
1042                 break;          /* special treatment */
1043             }
1044 
1045             /* check for multi-part specification */
1046             if (ch == '+') {
1047                 multi = 1;
1048                 l++;
1049             } else {
1050                 multi = 0;
1051             }
1052 
1053             /*
1054              * Now search for the cipher alias in the ca_list. Be careful
1055              * with the strncmp, because the "buflen" limitation
1056              * will make the rule "ADH:SOME" and the cipher
1057              * "ADH-MY-CIPHER" look like a match for buflen=3.
1058              * So additionally check whether the cipher name found
1059              * has the correct length. We can save a strlen() call:
1060              * just checking for the '\0' at the right place is
1061              * sufficient, we have to strncmp() anyway. (We cannot
1062              * use strcmp(), because buf is not '\0' terminated.)
1063              */
1064             j = found = 0;
1065             cipher_id = 0;
1066             while (ca_list[j]) {
1067                 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1068                     && (ca_list[j]->name[buflen] == '\0')) {
1069                     found = 1;
1070                     break;
1071                 } else if (ca_list[j]->stdname != NULL
1072                            && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1073                            && ca_list[j]->stdname[buflen] == '\0') {
1074                     found = 1;
1075                     break;
1076                 } else
1077                     j++;
1078             }
1079 
1080             if (!found)
1081                 break;          /* ignore this entry */
1082 
1083             if (ca_list[j]->algorithm_mkey) {
1084                 if (alg_mkey) {
1085                     alg_mkey &= ca_list[j]->algorithm_mkey;
1086                     if (!alg_mkey) {
1087                         found = 0;
1088                         break;
1089                     }
1090                 } else {
1091                     alg_mkey = ca_list[j]->algorithm_mkey;
1092                 }
1093             }
1094 
1095             if (ca_list[j]->algorithm_auth) {
1096                 if (alg_auth) {
1097                     alg_auth &= ca_list[j]->algorithm_auth;
1098                     if (!alg_auth) {
1099                         found = 0;
1100                         break;
1101                     }
1102                 } else {
1103                     alg_auth = ca_list[j]->algorithm_auth;
1104                 }
1105             }
1106 
1107             if (ca_list[j]->algorithm_enc) {
1108                 if (alg_enc) {
1109                     alg_enc &= ca_list[j]->algorithm_enc;
1110                     if (!alg_enc) {
1111                         found = 0;
1112                         break;
1113                     }
1114                 } else {
1115                     alg_enc = ca_list[j]->algorithm_enc;
1116                 }
1117             }
1118 
1119             if (ca_list[j]->algorithm_mac) {
1120                 if (alg_mac) {
1121                     alg_mac &= ca_list[j]->algorithm_mac;
1122                     if (!alg_mac) {
1123                         found = 0;
1124                         break;
1125                     }
1126                 } else {
1127                     alg_mac = ca_list[j]->algorithm_mac;
1128                 }
1129             }
1130 
1131             if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1132                 if (algo_strength & SSL_STRONG_MASK) {
1133                     algo_strength &=
1134                         (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1135                         ~SSL_STRONG_MASK;
1136                     if (!(algo_strength & SSL_STRONG_MASK)) {
1137                         found = 0;
1138                         break;
1139                     }
1140                 } else {
1141                     algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1142                 }
1143             }
1144 
1145             if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1146                 if (algo_strength & SSL_DEFAULT_MASK) {
1147                     algo_strength &=
1148                         (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1149                         ~SSL_DEFAULT_MASK;
1150                     if (!(algo_strength & SSL_DEFAULT_MASK)) {
1151                         found = 0;
1152                         break;
1153                     }
1154                 } else {
1155                     algo_strength |=
1156                         ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1157                 }
1158             }
1159 
1160             if (ca_list[j]->valid) {
1161                 /*
1162                  * explicit ciphersuite found; its protocol version does not
1163                  * become part of the search pattern!
1164                  */
1165 
1166                 cipher_id = ca_list[j]->id;
1167             } else {
1168                 /*
1169                  * not an explicit ciphersuite; only in this case, the
1170                  * protocol version is considered part of the search pattern
1171                  */
1172 
1173                 if (ca_list[j]->min_tls) {
1174                     if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1175                         found = 0;
1176                         break;
1177                     } else {
1178                         min_tls = ca_list[j]->min_tls;
1179                     }
1180                 }
1181             }
1182 
1183             if (!multi)
1184                 break;
1185         }
1186 
1187         /*
1188          * Ok, we have the rule, now apply it
1189          */
1190         if (rule == CIPHER_SPECIAL) { /* special command */
1191             ok = 0;
1192             if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1193                 ok = ssl_cipher_strength_sort(head_p, tail_p);
1194             } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1195                 int level = *buf - '0';
1196                 if (level < 0 || level > 5) {
1197                     ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1198                 } else {
1199                     c->sec_level = level;
1200                     ok = 1;
1201                 }
1202             } else {
1203                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1204             }
1205             if (ok == 0)
1206                 retval = 0;
1207             /*
1208              * We do not support any "multi" options
1209              * together with "@", so throw away the
1210              * rest of the command, if any left, until
1211              * end or ':' is found.
1212              */
1213             while ((*l != '\0') && !ITEM_SEP(*l))
1214                 l++;
1215         } else if (found) {
1216             ssl_cipher_apply_rule(cipher_id,
1217                                   alg_mkey, alg_auth, alg_enc, alg_mac,
1218                                   min_tls, algo_strength, rule, -1, head_p,
1219                                   tail_p);
1220         } else {
1221             while ((*l != '\0') && !ITEM_SEP(*l))
1222                 l++;
1223         }
1224         if (*l == '\0')
1225             break;              /* done */
1226     }
1227 
1228     return retval;
1229 }
1230 
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1231 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1232                                     const char **prule_str)
1233 {
1234     unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1235     if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1236         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1237     } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1238         suiteb_comb2 = 1;
1239         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1240     } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1241         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1242     } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1243         suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1244     }
1245 
1246     if (suiteb_flags) {
1247         c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1248         c->cert_flags |= suiteb_flags;
1249     } else {
1250         suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1251     }
1252 
1253     if (!suiteb_flags)
1254         return 1;
1255     /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1256 
1257     if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1258         ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1259         return 0;
1260     }
1261 
1262     switch (suiteb_flags) {
1263     case SSL_CERT_FLAG_SUITEB_128_LOS:
1264         if (suiteb_comb2)
1265             *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1266         else
1267             *prule_str =
1268                 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1269         break;
1270     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1271         *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1272         break;
1273     case SSL_CERT_FLAG_SUITEB_192_LOS:
1274         *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1275         break;
1276     }
1277     return 1;
1278 }
1279 
ciphersuite_cb(const char * elem,int len,void * arg)1280 static int ciphersuite_cb(const char *elem, int len, void *arg)
1281 {
1282     STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1283     const SSL_CIPHER *cipher;
1284     /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1285     char name[80];
1286 
1287     if (len > (int)(sizeof(name) - 1))
1288         /* Anyway return 1 so we can parse rest of the list */
1289         return 1;
1290 
1291     memcpy(name, elem, len);
1292     name[len] = '\0';
1293 
1294     cipher = ssl3_get_cipher_by_std_name(name);
1295     if (cipher == NULL)
1296         /* Ciphersuite not found but return 1 to parse rest of the list */
1297         return 1;
1298 
1299     if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1300         ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1301         return 0;
1302     }
1303 
1304     return 1;
1305 }
1306 
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1307 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1308 {
1309     STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1310 
1311     if (newciphers == NULL)
1312         return 0;
1313 
1314     /* Parse the list. We explicitly allow an empty list */
1315     if (*str != '\0'
1316             && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1317                 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1318         ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1319         sk_SSL_CIPHER_free(newciphers);
1320         return 0;
1321     }
1322     sk_SSL_CIPHER_free(*currciphers);
1323     *currciphers = newciphers;
1324 
1325     return 1;
1326 }
1327 
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1328 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1329                                     STACK_OF(SSL_CIPHER) *cipherstack)
1330 {
1331     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1332 
1333     if (tmp_cipher_list == NULL) {
1334         return 0;
1335     }
1336 
1337     sk_SSL_CIPHER_free(*cipher_list_by_id);
1338     *cipher_list_by_id = tmp_cipher_list;
1339 
1340     (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1341     sk_SSL_CIPHER_sort(*cipher_list_by_id);
1342 
1343     return 1;
1344 }
1345 
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1346 static int update_cipher_list(SSL_CTX *ctx,
1347                               STACK_OF(SSL_CIPHER) **cipher_list,
1348                               STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1349                               STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1350 {
1351     int i;
1352     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1353 
1354     if (tmp_cipher_list == NULL)
1355         return 0;
1356 
1357     /*
1358      * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1359      * list.
1360      */
1361     while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1362            && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1363               == TLS1_3_VERSION)
1364         (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1365 
1366     /* Insert the new TLSv1.3 ciphersuites */
1367     for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1368         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1369 
1370         /* Don't include any TLSv1.3 ciphersuites that are disabled */
1371         if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1372                 && (ssl_cipher_table_mac[sslc->algorithm2
1373                                          & SSL_HANDSHAKE_MAC_MASK].mask
1374                     & ctx->disabled_mac_mask) == 0) {
1375             sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1376         }
1377     }
1378 
1379     if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1380         sk_SSL_CIPHER_free(tmp_cipher_list);
1381         return 0;
1382     }
1383 
1384     sk_SSL_CIPHER_free(*cipher_list);
1385     *cipher_list = tmp_cipher_list;
1386 
1387     return 1;
1388 }
1389 
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1390 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1391 {
1392     int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1393 
1394     if (ret && ctx->cipher_list != NULL)
1395         return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1396                                   ctx->tls13_ciphersuites);
1397 
1398     return ret;
1399 }
1400 
SSL_set_ciphersuites(SSL * s,const char * str)1401 int SSL_set_ciphersuites(SSL *s, const char *str)
1402 {
1403     STACK_OF(SSL_CIPHER) *cipher_list;
1404     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1405     int ret;
1406 
1407     if (sc == NULL)
1408         return 0;
1409 
1410     ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1411 
1412     if (sc->cipher_list == NULL) {
1413         if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1414             sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1415     }
1416     if (ret && sc->cipher_list != NULL)
1417         return update_cipher_list(s->ctx, &sc->cipher_list,
1418                                   &sc->cipher_list_by_id,
1419                                   sc->tls13_ciphersuites);
1420 
1421     return ret;
1422 }
1423 
STACK_OF(SSL_CIPHER)1424 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1425                                              STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1426                                              STACK_OF(SSL_CIPHER) **cipher_list,
1427                                              STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1428                                              const char *rule_str,
1429                                              CERT *c)
1430 {
1431     int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1432     uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1433     STACK_OF(SSL_CIPHER) *cipherstack;
1434     const char *rule_p;
1435     CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1436     const SSL_CIPHER **ca_list = NULL;
1437     const SSL_METHOD *ssl_method = ctx->method;
1438 
1439     /*
1440      * Return with error if nothing to do.
1441      */
1442     if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1443         return NULL;
1444 
1445     if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1446         return NULL;
1447 
1448     /*
1449      * To reduce the work to do we only want to process the compiled
1450      * in algorithms, so we first get the mask of disabled ciphers.
1451      */
1452 
1453     disabled_mkey = ctx->disabled_mkey_mask;
1454     disabled_auth = ctx->disabled_auth_mask;
1455     disabled_enc = ctx->disabled_enc_mask;
1456     disabled_mac = ctx->disabled_mac_mask;
1457 
1458     /*
1459      * Now we have to collect the available ciphers from the compiled
1460      * in ciphers. We cannot get more than the number compiled in, so
1461      * it is used for allocation.
1462      */
1463     num_of_ciphers = ssl_method->num_ciphers();
1464 
1465     if (num_of_ciphers > 0) {
1466         co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1467         if (co_list == NULL)
1468             return NULL;          /* Failure */
1469     }
1470 
1471     ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1472                                disabled_mkey, disabled_auth, disabled_enc,
1473                                disabled_mac, co_list, &head, &tail);
1474 
1475     /* Now arrange all ciphers by preference. */
1476 
1477     /*
1478      * Everything else being equal, prefer ephemeral ECDH over other key
1479      * exchange mechanisms.
1480      * For consistency, prefer ECDSA over RSA (though this only matters if the
1481      * server has both certificates, and is using the DEFAULT, or a client
1482      * preference).
1483      */
1484     ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1485                           -1, &head, &tail);
1486     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1487                           &tail);
1488     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1489                           &tail);
1490 
1491     /* Within each strength group, we prefer GCM over CHACHA... */
1492     ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1493                           &head, &tail);
1494     ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1495                           &head, &tail);
1496 
1497     /*
1498      * ...and generally, our preferred cipher is AES.
1499      * Note that AEADs will be bumped to take preference after sorting by
1500      * strength.
1501      */
1502     ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1503                           -1, &head, &tail);
1504 
1505     /* Temporarily enable everything else for sorting */
1506     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1507 
1508     /* Low priority for MD5 */
1509     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1510                           &tail);
1511 
1512     /*
1513      * Move anonymous ciphers to the end.  Usually, these will remain
1514      * disabled. (For applications that allow them, they aren't too bad, but
1515      * we prefer authenticated ciphers.)
1516      */
1517     ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1518                           &tail);
1519 
1520     ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1521                           &tail);
1522     ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1523                           &tail);
1524 
1525     /* RC4 is sort-of broken -- move to the end */
1526     ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1527                           &tail);
1528 
1529     /*
1530      * Now sort by symmetric encryption strength.  The above ordering remains
1531      * in force within each class
1532      */
1533     if (!ssl_cipher_strength_sort(&head, &tail)) {
1534         OPENSSL_free(co_list);
1535         return NULL;
1536     }
1537 
1538     /*
1539      * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1540      */
1541     ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1542                           &head, &tail);
1543 
1544     /*
1545      * Irrespective of strength, enforce the following order:
1546      * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1547      * Within each group, ciphers remain sorted by strength and previous
1548      * preference, i.e.,
1549      * 1) ECDHE > DHE
1550      * 2) GCM > CHACHA
1551      * 3) AES > rest
1552      * 4) TLS 1.2 > legacy
1553      *
1554      * Because we now bump ciphers to the top of the list, we proceed in
1555      * reverse order of preference.
1556      */
1557     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1558                           &head, &tail);
1559     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1560                           CIPHER_BUMP, -1, &head, &tail);
1561     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1562                           CIPHER_BUMP, -1, &head, &tail);
1563 
1564     /* Now disable everything (maintaining the ordering!) */
1565     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1566 
1567     /*
1568      * We also need cipher aliases for selecting based on the rule_str.
1569      * There might be two types of entries in the rule_str: 1) names
1570      * of ciphers themselves 2) aliases for groups of ciphers.
1571      * For 1) we need the available ciphers and for 2) the cipher
1572      * groups of cipher_aliases added together in one list (otherwise
1573      * we would be happy with just the cipher_aliases table).
1574      */
1575     num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1576     num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1577     ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1578     if (ca_list == NULL) {
1579         OPENSSL_free(co_list);
1580         return NULL;          /* Failure */
1581     }
1582     ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1583                                disabled_mkey, disabled_auth, disabled_enc,
1584                                disabled_mac, head);
1585 
1586     /*
1587      * If the rule_string begins with DEFAULT, apply the default rule
1588      * before using the (possibly available) additional rules.
1589      */
1590     ok = 1;
1591     rule_p = rule_str;
1592     if (HAS_PREFIX(rule_str, "DEFAULT")) {
1593         ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1594                                         &head, &tail, ca_list, c);
1595         rule_p += 7;
1596         if (*rule_p == ':')
1597             rule_p++;
1598     }
1599 
1600     if (ok && (rule_p[0] != '\0'))
1601         ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1602 
1603     OPENSSL_free(ca_list);      /* Not needed anymore */
1604 
1605     if (!ok) {                  /* Rule processing failure */
1606         OPENSSL_free(co_list);
1607         return NULL;
1608     }
1609 
1610     /*
1611      * Allocate new "cipherstack" for the result, return with error
1612      * if we cannot get one.
1613      */
1614     if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1615         OPENSSL_free(co_list);
1616         return NULL;
1617     }
1618 
1619     /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1620     for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1621         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1622 
1623         /* Don't include any TLSv1.3 ciphers that are disabled */
1624         if ((sslc->algorithm_enc & disabled_enc) != 0
1625                 || (ssl_cipher_table_mac[sslc->algorithm2
1626                                          & SSL_HANDSHAKE_MAC_MASK].mask
1627                     & ctx->disabled_mac_mask) != 0) {
1628             sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1629             i--;
1630             continue;
1631         }
1632 
1633         if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1634             OPENSSL_free(co_list);
1635             sk_SSL_CIPHER_free(cipherstack);
1636             return NULL;
1637         }
1638     }
1639 
1640     OSSL_TRACE_BEGIN(TLS_CIPHER) {
1641         BIO_printf(trc_out, "cipher selection:\n");
1642     }
1643     /*
1644      * The cipher selection for the list is done. The ciphers are added
1645      * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1646      */
1647     for (curr = head; curr != NULL; curr = curr->next) {
1648         if (curr->active) {
1649             if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1650                 OPENSSL_free(co_list);
1651                 sk_SSL_CIPHER_free(cipherstack);
1652                 OSSL_TRACE_CANCEL(TLS_CIPHER);
1653                 return NULL;
1654             }
1655             if (trc_out != NULL)
1656                 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1657         }
1658     }
1659     OPENSSL_free(co_list);      /* Not needed any longer */
1660     OSSL_TRACE_END(TLS_CIPHER);
1661 
1662     if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1663         sk_SSL_CIPHER_free(cipherstack);
1664         return NULL;
1665     }
1666     sk_SSL_CIPHER_free(*cipher_list);
1667     *cipher_list = cipherstack;
1668 
1669     return cipherstack;
1670 }
1671 
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1672 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1673 {
1674     const char *ver;
1675     const char *kx, *au, *enc, *mac;
1676     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1677     static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1678 
1679     if (buf == NULL) {
1680         len = 128;
1681         if ((buf = OPENSSL_malloc(len)) == NULL)
1682             return NULL;
1683     } else if (len < 128) {
1684         return NULL;
1685     }
1686 
1687     alg_mkey = cipher->algorithm_mkey;
1688     alg_auth = cipher->algorithm_auth;
1689     alg_enc = cipher->algorithm_enc;
1690     alg_mac = cipher->algorithm_mac;
1691 
1692     ver = ssl_protocol_to_string(cipher->min_tls);
1693 
1694     switch (alg_mkey) {
1695     case SSL_kRSA:
1696         kx = "RSA";
1697         break;
1698     case SSL_kDHE:
1699         kx = "DH";
1700         break;
1701     case SSL_kECDHE:
1702         kx = "ECDH";
1703         break;
1704     case SSL_kPSK:
1705         kx = "PSK";
1706         break;
1707     case SSL_kRSAPSK:
1708         kx = "RSAPSK";
1709         break;
1710     case SSL_kECDHEPSK:
1711         kx = "ECDHEPSK";
1712         break;
1713     case SSL_kDHEPSK:
1714         kx = "DHEPSK";
1715         break;
1716     case SSL_kSRP:
1717         kx = "SRP";
1718         break;
1719     case SSL_kGOST:
1720         kx = "GOST";
1721         break;
1722     case SSL_kGOST18:
1723         kx = "GOST18";
1724         break;
1725     case SSL_kANY:
1726         kx = "any";
1727         break;
1728     default:
1729         kx = "unknown";
1730     }
1731 
1732     switch (alg_auth) {
1733     case SSL_aRSA:
1734         au = "RSA";
1735         break;
1736     case SSL_aDSS:
1737         au = "DSS";
1738         break;
1739     case SSL_aNULL:
1740         au = "None";
1741         break;
1742     case SSL_aECDSA:
1743         au = "ECDSA";
1744         break;
1745     case SSL_aPSK:
1746         au = "PSK";
1747         break;
1748     case SSL_aSRP:
1749         au = "SRP";
1750         break;
1751     case SSL_aGOST01:
1752         au = "GOST01";
1753         break;
1754     /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1755     case (SSL_aGOST12 | SSL_aGOST01):
1756         au = "GOST12";
1757         break;
1758     case SSL_aANY:
1759         au = "any";
1760         break;
1761     default:
1762         au = "unknown";
1763         break;
1764     }
1765 
1766     switch (alg_enc) {
1767     case SSL_DES:
1768         enc = "DES(56)";
1769         break;
1770     case SSL_3DES:
1771         enc = "3DES(168)";
1772         break;
1773     case SSL_RC4:
1774         enc = "RC4(128)";
1775         break;
1776     case SSL_RC2:
1777         enc = "RC2(128)";
1778         break;
1779     case SSL_IDEA:
1780         enc = "IDEA(128)";
1781         break;
1782     case SSL_eNULL:
1783         enc = "None";
1784         break;
1785     case SSL_AES128:
1786         enc = "AES(128)";
1787         break;
1788     case SSL_AES256:
1789         enc = "AES(256)";
1790         break;
1791     case SSL_AES128GCM:
1792         enc = "AESGCM(128)";
1793         break;
1794     case SSL_AES256GCM:
1795         enc = "AESGCM(256)";
1796         break;
1797     case SSL_AES128CCM:
1798         enc = "AESCCM(128)";
1799         break;
1800     case SSL_AES256CCM:
1801         enc = "AESCCM(256)";
1802         break;
1803     case SSL_AES128CCM8:
1804         enc = "AESCCM8(128)";
1805         break;
1806     case SSL_AES256CCM8:
1807         enc = "AESCCM8(256)";
1808         break;
1809     case SSL_CAMELLIA128:
1810         enc = "Camellia(128)";
1811         break;
1812     case SSL_CAMELLIA256:
1813         enc = "Camellia(256)";
1814         break;
1815     case SSL_ARIA128GCM:
1816         enc = "ARIAGCM(128)";
1817         break;
1818     case SSL_ARIA256GCM:
1819         enc = "ARIAGCM(256)";
1820         break;
1821     case SSL_SEED:
1822         enc = "SEED(128)";
1823         break;
1824     case SSL_eGOST2814789CNT:
1825     case SSL_eGOST2814789CNT12:
1826         enc = "GOST89(256)";
1827         break;
1828     case SSL_MAGMA:
1829         enc = "MAGMA";
1830         break;
1831     case SSL_KUZNYECHIK:
1832         enc = "KUZNYECHIK";
1833         break;
1834     case SSL_CHACHA20POLY1305:
1835         enc = "CHACHA20/POLY1305(256)";
1836         break;
1837     default:
1838         enc = "unknown";
1839         break;
1840     }
1841 
1842     switch (alg_mac) {
1843     case SSL_MD5:
1844         mac = "MD5";
1845         break;
1846     case SSL_SHA1:
1847         mac = "SHA1";
1848         break;
1849     case SSL_SHA256:
1850         mac = "SHA256";
1851         break;
1852     case SSL_SHA384:
1853         mac = "SHA384";
1854         break;
1855     case SSL_AEAD:
1856         mac = "AEAD";
1857         break;
1858     case SSL_GOST89MAC:
1859     case SSL_GOST89MAC12:
1860         mac = "GOST89";
1861         break;
1862     case SSL_GOST94:
1863         mac = "GOST94";
1864         break;
1865     case SSL_GOST12_256:
1866     case SSL_GOST12_512:
1867         mac = "GOST2012";
1868         break;
1869     default:
1870         mac = "unknown";
1871         break;
1872     }
1873 
1874     BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1875 
1876     return buf;
1877 }
1878 
SSL_CIPHER_get_version(const SSL_CIPHER * c)1879 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1880 {
1881     if (c == NULL)
1882         return "(NONE)";
1883 
1884     /*
1885      * Backwards-compatibility crutch.  In almost all contexts we report TLS
1886      * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1887      */
1888     if (c->min_tls == TLS1_VERSION)
1889         return "TLSv1.0";
1890     return ssl_protocol_to_string(c->min_tls);
1891 }
1892 
1893 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1894 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1895 {
1896     if (c != NULL)
1897         return c->name;
1898     return "(NONE)";
1899 }
1900 
1901 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1902 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1903 {
1904     if (c != NULL)
1905         return c->stdname;
1906     return "(NONE)";
1907 }
1908 
1909 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1910 const char *OPENSSL_cipher_name(const char *stdname)
1911 {
1912     const SSL_CIPHER *c;
1913 
1914     if (stdname == NULL)
1915         return "(NONE)";
1916     c = ssl3_get_cipher_by_std_name(stdname);
1917     return SSL_CIPHER_get_name(c);
1918 }
1919 
1920 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1921 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1922 {
1923     int ret = 0;
1924 
1925     if (c != NULL) {
1926         if (alg_bits != NULL)
1927             *alg_bits = (int)c->alg_bits;
1928         ret = (int)c->strength_bits;
1929     }
1930     return ret;
1931 }
1932 
SSL_CIPHER_get_id(const SSL_CIPHER * c)1933 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1934 {
1935     return c->id;
1936 }
1937 
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1938 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1939 {
1940     return c->id & 0xFFFF;
1941 }
1942 
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1943 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1944 {
1945     SSL_COMP *ctmp;
1946     SSL_COMP srch_key;
1947     int i;
1948 
1949     if ((n == 0) || (sk == NULL))
1950         return NULL;
1951     srch_key.id = n;
1952     i = sk_SSL_COMP_find(sk, &srch_key);
1953     if (i >= 0)
1954         ctmp = sk_SSL_COMP_value(sk, i);
1955     else
1956         ctmp = NULL;
1957 
1958     return ctmp;
1959 }
1960 
1961 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1962 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1963 {
1964     return NULL;
1965 }
1966 
STACK_OF(SSL_COMP)1967 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1968                                                       *meths)
1969 {
1970     return meths;
1971 }
1972 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1973 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1974 {
1975     return 1;
1976 }
1977 
1978 #else
STACK_OF(SSL_COMP)1979 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1980 {
1981     STACK_OF(SSL_COMP) **rv;
1982 
1983     rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1984                                      OSSL_LIB_CTX_COMP_METHODS);
1985     if (rv != NULL)
1986         return *rv;
1987     else
1988         return NULL;
1989 }
1990 
STACK_OF(SSL_COMP)1991 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1992                                                       *meths)
1993 {
1994     STACK_OF(SSL_COMP) **comp_methods;
1995     STACK_OF(SSL_COMP) *old_meths;
1996 
1997     comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1998                                               OSSL_LIB_CTX_COMP_METHODS);
1999     if (comp_methods == NULL) {
2000         old_meths = meths;
2001     } else {
2002         old_meths = *comp_methods;
2003         *comp_methods = meths;
2004     }
2005 
2006     return old_meths;
2007 }
2008 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2009 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2010 {
2011     STACK_OF(SSL_COMP) *comp_methods;
2012     SSL_COMP *comp;
2013 
2014     comp_methods = SSL_COMP_get_compression_methods();
2015 
2016     if (comp_methods == NULL)
2017         return 1;
2018 
2019     if (cm == NULL || COMP_get_type(cm) == NID_undef)
2020         return 1;
2021 
2022     /*-
2023      * According to draft-ietf-tls-compression-04.txt, the
2024      * compression number ranges should be the following:
2025      *
2026      *   0 to  63:  methods defined by the IETF
2027      *  64 to 192:  external party methods assigned by IANA
2028      * 193 to 255:  reserved for private use
2029      */
2030     if (id < 193 || id > 255) {
2031         ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2032         return 1;
2033     }
2034 
2035     comp = OPENSSL_malloc(sizeof(*comp));
2036     if (comp == NULL)
2037         return 1;
2038 
2039     comp->id = id;
2040     if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2041         OPENSSL_free(comp);
2042         ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2043         return 1;
2044     }
2045     if (!sk_SSL_COMP_push(comp_methods, comp)) {
2046         OPENSSL_free(comp);
2047         ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2048         return 1;
2049     }
2050 
2051     return 0;
2052 }
2053 #endif
2054 
SSL_COMP_get_name(const COMP_METHOD * comp)2055 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2056 {
2057 #ifndef OPENSSL_NO_COMP
2058     return comp ? COMP_get_name(comp) : NULL;
2059 #else
2060     return NULL;
2061 #endif
2062 }
2063 
SSL_COMP_get0_name(const SSL_COMP * comp)2064 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2065 {
2066 #ifndef OPENSSL_NO_COMP
2067     return comp->name;
2068 #else
2069     return NULL;
2070 #endif
2071 }
2072 
SSL_COMP_get_id(const SSL_COMP * comp)2073 int SSL_COMP_get_id(const SSL_COMP *comp)
2074 {
2075 #ifndef OPENSSL_NO_COMP
2076     return comp->id;
2077 #else
2078     return -1;
2079 #endif
2080 }
2081 
ssl_get_cipher_by_char(SSL_CONNECTION * s,const unsigned char * ptr,int all)2082 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2083                                          const unsigned char *ptr,
2084                                          int all)
2085 {
2086     const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2087 
2088     if (c == NULL || (!all && c->valid == 0))
2089         return NULL;
2090     return c;
2091 }
2092 
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2093 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2094 {
2095     return ssl->method->get_cipher_by_char(ptr);
2096 }
2097 
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2098 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2099 {
2100     int i;
2101     if (c == NULL)
2102         return NID_undef;
2103     i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2104     if (i == -1)
2105         return NID_undef;
2106     return ssl_cipher_table_cipher[i].nid;
2107 }
2108 
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2109 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2110 {
2111     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2112 
2113     if (i == -1)
2114         return NID_undef;
2115     return ssl_cipher_table_mac[i].nid;
2116 }
2117 
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2118 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2119 {
2120     int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2121 
2122     if (i == -1)
2123         return NID_undef;
2124     return ssl_cipher_table_kx[i].nid;
2125 }
2126 
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2127 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2128 {
2129     int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2130 
2131     if (i == -1)
2132         return NID_undef;
2133     return ssl_cipher_table_auth[i].nid;
2134 }
2135 
ssl_get_md_idx(int md_nid)2136 int ssl_get_md_idx(int md_nid) {
2137     int i;
2138 
2139     for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2140         if (md_nid == ssl_cipher_table_mac[i].nid)
2141             return i;
2142     }
2143     return -1;
2144 }
2145 
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2146 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2147 {
2148     int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2149 
2150     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2151         return NULL;
2152     return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2153 }
2154 
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2155 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2156 {
2157     return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2158 }
2159 
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2160 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2161                             size_t *int_overhead, size_t *blocksize,
2162                             size_t *ext_overhead)
2163 {
2164     int mac = 0, in = 0, blk = 0, out = 0;
2165 
2166     /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2167      * because there are no handy #defines for those. */
2168     if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2169         out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2170     } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2171         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2172     } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2173         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2174     } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2175         out = 16;
2176     } else if (c->algorithm_mac & SSL_AEAD) {
2177         /* We're supposed to have handled all the AEAD modes above */
2178         return 0;
2179     } else {
2180         /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2181         int digest_nid = SSL_CIPHER_get_digest_nid(c);
2182         const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2183 
2184         if (e_md == NULL)
2185             return 0;
2186 
2187         mac = EVP_MD_get_size(e_md);
2188         if (mac <= 0)
2189             return 0;
2190         if (c->algorithm_enc != SSL_eNULL) {
2191             int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2192             const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2193 
2194             /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2195                known CBC cipher. */
2196             if (e_ciph == NULL ||
2197                 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2198                 return 0;
2199 
2200             in = 1; /* padding length byte */
2201             out = EVP_CIPHER_get_iv_length(e_ciph);
2202             if (out < 0)
2203                 return 0;
2204             blk = EVP_CIPHER_get_block_size(e_ciph);
2205             if (blk <= 0)
2206                 return 0;
2207         }
2208     }
2209 
2210     *mac_overhead = (size_t)mac;
2211     *int_overhead = (size_t)in;
2212     *blocksize = (size_t)blk;
2213     *ext_overhead = (size_t)out;
2214 
2215     return 1;
2216 }
2217 
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2218 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2219 {
2220     const SSL_CERT_LOOKUP *cl;
2221 
2222     /* A provider-loaded key type is always enabled */
2223     if (idx >= SSL_PKEY_NUM)
2224         return 0;
2225 
2226     cl = ssl_cert_lookup_by_idx(idx, ctx);
2227     if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2228         return 1;
2229     return 0;
2230 }
2231 
2232 /*
2233  * Default list of TLSv1.2 (and earlier) ciphers
2234  * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2235  * Update both macro and function simultaneously
2236  */
OSSL_default_cipher_list(void)2237 const char *OSSL_default_cipher_list(void)
2238 {
2239     return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2240 }
2241 
2242 /*
2243  * Default list of TLSv1.3 (and later) ciphers
2244  * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2245  * Update both macro and function simultaneously
2246  */
OSSL_default_ciphersuites(void)2247 const char *OSSL_default_ciphersuites(void)
2248 {
2249     return "TLS_AES_256_GCM_SHA384:"
2250            "TLS_CHACHA20_POLY1305_SHA256:"
2251            "TLS_AES_128_GCM_SHA256";
2252 }
2253