xref: /linux/include/linux/spi/spi-mem.h (revision d0c9a21c8e0b2d7c55a2174f47bd0ea1d7302de6)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author:
7  *	Peter Pan <peterpandong@micron.com>
8  *	Boris Brezillon <boris.brezillon@bootlin.com>
9  */
10 
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13 
14 #include <linux/spi/spi.h>
15 
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17 	{							\
18 		.buswidth = __buswidth,				\
19 		.opcode = __opcode,				\
20 		.nbytes = 1,					\
21 	}
22 
23 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
24 	{							\
25 		.nbytes = __nbytes,				\
26 		.val = __val,					\
27 		.buswidth = __buswidth,				\
28 	}
29 
30 #define SPI_MEM_OP_NO_ADDR	{ }
31 
32 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
33 	{							\
34 		.nbytes = __nbytes,				\
35 		.buswidth = __buswidth,				\
36 	}
37 
38 #define SPI_MEM_OP_NO_DUMMY	{ }
39 
40 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
41 	{							\
42 		.dir = SPI_MEM_DATA_IN,				\
43 		.nbytes = __nbytes,				\
44 		.buf.in = __buf,				\
45 		.buswidth = __buswidth,				\
46 	}
47 
48 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
49 	{							\
50 		.dir = SPI_MEM_DATA_OUT,			\
51 		.nbytes = __nbytes,				\
52 		.buf.out = __buf,				\
53 		.buswidth = __buswidth,				\
54 	}
55 
56 #define SPI_MEM_OP_NO_DATA	{ }
57 
58 /**
59  * enum spi_mem_data_dir - describes the direction of a SPI memory data
60  *			   transfer from the controller perspective
61  * @SPI_MEM_NO_DATA: no data transferred
62  * @SPI_MEM_DATA_IN: data coming from the SPI memory
63  * @SPI_MEM_DATA_OUT: data sent to the SPI memory
64  */
65 enum spi_mem_data_dir {
66 	SPI_MEM_NO_DATA,
67 	SPI_MEM_DATA_IN,
68 	SPI_MEM_DATA_OUT,
69 };
70 
71 /**
72  * struct spi_mem_op - describes a SPI memory operation
73  * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
74  *		sent MSB-first.
75  * @cmd.buswidth: number of IO lines used to transmit the command
76  * @cmd.opcode: operation opcode
77  * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
78  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
79  *		 does not need to send an address
80  * @addr.buswidth: number of IO lines used to transmit the address cycles
81  * @addr.dtr: whether the address should be sent in DTR mode or not
82  * @addr.val: address value. This value is always sent MSB first on the bus.
83  *	      Note that only @addr.nbytes are taken into account in this
84  *	      address value, so users should make sure the value fits in the
85  *	      assigned number of bytes.
86  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
87  *		  be zero if the operation does not require dummy bytes
88  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
89  * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
90  * @data.buswidth: number of IO lanes used to send/receive the data
91  * @data.dtr: whether the data should be sent in DTR mode or not
92  * @data.ecc: whether error correction is required or not
93  * @data.swap16: whether the byte order of 16-bit words is swapped when read
94  *		 or written in Octal DTR mode compared to STR mode.
95  * @data.dir: direction of the transfer
96  * @data.nbytes: number of data bytes to send/receive. Can be zero if the
97  *		 operation does not involve transferring data
98  * @data.buf.in: input buffer (must be DMA-able)
99  * @data.buf.out: output buffer (must be DMA-able)
100  */
101 struct spi_mem_op {
102 	struct {
103 		u8 nbytes;
104 		u8 buswidth;
105 		u8 dtr : 1;
106 		u8 __pad : 7;
107 		u16 opcode;
108 	} cmd;
109 
110 	struct {
111 		u8 nbytes;
112 		u8 buswidth;
113 		u8 dtr : 1;
114 		u8 __pad : 7;
115 		u64 val;
116 	} addr;
117 
118 	struct {
119 		u8 nbytes;
120 		u8 buswidth;
121 		u8 dtr : 1;
122 		u8 __pad : 7;
123 	} dummy;
124 
125 	struct {
126 		u8 buswidth;
127 		u8 dtr : 1;
128 		u8 ecc : 1;
129 		u8 swap16 : 1;
130 		u8 __pad : 5;
131 		enum spi_mem_data_dir dir;
132 		unsigned int nbytes;
133 		union {
134 			void *in;
135 			const void *out;
136 		} buf;
137 	} data;
138 };
139 
140 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
141 	{							\
142 		.cmd = __cmd,					\
143 		.addr = __addr,					\
144 		.dummy = __dummy,				\
145 		.data = __data,					\
146 	}
147 
148 /**
149  * struct spi_mem_dirmap_info - Direct mapping information
150  * @op_tmpl: operation template that should be used by the direct mapping when
151  *	     the memory device is accessed
152  * @offset: absolute offset this direct mapping is pointing to
153  * @length: length in byte of this direct mapping
154  *
155  * These information are used by the controller specific implementation to know
156  * the portion of memory that is directly mapped and the spi_mem_op that should
157  * be used to access the device.
158  * A direct mapping is only valid for one direction (read or write) and this
159  * direction is directly encoded in the ->op_tmpl.data.dir field.
160  */
161 struct spi_mem_dirmap_info {
162 	struct spi_mem_op op_tmpl;
163 	u64 offset;
164 	u64 length;
165 };
166 
167 /**
168  * struct spi_mem_dirmap_desc - Direct mapping descriptor
169  * @mem: the SPI memory device this direct mapping is attached to
170  * @info: information passed at direct mapping creation time
171  * @nodirmap: set to 1 if the SPI controller does not implement
172  *	      ->mem_ops->dirmap_create() or when this function returned an
173  *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
174  *	      calls will use spi_mem_exec_op() to access the memory. This is a
175  *	      degraded mode that allows spi_mem drivers to use the same code
176  *	      no matter whether the controller supports direct mapping or not
177  * @priv: field pointing to controller specific data
178  *
179  * Common part of a direct mapping descriptor. This object is created by
180  * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
181  * can create/attach direct mapping resources to the descriptor in the ->priv
182  * field.
183  */
184 struct spi_mem_dirmap_desc {
185 	struct spi_mem *mem;
186 	struct spi_mem_dirmap_info info;
187 	unsigned int nodirmap;
188 	void *priv;
189 };
190 
191 /**
192  * struct spi_mem - describes a SPI memory device
193  * @spi: the underlying SPI device
194  * @drvpriv: spi_mem_driver private data
195  * @name: name of the SPI memory device
196  *
197  * Extra information that describe the SPI memory device and may be needed by
198  * the controller to properly handle this device should be placed here.
199  *
200  * One example would be the device size since some controller expose their SPI
201  * mem devices through a io-mapped region.
202  */
203 struct spi_mem {
204 	struct spi_device *spi;
205 	void *drvpriv;
206 	const char *name;
207 };
208 
209 /**
210  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
211  *				  device
212  * @mem: memory device
213  * @data: data to attach to the memory device
214  */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)215 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
216 {
217 	mem->drvpriv = data;
218 }
219 
220 /**
221  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
222  *				  device
223  * @mem: memory device
224  *
225  * Return: the data attached to the mem device.
226  */
spi_mem_get_drvdata(struct spi_mem * mem)227 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
228 {
229 	return mem->drvpriv;
230 }
231 
232 /**
233  * struct spi_controller_mem_ops - SPI memory operations
234  * @adjust_op_size: shrink the data xfer of an operation to match controller's
235  *		    limitations (can be alignment or max RX/TX size
236  *		    limitations)
237  * @supports_op: check if an operation is supported by the controller
238  * @exec_op: execute a SPI memory operation
239  *           not all driver provides supports_op(), so it can return -EOPNOTSUPP
240  *           if the op is not supported by the driver/controller
241  * @get_name: get a custom name for the SPI mem device from the controller.
242  *	      This might be needed if the controller driver has been ported
243  *	      to use the SPI mem layer and a custom name is used to keep
244  *	      mtdparts compatible.
245  *	      Note that if the implementation of this function allocates memory
246  *	      dynamically, then it should do so with devm_xxx(), as we don't
247  *	      have a ->free_name() function.
248  * @dirmap_create: create a direct mapping descriptor that can later be used to
249  *		   access the memory device. This method is optional
250  * @dirmap_destroy: destroy a memory descriptor previous created by
251  *		    ->dirmap_create()
252  * @dirmap_read: read data from the memory device using the direct mapping
253  *		 created by ->dirmap_create(). The function can return less
254  *		 data than requested (for example when the request is crossing
255  *		 the currently mapped area), and the caller of
256  *		 spi_mem_dirmap_read() is responsible for calling it again in
257  *		 this case.
258  * @dirmap_write: write data to the memory device using the direct mapping
259  *		  created by ->dirmap_create(). The function can return less
260  *		  data than requested (for example when the request is crossing
261  *		  the currently mapped area), and the caller of
262  *		  spi_mem_dirmap_write() is responsible for calling it again in
263  *		  this case.
264  * @poll_status: poll memory device status until (status & mask) == match or
265  *               when the timeout has expired. It fills the data buffer with
266  *               the last status value.
267  *
268  * This interface should be implemented by SPI controllers providing an
269  * high-level interface to execute SPI memory operation, which is usually the
270  * case for QSPI controllers.
271  *
272  * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
273  * mapping from the CPU because doing that can stall the CPU waiting for the
274  * SPI mem transaction to finish, and this will make real-time maintainers
275  * unhappy and might make your system less reactive. Instead, drivers should
276  * use DMA to access this direct mapping.
277  */
278 struct spi_controller_mem_ops {
279 	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
280 	bool (*supports_op)(struct spi_mem *mem,
281 			    const struct spi_mem_op *op);
282 	int (*exec_op)(struct spi_mem *mem,
283 		       const struct spi_mem_op *op);
284 	const char *(*get_name)(struct spi_mem *mem);
285 	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
286 	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
287 	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
288 			       u64 offs, size_t len, void *buf);
289 	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
290 				u64 offs, size_t len, const void *buf);
291 	int (*poll_status)(struct spi_mem *mem,
292 			   const struct spi_mem_op *op,
293 			   u16 mask, u16 match,
294 			   unsigned long initial_delay_us,
295 			   unsigned long polling_rate_us,
296 			   unsigned long timeout_ms);
297 };
298 
299 /**
300  * struct spi_controller_mem_caps - SPI memory controller capabilities
301  * @dtr: Supports DTR operations
302  * @ecc: Supports operations with error correction
303  * @swap16: Supports swapping bytes on a 16 bit boundary when configured in
304  *	    Octal DTR
305  */
306 struct spi_controller_mem_caps {
307 	bool dtr;
308 	bool ecc;
309 	bool swap16;
310 };
311 
312 #define spi_mem_controller_is_capable(ctlr, cap)	\
313 	((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
314 
315 /**
316  * struct spi_mem_driver - SPI memory driver
317  * @spidrv: inherit from a SPI driver
318  * @probe: probe a SPI memory. Usually where detection/initialization takes
319  *	   place
320  * @remove: remove a SPI memory
321  * @shutdown: take appropriate action when the system is shutdown
322  *
323  * This is just a thin wrapper around a spi_driver. The core takes care of
324  * allocating the spi_mem object and forwarding the probe/remove/shutdown
325  * request to the spi_mem_driver. The reason we use this wrapper is because
326  * we might have to stuff more information into the spi_mem struct to let
327  * SPI controllers know more about the SPI memory they interact with, and
328  * having this intermediate layer allows us to do that without adding more
329  * useless fields to the spi_device object.
330  */
331 struct spi_mem_driver {
332 	struct spi_driver spidrv;
333 	int (*probe)(struct spi_mem *mem);
334 	int (*remove)(struct spi_mem *mem);
335 	void (*shutdown)(struct spi_mem *mem);
336 };
337 
338 #if IS_ENABLED(CONFIG_SPI_MEM)
339 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
340 				       const struct spi_mem_op *op,
341 				       struct sg_table *sg);
342 
343 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
344 					  const struct spi_mem_op *op,
345 					  struct sg_table *sg);
346 
347 bool spi_mem_default_supports_op(struct spi_mem *mem,
348 				 const struct spi_mem_op *op);
349 #else
350 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)351 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
352 				   const struct spi_mem_op *op,
353 				   struct sg_table *sg)
354 {
355 	return -ENOTSUPP;
356 }
357 
358 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)359 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
360 				     const struct spi_mem_op *op,
361 				     struct sg_table *sg)
362 {
363 }
364 
365 static inline
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)366 bool spi_mem_default_supports_op(struct spi_mem *mem,
367 				 const struct spi_mem_op *op)
368 {
369 	return false;
370 }
371 #endif /* CONFIG_SPI_MEM */
372 
373 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
374 
375 bool spi_mem_supports_op(struct spi_mem *mem,
376 			 const struct spi_mem_op *op);
377 
378 int spi_mem_exec_op(struct spi_mem *mem,
379 		    const struct spi_mem_op *op);
380 
381 const char *spi_mem_get_name(struct spi_mem *mem);
382 
383 struct spi_mem_dirmap_desc *
384 spi_mem_dirmap_create(struct spi_mem *mem,
385 		      const struct spi_mem_dirmap_info *info);
386 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
387 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
388 			    u64 offs, size_t len, void *buf);
389 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
390 			     u64 offs, size_t len, const void *buf);
391 struct spi_mem_dirmap_desc *
392 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
393 			   const struct spi_mem_dirmap_info *info);
394 void devm_spi_mem_dirmap_destroy(struct device *dev,
395 				 struct spi_mem_dirmap_desc *desc);
396 
397 int spi_mem_poll_status(struct spi_mem *mem,
398 			const struct spi_mem_op *op,
399 			u16 mask, u16 match,
400 			unsigned long initial_delay_us,
401 			unsigned long polling_delay_us,
402 			u16 timeout_ms);
403 
404 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
405 				       struct module *owner);
406 
407 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
408 
409 #define spi_mem_driver_register(__drv)                                  \
410 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
411 
412 #define module_spi_mem_driver(__drv)                                    \
413 	module_driver(__drv, spi_mem_driver_register,                   \
414 		      spi_mem_driver_unregister)
415 
416 #endif /* __LINUX_SPI_MEM_H */
417