xref: /freebsd/sys/netipsec/key.c (revision 39598c2a9f5d074b1365e5ba97441fb5b4f8476b)
1 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * This code is referd to RFC 2367
36  */
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/fnv_hash.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/mbuf.h>
50 #include <sys/domain.h>
51 #include <sys/protosw.h>
52 #include <sys/malloc.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/refcount.h>
61 #include <sys/stdarg.h>
62 #include <sys/syslog.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_var.h>
74 #include <netinet/udp.h>
75 
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet6/in6_var.h>
79 #include <netinet6/ip6_var.h>
80 #endif /* INET6 */
81 
82 #include <net/pfkeyv2.h>
83 #include <netipsec/keydb.h>
84 #include <netipsec/key.h>
85 #include <netipsec/keysock.h>
86 #include <netipsec/key_debug.h>
87 #include <netipsec/ipsec_offload.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 #include <netipsec/ipsec_offload.h>
96 #include <machine/in_cksum.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #ifdef IPSEC_OFFLOAD
102 void (*ipsec_accel_sa_newkey_p)(struct secasvar *sav);
103 void (*ipsec_accel_forget_sav_p)(struct secasvar *sav);
104 void (*ipsec_accel_spdadd_p)(struct secpolicy *sp, struct inpcb *inp);
105 void (*ipsec_accel_spddel_p)(struct secpolicy *sp);
106 int (*ipsec_accel_sa_lifetime_op_p)(struct secasvar *sav,
107     struct seclifetime *lft_c, if_t ifp, enum IF_SA_CNT_WHICH op,
108     struct rm_priotracker *sahtree_trackerp);
109 void (*ipsec_accel_sync_p)(void);
110 bool (*ipsec_accel_is_accel_sav_p)(struct secasvar *sav);
111 struct mbuf *(*ipsec_accel_key_setaccelif_p)(struct secasvar *sav);
112 void (*ipsec_accel_on_ifdown_p)(struct ifnet *ifp);
113 void (*ipsec_accel_drv_sa_lifetime_update_p)(struct secasvar *sav, if_t ifp,
114     u_int drv_spi, uint64_t octets, uint64_t allocs);
115 int (*ipsec_accel_drv_sa_lifetime_fetch_p)(struct secasvar *sav, if_t ifp,
116     u_int drv_spi, uint64_t *octets, uint64_t *allocs);
117 bool (*ipsec_accel_fill_xh_p)(if_t ifp, uint32_t drv_spi,
118     struct xform_history *xh);
119 #endif
120 
121 #define FULLMASK	0xff
122 #define	_BITS(bytes)	((bytes) << 3)
123 
124 #define	UINT32_80PCT	0xcccccccc
125 /*
126  * Note on SA reference counting:
127  * - SAs that are not in DEAD state will have (total external reference + 1)
128  *   following value in reference count field.  they cannot be freed and are
129  *   referenced from SA header.
130  * - SAs that are in DEAD state will have (total external reference)
131  *   in reference count field.  they are ready to be freed.  reference from
132  *   SA header will be removed in key_delsav(), when the reference count
133  *   field hits 0 (= no external reference other than from SA header.
134  */
135 
136 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
137 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000;
138 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100;
139 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
140 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0;
141 /*interval to initialize randseed,1(m)*/
142 VNET_DEFINE_STATIC(u_int, key_int_random) = 60;
143 /* interval to expire acquiring, 30(s)*/
144 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30;
145 /* counter for blocking SADB_ACQUIRE.*/
146 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10;
147 /* lifetime for blocking SADB_ACQUIRE.*/
148 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20;
149 /* preferred old sa rather than new sa.*/
150 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1;
151 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
152 #define	V_key_spi_minval	VNET(key_spi_minval)
153 #define	V_key_spi_maxval	VNET(key_spi_maxval)
154 #define	V_policy_id		VNET(policy_id)
155 #define	V_key_int_random	VNET(key_int_random)
156 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
157 #define	V_key_blockacq_count	VNET(key_blockacq_count)
158 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
159 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
160 
161 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0;
162 #define	V_acq_seq		VNET(acq_seq)
163 
164 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0;
165 #define	V_sp_genid		VNET(sp_genid)
166 
167 /* SPD */
168 TAILQ_HEAD(secpolicy_queue, secpolicy);
169 LIST_HEAD(secpolicy_list, secpolicy);
170 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]);
171 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]);
172 static struct rmlock sptree_lock;
173 #define	V_sptree		VNET(sptree)
174 #define	V_sptree_ifnet		VNET(sptree_ifnet)
175 #define	SPTREE_LOCK_INIT()      rm_init(&sptree_lock, "sptree")
176 #define	SPTREE_LOCK_DESTROY()   rm_destroy(&sptree_lock)
177 #define	SPTREE_RLOCK_TRACKER    struct rm_priotracker sptree_tracker
178 #define	SPTREE_RLOCK()          rm_rlock(&sptree_lock, &sptree_tracker)
179 #define	SPTREE_RUNLOCK()        rm_runlock(&sptree_lock, &sptree_tracker)
180 #define	SPTREE_RLOCK_ASSERT()   rm_assert(&sptree_lock, RA_RLOCKED)
181 #define	SPTREE_WLOCK()          rm_wlock(&sptree_lock)
182 #define	SPTREE_WUNLOCK()        rm_wunlock(&sptree_lock)
183 #define	SPTREE_WLOCK_ASSERT()   rm_assert(&sptree_lock, RA_WLOCKED)
184 #define	SPTREE_UNLOCK_ASSERT()  rm_assert(&sptree_lock, RA_UNLOCKED)
185 
186 /* Hash table for lookup SP using unique id */
187 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl);
188 VNET_DEFINE_STATIC(u_long, sphash_mask);
189 #define	V_sphashtbl		VNET(sphashtbl)
190 #define	V_sphash_mask		VNET(sphash_mask)
191 
192 #define	SPHASH_NHASH_LOG2	7
193 #define	SPHASH_NHASH		(1 << SPHASH_NHASH_LOG2)
194 #define	SPHASH_HASHVAL(id)	(key_u32hash(id) & V_sphash_mask)
195 #define	SPHASH_HASH(id)		&V_sphashtbl[SPHASH_HASHVAL(id)]
196 
197 /* SPD cache */
198 struct spdcache_entry {
199    struct secpolicyindex spidx;	/* secpolicyindex */
200    struct secpolicy *sp;	/* cached policy to be used */
201 
202    LIST_ENTRY(spdcache_entry) chain;
203 };
204 LIST_HEAD(spdcache_entry_list, spdcache_entry);
205 
206 #define	SPDCACHE_MAX_ENTRIES_PER_HASH	8
207 
208 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0;
209 #define	V_key_spdcache_maxentries	VNET(key_spdcache_maxentries)
210 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32;
211 #define	V_key_spdcache_threshold	VNET(key_spdcache_threshold)
212 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0;
213 #define	V_spd_size		VNET(spd_size)
214 
215 #define SPDCACHE_ENABLED()	(V_key_spdcache_maxentries != 0)
216 #define SPDCACHE_ACTIVE() \
217 	(SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold)
218 
219 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl);
220 VNET_DEFINE_STATIC(u_long, spdcachehash_mask);
221 #define	V_spdcachehashtbl	VNET(spdcachehashtbl)
222 #define	V_spdcachehash_mask	VNET(spdcachehash_mask)
223 
224 #define	SPDCACHE_HASHVAL(idx) \
225 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) &  \
226 	    V_spdcachehash_mask)
227 
228 /* Each cache line is protected by a mutex */
229 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock);
230 #define	V_spdcache_lock		VNET(spdcache_lock)
231 
232 #define	SPDCACHE_LOCK_INIT(a) \
233 	mtx_init(&V_spdcache_lock[a], "spdcache", \
234 	    "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK)
235 #define	SPDCACHE_LOCK_DESTROY(a)	mtx_destroy(&V_spdcache_lock[a])
236 #define	SPDCACHE_LOCK(a)		mtx_lock(&V_spdcache_lock[a]);
237 #define	SPDCACHE_UNLOCK(a)		mtx_unlock(&V_spdcache_lock[a]);
238 
239 static struct sx spi_alloc_lock;
240 #define	SPI_ALLOC_LOCK_INIT()		sx_init(&spi_alloc_lock, "spialloc")
241 #define	SPI_ALLOC_LOCK_DESTROY()	sx_destroy(&spi_alloc_lock)
242 #define	SPI_ALLOC_LOCK()          	sx_xlock(&spi_alloc_lock)
243 #define	SPI_ALLOC_UNLOCK()        	sx_unlock(&spi_alloc_lock)
244 #define	SPI_ALLOC_LOCK_ASSERT()   	sx_assert(&spi_alloc_lock, SA_XLOCKED)
245 
246 /* SAD */
247 TAILQ_HEAD(secashead_queue, secashead);
248 LIST_HEAD(secashead_list, secashead);
249 VNET_DEFINE_STATIC(struct secashead_queue, sahtree);
250 static struct rmlock sahtree_lock;
251 #define	V_sahtree		VNET(sahtree)
252 #define	SAHTREE_LOCK_INIT()	rm_init(&sahtree_lock, "sahtree")
253 #define	SAHTREE_LOCK_DESTROY()	rm_destroy(&sahtree_lock)
254 #define	SAHTREE_RLOCK_TRACKER	struct rm_priotracker sahtree_tracker
255 #define	SAHTREE_RLOCK()		rm_rlock(&sahtree_lock, &sahtree_tracker)
256 #define	SAHTREE_RUNLOCK()	rm_runlock(&sahtree_lock, &sahtree_tracker)
257 #define	SAHTREE_RLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_RLOCKED)
258 #define	SAHTREE_WLOCK()		rm_wlock(&sahtree_lock)
259 #define	SAHTREE_WUNLOCK()	rm_wunlock(&sahtree_lock)
260 #define	SAHTREE_WLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_WLOCKED)
261 #define	SAHTREE_UNLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_UNLOCKED)
262 
263 /* Hash table for lookup in SAD using SA addresses */
264 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl);
265 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask);
266 #define	V_sahaddrhashtbl	VNET(sahaddrhashtbl)
267 #define	V_sahaddrhash_mask	VNET(sahaddrhash_mask)
268 
269 #define	SAHHASH_NHASH_LOG2	7
270 #define	SAHHASH_NHASH		(1 << SAHHASH_NHASH_LOG2)
271 #define	SAHADDRHASH_HASHVAL(idx)	\
272 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
273 	    V_sahaddrhash_mask)
274 #define	SAHADDRHASH_HASH(saidx)		\
275     &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)]
276 
277 /* Hash table for lookup in SAD using SPI */
278 LIST_HEAD(secasvar_list, secasvar);
279 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl);
280 VNET_DEFINE_STATIC(u_long, savhash_mask);
281 #define	V_savhashtbl		VNET(savhashtbl)
282 #define	V_savhash_mask		VNET(savhash_mask)
283 #define	SAVHASH_NHASH_LOG2	7
284 #define	SAVHASH_NHASH		(1 << SAVHASH_NHASH_LOG2)
285 #define	SAVHASH_HASHVAL(spi)	(key_u32hash(spi) & V_savhash_mask)
286 #define	SAVHASH_HASH(spi)	&V_savhashtbl[SAVHASH_HASHVAL(spi)]
287 
288 static uint32_t
key_addrprotohash(const union sockaddr_union * src,const union sockaddr_union * dst,const uint8_t * proto)289 key_addrprotohash(const union sockaddr_union *src,
290     const union sockaddr_union *dst, const uint8_t *proto)
291 {
292 	uint32_t hval;
293 
294 	hval = fnv_32_buf(proto, sizeof(*proto),
295 	    FNV1_32_INIT);
296 	switch (dst->sa.sa_family) {
297 #ifdef INET
298 	case AF_INET:
299 		hval = fnv_32_buf(&src->sin.sin_addr,
300 		    sizeof(in_addr_t), hval);
301 		hval = fnv_32_buf(&dst->sin.sin_addr,
302 		    sizeof(in_addr_t), hval);
303 		break;
304 #endif
305 #ifdef INET6
306 	case AF_INET6:
307 		hval = fnv_32_buf(&src->sin6.sin6_addr,
308 		    sizeof(struct in6_addr), hval);
309 		hval = fnv_32_buf(&dst->sin6.sin6_addr,
310 		    sizeof(struct in6_addr), hval);
311 		break;
312 #endif
313 	default:
314 		hval = 0;
315 		ipseclog((LOG_DEBUG, "%s: unknown address family %d\n",
316 		    __func__, dst->sa.sa_family));
317 	}
318 	return (hval);
319 }
320 
321 static uint32_t
key_u32hash(uint32_t val)322 key_u32hash(uint32_t val)
323 {
324 
325 	return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT));
326 }
327 
328 							/* registed list */
329 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
330 #define	V_regtree		VNET(regtree)
331 static struct mtx regtree_lock;
332 #define	REGTREE_LOCK_INIT() \
333 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
334 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
335 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
336 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
337 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
338 
339 /* Acquiring list */
340 LIST_HEAD(secacq_list, secacq);
341 VNET_DEFINE_STATIC(struct secacq_list, acqtree);
342 #define	V_acqtree		VNET(acqtree)
343 static struct mtx acq_lock;
344 #define	ACQ_LOCK_INIT() \
345     mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF)
346 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
347 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
348 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
349 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
350 
351 /* Hash table for lookup in ACQ list using SA addresses */
352 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl);
353 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask);
354 #define	V_acqaddrhashtbl	VNET(acqaddrhashtbl)
355 #define	V_acqaddrhash_mask	VNET(acqaddrhash_mask)
356 
357 /* Hash table for lookup in ACQ list using SEQ number */
358 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl);
359 VNET_DEFINE_STATIC(u_long, acqseqhash_mask);
360 #define	V_acqseqhashtbl		VNET(acqseqhashtbl)
361 #define	V_acqseqhash_mask	VNET(acqseqhash_mask)
362 
363 #define	ACQHASH_NHASH_LOG2	7
364 #define	ACQHASH_NHASH		(1 << ACQHASH_NHASH_LOG2)
365 #define	ACQADDRHASH_HASHVAL(idx)	\
366 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
367 	    V_acqaddrhash_mask)
368 #define	ACQSEQHASH_HASHVAL(seq)		\
369     (key_u32hash(seq) & V_acqseqhash_mask)
370 #define	ACQADDRHASH_HASH(saidx)	\
371     &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)]
372 #define	ACQSEQHASH_HASH(seq)	\
373     &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)]
374 							/* SP acquiring list */
375 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree);
376 #define	V_spacqtree		VNET(spacqtree)
377 static struct mtx spacq_lock;
378 #define	SPACQ_LOCK_INIT() \
379 	mtx_init(&spacq_lock, "spacqtree", \
380 		"fast ipsec security policy acquire list", MTX_DEF)
381 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
382 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
383 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
384 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
385 
386 static const int minsize[] = {
387 	[SADB_EXT_RESERVED] = sizeof(struct sadb_msg),
388 	[SADB_EXT_SA] = sizeof(struct sadb_sa),
389 	[SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime),
390 	[SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime),
391 	[SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime),
392 	[SADB_EXT_ADDRESS_SRC] = sizeof(struct sadb_address),
393 	[SADB_EXT_ADDRESS_DST] = sizeof(struct sadb_address),
394 	[SADB_EXT_ADDRESS_PROXY] = sizeof(struct sadb_address),
395 	[SADB_EXT_KEY_AUTH] = sizeof(struct sadb_key),
396 	[SADB_EXT_KEY_ENCRYPT] = sizeof(struct sadb_key),
397 	[SADB_EXT_IDENTITY_SRC] = sizeof(struct sadb_ident),
398 	[SADB_EXT_IDENTITY_DST] = sizeof(struct sadb_ident),
399 	[SADB_EXT_SENSITIVITY] = sizeof(struct sadb_sens),
400 	[SADB_EXT_PROPOSAL] = sizeof(struct sadb_prop),
401 	[SADB_EXT_SUPPORTED_AUTH] = sizeof(struct sadb_supported),
402 	[SADB_EXT_SUPPORTED_ENCRYPT] = sizeof(struct sadb_supported),
403 	[SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange),
404 	[SADB_X_EXT_KMPRIVATE] = 0,
405 	[SADB_X_EXT_POLICY] = sizeof(struct sadb_x_policy),
406 	[SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2),
407 	[SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type),
408 	[SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port),
409 	[SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port),
410 	[SADB_X_EXT_NAT_T_OAI] = sizeof(struct sadb_address),
411 	[SADB_X_EXT_NAT_T_OAR] = sizeof(struct sadb_address),
412 	[SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag),
413 	[SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay),
414 	[SADB_X_EXT_NEW_ADDRESS_SRC] = sizeof(struct sadb_address),
415 	[SADB_X_EXT_NEW_ADDRESS_DST] = sizeof(struct sadb_address),
416 	[SADB_X_EXT_LFT_CUR_SW_OFFL] = sizeof(struct sadb_lifetime),
417 	[SADB_X_EXT_LFT_CUR_HW_OFFL] = sizeof(struct sadb_lifetime),
418 	[SADB_X_EXT_IF_HW_OFFL] = sizeof(struct sadb_x_if_hw_offl),
419 };
420 _Static_assert(nitems(minsize) == SADB_EXT_MAX + 1, "minsize size mismatch");
421 
422 static const int maxsize[] = {
423 	[SADB_EXT_RESERVED] = sizeof(struct sadb_msg),
424 	[SADB_EXT_SA] = sizeof(struct sadb_sa),
425 	[SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime),
426 	[SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime),
427 	[SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime),
428 	[SADB_EXT_ADDRESS_SRC] = 0,
429 	[SADB_EXT_ADDRESS_DST] = 0,
430 	[SADB_EXT_ADDRESS_PROXY] = 0,
431 	[SADB_EXT_KEY_AUTH] = 0,
432 	[SADB_EXT_KEY_ENCRYPT] = 0,
433 	[SADB_EXT_IDENTITY_SRC] = 0,
434 	[SADB_EXT_IDENTITY_DST] = 0,
435 	[SADB_EXT_SENSITIVITY] = 0,
436 	[SADB_EXT_PROPOSAL] = 0,
437 	[SADB_EXT_SUPPORTED_AUTH] = 0,
438 	[SADB_EXT_SUPPORTED_ENCRYPT] = 0,
439 	[SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange),
440 	[SADB_X_EXT_KMPRIVATE] = 0,
441 	[SADB_X_EXT_POLICY] = 0,
442 	[SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2),
443 	[SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type),
444 	[SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port),
445 	[SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port),
446 	[SADB_X_EXT_NAT_T_OAI] = 0,
447 	[SADB_X_EXT_NAT_T_OAR] = 0,
448 	[SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag),
449 	[SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay),
450 	[SADB_X_EXT_NEW_ADDRESS_SRC] = 0,
451 	[SADB_X_EXT_NEW_ADDRESS_DST] = 0,
452 	[SADB_X_EXT_LFT_CUR_SW_OFFL] = sizeof(struct sadb_lifetime),
453 	[SADB_X_EXT_LFT_CUR_HW_OFFL] = sizeof(struct sadb_lifetime),
454 	[SADB_X_EXT_IF_HW_OFFL] = sizeof(struct sadb_x_if_hw_offl),
455 };
456 _Static_assert(nitems(maxsize) == SADB_EXT_MAX + 1, "maxsize size mismatch");
457 
458 /*
459  * Internal values for SA flags:
460  * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses,
461  *	thus we will not free the most of SA content in key_delsav().
462  */
463 #define	SADB_X_EXT_F_CLONED	0x80000000
464 
465 #define	SADB_CHECKLEN(_mhp, _ext)			\
466     ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \
467 	((_mhp)->extlen[(_ext)] > maxsize[(_ext)])))
468 #define	SADB_CHECKHDR(_mhp, _ext)	((_mhp)->ext[(_ext)] == NULL)
469 
470 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256;
471 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0;
472 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128;
473 
474 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
475 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
476 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
477 
478 #ifdef IPSEC_DEBUG
479 VNET_DEFINE(int, ipsec_debug) = 1;
480 #else
481 VNET_DEFINE(int, ipsec_debug) = 0;
482 #endif
483 
484 #ifdef INET
485 SYSCTL_DECL(_net_inet_ipsec);
486 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug,
487     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
488     "Enable IPsec debugging output when set.");
489 #endif
490 #ifdef INET6
491 SYSCTL_DECL(_net_inet6_ipsec6);
492 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug,
493     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
494     "Enable IPsec debugging output when set.");
495 #endif
496 
497 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
498 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
499 
500 /* max count of trial for the decision of spi value */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
502 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
503 
504 /* minimum spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
506 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
507 
508 /* maximun spi value to allocate automatically. */
509 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
510 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
511 
512 /* interval to initialize randseed */
513 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
514 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
515 
516 /* lifetime for larval SA */
517 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
518 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
519 
520 /* counter for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
522 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
523 
524 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
525 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
526 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
527 
528 /* ESP auth */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
530 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
531 
532 /* minimum ESP key length */
533 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
534 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
535 
536 /* minimum AH key length */
537 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
538 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
539 
540 /* perfered old SA rather than new SA */
541 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
542 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
543 
544 SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
545     "SPD cache");
546 
547 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries,
548 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0,
549 	"Maximum number of entries in the SPD cache"
550 	" (power of 2, 0 to disable)");
551 
552 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold,
553 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0,
554 	"Number of SPs that make the SPD cache active");
555 
556 #define __LIST_CHAINED(elm) \
557 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
558 
559 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
560 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
561 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
562 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
563 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
564 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
565 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
566 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache");
567 
568 static uma_zone_t __read_mostly ipsec_key_lft_zone;
569 
570 /*
571  * set parameters into secpolicyindex buffer.
572  * Must allocate secpolicyindex buffer passed to this function.
573  */
574 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
575 do { \
576 	bzero((idx), sizeof(struct secpolicyindex));                         \
577 	(idx)->dir = (_dir);                                                 \
578 	(idx)->prefs = (ps);                                                 \
579 	(idx)->prefd = (pd);                                                 \
580 	(idx)->ul_proto = (ulp);                                             \
581 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
582 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
583 } while (0)
584 
585 /*
586  * set parameters into secasindex buffer.
587  * Must allocate secasindex buffer before calling this function.
588  */
589 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
590 do { \
591 	bzero((idx), sizeof(struct secasindex));                             \
592 	(idx)->proto = (p);                                                  \
593 	(idx)->mode = (m);                                                   \
594 	(idx)->reqid = (r);                                                  \
595 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
596 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
597 	key_porttosaddr(&(idx)->src.sa, 0);				     \
598 	key_porttosaddr(&(idx)->dst.sa, 0);				     \
599 } while (0)
600 
601 /* key statistics */
602 struct _keystat {
603 	u_long getspi_count; /* the avarage of count to try to get new SPI */
604 } keystat;
605 
606 struct sadb_msghdr {
607 	struct sadb_msg *msg;
608 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
609 	int extoff[SADB_EXT_MAX + 1];
610 	int extlen[SADB_EXT_MAX + 1];
611 };
612 
613 static const struct supported_ealgs {
614 	int sadb_alg;
615 	const struct enc_xform *xform;
616 } supported_ealgs[] = {
617 	{ SADB_X_EALG_AES,		&enc_xform_aes_cbc },
618 	{ SADB_EALG_NULL,		&enc_xform_null },
619 	{ SADB_X_EALG_AESCTR,		&enc_xform_aes_icm },
620 	{ SADB_X_EALG_AESGCM16,		&enc_xform_aes_nist_gcm },
621 	{ SADB_X_EALG_AESGMAC,		&enc_xform_aes_nist_gmac },
622 	{ SADB_X_EALG_CHACHA20POLY1305,	&enc_xform_chacha20_poly1305 },
623 };
624 
625 static const struct supported_aalgs {
626 	int sadb_alg;
627 	const struct auth_hash *xform;
628 } supported_aalgs[] = {
629 	{ SADB_X_AALG_NULL,		&auth_hash_null },
630 	{ SADB_AALG_SHA1HMAC,		&auth_hash_hmac_sha1 },
631 	{ SADB_X_AALG_SHA2_256,		&auth_hash_hmac_sha2_256 },
632 	{ SADB_X_AALG_SHA2_384,		&auth_hash_hmac_sha2_384 },
633 	{ SADB_X_AALG_SHA2_512,		&auth_hash_hmac_sha2_512 },
634 	{ SADB_X_AALG_AES128GMAC,	&auth_hash_nist_gmac_aes_128 },
635 	{ SADB_X_AALG_AES192GMAC,	&auth_hash_nist_gmac_aes_192 },
636 	{ SADB_X_AALG_AES256GMAC,	&auth_hash_nist_gmac_aes_256 },
637 	{ SADB_X_AALG_CHACHA20POLY1305,	&auth_hash_poly1305 },
638 };
639 
640 static const struct supported_calgs {
641 	int sadb_alg;
642 	const struct comp_algo *xform;
643 } supported_calgs[] = {
644 	{ SADB_X_CALG_DEFLATE,		&comp_algo_deflate },
645 };
646 
647 #ifndef IPSEC_DEBUG2
648 static struct callout key_timer;
649 #endif
650 
651 static void key_unlink(struct secpolicy *);
652 static void key_detach(struct secpolicy *);
653 static struct secpolicy *key_getsp(struct secpolicyindex *);
654 static struct secpolicy *key_getspbyid(u_int32_t);
655 static struct mbuf *key_gather_mbuf(struct mbuf *,
656 	const struct sadb_msghdr *, int, int, ...);
657 static int key_spdadd(struct socket *, struct mbuf *,
658 	const struct sadb_msghdr *);
659 static uint32_t key_getnewspid(void);
660 static int key_spddelete(struct socket *, struct mbuf *,
661 	const struct sadb_msghdr *);
662 static int key_spddelete2(struct socket *, struct mbuf *,
663 	const struct sadb_msghdr *);
664 static int key_spdget(struct socket *, struct mbuf *,
665 	const struct sadb_msghdr *);
666 static int key_spdflush(struct socket *, struct mbuf *,
667 	const struct sadb_msghdr *);
668 static int key_spddump(struct socket *, struct mbuf *,
669 	const struct sadb_msghdr *);
670 static struct mbuf *key_setdumpsp(struct secpolicy *,
671 	u_int8_t, u_int32_t, u_int32_t);
672 static struct mbuf *key_sp2mbuf(struct secpolicy *);
673 static size_t key_getspreqmsglen(struct secpolicy *);
674 static int key_spdexpire(struct secpolicy *);
675 static struct secashead *key_newsah(struct secasindex *);
676 static void key_freesah(struct secashead **);
677 static void key_delsah(struct secashead *);
678 static struct secasvar *key_newsav(const struct sadb_msghdr *,
679     struct secasindex *, uint32_t, int *);
680 static void key_delsav(struct secasvar *);
681 static void key_unlinksav(struct secasvar *);
682 static struct secashead *key_getsah(struct secasindex *);
683 static int key_checkspidup(uint32_t);
684 static struct secasvar *key_getsavbyspi(uint32_t);
685 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *);
686 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *);
687 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *);
688 static int key_updateaddresses(struct socket *, struct mbuf *,
689     const struct sadb_msghdr *, struct secasvar *, struct secasindex *);
690 
691 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
692 	u_int8_t, u_int32_t, u_int32_t, struct rm_priotracker *);
693 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
694 	u_int32_t, pid_t, u_int16_t);
695 static struct mbuf *key_setsadbsa(struct secasvar *);
696 static struct mbuf *key_setsadbaddr(u_int16_t,
697 	const struct sockaddr *, u_int8_t, u_int16_t);
698 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
699 static struct mbuf *key_setsadbxtype(u_int16_t);
700 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
701 static struct mbuf *key_setsadbxsareplay(u_int32_t);
702 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
703 	u_int32_t, u_int32_t);
704 static struct seckey *key_dup_keymsg(const struct sadb_key *,
705     struct malloc_type *);
706 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
707     struct malloc_type *);
708 
709 /* flags for key_cmpsaidx() */
710 #define CMP_HEAD	1	/* protocol, addresses. */
711 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
712 #define CMP_REQID	3	/* additionally HEAD, reaid. */
713 #define CMP_EXACTLY	4	/* all elements. */
714 static int key_cmpsaidx(const struct secasindex *,
715     const struct secasindex *, int);
716 static int key_cmpspidx_exactly(struct secpolicyindex *,
717     struct secpolicyindex *);
718 static int key_cmpspidx_withmask(struct secpolicyindex *,
719     struct secpolicyindex *);
720 static int key_bbcmp(const void *, const void *, u_int);
721 static uint8_t key_satype2proto(uint8_t);
722 static uint8_t key_proto2satype(uint8_t);
723 
724 static int key_getspi(struct socket *, struct mbuf *,
725 	const struct sadb_msghdr *);
726 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
727 static int key_update(struct socket *, struct mbuf *,
728 	const struct sadb_msghdr *);
729 static int key_add(struct socket *, struct mbuf *,
730 	const struct sadb_msghdr *);
731 static int key_setident(struct secashead *, const struct sadb_msghdr *);
732 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
733 	const struct sadb_msghdr *);
734 static int key_delete(struct socket *, struct mbuf *,
735 	const struct sadb_msghdr *);
736 static int key_delete_all(struct socket *, struct mbuf *,
737 	const struct sadb_msghdr *, struct secasindex *);
738 static int key_get(struct socket *, struct mbuf *,
739 	const struct sadb_msghdr *);
740 
741 static void key_getcomb_setlifetime(struct sadb_comb *);
742 static struct mbuf *key_getcomb_ealg(void);
743 static struct mbuf *key_getcomb_ah(void);
744 static struct mbuf *key_getcomb_ipcomp(void);
745 static struct mbuf *key_getprop(const struct secasindex *);
746 
747 static int key_acquire(const struct secasindex *, struct secpolicy *);
748 static uint32_t key_newacq(const struct secasindex *, int *);
749 static uint32_t key_getacq(const struct secasindex *, int *);
750 static int key_acqdone(const struct secasindex *, uint32_t);
751 static int key_acqreset(uint32_t);
752 static struct secspacq *key_newspacq(struct secpolicyindex *);
753 static struct secspacq *key_getspacq(struct secpolicyindex *);
754 static int key_acquire2(struct socket *, struct mbuf *,
755 	const struct sadb_msghdr *);
756 static int key_register(struct socket *, struct mbuf *,
757 	const struct sadb_msghdr *);
758 static int key_expire(struct secasvar *, int);
759 static int key_flush(struct socket *, struct mbuf *,
760 	const struct sadb_msghdr *);
761 static int key_dump(struct socket *, struct mbuf *,
762 	const struct sadb_msghdr *);
763 static int key_promisc(struct socket *, struct mbuf *,
764 	const struct sadb_msghdr *);
765 static int key_senderror(struct socket *, struct mbuf *, int);
766 static int key_validate_ext(const struct sadb_ext *, int);
767 static int key_align(struct mbuf *, struct sadb_msghdr *);
768 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t);
769 static struct mbuf *key_setkey(struct seckey *, uint16_t);
770 
771 static void spdcache_init(void);
772 static void spdcache_clear(void);
773 static struct spdcache_entry *spdcache_entry_alloc(
774 	const struct secpolicyindex *spidx,
775 	struct secpolicy *policy);
776 static void spdcache_entry_free(struct spdcache_entry *entry);
777 #ifdef VIMAGE
778 static void spdcache_destroy(void);
779 #endif
780 
781 #define	DBG_IPSEC_INITREF(t, p)	do {				\
782 	refcount_init(&(p)->refcnt, 1);				\
783 	KEYDBG(KEY_STAMP,					\
784 	    printf("%s: Initialize refcnt %s(%p) = %u\n",	\
785 	    __func__, #t, (p), (p)->refcnt));			\
786 } while (0)
787 #define	DBG_IPSEC_ADDREF(t, p)	do {				\
788 	refcount_acquire(&(p)->refcnt);				\
789 	KEYDBG(KEY_STAMP,					\
790 	    printf("%s: Acquire refcnt %s(%p) -> %u\n",		\
791 	    __func__, #t, (p), (p)->refcnt));			\
792 } while (0)
793 #define	DBG_IPSEC_DELREF(t, p)	do {				\
794 	KEYDBG(KEY_STAMP,					\
795 	    printf("%s: Release refcnt %s(%p) -> %u\n",		\
796 	    __func__, #t, (p), (p)->refcnt - 1));		\
797 	refcount_release(&(p)->refcnt);				\
798 } while (0)
799 
800 #define	IPSEC_INITREF(t, p)	refcount_init(&(p)->refcnt, 1)
801 #define	IPSEC_ADDREF(t, p)	refcount_acquire(&(p)->refcnt)
802 #define	IPSEC_DELREF(t, p)	refcount_release(&(p)->refcnt)
803 
804 #define	SP_INITREF(p)	IPSEC_INITREF(SP, p)
805 #define	SP_ADDREF(p)	IPSEC_ADDREF(SP, p)
806 #define	SP_DELREF(p)	IPSEC_DELREF(SP, p)
807 
808 #define	SAH_INITREF(p)	IPSEC_INITREF(SAH, p)
809 #define	SAH_ADDREF(p)	IPSEC_ADDREF(SAH, p)
810 #define	SAH_DELREF(p)	IPSEC_DELREF(SAH, p)
811 
812 #define	SAV_INITREF(p)	IPSEC_INITREF(SAV, p)
813 #define	SAV_ADDREF(p)	IPSEC_ADDREF(SAV, p)
814 #define	SAV_DELREF(p)	IPSEC_DELREF(SAV, p)
815 
816 /*
817  * Update the refcnt while holding the SPTREE lock.
818  */
819 void
key_addref(struct secpolicy * sp)820 key_addref(struct secpolicy *sp)
821 {
822 
823 	SP_ADDREF(sp);
824 }
825 
826 /*
827  * Return 0 when there are known to be no SP's for the specified
828  * direction.  Otherwise return 1.  This is used by IPsec code
829  * to optimize performance.
830  */
831 int
key_havesp(u_int dir)832 key_havesp(u_int dir)
833 {
834 
835 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
836 		("invalid direction %u", dir));
837 	return (TAILQ_FIRST(&V_sptree[dir]) != NULL);
838 }
839 
840 int
key_havesp_any(void)841 key_havesp_any(void)
842 {
843 
844 	return (V_spd_size != 0);
845 }
846 
847 /*
848  * Allocate a single mbuf with a buffer of the desired length.  The buffer is
849  * pre-zeroed to help ensure that uninitialized pad bytes are not leaked.
850  */
851 static struct mbuf *
key_mget(u_int len)852 key_mget(u_int len)
853 {
854 	struct mbuf *m;
855 
856 	KASSERT(len <= MCLBYTES,
857 	    ("%s: invalid buffer length %u", __func__, len));
858 
859 	m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
860 	if (m == NULL)
861 		return (NULL);
862 	memset(mtod(m, void *), 0, len);
863 	return (m);
864 }
865 
866 /* %%% IPsec policy management */
867 /*
868  * Return current SPDB generation.
869  */
870 uint32_t
key_getspgen(void)871 key_getspgen(void)
872 {
873 
874 	return (V_sp_genid);
875 }
876 
877 void
key_bumpspgen(void)878 key_bumpspgen(void)
879 {
880 
881 	V_sp_genid++;
882 }
883 
884 static int
key_checksockaddrs(struct sockaddr * src,struct sockaddr * dst)885 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst)
886 {
887 
888 	/* family match */
889 	if (src->sa_family != dst->sa_family)
890 		return (EINVAL);
891 	/* sa_len match */
892 	if (src->sa_len != dst->sa_len)
893 		return (EINVAL);
894 	switch (src->sa_family) {
895 #ifdef INET
896 	case AF_INET:
897 		if (src->sa_len != sizeof(struct sockaddr_in))
898 			return (EINVAL);
899 		break;
900 #endif
901 #ifdef INET6
902 	case AF_INET6:
903 		if (src->sa_len != sizeof(struct sockaddr_in6))
904 			return (EINVAL);
905 		break;
906 #endif
907 	default:
908 		return (EAFNOSUPPORT);
909 	}
910 	return (0);
911 }
912 
913 struct secpolicy *
key_do_allocsp(struct secpolicyindex * spidx,u_int dir)914 key_do_allocsp(struct secpolicyindex *spidx, u_int dir)
915 {
916 	SPTREE_RLOCK_TRACKER;
917 	struct secpolicy *sp;
918 
919 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
920 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
921 		("invalid direction %u", dir));
922 
923 	SPTREE_RLOCK();
924 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
925 		if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
926 			SP_ADDREF(sp);
927 			break;
928 		}
929 	}
930 	SPTREE_RUNLOCK();
931 	return (sp);
932 }
933 
934 /*
935  * allocating a SP for OUTBOUND or INBOUND packet.
936  * Must call key_freesp() later.
937  * OUT:	NULL:	not found
938  *	others:	found and return the pointer.
939  */
940 struct secpolicy *
key_allocsp(struct secpolicyindex * spidx,u_int dir)941 key_allocsp(struct secpolicyindex *spidx, u_int dir)
942 {
943 	struct spdcache_entry *entry, *lastentry, *tmpentry;
944 	struct secpolicy *sp;
945 	uint32_t hashv;
946 	time_t ts;
947 	int nb_entries;
948 
949 	if (!SPDCACHE_ACTIVE()) {
950 		sp = key_do_allocsp(spidx, dir);
951 		goto out;
952 	}
953 
954 	hashv = SPDCACHE_HASHVAL(spidx);
955 	SPDCACHE_LOCK(hashv);
956 	nb_entries = 0;
957 	LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) {
958 		/* Removed outdated entries */
959 		if (entry->sp != NULL &&
960 		    entry->sp->state == IPSEC_SPSTATE_DEAD) {
961 			LIST_REMOVE(entry, chain);
962 			spdcache_entry_free(entry);
963 			continue;
964 		}
965 
966 		nb_entries++;
967 		if (!key_cmpspidx_exactly(&entry->spidx, spidx)) {
968 			lastentry = entry;
969 			continue;
970 		}
971 
972 		sp = entry->sp;
973 		if (entry->sp != NULL)
974 			SP_ADDREF(sp);
975 
976 		/* IPSECSTAT_INC(ips_spdcache_hits); */
977 
978 		SPDCACHE_UNLOCK(hashv);
979 		goto out;
980 	}
981 
982 	/* IPSECSTAT_INC(ips_spdcache_misses); */
983 
984 	sp = key_do_allocsp(spidx, dir);
985 	entry = spdcache_entry_alloc(spidx, sp);
986 	if (entry != NULL) {
987 		if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) {
988 			LIST_REMOVE(lastentry, chain);
989 			spdcache_entry_free(lastentry);
990 		}
991 
992 		LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain);
993 	}
994 
995 	SPDCACHE_UNLOCK(hashv);
996 
997 out:
998 	if (sp != NULL) {	/* found a SPD entry */
999 		ts = time_second;
1000 		if (__predict_false(sp->lastused != ts))
1001 			sp->lastused = ts;
1002 		KEYDBG(IPSEC_STAMP,
1003 		    printf("%s: return SP(%p)\n", __func__, sp));
1004 		KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1005 	} else {
1006 		KEYDBG(IPSEC_DATA,
1007 		    printf("%s: lookup failed for ", __func__);
1008 		    kdebug_secpolicyindex(spidx, NULL));
1009 	}
1010 	return (sp);
1011 }
1012 
1013 /*
1014  * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed
1015  * or should be signed by MD5 signature.
1016  * We don't use key_allocsa() for such lookups, because we don't know SPI.
1017  * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with
1018  * signed packet. We use SADB only as storage for password.
1019  * OUT:	positive:	corresponding SA for given saidx found.
1020  *	NULL:		SA not found
1021  */
1022 struct secasvar *
key_allocsa_tcpmd5(struct secasindex * saidx)1023 key_allocsa_tcpmd5(struct secasindex *saidx)
1024 {
1025 	SAHTREE_RLOCK_TRACKER;
1026 	struct secashead *sah;
1027 	struct secasvar *sav;
1028 
1029 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP,
1030 	    ("unexpected security protocol %u", saidx->proto));
1031 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5,
1032 	    ("unexpected mode %u", saidx->mode));
1033 
1034 	SAHTREE_RLOCK();
1035 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1036 		KEYDBG(IPSEC_DUMP,
1037 		    printf("%s: checking SAH\n", __func__);
1038 		    kdebug_secash(sah, "  "));
1039 		if (sah->saidx.proto != IPPROTO_TCP)
1040 			continue;
1041 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
1042 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
1043 			break;
1044 	}
1045 	if (sah != NULL) {
1046 		if (V_key_preferred_oldsa)
1047 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1048 		else
1049 			sav = TAILQ_FIRST(&sah->savtree_alive);
1050 		if (sav != NULL)
1051 			SAV_ADDREF(sav);
1052 	} else
1053 		sav = NULL;
1054 	SAHTREE_RUNLOCK();
1055 
1056 	if (sav != NULL) {
1057 		KEYDBG(IPSEC_STAMP,
1058 		    printf("%s: return SA(%p)\n", __func__, sav));
1059 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1060 	} else {
1061 		KEYDBG(IPSEC_STAMP,
1062 		    printf("%s: SA not found\n", __func__));
1063 		KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1064 	}
1065 	return (sav);
1066 }
1067 
1068 /*
1069  * Allocating an SA entry for an *OUTBOUND* packet.
1070  * OUT:	positive:	corresponding SA for given saidx found.
1071  *	NULL:		SA not found, but will be acquired, check *error
1072  *			for acquiring status.
1073  */
1074 struct secasvar *
key_allocsa_policy(struct secpolicy * sp,const struct secasindex * saidx,int * error)1075 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx,
1076     int *error)
1077 {
1078 	SAHTREE_RLOCK_TRACKER;
1079 	struct secashead *sah;
1080 	struct secasvar *sav;
1081 
1082 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
1083 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
1084 		saidx->mode == IPSEC_MODE_TUNNEL,
1085 		("unexpected policy %u", saidx->mode));
1086 
1087 	/*
1088 	 * We check new SA in the IPsec request because a different
1089 	 * SA may be involved each time this request is checked, either
1090 	 * because new SAs are being configured, or this request is
1091 	 * associated with an unconnected datagram socket, or this request
1092 	 * is associated with a system default policy.
1093 	 */
1094 	SAHTREE_RLOCK();
1095 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1096 		KEYDBG(IPSEC_DUMP,
1097 		    printf("%s: checking SAH\n", __func__);
1098 		    kdebug_secash(sah, "  "));
1099 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
1100 			break;
1101 	}
1102 	if (sah != NULL) {
1103 		/*
1104 		 * Allocate the oldest SA available according to
1105 		 * draft-jenkins-ipsec-rekeying-03.
1106 		 */
1107 		if (V_key_preferred_oldsa)
1108 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1109 		else
1110 			sav = TAILQ_FIRST(&sah->savtree_alive);
1111 		if (sav != NULL)
1112 			SAV_ADDREF(sav);
1113 	} else
1114 		sav = NULL;
1115 	SAHTREE_RUNLOCK();
1116 
1117 	if (sav != NULL) {
1118 		*error = 0;
1119 		KEYDBG(IPSEC_STAMP,
1120 		    printf("%s: chosen SA(%p) for SP(%p)\n", __func__,
1121 			sav, sp));
1122 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1123 		return (sav); /* return referenced SA */
1124 	}
1125 
1126 	/* there is no SA */
1127 	*error = key_acquire(saidx, sp);
1128 	if ((*error) != 0)
1129 		ipseclog((LOG_DEBUG,
1130 		    "%s: error %d returned from key_acquire()\n",
1131 			__func__, *error));
1132 	KEYDBG(IPSEC_STAMP,
1133 	    printf("%s: acquire SA for SP(%p), error %d\n",
1134 		__func__, sp, *error));
1135 	KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1136 	return (NULL);
1137 }
1138 
1139 /*
1140  * allocating a usable SA entry for a *INBOUND* packet.
1141  * Must call key_freesav() later.
1142  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1143  *	NULL:		not found, or error occurred.
1144  *
1145  * According to RFC 2401 SA is uniquely identified by a triple SPI,
1146  * destination address, and security protocol. But according to RFC 4301,
1147  * SPI by itself suffices to specify an SA.
1148  *
1149  * Note that, however, we do need to keep source address in IPsec SA.
1150  * IKE specification and PF_KEY specification do assume that we
1151  * keep source address in IPsec SA.  We see a tricky situation here.
1152  */
1153 struct secasvar *
key_allocsa(union sockaddr_union * dst,uint8_t proto,uint32_t spi)1154 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi)
1155 {
1156 	SAHTREE_RLOCK_TRACKER;
1157 	struct secasvar *sav;
1158 
1159 	IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH ||
1160 	    proto == IPPROTO_IPCOMP, ("unexpected security protocol %u",
1161 	    proto));
1162 
1163 	SAHTREE_RLOCK();
1164 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
1165 		if (sav->spi == spi)
1166 			break;
1167 	}
1168 	/*
1169 	 * We use single SPI namespace for all protocols, so it is
1170 	 * impossible to have SPI duplicates in the SAVHASH.
1171 	 */
1172 	if (sav != NULL) {
1173 		if (sav->state != SADB_SASTATE_LARVAL &&
1174 		    sav->sah->saidx.proto == proto &&
1175 		    key_sockaddrcmp(&dst->sa,
1176 			&sav->sah->saidx.dst.sa, 0) == 0)
1177 			SAV_ADDREF(sav);
1178 		else
1179 			sav = NULL;
1180 	}
1181 	SAHTREE_RUNLOCK();
1182 
1183 	if (sav == NULL) {
1184 		KEYDBG(IPSEC_STAMP,
1185 		    char buf[IPSEC_ADDRSTRLEN];
1186 		    printf("%s: SA not found for spi %u proto %u dst %s\n",
1187 			__func__, ntohl(spi), proto, ipsec_address(dst, buf,
1188 			sizeof(buf))));
1189 	} else {
1190 		KEYDBG(IPSEC_STAMP,
1191 		    printf("%s: return SA(%p)\n", __func__, sav));
1192 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1193 	}
1194 	return (sav);
1195 }
1196 
1197 struct secasvar *
key_allocsa_tunnel(union sockaddr_union * src,union sockaddr_union * dst,uint8_t proto)1198 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst,
1199     uint8_t proto)
1200 {
1201 	SAHTREE_RLOCK_TRACKER;
1202 	struct secasindex saidx;
1203 	struct secashead *sah;
1204 	struct secasvar *sav;
1205 
1206 	IPSEC_ASSERT(src != NULL, ("null src address"));
1207 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1208 
1209 	KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa,
1210 	    &dst->sa, &saidx);
1211 
1212 	sav = NULL;
1213 	SAHTREE_RLOCK();
1214 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
1215 		if (IPSEC_MODE_TUNNEL != sah->saidx.mode)
1216 			continue;
1217 		if (proto != sah->saidx.proto)
1218 			continue;
1219 		if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0)
1220 			continue;
1221 		if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0)
1222 			continue;
1223 		/* XXXAE: is key_preferred_oldsa reasonably?*/
1224 		if (V_key_preferred_oldsa)
1225 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1226 		else
1227 			sav = TAILQ_FIRST(&sah->savtree_alive);
1228 		if (sav != NULL) {
1229 			SAV_ADDREF(sav);
1230 			break;
1231 		}
1232 	}
1233 	SAHTREE_RUNLOCK();
1234 	KEYDBG(IPSEC_STAMP,
1235 	    printf("%s: return SA(%p)\n", __func__, sav));
1236 	if (sav != NULL)
1237 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1238 	return (sav);
1239 }
1240 
1241 /*
1242  * Must be called after calling key_allocsp().
1243  */
1244 void
key_freesp(struct secpolicy ** spp)1245 key_freesp(struct secpolicy **spp)
1246 {
1247 	struct secpolicy *sp = *spp;
1248 
1249 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1250 	if (SP_DELREF(sp) == 0)
1251 		return;
1252 
1253 	KEYDBG(IPSEC_STAMP,
1254 	    printf("%s: last reference to SP(%p)\n", __func__, sp));
1255 	KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1256 
1257 	*spp = NULL;
1258 #ifdef IPSEC_OFFLOAD
1259 	KASSERT(CK_LIST_EMPTY(&sp->accel_ifps),
1260 	    ("key_freesp: sp %p still offloaded", sp));
1261 	free(__DECONST(char *, sp->accel_ifname), M_IPSEC_MISC);
1262 #endif
1263 	while (sp->tcount > 0)
1264 		ipsec_delisr(sp->req[--sp->tcount]);
1265 	free(sp, M_IPSEC_SP);
1266 }
1267 
1268 static void
key_unlink(struct secpolicy * sp)1269 key_unlink(struct secpolicy *sp)
1270 {
1271 	SPTREE_WLOCK();
1272 	key_detach(sp);
1273 	SPTREE_WUNLOCK();
1274 	if (SPDCACHE_ENABLED())
1275 		spdcache_clear();
1276 	ipsec_accel_sync();
1277 	key_freesp(&sp);
1278 }
1279 
1280 static void
key_detach(struct secpolicy * sp)1281 key_detach(struct secpolicy *sp)
1282 {
1283 	IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1284 	    sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1285 	    ("invalid direction %u", sp->spidx.dir));
1286 	SPTREE_WLOCK_ASSERT();
1287 
1288 	KEYDBG(KEY_STAMP,
1289 	    printf("%s: SP(%p)\n", __func__, sp));
1290 	if (sp->state != IPSEC_SPSTATE_ALIVE) {
1291 		/* SP is already unlinked */
1292 		return;
1293 	}
1294 	sp->state = IPSEC_SPSTATE_DEAD;
1295 	ipsec_accel_spddel(sp);
1296 	TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1297 	V_spd_size--;
1298 	LIST_REMOVE(sp, idhash);
1299 	V_sp_genid++;
1300 }
1301 
1302 /*
1303  * insert a secpolicy into the SP database. Lower priorities first
1304  */
1305 static void
key_insertsp(struct secpolicy * newsp)1306 key_insertsp(struct secpolicy *newsp)
1307 {
1308 	struct secpolicy *sp;
1309 
1310 	SPTREE_WLOCK_ASSERT();
1311 	TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) {
1312 		if (newsp->priority < sp->priority) {
1313 			TAILQ_INSERT_BEFORE(sp, newsp, chain);
1314 			goto done;
1315 		}
1316 	}
1317 	TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1318 done:
1319 	LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash);
1320 	newsp->state = IPSEC_SPSTATE_ALIVE;
1321 	V_spd_size++;
1322 	V_sp_genid++;
1323 	ipsec_accel_spdadd(newsp, NULL);
1324 }
1325 
1326 /*
1327  * Insert a bunch of VTI secpolicies into the SPDB.
1328  * We keep VTI policies in the separate list due to following reasons:
1329  * 1) they should be immutable to user's or some deamon's attempts to
1330  *    delete. The only way delete such policies - destroy or unconfigure
1331  *    corresponding virtual inteface.
1332  * 2) such policies have traffic selector that matches all traffic per
1333  *    address family.
1334  * Since all VTI policies have the same priority, we don't care about
1335  * policies order.
1336  */
1337 int
key_register_ifnet(struct secpolicy ** spp,u_int count)1338 key_register_ifnet(struct secpolicy **spp, u_int count)
1339 {
1340 	struct mbuf *m;
1341 	u_int i;
1342 
1343 	SPTREE_WLOCK();
1344 	/*
1345 	 * First of try to acquire id for each SP.
1346 	 */
1347 	for (i = 0; i < count; i++) {
1348 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1349 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1350 		    ("invalid direction %u", spp[i]->spidx.dir));
1351 
1352 		if ((spp[i]->id = key_getnewspid()) == 0) {
1353 			SPTREE_WUNLOCK();
1354 			return (EAGAIN);
1355 		}
1356 	}
1357 	for (i = 0; i < count; i++) {
1358 		TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir],
1359 		    spp[i], chain);
1360 		/*
1361 		 * NOTE: despite the fact that we keep VTI SP in the
1362 		 * separate list, SPHASH contains policies from both
1363 		 * sources. Thus SADB_X_SPDGET will correctly return
1364 		 * SP by id, because it uses SPHASH for lookups.
1365 		 */
1366 		LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash);
1367 		spp[i]->state = IPSEC_SPSTATE_IFNET;
1368 		ipsec_accel_spdadd(spp[i], NULL);
1369 	}
1370 	SPTREE_WUNLOCK();
1371 	/*
1372 	 * Notify user processes about new SP.
1373 	 */
1374 	for (i = 0; i < count; i++) {
1375 		m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0);
1376 		if (m != NULL)
1377 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1378 	}
1379 	return (0);
1380 }
1381 
1382 void
key_unregister_ifnet(struct secpolicy ** spp,u_int count)1383 key_unregister_ifnet(struct secpolicy **spp, u_int count)
1384 {
1385 	struct mbuf *m;
1386 	u_int i;
1387 
1388 	SPTREE_WLOCK();
1389 	for (i = 0; i < count; i++) {
1390 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1391 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1392 		    ("invalid direction %u", spp[i]->spidx.dir));
1393 
1394 		if (spp[i]->state != IPSEC_SPSTATE_IFNET)
1395 			continue;
1396 		spp[i]->state = IPSEC_SPSTATE_DEAD;
1397 		ipsec_accel_spddel(spp[i]);
1398 		TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir],
1399 		    spp[i], chain);
1400 		V_spd_size--;
1401 		LIST_REMOVE(spp[i], idhash);
1402 	}
1403 	SPTREE_WUNLOCK();
1404 	if (SPDCACHE_ENABLED())
1405 		spdcache_clear();
1406 	ipsec_accel_sync();
1407 
1408 	for (i = 0; i < count; i++) {
1409 		m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0);
1410 		if (m != NULL)
1411 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1412 	}
1413 }
1414 
1415 /*
1416  * Must be called after calling key_allocsa().
1417  * This function is called by key_freesp() to free some SA allocated
1418  * for a policy.
1419  */
1420 void
key_freesav(struct secasvar ** psav)1421 key_freesav(struct secasvar **psav)
1422 {
1423 	struct secasvar *sav = *psav;
1424 
1425 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1426 	CURVNET_ASSERT_SET();
1427 	if (SAV_DELREF(sav) == 0)
1428 		return;
1429 
1430 	KEYDBG(IPSEC_STAMP,
1431 	    printf("%s: last reference to SA(%p)\n", __func__, sav));
1432 
1433 	*psav = NULL;
1434 	key_delsav(sav);
1435 }
1436 
1437 /*
1438  * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK.
1439  * Expect that SA has extra reference due to lookup.
1440  * Release this references, also release SAH reference after unlink.
1441  */
1442 static void
key_unlinksav(struct secasvar * sav)1443 key_unlinksav(struct secasvar *sav)
1444 {
1445 	struct secashead *sah;
1446 
1447 	KEYDBG(KEY_STAMP,
1448 	    printf("%s: SA(%p)\n", __func__, sav));
1449 
1450 	CURVNET_ASSERT_SET();
1451 	SAHTREE_UNLOCK_ASSERT();
1452 	SAHTREE_WLOCK();
1453 	if (sav->state == SADB_SASTATE_DEAD) {
1454 		/* SA is already unlinked */
1455 		SAHTREE_WUNLOCK();
1456 		return;
1457 	}
1458 	/* Unlink from SAH */
1459 	if (sav->state == SADB_SASTATE_LARVAL)
1460 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
1461 	else
1462 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
1463 	/* Unlink from SPI hash */
1464 	LIST_REMOVE(sav, spihash);
1465 	sav->state = SADB_SASTATE_DEAD;
1466 	ipsec_accel_forget_sav(sav);
1467 	sah = sav->sah;
1468 	SAHTREE_WUNLOCK();
1469 	key_freesav(&sav);
1470 	/* Since we are unlinked, release reference to SAH */
1471 	key_freesah(&sah);
1472 }
1473 
1474 /* %%% SPD management */
1475 /*
1476  * search SPD
1477  * OUT:	NULL	: not found
1478  *	others	: found, pointer to a SP.
1479  */
1480 static struct secpolicy *
key_getsp(struct secpolicyindex * spidx)1481 key_getsp(struct secpolicyindex *spidx)
1482 {
1483 	SPTREE_RLOCK_TRACKER;
1484 	struct secpolicy *sp;
1485 
1486 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1487 
1488 	SPTREE_RLOCK();
1489 	TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1490 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1491 			SP_ADDREF(sp);
1492 			break;
1493 		}
1494 	}
1495 	SPTREE_RUNLOCK();
1496 
1497 	return sp;
1498 }
1499 
1500 /*
1501  * get SP by index.
1502  * OUT:	NULL	: not found
1503  *	others	: found, pointer to referenced SP.
1504  */
1505 static struct secpolicy *
key_getspbyid(uint32_t id)1506 key_getspbyid(uint32_t id)
1507 {
1508 	SPTREE_RLOCK_TRACKER;
1509 	struct secpolicy *sp;
1510 
1511 	SPTREE_RLOCK();
1512 	LIST_FOREACH(sp, SPHASH_HASH(id), idhash) {
1513 		if (sp->id == id) {
1514 			SP_ADDREF(sp);
1515 			break;
1516 		}
1517 	}
1518 	SPTREE_RUNLOCK();
1519 	return (sp);
1520 }
1521 
1522 struct secpolicy *
key_newsp(void)1523 key_newsp(void)
1524 {
1525 	struct secpolicy *sp;
1526 
1527 	sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO);
1528 	if (sp != NULL)
1529 		SP_INITREF(sp);
1530 	return (sp);
1531 }
1532 
1533 struct ipsecrequest *
ipsec_newisr(void)1534 ipsec_newisr(void)
1535 {
1536 
1537 	return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR,
1538 	    M_NOWAIT | M_ZERO));
1539 }
1540 
1541 void
ipsec_delisr(struct ipsecrequest * p)1542 ipsec_delisr(struct ipsecrequest *p)
1543 {
1544 
1545 	free(p, M_IPSEC_SR);
1546 }
1547 
1548 /*
1549  * create secpolicy structure from sadb_x_policy structure.
1550  * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure
1551  * are not set, so must be set properly later.
1552  */
1553 struct secpolicy *
key_msg2sp(struct sadb_x_policy * xpl0,size_t len,int * error)1554 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1555 {
1556 	struct secpolicy *newsp;
1557 
1558 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1559 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1560 
1561 	if (len != PFKEY_EXTLEN(xpl0)) {
1562 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1563 		*error = EINVAL;
1564 		return NULL;
1565 	}
1566 
1567 	if ((newsp = key_newsp()) == NULL) {
1568 		*error = ENOBUFS;
1569 		return NULL;
1570 	}
1571 
1572 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1573 	newsp->policy = xpl0->sadb_x_policy_type;
1574 	newsp->priority = xpl0->sadb_x_policy_priority;
1575 	newsp->tcount = 0;
1576 
1577 	/* check policy */
1578 	switch (xpl0->sadb_x_policy_type) {
1579 	case IPSEC_POLICY_DISCARD:
1580 	case IPSEC_POLICY_NONE:
1581 	case IPSEC_POLICY_ENTRUST:
1582 	case IPSEC_POLICY_BYPASS:
1583 		break;
1584 
1585 	case IPSEC_POLICY_IPSEC:
1586 	    {
1587 		struct sadb_x_ipsecrequest *xisr;
1588 		struct ipsecrequest *isr;
1589 		int tlen;
1590 
1591 		/* validity check */
1592 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1593 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1594 				__func__));
1595 			key_freesp(&newsp);
1596 			*error = EINVAL;
1597 			return NULL;
1598 		}
1599 
1600 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1601 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1602 
1603 		while (tlen > 0) {
1604 			/* length check */
1605 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) ||
1606 			    xisr->sadb_x_ipsecrequest_len > tlen) {
1607 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1608 					"length.\n", __func__));
1609 				key_freesp(&newsp);
1610 				*error = EINVAL;
1611 				return NULL;
1612 			}
1613 
1614 			if (newsp->tcount >= IPSEC_MAXREQ) {
1615 				ipseclog((LOG_DEBUG,
1616 				    "%s: too many ipsecrequests.\n",
1617 				    __func__));
1618 				key_freesp(&newsp);
1619 				*error = EINVAL;
1620 				return (NULL);
1621 			}
1622 
1623 			/* allocate request buffer */
1624 			/* NB: data structure is zero'd */
1625 			isr = ipsec_newisr();
1626 			if (isr == NULL) {
1627 				ipseclog((LOG_DEBUG,
1628 				    "%s: No more memory.\n", __func__));
1629 				key_freesp(&newsp);
1630 				*error = ENOBUFS;
1631 				return NULL;
1632 			}
1633 
1634 			newsp->req[newsp->tcount++] = isr;
1635 
1636 			/* set values */
1637 			switch (xisr->sadb_x_ipsecrequest_proto) {
1638 			case IPPROTO_ESP:
1639 			case IPPROTO_AH:
1640 			case IPPROTO_IPCOMP:
1641 				break;
1642 			default:
1643 				ipseclog((LOG_DEBUG,
1644 				    "%s: invalid proto type=%u\n", __func__,
1645 				    xisr->sadb_x_ipsecrequest_proto));
1646 				key_freesp(&newsp);
1647 				*error = EPROTONOSUPPORT;
1648 				return NULL;
1649 			}
1650 			isr->saidx.proto =
1651 			    (uint8_t)xisr->sadb_x_ipsecrequest_proto;
1652 
1653 			switch (xisr->sadb_x_ipsecrequest_mode) {
1654 			case IPSEC_MODE_TRANSPORT:
1655 			case IPSEC_MODE_TUNNEL:
1656 				break;
1657 			case IPSEC_MODE_ANY:
1658 			default:
1659 				ipseclog((LOG_DEBUG,
1660 				    "%s: invalid mode=%u\n", __func__,
1661 				    xisr->sadb_x_ipsecrequest_mode));
1662 				key_freesp(&newsp);
1663 				*error = EINVAL;
1664 				return NULL;
1665 			}
1666 			isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1667 
1668 			switch (xisr->sadb_x_ipsecrequest_level) {
1669 			case IPSEC_LEVEL_DEFAULT:
1670 			case IPSEC_LEVEL_USE:
1671 			case IPSEC_LEVEL_REQUIRE:
1672 				break;
1673 			case IPSEC_LEVEL_UNIQUE:
1674 				/* validity check */
1675 				/*
1676 				 * If range violation of reqid, kernel will
1677 				 * update it, don't refuse it.
1678 				 */
1679 				if (xisr->sadb_x_ipsecrequest_reqid
1680 						> IPSEC_MANUAL_REQID_MAX) {
1681 					ipseclog((LOG_DEBUG,
1682 					    "%s: reqid=%d range "
1683 					    "violation, updated by kernel.\n",
1684 					    __func__,
1685 					    xisr->sadb_x_ipsecrequest_reqid));
1686 					xisr->sadb_x_ipsecrequest_reqid = 0;
1687 				}
1688 
1689 				/* allocate new reqid id if reqid is zero. */
1690 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1691 					u_int32_t reqid;
1692 					if ((reqid = key_newreqid()) == 0) {
1693 						key_freesp(&newsp);
1694 						*error = ENOBUFS;
1695 						return NULL;
1696 					}
1697 					isr->saidx.reqid = reqid;
1698 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1699 				} else {
1700 				/* set it for manual keying. */
1701 					isr->saidx.reqid =
1702 					    xisr->sadb_x_ipsecrequest_reqid;
1703 				}
1704 				break;
1705 
1706 			default:
1707 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1708 					__func__,
1709 					xisr->sadb_x_ipsecrequest_level));
1710 				key_freesp(&newsp);
1711 				*error = EINVAL;
1712 				return NULL;
1713 			}
1714 			isr->level = xisr->sadb_x_ipsecrequest_level;
1715 
1716 			/* set IP addresses if there */
1717 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1718 				struct sockaddr *paddr;
1719 
1720 				len = tlen - sizeof(*xisr);
1721 				paddr = (struct sockaddr *)(xisr + 1);
1722 				/* validity check */
1723 				if (len < sizeof(struct sockaddr) ||
1724 				    len < 2 * paddr->sa_len ||
1725 				    paddr->sa_len > sizeof(isr->saidx.src)) {
1726 					ipseclog((LOG_DEBUG, "%s: invalid "
1727 						"request address length.\n",
1728 						__func__));
1729 					key_freesp(&newsp);
1730 					*error = EINVAL;
1731 					return NULL;
1732 				}
1733 				/*
1734 				 * Request length should be enough to keep
1735 				 * source and destination addresses.
1736 				 */
1737 				if (xisr->sadb_x_ipsecrequest_len <
1738 				    sizeof(*xisr) + 2 * paddr->sa_len) {
1739 					ipseclog((LOG_DEBUG, "%s: invalid "
1740 					    "ipsecrequest length.\n",
1741 					    __func__));
1742 					key_freesp(&newsp);
1743 					*error = EINVAL;
1744 					return (NULL);
1745 				}
1746 				bcopy(paddr, &isr->saidx.src, paddr->sa_len);
1747 				paddr = (struct sockaddr *)((caddr_t)paddr +
1748 				    paddr->sa_len);
1749 
1750 				/* validity check */
1751 				if (paddr->sa_len !=
1752 				    isr->saidx.src.sa.sa_len) {
1753 					ipseclog((LOG_DEBUG, "%s: invalid "
1754 						"request address length.\n",
1755 						__func__));
1756 					key_freesp(&newsp);
1757 					*error = EINVAL;
1758 					return NULL;
1759 				}
1760 				/* AF family should match */
1761 				if (paddr->sa_family !=
1762 				    isr->saidx.src.sa.sa_family) {
1763 					ipseclog((LOG_DEBUG, "%s: address "
1764 					    "family doesn't match.\n",
1765 						__func__));
1766 					key_freesp(&newsp);
1767 					*error = EINVAL;
1768 					return (NULL);
1769 				}
1770 				bcopy(paddr, &isr->saidx.dst, paddr->sa_len);
1771 			} else {
1772 				/*
1773 				 * Addresses for TUNNEL mode requests are
1774 				 * mandatory.
1775 				 */
1776 				if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1777 					ipseclog((LOG_DEBUG, "%s: missing "
1778 					    "request addresses.\n", __func__));
1779 					key_freesp(&newsp);
1780 					*error = EINVAL;
1781 					return (NULL);
1782 				}
1783 			}
1784 			tlen -= xisr->sadb_x_ipsecrequest_len;
1785 
1786 			/* validity check */
1787 			if (tlen < 0) {
1788 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1789 					__func__));
1790 				key_freesp(&newsp);
1791 				*error = EINVAL;
1792 				return NULL;
1793 			}
1794 
1795 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1796 			                 + xisr->sadb_x_ipsecrequest_len);
1797 		}
1798 		/* XXXAE: LARVAL SP */
1799 		if (newsp->tcount < 1) {
1800 			ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms "
1801 			    "not found.\n", __func__));
1802 			key_freesp(&newsp);
1803 			*error = EINVAL;
1804 			return (NULL);
1805 		}
1806 	    }
1807 		break;
1808 	default:
1809 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1810 		key_freesp(&newsp);
1811 		*error = EINVAL;
1812 		return NULL;
1813 	}
1814 
1815 	*error = 0;
1816 	return (newsp);
1817 }
1818 
1819 uint32_t
key_newreqid(void)1820 key_newreqid(void)
1821 {
1822 	static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1823 
1824 	if (auto_reqid == ~0)
1825 		auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1826 	else
1827 		auto_reqid++;
1828 
1829 	/* XXX should be unique check */
1830 	return (auto_reqid);
1831 }
1832 
1833 /*
1834  * copy secpolicy struct to sadb_x_policy structure indicated.
1835  */
1836 static struct mbuf *
key_sp2mbuf(struct secpolicy * sp)1837 key_sp2mbuf(struct secpolicy *sp)
1838 {
1839 	struct mbuf *m;
1840 	size_t tlen;
1841 
1842 	tlen = key_getspreqmsglen(sp);
1843 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1844 	if (m == NULL)
1845 		return (NULL);
1846 	m_align(m, tlen);
1847 	m->m_len = tlen;
1848 	if (key_sp2msg(sp, m->m_data, &tlen) != 0) {
1849 		m_freem(m);
1850 		return (NULL);
1851 	}
1852 	return (m);
1853 }
1854 
1855 int
key_sp2msg(struct secpolicy * sp,void * request,size_t * len)1856 key_sp2msg(struct secpolicy *sp, void *request, size_t *len)
1857 {
1858 	struct sadb_x_ipsecrequest *xisr;
1859 	struct sadb_x_policy *xpl;
1860 	struct ipsecrequest *isr;
1861 	size_t xlen, ilen;
1862 	caddr_t p;
1863 	int error, i;
1864 #ifdef IPSEC_OFFLOAD
1865 	struct sadb_x_if_hw_offl *xif;
1866 #endif
1867 
1868 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1869 
1870 	xlen = sizeof(*xpl);
1871 	if (*len < xlen)
1872 		return (EINVAL);
1873 
1874 	error = 0;
1875 	bzero(request, *len);
1876 	xpl = (struct sadb_x_policy *)request;
1877 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1878 	xpl->sadb_x_policy_type = sp->policy;
1879 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1880 	xpl->sadb_x_policy_id = sp->id;
1881 	xpl->sadb_x_policy_priority = sp->priority;
1882 	switch (sp->state) {
1883 	case IPSEC_SPSTATE_IFNET:
1884 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET;
1885 		break;
1886 	case IPSEC_SPSTATE_PCB:
1887 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB;
1888 		break;
1889 	default:
1890 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL;
1891 	}
1892 
1893 	/* if is the policy for ipsec ? */
1894 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1895 		p = (caddr_t)xpl + sizeof(*xpl);
1896 		for (i = 0; i < sp->tcount; i++) {
1897 			isr = sp->req[i];
1898 			ilen = PFKEY_ALIGN8(sizeof(*xisr) +
1899 			    isr->saidx.src.sa.sa_len +
1900 			    isr->saidx.dst.sa.sa_len);
1901 			xlen += ilen;
1902 			if (xlen > *len) {
1903 				error = ENOBUFS;
1904 				/* Calculate needed size */
1905 				continue;
1906 			}
1907 			xisr = (struct sadb_x_ipsecrequest *)p;
1908 			xisr->sadb_x_ipsecrequest_len = ilen;
1909 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1910 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1911 			xisr->sadb_x_ipsecrequest_level = isr->level;
1912 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1913 
1914 			p += sizeof(*xisr);
1915 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1916 			p += isr->saidx.src.sa.sa_len;
1917 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1918 			p += isr->saidx.dst.sa.sa_len;
1919 		}
1920 	}
1921 	xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen);
1922 #ifdef IPSEC_OFFLOAD
1923 	if (error == 0 && sp->accel_ifname != NULL) {
1924 		xif = (struct sadb_x_if_hw_offl *)(xpl + 1);
1925 		bzero(xif, sizeof(*xif));
1926 		xif->sadb_x_if_hw_offl_len = PFKEY_UNIT64(sizeof(*xif));
1927 		xif->sadb_x_if_hw_offl_exttype = SADB_X_EXT_IF_HW_OFFL;
1928 		xif->sadb_x_if_hw_offl_flags = 0;
1929 		strncpy(xif->sadb_x_if_hw_offl_if, sp->accel_ifname,
1930 		    sizeof(xif->sadb_x_if_hw_offl_if));
1931 		xlen += sizeof(*xif);
1932 	}
1933 #endif
1934 	if (error == 0)
1935 		*len = xlen;
1936 	else
1937 		*len = sizeof(*xpl);
1938 	return (error);
1939 }
1940 
1941 /* m will not be freed nor modified */
1942 static struct mbuf *
key_gather_mbuf(struct mbuf * m,const struct sadb_msghdr * mhp,int ndeep,int nitem,...)1943 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1944     int ndeep, int nitem, ...)
1945 {
1946 	va_list ap;
1947 	int idx;
1948 	int i;
1949 	struct mbuf *result = NULL, *n;
1950 	int len;
1951 
1952 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1953 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1954 
1955 	va_start(ap, nitem);
1956 	for (i = 0; i < nitem; i++) {
1957 		idx = va_arg(ap, int);
1958 		if (idx < 0 || idx > SADB_EXT_MAX)
1959 			goto fail;
1960 		/* don't attempt to pull empty extension */
1961 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1962 			continue;
1963 		if (idx != SADB_EXT_RESERVED  &&
1964 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1965 			continue;
1966 
1967 		if (idx == SADB_EXT_RESERVED) {
1968 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1969 
1970 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1971 
1972 			MGETHDR(n, M_NOWAIT, MT_DATA);
1973 			if (!n)
1974 				goto fail;
1975 			n->m_len = len;
1976 			n->m_next = NULL;
1977 			m_copydata(m, 0, sizeof(struct sadb_msg),
1978 			    mtod(n, caddr_t));
1979 		} else if (i < ndeep) {
1980 			len = mhp->extlen[idx];
1981 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1982 			if (n == NULL)
1983 				goto fail;
1984 			m_align(n, len);
1985 			n->m_len = len;
1986 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1987 			    mtod(n, caddr_t));
1988 		} else {
1989 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1990 			    M_NOWAIT);
1991 		}
1992 		if (n == NULL)
1993 			goto fail;
1994 
1995 		if (result)
1996 			m_cat(result, n);
1997 		else
1998 			result = n;
1999 	}
2000 	va_end(ap);
2001 
2002 	if ((result->m_flags & M_PKTHDR) != 0) {
2003 		result->m_pkthdr.len = 0;
2004 		for (n = result; n; n = n->m_next)
2005 			result->m_pkthdr.len += n->m_len;
2006 	}
2007 
2008 	return result;
2009 
2010 fail:
2011 	m_freem(result);
2012 	va_end(ap);
2013 	return NULL;
2014 }
2015 
2016 /*
2017  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2018  * add an entry to SP database, when received
2019  *   <base, address(SD), (lifetime(H),) policy>
2020  * from the user(?).
2021  * Adding to SP database,
2022  * and send
2023  *   <base, address(SD), (lifetime(H),) policy>
2024  * to the socket which was send.
2025  *
2026  * SPDADD set a unique policy entry.
2027  * SPDSETIDX like SPDADD without a part of policy requests.
2028  * SPDUPDATE replace a unique policy entry.
2029  *
2030  * XXXAE: serialize this in PF_KEY to avoid races.
2031  * m will always be freed.
2032  */
2033 static int
key_spdadd(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2034 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2035 {
2036 	struct secpolicyindex spidx;
2037 	struct sadb_address *src0, *dst0;
2038 	struct sadb_x_policy *xpl0, *xpl;
2039 	struct sadb_lifetime *lft = NULL;
2040 	struct secpolicy *newsp, *oldsp;
2041 	int error;
2042 
2043 	IPSEC_ASSERT(so != NULL, ("null socket"));
2044 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2045 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2046 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2047 
2048 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2049 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2050 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2051 		ipseclog((LOG_DEBUG,
2052 		    "%s: invalid message: missing required header.\n",
2053 		    __func__));
2054 		return key_senderror(so, m, EINVAL);
2055 	}
2056 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2057 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2058 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2059 		ipseclog((LOG_DEBUG,
2060 		    "%s: invalid message: wrong header size.\n", __func__));
2061 		return key_senderror(so, m, EINVAL);
2062 	}
2063 	if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) {
2064 		if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) {
2065 			ipseclog((LOG_DEBUG,
2066 			    "%s: invalid message: wrong header size.\n",
2067 			    __func__));
2068 			return key_senderror(so, m, EINVAL);
2069 		}
2070 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2071 	}
2072 
2073 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2074 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2075 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2076 
2077 	/* check the direciton */
2078 	switch (xpl0->sadb_x_policy_dir) {
2079 	case IPSEC_DIR_INBOUND:
2080 	case IPSEC_DIR_OUTBOUND:
2081 		break;
2082 	default:
2083 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2084 		return key_senderror(so, m, EINVAL);
2085 	}
2086 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
2087 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2088 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2089 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2090 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2091 		return key_senderror(so, m, EINVAL);
2092 	}
2093 
2094 	/* policy requests are mandatory when action is ipsec. */
2095 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2096 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2097 		ipseclog((LOG_DEBUG,
2098 		    "%s: policy requests required.\n", __func__));
2099 		return key_senderror(so, m, EINVAL);
2100 	}
2101 
2102 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
2103 	    (struct sockaddr *)(dst0 + 1));
2104 	if (error != 0 ||
2105 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2106 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2107 		return key_senderror(so, m, error);
2108 	}
2109 	/* make secindex */
2110 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2111 	                src0 + 1,
2112 	                dst0 + 1,
2113 	                src0->sadb_address_prefixlen,
2114 	                dst0->sadb_address_prefixlen,
2115 	                src0->sadb_address_proto,
2116 	                &spidx);
2117 	/* Checking there is SP already or not. */
2118 	oldsp = key_getsp(&spidx);
2119 	if (oldsp != NULL) {
2120 		if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2121 			KEYDBG(KEY_STAMP,
2122 			    printf("%s: unlink SP(%p) for SPDUPDATE\n",
2123 				__func__, oldsp));
2124 			KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp));
2125 		} else {
2126 			key_freesp(&oldsp);
2127 			ipseclog((LOG_DEBUG,
2128 			    "%s: a SP entry exists already.\n", __func__));
2129 			return (key_senderror(so, m, EEXIST));
2130 		}
2131 	}
2132 
2133 	/* allocate new SP entry */
2134 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
2135 		if (oldsp != NULL) {
2136 			key_unlink(oldsp);
2137 			key_freesp(&oldsp); /* second for our reference */
2138 		}
2139 		return key_senderror(so, m, error);
2140 	}
2141 
2142 	newsp->lastused = newsp->created = time_second;
2143 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2144 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2145 	bcopy(&spidx, &newsp->spidx, sizeof(spidx));
2146 #ifdef IPSEC_OFFLOAD
2147 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_IF_HW_OFFL) &&
2148 	    !SADB_CHECKLEN(mhp, SADB_X_EXT_IF_HW_OFFL)) {
2149 		struct sadb_x_if_hw_offl *xof;
2150 
2151 		xof = (struct sadb_x_if_hw_offl *)mhp->ext[
2152 		    SADB_X_EXT_IF_HW_OFFL];
2153 		newsp->accel_ifname = malloc(sizeof(xof->sadb_x_if_hw_offl_if),
2154 		    M_IPSEC_MISC, M_NOWAIT);
2155 		if (newsp->accel_ifname == NULL) {
2156 			ipseclog((LOG_DEBUG, "%s: cannot alloc accel_ifname.\n",
2157 			    __func__));
2158 			key_freesp(&newsp);
2159 			return (key_senderror(so, m, error));
2160 		}
2161 		strncpy(__DECONST(char *, newsp->accel_ifname),
2162 		    xof->sadb_x_if_hw_offl_if,
2163 		    sizeof(xof->sadb_x_if_hw_offl_if));
2164 	}
2165 
2166 #endif
2167 
2168 	SPTREE_WLOCK();
2169 	if ((newsp->id = key_getnewspid()) == 0) {
2170 		if (oldsp != NULL)
2171 			key_detach(oldsp);
2172 		SPTREE_WUNLOCK();
2173 		if (oldsp != NULL) {
2174 			ipsec_accel_sync();
2175 			key_freesp(&oldsp); /* first for key_detach */
2176 			IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2177 			key_freesp(&oldsp); /* second for our reference */
2178 			if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */
2179 				spdcache_clear();
2180 		}
2181 		key_freesp(&newsp);
2182 		return key_senderror(so, m, ENOBUFS);
2183 	}
2184 	if (oldsp != NULL)
2185 		key_detach(oldsp);
2186 	key_insertsp(newsp);
2187 	SPTREE_WUNLOCK();
2188 	if (oldsp != NULL) {
2189 		ipsec_accel_sync();
2190 		key_freesp(&oldsp); /* first for key_detach */
2191 		IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2192 		key_freesp(&oldsp); /* second for our reference */
2193 	}
2194 	if (SPDCACHE_ENABLED())
2195 		spdcache_clear();
2196 	KEYDBG(KEY_STAMP,
2197 	    printf("%s: SP(%p)\n", __func__, newsp));
2198 	KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2199 
2200     {
2201 	struct mbuf *n, *mpolicy;
2202 	struct sadb_msg *newmsg;
2203 	int off;
2204 
2205 	/* create new sadb_msg to reply. */
2206 	if (lft) {
2207 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2208 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2209 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2210 	} else {
2211 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2212 		    SADB_X_EXT_POLICY,
2213 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2214 	}
2215 	if (!n)
2216 		return key_senderror(so, m, ENOBUFS);
2217 
2218 	if (n->m_len < sizeof(*newmsg)) {
2219 		n = m_pullup(n, sizeof(*newmsg));
2220 		if (!n)
2221 			return key_senderror(so, m, ENOBUFS);
2222 	}
2223 	newmsg = mtod(n, struct sadb_msg *);
2224 	newmsg->sadb_msg_errno = 0;
2225 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2226 
2227 	off = 0;
2228 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2229 	    sizeof(*xpl), &off);
2230 	if (mpolicy == NULL) {
2231 		/* n is already freed */
2232 		return key_senderror(so, m, ENOBUFS);
2233 	}
2234 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2235 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2236 		m_freem(n);
2237 		return key_senderror(so, m, EINVAL);
2238 	}
2239 	xpl->sadb_x_policy_id = newsp->id;
2240 
2241 	m_freem(m);
2242 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2243     }
2244 }
2245 
2246 /*
2247  * get new policy id.
2248  * OUT:
2249  *	0:	failure.
2250  *	others: success.
2251  */
2252 static uint32_t
key_getnewspid(void)2253 key_getnewspid(void)
2254 {
2255 	struct secpolicy *sp;
2256 	uint32_t newid = 0;
2257 	int tries, limit;
2258 
2259 	SPTREE_WLOCK_ASSERT();
2260 
2261 	limit = atomic_load_int(&V_key_spi_trycnt);
2262 	for (tries = 0; tries < limit; tries++) {
2263 		if (V_policy_id == ~0) /* overflowed */
2264 			newid = V_policy_id = 1;
2265 		else
2266 			newid = ++V_policy_id;
2267 		LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) {
2268 			if (sp->id == newid)
2269 				break;
2270 		}
2271 		if (sp == NULL)
2272 			break;
2273 	}
2274 	if (tries == limit || newid == 0) {
2275 		ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n",
2276 		    __func__));
2277 		return (0);
2278 	}
2279 	return (newid);
2280 }
2281 
2282 /*
2283  * SADB_SPDDELETE processing
2284  * receive
2285  *   <base, address(SD), policy(*)>
2286  * from the user(?), and set SADB_SASTATE_DEAD,
2287  * and send,
2288  *   <base, address(SD), policy(*)>
2289  * to the ikmpd.
2290  * policy(*) including direction of policy.
2291  *
2292  * m will always be freed.
2293  */
2294 static int
key_spddelete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2295 key_spddelete(struct socket *so, struct mbuf *m,
2296     const struct sadb_msghdr *mhp)
2297 {
2298 	struct secpolicyindex spidx;
2299 	struct sadb_address *src0, *dst0;
2300 	struct sadb_x_policy *xpl0;
2301 	struct secpolicy *sp;
2302 
2303 	IPSEC_ASSERT(so != NULL, ("null so"));
2304 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2305 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2306 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2307 
2308 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2309 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2310 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2311 		ipseclog((LOG_DEBUG,
2312 		    "%s: invalid message: missing required header.\n",
2313 		    __func__));
2314 		return key_senderror(so, m, EINVAL);
2315 	}
2316 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2317 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2318 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2319 		ipseclog((LOG_DEBUG,
2320 		    "%s: invalid message: wrong header size.\n", __func__));
2321 		return key_senderror(so, m, EINVAL);
2322 	}
2323 
2324 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2325 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2326 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2327 
2328 	/* check the direciton */
2329 	switch (xpl0->sadb_x_policy_dir) {
2330 	case IPSEC_DIR_INBOUND:
2331 	case IPSEC_DIR_OUTBOUND:
2332 		break;
2333 	default:
2334 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2335 		return key_senderror(so, m, EINVAL);
2336 	}
2337 	/* Only DISCARD, NONE and IPSEC are allowed */
2338 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2339 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2340 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2341 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2342 		return key_senderror(so, m, EINVAL);
2343 	}
2344 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
2345 	    (struct sockaddr *)(dst0 + 1)) != 0 ||
2346 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2347 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2348 		return key_senderror(so, m, EINVAL);
2349 	}
2350 	/* make secindex */
2351 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2352 	                src0 + 1,
2353 	                dst0 + 1,
2354 	                src0->sadb_address_prefixlen,
2355 	                dst0->sadb_address_prefixlen,
2356 	                src0->sadb_address_proto,
2357 	                &spidx);
2358 
2359 	/* Is there SP in SPD ? */
2360 	if ((sp = key_getsp(&spidx)) == NULL) {
2361 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2362 		return key_senderror(so, m, EINVAL);
2363 	}
2364 
2365 	/* save policy id to buffer to be returned. */
2366 	xpl0->sadb_x_policy_id = sp->id;
2367 
2368 	KEYDBG(KEY_STAMP,
2369 	    printf("%s: SP(%p)\n", __func__, sp));
2370 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2371 	ipsec_accel_spddel(sp);
2372 	key_unlink(sp);
2373 	key_freesp(&sp);
2374 
2375     {
2376 	struct mbuf *n;
2377 	struct sadb_msg *newmsg;
2378 
2379 	/* create new sadb_msg to reply. */
2380 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2381 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2382 	if (!n)
2383 		return key_senderror(so, m, ENOBUFS);
2384 
2385 	newmsg = mtod(n, struct sadb_msg *);
2386 	newmsg->sadb_msg_errno = 0;
2387 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2388 
2389 	m_freem(m);
2390 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2391     }
2392 }
2393 
2394 /*
2395  * SADB_SPDDELETE2 processing
2396  * receive
2397  *   <base, policy(*)>
2398  * from the user(?), and set SADB_SASTATE_DEAD,
2399  * and send,
2400  *   <base, policy(*)>
2401  * to the ikmpd.
2402  * policy(*) including direction of policy.
2403  *
2404  * m will always be freed.
2405  */
2406 static int
key_spddelete2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2407 key_spddelete2(struct socket *so, struct mbuf *m,
2408     const struct sadb_msghdr *mhp)
2409 {
2410 	struct secpolicy *sp;
2411 	uint32_t id;
2412 
2413 	IPSEC_ASSERT(so != NULL, ("null socket"));
2414 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2415 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2416 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2417 
2418 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2419 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2420 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2421 		    __func__));
2422 		return key_senderror(so, m, EINVAL);
2423 	}
2424 
2425 	id = ((struct sadb_x_policy *)
2426 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2427 
2428 	/* Is there SP in SPD ? */
2429 	if ((sp = key_getspbyid(id)) == NULL) {
2430 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2431 		    __func__, id));
2432 		return key_senderror(so, m, EINVAL);
2433 	}
2434 
2435 	KEYDBG(KEY_STAMP,
2436 	    printf("%s: SP(%p)\n", __func__, sp));
2437 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2438 	key_unlink(sp);
2439 	if (sp->state != IPSEC_SPSTATE_DEAD) {
2440 		ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n",
2441 		    __func__, id));
2442 		key_freesp(&sp);
2443 		return (key_senderror(so, m, EACCES));
2444 	}
2445 	key_freesp(&sp);
2446 
2447     {
2448 	struct mbuf *n, *nn;
2449 	struct sadb_msg *newmsg;
2450 	int off, len;
2451 
2452 	/* create new sadb_msg to reply. */
2453 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2454 
2455 	n = key_mget(len);
2456 	if (n == NULL)
2457 		return key_senderror(so, m, ENOBUFS);
2458 
2459 	n->m_len = len;
2460 	n->m_next = NULL;
2461 	off = 0;
2462 
2463 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2464 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2465 
2466 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2467 		off, len));
2468 
2469 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2470 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2471 	if (!n->m_next) {
2472 		m_freem(n);
2473 		return key_senderror(so, m, ENOBUFS);
2474 	}
2475 
2476 	n->m_pkthdr.len = 0;
2477 	for (nn = n; nn; nn = nn->m_next)
2478 		n->m_pkthdr.len += nn->m_len;
2479 
2480 	newmsg = mtod(n, struct sadb_msg *);
2481 	newmsg->sadb_msg_errno = 0;
2482 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2483 
2484 	m_freem(m);
2485 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2486     }
2487 }
2488 
2489 /*
2490  * SADB_X_SPDGET processing
2491  * receive
2492  *   <base, policy(*)>
2493  * from the user(?),
2494  * and send,
2495  *   <base, address(SD), policy>
2496  * to the ikmpd.
2497  * policy(*) including direction of policy.
2498  *
2499  * m will always be freed.
2500  */
2501 static int
key_spdget(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2502 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2503 {
2504 	struct secpolicy *sp;
2505 	struct mbuf *n;
2506 	uint32_t id;
2507 
2508 	IPSEC_ASSERT(so != NULL, ("null socket"));
2509 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2510 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2511 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2512 
2513 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2514 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2515 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2516 		    __func__));
2517 		return key_senderror(so, m, EINVAL);
2518 	}
2519 
2520 	id = ((struct sadb_x_policy *)
2521 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2522 
2523 	/* Is there SP in SPD ? */
2524 	if ((sp = key_getspbyid(id)) == NULL) {
2525 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2526 		    __func__, id));
2527 		return key_senderror(so, m, ENOENT);
2528 	}
2529 
2530 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2531 	    mhp->msg->sadb_msg_pid);
2532 	key_freesp(&sp);
2533 	if (n != NULL) {
2534 		m_freem(m);
2535 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2536 	} else
2537 		return key_senderror(so, m, ENOBUFS);
2538 }
2539 
2540 /*
2541  * SADB_X_SPDACQUIRE processing.
2542  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2543  * send
2544  *   <base, policy(*)>
2545  * to KMD, and expect to receive
2546  *   <base> with SADB_X_SPDACQUIRE if error occurred,
2547  * or
2548  *   <base, policy>
2549  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2550  * policy(*) is without policy requests.
2551  *
2552  *    0     : succeed
2553  *    others: error number
2554  */
2555 int
key_spdacquire(struct secpolicy * sp)2556 key_spdacquire(struct secpolicy *sp)
2557 {
2558 	struct mbuf *result = NULL, *m;
2559 	struct secspacq *newspacq;
2560 
2561 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2562 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2563 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2564 		("policy not IPSEC %u", sp->policy));
2565 
2566 	/* Get an entry to check whether sent message or not. */
2567 	newspacq = key_getspacq(&sp->spidx);
2568 	if (newspacq != NULL) {
2569 		if (V_key_blockacq_count < newspacq->count) {
2570 			/* reset counter and do send message. */
2571 			newspacq->count = 0;
2572 		} else {
2573 			/* increment counter and do nothing. */
2574 			newspacq->count++;
2575 			SPACQ_UNLOCK();
2576 			return (0);
2577 		}
2578 		SPACQ_UNLOCK();
2579 	} else {
2580 		/* make new entry for blocking to send SADB_ACQUIRE. */
2581 		newspacq = key_newspacq(&sp->spidx);
2582 		if (newspacq == NULL)
2583 			return ENOBUFS;
2584 	}
2585 
2586 	/* create new sadb_msg to reply. */
2587 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2588 	if (!m)
2589 		return ENOBUFS;
2590 
2591 	result = m;
2592 
2593 	result->m_pkthdr.len = 0;
2594 	for (m = result; m; m = m->m_next)
2595 		result->m_pkthdr.len += m->m_len;
2596 
2597 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2598 	    PFKEY_UNIT64(result->m_pkthdr.len);
2599 
2600 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2601 }
2602 
2603 /*
2604  * SADB_SPDFLUSH processing
2605  * receive
2606  *   <base>
2607  * from the user, and free all entries in secpctree.
2608  * and send,
2609  *   <base>
2610  * to the user.
2611  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2612  *
2613  * m will always be freed.
2614  */
2615 static int
key_spdflush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2616 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2617 {
2618 	struct secpolicy_queue drainq;
2619 	struct sadb_msg *newmsg;
2620 	struct secpolicy *sp, *nextsp;
2621 	u_int dir;
2622 
2623 	IPSEC_ASSERT(so != NULL, ("null socket"));
2624 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2625 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2626 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2627 
2628 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2629 		return key_senderror(so, m, EINVAL);
2630 
2631 	TAILQ_INIT(&drainq);
2632 	SPTREE_WLOCK();
2633 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2634 		TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2635 	}
2636 	/*
2637 	 * We need to set state to DEAD for each policy to be sure,
2638 	 * that another thread won't try to unlink it.
2639 	 * Also remove SP from sphash.
2640 	 */
2641 	TAILQ_FOREACH(sp, &drainq, chain) {
2642 		sp->state = IPSEC_SPSTATE_DEAD;
2643 		ipsec_accel_spddel(sp);
2644 		LIST_REMOVE(sp, idhash);
2645 	}
2646 	V_sp_genid++;
2647 	V_spd_size = 0;
2648 	SPTREE_WUNLOCK();
2649 	if (SPDCACHE_ENABLED())
2650 		spdcache_clear();
2651 	sp = TAILQ_FIRST(&drainq);
2652 	while (sp != NULL) {
2653 		nextsp = TAILQ_NEXT(sp, chain);
2654 		key_freesp(&sp);
2655 		sp = nextsp;
2656 	}
2657 
2658 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2659 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2660 		return key_senderror(so, m, ENOBUFS);
2661 	}
2662 
2663 	if (m->m_next)
2664 		m_freem(m->m_next);
2665 	m->m_next = NULL;
2666 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2667 	newmsg = mtod(m, struct sadb_msg *);
2668 	newmsg->sadb_msg_errno = 0;
2669 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2670 
2671 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2672 }
2673 
2674 static uint8_t
key_satype2scopemask(uint8_t satype)2675 key_satype2scopemask(uint8_t satype)
2676 {
2677 
2678 	if (satype == IPSEC_POLICYSCOPE_ANY)
2679 		return (0xff);
2680 	return (satype);
2681 }
2682 /*
2683  * SADB_SPDDUMP processing
2684  * receive
2685  *   <base>
2686  * from the user, and dump all SP leaves and send,
2687  *   <base> .....
2688  * to the ikmpd.
2689  *
2690  * NOTE:
2691  *   sadb_msg_satype is considered as mask of policy scopes.
2692  *   m will always be freed.
2693  */
2694 static int
key_spddump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2695 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2696 {
2697 	SPTREE_RLOCK_TRACKER;
2698 	struct secpolicy *sp;
2699 	struct mbuf *n;
2700 	int cnt;
2701 	u_int dir, scope;
2702 
2703 	IPSEC_ASSERT(so != NULL, ("null socket"));
2704 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2705 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2706 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2707 
2708 	/* search SPD entry and get buffer size. */
2709 	cnt = 0;
2710 	scope = key_satype2scopemask(mhp->msg->sadb_msg_satype);
2711 	SPTREE_RLOCK();
2712 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2713 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2714 			TAILQ_FOREACH(sp, &V_sptree[dir], chain)
2715 				cnt++;
2716 		}
2717 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2718 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain)
2719 				cnt++;
2720 		}
2721 	}
2722 
2723 	if (cnt == 0) {
2724 		SPTREE_RUNLOCK();
2725 		return key_senderror(so, m, ENOENT);
2726 	}
2727 
2728 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2729 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2730 			TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2731 				--cnt;
2732 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2733 				    mhp->msg->sadb_msg_pid);
2734 
2735 				if (n != NULL)
2736 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2737 			}
2738 		}
2739 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2740 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) {
2741 				--cnt;
2742 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2743 				    mhp->msg->sadb_msg_pid);
2744 
2745 				if (n != NULL)
2746 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2747 			}
2748 		}
2749 	}
2750 
2751 	SPTREE_RUNLOCK();
2752 	m_freem(m);
2753 	return (0);
2754 }
2755 
2756 static struct mbuf *
key_setdumpsp(struct secpolicy * sp,u_int8_t type,u_int32_t seq,u_int32_t pid)2757 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2758     u_int32_t pid)
2759 {
2760 	struct mbuf *result = NULL, *m;
2761 	struct seclifetime lt;
2762 
2763 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2764 	if (!m)
2765 		goto fail;
2766 	result = m;
2767 
2768 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2769 	    &sp->spidx.src.sa, sp->spidx.prefs,
2770 	    sp->spidx.ul_proto);
2771 	if (!m)
2772 		goto fail;
2773 	m_cat(result, m);
2774 
2775 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2776 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2777 	    sp->spidx.ul_proto);
2778 	if (!m)
2779 		goto fail;
2780 	m_cat(result, m);
2781 
2782 	m = key_sp2mbuf(sp);
2783 	if (!m)
2784 		goto fail;
2785 	m_cat(result, m);
2786 
2787 	if(sp->lifetime){
2788 		lt.addtime=sp->created;
2789 		lt.usetime= sp->lastused;
2790 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2791 		if (!m)
2792 			goto fail;
2793 		m_cat(result, m);
2794 
2795 		lt.addtime=sp->lifetime;
2796 		lt.usetime= sp->validtime;
2797 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2798 		if (!m)
2799 			goto fail;
2800 		m_cat(result, m);
2801 	}
2802 
2803 	if ((result->m_flags & M_PKTHDR) == 0)
2804 		goto fail;
2805 
2806 	if (result->m_len < sizeof(struct sadb_msg)) {
2807 		result = m_pullup(result, sizeof(struct sadb_msg));
2808 		if (result == NULL)
2809 			goto fail;
2810 	}
2811 
2812 	result->m_pkthdr.len = 0;
2813 	for (m = result; m; m = m->m_next)
2814 		result->m_pkthdr.len += m->m_len;
2815 
2816 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2817 	    PFKEY_UNIT64(result->m_pkthdr.len);
2818 
2819 	return result;
2820 
2821 fail:
2822 	m_freem(result);
2823 	return NULL;
2824 }
2825 /*
2826  * get PFKEY message length for security policy and request.
2827  */
2828 static size_t
key_getspreqmsglen(struct secpolicy * sp)2829 key_getspreqmsglen(struct secpolicy *sp)
2830 {
2831 	size_t tlen, len;
2832 	int i;
2833 
2834 	tlen = sizeof(struct sadb_x_policy);
2835 	/* if is the policy for ipsec ? */
2836 	if (sp->policy != IPSEC_POLICY_IPSEC)
2837 		return (tlen);
2838 
2839 	/* get length of ipsec requests */
2840 	for (i = 0; i < sp->tcount; i++) {
2841 		len = sizeof(struct sadb_x_ipsecrequest)
2842 			+ sp->req[i]->saidx.src.sa.sa_len
2843 			+ sp->req[i]->saidx.dst.sa.sa_len;
2844 
2845 		tlen += PFKEY_ALIGN8(len);
2846 	}
2847 #ifdef IPSEC_OFFLOAD
2848 	if (sp->accel_ifname != NULL)
2849 		tlen += sizeof(struct sadb_x_if_hw_offl);
2850 #endif
2851 	return (tlen);
2852 }
2853 
2854 /*
2855  * SADB_SPDEXPIRE processing
2856  * send
2857  *   <base, address(SD), lifetime(CH), policy>
2858  * to KMD by PF_KEY.
2859  *
2860  * OUT:	0	: succeed
2861  *	others	: error number
2862  */
2863 static int
key_spdexpire(struct secpolicy * sp)2864 key_spdexpire(struct secpolicy *sp)
2865 {
2866 	struct sadb_lifetime *lt;
2867 	struct mbuf *result = NULL, *m;
2868 	int len, error = -1;
2869 
2870 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2871 
2872 	KEYDBG(KEY_STAMP,
2873 	    printf("%s: SP(%p)\n", __func__, sp));
2874 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2875 
2876 	/* set msg header */
2877 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2878 	if (!m) {
2879 		error = ENOBUFS;
2880 		goto fail;
2881 	}
2882 	result = m;
2883 
2884 	/* create lifetime extension (current and hard) */
2885 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2886 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2887 	if (m == NULL) {
2888 		error = ENOBUFS;
2889 		goto fail;
2890 	}
2891 	m_align(m, len);
2892 	m->m_len = len;
2893 	bzero(mtod(m, caddr_t), len);
2894 	lt = mtod(m, struct sadb_lifetime *);
2895 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2896 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2897 	lt->sadb_lifetime_allocations = 0;
2898 	lt->sadb_lifetime_bytes = 0;
2899 	lt->sadb_lifetime_addtime = sp->created;
2900 	lt->sadb_lifetime_usetime = sp->lastused;
2901 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2902 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2903 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2904 	lt->sadb_lifetime_allocations = 0;
2905 	lt->sadb_lifetime_bytes = 0;
2906 	lt->sadb_lifetime_addtime = sp->lifetime;
2907 	lt->sadb_lifetime_usetime = sp->validtime;
2908 	m_cat(result, m);
2909 
2910 	/* set sadb_address for source */
2911 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2912 	    &sp->spidx.src.sa,
2913 	    sp->spidx.prefs, sp->spidx.ul_proto);
2914 	if (!m) {
2915 		error = ENOBUFS;
2916 		goto fail;
2917 	}
2918 	m_cat(result, m);
2919 
2920 	/* set sadb_address for destination */
2921 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2922 	    &sp->spidx.dst.sa,
2923 	    sp->spidx.prefd, sp->spidx.ul_proto);
2924 	if (!m) {
2925 		error = ENOBUFS;
2926 		goto fail;
2927 	}
2928 	m_cat(result, m);
2929 
2930 	/* set secpolicy */
2931 	m = key_sp2mbuf(sp);
2932 	if (!m) {
2933 		error = ENOBUFS;
2934 		goto fail;
2935 	}
2936 	m_cat(result, m);
2937 
2938 	if ((result->m_flags & M_PKTHDR) == 0) {
2939 		error = EINVAL;
2940 		goto fail;
2941 	}
2942 
2943 	if (result->m_len < sizeof(struct sadb_msg)) {
2944 		result = m_pullup(result, sizeof(struct sadb_msg));
2945 		if (result == NULL) {
2946 			error = ENOBUFS;
2947 			goto fail;
2948 		}
2949 	}
2950 
2951 	result->m_pkthdr.len = 0;
2952 	for (m = result; m; m = m->m_next)
2953 		result->m_pkthdr.len += m->m_len;
2954 
2955 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2956 	    PFKEY_UNIT64(result->m_pkthdr.len);
2957 
2958 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2959 
2960  fail:
2961 	if (result)
2962 		m_freem(result);
2963 	return error;
2964 }
2965 
2966 /* %%% SAD management */
2967 /*
2968  * allocating and initialize new SA head.
2969  * OUT:	NULL	: failure due to the lack of memory.
2970  *	others	: pointer to new SA head.
2971  */
2972 static struct secashead *
key_newsah(struct secasindex * saidx)2973 key_newsah(struct secasindex *saidx)
2974 {
2975 	struct secashead *sah;
2976 
2977 	sah = malloc(sizeof(struct secashead), M_IPSEC_SAH,
2978 	    M_NOWAIT | M_ZERO);
2979 	if (sah == NULL) {
2980 		PFKEYSTAT_INC(in_nomem);
2981 		return (NULL);
2982 	}
2983 	TAILQ_INIT(&sah->savtree_larval);
2984 	TAILQ_INIT(&sah->savtree_alive);
2985 	sah->saidx = *saidx;
2986 	sah->state = SADB_SASTATE_DEAD;
2987 	SAH_INITREF(sah);
2988 
2989 	KEYDBG(KEY_STAMP,
2990 	    printf("%s: SAH(%p)\n", __func__, sah));
2991 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2992 	return (sah);
2993 }
2994 
2995 static void
key_freesah(struct secashead ** psah)2996 key_freesah(struct secashead **psah)
2997 {
2998 	struct secashead *sah = *psah;
2999 
3000 	CURVNET_ASSERT_SET();
3001 
3002 	if (SAH_DELREF(sah) == 0)
3003 		return;
3004 
3005 	KEYDBG(KEY_STAMP,
3006 	    printf("%s: last reference to SAH(%p)\n", __func__, sah));
3007 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
3008 
3009 	*psah = NULL;
3010 	key_delsah(sah);
3011 }
3012 
3013 static void
key_delsah(struct secashead * sah)3014 key_delsah(struct secashead *sah)
3015 {
3016 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
3017 	IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD,
3018 	    ("Attempt to free non DEAD SAH %p", sah));
3019 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval),
3020 	    ("Attempt to free SAH %p with LARVAL SA", sah));
3021 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive),
3022 	    ("Attempt to free SAH %p with ALIVE SA", sah));
3023 
3024 	free(sah, M_IPSEC_SAH);
3025 }
3026 
3027 /*
3028  * allocating a new SA for key_add() and key_getspi() call,
3029  * and copy the values of mhp into new buffer.
3030  * When SAD message type is SADB_GETSPI set SA state to LARVAL.
3031  * For SADB_ADD create and initialize SA with MATURE state.
3032  * OUT:	NULL	: fail
3033  *	others	: pointer to new secasvar.
3034  */
3035 static struct secasvar *
key_newsav(const struct sadb_msghdr * mhp,struct secasindex * saidx,uint32_t spi,int * errp)3036 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx,
3037     uint32_t spi, int *errp)
3038 {
3039 	struct secashead *sah;
3040 	struct secasvar *sav;
3041 	int isnew;
3042 
3043 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3044 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3045 	IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI ||
3046 	    mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type"));
3047 
3048 	sav = NULL;
3049 	sah = NULL;
3050 	/* check SPI value */
3051 	switch (saidx->proto) {
3052 	case IPPROTO_ESP:
3053 	case IPPROTO_AH:
3054 		/*
3055 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3056 		 * 1-255 reserved by IANA for future use,
3057 		 * 0 for implementation specific, local use.
3058 		 */
3059 		if (ntohl(spi) <= 255) {
3060 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3061 			    __func__, ntohl(spi)));
3062 			*errp = EINVAL;
3063 			goto done;
3064 		}
3065 		break;
3066 	}
3067 
3068 	sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO);
3069 	if (sav == NULL) {
3070 		*errp = ENOBUFS;
3071 		goto done;
3072 	}
3073 	sav->lock = malloc_aligned(max(sizeof(struct rmlock),
3074 	    CACHE_LINE_SIZE), CACHE_LINE_SIZE, M_IPSEC_MISC,
3075 	    M_NOWAIT | M_ZERO);
3076 	if (sav->lock == NULL) {
3077 		*errp = ENOBUFS;
3078 		goto done;
3079 	}
3080 	rm_init(sav->lock, "ipsec association");
3081 	sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO);
3082 	if (sav->lft_c == NULL) {
3083 		*errp = ENOBUFS;
3084 		goto done;
3085 	}
3086 
3087 	sav->spi = spi;
3088 	sav->seq = mhp->msg->sadb_msg_seq;
3089 	sav->state = SADB_SASTATE_LARVAL;
3090 	sav->pid = (pid_t)mhp->msg->sadb_msg_pid;
3091 	SAV_INITREF(sav);
3092 #ifdef IPSEC_OFFLOAD
3093 	CK_LIST_INIT(&sav->accel_ifps);
3094 	sav->accel_forget_tq = 0;
3095 	sav->accel_lft_sw = uma_zalloc_pcpu(ipsec_key_lft_zone,
3096 	    M_NOWAIT | M_ZERO);
3097 	if (sav->accel_lft_sw == NULL) {
3098 		*errp = ENOBUFS;
3099 		goto done;
3100 	}
3101 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_IF_HW_OFFL) &&
3102 	    !SADB_CHECKLEN(mhp, SADB_X_EXT_IF_HW_OFFL)) {
3103 		struct sadb_x_if_hw_offl *xof;
3104 
3105 		xof = (struct sadb_x_if_hw_offl *)mhp->ext[
3106 		    SADB_X_EXT_IF_HW_OFFL];
3107 		sav->accel_ifname = malloc(sizeof(xof->sadb_x_if_hw_offl_if),
3108 		    M_IPSEC_MISC, M_NOWAIT);
3109 		if (sav->accel_ifname == NULL) {
3110 			*errp = ENOBUFS;
3111 			goto done;
3112 		}
3113 		strncpy(__DECONST(char *, sav->accel_ifname),
3114 		    xof->sadb_x_if_hw_offl_if,
3115 		    sizeof(xof->sadb_x_if_hw_offl_if));
3116 	}
3117 #endif
3118 again:
3119 	sah = key_getsah(saidx);
3120 	if (sah == NULL) {
3121 		/* create a new SA index */
3122 		sah = key_newsah(saidx);
3123 		if (sah == NULL) {
3124 			ipseclog((LOG_DEBUG,
3125 			    "%s: No more memory.\n", __func__));
3126 			*errp = ENOBUFS;
3127 			goto done;
3128 		}
3129 		isnew = 1;
3130 	} else
3131 		isnew = 0;
3132 
3133 	sav->sah = sah;
3134 	if (mhp->msg->sadb_msg_type == SADB_GETSPI) {
3135 		sav->created = time_second;
3136 	} else if (sav->state == SADB_SASTATE_LARVAL) {
3137 		/*
3138 		 * Do not call key_setsaval() second time in case
3139 		 * of `goto again`. We will have MATURE state.
3140 		 */
3141 		*errp = key_setsaval(sav, mhp);
3142 		if (*errp != 0)
3143 			goto done;
3144 		sav->state = SADB_SASTATE_MATURE;
3145 	}
3146 
3147 	SAHTREE_WLOCK();
3148 	/*
3149 	 * Check that existing SAH wasn't unlinked.
3150 	 * Since we didn't hold the SAHTREE lock, it is possible,
3151 	 * that callout handler or key_flush() or key_delete() could
3152 	 * unlink this SAH.
3153 	 */
3154 	if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) {
3155 		SAHTREE_WUNLOCK();
3156 		key_freesah(&sah);	/* reference from key_getsah() */
3157 		goto again;
3158 	}
3159 	if (isnew != 0) {
3160 		/*
3161 		 * Add new SAH into SADB.
3162 		 *
3163 		 * XXXAE: we can serialize key_add and key_getspi calls, so
3164 		 * several threads will not fight in the race.
3165 		 * Otherwise we should check under SAHTREE lock, that this
3166 		 * SAH would not added twice.
3167 		 */
3168 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
3169 		/* Add new SAH into hash by addresses */
3170 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
3171 		/* Now we are linked in the chain */
3172 		sah->state = SADB_SASTATE_MATURE;
3173 		/*
3174 		 * SAV references this new SAH.
3175 		 * In case of existing SAH we reuse reference
3176 		 * from key_getsah().
3177 		 */
3178 		SAH_ADDREF(sah);
3179 	}
3180 	/* Link SAV with SAH */
3181 	if (sav->state == SADB_SASTATE_MATURE) {
3182 		TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain);
3183 		ipsec_accel_sa_newkey(sav);
3184 	} else
3185 		TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain);
3186 	/* Add SAV into SPI hash */
3187 	LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash);
3188 	SAHTREE_WUNLOCK();
3189 	*errp = 0;	/* success */
3190 done:
3191 	if (*errp != 0) {
3192 		if (sav != NULL) {
3193 			if (sav->lock != NULL) {
3194 				rm_destroy(sav->lock);
3195 				free(sav->lock, M_IPSEC_MISC);
3196 			}
3197 			if (sav->lft_c != NULL)
3198 				uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3199 #ifdef IPSEC_OFFLOAD
3200 			if (sav->accel_lft_sw != NULL)
3201 				uma_zfree_pcpu(ipsec_key_lft_zone,
3202 				    sav->accel_lft_sw);
3203 			free(__DECONST(char *, sav->accel_ifname),
3204 			    M_IPSEC_MISC);
3205 #endif
3206 			free(sav, M_IPSEC_SA), sav = NULL;
3207 		}
3208 		if (sah != NULL)
3209 			key_freesah(&sah);
3210 		if (*errp == ENOBUFS) {
3211 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3212 			    __func__));
3213 			PFKEYSTAT_INC(in_nomem);
3214 		}
3215 	}
3216 	return (sav);
3217 }
3218 
3219 /*
3220  * free() SA variable entry.
3221  */
3222 static void
key_cleansav(struct secasvar * sav)3223 key_cleansav(struct secasvar *sav)
3224 {
3225 
3226 	if (sav->natt != NULL) {
3227 		free(sav->natt, M_IPSEC_MISC);
3228 		sav->natt = NULL;
3229 	}
3230 	if (sav->flags & SADB_X_EXT_F_CLONED)
3231 		return;
3232 	if (sav->tdb_xform != NULL) {
3233 		sav->tdb_xform->xf_cleanup(sav);
3234 		sav->tdb_xform = NULL;
3235 	}
3236 	if (sav->key_auth != NULL) {
3237 		zfree(sav->key_auth->key_data, M_IPSEC_MISC);
3238 		free(sav->key_auth, M_IPSEC_MISC);
3239 		sav->key_auth = NULL;
3240 	}
3241 	if (sav->key_enc != NULL) {
3242 		zfree(sav->key_enc->key_data, M_IPSEC_MISC);
3243 		free(sav->key_enc, M_IPSEC_MISC);
3244 		sav->key_enc = NULL;
3245 	}
3246 	if (sav->replay != NULL) {
3247 		mtx_destroy(&sav->replay->lock);
3248 		if (sav->replay->bitmap != NULL)
3249 			free(sav->replay->bitmap, M_IPSEC_MISC);
3250 		free(sav->replay, M_IPSEC_MISC);
3251 		sav->replay = NULL;
3252 	}
3253 	if (sav->lft_h != NULL) {
3254 		free(sav->lft_h, M_IPSEC_MISC);
3255 		sav->lft_h = NULL;
3256 	}
3257 	if (sav->lft_s != NULL) {
3258 		free(sav->lft_s, M_IPSEC_MISC);
3259 		sav->lft_s = NULL;
3260 	}
3261 }
3262 
3263 /*
3264  * free() SA variable entry.
3265  */
3266 static void
key_delsav(struct secasvar * sav)3267 key_delsav(struct secasvar *sav)
3268 {
3269 	IPSEC_ASSERT(sav != NULL, ("null sav"));
3270 	IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD,
3271 	    ("attempt to free non DEAD SA %p", sav));
3272 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0",
3273 	    sav->refcnt));
3274 #ifdef IPSEC_OFFLOAD
3275 	KASSERT(CK_LIST_EMPTY(&sav->accel_ifps),
3276 	    ("key_unlinksav: sav %p still offloaded", sav));
3277 #endif
3278 
3279 	/*
3280 	 * SA must be unlinked from the chain and hashtbl.
3281 	 * If SA was cloned, we leave all fields untouched,
3282 	 * except NAT-T config.
3283 	 */
3284 	key_cleansav(sav);
3285 	if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) {
3286 		rm_destroy(sav->lock);
3287 		free(sav->lock, M_IPSEC_MISC);
3288 		uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3289 	}
3290 #ifdef IPSEC_OFFLOAD
3291 	/* XXXKIB should this be moved to key_cleansav()? */
3292 	uma_zfree_pcpu(ipsec_key_lft_zone, sav->accel_lft_sw);
3293 	free(__DECONST(char *, sav->accel_ifname), M_IPSEC_MISC);
3294 #endif
3295 	free(sav, M_IPSEC_SA);
3296 }
3297 
3298 /*
3299  * search SAH.
3300  * OUT:
3301  *	NULL	: not found
3302  *	others	: found, referenced pointer to a SAH.
3303  */
3304 static struct secashead *
key_getsah(struct secasindex * saidx)3305 key_getsah(struct secasindex *saidx)
3306 {
3307 	SAHTREE_RLOCK_TRACKER;
3308 	struct secashead *sah;
3309 
3310 	SAHTREE_RLOCK();
3311 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
3312 	    if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) {
3313 		    SAH_ADDREF(sah);
3314 		    break;
3315 	    }
3316 	}
3317 	SAHTREE_RUNLOCK();
3318 	return (sah);
3319 }
3320 
3321 /*
3322  * Check not to be duplicated SPI.
3323  * OUT:
3324  *	0	: not found
3325  *	1	: found SA with given SPI.
3326  */
3327 static int
key_checkspidup(uint32_t spi)3328 key_checkspidup(uint32_t spi)
3329 {
3330 	SAHTREE_RLOCK_TRACKER;
3331 	struct secasvar *sav;
3332 
3333 	/* Assume SPI is in network byte order */
3334 	SAHTREE_RLOCK();
3335 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3336 		if (sav->spi == spi)
3337 			break;
3338 	}
3339 	SAHTREE_RUNLOCK();
3340 	return (sav != NULL);
3341 }
3342 
3343 /*
3344  * Search SA by SPI.
3345  * OUT:
3346  *	NULL	: not found
3347  *	others	: found, referenced pointer to a SA.
3348  */
3349 static struct secasvar *
key_getsavbyspi(uint32_t spi)3350 key_getsavbyspi(uint32_t spi)
3351 {
3352 	SAHTREE_RLOCK_TRACKER;
3353 	struct secasvar *sav;
3354 
3355 	/* Assume SPI is in network byte order */
3356 	SAHTREE_RLOCK();
3357 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3358 		if (sav->spi != spi)
3359 			continue;
3360 		SAV_ADDREF(sav);
3361 		break;
3362 	}
3363 	SAHTREE_RUNLOCK();
3364 	return (sav);
3365 }
3366 
3367 static int
key_updatelifetimes(struct secasvar * sav,const struct sadb_msghdr * mhp)3368 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp)
3369 {
3370 	struct seclifetime *lft_h, *lft_s, *tmp;
3371 
3372 	/* Lifetime extension is optional, check that it is present. */
3373 	if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3374 	    SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) {
3375 		/*
3376 		 * In case of SADB_UPDATE we may need to change
3377 		 * existing lifetimes.
3378 		 */
3379 		if (sav->state == SADB_SASTATE_MATURE) {
3380 			lft_h = lft_s = NULL;
3381 			goto reset;
3382 		}
3383 		return (0);
3384 	}
3385 	/* Both HARD and SOFT extensions must present */
3386 	if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3387 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
3388 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
3389 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
3390 		ipseclog((LOG_DEBUG,
3391 		    "%s: invalid message: missing required header.\n",
3392 		    __func__));
3393 		return (EINVAL);
3394 	}
3395 	if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) ||
3396 	    SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) {
3397 		ipseclog((LOG_DEBUG,
3398 		    "%s: invalid message: wrong header size.\n", __func__));
3399 		return (EINVAL);
3400 	}
3401 	lft_h = key_dup_lifemsg((const struct sadb_lifetime *)
3402 	    mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC);
3403 	if (lft_h == NULL) {
3404 		PFKEYSTAT_INC(in_nomem);
3405 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3406 		return (ENOBUFS);
3407 	}
3408 	lft_s = key_dup_lifemsg((const struct sadb_lifetime *)
3409 	    mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC);
3410 	if (lft_s == NULL) {
3411 		PFKEYSTAT_INC(in_nomem);
3412 		free(lft_h, M_IPSEC_MISC);
3413 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3414 		return (ENOBUFS);
3415 	}
3416 reset:
3417 	if (sav->state != SADB_SASTATE_LARVAL) {
3418 		/*
3419 		 * key_update() holds reference to this SA,
3420 		 * so it won't be deleted in meanwhile.
3421 		 */
3422 		SECASVAR_WLOCK(sav);
3423 		tmp = sav->lft_h;
3424 		sav->lft_h = lft_h;
3425 		lft_h = tmp;
3426 
3427 		tmp = sav->lft_s;
3428 		sav->lft_s = lft_s;
3429 		lft_s = tmp;
3430 		SECASVAR_WUNLOCK(sav);
3431 		if (lft_h != NULL)
3432 			free(lft_h, M_IPSEC_MISC);
3433 		if (lft_s != NULL)
3434 			free(lft_s, M_IPSEC_MISC);
3435 		return (0);
3436 	}
3437 	/* We can update lifetime without holding a lock */
3438 	IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n"));
3439 	IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n"));
3440 	sav->lft_h = lft_h;
3441 	sav->lft_s = lft_s;
3442 	return (0);
3443 }
3444 
3445 /*
3446  * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*.
3447  * You must update these if need. Expects only LARVAL SAs.
3448  * OUT:	0:	success.
3449  *	!0:	failure.
3450  */
3451 static int
key_setsaval(struct secasvar * sav,const struct sadb_msghdr * mhp)3452 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp)
3453 {
3454 	const struct sadb_sa *sa0;
3455 	const struct sadb_key *key0;
3456 	uint32_t replay;
3457 	size_t len;
3458 	int error;
3459 
3460 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3461 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3462 	IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL,
3463 	    ("Attempt to update non LARVAL SA"));
3464 
3465 	/* XXX rewrite */
3466 	error = key_setident(sav->sah, mhp);
3467 	if (error != 0)
3468 		goto fail;
3469 
3470 	/* SA */
3471 	if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
3472 		if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
3473 			error = EINVAL;
3474 			goto fail;
3475 		}
3476 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3477 		sav->alg_auth = sa0->sadb_sa_auth;
3478 		sav->alg_enc = sa0->sadb_sa_encrypt;
3479 		sav->flags = sa0->sadb_sa_flags;
3480 		if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) {
3481 			ipseclog((LOG_DEBUG,
3482 			    "%s: invalid sa_flags 0x%08x.\n", __func__,
3483 			    sav->flags));
3484 			error = EINVAL;
3485 			goto fail;
3486 		}
3487 
3488 		/* Optional replay window */
3489 		replay = 0;
3490 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0)
3491 			replay = sa0->sadb_sa_replay;
3492 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) {
3493 			if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) {
3494 				error = EINVAL;
3495 				goto fail;
3496 			}
3497 			replay = ((const struct sadb_x_sa_replay *)
3498 			    mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay;
3499 
3500 			if (replay > UINT32_MAX - 32) {
3501 				ipseclog((LOG_DEBUG,
3502 				    "%s: replay window too big.\n", __func__));
3503 				error = EINVAL;
3504 				goto fail;
3505 			}
3506 
3507 			replay = (replay + 7) >> 3;
3508 		}
3509 
3510 		sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC,
3511 		    M_NOWAIT | M_ZERO);
3512 		if (sav->replay == NULL) {
3513 			PFKEYSTAT_INC(in_nomem);
3514 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3515 			    __func__));
3516 			error = ENOBUFS;
3517 			goto fail;
3518 		}
3519 		mtx_init(&sav->replay->lock, "ipsec replay", NULL, MTX_DEF);
3520 
3521 		if (replay != 0) {
3522 			/* number of 32b blocks to be allocated */
3523 			uint32_t bitmap_size;
3524 
3525 			/* RFC 6479:
3526 			 * - the allocated replay window size must be
3527 			 *   a power of two.
3528 			 * - use an extra 32b block as a redundant window.
3529 			 */
3530 			bitmap_size = 1;
3531 			while (replay + 4 > bitmap_size)
3532 				bitmap_size <<= 1;
3533 			bitmap_size = bitmap_size / 4;
3534 
3535 			sav->replay->bitmap = malloc(
3536 			    bitmap_size * sizeof(uint32_t), M_IPSEC_MISC,
3537 			    M_NOWAIT | M_ZERO);
3538 			if (sav->replay->bitmap == NULL) {
3539 				PFKEYSTAT_INC(in_nomem);
3540 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3541 					__func__));
3542 				error = ENOBUFS;
3543 				goto fail;
3544 			}
3545 			sav->replay->bitmap_size = bitmap_size;
3546 			sav->replay->wsize = replay;
3547 		}
3548 	}
3549 
3550 	/* Authentication keys */
3551 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
3552 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) {
3553 			error = EINVAL;
3554 			goto fail;
3555 		}
3556 		error = 0;
3557 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3558 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3559 		switch (mhp->msg->sadb_msg_satype) {
3560 		case SADB_SATYPE_AH:
3561 		case SADB_SATYPE_ESP:
3562 		case SADB_X_SATYPE_TCPSIGNATURE:
3563 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3564 			    sav->alg_auth != SADB_X_AALG_NULL)
3565 				error = EINVAL;
3566 			if (key0->sadb_key_bits == 0 || (sizeof(struct sadb_key) +
3567 			    (key0->sadb_key_bits >> 3)) > len)
3568 				error = EINVAL;
3569 			break;
3570 		case SADB_X_SATYPE_IPCOMP:
3571 		default:
3572 			error = EINVAL;
3573 			break;
3574 		}
3575 		if (error) {
3576 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3577 				__func__));
3578 			goto fail;
3579 		}
3580 
3581 		sav->key_auth = key_dup_keymsg(key0, M_IPSEC_MISC);
3582 		if (sav->key_auth == NULL ) {
3583 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3584 				  __func__));
3585 			PFKEYSTAT_INC(in_nomem);
3586 			error = ENOBUFS;
3587 			goto fail;
3588 		}
3589 	}
3590 
3591 	/* Encryption key */
3592 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) {
3593 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) {
3594 			error = EINVAL;
3595 			goto fail;
3596 		}
3597 		error = 0;
3598 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3599 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3600 		switch (mhp->msg->sadb_msg_satype) {
3601 		case SADB_SATYPE_ESP:
3602 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3603 			    sav->alg_enc != SADB_EALG_NULL) {
3604 				error = EINVAL;
3605 				break;
3606 			}
3607 			if (key0->sadb_key_bits == 0 || (sizeof(struct sadb_key) +
3608 			    (key0->sadb_key_bits >> 3)) > len) {
3609 				error = EINVAL;
3610 				break;
3611 			}
3612 			sav->key_enc = key_dup_keymsg(key0, M_IPSEC_MISC);
3613 			if (sav->key_enc == NULL) {
3614 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3615 					__func__));
3616 				PFKEYSTAT_INC(in_nomem);
3617 				error = ENOBUFS;
3618 				goto fail;
3619 			}
3620 			break;
3621 		case SADB_X_SATYPE_IPCOMP:
3622 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3623 				error = EINVAL;
3624 			sav->key_enc = NULL;	/*just in case*/
3625 			break;
3626 		case SADB_SATYPE_AH:
3627 		case SADB_X_SATYPE_TCPSIGNATURE:
3628 		default:
3629 			error = EINVAL;
3630 			break;
3631 		}
3632 		if (error) {
3633 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3634 				__func__));
3635 			goto fail;
3636 		}
3637 	}
3638 
3639 	/* set iv */
3640 	sav->ivlen = 0;
3641 	switch (mhp->msg->sadb_msg_satype) {
3642 	case SADB_SATYPE_AH:
3643 		if (sav->flags & SADB_X_EXT_DERIV) {
3644 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3645 			    "given to AH SA.\n", __func__));
3646 			error = EINVAL;
3647 			goto fail;
3648 		}
3649 		if (sav->alg_enc != SADB_EALG_NONE) {
3650 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3651 			    "mismated.\n", __func__));
3652 			error = EINVAL;
3653 			goto fail;
3654 		}
3655 		error = xform_init(sav, XF_AH);
3656 		break;
3657 	case SADB_SATYPE_ESP:
3658 		if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) ==
3659 		    (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) {
3660 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3661 			    "given to old-esp.\n", __func__));
3662 			error = EINVAL;
3663 			goto fail;
3664 		}
3665 		error = xform_init(sav, XF_ESP);
3666 		break;
3667 	case SADB_X_SATYPE_IPCOMP:
3668 		if (sav->alg_auth != SADB_AALG_NONE) {
3669 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3670 			    "mismated.\n", __func__));
3671 			error = EINVAL;
3672 			goto fail;
3673 		}
3674 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 &&
3675 		    ntohl(sav->spi) >= 0x10000) {
3676 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3677 			    __func__));
3678 			error = EINVAL;
3679 			goto fail;
3680 		}
3681 		error = xform_init(sav, XF_IPCOMP);
3682 		break;
3683 	case SADB_X_SATYPE_TCPSIGNATURE:
3684 		if (sav->alg_enc != SADB_EALG_NONE) {
3685 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3686 			    "mismated.\n", __func__));
3687 			error = EINVAL;
3688 			goto fail;
3689 		}
3690 		error = xform_init(sav, XF_TCPSIGNATURE);
3691 		break;
3692 	default:
3693 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3694 		error = EPROTONOSUPPORT;
3695 		goto fail;
3696 	}
3697 	if (error) {
3698 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3699 		    __func__, mhp->msg->sadb_msg_satype));
3700 		goto fail;
3701 	}
3702 
3703 	/* Handle NAT-T headers */
3704 	error = key_setnatt(sav, mhp);
3705 	if (error != 0)
3706 		goto fail;
3707 
3708 	/* Initialize lifetime for CURRENT */
3709 	sav->firstused = 0;
3710 	sav->created = time_second;
3711 
3712 	/* lifetimes for HARD and SOFT */
3713 	error = key_updatelifetimes(sav, mhp);
3714 	if (error == 0)
3715 		return (0);
3716 fail:
3717 	key_cleansav(sav);
3718 	return (error);
3719 }
3720 
3721 /*
3722  * subroutine for SADB_GET and SADB_DUMP.
3723  */
3724 static struct mbuf *
key_setdumpsa(struct secasvar * sav,uint8_t type,uint8_t satype,uint32_t seq,uint32_t pid,struct rm_priotracker * sahtree_trackerp)3725 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype,
3726     uint32_t seq, uint32_t pid, struct rm_priotracker *sahtree_trackerp)
3727 {
3728 	struct seclifetime lft_c;
3729 	struct mbuf *result = NULL, *tres = NULL, *m;
3730 	int i, dumporder[] = {
3731 		SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY,
3732 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3733 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3734 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY,
3735 		SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT,
3736 		SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
3737 		SADB_EXT_SENSITIVITY,
3738 		SADB_X_EXT_NAT_T_TYPE,
3739 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3740 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3741 		SADB_X_EXT_NAT_T_FRAG,
3742 #ifdef IPSEC_OFFLOAD
3743 		SADB_X_EXT_LFT_CUR_SW_OFFL, SADB_X_EXT_LFT_CUR_HW_OFFL,
3744 		SADB_X_EXT_IF_HW_OFFL,
3745 #endif
3746 	};
3747 	uint32_t replay_count;
3748 #ifdef IPSEC_OFFLOAD
3749 	int error;
3750 #endif
3751 
3752 	SECASVAR_RLOCK_TRACKER;
3753 
3754 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3755 	if (m == NULL)
3756 		goto fail;
3757 	result = m;
3758 
3759 	for (i = nitems(dumporder) - 1; i >= 0; i--) {
3760 		m = NULL;
3761 		switch (dumporder[i]) {
3762 		case SADB_EXT_SA:
3763 			m = key_setsadbsa(sav);
3764 			if (!m)
3765 				goto fail;
3766 			break;
3767 
3768 		case SADB_X_EXT_SA2: {
3769 			SECASVAR_RLOCK(sav);
3770 			replay_count = sav->replay ? sav->replay->count : 0;
3771 			SECASVAR_RUNLOCK(sav);
3772 			m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
3773 					sav->sah->saidx.reqid);
3774 			if (!m)
3775 				goto fail;
3776 			break;
3777 		}
3778 		case SADB_X_EXT_SA_REPLAY:
3779 			if (sav->replay == NULL ||
3780 			    sav->replay->wsize <= UINT8_MAX)
3781 				continue;
3782 
3783 			m = key_setsadbxsareplay(sav->replay->wsize);
3784 			if (!m)
3785 				goto fail;
3786 			break;
3787 
3788 		case SADB_EXT_ADDRESS_SRC:
3789 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3790 			    &sav->sah->saidx.src.sa,
3791 			    FULLMASK, IPSEC_ULPROTO_ANY);
3792 			if (!m)
3793 				goto fail;
3794 			break;
3795 
3796 		case SADB_EXT_ADDRESS_DST:
3797 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3798 			    &sav->sah->saidx.dst.sa,
3799 			    FULLMASK, IPSEC_ULPROTO_ANY);
3800 			if (!m)
3801 				goto fail;
3802 			break;
3803 
3804 		case SADB_EXT_KEY_AUTH:
3805 			if (!sav->key_auth)
3806 				continue;
3807 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3808 			if (!m)
3809 				goto fail;
3810 			break;
3811 
3812 		case SADB_EXT_KEY_ENCRYPT:
3813 			if (!sav->key_enc)
3814 				continue;
3815 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3816 			if (!m)
3817 				goto fail;
3818 			break;
3819 
3820 		case SADB_EXT_LIFETIME_CURRENT:
3821 			lft_c.addtime = sav->created;
3822 			lft_c.allocations = (uint32_t)counter_u64_fetch(
3823 			    sav->lft_c_allocations);
3824 			lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes);
3825 			lft_c.usetime = sav->firstused;
3826 			m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT);
3827 			if (!m)
3828 				goto fail;
3829 			break;
3830 
3831 		case SADB_EXT_LIFETIME_HARD:
3832 			if (!sav->lft_h)
3833 				continue;
3834 			m = key_setlifetime(sav->lft_h,
3835 					    SADB_EXT_LIFETIME_HARD);
3836 			if (!m)
3837 				goto fail;
3838 			break;
3839 
3840 		case SADB_EXT_LIFETIME_SOFT:
3841 			if (!sav->lft_s)
3842 				continue;
3843 			m = key_setlifetime(sav->lft_s,
3844 					    SADB_EXT_LIFETIME_SOFT);
3845 
3846 			if (!m)
3847 				goto fail;
3848 			break;
3849 
3850 		case SADB_X_EXT_NAT_T_TYPE:
3851 			if (sav->natt == NULL)
3852 				continue;
3853 			m = key_setsadbxtype(UDP_ENCAP_ESPINUDP);
3854 			if (!m)
3855 				goto fail;
3856 			break;
3857 
3858 		case SADB_X_EXT_NAT_T_DPORT:
3859 			if (sav->natt == NULL)
3860 				continue;
3861 			m = key_setsadbxport(sav->natt->dport,
3862 			    SADB_X_EXT_NAT_T_DPORT);
3863 			if (!m)
3864 				goto fail;
3865 			break;
3866 
3867 		case SADB_X_EXT_NAT_T_SPORT:
3868 			if (sav->natt == NULL)
3869 				continue;
3870 			m = key_setsadbxport(sav->natt->sport,
3871 			    SADB_X_EXT_NAT_T_SPORT);
3872 			if (!m)
3873 				goto fail;
3874 			break;
3875 
3876 		case SADB_X_EXT_NAT_T_OAI:
3877 			if (sav->natt == NULL ||
3878 			    (sav->natt->flags & IPSEC_NATT_F_OAI) == 0)
3879 				continue;
3880 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI,
3881 			    &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3882 			if (!m)
3883 				goto fail;
3884 			break;
3885 		case SADB_X_EXT_NAT_T_OAR:
3886 			if (sav->natt == NULL ||
3887 			    (sav->natt->flags & IPSEC_NATT_F_OAR) == 0)
3888 				continue;
3889 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR,
3890 			    &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3891 			if (!m)
3892 				goto fail;
3893 			break;
3894 		case SADB_X_EXT_NAT_T_FRAG:
3895 			/* We do not (yet) support those. */
3896 			continue;
3897 #ifdef IPSEC_OFFLOAD
3898 		case SADB_X_EXT_LFT_CUR_SW_OFFL:
3899 			if (!ipsec_accel_is_accel_sav(sav))
3900 				continue;
3901 			SAV_ADDREF(sav);
3902 			error = ipsec_accel_sa_lifetime_op(sav, &lft_c,
3903 			    NULL, IF_SA_CNT_TOTAL_SW_VAL, sahtree_trackerp);
3904 			if (error != 0) {
3905 				m = NULL;
3906 				goto fail;
3907 			}
3908 			m = key_setlifetime(&lft_c, dumporder[i]);
3909 			if (m == NULL)
3910 				goto fail;
3911 			key_freesav(&sav);
3912 			if (sav == NULL) {
3913 				m_freem(m);
3914 				goto fail;
3915 			}
3916 			break;
3917 		case SADB_X_EXT_LFT_CUR_HW_OFFL:
3918 			if (!ipsec_accel_is_accel_sav(sav))
3919 				continue;
3920 			memset(&lft_c, 0, sizeof(lft_c));
3921 			lft_c.bytes = sav->accel_hw_octets;
3922 			lft_c.allocations = sav->accel_hw_allocs;
3923 			m = key_setlifetime(&lft_c, dumporder[i]);
3924 			if (m == NULL)
3925 				goto fail;
3926 			break;
3927 		case SADB_X_EXT_IF_HW_OFFL:
3928 			if (!ipsec_accel_is_accel_sav(sav))
3929 				continue;
3930 			m = ipsec_accel_key_setaccelif(sav);
3931 			if (m == NULL)
3932 				continue;	/* benigh */
3933 			break;
3934 #endif
3935 
3936 		case SADB_EXT_ADDRESS_PROXY:
3937 		case SADB_EXT_IDENTITY_SRC:
3938 		case SADB_EXT_IDENTITY_DST:
3939 			/* XXX: should we brought from SPD ? */
3940 		case SADB_EXT_SENSITIVITY:
3941 		default:
3942 			continue;
3943 		}
3944 
3945 		if (!m)
3946 			goto fail;
3947 		if (tres)
3948 			m_cat(m, tres);
3949 		tres = m;
3950 	}
3951 
3952 	m_cat(result, tres);
3953 	tres = NULL;
3954 	if (result->m_len < sizeof(struct sadb_msg)) {
3955 		result = m_pullup(result, sizeof(struct sadb_msg));
3956 		if (result == NULL)
3957 			goto fail;
3958 	}
3959 
3960 	result->m_pkthdr.len = 0;
3961 	for (m = result; m; m = m->m_next)
3962 		result->m_pkthdr.len += m->m_len;
3963 
3964 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3965 	    PFKEY_UNIT64(result->m_pkthdr.len);
3966 
3967 	return result;
3968 
3969 fail:
3970 	m_freem(result);
3971 	m_freem(tres);
3972 	return NULL;
3973 }
3974 
3975 /*
3976  * set data into sadb_msg.
3977  */
3978 static struct mbuf *
key_setsadbmsg(u_int8_t type,u_int16_t tlen,u_int8_t satype,u_int32_t seq,pid_t pid,u_int16_t reserved)3979 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3980     pid_t pid, u_int16_t reserved)
3981 {
3982 	struct mbuf *m;
3983 	struct sadb_msg *p;
3984 	int len;
3985 
3986 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3987 	if (len > MCLBYTES)
3988 		return NULL;
3989 	m = key_mget(len);
3990 	if (m == NULL)
3991 		return NULL;
3992 	m->m_pkthdr.len = m->m_len = len;
3993 	m->m_next = NULL;
3994 
3995 	p = mtod(m, struct sadb_msg *);
3996 
3997 	bzero(p, len);
3998 	p->sadb_msg_version = PF_KEY_V2;
3999 	p->sadb_msg_type = type;
4000 	p->sadb_msg_errno = 0;
4001 	p->sadb_msg_satype = satype;
4002 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
4003 	p->sadb_msg_reserved = reserved;
4004 	p->sadb_msg_seq = seq;
4005 	p->sadb_msg_pid = (u_int32_t)pid;
4006 
4007 	return m;
4008 }
4009 
4010 /*
4011  * copy secasvar data into sadb_address.
4012  */
4013 static struct mbuf *
key_setsadbsa(struct secasvar * sav)4014 key_setsadbsa(struct secasvar *sav)
4015 {
4016 	struct mbuf *m;
4017 	struct sadb_sa *p;
4018 	int len;
4019 
4020 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4021 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4022 	if (m == NULL)
4023 		return (NULL);
4024 	m_align(m, len);
4025 	m->m_len = len;
4026 	p = mtod(m, struct sadb_sa *);
4027 	bzero(p, len);
4028 	p->sadb_sa_len = PFKEY_UNIT64(len);
4029 	p->sadb_sa_exttype = SADB_EXT_SA;
4030 	p->sadb_sa_spi = sav->spi;
4031 	p->sadb_sa_replay = sav->replay ?
4032 	    (sav->replay->wsize > UINT8_MAX ? UINT8_MAX :
4033 		sav->replay->wsize): 0;
4034 	p->sadb_sa_state = sav->state;
4035 	p->sadb_sa_auth = sav->alg_auth;
4036 	p->sadb_sa_encrypt = sav->alg_enc;
4037 	p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX;
4038 	return (m);
4039 }
4040 
4041 /*
4042  * set data into sadb_address.
4043  */
4044 static struct mbuf *
key_setsadbaddr(u_int16_t exttype,const struct sockaddr * saddr,u_int8_t prefixlen,u_int16_t ul_proto)4045 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4046     u_int8_t prefixlen, u_int16_t ul_proto)
4047 {
4048 	struct mbuf *m;
4049 	struct sadb_address *p;
4050 	size_t len;
4051 
4052 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4053 	    PFKEY_ALIGN8(saddr->sa_len);
4054 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4055 	if (m == NULL)
4056 		return (NULL);
4057 	m_align(m, len);
4058 	m->m_len = len;
4059 	p = mtod(m, struct sadb_address *);
4060 
4061 	bzero(p, len);
4062 	p->sadb_address_len = PFKEY_UNIT64(len);
4063 	p->sadb_address_exttype = exttype;
4064 	p->sadb_address_proto = ul_proto;
4065 	if (prefixlen == FULLMASK) {
4066 		switch (saddr->sa_family) {
4067 		case AF_INET:
4068 			prefixlen = sizeof(struct in_addr) << 3;
4069 			break;
4070 		case AF_INET6:
4071 			prefixlen = sizeof(struct in6_addr) << 3;
4072 			break;
4073 		default:
4074 			; /*XXX*/
4075 		}
4076 	}
4077 	p->sadb_address_prefixlen = prefixlen;
4078 	p->sadb_address_reserved = 0;
4079 
4080 	bcopy(saddr,
4081 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4082 	    saddr->sa_len);
4083 
4084 	return m;
4085 }
4086 
4087 /*
4088  * set data into sadb_x_sa2.
4089  */
4090 static struct mbuf *
key_setsadbxsa2(u_int8_t mode,u_int32_t seq,u_int32_t reqid)4091 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
4092 {
4093 	struct mbuf *m;
4094 	struct sadb_x_sa2 *p;
4095 	size_t len;
4096 
4097 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4098 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4099 	if (m == NULL)
4100 		return (NULL);
4101 	m_align(m, len);
4102 	m->m_len = len;
4103 	p = mtod(m, struct sadb_x_sa2 *);
4104 
4105 	bzero(p, len);
4106 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4107 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4108 	p->sadb_x_sa2_mode = mode;
4109 	p->sadb_x_sa2_reserved1 = 0;
4110 	p->sadb_x_sa2_reserved2 = 0;
4111 	p->sadb_x_sa2_sequence = seq;
4112 	p->sadb_x_sa2_reqid = reqid;
4113 
4114 	return m;
4115 }
4116 
4117 /*
4118  * Set data into sadb_x_sa_replay.
4119  */
4120 static struct mbuf *
key_setsadbxsareplay(u_int32_t replay)4121 key_setsadbxsareplay(u_int32_t replay)
4122 {
4123 	struct mbuf *m;
4124 	struct sadb_x_sa_replay *p;
4125 	size_t len;
4126 
4127 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay));
4128 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4129 	if (m == NULL)
4130 		return (NULL);
4131 	m_align(m, len);
4132 	m->m_len = len;
4133 	p = mtod(m, struct sadb_x_sa_replay *);
4134 
4135 	bzero(p, len);
4136 	p->sadb_x_sa_replay_len = PFKEY_UNIT64(len);
4137 	p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY;
4138 	p->sadb_x_sa_replay_replay = (replay << 3);
4139 
4140 	return m;
4141 }
4142 
4143 /*
4144  * Set a type in sadb_x_nat_t_type.
4145  */
4146 static struct mbuf *
key_setsadbxtype(u_int16_t type)4147 key_setsadbxtype(u_int16_t type)
4148 {
4149 	struct mbuf *m;
4150 	size_t len;
4151 	struct sadb_x_nat_t_type *p;
4152 
4153 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
4154 
4155 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4156 	if (m == NULL)
4157 		return (NULL);
4158 	m_align(m, len);
4159 	m->m_len = len;
4160 	p = mtod(m, struct sadb_x_nat_t_type *);
4161 
4162 	bzero(p, len);
4163 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
4164 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
4165 	p->sadb_x_nat_t_type_type = type;
4166 
4167 	return (m);
4168 }
4169 /*
4170  * Set a port in sadb_x_nat_t_port.
4171  * In contrast to default RFC 2367 behaviour, port is in network byte order.
4172  */
4173 static struct mbuf *
key_setsadbxport(u_int16_t port,u_int16_t type)4174 key_setsadbxport(u_int16_t port, u_int16_t type)
4175 {
4176 	struct mbuf *m;
4177 	size_t len;
4178 	struct sadb_x_nat_t_port *p;
4179 
4180 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
4181 
4182 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4183 	if (m == NULL)
4184 		return (NULL);
4185 	m_align(m, len);
4186 	m->m_len = len;
4187 	p = mtod(m, struct sadb_x_nat_t_port *);
4188 
4189 	bzero(p, len);
4190 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
4191 	p->sadb_x_nat_t_port_exttype = type;
4192 	p->sadb_x_nat_t_port_port = port;
4193 
4194 	return (m);
4195 }
4196 
4197 /*
4198  * Get port from sockaddr. Port is in network byte order.
4199  */
4200 uint16_t
key_portfromsaddr(struct sockaddr * sa)4201 key_portfromsaddr(struct sockaddr *sa)
4202 {
4203 
4204 	switch (sa->sa_family) {
4205 #ifdef INET
4206 	case AF_INET:
4207 		return ((struct sockaddr_in *)sa)->sin_port;
4208 #endif
4209 #ifdef INET6
4210 	case AF_INET6:
4211 		return ((struct sockaddr_in6 *)sa)->sin6_port;
4212 #endif
4213 	}
4214 	return (0);
4215 }
4216 
4217 /*
4218  * Set port in struct sockaddr. Port is in network byte order.
4219  */
4220 void
key_porttosaddr(struct sockaddr * sa,uint16_t port)4221 key_porttosaddr(struct sockaddr *sa, uint16_t port)
4222 {
4223 
4224 	switch (sa->sa_family) {
4225 #ifdef INET
4226 	case AF_INET:
4227 		((struct sockaddr_in *)sa)->sin_port = port;
4228 		break;
4229 #endif
4230 #ifdef INET6
4231 	case AF_INET6:
4232 		((struct sockaddr_in6 *)sa)->sin6_port = port;
4233 		break;
4234 #endif
4235 	default:
4236 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
4237 			__func__, sa->sa_family));
4238 		break;
4239 	}
4240 }
4241 
4242 /*
4243  * set data into sadb_x_policy
4244  */
4245 static struct mbuf *
key_setsadbxpolicy(u_int16_t type,u_int8_t dir,u_int32_t id,u_int32_t priority)4246 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority)
4247 {
4248 	struct mbuf *m;
4249 	struct sadb_x_policy *p;
4250 	size_t len;
4251 
4252 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4253 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4254 	if (m == NULL)
4255 		return (NULL);
4256 	m_align(m, len);
4257 	m->m_len = len;
4258 	p = mtod(m, struct sadb_x_policy *);
4259 
4260 	bzero(p, len);
4261 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
4262 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4263 	p->sadb_x_policy_type = type;
4264 	p->sadb_x_policy_dir = dir;
4265 	p->sadb_x_policy_id = id;
4266 	p->sadb_x_policy_priority = priority;
4267 
4268 	return m;
4269 }
4270 
4271 /* %%% utilities */
4272 /* Take a key message (sadb_key) from the socket and turn it into one
4273  * of the kernel's key structures (seckey).
4274  *
4275  * IN: pointer to the src
4276  * OUT: NULL no more memory
4277  */
4278 struct seckey *
key_dup_keymsg(const struct sadb_key * src,struct malloc_type * type)4279 key_dup_keymsg(const struct sadb_key *src, struct malloc_type *type)
4280 {
4281 	struct seckey *dst;
4282 	size_t len;
4283 
4284 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4285 	if (dst != NULL) {
4286 		len = src->sadb_key_bits >> 3;
4287 		dst->bits = src->sadb_key_bits;
4288 		dst->key_data = malloc(len, type, M_NOWAIT);
4289 		if (dst->key_data != NULL) {
4290 			bcopy((const char *)(src + 1), dst->key_data, len);
4291 		} else {
4292 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4293 			    __func__));
4294 			free(dst, type);
4295 			dst = NULL;
4296 		}
4297 	} else {
4298 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4299 		    __func__));
4300 	}
4301 	return (dst);
4302 }
4303 
4304 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
4305  * turn it into one of the kernel's lifetime structures (seclifetime).
4306  *
4307  * IN: pointer to the destination, source and malloc type
4308  * OUT: NULL, no more memory
4309  */
4310 
4311 static struct seclifetime *
key_dup_lifemsg(const struct sadb_lifetime * src,struct malloc_type * type)4312 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
4313 {
4314 	struct seclifetime *dst;
4315 
4316 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4317 	if (dst == NULL) {
4318 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4319 		return (NULL);
4320 	}
4321 	dst->allocations = src->sadb_lifetime_allocations;
4322 	dst->bytes = src->sadb_lifetime_bytes;
4323 	dst->addtime = src->sadb_lifetime_addtime;
4324 	dst->usetime = src->sadb_lifetime_usetime;
4325 	return (dst);
4326 }
4327 
4328 /*
4329  * compare two secasindex structure.
4330  * flag can specify to compare 2 saidxes.
4331  * compare two secasindex structure without both mode and reqid.
4332  * don't compare port.
4333  * IN:
4334  *      saidx0: source, it can be in SAD.
4335  *      saidx1: object.
4336  * OUT:
4337  *      1 : equal
4338  *      0 : not equal
4339  */
4340 static int
key_cmpsaidx(const struct secasindex * saidx0,const struct secasindex * saidx1,int flag)4341 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
4342     int flag)
4343 {
4344 
4345 	/* sanity */
4346 	if (saidx0 == NULL && saidx1 == NULL)
4347 		return 1;
4348 
4349 	if (saidx0 == NULL || saidx1 == NULL)
4350 		return 0;
4351 
4352 	if (saidx0->proto != saidx1->proto)
4353 		return 0;
4354 
4355 	if (flag == CMP_EXACTLY) {
4356 		if (saidx0->mode != saidx1->mode)
4357 			return 0;
4358 		if (saidx0->reqid != saidx1->reqid)
4359 			return 0;
4360 		if (bcmp(&saidx0->src, &saidx1->src,
4361 		    saidx0->src.sa.sa_len) != 0 ||
4362 		    bcmp(&saidx0->dst, &saidx1->dst,
4363 		    saidx0->dst.sa.sa_len) != 0)
4364 			return 0;
4365 	} else {
4366 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4367 		if (flag == CMP_MODE_REQID || flag == CMP_REQID) {
4368 			/*
4369 			 * If reqid of SPD is non-zero, unique SA is required.
4370 			 * The result must be of same reqid in this case.
4371 			 */
4372 			if (saidx1->reqid != 0 &&
4373 			    saidx0->reqid != saidx1->reqid)
4374 				return 0;
4375 		}
4376 
4377 		if (flag == CMP_MODE_REQID) {
4378 			if (saidx0->mode != IPSEC_MODE_ANY
4379 			 && saidx0->mode != saidx1->mode)
4380 				return 0;
4381 		}
4382 
4383 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0)
4384 			return 0;
4385 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0)
4386 			return 0;
4387 	}
4388 
4389 	return 1;
4390 }
4391 
4392 /*
4393  * compare two secindex structure exactly.
4394  * IN:
4395  *	spidx0: source, it is often in SPD.
4396  *	spidx1: object, it is often from PFKEY message.
4397  * OUT:
4398  *	1 : equal
4399  *	0 : not equal
4400  */
4401 static int
key_cmpspidx_exactly(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4402 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4403     struct secpolicyindex *spidx1)
4404 {
4405 	/* sanity */
4406 	if (spidx0 == NULL && spidx1 == NULL)
4407 		return 1;
4408 
4409 	if (spidx0 == NULL || spidx1 == NULL)
4410 		return 0;
4411 
4412 	if (spidx0->prefs != spidx1->prefs
4413 	 || spidx0->prefd != spidx1->prefd
4414 	 || spidx0->ul_proto != spidx1->ul_proto
4415 	 || spidx0->dir != spidx1->dir)
4416 		return 0;
4417 
4418 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4419 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4420 }
4421 
4422 /*
4423  * compare two secindex structure with mask.
4424  * IN:
4425  *	spidx0: source, it is often in SPD.
4426  *	spidx1: object, it is often from IP header.
4427  * OUT:
4428  *	1 : equal
4429  *	0 : not equal
4430  */
4431 static int
key_cmpspidx_withmask(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4432 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4433     struct secpolicyindex *spidx1)
4434 {
4435 	/* sanity */
4436 	if (spidx0 == NULL && spidx1 == NULL)
4437 		return 1;
4438 
4439 	if (spidx0 == NULL || spidx1 == NULL)
4440 		return 0;
4441 
4442 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4443 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4444 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4445 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4446 		return 0;
4447 
4448 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4449 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4450 	 && spidx0->ul_proto != spidx1->ul_proto)
4451 		return 0;
4452 
4453 	switch (spidx0->src.sa.sa_family) {
4454 	case AF_INET:
4455 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4456 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4457 			return 0;
4458 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4459 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4460 			return 0;
4461 		break;
4462 	case AF_INET6:
4463 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4464 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4465 			return 0;
4466 		/*
4467 		 * scope_id check. if sin6_scope_id is 0, we regard it
4468 		 * as a wildcard scope, which matches any scope zone ID.
4469 		 */
4470 		if (spidx0->src.sin6.sin6_scope_id &&
4471 		    spidx1->src.sin6.sin6_scope_id &&
4472 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4473 			return 0;
4474 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4475 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4476 			return 0;
4477 		break;
4478 	default:
4479 		/* XXX */
4480 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4481 			return 0;
4482 		break;
4483 	}
4484 
4485 	switch (spidx0->dst.sa.sa_family) {
4486 	case AF_INET:
4487 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4488 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4489 			return 0;
4490 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4491 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4492 			return 0;
4493 		break;
4494 	case AF_INET6:
4495 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4496 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4497 			return 0;
4498 		/*
4499 		 * scope_id check. if sin6_scope_id is 0, we regard it
4500 		 * as a wildcard scope, which matches any scope zone ID.
4501 		 */
4502 		if (spidx0->dst.sin6.sin6_scope_id &&
4503 		    spidx1->dst.sin6.sin6_scope_id &&
4504 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4505 			return 0;
4506 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4507 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4508 			return 0;
4509 		break;
4510 	default:
4511 		/* XXX */
4512 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4513 			return 0;
4514 		break;
4515 	}
4516 
4517 	/* XXX Do we check other field ?  e.g. flowinfo */
4518 
4519 	return 1;
4520 }
4521 
4522 #ifdef satosin
4523 #undef satosin
4524 #endif
4525 #define satosin(s) ((const struct sockaddr_in *)s)
4526 #ifdef satosin6
4527 #undef satosin6
4528 #endif
4529 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4530 /* returns 0 on match */
4531 int
key_sockaddrcmp(const struct sockaddr * sa1,const struct sockaddr * sa2,int port)4532 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4533     int port)
4534 {
4535 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4536 		return 1;
4537 
4538 	switch (sa1->sa_family) {
4539 #ifdef INET
4540 	case AF_INET:
4541 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4542 			return 1;
4543 		if (satosin(sa1)->sin_addr.s_addr !=
4544 		    satosin(sa2)->sin_addr.s_addr) {
4545 			return 1;
4546 		}
4547 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4548 			return 1;
4549 		break;
4550 #endif
4551 #ifdef INET6
4552 	case AF_INET6:
4553 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4554 			return 1;	/*EINVAL*/
4555 		if (satosin6(sa1)->sin6_scope_id !=
4556 		    satosin6(sa2)->sin6_scope_id) {
4557 			return 1;
4558 		}
4559 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4560 		    &satosin6(sa2)->sin6_addr)) {
4561 			return 1;
4562 		}
4563 		if (port &&
4564 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4565 			return 1;
4566 		}
4567 		break;
4568 #endif
4569 	default:
4570 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4571 			return 1;
4572 		break;
4573 	}
4574 
4575 	return 0;
4576 }
4577 
4578 /* returns 0 on match */
4579 int
key_sockaddrcmp_withmask(const struct sockaddr * sa1,const struct sockaddr * sa2,size_t mask)4580 key_sockaddrcmp_withmask(const struct sockaddr *sa1,
4581     const struct sockaddr *sa2, size_t mask)
4582 {
4583 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4584 		return (1);
4585 
4586 	switch (sa1->sa_family) {
4587 #ifdef INET
4588 	case AF_INET:
4589 		return (!key_bbcmp(&satosin(sa1)->sin_addr,
4590 		    &satosin(sa2)->sin_addr, mask));
4591 #endif
4592 #ifdef INET6
4593 	case AF_INET6:
4594 		if (satosin6(sa1)->sin6_scope_id !=
4595 		    satosin6(sa2)->sin6_scope_id)
4596 			return (1);
4597 		return (!key_bbcmp(&satosin6(sa1)->sin6_addr,
4598 		    &satosin6(sa2)->sin6_addr, mask));
4599 #endif
4600 	}
4601 	return (1);
4602 }
4603 #undef satosin
4604 #undef satosin6
4605 
4606 /*
4607  * compare two buffers with mask.
4608  * IN:
4609  *	addr1: source
4610  *	addr2: object
4611  *	bits:  Number of bits to compare
4612  * OUT:
4613  *	1 : equal
4614  *	0 : not equal
4615  */
4616 static int
key_bbcmp(const void * a1,const void * a2,u_int bits)4617 key_bbcmp(const void *a1, const void *a2, u_int bits)
4618 {
4619 	const unsigned char *p1 = a1;
4620 	const unsigned char *p2 = a2;
4621 
4622 	/* XXX: This could be considerably faster if we compare a word
4623 	 * at a time, but it is complicated on LSB Endian machines */
4624 
4625 	/* Handle null pointers */
4626 	if (p1 == NULL || p2 == NULL)
4627 		return (p1 == p2);
4628 
4629 	while (bits >= 8) {
4630 		if (*p1++ != *p2++)
4631 			return 0;
4632 		bits -= 8;
4633 	}
4634 
4635 	if (bits > 0) {
4636 		u_int8_t mask = ~((1<<(8-bits))-1);
4637 		if ((*p1 & mask) != (*p2 & mask))
4638 			return 0;
4639 	}
4640 	return 1;	/* Match! */
4641 }
4642 
4643 static void
key_flush_spd(time_t now)4644 key_flush_spd(time_t now)
4645 {
4646 	SPTREE_RLOCK_TRACKER;
4647 	struct secpolicy_list drainq;
4648 	struct secpolicy *sp, *nextsp;
4649 	u_int dir;
4650 
4651 	LIST_INIT(&drainq);
4652 	SPTREE_RLOCK();
4653 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4654 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4655 			if (sp->lifetime == 0 && sp->validtime == 0)
4656 				continue;
4657 			if ((sp->lifetime &&
4658 			    now - sp->created > sp->lifetime) ||
4659 			    (sp->validtime &&
4660 			    now - sp->lastused > sp->validtime)) {
4661 				/* Hold extra reference to send SPDEXPIRE */
4662 				SP_ADDREF(sp);
4663 				LIST_INSERT_HEAD(&drainq, sp, drainq);
4664 			}
4665 		}
4666 	}
4667 	SPTREE_RUNLOCK();
4668 	if (LIST_EMPTY(&drainq))
4669 		return;
4670 
4671 	SPTREE_WLOCK();
4672 	sp = LIST_FIRST(&drainq);
4673 	while (sp != NULL) {
4674 		nextsp = LIST_NEXT(sp, drainq);
4675 		/* Check that SP is still linked */
4676 		if (sp->state != IPSEC_SPSTATE_ALIVE) {
4677 			LIST_REMOVE(sp, drainq);
4678 			key_freesp(&sp); /* release extra reference */
4679 			sp = nextsp;
4680 			continue;
4681 		}
4682 		TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
4683 		V_spd_size--;
4684 		LIST_REMOVE(sp, idhash);
4685 		sp->state = IPSEC_SPSTATE_DEAD;
4686 		ipsec_accel_spddel(sp);
4687 		sp = nextsp;
4688 	}
4689 	V_sp_genid++;
4690 	SPTREE_WUNLOCK();
4691 	if (SPDCACHE_ENABLED())
4692 		spdcache_clear();
4693 
4694 	sp = LIST_FIRST(&drainq);
4695 	while (sp != NULL) {
4696 		nextsp = LIST_NEXT(sp, drainq);
4697 		key_spdexpire(sp);
4698 		key_freesp(&sp); /* release extra reference */
4699 		key_freesp(&sp); /* release last reference */
4700 		sp = nextsp;
4701 	}
4702 }
4703 
4704 static void
key_flush_sad(time_t now)4705 key_flush_sad(time_t now)
4706 {
4707 	SAHTREE_RLOCK_TRACKER;
4708 	struct secashead_list emptyq;
4709 	struct secasvar_list drainq, hexpireq, sexpireq, freeq;
4710 	struct secashead *sah, *nextsah;
4711 	struct secasvar *sav, *nextsav;
4712 
4713 	SECASVAR_RLOCK_TRACKER;
4714 
4715 	LIST_INIT(&drainq);
4716 	LIST_INIT(&hexpireq);
4717 	LIST_INIT(&sexpireq);
4718 	LIST_INIT(&emptyq);
4719 
4720 	SAHTREE_RLOCK();
4721 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
4722 		/* Check for empty SAH */
4723 		if (TAILQ_EMPTY(&sah->savtree_larval) &&
4724 		    TAILQ_EMPTY(&sah->savtree_alive)) {
4725 			SAH_ADDREF(sah);
4726 			LIST_INSERT_HEAD(&emptyq, sah, drainq);
4727 			continue;
4728 		}
4729 		/* Add all stale LARVAL SAs into drainq */
4730 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
4731 			if (now - sav->created < V_key_larval_lifetime)
4732 				continue;
4733 			SAV_ADDREF(sav);
4734 			LIST_INSERT_HEAD(&drainq, sav, drainq);
4735 		}
4736 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
4737 			/* lifetimes aren't specified */
4738 			if (sav->lft_h == NULL)
4739 				continue;
4740 			SECASVAR_RLOCK(sav);
4741 			/*
4742 			 * Check again with lock held, because it may
4743 			 * be updated by SADB_UPDATE.
4744 			 */
4745 			if (sav->lft_h == NULL) {
4746 				SECASVAR_RUNLOCK(sav);
4747 				continue;
4748 			}
4749 			/*
4750 			 * RFC 2367:
4751 			 * HARD lifetimes MUST take precedence over SOFT
4752 			 * lifetimes, meaning if the HARD and SOFT lifetimes
4753 			 * are the same, the HARD lifetime will appear on the
4754 			 * EXPIRE message.
4755 			 */
4756 			/* check HARD lifetime */
4757 			if ((sav->lft_h->addtime != 0 &&
4758 			    now - sav->created > sav->lft_h->addtime) ||
4759 			    (sav->lft_h->usetime != 0 && sav->firstused &&
4760 			    now - sav->firstused > sav->lft_h->usetime) ||
4761 			    (sav->lft_h->bytes != 0 && counter_u64_fetch(
4762 			        sav->lft_c_bytes) > sav->lft_h->bytes)) {
4763 				SECASVAR_RUNLOCK(sav);
4764 				SAV_ADDREF(sav);
4765 				LIST_INSERT_HEAD(&hexpireq, sav, drainq);
4766 				continue;
4767 			}
4768 			/* check SOFT lifetime (only for MATURE SAs) */
4769 			if (sav->state == SADB_SASTATE_MATURE && (
4770 			    (sav->lft_s->addtime != 0 &&
4771 			    now - sav->created > sav->lft_s->addtime) ||
4772 			    (sav->lft_s->usetime != 0 && sav->firstused &&
4773 			    now - sav->firstused > sav->lft_s->usetime) ||
4774 			    (sav->lft_s->bytes != 0 && counter_u64_fetch(
4775 				sav->lft_c_bytes) > sav->lft_s->bytes) ||
4776 			    (!(sav->flags & SADB_X_SAFLAGS_ESN) &&
4777 			    (sav->replay != NULL) && (
4778 			    (sav->replay->count > UINT32_80PCT) ||
4779 			    (sav->replay->last > UINT32_80PCT))))) {
4780 				SECASVAR_RUNLOCK(sav);
4781 				SAV_ADDREF(sav);
4782 				LIST_INSERT_HEAD(&sexpireq, sav, drainq);
4783 				continue;
4784 			}
4785 			SECASVAR_RUNLOCK(sav);
4786 		}
4787 	}
4788 	SAHTREE_RUNLOCK();
4789 
4790 	if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) &&
4791 	    LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq))
4792 		return;
4793 
4794 	LIST_INIT(&freeq);
4795 	SAHTREE_WLOCK();
4796 	/* Unlink stale LARVAL SAs */
4797 	sav = LIST_FIRST(&drainq);
4798 	while (sav != NULL) {
4799 		nextsav = LIST_NEXT(sav, drainq);
4800 		/* Check that SA is still LARVAL */
4801 		if (sav->state != SADB_SASTATE_LARVAL) {
4802 			LIST_REMOVE(sav, drainq);
4803 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4804 			sav = nextsav;
4805 			continue;
4806 		}
4807 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
4808 		LIST_REMOVE(sav, spihash);
4809 		sav->state = SADB_SASTATE_DEAD;
4810 		ipsec_accel_forget_sav(sav);
4811 		sav = nextsav;
4812 	}
4813 	/* Unlink all SAs with expired HARD lifetime */
4814 	sav = LIST_FIRST(&hexpireq);
4815 	while (sav != NULL) {
4816 		nextsav = LIST_NEXT(sav, drainq);
4817 		/* Check that SA is not unlinked */
4818 		if (sav->state == SADB_SASTATE_DEAD) {
4819 			LIST_REMOVE(sav, drainq);
4820 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4821 			sav = nextsav;
4822 			continue;
4823 		}
4824 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
4825 		LIST_REMOVE(sav, spihash);
4826 		sav->state = SADB_SASTATE_DEAD;
4827 		ipsec_accel_forget_sav(sav);
4828 		sav = nextsav;
4829 	}
4830 	/* Mark all SAs with expired SOFT lifetime as DYING */
4831 	sav = LIST_FIRST(&sexpireq);
4832 	while (sav != NULL) {
4833 		nextsav = LIST_NEXT(sav, drainq);
4834 		/* Check that SA is not unlinked */
4835 		if (sav->state == SADB_SASTATE_DEAD) {
4836 			LIST_REMOVE(sav, drainq);
4837 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4838 			sav = nextsav;
4839 			continue;
4840 		}
4841 		/*
4842 		 * NOTE: this doesn't change SA order in the chain.
4843 		 */
4844 		sav->state = SADB_SASTATE_DYING;
4845 		sav = nextsav;
4846 	}
4847 	/* Unlink empty SAHs */
4848 	sah = LIST_FIRST(&emptyq);
4849 	while (sah != NULL) {
4850 		nextsah = LIST_NEXT(sah, drainq);
4851 		/* Check that SAH is still empty and not unlinked */
4852 		if (sah->state == SADB_SASTATE_DEAD ||
4853 		    !TAILQ_EMPTY(&sah->savtree_larval) ||
4854 		    !TAILQ_EMPTY(&sah->savtree_alive)) {
4855 			LIST_REMOVE(sah, drainq);
4856 			key_freesah(&sah); /* release extra reference */
4857 			sah = nextsah;
4858 			continue;
4859 		}
4860 		TAILQ_REMOVE(&V_sahtree, sah, chain);
4861 		LIST_REMOVE(sah, addrhash);
4862 		sah->state = SADB_SASTATE_DEAD;
4863 		sah = nextsah;
4864 	}
4865 	SAHTREE_WUNLOCK();
4866 
4867 	/* Send SPDEXPIRE messages */
4868 	sav = LIST_FIRST(&hexpireq);
4869 	while (sav != NULL) {
4870 		nextsav = LIST_NEXT(sav, drainq);
4871 		key_expire(sav, 1);
4872 		key_freesah(&sav->sah); /* release reference from SAV */
4873 		key_freesav(&sav); /* release extra reference */
4874 		key_freesav(&sav); /* release last reference */
4875 		sav = nextsav;
4876 	}
4877 	sav = LIST_FIRST(&sexpireq);
4878 	while (sav != NULL) {
4879 		nextsav = LIST_NEXT(sav, drainq);
4880 		key_expire(sav, 0);
4881 		key_freesav(&sav); /* release extra reference */
4882 		sav = nextsav;
4883 	}
4884 	/* Free stale LARVAL SAs */
4885 	sav = LIST_FIRST(&drainq);
4886 	while (sav != NULL) {
4887 		nextsav = LIST_NEXT(sav, drainq);
4888 		key_freesah(&sav->sah); /* release reference from SAV */
4889 		key_freesav(&sav); /* release extra reference */
4890 		key_freesav(&sav); /* release last reference */
4891 		sav = nextsav;
4892 	}
4893 	/* Free SAs that were unlinked/changed by someone else */
4894 	sav = LIST_FIRST(&freeq);
4895 	while (sav != NULL) {
4896 		nextsav = LIST_NEXT(sav, drainq);
4897 		key_freesav(&sav); /* release extra reference */
4898 		sav = nextsav;
4899 	}
4900 	/* Free empty SAH */
4901 	sah = LIST_FIRST(&emptyq);
4902 	while (sah != NULL) {
4903 		nextsah = LIST_NEXT(sah, drainq);
4904 		key_freesah(&sah); /* release extra reference */
4905 		key_freesah(&sah); /* release last reference */
4906 		sah = nextsah;
4907 	}
4908 }
4909 
4910 static void
key_flush_acq(time_t now)4911 key_flush_acq(time_t now)
4912 {
4913 	struct secacq *acq, *nextacq;
4914 
4915 	/* ACQ tree */
4916 	ACQ_LOCK();
4917 	acq = LIST_FIRST(&V_acqtree);
4918 	while (acq != NULL) {
4919 		nextacq = LIST_NEXT(acq, chain);
4920 		if (now - acq->created > V_key_blockacq_lifetime) {
4921 			LIST_REMOVE(acq, chain);
4922 			LIST_REMOVE(acq, addrhash);
4923 			LIST_REMOVE(acq, seqhash);
4924 			free(acq, M_IPSEC_SAQ);
4925 		}
4926 		acq = nextacq;
4927 	}
4928 	ACQ_UNLOCK();
4929 }
4930 
4931 static void
key_flush_spacq(time_t now)4932 key_flush_spacq(time_t now)
4933 {
4934 	struct secspacq *acq, *nextacq;
4935 
4936 	/* SP ACQ tree */
4937 	SPACQ_LOCK();
4938 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4939 		nextacq = LIST_NEXT(acq, chain);
4940 		if (now - acq->created > V_key_blockacq_lifetime
4941 		 && __LIST_CHAINED(acq)) {
4942 			LIST_REMOVE(acq, chain);
4943 			free(acq, M_IPSEC_SAQ);
4944 		}
4945 	}
4946 	SPACQ_UNLOCK();
4947 }
4948 
4949 /*
4950  * time handler.
4951  * scanning SPD and SAD to check status for each entries,
4952  * and do to remove or to expire.
4953  * XXX: year 2038 problem may remain.
4954  */
4955 static void
key_timehandler(void * arg)4956 key_timehandler(void *arg)
4957 {
4958 	VNET_ITERATOR_DECL(vnet_iter);
4959 	time_t now = time_second;
4960 
4961 	VNET_LIST_RLOCK_NOSLEEP();
4962 	VNET_FOREACH(vnet_iter) {
4963 		CURVNET_SET(vnet_iter);
4964 		key_flush_spd(now);
4965 		key_flush_sad(now);
4966 		key_flush_acq(now);
4967 		key_flush_spacq(now);
4968 		CURVNET_RESTORE();
4969 	}
4970 	VNET_LIST_RUNLOCK_NOSLEEP();
4971 
4972 #ifndef IPSEC_DEBUG2
4973 	/* do exchange to tick time !! */
4974 	callout_schedule(&key_timer, hz);
4975 #endif /* IPSEC_DEBUG2 */
4976 }
4977 
4978 u_long
key_random(void)4979 key_random(void)
4980 {
4981 	u_long value;
4982 
4983 	arc4random_buf(&value, sizeof(value));
4984 	return value;
4985 }
4986 
4987 /*
4988  * map SADB_SATYPE_* to IPPROTO_*.
4989  * if satype == SADB_SATYPE then satype is mapped to ~0.
4990  * OUT:
4991  *	0: invalid satype.
4992  */
4993 static uint8_t
key_satype2proto(uint8_t satype)4994 key_satype2proto(uint8_t satype)
4995 {
4996 	switch (satype) {
4997 	case SADB_SATYPE_UNSPEC:
4998 		return IPSEC_PROTO_ANY;
4999 	case SADB_SATYPE_AH:
5000 		return IPPROTO_AH;
5001 	case SADB_SATYPE_ESP:
5002 		return IPPROTO_ESP;
5003 	case SADB_X_SATYPE_IPCOMP:
5004 		return IPPROTO_IPCOMP;
5005 	case SADB_X_SATYPE_TCPSIGNATURE:
5006 		return IPPROTO_TCP;
5007 	default:
5008 		return 0;
5009 	}
5010 	/* NOTREACHED */
5011 }
5012 
5013 /*
5014  * map IPPROTO_* to SADB_SATYPE_*
5015  * OUT:
5016  *	0: invalid protocol type.
5017  */
5018 static uint8_t
key_proto2satype(uint8_t proto)5019 key_proto2satype(uint8_t proto)
5020 {
5021 	switch (proto) {
5022 	case IPPROTO_AH:
5023 		return SADB_SATYPE_AH;
5024 	case IPPROTO_ESP:
5025 		return SADB_SATYPE_ESP;
5026 	case IPPROTO_IPCOMP:
5027 		return SADB_X_SATYPE_IPCOMP;
5028 	case IPPROTO_TCP:
5029 		return SADB_X_SATYPE_TCPSIGNATURE;
5030 	default:
5031 		return 0;
5032 	}
5033 	/* NOTREACHED */
5034 }
5035 
5036 /* %%% PF_KEY */
5037 /*
5038  * SADB_GETSPI processing is to receive
5039  *	<base, (SA2), src address, dst address, (SPI range)>
5040  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5041  * tree with the status of LARVAL, and send
5042  *	<base, SA(*), address(SD)>
5043  * to the IKMPd.
5044  *
5045  * IN:	mhp: pointer to the pointer to each header.
5046  * OUT:	NULL if fail.
5047  *	other if success, return pointer to the message to send.
5048  */
5049 static int
key_getspi(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5050 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5051 {
5052 	struct secasindex saidx;
5053 	struct sadb_address *src0, *dst0;
5054 	struct secasvar *sav;
5055 	uint32_t reqid, spi;
5056 	int error;
5057 	uint8_t mode, proto;
5058 
5059 	IPSEC_ASSERT(so != NULL, ("null socket"));
5060 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5061 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5062 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5063 
5064 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5065 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)
5066 #ifdef PFKEY_STRICT_CHECKS
5067 	    || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE)
5068 #endif
5069 	    ) {
5070 		ipseclog((LOG_DEBUG,
5071 		    "%s: invalid message: missing required header.\n",
5072 		    __func__));
5073 		error = EINVAL;
5074 		goto fail;
5075 	}
5076 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5077 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)
5078 #ifdef PFKEY_STRICT_CHECKS
5079 	    || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE)
5080 #endif
5081 	    ) {
5082 		ipseclog((LOG_DEBUG,
5083 		    "%s: invalid message: wrong header size.\n", __func__));
5084 		error = EINVAL;
5085 		goto fail;
5086 	}
5087 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5088 		mode = IPSEC_MODE_ANY;
5089 		reqid = 0;
5090 	} else {
5091 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5092 			ipseclog((LOG_DEBUG,
5093 			    "%s: invalid message: wrong header size.\n",
5094 			    __func__));
5095 			error = EINVAL;
5096 			goto fail;
5097 		}
5098 		mode = ((struct sadb_x_sa2 *)
5099 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5100 		reqid = ((struct sadb_x_sa2 *)
5101 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5102 	}
5103 
5104 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5105 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5106 
5107 	/* map satype to proto */
5108 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5109 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5110 			__func__));
5111 		error = EINVAL;
5112 		goto fail;
5113 	}
5114 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5115 	    (struct sockaddr *)(dst0 + 1));
5116 	if (error != 0) {
5117 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5118 		error = EINVAL;
5119 		goto fail;
5120 	}
5121 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5122 
5123 	/* SPI allocation */
5124 	SPI_ALLOC_LOCK();
5125 	spi = key_do_getnewspi(
5126 	    (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5127 	if (spi == 0) {
5128 		/*
5129 		 * Requested SPI or SPI range is not available or
5130 		 * already used.
5131 		 */
5132 		SPI_ALLOC_UNLOCK();
5133 		error = EEXIST;
5134 		goto fail;
5135 	}
5136 	sav = key_newsav(mhp, &saidx, spi, &error);
5137 	SPI_ALLOC_UNLOCK();
5138 	if (sav == NULL)
5139 		goto fail;
5140 
5141 	if (sav->seq != 0) {
5142 		/*
5143 		 * RFC2367:
5144 		 * If the SADB_GETSPI message is in response to a
5145 		 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq
5146 		 * MUST be the same as the SADB_ACQUIRE message.
5147 		 *
5148 		 * XXXAE: However it doesn't definethe behaviour how to
5149 		 * check this and what to do if it doesn't match.
5150 		 * Also what we should do if it matches?
5151 		 *
5152 		 * We can compare saidx used in SADB_ACQUIRE with saidx
5153 		 * used in SADB_GETSPI, but this probably can break
5154 		 * existing software. For now just warn if it doesn't match.
5155 		 *
5156 		 * XXXAE: anyway it looks useless.
5157 		 */
5158 		key_acqdone(&saidx, sav->seq);
5159 	}
5160 	KEYDBG(KEY_STAMP,
5161 	    printf("%s: SA(%p)\n", __func__, sav));
5162 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5163 
5164     {
5165 	struct mbuf *n, *nn;
5166 	struct sadb_sa *m_sa;
5167 	struct sadb_msg *newmsg;
5168 	int off, len;
5169 
5170 	/* create new sadb_msg to reply. */
5171 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5172 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
5173 
5174 	n = key_mget(len);
5175 	if (n == NULL) {
5176 		error = ENOBUFS;
5177 		goto fail;
5178 	}
5179 
5180 	n->m_len = len;
5181 	n->m_next = NULL;
5182 	off = 0;
5183 
5184 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
5185 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5186 
5187 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
5188 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5189 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
5190 	m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */
5191 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5192 
5193 	IPSEC_ASSERT(off == len,
5194 		("length inconsistency (off %u len %u)", off, len));
5195 
5196 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5197 	    SADB_EXT_ADDRESS_DST);
5198 	if (!n->m_next) {
5199 		m_freem(n);
5200 		error = ENOBUFS;
5201 		goto fail;
5202 	}
5203 
5204 	if (n->m_len < sizeof(struct sadb_msg)) {
5205 		n = m_pullup(n, sizeof(struct sadb_msg));
5206 		if (n == NULL)
5207 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5208 	}
5209 
5210 	n->m_pkthdr.len = 0;
5211 	for (nn = n; nn; nn = nn->m_next)
5212 		n->m_pkthdr.len += nn->m_len;
5213 
5214 	newmsg = mtod(n, struct sadb_msg *);
5215 	newmsg->sadb_msg_seq = sav->seq;
5216 	newmsg->sadb_msg_errno = 0;
5217 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5218 
5219 	m_freem(m);
5220 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5221     }
5222 
5223 fail:
5224 	return (key_senderror(so, m, error));
5225 }
5226 
5227 /*
5228  * allocating new SPI
5229  * called by key_getspi().
5230  * OUT:
5231  *	0:	failure.
5232  *	others: success, SPI in network byte order.
5233  */
5234 static uint32_t
key_do_getnewspi(struct sadb_spirange * spirange,struct secasindex * saidx)5235 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
5236 {
5237 	uint32_t min, max, newspi, t;
5238 	int tries, limit;
5239 
5240 	SPI_ALLOC_LOCK_ASSERT();
5241 
5242 	/* set spi range to allocate */
5243 	if (spirange != NULL) {
5244 		min = spirange->sadb_spirange_min;
5245 		max = spirange->sadb_spirange_max;
5246 	} else {
5247 		min = V_key_spi_minval;
5248 		max = V_key_spi_maxval;
5249 	}
5250 	/* IPCOMP needs 2-byte SPI */
5251 	if (saidx->proto == IPPROTO_IPCOMP) {
5252 		if (min >= 0x10000)
5253 			min = 0xffff;
5254 		if (max >= 0x10000)
5255 			max = 0xffff;
5256 		if (min > max) {
5257 			t = min; min = max; max = t;
5258 		}
5259 	}
5260 
5261 	if (min == max) {
5262 		if (key_checkspidup(htonl(min))) {
5263 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
5264 			    __func__, min));
5265 			return 0;
5266 		}
5267 
5268 		tries = 1;
5269 		newspi = min;
5270 	} else {
5271 		/* init SPI */
5272 		newspi = 0;
5273 
5274 		limit = atomic_load_int(&V_key_spi_trycnt);
5275 		/* when requesting to allocate spi ranged */
5276 		for (tries = 0; tries < limit; tries++) {
5277 			/* generate pseudo-random SPI value ranged. */
5278 			newspi = min + (key_random() % (max - min + 1));
5279 			if (!key_checkspidup(htonl(newspi)))
5280 				break;
5281 		}
5282 
5283 		if (tries == limit || newspi == 0) {
5284 			ipseclog((LOG_DEBUG,
5285 			    "%s: failed to allocate SPI.\n", __func__));
5286 			return 0;
5287 		}
5288 	}
5289 
5290 	/* statistics */
5291 	keystat.getspi_count =
5292 	    (keystat.getspi_count + tries) / 2;
5293 
5294 	return (htonl(newspi));
5295 }
5296 
5297 /*
5298  * Find TCP-MD5 SA with corresponding secasindex.
5299  * If not found, return NULL and fill SPI with usable value if needed.
5300  */
5301 static struct secasvar *
key_getsav_tcpmd5(struct secasindex * saidx,uint32_t * spi)5302 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi)
5303 {
5304 	SAHTREE_RLOCK_TRACKER;
5305 	struct secashead *sah;
5306 	struct secasvar *sav;
5307 
5308 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto"));
5309 	SAHTREE_RLOCK();
5310 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
5311 		if (sah->saidx.proto != IPPROTO_TCP)
5312 			continue;
5313 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
5314 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
5315 			break;
5316 	}
5317 	if (sah != NULL) {
5318 		if (V_key_preferred_oldsa)
5319 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
5320 		else
5321 			sav = TAILQ_FIRST(&sah->savtree_alive);
5322 		if (sav != NULL) {
5323 			SAV_ADDREF(sav);
5324 			SAHTREE_RUNLOCK();
5325 			return (sav);
5326 		}
5327 	}
5328 	if (spi == NULL) {
5329 		/* No SPI required */
5330 		SAHTREE_RUNLOCK();
5331 		return (NULL);
5332 	}
5333 	/* Check that SPI is unique */
5334 	LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) {
5335 		if (sav->spi == *spi)
5336 			break;
5337 	}
5338 	if (sav == NULL) {
5339 		SAHTREE_RUNLOCK();
5340 		/* SPI is already unique */
5341 		return (NULL);
5342 	}
5343 	SAHTREE_RUNLOCK();
5344 	/* XXX: not optimal */
5345 	*spi = key_do_getnewspi(NULL, saidx);
5346 	return (NULL);
5347 }
5348 
5349 static int
key_updateaddresses(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasvar * sav,struct secasindex * saidx)5350 key_updateaddresses(struct socket *so, struct mbuf *m,
5351     const struct sadb_msghdr *mhp, struct secasvar *sav,
5352     struct secasindex *saidx)
5353 {
5354 	struct sockaddr *newaddr;
5355 	struct secashead *sah;
5356 	struct secasvar *newsav, *tmp;
5357 	struct mbuf *n;
5358 	int error, isnew;
5359 
5360 	/* Check that we need to change SAH */
5361 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) {
5362 		newaddr = (struct sockaddr *)(
5363 		    ((struct sadb_address *)
5364 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1);
5365 		bcopy(newaddr, &saidx->src, newaddr->sa_len);
5366 		key_porttosaddr(&saidx->src.sa, 0);
5367 	}
5368 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5369 		newaddr = (struct sockaddr *)(
5370 		    ((struct sadb_address *)
5371 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1);
5372 		bcopy(newaddr, &saidx->dst, newaddr->sa_len);
5373 		key_porttosaddr(&saidx->dst.sa, 0);
5374 	}
5375 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5376 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5377 		error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa);
5378 		if (error != 0) {
5379 			ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n",
5380 			    __func__));
5381 			return (error);
5382 		}
5383 
5384 		sah = key_getsah(saidx);
5385 		if (sah == NULL) {
5386 			/* create a new SA index */
5387 			sah = key_newsah(saidx);
5388 			if (sah == NULL) {
5389 				ipseclog((LOG_DEBUG,
5390 				    "%s: No more memory.\n", __func__));
5391 				return (ENOBUFS);
5392 			}
5393 			isnew = 2; /* SAH is new */
5394 		} else
5395 			isnew = 1; /* existing SAH is referenced */
5396 	} else {
5397 		/*
5398 		 * src and dst addresses are still the same.
5399 		 * Do we want to change NAT-T config?
5400 		 */
5401 		if (sav->sah->saidx.proto != IPPROTO_ESP ||
5402 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5403 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5404 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5405 			ipseclog((LOG_DEBUG,
5406 			    "%s: invalid message: missing required header.\n",
5407 			    __func__));
5408 			return (EINVAL);
5409 		}
5410 		/* We hold reference to SA, thus SAH will be referenced too. */
5411 		sah = sav->sah;
5412 		isnew = 0;
5413 	}
5414 
5415 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA,
5416 	    M_NOWAIT | M_ZERO);
5417 	if (newsav == NULL) {
5418 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5419 		error = ENOBUFS;
5420 		goto fail;
5421 	}
5422 
5423 	/* Clone SA's content into newsav */
5424 	SAV_INITREF(newsav);
5425 	bcopy(sav, newsav, offsetof(struct secasvar, chain));
5426 #ifdef IPSEC_OFFLOAD
5427 	CK_LIST_INIT(&newsav->accel_ifps);
5428 	newsav->accel_forget_tq = 0;
5429 	newsav->accel_lft_sw = uma_zalloc_pcpu(ipsec_key_lft_zone,
5430 	    M_NOWAIT | M_ZERO);
5431 	if (newsav->accel_lft_sw == NULL) {
5432 		error = ENOBUFS;
5433 		goto fail;
5434 	}
5435 	if (sav->accel_ifname != NULL) {
5436 		struct sadb_x_if_hw_offl xof;
5437 
5438 		newsav->accel_ifname = malloc(sizeof(xof.sadb_x_if_hw_offl_if),
5439 		    M_IPSEC_MISC, M_NOWAIT);
5440 		if (newsav->accel_ifname == NULL) {
5441 			error = ENOBUFS;
5442 			goto fail;
5443 		}
5444 		strncpy(__DECONST(char *, sav->accel_ifname),
5445 		    newsav->accel_ifname,
5446 		    sizeof(xof.sadb_x_if_hw_offl_if));
5447 	}
5448 #endif
5449 
5450 	/*
5451 	 * We create new NAT-T config if it is needed.
5452 	 * Old NAT-T config will be freed by key_cleansav() when
5453 	 * last reference to SA will be released.
5454 	 */
5455 	newsav->natt = NULL;
5456 	newsav->sah = sah;
5457 	newsav->state = SADB_SASTATE_MATURE;
5458 	error = key_setnatt(newsav, mhp);
5459 	if (error != 0)
5460 		goto fail;
5461 
5462 	SAHTREE_WLOCK();
5463 	/* Check that SA is still alive */
5464 	if (sav->state == SADB_SASTATE_DEAD) {
5465 		/* SA was unlinked */
5466 		SAHTREE_WUNLOCK();
5467 		error = ESRCH;
5468 		goto fail;
5469 	}
5470 
5471 	/* Unlink SA from SAH and SPI hash */
5472 	IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0,
5473 	    ("SA is already cloned"));
5474 	IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE ||
5475 	    sav->state == SADB_SASTATE_DYING,
5476 	    ("Wrong SA state %u\n", sav->state));
5477 	TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
5478 	LIST_REMOVE(sav, spihash);
5479 	sav->state = SADB_SASTATE_DEAD;
5480 	ipsec_accel_forget_sav(sav);
5481 
5482 	/*
5483 	 * Link new SA with SAH. Keep SAs ordered by
5484 	 * create time (newer are first).
5485 	 */
5486 	TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) {
5487 		if (newsav->created > tmp->created) {
5488 			TAILQ_INSERT_BEFORE(tmp, newsav, chain);
5489 			break;
5490 		}
5491 	}
5492 	if (tmp == NULL)
5493 		TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain);
5494 
5495 	/* Add new SA into SPI hash. */
5496 	LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash);
5497 
5498 	/* Add new SAH into SADB. */
5499 	if (isnew == 2) {
5500 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
5501 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
5502 		sah->state = SADB_SASTATE_MATURE;
5503 		SAH_ADDREF(sah); /* newsav references new SAH */
5504 	}
5505 	/*
5506 	 * isnew == 1 -> @sah was referenced by key_getsah().
5507 	 * isnew == 0 -> we use the same @sah, that was used by @sav,
5508 	 *	and we use its reference for @newsav.
5509 	 */
5510 	SECASVAR_WLOCK(sav);
5511 	/* XXX: replace cntr with pointer? */
5512 	newsav->cntr = sav->cntr;
5513 	sav->flags |= SADB_X_EXT_F_CLONED;
5514 	SECASVAR_WUNLOCK(sav);
5515 
5516 	SAHTREE_WUNLOCK();
5517 
5518 	KEYDBG(KEY_STAMP,
5519 	    printf("%s: SA(%p) cloned into SA(%p)\n",
5520 	    __func__, sav, newsav));
5521 	KEYDBG(KEY_DATA, kdebug_secasv(newsav));
5522 
5523 	key_freesav(&sav); /* release last reference */
5524 
5525 	/* set msg buf from mhp */
5526 	n = key_getmsgbuf_x1(m, mhp);
5527 	if (n == NULL) {
5528 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5529 		return (ENOBUFS);
5530 	}
5531 	m_freem(m);
5532 	key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5533 	return (0);
5534 fail:
5535 	if (isnew != 0)
5536 		key_freesah(&sah);
5537 	if (newsav != NULL) {
5538 #ifdef IPSEC_OFFLOAD
5539 		uma_zfree_pcpu(ipsec_key_lft_zone, newsav->accel_lft_sw);
5540 		free(__DECONST(char *, newsav->accel_ifname), M_IPSEC_MISC);
5541 #endif
5542 		if (newsav->natt != NULL)
5543 			free(newsav->natt, M_IPSEC_MISC);
5544 		free(newsav, M_IPSEC_SA);
5545 	}
5546 	return (error);
5547 }
5548 
5549 /*
5550  * SADB_UPDATE processing
5551  * receive
5552  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5553  *       key(AE), (identity(SD),) (sensitivity)>
5554  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5555  * and send
5556  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5557  *       (identity(SD),) (sensitivity)>
5558  * to the ikmpd.
5559  *
5560  * m will always be freed.
5561  */
5562 static int
key_update(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5563 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5564 {
5565 	struct secasindex saidx;
5566 	struct sadb_address *src0, *dst0;
5567 	struct sadb_sa *sa0;
5568 	struct secasvar *sav;
5569 	uint32_t reqid;
5570 	int error;
5571 	uint8_t mode, proto;
5572 
5573 	IPSEC_ASSERT(so != NULL, ("null socket"));
5574 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5575 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5576 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5577 
5578 	/* map satype to proto */
5579 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5580 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5581 		    __func__));
5582 		return key_senderror(so, m, EINVAL);
5583 	}
5584 
5585 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5586 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5587 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5588 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5589 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5590 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5591 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5592 		ipseclog((LOG_DEBUG,
5593 		    "%s: invalid message: missing required header.\n",
5594 		    __func__));
5595 		return key_senderror(so, m, EINVAL);
5596 	}
5597 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5598 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5599 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5600 		ipseclog((LOG_DEBUG,
5601 		    "%s: invalid message: wrong header size.\n", __func__));
5602 		return key_senderror(so, m, EINVAL);
5603 	}
5604 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5605 		mode = IPSEC_MODE_ANY;
5606 		reqid = 0;
5607 	} else {
5608 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5609 			ipseclog((LOG_DEBUG,
5610 			    "%s: invalid message: wrong header size.\n",
5611 			    __func__));
5612 			return key_senderror(so, m, EINVAL);
5613 		}
5614 		mode = ((struct sadb_x_sa2 *)
5615 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5616 		reqid = ((struct sadb_x_sa2 *)
5617 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5618 	}
5619 
5620 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5621 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5622 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5623 
5624 	/*
5625 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5626 	 * SADB_UPDATE message.
5627 	 */
5628 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5629 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5630 #ifdef PFKEY_STRICT_CHECKS
5631 		return key_senderror(so, m, EINVAL);
5632 #endif
5633 	}
5634 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5635 	    (struct sockaddr *)(dst0 + 1));
5636 	if (error != 0) {
5637 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5638 		return key_senderror(so, m, error);
5639 	}
5640 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5641 	sav = key_getsavbyspi(sa0->sadb_sa_spi);
5642 	if (sav == NULL) {
5643 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n",
5644 		    __func__, ntohl(sa0->sadb_sa_spi)));
5645 		return key_senderror(so, m, EINVAL);
5646 	}
5647 	/*
5648 	 * Check that SADB_UPDATE issued by the same process that did
5649 	 * SADB_GETSPI or SADB_ADD.
5650 	 */
5651 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5652 		ipseclog((LOG_DEBUG,
5653 		    "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__,
5654 		    ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid));
5655 		key_freesav(&sav);
5656 		return key_senderror(so, m, EINVAL);
5657 	}
5658 	/* saidx should match with SA. */
5659 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) {
5660 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n",
5661 		    __func__, ntohl(sav->spi)));
5662 		key_freesav(&sav);
5663 		return key_senderror(so, m, ESRCH);
5664 	}
5665 
5666 	if (sav->state == SADB_SASTATE_LARVAL) {
5667 		if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5668 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) ||
5669 		    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5670 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) {
5671 			ipseclog((LOG_DEBUG,
5672 			    "%s: invalid message: missing required header.\n",
5673 			    __func__));
5674 			key_freesav(&sav);
5675 			return key_senderror(so, m, EINVAL);
5676 		}
5677 		/*
5678 		 * We can set any values except src, dst and SPI.
5679 		 */
5680 		error = key_setsaval(sav, mhp);
5681 		if (error != 0) {
5682 			key_freesav(&sav);
5683 			return (key_senderror(so, m, error));
5684 		}
5685 		/* Change SA state to MATURE */
5686 		SAHTREE_WLOCK();
5687 		if (sav->state != SADB_SASTATE_LARVAL) {
5688 			/* SA was deleted or another thread made it MATURE. */
5689 			SAHTREE_WUNLOCK();
5690 			key_freesav(&sav);
5691 			return (key_senderror(so, m, ESRCH));
5692 		}
5693 		/*
5694 		 * NOTE: we keep SAs in savtree_alive ordered by created
5695 		 * time. When SA's state changed from LARVAL to MATURE,
5696 		 * we update its created time in key_setsaval() and move
5697 		 * it into head of savtree_alive.
5698 		 */
5699 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
5700 		TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain);
5701 		sav->state = SADB_SASTATE_MATURE;
5702 		SAHTREE_WUNLOCK();
5703 	} else {
5704 		/*
5705 		 * For DYING and MATURE SA we can change only state
5706 		 * and lifetimes. Report EINVAL if something else attempted
5707 		 * to change.
5708 		 */
5709 		if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5710 		    !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
5711 			key_freesav(&sav);
5712 			return (key_senderror(so, m, EINVAL));
5713 		}
5714 		error = key_updatelifetimes(sav, mhp);
5715 		if (error != 0) {
5716 			key_freesav(&sav);
5717 			return (key_senderror(so, m, error));
5718 		}
5719 		/*
5720 		 * This is FreeBSD extension to RFC2367.
5721 		 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or
5722 		 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change
5723 		 * SA addresses (for example to implement MOBIKE protocol
5724 		 * as described in RFC4555). Also we allow to change
5725 		 * NAT-T config.
5726 		 */
5727 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5728 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) ||
5729 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5730 		    sav->natt != NULL) {
5731 			error = key_updateaddresses(so, m, mhp, sav, &saidx);
5732 			key_freesav(&sav);
5733 			if (error != 0)
5734 				return (key_senderror(so, m, error));
5735 			return (0);
5736 		}
5737 		/* Check that SA is still alive */
5738 		SAHTREE_WLOCK();
5739 		if (sav->state == SADB_SASTATE_DEAD) {
5740 			/* SA was unlinked */
5741 			SAHTREE_WUNLOCK();
5742 			key_freesav(&sav);
5743 			return (key_senderror(so, m, ESRCH));
5744 		}
5745 		/*
5746 		 * NOTE: there is possible state moving from DYING to MATURE,
5747 		 * but this doesn't change created time, so we won't reorder
5748 		 * this SA.
5749 		 */
5750 		sav->state = SADB_SASTATE_MATURE;
5751 		SAHTREE_WUNLOCK();
5752 	}
5753 	KEYDBG(KEY_STAMP,
5754 	    printf("%s: SA(%p)\n", __func__, sav));
5755 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5756 	ipsec_accel_sa_newkey(sav);
5757 	key_freesav(&sav);
5758 
5759     {
5760 	struct mbuf *n;
5761 
5762 	/* set msg buf from mhp */
5763 	n = key_getmsgbuf_x1(m, mhp);
5764 	if (n == NULL) {
5765 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5766 		return key_senderror(so, m, ENOBUFS);
5767 	}
5768 
5769 	m_freem(m);
5770 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5771     }
5772 }
5773 
5774 /*
5775  * SADB_ADD processing
5776  * add an entry to SA database, when received
5777  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5778  *       key(AE), (identity(SD),) (sensitivity)>
5779  * from the ikmpd,
5780  * and send
5781  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5782  *       (identity(SD),) (sensitivity)>
5783  * to the ikmpd.
5784  *
5785  * IGNORE identity and sensitivity messages.
5786  *
5787  * m will always be freed.
5788  */
5789 static int
key_add(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5790 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5791 {
5792 	struct secasindex saidx;
5793 	struct sadb_address *src0, *dst0;
5794 	struct sadb_sa *sa0;
5795 	struct secasvar *sav;
5796 	uint32_t reqid, spi;
5797 	uint8_t mode, proto;
5798 	int error;
5799 
5800 	IPSEC_ASSERT(so != NULL, ("null socket"));
5801 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5802 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5803 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5804 
5805 	/* map satype to proto */
5806 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5807 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5808 		    __func__));
5809 		return key_senderror(so, m, EINVAL);
5810 	}
5811 
5812 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5813 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5814 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5815 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && (
5816 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5817 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) ||
5818 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && (
5819 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) ||
5820 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) ||
5821 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5822 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5823 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5824 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5825 		ipseclog((LOG_DEBUG,
5826 		    "%s: invalid message: missing required header.\n",
5827 		    __func__));
5828 		return key_senderror(so, m, EINVAL);
5829 	}
5830 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5831 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5832 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5833 		ipseclog((LOG_DEBUG,
5834 		    "%s: invalid message: wrong header size.\n", __func__));
5835 		return key_senderror(so, m, EINVAL);
5836 	}
5837 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5838 		mode = IPSEC_MODE_ANY;
5839 		reqid = 0;
5840 	} else {
5841 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5842 			ipseclog((LOG_DEBUG,
5843 			    "%s: invalid message: wrong header size.\n",
5844 			    __func__));
5845 			return key_senderror(so, m, EINVAL);
5846 		}
5847 		mode = ((struct sadb_x_sa2 *)
5848 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5849 		reqid = ((struct sadb_x_sa2 *)
5850 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5851 	}
5852 
5853 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5854 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5855 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5856 
5857 	/*
5858 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5859 	 * SADB_ADD message.
5860 	 */
5861 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5862 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5863 #ifdef PFKEY_STRICT_CHECKS
5864 		return key_senderror(so, m, EINVAL);
5865 #endif
5866 	}
5867 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5868 	    (struct sockaddr *)(dst0 + 1));
5869 	if (error != 0) {
5870 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5871 		return key_senderror(so, m, error);
5872 	}
5873 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5874 	spi = sa0->sadb_sa_spi;
5875 	/*
5876 	 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using
5877 	 * secasindex.
5878 	 * XXXAE: IPComp seems also doesn't use SPI.
5879 	 */
5880 	SPI_ALLOC_LOCK();
5881 	if (proto == IPPROTO_TCP) {
5882 		sav = key_getsav_tcpmd5(&saidx, &spi);
5883 		if (sav == NULL && spi == 0) {
5884 			SPI_ALLOC_UNLOCK();
5885 			/* Failed to allocate SPI */
5886 			ipseclog((LOG_DEBUG, "%s: SA already exists.\n",
5887 			    __func__));
5888 			return key_senderror(so, m, EEXIST);
5889 		}
5890 		/* XXX: SPI that we report back can have another value */
5891 	} else {
5892 		/* We can create new SA only if SPI is different. */
5893 		sav = key_getsavbyspi(spi);
5894 	}
5895 	if (sav != NULL) {
5896 		SPI_ALLOC_UNLOCK();
5897 		key_freesav(&sav);
5898 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5899 		return key_senderror(so, m, EEXIST);
5900 	}
5901 
5902 	sav = key_newsav(mhp, &saidx, spi, &error);
5903 	SPI_ALLOC_UNLOCK();
5904 	if (sav == NULL)
5905 		return key_senderror(so, m, error);
5906 	KEYDBG(KEY_STAMP,
5907 	    printf("%s: return SA(%p)\n", __func__, sav));
5908 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5909 	ipsec_accel_sa_newkey(sav);
5910 	/*
5911 	 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule
5912 	 * ACQ for deletion.
5913 	 */
5914 	if (sav->seq != 0)
5915 		key_acqdone(&saidx, sav->seq);
5916 
5917     {
5918 	/*
5919 	 * Don't call key_freesav() on error here, as we would like to
5920 	 * keep the SA in the database.
5921 	 */
5922 	struct mbuf *n;
5923 
5924 	/* set msg buf from mhp */
5925 	n = key_getmsgbuf_x1(m, mhp);
5926 	if (n == NULL) {
5927 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5928 		return key_senderror(so, m, ENOBUFS);
5929 	}
5930 
5931 	m_freem(m);
5932 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5933     }
5934 }
5935 
5936 /*
5937  * NAT-T support.
5938  * IKEd may request the use ESP in UDP encapsulation when it detects the
5939  * presence of NAT. It uses NAT-T extension headers for such SAs to specify
5940  * parameters needed for encapsulation and decapsulation. These PF_KEY
5941  * extension headers are not standardized, so this comment addresses our
5942  * implementation.
5943  * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only
5944  * UDP_ENCAP_ESPINUDP as described in RFC3948.
5945  * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for
5946  * UDP header. We use these ports in UDP encapsulation procedure, also we
5947  * can check them in UDP decapsulation procedure.
5948  * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or
5949  * responder. These addresses can be used for transport mode to adjust
5950  * checksum after decapsulation and decryption. Since original IP addresses
5951  * used by peer usually different (we detected presence of NAT), TCP/UDP
5952  * pseudo header checksum and IP header checksum was calculated using original
5953  * addresses. After decapsulation and decryption we need to adjust checksum
5954  * to have correct datagram.
5955  *
5956  * We expect presence of NAT-T extension headers only in SADB_ADD and
5957  * SADB_UPDATE messages. We report NAT-T extension headers in replies
5958  * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages.
5959  */
5960 static int
key_setnatt(struct secasvar * sav,const struct sadb_msghdr * mhp)5961 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp)
5962 {
5963 	struct sadb_x_nat_t_port *port;
5964 	struct sadb_x_nat_t_type *type;
5965 	struct sadb_address *oai, *oar;
5966 	struct sockaddr *sa;
5967 	uint32_t addr;
5968 	uint16_t cksum;
5969 	int i;
5970 
5971 	IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized"));
5972 	/*
5973 	 * Ignore NAT-T headers if sproto isn't ESP.
5974 	 */
5975 	if (sav->sah->saidx.proto != IPPROTO_ESP)
5976 		return (0);
5977 
5978 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) &&
5979 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) &&
5980 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5981 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5982 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5983 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5984 			ipseclog((LOG_DEBUG,
5985 			    "%s: invalid message: wrong header size.\n",
5986 			    __func__));
5987 			return (EINVAL);
5988 		}
5989 	} else
5990 		return (0);
5991 
5992 	type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5993 	if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) {
5994 		ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n",
5995 		    __func__, type->sadb_x_nat_t_type_type));
5996 		return (EINVAL);
5997 	}
5998 	/*
5999 	 * Allocate storage for NAT-T config.
6000 	 * On error it will be released by key_cleansav().
6001 	 */
6002 	sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC,
6003 	    M_NOWAIT | M_ZERO);
6004 	if (sav->natt == NULL) {
6005 		PFKEYSTAT_INC(in_nomem);
6006 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6007 		return (ENOBUFS);
6008 	}
6009 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6010 	if (port->sadb_x_nat_t_port_port == 0) {
6011 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n",
6012 		    __func__));
6013 		return (EINVAL);
6014 	}
6015 	sav->natt->sport = port->sadb_x_nat_t_port_port;
6016 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6017 	if (port->sadb_x_nat_t_port_port == 0) {
6018 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n",
6019 		    __func__));
6020 		return (EINVAL);
6021 	}
6022 	sav->natt->dport = port->sadb_x_nat_t_port_port;
6023 
6024 	/*
6025 	 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional
6026 	 * and needed only for transport mode IPsec.
6027 	 * Usually NAT translates only one address, but it is possible,
6028 	 * that both addresses could be translated.
6029 	 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA.
6030 	 */
6031 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) {
6032 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) {
6033 			ipseclog((LOG_DEBUG,
6034 			    "%s: invalid message: wrong header size.\n",
6035 			    __func__));
6036 			return (EINVAL);
6037 		}
6038 		oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
6039 	} else
6040 		oai = NULL;
6041 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) {
6042 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) {
6043 			ipseclog((LOG_DEBUG,
6044 			    "%s: invalid message: wrong header size.\n",
6045 			    __func__));
6046 			return (EINVAL);
6047 		}
6048 		oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
6049 	} else
6050 		oar = NULL;
6051 
6052 	/* Initialize addresses only for transport mode */
6053 	if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
6054 		cksum = 0;
6055 		if (oai != NULL) {
6056 			sa = (struct sockaddr *)(oai + 1);
6057 			switch (sa->sa_family) {
6058 #ifdef AF_INET
6059 			case AF_INET:
6060 				if (sa->sa_len != sizeof(struct sockaddr_in)) {
6061 					ipseclog((LOG_DEBUG,
6062 					    "%s: wrong NAT-OAi header.\n",
6063 					    __func__));
6064 					return (EINVAL);
6065 				}
6066 				/* Ignore address if it the same */
6067 				if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
6068 				    sav->sah->saidx.src.sin.sin_addr.s_addr) {
6069 					bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
6070 					sav->natt->flags |= IPSEC_NATT_F_OAI;
6071 					/* Calculate checksum delta */
6072 					addr = sav->sah->saidx.src.sin.sin_addr.s_addr;
6073 					cksum = in_addword(cksum, ~addr >> 16);
6074 					cksum = in_addword(cksum, ~addr & 0xffff);
6075 					addr = sav->natt->oai.sin.sin_addr.s_addr;
6076 					cksum = in_addword(cksum, addr >> 16);
6077 					cksum = in_addword(cksum, addr & 0xffff);
6078 				}
6079 				break;
6080 #endif
6081 #ifdef AF_INET6
6082 			case AF_INET6:
6083 				if (sa->sa_len != sizeof(struct sockaddr_in6)) {
6084 					ipseclog((LOG_DEBUG,
6085 					    "%s: wrong NAT-OAi header.\n",
6086 					    __func__));
6087 					return (EINVAL);
6088 				}
6089 				/* Ignore address if it the same */
6090 				if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr,
6091 				    &sav->sah->saidx.src.sin6.sin6_addr.s6_addr,
6092 				    sizeof(struct in6_addr)) != 0) {
6093 					bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
6094 					sav->natt->flags |= IPSEC_NATT_F_OAI;
6095 					/* Calculate checksum delta */
6096 					for (i = 0; i < 8; i++) {
6097 						cksum = in_addword(cksum,
6098 						  ~sav->sah->saidx.src.sin6.sin6_addr.s6_addr16[i]);
6099 						cksum = in_addword(cksum,
6100 						   sav->natt->oai.sin6.sin6_addr.s6_addr16[i]);
6101 					}
6102 				}
6103 				break;
6104 #endif
6105 			default:
6106 				ipseclog((LOG_DEBUG,
6107 				    "%s: wrong NAT-OAi header.\n",
6108 				    __func__));
6109 				return (EINVAL);
6110 			}
6111 		}
6112 		if (oar != NULL) {
6113 			sa = (struct sockaddr *)(oar + 1);
6114 			switch (sa->sa_family) {
6115 #ifdef AF_INET
6116 			case AF_INET:
6117 				if (sa->sa_len != sizeof(struct sockaddr_in)) {
6118 					ipseclog((LOG_DEBUG,
6119 					    "%s: wrong NAT-OAr header.\n",
6120 					    __func__));
6121 					return (EINVAL);
6122 				}
6123 				/* Ignore address if it the same */
6124 				if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
6125 				    sav->sah->saidx.dst.sin.sin_addr.s_addr) {
6126 					bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
6127 					sav->natt->flags |= IPSEC_NATT_F_OAR;
6128 					/* Calculate checksum delta */
6129 					addr = sav->sah->saidx.dst.sin.sin_addr.s_addr;
6130 					cksum = in_addword(cksum, ~addr >> 16);
6131 					cksum = in_addword(cksum, ~addr & 0xffff);
6132 					addr = sav->natt->oar.sin.sin_addr.s_addr;
6133 					cksum = in_addword(cksum, addr >> 16);
6134 					cksum = in_addword(cksum, addr & 0xffff);
6135 				}
6136 				break;
6137 #endif
6138 #ifdef AF_INET6
6139 			case AF_INET6:
6140 				if (sa->sa_len != sizeof(struct sockaddr_in6)) {
6141 					ipseclog((LOG_DEBUG,
6142 					    "%s: wrong NAT-OAr header.\n",
6143 					    __func__));
6144 					return (EINVAL);
6145 				}
6146 				/* Ignore address if it the same */
6147 				if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr,
6148 				           &sav->sah->saidx.dst.sin6.sin6_addr.s6_addr, 16) != 0) {
6149 					bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
6150 					sav->natt->flags |= IPSEC_NATT_F_OAR;
6151 					/* Calculate checksum delta */
6152 					for (i = 0; i < 8; i++) {
6153 						cksum = in_addword(cksum,
6154 						   ~sav->sah->saidx.dst.sin6.sin6_addr.s6_addr16[i]);
6155 						cksum = in_addword(cksum,
6156 						   sav->natt->oar.sin6.sin6_addr.s6_addr16[i]);
6157 					}
6158 				}
6159 				break;
6160 #endif
6161 			default:
6162 				ipseclog((LOG_DEBUG,
6163 				    "%s: wrong NAT-OAr header.\n",
6164 				    __func__));
6165 				return (EINVAL);
6166 			}
6167 		}
6168 		sav->natt->cksum = cksum;
6169 	}
6170 	return (0);
6171 }
6172 
6173 static int
key_setident(struct secashead * sah,const struct sadb_msghdr * mhp)6174 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp)
6175 {
6176 	const struct sadb_ident *idsrc, *iddst;
6177 
6178 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
6179 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6180 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6181 
6182 	/* don't make buffer if not there */
6183 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) &&
6184 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
6185 		sah->idents = NULL;
6186 		sah->identd = NULL;
6187 		return (0);
6188 	}
6189 
6190 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) ||
6191 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
6192 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
6193 		return (EINVAL);
6194 	}
6195 
6196 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
6197 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
6198 
6199 	/* validity check */
6200 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
6201 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
6202 		return EINVAL;
6203 	}
6204 
6205 	switch (idsrc->sadb_ident_type) {
6206 	case SADB_IDENTTYPE_PREFIX:
6207 	case SADB_IDENTTYPE_FQDN:
6208 	case SADB_IDENTTYPE_USERFQDN:
6209 	default:
6210 		/* XXX do nothing */
6211 		sah->idents = NULL;
6212 		sah->identd = NULL;
6213 	 	return 0;
6214 	}
6215 
6216 	/* make structure */
6217 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
6218 	if (sah->idents == NULL) {
6219 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6220 		return ENOBUFS;
6221 	}
6222 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
6223 	if (sah->identd == NULL) {
6224 		free(sah->idents, M_IPSEC_MISC);
6225 		sah->idents = NULL;
6226 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6227 		return ENOBUFS;
6228 	}
6229 	sah->idents->type = idsrc->sadb_ident_type;
6230 	sah->idents->id = idsrc->sadb_ident_id;
6231 
6232 	sah->identd->type = iddst->sadb_ident_type;
6233 	sah->identd->id = iddst->sadb_ident_id;
6234 
6235 	return 0;
6236 }
6237 
6238 /*
6239  * m will not be freed on return.
6240  * it is caller's responsibility to free the result.
6241  *
6242  * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers
6243  * from the request in defined order.
6244  */
6245 static struct mbuf *
key_getmsgbuf_x1(struct mbuf * m,const struct sadb_msghdr * mhp)6246 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
6247 {
6248 	struct mbuf *n;
6249 
6250 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6251 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6252 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6253 
6254 	/* create new sadb_msg to reply. */
6255 	n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED,
6256 	    SADB_EXT_SA, SADB_X_EXT_SA2,
6257 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
6258 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
6259 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
6260 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
6261 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
6262 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC,
6263 	    SADB_X_EXT_NEW_ADDRESS_DST);
6264 	if (!n)
6265 		return NULL;
6266 
6267 	if (n->m_len < sizeof(struct sadb_msg)) {
6268 		n = m_pullup(n, sizeof(struct sadb_msg));
6269 		if (n == NULL)
6270 			return NULL;
6271 	}
6272 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6273 	mtod(n, struct sadb_msg *)->sadb_msg_len =
6274 	    PFKEY_UNIT64(n->m_pkthdr.len);
6275 
6276 	return n;
6277 }
6278 
6279 /*
6280  * SADB_DELETE processing
6281  * receive
6282  *   <base, SA(*), address(SD)>
6283  * from the ikmpd, and set SADB_SASTATE_DEAD,
6284  * and send,
6285  *   <base, SA(*), address(SD)>
6286  * to the ikmpd.
6287  *
6288  * m will always be freed.
6289  */
6290 static int
key_delete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6291 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6292 {
6293 	struct secasindex saidx;
6294 	struct sadb_address *src0, *dst0;
6295 	struct secasvar *sav;
6296 	struct sadb_sa *sa0;
6297 	uint8_t proto;
6298 
6299 	IPSEC_ASSERT(so != NULL, ("null socket"));
6300 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6301 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6302 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6303 
6304 	/* map satype to proto */
6305 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6306 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6307 		    __func__));
6308 		return key_senderror(so, m, EINVAL);
6309 	}
6310 
6311 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6312 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
6313 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6314 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6315 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6316 		    __func__));
6317 		return key_senderror(so, m, EINVAL);
6318 	}
6319 
6320 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
6321 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
6322 
6323 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6324 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6325 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6326 		return (key_senderror(so, m, EINVAL));
6327 	}
6328 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6329 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
6330 		/*
6331 		 * Caller wants us to delete all non-LARVAL SAs
6332 		 * that match the src/dst.  This is used during
6333 		 * IKE INITIAL-CONTACT.
6334 		 * XXXAE: this looks like some extension to RFC2367.
6335 		 */
6336 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
6337 		return (key_delete_all(so, m, mhp, &saidx));
6338 	}
6339 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
6340 		ipseclog((LOG_DEBUG,
6341 		    "%s: invalid message: wrong header size.\n", __func__));
6342 		return (key_senderror(so, m, EINVAL));
6343 	}
6344 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6345 	SPI_ALLOC_LOCK();
6346 	if (proto == IPPROTO_TCP)
6347 		sav = key_getsav_tcpmd5(&saidx, NULL);
6348 	else
6349 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6350 	SPI_ALLOC_UNLOCK();
6351 	if (sav == NULL) {
6352 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n",
6353 		    __func__, ntohl(sa0->sadb_sa_spi)));
6354 		return (key_senderror(so, m, ESRCH));
6355 	}
6356 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6357 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6358 		    __func__, ntohl(sav->spi)));
6359 		key_freesav(&sav);
6360 		return (key_senderror(so, m, ESRCH));
6361 	}
6362 	KEYDBG(KEY_STAMP,
6363 	    printf("%s: SA(%p)\n", __func__, sav));
6364 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
6365 	key_unlinksav(sav);
6366 	key_freesav(&sav);
6367 
6368     {
6369 	struct mbuf *n;
6370 	struct sadb_msg *newmsg;
6371 
6372 	/* create new sadb_msg to reply. */
6373 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6374 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6375 	if (!n)
6376 		return key_senderror(so, m, ENOBUFS);
6377 
6378 	if (n->m_len < sizeof(struct sadb_msg)) {
6379 		n = m_pullup(n, sizeof(struct sadb_msg));
6380 		if (n == NULL)
6381 			return key_senderror(so, m, ENOBUFS);
6382 	}
6383 	newmsg = mtod(n, struct sadb_msg *);
6384 	newmsg->sadb_msg_errno = 0;
6385 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6386 
6387 	m_freem(m);
6388 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6389     }
6390 }
6391 
6392 /*
6393  * delete all SAs for src/dst.  Called from key_delete().
6394  */
6395 static int
key_delete_all(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasindex * saidx)6396 key_delete_all(struct socket *so, struct mbuf *m,
6397     const struct sadb_msghdr *mhp, struct secasindex *saidx)
6398 {
6399 	struct secasvar_queue drainq;
6400 	struct secashead *sah;
6401 	struct secasvar *sav, *nextsav;
6402 
6403 	TAILQ_INIT(&drainq);
6404 	SAHTREE_WLOCK();
6405 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
6406 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0)
6407 			continue;
6408 		/* Move all ALIVE SAs into drainq */
6409 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6410 	}
6411 	/* Unlink all queued SAs from SPI hash */
6412 	TAILQ_FOREACH(sav, &drainq, chain) {
6413 		sav->state = SADB_SASTATE_DEAD;
6414 		ipsec_accel_forget_sav(sav);
6415 		LIST_REMOVE(sav, spihash);
6416 	}
6417 	SAHTREE_WUNLOCK();
6418 	/* Now we can release reference for all SAs in drainq */
6419 	sav = TAILQ_FIRST(&drainq);
6420 	while (sav != NULL) {
6421 		KEYDBG(KEY_STAMP,
6422 		    printf("%s: SA(%p)\n", __func__, sav));
6423 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6424 		nextsav = TAILQ_NEXT(sav, chain);
6425 		key_freesah(&sav->sah); /* release reference from SAV */
6426 		key_freesav(&sav); /* release last reference */
6427 		sav = nextsav;
6428 	}
6429 
6430     {
6431 	struct mbuf *n;
6432 	struct sadb_msg *newmsg;
6433 
6434 	/* create new sadb_msg to reply. */
6435 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6436 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6437 	if (!n)
6438 		return key_senderror(so, m, ENOBUFS);
6439 
6440 	if (n->m_len < sizeof(struct sadb_msg)) {
6441 		n = m_pullup(n, sizeof(struct sadb_msg));
6442 		if (n == NULL)
6443 			return key_senderror(so, m, ENOBUFS);
6444 	}
6445 	newmsg = mtod(n, struct sadb_msg *);
6446 	newmsg->sadb_msg_errno = 0;
6447 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6448 
6449 	m_freem(m);
6450 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6451     }
6452 }
6453 
6454 /*
6455  * Delete all alive SAs for corresponding xform.
6456  * Larval SAs have not initialized tdb_xform, so it is safe to leave them
6457  * here when xform disappears.
6458  */
6459 void
key_delete_xform(const struct xformsw * xsp)6460 key_delete_xform(const struct xformsw *xsp)
6461 {
6462 	struct secasvar_queue drainq;
6463 	struct secashead *sah;
6464 	struct secasvar *sav, *nextsav;
6465 
6466 	TAILQ_INIT(&drainq);
6467 	SAHTREE_WLOCK();
6468 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
6469 		sav = TAILQ_FIRST(&sah->savtree_alive);
6470 		if (sav == NULL)
6471 			continue;
6472 		if (sav->tdb_xform != xsp)
6473 			continue;
6474 		/*
6475 		 * It is supposed that all SAs in the chain are related to
6476 		 * one xform.
6477 		 */
6478 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6479 	}
6480 	/* Unlink all queued SAs from SPI hash */
6481 	TAILQ_FOREACH(sav, &drainq, chain) {
6482 		sav->state = SADB_SASTATE_DEAD;
6483 		ipsec_accel_forget_sav(sav);
6484 		LIST_REMOVE(sav, spihash);
6485 	}
6486 	SAHTREE_WUNLOCK();
6487 
6488 	/* Now we can release reference for all SAs in drainq */
6489 	sav = TAILQ_FIRST(&drainq);
6490 	while (sav != NULL) {
6491 		KEYDBG(KEY_STAMP,
6492 		    printf("%s: SA(%p)\n", __func__, sav));
6493 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6494 		nextsav = TAILQ_NEXT(sav, chain);
6495 		key_freesah(&sav->sah); /* release reference from SAV */
6496 		key_freesav(&sav); /* release last reference */
6497 		sav = nextsav;
6498 	}
6499 }
6500 
6501 /*
6502  * SADB_GET processing
6503  * receive
6504  *   <base, SA(*), address(SD)>
6505  * from the ikmpd, and get a SP and a SA to respond,
6506  * and send,
6507  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6508  *       (identity(SD),) (sensitivity)>
6509  * to the ikmpd.
6510  *
6511  * m will always be freed.
6512  */
6513 static int
key_get(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6514 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6515 {
6516 	struct secasindex saidx;
6517 	struct sadb_address *src0, *dst0;
6518 	struct sadb_sa *sa0;
6519 	struct secasvar *sav;
6520 	uint8_t proto;
6521 
6522 	IPSEC_ASSERT(so != NULL, ("null socket"));
6523 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6524 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6525 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6526 
6527 	/* map satype to proto */
6528 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6529 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6530 			__func__));
6531 		return key_senderror(so, m, EINVAL);
6532 	}
6533 
6534 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
6535 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6536 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) {
6537 		ipseclog((LOG_DEBUG,
6538 		    "%s: invalid message: missing required header.\n",
6539 		    __func__));
6540 		return key_senderror(so, m, EINVAL);
6541 	}
6542 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
6543 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6544 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6545 		ipseclog((LOG_DEBUG,
6546 		    "%s: invalid message: wrong header size.\n", __func__));
6547 		return key_senderror(so, m, EINVAL);
6548 	}
6549 
6550 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6551 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6552 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6553 
6554 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6555 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6556 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6557 		return key_senderror(so, m, EINVAL);
6558 	}
6559 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6560 
6561 	SPI_ALLOC_LOCK();
6562 	if (proto == IPPROTO_TCP)
6563 		sav = key_getsav_tcpmd5(&saidx, NULL);
6564 	else
6565 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6566 	SPI_ALLOC_UNLOCK();
6567 	if (sav == NULL) {
6568 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
6569 		return key_senderror(so, m, ESRCH);
6570 	}
6571 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6572 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6573 		    __func__, ntohl(sa0->sadb_sa_spi)));
6574 		key_freesav(&sav);
6575 		return (key_senderror(so, m, ESRCH));
6576 	}
6577 
6578     {
6579 	struct mbuf *n;
6580 	uint8_t satype;
6581 
6582 	/* map proto to satype */
6583 	if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
6584 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6585 		    __func__));
6586 		key_freesav(&sav);
6587 		return key_senderror(so, m, EINVAL);
6588 	}
6589 
6590 	/* create new sadb_msg to reply. */
6591 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6592 	    mhp->msg->sadb_msg_pid, NULL);
6593 
6594 	key_freesav(&sav);
6595 	if (!n)
6596 		return key_senderror(so, m, ENOBUFS);
6597 
6598 	m_freem(m);
6599 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6600     }
6601 }
6602 
6603 /* XXX make it sysctl-configurable? */
6604 static void
key_getcomb_setlifetime(struct sadb_comb * comb)6605 key_getcomb_setlifetime(struct sadb_comb *comb)
6606 {
6607 
6608 	comb->sadb_comb_soft_allocations = 1;
6609 	comb->sadb_comb_hard_allocations = 1;
6610 	comb->sadb_comb_soft_bytes = 0;
6611 	comb->sadb_comb_hard_bytes = 0;
6612 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6613 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6614 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6615 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6616 }
6617 
6618 /*
6619  * XXX reorder combinations by preference
6620  * XXX no idea if the user wants ESP authentication or not
6621  */
6622 static struct mbuf *
key_getcomb_ealg(void)6623 key_getcomb_ealg(void)
6624 {
6625 	struct sadb_comb *comb;
6626 	const struct enc_xform *algo;
6627 	struct mbuf *result = NULL, *m, *n;
6628 	int encmin;
6629 	int i, off, o;
6630 	int totlen;
6631 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6632 
6633 	m = NULL;
6634 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6635 		algo = enc_algorithm_lookup(i);
6636 		if (algo == NULL)
6637 			continue;
6638 
6639 		/* discard algorithms with key size smaller than system min */
6640 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6641 			continue;
6642 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6643 			encmin = V_ipsec_esp_keymin;
6644 		else
6645 			encmin = _BITS(algo->minkey);
6646 
6647 		if (V_ipsec_esp_auth)
6648 			m = key_getcomb_ah();
6649 		else {
6650 			IPSEC_ASSERT(l <= MLEN,
6651 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6652 			MGET(m, M_NOWAIT, MT_DATA);
6653 			if (m) {
6654 				M_ALIGN(m, l);
6655 				m->m_len = l;
6656 				m->m_next = NULL;
6657 				bzero(mtod(m, caddr_t), m->m_len);
6658 			}
6659 		}
6660 		if (!m)
6661 			goto fail;
6662 
6663 		totlen = 0;
6664 		for (n = m; n; n = n->m_next)
6665 			totlen += n->m_len;
6666 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6667 
6668 		for (off = 0; off < totlen; off += l) {
6669 			n = m_pulldown(m, off, l, &o);
6670 			if (!n) {
6671 				/* m is already freed */
6672 				goto fail;
6673 			}
6674 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6675 			bzero(comb, sizeof(*comb));
6676 			key_getcomb_setlifetime(comb);
6677 			comb->sadb_comb_encrypt = i;
6678 			comb->sadb_comb_encrypt_minbits = encmin;
6679 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6680 		}
6681 
6682 		if (!result)
6683 			result = m;
6684 		else
6685 			m_cat(result, m);
6686 	}
6687 
6688 	return result;
6689 
6690  fail:
6691 	if (result)
6692 		m_freem(result);
6693 	return NULL;
6694 }
6695 
6696 static void
key_getsizes_ah(const struct auth_hash * ah,int alg,u_int16_t * min,u_int16_t * max)6697 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
6698     u_int16_t* max)
6699 {
6700 
6701 	*min = *max = ah->hashsize;
6702 	if (ah->keysize == 0) {
6703 		/*
6704 		 * Transform takes arbitrary key size but algorithm
6705 		 * key size is restricted.  Enforce this here.
6706 		 */
6707 		switch (alg) {
6708 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6709 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6710 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6711 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6712 		default:
6713 			DPRINTF(("%s: unknown AH algorithm %u\n",
6714 				__func__, alg));
6715 			break;
6716 		}
6717 	}
6718 }
6719 
6720 /*
6721  * XXX reorder combinations by preference
6722  */
6723 static struct mbuf *
key_getcomb_ah(void)6724 key_getcomb_ah(void)
6725 {
6726 	const struct auth_hash *algo;
6727 	struct sadb_comb *comb;
6728 	struct mbuf *m;
6729 	u_int16_t minkeysize, maxkeysize;
6730 	int i;
6731 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6732 
6733 	m = NULL;
6734 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6735 #if 1
6736 		/* we prefer HMAC algorithms, not old algorithms */
6737 		if (i != SADB_AALG_SHA1HMAC &&
6738 		    i != SADB_X_AALG_SHA2_256 &&
6739 		    i != SADB_X_AALG_SHA2_384 &&
6740 		    i != SADB_X_AALG_SHA2_512)
6741 			continue;
6742 #endif
6743 		algo = auth_algorithm_lookup(i);
6744 		if (!algo)
6745 			continue;
6746 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6747 		/* discard algorithms with key size smaller than system min */
6748 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6749 			continue;
6750 
6751 		if (!m) {
6752 			IPSEC_ASSERT(l <= MLEN,
6753 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6754 			MGET(m, M_NOWAIT, MT_DATA);
6755 			if (m) {
6756 				M_ALIGN(m, l);
6757 				m->m_len = l;
6758 				m->m_next = NULL;
6759 			}
6760 		} else
6761 			M_PREPEND(m, l, M_NOWAIT);
6762 		if (!m)
6763 			return NULL;
6764 
6765 		comb = mtod(m, struct sadb_comb *);
6766 		bzero(comb, sizeof(*comb));
6767 		key_getcomb_setlifetime(comb);
6768 		comb->sadb_comb_auth = i;
6769 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6770 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6771 	}
6772 
6773 	return m;
6774 }
6775 
6776 /*
6777  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6778  * XXX reorder combinations by preference
6779  */
6780 static struct mbuf *
key_getcomb_ipcomp(void)6781 key_getcomb_ipcomp(void)
6782 {
6783 	const struct comp_algo *algo;
6784 	struct sadb_comb *comb;
6785 	struct mbuf *m;
6786 	int i;
6787 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6788 
6789 	m = NULL;
6790 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6791 		algo = comp_algorithm_lookup(i);
6792 		if (!algo)
6793 			continue;
6794 
6795 		if (!m) {
6796 			IPSEC_ASSERT(l <= MLEN,
6797 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6798 			MGET(m, M_NOWAIT, MT_DATA);
6799 			if (m) {
6800 				M_ALIGN(m, l);
6801 				m->m_len = l;
6802 				m->m_next = NULL;
6803 			}
6804 		} else
6805 			M_PREPEND(m, l, M_NOWAIT);
6806 		if (!m)
6807 			return NULL;
6808 
6809 		comb = mtod(m, struct sadb_comb *);
6810 		bzero(comb, sizeof(*comb));
6811 		key_getcomb_setlifetime(comb);
6812 		comb->sadb_comb_encrypt = i;
6813 		/* what should we set into sadb_comb_*_{min,max}bits? */
6814 	}
6815 
6816 	return m;
6817 }
6818 
6819 /*
6820  * XXX no way to pass mode (transport/tunnel) to userland
6821  * XXX replay checking?
6822  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6823  */
6824 static struct mbuf *
key_getprop(const struct secasindex * saidx)6825 key_getprop(const struct secasindex *saidx)
6826 {
6827 	struct sadb_prop *prop;
6828 	struct mbuf *m, *n;
6829 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6830 	int totlen;
6831 
6832 	switch (saidx->proto)  {
6833 	case IPPROTO_ESP:
6834 		m = key_getcomb_ealg();
6835 		break;
6836 	case IPPROTO_AH:
6837 		m = key_getcomb_ah();
6838 		break;
6839 	case IPPROTO_IPCOMP:
6840 		m = key_getcomb_ipcomp();
6841 		break;
6842 	default:
6843 		return NULL;
6844 	}
6845 
6846 	if (!m)
6847 		return NULL;
6848 	M_PREPEND(m, l, M_NOWAIT);
6849 	if (!m)
6850 		return NULL;
6851 
6852 	totlen = 0;
6853 	for (n = m; n; n = n->m_next)
6854 		totlen += n->m_len;
6855 
6856 	prop = mtod(m, struct sadb_prop *);
6857 	bzero(prop, sizeof(*prop));
6858 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6859 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6860 	prop->sadb_prop_replay = 32;	/* XXX */
6861 
6862 	return m;
6863 }
6864 
6865 /*
6866  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6867  * send
6868  *   <base, SA, address(SD), (address(P)), x_policy,
6869  *       (identity(SD),) (sensitivity,) proposal>
6870  * to KMD, and expect to receive
6871  *   <base> with SADB_ACQUIRE if error occurred,
6872  * or
6873  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6874  * from KMD by PF_KEY.
6875  *
6876  * XXX x_policy is outside of RFC2367 (KAME extension).
6877  * XXX sensitivity is not supported.
6878  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6879  * see comment for key_getcomb_ipcomp().
6880  *
6881  * OUT:
6882  *    0     : succeed
6883  *    others: error number
6884  */
6885 static int
key_acquire(const struct secasindex * saidx,struct secpolicy * sp)6886 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6887 {
6888 	union sockaddr_union addr;
6889 	struct mbuf *result, *m;
6890 	uint32_t seq;
6891 	int error;
6892 	uint16_t ul_proto;
6893 	uint8_t mask, satype;
6894 
6895 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6896 	satype = key_proto2satype(saidx->proto);
6897 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6898 
6899 	error = -1;
6900 	result = NULL;
6901 	ul_proto = IPSEC_ULPROTO_ANY;
6902 
6903 	/* Get seq number to check whether sending message or not. */
6904 	seq = key_getacq(saidx, &error);
6905 	if (seq == 0)
6906 		return (error);
6907 
6908 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6909 	if (!m) {
6910 		error = ENOBUFS;
6911 		goto fail;
6912 	}
6913 	result = m;
6914 
6915 	/*
6916 	 * set sadb_address for saidx's.
6917 	 *
6918 	 * Note that if sp is supplied, then we're being called from
6919 	 * key_allocsa_policy() and should supply port and protocol
6920 	 * information.
6921 	 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too.
6922 	 * XXXAE: probably we can handle this in the ipsec[46]_allocsa().
6923 	 * XXXAE: it looks like we should save this info in the ACQ entry.
6924 	 */
6925 	if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6926 	    sp->spidx.ul_proto == IPPROTO_UDP))
6927 		ul_proto = sp->spidx.ul_proto;
6928 
6929 	addr = saidx->src;
6930 	mask = FULLMASK;
6931 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6932 		switch (sp->spidx.src.sa.sa_family) {
6933 		case AF_INET:
6934 			if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6935 				addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6936 				mask = sp->spidx.prefs;
6937 			}
6938 			break;
6939 		case AF_INET6:
6940 			if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6941 				addr.sin6.sin6_port =
6942 				    sp->spidx.src.sin6.sin6_port;
6943 				mask = sp->spidx.prefs;
6944 			}
6945 			break;
6946 		default:
6947 			break;
6948 		}
6949 	}
6950 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6951 	if (!m) {
6952 		error = ENOBUFS;
6953 		goto fail;
6954 	}
6955 	m_cat(result, m);
6956 
6957 	addr = saidx->dst;
6958 	mask = FULLMASK;
6959 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6960 		switch (sp->spidx.dst.sa.sa_family) {
6961 		case AF_INET:
6962 			if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6963 				addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6964 				mask = sp->spidx.prefd;
6965 			}
6966 			break;
6967 		case AF_INET6:
6968 			if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6969 				addr.sin6.sin6_port =
6970 				    sp->spidx.dst.sin6.sin6_port;
6971 				mask = sp->spidx.prefd;
6972 			}
6973 			break;
6974 		default:
6975 			break;
6976 		}
6977 	}
6978 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6979 	if (!m) {
6980 		error = ENOBUFS;
6981 		goto fail;
6982 	}
6983 	m_cat(result, m);
6984 
6985 	/* XXX proxy address (optional) */
6986 
6987 	/*
6988 	 * Set sadb_x_policy. This is KAME extension to RFC2367.
6989 	 */
6990 	if (sp != NULL) {
6991 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6992 		    sp->priority);
6993 		if (!m) {
6994 			error = ENOBUFS;
6995 			goto fail;
6996 		}
6997 		m_cat(result, m);
6998 	}
6999 
7000 	/*
7001 	 * Set sadb_x_sa2 extension if saidx->reqid is not zero.
7002 	 * This is FreeBSD extension to RFC2367.
7003 	 */
7004 	if (saidx->reqid != 0) {
7005 		m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid);
7006 		if (m == NULL) {
7007 			error = ENOBUFS;
7008 			goto fail;
7009 		}
7010 		m_cat(result, m);
7011 	}
7012 	/* XXX identity (optional) */
7013 #if 0
7014 	if (idexttype && fqdn) {
7015 		/* create identity extension (FQDN) */
7016 		struct sadb_ident *id;
7017 		int fqdnlen;
7018 
7019 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
7020 		id = (struct sadb_ident *)p;
7021 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
7022 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
7023 		id->sadb_ident_exttype = idexttype;
7024 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
7025 		bcopy(fqdn, id + 1, fqdnlen);
7026 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
7027 	}
7028 
7029 	if (idexttype) {
7030 		/* create identity extension (USERFQDN) */
7031 		struct sadb_ident *id;
7032 		int userfqdnlen;
7033 
7034 		if (userfqdn) {
7035 			/* +1 for terminating-NUL */
7036 			userfqdnlen = strlen(userfqdn) + 1;
7037 		} else
7038 			userfqdnlen = 0;
7039 		id = (struct sadb_ident *)p;
7040 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
7041 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
7042 		id->sadb_ident_exttype = idexttype;
7043 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
7044 		/* XXX is it correct? */
7045 		if (curproc && curproc->p_cred)
7046 			id->sadb_ident_id = curproc->p_cred->p_ruid;
7047 		if (userfqdn && userfqdnlen)
7048 			bcopy(userfqdn, id + 1, userfqdnlen);
7049 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
7050 	}
7051 #endif
7052 
7053 	/* XXX sensitivity (optional) */
7054 
7055 	/* create proposal/combination extension */
7056 	m = key_getprop(saidx);
7057 #if 0
7058 	/*
7059 	 * spec conformant: always attach proposal/combination extension,
7060 	 * the problem is that we have no way to attach it for ipcomp,
7061 	 * due to the way sadb_comb is declared in RFC2367.
7062 	 */
7063 	if (!m) {
7064 		error = ENOBUFS;
7065 		goto fail;
7066 	}
7067 	m_cat(result, m);
7068 #else
7069 	/*
7070 	 * outside of spec; make proposal/combination extension optional.
7071 	 */
7072 	if (m)
7073 		m_cat(result, m);
7074 #endif
7075 
7076 	if ((result->m_flags & M_PKTHDR) == 0) {
7077 		error = EINVAL;
7078 		goto fail;
7079 	}
7080 
7081 	if (result->m_len < sizeof(struct sadb_msg)) {
7082 		result = m_pullup(result, sizeof(struct sadb_msg));
7083 		if (result == NULL) {
7084 			error = ENOBUFS;
7085 			goto fail;
7086 		}
7087 	}
7088 
7089 	result->m_pkthdr.len = 0;
7090 	for (m = result; m; m = m->m_next)
7091 		result->m_pkthdr.len += m->m_len;
7092 
7093 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7094 	    PFKEY_UNIT64(result->m_pkthdr.len);
7095 
7096 	KEYDBG(KEY_STAMP,
7097 	    printf("%s: SP(%p)\n", __func__, sp));
7098 	KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL));
7099 
7100 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7101 
7102  fail:
7103 	if (result)
7104 		m_freem(result);
7105 	return error;
7106 }
7107 
7108 static uint32_t
key_newacq(const struct secasindex * saidx,int * perror)7109 key_newacq(const struct secasindex *saidx, int *perror)
7110 {
7111 	struct secacq *acq;
7112 	uint32_t seq;
7113 
7114 	acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO);
7115 	if (acq == NULL) {
7116 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7117 		*perror = ENOBUFS;
7118 		return (0);
7119 	}
7120 
7121 	/* copy secindex */
7122 	bcopy(saidx, &acq->saidx, sizeof(acq->saidx));
7123 	acq->created = time_second;
7124 	acq->count = 0;
7125 
7126 	/* add to acqtree */
7127 	ACQ_LOCK();
7128 	seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
7129 	LIST_INSERT_HEAD(&V_acqtree, acq, chain);
7130 	LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash);
7131 	LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash);
7132 	ACQ_UNLOCK();
7133 	*perror = 0;
7134 	return (seq);
7135 }
7136 
7137 static uint32_t
key_getacq(const struct secasindex * saidx,int * perror)7138 key_getacq(const struct secasindex *saidx, int *perror)
7139 {
7140 	struct secacq *acq;
7141 	uint32_t seq;
7142 
7143 	ACQ_LOCK();
7144 	LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) {
7145 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) {
7146 			if (acq->count > V_key_blockacq_count) {
7147 				/*
7148 				 * Reset counter and send message.
7149 				 * Also reset created time to keep ACQ for
7150 				 * this saidx.
7151 				 */
7152 				acq->created = time_second;
7153 				acq->count = 0;
7154 				seq = acq->seq;
7155 			} else {
7156 				/*
7157 				 * Increment counter and do nothing.
7158 				 * We send SADB_ACQUIRE message only
7159 				 * for each V_key_blockacq_count packet.
7160 				 */
7161 				acq->count++;
7162 				seq = 0;
7163 			}
7164 			break;
7165 		}
7166 	}
7167 	ACQ_UNLOCK();
7168 	if (acq != NULL) {
7169 		*perror = 0;
7170 		return (seq);
7171 	}
7172 	/* allocate new  entry */
7173 	return (key_newacq(saidx, perror));
7174 }
7175 
7176 static int
key_acqreset(uint32_t seq)7177 key_acqreset(uint32_t seq)
7178 {
7179 	struct secacq *acq;
7180 
7181 	ACQ_LOCK();
7182 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
7183 		if (acq->seq == seq) {
7184 			acq->count = 0;
7185 			acq->created = time_second;
7186 			break;
7187 		}
7188 	}
7189 	ACQ_UNLOCK();
7190 	if (acq == NULL)
7191 		return (ESRCH);
7192 	return (0);
7193 }
7194 /*
7195  * Mark ACQ entry as stale to remove it in key_flush_acq().
7196  * Called after successful SADB_GETSPI message.
7197  */
7198 static int
key_acqdone(const struct secasindex * saidx,uint32_t seq)7199 key_acqdone(const struct secasindex *saidx, uint32_t seq)
7200 {
7201 	struct secacq *acq;
7202 
7203 	ACQ_LOCK();
7204 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
7205 		if (acq->seq == seq)
7206 			break;
7207 	}
7208 	if (acq != NULL) {
7209 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) {
7210 			ipseclog((LOG_DEBUG,
7211 			    "%s: Mismatched saidx for ACQ %u\n", __func__, seq));
7212 			acq = NULL;
7213 		} else {
7214 			acq->created = 0;
7215 		}
7216 	} else {
7217 		ipseclog((LOG_DEBUG,
7218 		    "%s: ACQ %u is not found.\n", __func__, seq));
7219 	}
7220 	ACQ_UNLOCK();
7221 	if (acq == NULL)
7222 		return (ESRCH);
7223 	return (0);
7224 }
7225 
7226 static struct secspacq *
key_newspacq(struct secpolicyindex * spidx)7227 key_newspacq(struct secpolicyindex *spidx)
7228 {
7229 	struct secspacq *acq;
7230 
7231 	/* get new entry */
7232 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
7233 	if (acq == NULL) {
7234 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7235 		return NULL;
7236 	}
7237 
7238 	/* copy secindex */
7239 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
7240 	acq->created = time_second;
7241 	acq->count = 0;
7242 
7243 	/* add to spacqtree */
7244 	SPACQ_LOCK();
7245 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
7246 	SPACQ_UNLOCK();
7247 
7248 	return acq;
7249 }
7250 
7251 static struct secspacq *
key_getspacq(struct secpolicyindex * spidx)7252 key_getspacq(struct secpolicyindex *spidx)
7253 {
7254 	struct secspacq *acq;
7255 
7256 	SPACQ_LOCK();
7257 	LIST_FOREACH(acq, &V_spacqtree, chain) {
7258 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
7259 			/* NB: return holding spacq_lock */
7260 			return acq;
7261 		}
7262 	}
7263 	SPACQ_UNLOCK();
7264 
7265 	return NULL;
7266 }
7267 
7268 /*
7269  * SADB_ACQUIRE processing,
7270  * in first situation, is receiving
7271  *   <base>
7272  * from the ikmpd, and clear sequence of its secasvar entry.
7273  *
7274  * In second situation, is receiving
7275  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
7276  * from a user land process, and return
7277  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
7278  * to the socket.
7279  *
7280  * m will always be freed.
7281  */
7282 static int
key_acquire2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7283 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7284 {
7285 	SAHTREE_RLOCK_TRACKER;
7286 	struct sadb_address *src0, *dst0;
7287 	struct secasindex saidx;
7288 	struct secashead *sah;
7289 	uint32_t reqid;
7290 	int error;
7291 	uint8_t mode, proto;
7292 
7293 	IPSEC_ASSERT(so != NULL, ("null socket"));
7294 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7295 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7296 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7297 
7298 	/*
7299 	 * Error message from KMd.
7300 	 * We assume that if error was occurred in IKEd, the length of PFKEY
7301 	 * message is equal to the size of sadb_msg structure.
7302 	 * We do not raise error even if error occurred in this function.
7303 	 */
7304 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
7305 		/* check sequence number */
7306 		if (mhp->msg->sadb_msg_seq == 0 ||
7307 		    mhp->msg->sadb_msg_errno == 0) {
7308 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
7309 				"number and errno.\n", __func__));
7310 		} else {
7311 			/*
7312 			 * IKEd reported that error occurred.
7313 			 * XXXAE: what it expects from the kernel?
7314 			 * Probably we should send SADB_ACQUIRE again?
7315 			 * If so, reset ACQ's state.
7316 			 * XXXAE: it looks useless.
7317 			 */
7318 			key_acqreset(mhp->msg->sadb_msg_seq);
7319 		}
7320 		m_freem(m);
7321 		return (0);
7322 	}
7323 
7324 	/*
7325 	 * This message is from user land.
7326 	 */
7327 
7328 	/* map satype to proto */
7329 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7330 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7331 		    __func__));
7332 		return key_senderror(so, m, EINVAL);
7333 	}
7334 
7335 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
7336 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
7337 	    SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) {
7338 		ipseclog((LOG_DEBUG,
7339 		    "%s: invalid message: missing required header.\n",
7340 		    __func__));
7341 		return key_senderror(so, m, EINVAL);
7342 	}
7343 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
7344 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
7345 	    SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) {
7346 		ipseclog((LOG_DEBUG,
7347 		    "%s: invalid message: wrong header size.\n", __func__));
7348 		return key_senderror(so, m, EINVAL);
7349 	}
7350 
7351 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
7352 		mode = IPSEC_MODE_ANY;
7353 		reqid = 0;
7354 	} else {
7355 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
7356 			ipseclog((LOG_DEBUG,
7357 			    "%s: invalid message: wrong header size.\n",
7358 			    __func__));
7359 			return key_senderror(so, m, EINVAL);
7360 		}
7361 		mode = ((struct sadb_x_sa2 *)
7362 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
7363 		reqid = ((struct sadb_x_sa2 *)
7364 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
7365 	}
7366 
7367 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
7368 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
7369 
7370 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
7371 	    (struct sockaddr *)(dst0 + 1));
7372 	if (error != 0) {
7373 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
7374 		return key_senderror(so, m, EINVAL);
7375 	}
7376 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
7377 
7378 	/* get a SA index */
7379 	SAHTREE_RLOCK();
7380 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
7381 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
7382 			break;
7383 	}
7384 	SAHTREE_RUNLOCK();
7385 	if (sah != NULL) {
7386 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
7387 		return key_senderror(so, m, EEXIST);
7388 	}
7389 
7390 	error = key_acquire(&saidx, NULL);
7391 	if (error != 0) {
7392 		ipseclog((LOG_DEBUG,
7393 		    "%s: error %d returned from key_acquire()\n",
7394 			__func__, error));
7395 		return key_senderror(so, m, error);
7396 	}
7397 	m_freem(m);
7398 	return (0);
7399 }
7400 
7401 /*
7402  * SADB_REGISTER processing.
7403  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7404  * receive
7405  *   <base>
7406  * from the ikmpd, and register a socket to send PF_KEY messages,
7407  * and send
7408  *   <base, supported>
7409  * to KMD by PF_KEY.
7410  * If socket is detached, must free from regnode.
7411  *
7412  * m will always be freed.
7413  */
7414 static int
key_register(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7415 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7416 {
7417 	struct secreg *reg, *newreg = NULL;
7418 
7419 	IPSEC_ASSERT(so != NULL, ("null socket"));
7420 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7421 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7422 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7423 
7424 	/* check for invalid register message */
7425 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
7426 		return key_senderror(so, m, EINVAL);
7427 
7428 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7429 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7430 		goto setmsg;
7431 
7432 	/* check whether existing or not */
7433 	REGTREE_LOCK();
7434 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
7435 		if (reg->so == so) {
7436 			REGTREE_UNLOCK();
7437 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
7438 				__func__));
7439 			return key_senderror(so, m, EEXIST);
7440 		}
7441 	}
7442 
7443 	/* create regnode */
7444 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
7445 	if (newreg == NULL) {
7446 		REGTREE_UNLOCK();
7447 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7448 		return key_senderror(so, m, ENOBUFS);
7449 	}
7450 
7451 	newreg->so = so;
7452 	((struct keycb *)(so->so_pcb))->kp_registered++;
7453 
7454 	/* add regnode to regtree. */
7455 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
7456 	REGTREE_UNLOCK();
7457 
7458   setmsg:
7459     {
7460 	struct mbuf *n;
7461 	struct sadb_msg *newmsg;
7462 	struct sadb_supported *sup;
7463 	u_int len, alen, elen;
7464 	int off;
7465 	int i;
7466 	struct sadb_alg *alg;
7467 
7468 	/* create new sadb_msg to reply. */
7469 	alen = 0;
7470 	for (i = 1; i <= SADB_AALG_MAX; i++) {
7471 		if (auth_algorithm_lookup(i))
7472 			alen += sizeof(struct sadb_alg);
7473 	}
7474 	if (alen)
7475 		alen += sizeof(struct sadb_supported);
7476 	elen = 0;
7477 	for (i = 1; i <= SADB_EALG_MAX; i++) {
7478 		if (enc_algorithm_lookup(i))
7479 			elen += sizeof(struct sadb_alg);
7480 	}
7481 	if (elen)
7482 		elen += sizeof(struct sadb_supported);
7483 
7484 	len = sizeof(struct sadb_msg) + alen + elen;
7485 
7486 	if (len > MCLBYTES)
7487 		return key_senderror(so, m, ENOBUFS);
7488 
7489 	n = key_mget(len);
7490 	if (n == NULL)
7491 		return key_senderror(so, m, ENOBUFS);
7492 
7493 	n->m_pkthdr.len = n->m_len = len;
7494 	n->m_next = NULL;
7495 	off = 0;
7496 
7497 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
7498 	newmsg = mtod(n, struct sadb_msg *);
7499 	newmsg->sadb_msg_errno = 0;
7500 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
7501 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7502 
7503 	/* for authentication algorithm */
7504 	if (alen) {
7505 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7506 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
7507 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7508 		off += PFKEY_ALIGN8(sizeof(*sup));
7509 
7510 		for (i = 1; i <= SADB_AALG_MAX; i++) {
7511 			const struct auth_hash *aalgo;
7512 			u_int16_t minkeysize, maxkeysize;
7513 
7514 			aalgo = auth_algorithm_lookup(i);
7515 			if (!aalgo)
7516 				continue;
7517 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7518 			alg->sadb_alg_id = i;
7519 			alg->sadb_alg_ivlen = 0;
7520 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7521 			alg->sadb_alg_minbits = _BITS(minkeysize);
7522 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
7523 			off += PFKEY_ALIGN8(sizeof(*alg));
7524 		}
7525 	}
7526 
7527 	/* for encryption algorithm */
7528 	if (elen) {
7529 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7530 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
7531 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7532 		off += PFKEY_ALIGN8(sizeof(*sup));
7533 
7534 		for (i = 1; i <= SADB_EALG_MAX; i++) {
7535 			const struct enc_xform *ealgo;
7536 
7537 			ealgo = enc_algorithm_lookup(i);
7538 			if (!ealgo)
7539 				continue;
7540 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7541 			alg->sadb_alg_id = i;
7542 			alg->sadb_alg_ivlen = ealgo->ivsize;
7543 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7544 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7545 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7546 		}
7547 	}
7548 
7549 	IPSEC_ASSERT(off == len,
7550 		("length assumption failed (off %u len %u)", off, len));
7551 
7552 	m_freem(m);
7553 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7554     }
7555 }
7556 
7557 /*
7558  * free secreg entry registered.
7559  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7560  */
7561 void
key_freereg(struct socket * so)7562 key_freereg(struct socket *so)
7563 {
7564 	struct secreg *reg;
7565 	int i;
7566 
7567 	IPSEC_ASSERT(so != NULL, ("NULL so"));
7568 
7569 	/*
7570 	 * check whether existing or not.
7571 	 * check all type of SA, because there is a potential that
7572 	 * one socket is registered to multiple type of SA.
7573 	 */
7574 	REGTREE_LOCK();
7575 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7576 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7577 			if (reg->so == so && __LIST_CHAINED(reg)) {
7578 				LIST_REMOVE(reg, chain);
7579 				free(reg, M_IPSEC_SAR);
7580 				break;
7581 			}
7582 		}
7583 	}
7584 	REGTREE_UNLOCK();
7585 }
7586 
7587 /*
7588  * SADB_EXPIRE processing
7589  * send
7590  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7591  * to KMD by PF_KEY.
7592  * NOTE: We send only soft lifetime extension.
7593  *
7594  * OUT:	0	: succeed
7595  *	others	: error number
7596  */
7597 static int
key_expire(struct secasvar * sav,int hard)7598 key_expire(struct secasvar *sav, int hard)
7599 {
7600 	struct mbuf *result = NULL, *m;
7601 	struct sadb_lifetime *lt;
7602 	uint32_t replay_count;
7603 	int error, len;
7604 	uint8_t satype;
7605 
7606 	SECASVAR_RLOCK_TRACKER;
7607 
7608 	IPSEC_ASSERT (sav != NULL, ("null sav"));
7609 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
7610 
7611 	KEYDBG(KEY_STAMP,
7612 	    printf("%s: SA(%p) expired %s lifetime\n", __func__,
7613 		sav, hard ? "hard": "soft"));
7614 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
7615 	/* set msg header */
7616 	satype = key_proto2satype(sav->sah->saidx.proto);
7617 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
7618 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
7619 	if (!m) {
7620 		error = ENOBUFS;
7621 		goto fail;
7622 	}
7623 	result = m;
7624 
7625 	/* create SA extension */
7626 	m = key_setsadbsa(sav);
7627 	if (!m) {
7628 		error = ENOBUFS;
7629 		goto fail;
7630 	}
7631 	m_cat(result, m);
7632 
7633 	/* create SA extension */
7634 	SECASVAR_RLOCK(sav);
7635 	replay_count = sav->replay ? sav->replay->count : 0;
7636 	SECASVAR_RUNLOCK(sav);
7637 
7638 	m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
7639 			sav->sah->saidx.reqid);
7640 	if (!m) {
7641 		error = ENOBUFS;
7642 		goto fail;
7643 	}
7644 	m_cat(result, m);
7645 
7646 	if (sav->replay && sav->replay->wsize > UINT8_MAX) {
7647 		m = key_setsadbxsareplay(sav->replay->wsize);
7648 		if (!m) {
7649 			error = ENOBUFS;
7650 			goto fail;
7651 		}
7652 		m_cat(result, m);
7653 	}
7654 
7655 	/* create lifetime extension (current and soft) */
7656 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7657 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7658 	if (m == NULL) {
7659 		error = ENOBUFS;
7660 		goto fail;
7661 	}
7662 	m_align(m, len);
7663 	m->m_len = len;
7664 	bzero(mtod(m, caddr_t), len);
7665 	lt = mtod(m, struct sadb_lifetime *);
7666 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7667 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7668 	lt->sadb_lifetime_allocations =
7669 	    (uint32_t)counter_u64_fetch(sav->lft_c_allocations);
7670 	lt->sadb_lifetime_bytes =
7671 	    counter_u64_fetch(sav->lft_c_bytes);
7672 	lt->sadb_lifetime_addtime = sav->created;
7673 	lt->sadb_lifetime_usetime = sav->firstused;
7674 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7675 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7676 	if (hard) {
7677 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
7678 		lt->sadb_lifetime_allocations = sav->lft_h->allocations;
7679 		lt->sadb_lifetime_bytes = sav->lft_h->bytes;
7680 		lt->sadb_lifetime_addtime = sav->lft_h->addtime;
7681 		lt->sadb_lifetime_usetime = sav->lft_h->usetime;
7682 	} else {
7683 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7684 		lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7685 		lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7686 		lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7687 		lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7688 	}
7689 	m_cat(result, m);
7690 
7691 	/* set sadb_address for source */
7692 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7693 	    &sav->sah->saidx.src.sa,
7694 	    FULLMASK, IPSEC_ULPROTO_ANY);
7695 	if (!m) {
7696 		error = ENOBUFS;
7697 		goto fail;
7698 	}
7699 	m_cat(result, m);
7700 
7701 	/* set sadb_address for destination */
7702 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7703 	    &sav->sah->saidx.dst.sa,
7704 	    FULLMASK, IPSEC_ULPROTO_ANY);
7705 	if (!m) {
7706 		error = ENOBUFS;
7707 		goto fail;
7708 	}
7709 	m_cat(result, m);
7710 
7711 	/*
7712 	 * XXX-BZ Handle NAT-T extensions here.
7713 	 * XXXAE: it doesn't seem quite useful. IKEs should not depend on
7714 	 * this information, we report only significant SA fields.
7715 	 */
7716 
7717 	if ((result->m_flags & M_PKTHDR) == 0) {
7718 		error = EINVAL;
7719 		goto fail;
7720 	}
7721 
7722 	if (result->m_len < sizeof(struct sadb_msg)) {
7723 		result = m_pullup(result, sizeof(struct sadb_msg));
7724 		if (result == NULL) {
7725 			error = ENOBUFS;
7726 			goto fail;
7727 		}
7728 	}
7729 
7730 	result->m_pkthdr.len = 0;
7731 	for (m = result; m; m = m->m_next)
7732 		result->m_pkthdr.len += m->m_len;
7733 
7734 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7735 	    PFKEY_UNIT64(result->m_pkthdr.len);
7736 
7737 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7738 
7739  fail:
7740 	if (result)
7741 		m_freem(result);
7742 	return error;
7743 }
7744 
7745 static void
key_freesah_flushed(struct secashead_queue * flushq)7746 key_freesah_flushed(struct secashead_queue *flushq)
7747 {
7748 	struct secashead *sah, *nextsah;
7749 	struct secasvar *sav, *nextsav;
7750 
7751 	sah = TAILQ_FIRST(flushq);
7752 	while (sah != NULL) {
7753 		sav = TAILQ_FIRST(&sah->savtree_larval);
7754 		while (sav != NULL) {
7755 			nextsav = TAILQ_NEXT(sav, chain);
7756 			TAILQ_REMOVE(&sah->savtree_larval, sav, chain);
7757 			key_freesav(&sav); /* release last reference */
7758 			key_freesah(&sah); /* release reference from SAV */
7759 			sav = nextsav;
7760 		}
7761 		sav = TAILQ_FIRST(&sah->savtree_alive);
7762 		while (sav != NULL) {
7763 			nextsav = TAILQ_NEXT(sav, chain);
7764 			TAILQ_REMOVE(&sah->savtree_alive, sav, chain);
7765 			key_freesav(&sav); /* release last reference */
7766 			key_freesah(&sah); /* release reference from SAV */
7767 			sav = nextsav;
7768 		}
7769 		nextsah = TAILQ_NEXT(sah, chain);
7770 		key_freesah(&sah);	/* release last reference */
7771 		sah = nextsah;
7772 	}
7773 }
7774 
7775 /*
7776  * SADB_FLUSH processing
7777  * receive
7778  *   <base>
7779  * from the ikmpd, and free all entries in secastree.
7780  * and send,
7781  *   <base>
7782  * to the ikmpd.
7783  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7784  *
7785  * m will always be freed.
7786  */
7787 static int
key_flush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7788 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7789 {
7790 	struct secashead_queue flushq;
7791 	struct sadb_msg *newmsg;
7792 	struct secashead *sah, *nextsah;
7793 	struct secasvar *sav;
7794 	uint8_t proto;
7795 	int i;
7796 
7797 	IPSEC_ASSERT(so != NULL, ("null socket"));
7798 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7799 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7800 
7801 	/* map satype to proto */
7802 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7803 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7804 			__func__));
7805 		return key_senderror(so, m, EINVAL);
7806 	}
7807 	KEYDBG(KEY_STAMP,
7808 	    printf("%s: proto %u\n", __func__, proto));
7809 
7810 	TAILQ_INIT(&flushq);
7811 	if (proto == IPSEC_PROTO_ANY) {
7812 		/* no SATYPE specified, i.e. flushing all SA. */
7813 		SAHTREE_WLOCK();
7814 		/* Move all SAHs into flushq */
7815 		TAILQ_CONCAT(&flushq, &V_sahtree, chain);
7816 		/* Flush all buckets in SPI hash */
7817 		for (i = 0; i < V_savhash_mask + 1; i++)
7818 			LIST_INIT(&V_savhashtbl[i]);
7819 		/* Flush all buckets in SAHADDRHASH */
7820 		for (i = 0; i < V_sahaddrhash_mask + 1; i++)
7821 			LIST_INIT(&V_sahaddrhashtbl[i]);
7822 		/* Mark all SAHs as unlinked */
7823 		TAILQ_FOREACH(sah, &flushq, chain) {
7824 			sah->state = SADB_SASTATE_DEAD;
7825 			/*
7826 			 * Callout handler makes its job using
7827 			 * RLOCK and drain queues. In case, when this
7828 			 * function will be called just before it
7829 			 * acquires WLOCK, we need to mark SAs as
7830 			 * unlinked to prevent second unlink.
7831 			 */
7832 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7833 				sav->state = SADB_SASTATE_DEAD;
7834 				ipsec_accel_forget_sav(sav);
7835 			}
7836 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7837 				sav->state = SADB_SASTATE_DEAD;
7838 				ipsec_accel_forget_sav(sav);
7839 			}
7840 		}
7841 		SAHTREE_WUNLOCK();
7842 	} else {
7843 		SAHTREE_WLOCK();
7844 		sah = TAILQ_FIRST(&V_sahtree);
7845 		while (sah != NULL) {
7846 			IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD,
7847 			    ("DEAD SAH %p in SADB_FLUSH", sah));
7848 			nextsah = TAILQ_NEXT(sah, chain);
7849 			if (sah->saidx.proto != proto) {
7850 				sah = nextsah;
7851 				continue;
7852 			}
7853 			sah->state = SADB_SASTATE_DEAD;
7854 			TAILQ_REMOVE(&V_sahtree, sah, chain);
7855 			LIST_REMOVE(sah, addrhash);
7856 			/* Unlink all SAs from SPI hash */
7857 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7858 				LIST_REMOVE(sav, spihash);
7859 				sav->state = SADB_SASTATE_DEAD;
7860 				ipsec_accel_forget_sav(sav);
7861 			}
7862 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7863 				LIST_REMOVE(sav, spihash);
7864 				sav->state = SADB_SASTATE_DEAD;
7865 				ipsec_accel_forget_sav(sav);
7866 			}
7867 			/* Add SAH into flushq */
7868 			TAILQ_INSERT_HEAD(&flushq, sah, chain);
7869 			sah = nextsah;
7870 		}
7871 		SAHTREE_WUNLOCK();
7872 	}
7873 
7874 	key_freesah_flushed(&flushq);
7875 	/* Free all queued SAs and SAHs */
7876 	if (m->m_len < sizeof(struct sadb_msg) ||
7877 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7878 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7879 		return key_senderror(so, m, ENOBUFS);
7880 	}
7881 
7882 	if (m->m_next)
7883 		m_freem(m->m_next);
7884 	m->m_next = NULL;
7885 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7886 	newmsg = mtod(m, struct sadb_msg *);
7887 	newmsg->sadb_msg_errno = 0;
7888 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7889 
7890 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7891 }
7892 
7893 /*
7894  * SADB_DUMP processing
7895  * dump all entries including status of DEAD in SAD.
7896  * receive
7897  *   <base>
7898  * from the ikmpd, and dump all secasvar leaves
7899  * and send,
7900  *   <base> .....
7901  * to the ikmpd.
7902  *
7903  * m will always be freed.
7904  */
7905 static int
key_dump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7906 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7907 {
7908 	SAHTREE_RLOCK_TRACKER;
7909 	struct secashead *sah;
7910 	struct secasvar *sav;
7911 	struct mbuf *n;
7912 	uint32_t cnt;
7913 	uint8_t proto, satype;
7914 
7915 	IPSEC_ASSERT(so != NULL, ("null socket"));
7916 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7917 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7918 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7919 
7920 	/* map satype to proto */
7921 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7922 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7923 		    __func__));
7924 		return key_senderror(so, m, EINVAL);
7925 	}
7926 
7927 	/* count sav entries to be sent to the userland. */
7928 	cnt = 0;
7929 	IFNET_RLOCK();
7930 	SAHTREE_RLOCK();
7931 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7932 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7933 		    proto != sah->saidx.proto)
7934 			continue;
7935 
7936 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain)
7937 			cnt++;
7938 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain)
7939 			cnt++;
7940 	}
7941 
7942 	if (cnt == 0) {
7943 		SAHTREE_RUNLOCK();
7944 		IFNET_RUNLOCK();
7945 		return key_senderror(so, m, ENOENT);
7946 	}
7947 
7948 	/* send this to the userland, one at a time. */
7949 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7950 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7951 		    proto != sah->saidx.proto)
7952 			continue;
7953 
7954 		/* map proto to satype */
7955 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7956 			SAHTREE_RUNLOCK();
7957 			IFNET_RUNLOCK();
7958 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7959 			    "SAD.\n", __func__));
7960 			return key_senderror(so, m, EINVAL);
7961 		}
7962 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7963 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7964 			    --cnt, mhp->msg->sadb_msg_pid, &sahtree_tracker);
7965 			if (n == NULL) {
7966 				SAHTREE_RUNLOCK();
7967 				IFNET_RUNLOCK();
7968 				return key_senderror(so, m, ENOBUFS);
7969 			}
7970 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7971 		}
7972 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7973 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7974 			    --cnt, mhp->msg->sadb_msg_pid, &sahtree_tracker);
7975 			if (n == NULL) {
7976 				SAHTREE_RUNLOCK();
7977 				IFNET_RUNLOCK();
7978 				return key_senderror(so, m, ENOBUFS);
7979 			}
7980 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7981 		}
7982 	}
7983 	SAHTREE_RUNLOCK();
7984 	IFNET_RUNLOCK();
7985 	m_freem(m);
7986 	return (0);
7987 }
7988 /*
7989  * SADB_X_PROMISC processing
7990  *
7991  * m will always be freed.
7992  */
7993 static int
key_promisc(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7994 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7995 {
7996 	int olen;
7997 
7998 	IPSEC_ASSERT(so != NULL, ("null socket"));
7999 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8000 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8001 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
8002 
8003 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8004 
8005 	if (olen < sizeof(struct sadb_msg)) {
8006 #if 1
8007 		return key_senderror(so, m, EINVAL);
8008 #else
8009 		m_freem(m);
8010 		return 0;
8011 #endif
8012 	} else if (olen == sizeof(struct sadb_msg)) {
8013 		/* enable/disable promisc mode */
8014 		struct keycb *kp;
8015 
8016 		if ((kp = so->so_pcb) == NULL)
8017 			return key_senderror(so, m, EINVAL);
8018 		mhp->msg->sadb_msg_errno = 0;
8019 		switch (mhp->msg->sadb_msg_satype) {
8020 		case 0:
8021 		case 1:
8022 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
8023 			break;
8024 		default:
8025 			return key_senderror(so, m, EINVAL);
8026 		}
8027 
8028 		/* send the original message back to everyone */
8029 		mhp->msg->sadb_msg_errno = 0;
8030 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
8031 	} else {
8032 		/* send packet as is */
8033 
8034 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
8035 
8036 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
8037 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
8038 	}
8039 }
8040 
8041 static int (*key_typesw[])(struct socket *, struct mbuf *,
8042     const struct sadb_msghdr *) = {
8043 	[SADB_RESERVED] =	NULL,
8044 	[SADB_GETSPI] =		key_getspi,
8045 	[SADB_UPDATE] =		key_update,
8046 	[SADB_ADD] =		key_add,
8047 	[SADB_DELETE] =		key_delete,
8048 	[SADB_GET] =		key_get,
8049 	[SADB_ACQUIRE] =	key_acquire2,
8050 	[SADB_REGISTER] =	key_register,
8051 	[SADB_EXPIRE] =		NULL,
8052 	[SADB_FLUSH] =		key_flush,
8053 	[SADB_DUMP] =		key_dump,
8054 	[SADB_X_PROMISC] =	key_promisc,
8055 	[SADB_X_PCHANGE] =	NULL,
8056 	[SADB_X_SPDUPDATE] =	key_spdadd,
8057 	[SADB_X_SPDADD] =	key_spdadd,
8058 	[SADB_X_SPDDELETE] =	key_spddelete,
8059 	[SADB_X_SPDGET] =	key_spdget,
8060 	[SADB_X_SPDACQUIRE] =	NULL,
8061 	[SADB_X_SPDDUMP] =	key_spddump,
8062 	[SADB_X_SPDFLUSH] =	key_spdflush,
8063 	[SADB_X_SPDSETIDX] =	key_spdadd,
8064 	[SADB_X_SPDEXPIRE] =	NULL,
8065 	[SADB_X_SPDDELETE2] =	key_spddelete2,
8066 };
8067 
8068 /*
8069  * parse sadb_msg buffer to process PFKEYv2,
8070  * and create a data to response if needed.
8071  * I think to be dealed with mbuf directly.
8072  * IN:
8073  *     msgp  : pointer to pointer to a received buffer pulluped.
8074  *             This is rewrited to response.
8075  *     so    : pointer to socket.
8076  * OUT:
8077  *    length for buffer to send to user process.
8078  */
8079 int
key_parse(struct mbuf * m,struct socket * so)8080 key_parse(struct mbuf *m, struct socket *so)
8081 {
8082 	struct sadb_msg *msg;
8083 	struct sadb_msghdr mh;
8084 	u_int orglen;
8085 	int error;
8086 	int target;
8087 
8088 	IPSEC_ASSERT(so != NULL, ("null socket"));
8089 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8090 
8091 	if (m->m_len < sizeof(struct sadb_msg)) {
8092 		m = m_pullup(m, sizeof(struct sadb_msg));
8093 		if (!m)
8094 			return ENOBUFS;
8095 	}
8096 	msg = mtod(m, struct sadb_msg *);
8097 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
8098 	target = KEY_SENDUP_ONE;
8099 
8100 	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
8101 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
8102 		PFKEYSTAT_INC(out_invlen);
8103 		error = EINVAL;
8104 		goto senderror;
8105 	}
8106 
8107 	if (msg->sadb_msg_version != PF_KEY_V2) {
8108 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
8109 		    __func__, msg->sadb_msg_version));
8110 		PFKEYSTAT_INC(out_invver);
8111 		error = EINVAL;
8112 		goto senderror;
8113 	}
8114 
8115 	if (msg->sadb_msg_type > SADB_MAX) {
8116 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
8117 		    __func__, msg->sadb_msg_type));
8118 		PFKEYSTAT_INC(out_invmsgtype);
8119 		error = EINVAL;
8120 		goto senderror;
8121 	}
8122 
8123 	/* for old-fashioned code - should be nuked */
8124 	if (m->m_pkthdr.len > MCLBYTES) {
8125 		m_freem(m);
8126 		return ENOBUFS;
8127 	}
8128 	if (m->m_next) {
8129 		struct mbuf *n;
8130 
8131 		n = key_mget(m->m_pkthdr.len);
8132 		if (n == NULL) {
8133 			m_freem(m);
8134 			return ENOBUFS;
8135 		}
8136 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
8137 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
8138 		n->m_next = NULL;
8139 		m_freem(m);
8140 		m = n;
8141 	}
8142 
8143 	/* align the mbuf chain so that extensions are in contiguous region. */
8144 	error = key_align(m, &mh);
8145 	if (error)
8146 		return error;
8147 
8148 	msg = mh.msg;
8149 
8150 	/* We use satype as scope mask for spddump */
8151 	if (msg->sadb_msg_type == SADB_X_SPDDUMP) {
8152 		switch (msg->sadb_msg_satype) {
8153 		case IPSEC_POLICYSCOPE_ANY:
8154 		case IPSEC_POLICYSCOPE_GLOBAL:
8155 		case IPSEC_POLICYSCOPE_IFNET:
8156 		case IPSEC_POLICYSCOPE_PCB:
8157 			break;
8158 		default:
8159 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
8160 			    __func__, msg->sadb_msg_type));
8161 			PFKEYSTAT_INC(out_invsatype);
8162 			error = EINVAL;
8163 			goto senderror;
8164 		}
8165 	} else {
8166 		switch (msg->sadb_msg_satype) { /* check SA type */
8167 		case SADB_SATYPE_UNSPEC:
8168 			switch (msg->sadb_msg_type) {
8169 			case SADB_GETSPI:
8170 			case SADB_UPDATE:
8171 			case SADB_ADD:
8172 			case SADB_DELETE:
8173 			case SADB_GET:
8174 			case SADB_ACQUIRE:
8175 			case SADB_EXPIRE:
8176 				ipseclog((LOG_DEBUG, "%s: must specify satype "
8177 				    "when msg type=%u.\n", __func__,
8178 				    msg->sadb_msg_type));
8179 				PFKEYSTAT_INC(out_invsatype);
8180 				error = EINVAL;
8181 				goto senderror;
8182 			}
8183 			break;
8184 		case SADB_SATYPE_AH:
8185 		case SADB_SATYPE_ESP:
8186 		case SADB_X_SATYPE_IPCOMP:
8187 		case SADB_X_SATYPE_TCPSIGNATURE:
8188 			switch (msg->sadb_msg_type) {
8189 			case SADB_X_SPDADD:
8190 			case SADB_X_SPDDELETE:
8191 			case SADB_X_SPDGET:
8192 			case SADB_X_SPDFLUSH:
8193 			case SADB_X_SPDSETIDX:
8194 			case SADB_X_SPDUPDATE:
8195 			case SADB_X_SPDDELETE2:
8196 				ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
8197 				    __func__, msg->sadb_msg_type));
8198 				PFKEYSTAT_INC(out_invsatype);
8199 				error = EINVAL;
8200 				goto senderror;
8201 			}
8202 			break;
8203 		case SADB_SATYPE_RSVP:
8204 		case SADB_SATYPE_OSPFV2:
8205 		case SADB_SATYPE_RIPV2:
8206 		case SADB_SATYPE_MIP:
8207 			ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
8208 			    __func__, msg->sadb_msg_satype));
8209 			PFKEYSTAT_INC(out_invsatype);
8210 			error = EOPNOTSUPP;
8211 			goto senderror;
8212 		case 1:	/* XXX: What does it do? */
8213 			if (msg->sadb_msg_type == SADB_X_PROMISC)
8214 				break;
8215 			/*FALLTHROUGH*/
8216 		default:
8217 			ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
8218 			    __func__, msg->sadb_msg_satype));
8219 			PFKEYSTAT_INC(out_invsatype);
8220 			error = EINVAL;
8221 			goto senderror;
8222 		}
8223 	}
8224 
8225 	/* check field of upper layer protocol and address family */
8226 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
8227 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
8228 		struct sadb_address *src0, *dst0;
8229 		u_int plen;
8230 
8231 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
8232 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
8233 
8234 		/* check upper layer protocol */
8235 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
8236 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
8237 				"mismatched.\n", __func__));
8238 			PFKEYSTAT_INC(out_invaddr);
8239 			error = EINVAL;
8240 			goto senderror;
8241 		}
8242 
8243 		/* check family */
8244 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
8245 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
8246 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
8247 				__func__));
8248 			PFKEYSTAT_INC(out_invaddr);
8249 			error = EINVAL;
8250 			goto senderror;
8251 		}
8252 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8253 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
8254 			ipseclog((LOG_DEBUG, "%s: address struct size "
8255 				"mismatched.\n", __func__));
8256 			PFKEYSTAT_INC(out_invaddr);
8257 			error = EINVAL;
8258 			goto senderror;
8259 		}
8260 
8261 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
8262 		case AF_INET:
8263 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8264 			    sizeof(struct sockaddr_in)) {
8265 				PFKEYSTAT_INC(out_invaddr);
8266 				error = EINVAL;
8267 				goto senderror;
8268 			}
8269 			break;
8270 		case AF_INET6:
8271 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8272 			    sizeof(struct sockaddr_in6)) {
8273 				PFKEYSTAT_INC(out_invaddr);
8274 				error = EINVAL;
8275 				goto senderror;
8276 			}
8277 			break;
8278 		default:
8279 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
8280 				__func__));
8281 			PFKEYSTAT_INC(out_invaddr);
8282 			error = EAFNOSUPPORT;
8283 			goto senderror;
8284 		}
8285 
8286 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
8287 		case AF_INET:
8288 			plen = sizeof(struct in_addr) << 3;
8289 			break;
8290 		case AF_INET6:
8291 			plen = sizeof(struct in6_addr) << 3;
8292 			break;
8293 		default:
8294 			plen = 0;	/*fool gcc*/
8295 			break;
8296 		}
8297 
8298 		/* check max prefix length */
8299 		if (src0->sadb_address_prefixlen > plen ||
8300 		    dst0->sadb_address_prefixlen > plen) {
8301 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
8302 				__func__));
8303 			PFKEYSTAT_INC(out_invaddr);
8304 			error = EINVAL;
8305 			goto senderror;
8306 		}
8307 
8308 		/*
8309 		 * prefixlen == 0 is valid because there can be a case when
8310 		 * all addresses are matched.
8311 		 */
8312 	}
8313 
8314 	if (msg->sadb_msg_type >= nitems(key_typesw) ||
8315 	    key_typesw[msg->sadb_msg_type] == NULL) {
8316 		PFKEYSTAT_INC(out_invmsgtype);
8317 		error = EINVAL;
8318 		goto senderror;
8319 	}
8320 
8321 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
8322 
8323 senderror:
8324 	msg->sadb_msg_errno = error;
8325 	return key_sendup_mbuf(so, m, target);
8326 }
8327 
8328 static int
key_senderror(struct socket * so,struct mbuf * m,int code)8329 key_senderror(struct socket *so, struct mbuf *m, int code)
8330 {
8331 	struct sadb_msg *msg;
8332 
8333 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8334 		("mbuf too small, len %u", m->m_len));
8335 
8336 	msg = mtod(m, struct sadb_msg *);
8337 	msg->sadb_msg_errno = code;
8338 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
8339 }
8340 
8341 /*
8342  * set the pointer to each header into message buffer.
8343  * m will be freed on error.
8344  * XXX larger-than-MCLBYTES extension?
8345  */
8346 static int
key_align(struct mbuf * m,struct sadb_msghdr * mhp)8347 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
8348 {
8349 	struct mbuf *n;
8350 	struct sadb_ext *ext;
8351 	size_t off, end;
8352 	int extlen;
8353 	int toff;
8354 
8355 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8356 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8357 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8358 		("mbuf too small, len %u", m->m_len));
8359 
8360 	/* initialize */
8361 	bzero(mhp, sizeof(*mhp));
8362 
8363 	mhp->msg = mtod(m, struct sadb_msg *);
8364 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
8365 
8366 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8367 	extlen = end;	/*just in case extlen is not updated*/
8368 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
8369 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
8370 		if (!n) {
8371 			/* m is already freed */
8372 			return ENOBUFS;
8373 		}
8374 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8375 
8376 		/* set pointer */
8377 		switch (ext->sadb_ext_type) {
8378 		case SADB_EXT_SA:
8379 		case SADB_EXT_ADDRESS_SRC:
8380 		case SADB_EXT_ADDRESS_DST:
8381 		case SADB_EXT_ADDRESS_PROXY:
8382 		case SADB_EXT_LIFETIME_CURRENT:
8383 		case SADB_EXT_LIFETIME_HARD:
8384 		case SADB_EXT_LIFETIME_SOFT:
8385 		case SADB_EXT_KEY_AUTH:
8386 		case SADB_EXT_KEY_ENCRYPT:
8387 		case SADB_EXT_IDENTITY_SRC:
8388 		case SADB_EXT_IDENTITY_DST:
8389 		case SADB_EXT_SENSITIVITY:
8390 		case SADB_EXT_PROPOSAL:
8391 		case SADB_EXT_SUPPORTED_AUTH:
8392 		case SADB_EXT_SUPPORTED_ENCRYPT:
8393 		case SADB_EXT_SPIRANGE:
8394 		case SADB_X_EXT_POLICY:
8395 		case SADB_X_EXT_SA2:
8396 		case SADB_X_EXT_NAT_T_TYPE:
8397 		case SADB_X_EXT_NAT_T_SPORT:
8398 		case SADB_X_EXT_NAT_T_DPORT:
8399 		case SADB_X_EXT_NAT_T_OAI:
8400 		case SADB_X_EXT_NAT_T_OAR:
8401 		case SADB_X_EXT_NAT_T_FRAG:
8402 		case SADB_X_EXT_SA_REPLAY:
8403 		case SADB_X_EXT_NEW_ADDRESS_SRC:
8404 		case SADB_X_EXT_NEW_ADDRESS_DST:
8405 #ifdef IPSEC_OFFLOAD
8406 		case SADB_X_EXT_LFT_CUR_SW_OFFL:
8407 		case SADB_X_EXT_LFT_CUR_HW_OFFL:
8408 		case SADB_X_EXT_IF_HW_OFFL:
8409 #endif
8410 			/* duplicate check */
8411 			/*
8412 			 * XXX Are there duplication payloads of either
8413 			 * KEY_AUTH or KEY_ENCRYPT ?
8414 			 */
8415 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
8416 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
8417 					"%u\n", __func__, ext->sadb_ext_type));
8418 				m_freem(m);
8419 				PFKEYSTAT_INC(out_dupext);
8420 				return EINVAL;
8421 			}
8422 			break;
8423 		default:
8424 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
8425 				__func__, ext->sadb_ext_type));
8426 			m_freem(m);
8427 			PFKEYSTAT_INC(out_invexttype);
8428 			return EINVAL;
8429 		}
8430 
8431 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8432 
8433 		if (key_validate_ext(ext, extlen)) {
8434 			m_freem(m);
8435 			PFKEYSTAT_INC(out_invlen);
8436 			return EINVAL;
8437 		}
8438 
8439 		n = m_pulldown(m, off, extlen, &toff);
8440 		if (!n) {
8441 			/* m is already freed */
8442 			return ENOBUFS;
8443 		}
8444 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8445 
8446 		mhp->ext[ext->sadb_ext_type] = ext;
8447 		mhp->extoff[ext->sadb_ext_type] = off;
8448 		mhp->extlen[ext->sadb_ext_type] = extlen;
8449 	}
8450 
8451 	if (off != end) {
8452 		m_freem(m);
8453 		PFKEYSTAT_INC(out_invlen);
8454 		return EINVAL;
8455 	}
8456 
8457 	return 0;
8458 }
8459 
8460 static int
key_validate_ext(const struct sadb_ext * ext,int len)8461 key_validate_ext(const struct sadb_ext *ext, int len)
8462 {
8463 	const struct sockaddr *sa;
8464 	enum { NONE, ADDR } checktype = NONE;
8465 	int baselen = 0;
8466 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8467 
8468 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8469 		return EINVAL;
8470 
8471 	/* if it does not match minimum/maximum length, bail */
8472 	if (ext->sadb_ext_type >= nitems(minsize) ||
8473 	    ext->sadb_ext_type >= nitems(maxsize))
8474 		return EINVAL;
8475 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8476 		return EINVAL;
8477 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8478 		return EINVAL;
8479 
8480 	/* more checks based on sadb_ext_type XXX need more */
8481 	switch (ext->sadb_ext_type) {
8482 	case SADB_EXT_ADDRESS_SRC:
8483 	case SADB_EXT_ADDRESS_DST:
8484 	case SADB_EXT_ADDRESS_PROXY:
8485 	case SADB_X_EXT_NAT_T_OAI:
8486 	case SADB_X_EXT_NAT_T_OAR:
8487 	case SADB_X_EXT_NEW_ADDRESS_SRC:
8488 	case SADB_X_EXT_NEW_ADDRESS_DST:
8489 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8490 		checktype = ADDR;
8491 		break;
8492 	case SADB_EXT_IDENTITY_SRC:
8493 	case SADB_EXT_IDENTITY_DST:
8494 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8495 		    SADB_X_IDENTTYPE_ADDR) {
8496 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8497 			checktype = ADDR;
8498 		} else
8499 			checktype = NONE;
8500 		break;
8501 	default:
8502 		checktype = NONE;
8503 		break;
8504 	}
8505 
8506 	switch (checktype) {
8507 	case NONE:
8508 		break;
8509 	case ADDR:
8510 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8511 		if (len < baselen + sal)
8512 			return EINVAL;
8513 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8514 			return EINVAL;
8515 		break;
8516 	}
8517 
8518 	return 0;
8519 }
8520 
8521 void
spdcache_init(void)8522 spdcache_init(void)
8523 {
8524 	int i;
8525 
8526 	TUNABLE_INT_FETCH("net.key.spdcache.maxentries",
8527 	    &V_key_spdcache_maxentries);
8528 	TUNABLE_INT_FETCH("net.key.spdcache.threshold",
8529 	    &V_key_spdcache_threshold);
8530 
8531 	if (V_key_spdcache_maxentries) {
8532 		V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries,
8533 		    SPDCACHE_MAX_ENTRIES_PER_HASH);
8534 		V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries /
8535 		    SPDCACHE_MAX_ENTRIES_PER_HASH,
8536 		    M_IPSEC_SPDCACHE, &V_spdcachehash_mask);
8537 		V_key_spdcache_maxentries = (V_spdcachehash_mask + 1)
8538 		    * SPDCACHE_MAX_ENTRIES_PER_HASH;
8539 
8540 		V_spdcache_lock = malloc(sizeof(struct mtx) *
8541 		    (V_spdcachehash_mask + 1),
8542 		    M_IPSEC_SPDCACHE, M_WAITOK | M_ZERO);
8543 
8544 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8545 			SPDCACHE_LOCK_INIT(i);
8546 	}
8547 }
8548 
8549 struct spdcache_entry *
spdcache_entry_alloc(const struct secpolicyindex * spidx,struct secpolicy * sp)8550 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp)
8551 {
8552 	struct spdcache_entry *entry;
8553 
8554 	entry = malloc(sizeof(struct spdcache_entry), M_IPSEC_SPDCACHE,
8555 	    M_NOWAIT | M_ZERO);
8556 	if (entry == NULL)
8557 		return (NULL);
8558 
8559 	if (sp != NULL)
8560 		SP_ADDREF(sp);
8561 
8562 	entry->spidx = *spidx;
8563 	entry->sp = sp;
8564 
8565 	return (entry);
8566 }
8567 
8568 void
spdcache_entry_free(struct spdcache_entry * entry)8569 spdcache_entry_free(struct spdcache_entry *entry)
8570 {
8571 
8572 	if (entry->sp != NULL)
8573 		key_freesp(&entry->sp);
8574 	free(entry, M_IPSEC_SPDCACHE);
8575 }
8576 
8577 void
spdcache_clear(void)8578 spdcache_clear(void)
8579 {
8580 	struct spdcache_entry *entry;
8581 	int i;
8582 
8583 	for (i = 0; i < V_spdcachehash_mask + 1; ++i) {
8584 		SPDCACHE_LOCK(i);
8585 		while (!LIST_EMPTY(&V_spdcachehashtbl[i])) {
8586 			entry = LIST_FIRST(&V_spdcachehashtbl[i]);
8587 			LIST_REMOVE(entry, chain);
8588 			spdcache_entry_free(entry);
8589 		}
8590 		SPDCACHE_UNLOCK(i);
8591 	}
8592 }
8593 
8594 #ifdef VIMAGE
8595 void
spdcache_destroy(void)8596 spdcache_destroy(void)
8597 {
8598 	int i;
8599 
8600 	if (SPDCACHE_ENABLED()) {
8601 		spdcache_clear();
8602 		hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask);
8603 
8604 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8605 			SPDCACHE_LOCK_DESTROY(i);
8606 
8607 		free(V_spdcache_lock, M_IPSEC_SPDCACHE);
8608 	}
8609 }
8610 #endif
8611 
8612 static void
key_vnet_init(void * arg __unused)8613 key_vnet_init(void *arg __unused)
8614 {
8615 	int i;
8616 
8617 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8618 		TAILQ_INIT(&V_sptree[i]);
8619 		TAILQ_INIT(&V_sptree_ifnet[i]);
8620 	}
8621 
8622 	TAILQ_INIT(&V_sahtree);
8623 	V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask);
8624 	V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask);
8625 	V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH,
8626 	    &V_sahaddrhash_mask);
8627 	V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8628 	    &V_acqaddrhash_mask);
8629 	V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8630 	    &V_acqseqhash_mask);
8631 
8632 	spdcache_init();
8633 
8634 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
8635 		LIST_INIT(&V_regtree[i]);
8636 
8637 	LIST_INIT(&V_acqtree);
8638 	LIST_INIT(&V_spacqtree);
8639 }
8640 VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8641     key_vnet_init, NULL);
8642 
8643 static void
key_init(void * arg __unused)8644 key_init(void *arg __unused)
8645 {
8646 
8647 	ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c",
8648 	    sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL,
8649 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
8650 
8651 	SPTREE_LOCK_INIT();
8652 	REGTREE_LOCK_INIT();
8653 	SAHTREE_LOCK_INIT();
8654 	ACQ_LOCK_INIT();
8655 	SPACQ_LOCK_INIT();
8656 	SPI_ALLOC_LOCK_INIT();
8657 
8658 #ifndef IPSEC_DEBUG2
8659 	callout_init(&key_timer, 1);
8660 	callout_reset(&key_timer, hz, key_timehandler, NULL);
8661 #endif /*IPSEC_DEBUG2*/
8662 
8663 	/* initialize key statistics */
8664 	keystat.getspi_count = 1;
8665 
8666 	if (bootverbose)
8667 		printf("IPsec: Initialized Security Association Processing.\n");
8668 }
8669 SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL);
8670 
8671 #ifdef VIMAGE
8672 static void
key_vnet_destroy(void * arg __unused)8673 key_vnet_destroy(void *arg __unused)
8674 {
8675 	struct secashead_queue sahdrainq;
8676 	struct secpolicy_queue drainq;
8677 	struct secpolicy *sp, *nextsp;
8678 	struct secacq *acq, *nextacq;
8679 	struct secspacq *spacq, *nextspacq;
8680 	struct secashead *sah;
8681 	struct secasvar *sav;
8682 	struct secreg *reg;
8683 	int i;
8684 
8685 	/*
8686 	 * XXX: can we just call free() for each object without
8687 	 * walking through safe way with releasing references?
8688 	 */
8689 	TAILQ_INIT(&drainq);
8690 	SPTREE_WLOCK();
8691 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8692 		TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
8693 		TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain);
8694 	}
8695 	for (i = 0; i < V_sphash_mask + 1; i++)
8696 		LIST_INIT(&V_sphashtbl[i]);
8697 	SPTREE_WUNLOCK();
8698 	spdcache_destroy();
8699 
8700 	sp = TAILQ_FIRST(&drainq);
8701 	while (sp != NULL) {
8702 		nextsp = TAILQ_NEXT(sp, chain);
8703 		key_freesp(&sp);
8704 		sp = nextsp;
8705 	}
8706 
8707 	TAILQ_INIT(&sahdrainq);
8708 	SAHTREE_WLOCK();
8709 	TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain);
8710 	for (i = 0; i < V_savhash_mask + 1; i++)
8711 		LIST_INIT(&V_savhashtbl[i]);
8712 	for (i = 0; i < V_sahaddrhash_mask + 1; i++)
8713 		LIST_INIT(&V_sahaddrhashtbl[i]);
8714 	TAILQ_FOREACH(sah, &sahdrainq, chain) {
8715 		sah->state = SADB_SASTATE_DEAD;
8716 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
8717 			sav->state = SADB_SASTATE_DEAD;
8718 			ipsec_accel_forget_sav(sav);
8719 		}
8720 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
8721 			sav->state = SADB_SASTATE_DEAD;
8722 			ipsec_accel_forget_sav(sav);
8723 		}
8724 	}
8725 	SAHTREE_WUNLOCK();
8726 
8727 	/* Wait for async work referencing this VNET to finish. */
8728 	ipsec_accel_sync();
8729 
8730 	key_freesah_flushed(&sahdrainq);
8731 	hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask);
8732 	hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask);
8733 	hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask);
8734 
8735 	REGTREE_LOCK();
8736 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8737 		LIST_FOREACH(reg, &V_regtree[i], chain) {
8738 			if (__LIST_CHAINED(reg)) {
8739 				LIST_REMOVE(reg, chain);
8740 				free(reg, M_IPSEC_SAR);
8741 				break;
8742 			}
8743 		}
8744 	}
8745 	REGTREE_UNLOCK();
8746 
8747 	ACQ_LOCK();
8748 	acq = LIST_FIRST(&V_acqtree);
8749 	while (acq != NULL) {
8750 		nextacq = LIST_NEXT(acq, chain);
8751 		LIST_REMOVE(acq, chain);
8752 		free(acq, M_IPSEC_SAQ);
8753 		acq = nextacq;
8754 	}
8755 	for (i = 0; i < V_acqaddrhash_mask + 1; i++)
8756 		LIST_INIT(&V_acqaddrhashtbl[i]);
8757 	for (i = 0; i < V_acqseqhash_mask + 1; i++)
8758 		LIST_INIT(&V_acqseqhashtbl[i]);
8759 	ACQ_UNLOCK();
8760 
8761 	SPACQ_LOCK();
8762 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
8763 	    spacq = nextspacq) {
8764 		nextspacq = LIST_NEXT(spacq, chain);
8765 		if (__LIST_CHAINED(spacq)) {
8766 			LIST_REMOVE(spacq, chain);
8767 			free(spacq, M_IPSEC_SAQ);
8768 		}
8769 	}
8770 	SPACQ_UNLOCK();
8771 	hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask);
8772 	hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask);
8773 }
8774 VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8775     key_vnet_destroy, NULL);
8776 #endif
8777 
8778 /*
8779  * XXX: as long as domains are not unloadable, this function is never called,
8780  * provided for consistensy and future unload support.
8781  */
8782 static void
key_destroy(void * arg __unused)8783 key_destroy(void *arg __unused)
8784 {
8785 	uma_zdestroy(ipsec_key_lft_zone);
8786 
8787 #ifndef IPSEC_DEBUG2
8788 	callout_drain(&key_timer);
8789 #endif
8790 	SPTREE_LOCK_DESTROY();
8791 	REGTREE_LOCK_DESTROY();
8792 	SAHTREE_LOCK_DESTROY();
8793 	ACQ_LOCK_DESTROY();
8794 	SPACQ_LOCK_DESTROY();
8795 	SPI_ALLOC_LOCK_DESTROY();
8796 }
8797 SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL);
8798 
8799 /* record data transfer on SA, and update timestamps */
8800 void
key_sa_recordxfer(struct secasvar * sav,struct mbuf * m)8801 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8802 {
8803 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
8804 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
8805 
8806 	/*
8807 	 * XXX Currently, there is a difference of bytes size
8808 	 * between inbound and outbound processing.
8809 	 */
8810 	counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len);
8811 
8812 	/*
8813 	 * We use the number of packets as the unit of
8814 	 * allocations.  We increment the variable
8815 	 * whenever {esp,ah}_{in,out}put is called.
8816 	 */
8817 	counter_u64_add(sav->lft_c_allocations, 1);
8818 
8819 	/*
8820 	 * NOTE: We record CURRENT usetime by using wall clock,
8821 	 * in seconds.  HARD and SOFT lifetime are measured by the time
8822 	 * difference (again in seconds) from usetime.
8823 	 *
8824 	 *	usetime
8825 	 *	v     expire   expire
8826 	 * -----+-----+--------+---> t
8827 	 *	<--------------> HARD
8828 	 *	<-----> SOFT
8829 	 */
8830 	if (sav->firstused == 0)
8831 		sav->firstused = time_second;
8832 }
8833 
8834 /*
8835  * Take one of the kernel's security keys and convert it into a PF_KEY
8836  * structure within an mbuf, suitable for sending up to a waiting
8837  * application in user land.
8838  *
8839  * IN:
8840  *    src: A pointer to a kernel security key.
8841  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8842  * OUT:
8843  *    a valid mbuf or NULL indicating an error
8844  *
8845  */
8846 
8847 static struct mbuf *
key_setkey(struct seckey * src,uint16_t exttype)8848 key_setkey(struct seckey *src, uint16_t exttype)
8849 {
8850 	struct mbuf *m;
8851 	struct sadb_key *p;
8852 	int len;
8853 
8854 	if (src == NULL)
8855 		return NULL;
8856 
8857 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8858 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8859 	if (m == NULL)
8860 		return NULL;
8861 	m_align(m, len);
8862 	m->m_len = len;
8863 	p = mtod(m, struct sadb_key *);
8864 	bzero(p, len);
8865 	p->sadb_key_len = PFKEY_UNIT64(len);
8866 	p->sadb_key_exttype = exttype;
8867 	p->sadb_key_bits = src->bits;
8868 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8869 
8870 	return m;
8871 }
8872 
8873 #ifdef IPSEC_OFFLOAD
8874 struct mbuf *
key_setaccelif(const char * ifname)8875 key_setaccelif(const char *ifname)
8876 {
8877 	struct mbuf *m = NULL;
8878 	struct sadb_x_if_hw_offl *p;
8879 	int len = PFKEY_ALIGN8(sizeof(*p));
8880 
8881 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8882 	if (m == NULL)
8883 		return (m);
8884 	m_align(m, len);
8885 	m->m_len = len;
8886 	p = mtod(m, struct sadb_x_if_hw_offl *);
8887 
8888 	bzero(p, len);
8889 	p->sadb_x_if_hw_offl_len = PFKEY_UNIT64(len);
8890 	p->sadb_x_if_hw_offl_exttype = SADB_X_EXT_IF_HW_OFFL;
8891 	p->sadb_x_if_hw_offl_flags = 0;
8892 	strncpy(p->sadb_x_if_hw_offl_if, ifname,
8893 	    sizeof(p->sadb_x_if_hw_offl_if));
8894 
8895 	return (m);
8896 }
8897 #endif
8898 
8899 /*
8900  * Take one of the kernel's lifetime data structures and convert it
8901  * into a PF_KEY structure within an mbuf, suitable for sending up to
8902  * a waiting application in user land.
8903  *
8904  * IN:
8905  *    src: A pointer to a kernel lifetime structure.
8906  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8907  *             data structures for more information.
8908  * OUT:
8909  *    a valid mbuf or NULL indicating an error
8910  *
8911  */
8912 
8913 static struct mbuf *
key_setlifetime(struct seclifetime * src,uint16_t exttype)8914 key_setlifetime(struct seclifetime *src, uint16_t exttype)
8915 {
8916 	struct mbuf *m = NULL;
8917 	struct sadb_lifetime *p;
8918 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8919 
8920 	if (src == NULL)
8921 		return NULL;
8922 
8923 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8924 	if (m == NULL)
8925 		return m;
8926 	m_align(m, len);
8927 	m->m_len = len;
8928 	p = mtod(m, struct sadb_lifetime *);
8929 
8930 	bzero(p, len);
8931 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8932 	p->sadb_lifetime_exttype = exttype;
8933 	p->sadb_lifetime_allocations = src->allocations;
8934 	p->sadb_lifetime_bytes = src->bytes;
8935 	p->sadb_lifetime_addtime = src->addtime;
8936 	p->sadb_lifetime_usetime = src->usetime;
8937 
8938 	return m;
8939 
8940 }
8941 
8942 const struct enc_xform *
enc_algorithm_lookup(int alg)8943 enc_algorithm_lookup(int alg)
8944 {
8945 	int i;
8946 
8947 	for (i = 0; i < nitems(supported_ealgs); i++)
8948 		if (alg == supported_ealgs[i].sadb_alg)
8949 			return (supported_ealgs[i].xform);
8950 	return (NULL);
8951 }
8952 
8953 const struct auth_hash *
auth_algorithm_lookup(int alg)8954 auth_algorithm_lookup(int alg)
8955 {
8956 	int i;
8957 
8958 	for (i = 0; i < nitems(supported_aalgs); i++)
8959 		if (alg == supported_aalgs[i].sadb_alg)
8960 			return (supported_aalgs[i].xform);
8961 	return (NULL);
8962 }
8963 
8964 const struct comp_algo *
comp_algorithm_lookup(int alg)8965 comp_algorithm_lookup(int alg)
8966 {
8967 	int i;
8968 
8969 	for (i = 0; i < nitems(supported_calgs); i++)
8970 		if (alg == supported_calgs[i].sadb_alg)
8971 			return (supported_calgs[i].xform);
8972 	return (NULL);
8973 }
8974 
8975 void
ipsec_sahtree_runlock(struct rm_priotracker * sahtree_trackerp)8976 ipsec_sahtree_runlock(struct rm_priotracker *sahtree_trackerp)
8977 {
8978 	rm_runlock(&sahtree_lock, sahtree_trackerp);
8979 }
8980 
8981 void
ipsec_sahtree_rlock(struct rm_priotracker * sahtree_trackerp)8982 ipsec_sahtree_rlock(struct rm_priotracker *sahtree_trackerp)
8983 {
8984 	rm_rlock(&sahtree_lock, sahtree_trackerp);
8985 }
8986 
8987 #ifdef IPSEC_OFFLOAD
8988 void
ipsec_accel_on_ifdown(struct ifnet * ifp)8989 ipsec_accel_on_ifdown(struct ifnet *ifp)
8990 {
8991 	void (*p)(struct ifnet *ifp);
8992 
8993 	p = atomic_load_ptr(&ipsec_accel_on_ifdown_p);
8994 	if (p != NULL)
8995 		p(ifp);
8996 }
8997 
8998 void
ipsec_accel_drv_sa_lifetime_update(struct secasvar * sav,if_t ifp,u_int drv_spi,uint64_t octets,uint64_t allocs)8999 ipsec_accel_drv_sa_lifetime_update(struct secasvar *sav, if_t ifp,
9000     u_int drv_spi, uint64_t octets, uint64_t allocs)
9001 {
9002 	void (*p)(struct secasvar *sav, if_t ifp, u_int drv_spi,
9003 	    uint64_t octets, uint64_t allocs);
9004 
9005 	p = atomic_load_ptr(&ipsec_accel_drv_sa_lifetime_update_p);
9006 	if (p != NULL)
9007 		p(sav, ifp, drv_spi, octets, allocs);
9008 }
9009 
9010 int
ipsec_accel_drv_sa_lifetime_fetch(struct secasvar * sav,if_t ifp,u_int drv_spi,uint64_t * octets,uint64_t * allocs)9011 ipsec_accel_drv_sa_lifetime_fetch(struct secasvar *sav,
9012     if_t ifp, u_int drv_spi, uint64_t *octets, uint64_t *allocs)
9013 {
9014 	int (*p)(struct secasvar *sav, if_t ifp, u_int drv_spi,
9015 	    uint64_t *octets, uint64_t *allocs);
9016 
9017 	p = atomic_load_ptr(&ipsec_accel_drv_sa_lifetime_fetch_p);
9018 	if (p == NULL)
9019 		return (EOPNOTSUPP);
9020 	return (p(sav, ifp, drv_spi, octets, allocs));
9021 }
9022 #endif
9023