1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Analysis/SimplifyQuery.h"
19 #include "llvm/Analysis/WithCache.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/FMF.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include <cassert>
27 #include <cstdint>
28
29 namespace llvm {
30
31 class Operator;
32 class AddOperator;
33 class AllocaInst;
34 class APInt;
35 class AssumptionCache;
36 class DominatorTree;
37 class GEPOperator;
38 class LoadInst;
39 class WithOverflowInst;
40 struct KnownBits;
41 class Loop;
42 class LoopInfo;
43 class MDNode;
44 class StringRef;
45 class TargetLibraryInfo;
46 class Value;
47
48 constexpr unsigned MaxAnalysisRecursionDepth = 6;
49
50 /// Determine which bits of V are known to be either zero or one and return
51 /// them in the KnownZero/KnownOne bit sets.
52 ///
53 /// This function is defined on values with integer type, values with pointer
54 /// type, and vectors of integers. In the case
55 /// where V is a vector, the known zero and known one values are the
56 /// same width as the vector element, and the bit is set only if it is true
57 /// for all of the elements in the vector.
58 void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
59 unsigned Depth = 0, AssumptionCache *AC = nullptr,
60 const Instruction *CxtI = nullptr,
61 const DominatorTree *DT = nullptr,
62 bool UseInstrInfo = true);
63
64 /// Returns the known bits rather than passing by reference.
65 KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
66 unsigned Depth = 0, AssumptionCache *AC = nullptr,
67 const Instruction *CxtI = nullptr,
68 const DominatorTree *DT = nullptr,
69 bool UseInstrInfo = true);
70
71 /// Returns the known bits rather than passing by reference.
72 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
73 const DataLayout &DL, unsigned Depth = 0,
74 AssumptionCache *AC = nullptr,
75 const Instruction *CxtI = nullptr,
76 const DominatorTree *DT = nullptr,
77 bool UseInstrInfo = true);
78
79 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
80 unsigned Depth, const SimplifyQuery &Q);
81
82 KnownBits computeKnownBits(const Value *V, unsigned Depth,
83 const SimplifyQuery &Q);
84
85 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
86 const SimplifyQuery &Q);
87
88 /// Compute known bits from the range metadata.
89 /// \p KnownZero the set of bits that are known to be zero
90 /// \p KnownOne the set of bits that are known to be one
91 void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
92
93 /// Merge bits known from context-dependent facts into Known.
94 void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
95 unsigned Depth, const SimplifyQuery &Q);
96
97 /// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
98 KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I,
99 const KnownBits &KnownLHS,
100 const KnownBits &KnownRHS,
101 unsigned Depth, const SimplifyQuery &SQ);
102
103 /// Adjust \p Known for the given select \p Arm to include information from the
104 /// select \p Cond.
105 void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm,
106 bool Invert, unsigned Depth,
107 const SimplifyQuery &Q);
108
109 /// Return true if LHS and RHS have no common bits set.
110 bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
111 const WithCache<const Value *> &RHSCache,
112 const SimplifyQuery &SQ);
113
114 /// Return true if the given value is known to have exactly one bit set when
115 /// defined. For vectors return true if every element is known to be a power
116 /// of two when defined. Supports values with integer or pointer type and
117 /// vectors of integers. If 'OrZero' is set, then return true if the given
118 /// value is either a power of two or zero.
119 bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
120 bool OrZero = false, unsigned Depth = 0,
121 AssumptionCache *AC = nullptr,
122 const Instruction *CxtI = nullptr,
123 const DominatorTree *DT = nullptr,
124 bool UseInstrInfo = true);
125
126 bool isOnlyUsedInZeroComparison(const Instruction *CxtI);
127
128 bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
129
130 /// Return true if the given value is known to be non-zero when defined. For
131 /// vectors, return true if every element is known to be non-zero when
132 /// defined. For pointers, if the context instruction and dominator tree are
133 /// specified, perform context-sensitive analysis and return true if the
134 /// pointer couldn't possibly be null at the specified instruction.
135 /// Supports values with integer or pointer type and vectors of integers.
136 bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth = 0);
137
138 /// Return true if the two given values are negation.
139 /// Currently can recoginze Value pair:
140 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
141 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
142 bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false,
143 bool AllowPoison = true);
144
145 /// Return true iff:
146 /// 1. X is poison implies Y is poison.
147 /// 2. X is true implies Y is false.
148 /// 3. X is false implies Y is true.
149 /// Otherwise, return false.
150 bool isKnownInversion(const Value *X, const Value *Y);
151
152 /// Returns true if the give value is known to be non-negative.
153 bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
154 unsigned Depth = 0);
155
156 /// Returns true if the given value is known be positive (i.e. non-negative
157 /// and non-zero).
158 bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
159 unsigned Depth = 0);
160
161 /// Returns true if the given value is known be negative (i.e. non-positive
162 /// and non-zero).
163 bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
164 unsigned Depth = 0);
165
166 /// Return true if the given values are known to be non-equal when defined.
167 /// Supports scalar integer types only.
168 bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
169 AssumptionCache *AC = nullptr,
170 const Instruction *CxtI = nullptr,
171 const DominatorTree *DT = nullptr,
172 bool UseInstrInfo = true);
173
174 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
175 /// simplify operations downstream. Mask is known to be zero for bits that V
176 /// cannot have.
177 ///
178 /// This function is defined on values with integer type, values with pointer
179 /// type, and vectors of integers. In the case
180 /// where V is a vector, the mask, known zero, and known one values are the
181 /// same width as the vector element, and the bit is set only if it is true
182 /// for all of the elements in the vector.
183 bool MaskedValueIsZero(const Value *V, const APInt &Mask,
184 const SimplifyQuery &DL, unsigned Depth = 0);
185
186 /// Return the number of times the sign bit of the register is replicated into
187 /// the other bits. We know that at least 1 bit is always equal to the sign
188 /// bit (itself), but other cases can give us information. For example,
189 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
190 /// equal to each other, so we return 3. For vectors, return the number of
191 /// sign bits for the vector element with the mininum number of known sign
192 /// bits.
193 unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
194 unsigned Depth = 0, AssumptionCache *AC = nullptr,
195 const Instruction *CxtI = nullptr,
196 const DominatorTree *DT = nullptr,
197 bool UseInstrInfo = true);
198
199 /// Get the upper bound on bit size for this Value \p Op as a signed integer.
200 /// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
201 /// Similar to the APInt::getSignificantBits function.
202 unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
203 unsigned Depth = 0,
204 AssumptionCache *AC = nullptr,
205 const Instruction *CxtI = nullptr,
206 const DominatorTree *DT = nullptr);
207
208 /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
209 /// intrinsics are treated as-if they were intrinsics.
210 Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
211 const TargetLibraryInfo *TLI);
212
213 /// Given an exploded icmp instruction, return true if the comparison only
214 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
215 /// the result of the comparison is true when the input value is signed.
216 bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
217 bool &TrueIfSigned);
218
219 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
220 /// same result as an fcmp with the given operands.
221 ///
222 /// If \p LookThroughSrc is true, consider the input value when computing the
223 /// mask.
224 ///
225 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
226 /// element will always be LHS.
227 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
228 const Function &F, Value *LHS,
229 Value *RHS,
230 bool LookThroughSrc = true);
231 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
232 const Function &F, Value *LHS,
233 const APFloat *ConstRHS,
234 bool LookThroughSrc = true);
235
236 /// Compute the possible floating-point classes that \p LHS could be based on
237 /// fcmp \Pred \p LHS, \p RHS.
238 ///
239 /// \returns { TestedValue, ClassesIfTrue, ClassesIfFalse }
240 ///
241 /// If the compare returns an exact class test, ClassesIfTrue == ~ClassesIfFalse
242 ///
243 /// This is a less exact version of fcmpToClassTest (e.g. fcmpToClassTest will
244 /// only succeed for a test of x > 0 implies positive, but not x > 1).
245 ///
246 /// If \p LookThroughSrc is true, consider the input value when computing the
247 /// mask. This may look through sign bit operations.
248 ///
249 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
250 /// element will always be LHS.
251 ///
252 std::tuple<Value *, FPClassTest, FPClassTest>
253 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
254 Value *RHS, bool LookThroughSrc = true);
255 std::tuple<Value *, FPClassTest, FPClassTest>
256 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
257 FPClassTest RHS, bool LookThroughSrc = true);
258 std::tuple<Value *, FPClassTest, FPClassTest>
259 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
260 const APFloat &RHS, bool LookThroughSrc = true);
261
262 struct KnownFPClass {
263 /// Floating-point classes the value could be one of.
264 FPClassTest KnownFPClasses = fcAllFlags;
265
266 /// std::nullopt if the sign bit is unknown, true if the sign bit is
267 /// definitely set or false if the sign bit is definitely unset.
268 std::optional<bool> SignBit;
269
270 bool operator==(KnownFPClass Other) const {
271 return KnownFPClasses == Other.KnownFPClasses && SignBit == Other.SignBit;
272 }
273
274 /// Return true if it's known this can never be one of the mask entries.
isKnownNeverKnownFPClass275 bool isKnownNever(FPClassTest Mask) const {
276 return (KnownFPClasses & Mask) == fcNone;
277 }
278
isKnownAlwaysKnownFPClass279 bool isKnownAlways(FPClassTest Mask) const { return isKnownNever(~Mask); }
280
isUnknownKnownFPClass281 bool isUnknown() const {
282 return KnownFPClasses == fcAllFlags && !SignBit;
283 }
284
285 /// Return true if it's known this can never be a nan.
isKnownNeverNaNKnownFPClass286 bool isKnownNeverNaN() const {
287 return isKnownNever(fcNan);
288 }
289
290 /// Return true if it's known this must always be a nan.
isKnownAlwaysNaNKnownFPClass291 bool isKnownAlwaysNaN() const { return isKnownAlways(fcNan); }
292
293 /// Return true if it's known this can never be an infinity.
isKnownNeverInfinityKnownFPClass294 bool isKnownNeverInfinity() const {
295 return isKnownNever(fcInf);
296 }
297
298 /// Return true if it's known this can never be +infinity.
isKnownNeverPosInfinityKnownFPClass299 bool isKnownNeverPosInfinity() const {
300 return isKnownNever(fcPosInf);
301 }
302
303 /// Return true if it's known this can never be -infinity.
isKnownNeverNegInfinityKnownFPClass304 bool isKnownNeverNegInfinity() const {
305 return isKnownNever(fcNegInf);
306 }
307
308 /// Return true if it's known this can never be a subnormal
isKnownNeverSubnormalKnownFPClass309 bool isKnownNeverSubnormal() const {
310 return isKnownNever(fcSubnormal);
311 }
312
313 /// Return true if it's known this can never be a positive subnormal
isKnownNeverPosSubnormalKnownFPClass314 bool isKnownNeverPosSubnormal() const {
315 return isKnownNever(fcPosSubnormal);
316 }
317
318 /// Return true if it's known this can never be a negative subnormal
isKnownNeverNegSubnormalKnownFPClass319 bool isKnownNeverNegSubnormal() const {
320 return isKnownNever(fcNegSubnormal);
321 }
322
323 /// Return true if it's known this can never be a zero. This means a literal
324 /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
isKnownNeverZeroKnownFPClass325 bool isKnownNeverZero() const {
326 return isKnownNever(fcZero);
327 }
328
329 /// Return true if it's known this can never be a literal positive zero.
isKnownNeverPosZeroKnownFPClass330 bool isKnownNeverPosZero() const {
331 return isKnownNever(fcPosZero);
332 }
333
334 /// Return true if it's known this can never be a negative zero. This means a
335 /// literal -0 and does not include denormal inputs implicitly treated as -0.
isKnownNeverNegZeroKnownFPClass336 bool isKnownNeverNegZero() const {
337 return isKnownNever(fcNegZero);
338 }
339
340 /// Return true if it's know this can never be interpreted as a zero. This
341 /// extends isKnownNeverZero to cover the case where the assumed
342 /// floating-point mode for the function interprets denormals as zero.
343 bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
344
345 /// Return true if it's know this can never be interpreted as a negative zero.
346 bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
347
348 /// Return true if it's know this can never be interpreted as a positive zero.
349 bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
350
351 static constexpr FPClassTest OrderedLessThanZeroMask =
352 fcNegSubnormal | fcNegNormal | fcNegInf;
353 static constexpr FPClassTest OrderedGreaterThanZeroMask =
354 fcPosSubnormal | fcPosNormal | fcPosInf;
355
356 /// Return true if we can prove that the analyzed floating-point value is
357 /// either NaN or never less than -0.0.
358 ///
359 /// NaN --> true
360 /// +0 --> true
361 /// -0 --> true
362 /// x > +0 --> true
363 /// x < -0 --> false
cannotBeOrderedLessThanZeroKnownFPClass364 bool cannotBeOrderedLessThanZero() const {
365 return isKnownNever(OrderedLessThanZeroMask);
366 }
367
368 /// Return true if we can prove that the analyzed floating-point value is
369 /// either NaN or never greater than -0.0.
370 /// NaN --> true
371 /// +0 --> true
372 /// -0 --> true
373 /// x > +0 --> false
374 /// x < -0 --> true
cannotBeOrderedGreaterThanZeroKnownFPClass375 bool cannotBeOrderedGreaterThanZero() const {
376 return isKnownNever(OrderedGreaterThanZeroMask);
377 }
378
379 KnownFPClass &operator|=(const KnownFPClass &RHS) {
380 KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
381
382 if (SignBit != RHS.SignBit)
383 SignBit = std::nullopt;
384 return *this;
385 }
386
knownNotKnownFPClass387 void knownNot(FPClassTest RuleOut) {
388 KnownFPClasses = KnownFPClasses & ~RuleOut;
389 if (isKnownNever(fcNan) && !SignBit) {
390 if (isKnownNever(fcNegative))
391 SignBit = false;
392 else if (isKnownNever(fcPositive))
393 SignBit = true;
394 }
395 }
396
fnegKnownFPClass397 void fneg() {
398 KnownFPClasses = llvm::fneg(KnownFPClasses);
399 if (SignBit)
400 SignBit = !*SignBit;
401 }
402
fabsKnownFPClass403 void fabs() {
404 if (KnownFPClasses & fcNegZero)
405 KnownFPClasses |= fcPosZero;
406
407 if (KnownFPClasses & fcNegInf)
408 KnownFPClasses |= fcPosInf;
409
410 if (KnownFPClasses & fcNegSubnormal)
411 KnownFPClasses |= fcPosSubnormal;
412
413 if (KnownFPClasses & fcNegNormal)
414 KnownFPClasses |= fcPosNormal;
415
416 signBitMustBeZero();
417 }
418
419 /// Return true if the sign bit must be 0, ignoring the sign of nans.
signBitIsZeroOrNaNKnownFPClass420 bool signBitIsZeroOrNaN() const {
421 return isKnownNever(fcNegative);
422 }
423
424 /// Assume the sign bit is zero.
signBitMustBeZeroKnownFPClass425 void signBitMustBeZero() {
426 KnownFPClasses &= (fcPositive | fcNan);
427 SignBit = false;
428 }
429
430 /// Assume the sign bit is one.
signBitMustBeOneKnownFPClass431 void signBitMustBeOne() {
432 KnownFPClasses &= (fcNegative | fcNan);
433 SignBit = true;
434 }
435
copysignKnownFPClass436 void copysign(const KnownFPClass &Sign) {
437 // Don't know anything about the sign of the source. Expand the possible set
438 // to its opposite sign pair.
439 if (KnownFPClasses & fcZero)
440 KnownFPClasses |= fcZero;
441 if (KnownFPClasses & fcSubnormal)
442 KnownFPClasses |= fcSubnormal;
443 if (KnownFPClasses & fcNormal)
444 KnownFPClasses |= fcNormal;
445 if (KnownFPClasses & fcInf)
446 KnownFPClasses |= fcInf;
447
448 // Sign bit is exactly preserved even for nans.
449 SignBit = Sign.SignBit;
450
451 // Clear sign bits based on the input sign mask.
452 if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
453 KnownFPClasses &= (fcNegative | fcNan);
454 if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
455 KnownFPClasses &= (fcPositive | fcNan);
456 }
457
458 // Propagate knowledge that a non-NaN source implies the result can also not
459 // be a NaN. For unconstrained operations, signaling nans are not guaranteed
460 // to be quieted but cannot be introduced.
461 void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
462 if (Src.isKnownNever(fcNan)) {
463 knownNot(fcNan);
464 if (PreserveSign)
465 SignBit = Src.SignBit;
466 } else if (Src.isKnownNever(fcSNan))
467 knownNot(fcSNan);
468 }
469
470 /// Propagate knowledge from a source value that could be a denormal or
471 /// zero. We have to be conservative since output flushing is not guaranteed,
472 /// so known-never-zero may not hold.
473 ///
474 /// This assumes a copy-like operation and will replace any currently known
475 /// information.
476 void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
477
478 /// Report known classes if \p Src is evaluated through a potentially
479 /// canonicalizing operation. We can assume signaling nans will not be
480 /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
481 ///
482 /// This assumes a copy-like operation and will replace any currently known
483 /// information.
484 void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
485 Type *Ty);
486
resetAllKnownFPClass487 void resetAll() { *this = KnownFPClass(); }
488 };
489
490 inline KnownFPClass operator|(KnownFPClass LHS, const KnownFPClass &RHS) {
491 LHS |= RHS;
492 return LHS;
493 }
494
495 inline KnownFPClass operator|(const KnownFPClass &LHS, KnownFPClass &&RHS) {
496 RHS |= LHS;
497 return std::move(RHS);
498 }
499
500 /// Determine which floating-point classes are valid for \p V, and return them
501 /// in KnownFPClass bit sets.
502 ///
503 /// This function is defined on values with floating-point type, values vectors
504 /// of floating-point type, and arrays of floating-point type.
505
506 /// \p InterestedClasses is a compile time optimization hint for which floating
507 /// point classes should be queried. Queries not specified in \p
508 /// InterestedClasses should be reliable if they are determined during the
509 /// query.
510 KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts,
511 FPClassTest InterestedClasses, unsigned Depth,
512 const SimplifyQuery &SQ);
513
514 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest InterestedClasses,
515 unsigned Depth, const SimplifyQuery &SQ);
516
517 inline KnownFPClass computeKnownFPClass(
518 const Value *V, const DataLayout &DL,
519 FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
520 const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
521 const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
522 bool UseInstrInfo = true) {
523 return computeKnownFPClass(
524 V, InterestedClasses, Depth,
525 SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo));
526 }
527
528 /// Wrapper to account for known fast math flags at the use instruction.
529 inline KnownFPClass
computeKnownFPClass(const Value * V,const APInt & DemandedElts,FastMathFlags FMF,FPClassTest InterestedClasses,unsigned Depth,const SimplifyQuery & SQ)530 computeKnownFPClass(const Value *V, const APInt &DemandedElts,
531 FastMathFlags FMF, FPClassTest InterestedClasses,
532 unsigned Depth, const SimplifyQuery &SQ) {
533 if (FMF.noNaNs())
534 InterestedClasses &= ~fcNan;
535 if (FMF.noInfs())
536 InterestedClasses &= ~fcInf;
537
538 KnownFPClass Result =
539 computeKnownFPClass(V, DemandedElts, InterestedClasses, Depth, SQ);
540
541 if (FMF.noNaNs())
542 Result.KnownFPClasses &= ~fcNan;
543 if (FMF.noInfs())
544 Result.KnownFPClasses &= ~fcInf;
545 return Result;
546 }
547
computeKnownFPClass(const Value * V,FastMathFlags FMF,FPClassTest InterestedClasses,unsigned Depth,const SimplifyQuery & SQ)548 inline KnownFPClass computeKnownFPClass(const Value *V, FastMathFlags FMF,
549 FPClassTest InterestedClasses,
550 unsigned Depth,
551 const SimplifyQuery &SQ) {
552 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
553 APInt DemandedElts =
554 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
555 return computeKnownFPClass(V, DemandedElts, FMF, InterestedClasses, Depth,
556 SQ);
557 }
558
559 /// Return true if we can prove that the specified FP value is never equal to
560 /// -0.0. Users should use caution when considering PreserveSign
561 /// denormal-fp-math.
cannotBeNegativeZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)562 inline bool cannotBeNegativeZero(const Value *V, unsigned Depth,
563 const SimplifyQuery &SQ) {
564 KnownFPClass Known = computeKnownFPClass(V, fcNegZero, Depth, SQ);
565 return Known.isKnownNeverNegZero();
566 }
567
568 /// Return true if we can prove that the specified FP value is either NaN or
569 /// never less than -0.0.
570 ///
571 /// NaN --> true
572 /// +0 --> true
573 /// -0 --> true
574 /// x > +0 --> true
575 /// x < -0 --> false
cannotBeOrderedLessThanZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)576 inline bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth,
577 const SimplifyQuery &SQ) {
578 KnownFPClass Known =
579 computeKnownFPClass(V, KnownFPClass::OrderedLessThanZeroMask, Depth, SQ);
580 return Known.cannotBeOrderedLessThanZero();
581 }
582
583 /// Return true if the floating-point scalar value is not an infinity or if
584 /// the floating-point vector value has no infinities. Return false if a value
585 /// could ever be infinity.
isKnownNeverInfinity(const Value * V,unsigned Depth,const SimplifyQuery & SQ)586 inline bool isKnownNeverInfinity(const Value *V, unsigned Depth,
587 const SimplifyQuery &SQ) {
588 KnownFPClass Known = computeKnownFPClass(V, fcInf, Depth, SQ);
589 return Known.isKnownNeverInfinity();
590 }
591
592 /// Return true if the floating-point value can never contain a NaN or infinity.
isKnownNeverInfOrNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)593 inline bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth,
594 const SimplifyQuery &SQ) {
595 KnownFPClass Known = computeKnownFPClass(V, fcInf | fcNan, Depth, SQ);
596 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
597 }
598
599 /// Return true if the floating-point scalar value is not a NaN or if the
600 /// floating-point vector value has no NaN elements. Return false if a value
601 /// could ever be NaN.
isKnownNeverNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)602 inline bool isKnownNeverNaN(const Value *V, unsigned Depth,
603 const SimplifyQuery &SQ) {
604 KnownFPClass Known = computeKnownFPClass(V, fcNan, Depth, SQ);
605 return Known.isKnownNeverNaN();
606 }
607
608 /// Return false if we can prove that the specified FP value's sign bit is 0.
609 /// Return true if we can prove that the specified FP value's sign bit is 1.
610 /// Otherwise return std::nullopt.
computeKnownFPSignBit(const Value * V,unsigned Depth,const SimplifyQuery & SQ)611 inline std::optional<bool> computeKnownFPSignBit(const Value *V, unsigned Depth,
612 const SimplifyQuery &SQ) {
613 KnownFPClass Known = computeKnownFPClass(V, fcAllFlags, Depth, SQ);
614 return Known.SignBit;
615 }
616
617 /// If the specified value can be set by repeating the same byte in memory,
618 /// return the i8 value that it is represented with. This is true for all i8
619 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
620 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
621 /// i16 0x1234), return null. If the value is entirely undef and padding,
622 /// return undef.
623 Value *isBytewiseValue(Value *V, const DataLayout &DL);
624
625 /// Given an aggregate and an sequence of indices, see if the scalar value
626 /// indexed is already around as a register, for example if it were inserted
627 /// directly into the aggregate.
628 ///
629 /// If InsertBefore is not empty, this function will duplicate (modified)
630 /// insertvalues when a part of a nested struct is extracted.
631 Value *FindInsertedValue(
632 Value *V, ArrayRef<unsigned> idx_range,
633 std::optional<BasicBlock::iterator> InsertBefore = std::nullopt);
634
635 /// Analyze the specified pointer to see if it can be expressed as a base
636 /// pointer plus a constant offset. Return the base and offset to the caller.
637 ///
638 /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
639 /// creates and later unpacks the required APInt.
640 inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
641 const DataLayout &DL,
642 bool AllowNonInbounds = true) {
643 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
644 Value *Base =
645 Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
646
647 Offset = OffsetAPInt.getSExtValue();
648 return Base;
649 }
650 inline const Value *
651 GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
652 const DataLayout &DL,
653 bool AllowNonInbounds = true) {
654 return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
655 AllowNonInbounds);
656 }
657
658 /// Returns true if the GEP is based on a pointer to a string (array of
659 // \p CharSize integers) and is indexing into this string.
660 bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
661
662 /// Represents offset+length into a ConstantDataArray.
663 struct ConstantDataArraySlice {
664 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
665 /// initializer, it just doesn't fit the ConstantDataArray interface).
666 const ConstantDataArray *Array;
667
668 /// Slice starts at this Offset.
669 uint64_t Offset;
670
671 /// Length of the slice.
672 uint64_t Length;
673
674 /// Moves the Offset and adjusts Length accordingly.
moveConstantDataArraySlice675 void move(uint64_t Delta) {
676 assert(Delta < Length);
677 Offset += Delta;
678 Length -= Delta;
679 }
680
681 /// Convenience accessor for elements in the slice.
682 uint64_t operator[](unsigned I) const {
683 return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
684 }
685 };
686
687 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
688 /// If successful \p Slice will point to a ConstantDataArray info object
689 /// with an appropriate offset.
690 bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
691 unsigned ElementSize, uint64_t Offset = 0);
692
693 /// This function computes the length of a null-terminated C string pointed to
694 /// by V. If successful, it returns true and returns the string in Str. If
695 /// unsuccessful, it returns false. This does not include the trailing null
696 /// character by default. If TrimAtNul is set to false, then this returns any
697 /// trailing null characters as well as any other characters that come after
698 /// it.
699 bool getConstantStringInfo(const Value *V, StringRef &Str,
700 bool TrimAtNul = true);
701
702 /// If we can compute the length of the string pointed to by the specified
703 /// pointer, return 'len+1'. If we can't, return 0.
704 uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
705
706 /// This function returns call pointer argument that is considered the same by
707 /// aliasing rules. You CAN'T use it to replace one value with another. If
708 /// \p MustPreserveNullness is true, the call must preserve the nullness of
709 /// the pointer.
710 const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
711 bool MustPreserveNullness);
getArgumentAliasingToReturnedPointer(CallBase * Call,bool MustPreserveNullness)712 inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
713 bool MustPreserveNullness) {
714 return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
715 const_cast<const CallBase *>(Call), MustPreserveNullness));
716 }
717
718 /// {launder,strip}.invariant.group returns pointer that aliases its argument,
719 /// and it only captures pointer by returning it.
720 /// These intrinsics are not marked as nocapture, because returning is
721 /// considered as capture. The arguments are not marked as returned neither,
722 /// because it would make it useless. If \p MustPreserveNullness is true,
723 /// the intrinsic must preserve the nullness of the pointer.
724 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
725 const CallBase *Call, bool MustPreserveNullness);
726
727 /// This method strips off any GEP address adjustments, pointer casts
728 /// or `llvm.threadlocal.address` from the specified value \p V, returning the
729 /// original object being addressed. Note that the returned value has pointer
730 /// type if the specified value does. If the \p MaxLookup value is non-zero, it
731 /// limits the number of instructions to be stripped off.
732 const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
733 inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
734 // Force const to avoid infinite recursion.
735 const Value *VConst = V;
736 return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
737 }
738
739 /// Like getUnderlyingObject(), but will try harder to find a single underlying
740 /// object. In particular, this function also looks through selects and phis.
741 const Value *getUnderlyingObjectAggressive(const Value *V);
742
743 /// This method is similar to getUnderlyingObject except that it can
744 /// look through phi and select instructions and return multiple objects.
745 ///
746 /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
747 /// accesses different objects in each iteration, we don't look through the
748 /// phi node. E.g. consider this loop nest:
749 ///
750 /// int **A;
751 /// for (i)
752 /// for (j) {
753 /// A[i][j] = A[i-1][j] * B[j]
754 /// }
755 ///
756 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
757 /// of the outer loop:
758 ///
759 /// Curr = A[0]; // Prev_0
760 /// for (i: 1..N) {
761 /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
762 /// Curr = A[i];
763 /// for (j: 0..N) {
764 /// Curr[j] = Prev[j] * B[j]
765 /// }
766 /// }
767 ///
768 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
769 /// should not assume that Curr and Prev share the same underlying object thus
770 /// it shouldn't look through the phi above.
771 void getUnderlyingObjects(const Value *V,
772 SmallVectorImpl<const Value *> &Objects,
773 LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
774
775 /// This is a wrapper around getUnderlyingObjects and adds support for basic
776 /// ptrtoint+arithmetic+inttoptr sequences.
777 bool getUnderlyingObjectsForCodeGen(const Value *V,
778 SmallVectorImpl<Value *> &Objects);
779
780 /// Returns unique alloca where the value comes from, or nullptr.
781 /// If OffsetZero is true check that V points to the begining of the alloca.
782 AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
783 inline const AllocaInst *findAllocaForValue(const Value *V,
784 bool OffsetZero = false) {
785 return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
786 }
787
788 /// Return true if the only users of this pointer are lifetime markers.
789 bool onlyUsedByLifetimeMarkers(const Value *V);
790
791 /// Return true if the only users of this pointer are lifetime markers or
792 /// droppable instructions.
793 bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
794
795 /// Return true if speculation of the given load must be suppressed to avoid
796 /// ordering or interfering with an active sanitizer. If not suppressed,
797 /// dereferenceability and alignment must be proven separately. Note: This
798 /// is only needed for raw reasoning; if you use the interface below
799 /// (isSafeToSpeculativelyExecute), this is handled internally.
800 bool mustSuppressSpeculation(const LoadInst &LI);
801
802 /// Return true if the instruction does not have any effects besides
803 /// calculating the result and does not have undefined behavior.
804 ///
805 /// This method never returns true for an instruction that returns true for
806 /// mayHaveSideEffects; however, this method also does some other checks in
807 /// addition. It checks for undefined behavior, like dividing by zero or
808 /// loading from an invalid pointer (but not for undefined results, like a
809 /// shift with a shift amount larger than the width of the result). It checks
810 /// for malloc and alloca because speculatively executing them might cause a
811 /// memory leak. It also returns false for instructions related to control
812 /// flow, specifically terminators and PHI nodes.
813 ///
814 /// If the CtxI is specified this method performs context-sensitive analysis
815 /// and returns true if it is safe to execute the instruction immediately
816 /// before the CtxI.
817 ///
818 /// If the CtxI is NOT specified this method only looks at the instruction
819 /// itself and its operands, so if this method returns true, it is safe to
820 /// move the instruction as long as the correct dominance relationships for
821 /// the operands and users hold.
822 ///
823 /// This method can return true for instructions that read memory;
824 /// for such instructions, moving them may change the resulting value.
825 bool isSafeToSpeculativelyExecute(const Instruction *I,
826 const Instruction *CtxI = nullptr,
827 AssumptionCache *AC = nullptr,
828 const DominatorTree *DT = nullptr,
829 const TargetLibraryInfo *TLI = nullptr,
830 bool UseVariableInfo = true);
831
832 inline bool isSafeToSpeculativelyExecute(const Instruction *I,
833 BasicBlock::iterator CtxI,
834 AssumptionCache *AC = nullptr,
835 const DominatorTree *DT = nullptr,
836 const TargetLibraryInfo *TLI = nullptr,
837 bool UseVariableInfo = true) {
838 // Take an iterator, and unwrap it into an Instruction *.
839 return isSafeToSpeculativelyExecute(I, &*CtxI, AC, DT, TLI, UseVariableInfo);
840 }
841
842 /// Don't use information from its non-constant operands. This helper is used
843 /// when its operands are going to be replaced.
844 inline bool
isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction * I)845 isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I) {
846 return isSafeToSpeculativelyExecute(I, nullptr, nullptr, nullptr, nullptr,
847 /*UseVariableInfo=*/false);
848 }
849
850 /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
851 /// the actual opcode of Inst. If the provided and actual opcode differ, the
852 /// function (virtually) overrides the opcode of Inst with the provided
853 /// Opcode. There are come constraints in this case:
854 /// * If Opcode has a fixed number of operands (eg, as binary operators do),
855 /// then Inst has to have at least as many leading operands. The function
856 /// will ignore all trailing operands beyond that number.
857 /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
858 /// do), then all operands are considered.
859 /// * The virtual instruction has to satisfy all typing rules of the provided
860 /// Opcode.
861 /// * This function is pessimistic in the following sense: If one actually
862 /// materialized the virtual instruction, then isSafeToSpeculativelyExecute
863 /// may say that the materialized instruction is speculatable whereas this
864 /// function may have said that the instruction wouldn't be speculatable.
865 /// This behavior is a shortcoming in the current implementation and not
866 /// intentional.
867 bool isSafeToSpeculativelyExecuteWithOpcode(
868 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
869 AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
870 const TargetLibraryInfo *TLI = nullptr, bool UseVariableInfo = true);
871
872 /// Returns true if the result or effects of the given instructions \p I
873 /// depend values not reachable through the def use graph.
874 /// * Memory dependence arises for example if the instruction reads from
875 /// memory or may produce effects or undefined behaviour. Memory dependent
876 /// instructions generally cannot be reorderd with respect to other memory
877 /// dependent instructions.
878 /// * Control dependence arises for example if the instruction may fault
879 /// if lifted above a throwing call or infinite loop.
880 bool mayHaveNonDefUseDependency(const Instruction &I);
881
882 /// Return true if it is an intrinsic that cannot be speculated but also
883 /// cannot trap.
884 bool isAssumeLikeIntrinsic(const Instruction *I);
885
886 /// Return true if it is valid to use the assumptions provided by an
887 /// assume intrinsic, I, at the point in the control-flow identified by the
888 /// context instruction, CxtI. By default, ephemeral values of the assumption
889 /// are treated as an invalid context, to prevent the assumption from being used
890 /// to optimize away its argument. If the caller can ensure that this won't
891 /// happen, it can call with AllowEphemerals set to true to get more valid
892 /// assumptions.
893 bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
894 const DominatorTree *DT = nullptr,
895 bool AllowEphemerals = false);
896
897 enum class OverflowResult {
898 /// Always overflows in the direction of signed/unsigned min value.
899 AlwaysOverflowsLow,
900 /// Always overflows in the direction of signed/unsigned max value.
901 AlwaysOverflowsHigh,
902 /// May or may not overflow.
903 MayOverflow,
904 /// Never overflows.
905 NeverOverflows,
906 };
907
908 OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
909 const SimplifyQuery &SQ,
910 bool IsNSW = false);
911 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
912 const SimplifyQuery &SQ);
913 OverflowResult
914 computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
915 const WithCache<const Value *> &RHS,
916 const SimplifyQuery &SQ);
917 OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
918 const WithCache<const Value *> &RHS,
919 const SimplifyQuery &SQ);
920 /// This version also leverages the sign bit of Add if known.
921 OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
922 const SimplifyQuery &SQ);
923 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
924 const SimplifyQuery &SQ);
925 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
926 const SimplifyQuery &SQ);
927
928 /// Returns true if the arithmetic part of the \p WO 's result is
929 /// used only along the paths control dependent on the computation
930 /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
931 bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
932 const DominatorTree &DT);
933
934 /// Determine the possible constant range of vscale with the given bit width,
935 /// based on the vscale_range function attribute.
936 ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
937
938 /// Determine the possible constant range of an integer or vector of integer
939 /// value. This is intended as a cheap, non-recursive check.
940 ConstantRange computeConstantRange(const Value *V, bool ForSigned,
941 bool UseInstrInfo = true,
942 AssumptionCache *AC = nullptr,
943 const Instruction *CtxI = nullptr,
944 const DominatorTree *DT = nullptr,
945 unsigned Depth = 0);
946
947 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
948 ConstantRange
949 computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
950 bool ForSigned, const SimplifyQuery &SQ);
951
952 /// Return true if this function can prove that the instruction I will
953 /// always transfer execution to one of its successors (including the next
954 /// instruction that follows within a basic block). E.g. this is not
955 /// guaranteed for function calls that could loop infinitely.
956 ///
957 /// In other words, this function returns false for instructions that may
958 /// transfer execution or fail to transfer execution in a way that is not
959 /// captured in the CFG nor in the sequence of instructions within a basic
960 /// block.
961 ///
962 /// Undefined behavior is assumed not to happen, so e.g. division is
963 /// guaranteed to transfer execution to the following instruction even
964 /// though division by zero might cause undefined behavior.
965 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
966
967 /// Returns true if this block does not contain a potential implicit exit.
968 /// This is equivelent to saying that all instructions within the basic block
969 /// are guaranteed to transfer execution to their successor within the basic
970 /// block. This has the same assumptions w.r.t. undefined behavior as the
971 /// instruction variant of this function.
972 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
973
974 /// Return true if every instruction in the range (Begin, End) is
975 /// guaranteed to transfer execution to its static successor. \p ScanLimit
976 /// bounds the search to avoid scanning huge blocks.
977 bool isGuaranteedToTransferExecutionToSuccessor(
978 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
979 unsigned ScanLimit = 32);
980
981 /// Same as previous, but with range expressed via iterator_range.
982 bool isGuaranteedToTransferExecutionToSuccessor(
983 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
984
985 /// Return true if this function can prove that the instruction I
986 /// is executed for every iteration of the loop L.
987 ///
988 /// Note that this currently only considers the loop header.
989 bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
990 const Loop *L);
991
992 /// Return true if \p PoisonOp's user yields poison or raises UB if its
993 /// operand \p PoisonOp is poison.
994 ///
995 /// If \p PoisonOp is a vector or an aggregate and the operation's result is a
996 /// single value, any poison element in /p PoisonOp should make the result
997 /// poison or raise UB.
998 ///
999 /// To filter out operands that raise UB on poison, you can use
1000 /// getGuaranteedNonPoisonOp.
1001 bool propagatesPoison(const Use &PoisonOp);
1002
1003 /// Insert operands of I into Ops such that I will trigger undefined behavior
1004 /// if I is executed and that operand has a poison value.
1005 void getGuaranteedNonPoisonOps(const Instruction *I,
1006 SmallVectorImpl<const Value *> &Ops);
1007
1008 /// Insert operands of I into Ops such that I will trigger undefined behavior
1009 /// if I is executed and that operand is not a well-defined value
1010 /// (i.e. has undef bits or poison).
1011 void getGuaranteedWellDefinedOps(const Instruction *I,
1012 SmallVectorImpl<const Value *> &Ops);
1013
1014 /// Return true if the given instruction must trigger undefined behavior
1015 /// when I is executed with any operands which appear in KnownPoison holding
1016 /// a poison value at the point of execution.
1017 bool mustTriggerUB(const Instruction *I,
1018 const SmallPtrSetImpl<const Value *> &KnownPoison);
1019
1020 /// Return true if this function can prove that if Inst is executed
1021 /// and yields a poison value or undef bits, then that will trigger
1022 /// undefined behavior.
1023 ///
1024 /// Note that this currently only considers the basic block that is
1025 /// the parent of Inst.
1026 bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
1027 bool programUndefinedIfPoison(const Instruction *Inst);
1028
1029 /// canCreateUndefOrPoison returns true if Op can create undef or poison from
1030 /// non-undef & non-poison operands.
1031 /// For vectors, canCreateUndefOrPoison returns true if there is potential
1032 /// poison or undef in any element of the result when vectors without
1033 /// undef/poison poison are given as operands.
1034 /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
1035 /// true. If Op raises immediate UB but never creates poison or undef
1036 /// (e.g. sdiv I, 0), canCreatePoison returns false.
1037 ///
1038 /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
1039 /// metadata on the instruction are considered. This can be used to see if the
1040 /// instruction could still introduce undef or poison even without poison
1041 /// generating flags and metadata which might be on the instruction.
1042 /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
1043 /// poison or undef)
1044 ///
1045 /// canCreatePoison returns true if Op can create poison from non-poison
1046 /// operands.
1047 bool canCreateUndefOrPoison(const Operator *Op,
1048 bool ConsiderFlagsAndMetadata = true);
1049 bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
1050
1051 /// Return true if V is poison given that ValAssumedPoison is already poison.
1052 /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
1053 /// impliesPoison returns true.
1054 bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
1055
1056 /// Return true if this function can prove that V does not have undef bits
1057 /// and is never poison. If V is an aggregate value or vector, check whether
1058 /// all elements (except padding) are not undef or poison.
1059 /// Note that this is different from canCreateUndefOrPoison because the
1060 /// function assumes Op's operands are not poison/undef.
1061 ///
1062 /// If CtxI and DT are specified this method performs flow-sensitive analysis
1063 /// and returns true if it is guaranteed to be never undef or poison
1064 /// immediately before the CtxI.
1065 bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
1066 AssumptionCache *AC = nullptr,
1067 const Instruction *CtxI = nullptr,
1068 const DominatorTree *DT = nullptr,
1069 unsigned Depth = 0);
1070
1071 /// Returns true if V cannot be poison, but may be undef.
1072 bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
1073 const Instruction *CtxI = nullptr,
1074 const DominatorTree *DT = nullptr,
1075 unsigned Depth = 0);
1076
1077 inline bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
1078 BasicBlock::iterator CtxI,
1079 const DominatorTree *DT = nullptr,
1080 unsigned Depth = 0) {
1081 // Takes an iterator as a position, passes down to Instruction *
1082 // implementation.
1083 return isGuaranteedNotToBePoison(V, AC, &*CtxI, DT, Depth);
1084 }
1085
1086 /// Returns true if V cannot be undef, but may be poison.
1087 bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1088 const Instruction *CtxI = nullptr,
1089 const DominatorTree *DT = nullptr,
1090 unsigned Depth = 0);
1091
1092 /// Return true if undefined behavior would provable be executed on the path to
1093 /// OnPathTo if Root produced a posion result. Note that this doesn't say
1094 /// anything about whether OnPathTo is actually executed or whether Root is
1095 /// actually poison. This can be used to assess whether a new use of Root can
1096 /// be added at a location which is control equivalent with OnPathTo (such as
1097 /// immediately before it) without introducing UB which didn't previously
1098 /// exist. Note that a false result conveys no information.
1099 bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1100 Instruction *OnPathTo,
1101 DominatorTree *DT);
1102
1103 /// Specific patterns of select instructions we can match.
1104 enum SelectPatternFlavor {
1105 SPF_UNKNOWN = 0,
1106 SPF_SMIN, /// Signed minimum
1107 SPF_UMIN, /// Unsigned minimum
1108 SPF_SMAX, /// Signed maximum
1109 SPF_UMAX, /// Unsigned maximum
1110 SPF_FMINNUM, /// Floating point minnum
1111 SPF_FMAXNUM, /// Floating point maxnum
1112 SPF_ABS, /// Absolute value
1113 SPF_NABS /// Negated absolute value
1114 };
1115
1116 /// Behavior when a floating point min/max is given one NaN and one
1117 /// non-NaN as input.
1118 enum SelectPatternNaNBehavior {
1119 SPNB_NA = 0, /// NaN behavior not applicable.
1120 SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
1121 SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1122 SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
1123 /// it has been determined that no operands can
1124 /// be NaN).
1125 };
1126
1127 struct SelectPatternResult {
1128 SelectPatternFlavor Flavor;
1129 SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1130 /// SPF_FMINNUM or SPF_FMAXNUM.
1131 bool Ordered; /// When implementing this min/max pattern as
1132 /// fcmp; select, does the fcmp have to be
1133 /// ordered?
1134
1135 /// Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult1136 static bool isMinOrMax(SelectPatternFlavor SPF) {
1137 return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1138 }
1139 };
1140
1141 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1142 /// and providing the out parameter results if we successfully match.
1143 ///
1144 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1145 /// the negation instruction from the idiom.
1146 ///
1147 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1148 /// not match that of the original select. If this is the case, the cast
1149 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
1150 /// type of LHS and RHS into the type of V is returned in CastOp.
1151 ///
1152 /// For example:
1153 /// %1 = icmp slt i32 %a, i32 4
1154 /// %2 = sext i32 %a to i64
1155 /// %3 = select i1 %1, i64 %2, i64 4
1156 ///
1157 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1158 ///
1159 SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1160 Instruction::CastOps *CastOp = nullptr,
1161 unsigned Depth = 0);
1162
matchSelectPattern(const Value * V,const Value * & LHS,const Value * & RHS)1163 inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
1164 const Value *&RHS) {
1165 Value *L = const_cast<Value *>(LHS);
1166 Value *R = const_cast<Value *>(RHS);
1167 auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1168 LHS = L;
1169 RHS = R;
1170 return Result;
1171 }
1172
1173 /// Determine the pattern that a select with the given compare as its
1174 /// predicate and given values as its true/false operands would match.
1175 SelectPatternResult matchDecomposedSelectPattern(
1176 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1177 Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1178
1179 /// Return the canonical comparison predicate for the specified
1180 /// minimum/maximum flavor.
1181 CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1182
1183 /// Return the inverse minimum/maximum flavor of the specified flavor.
1184 /// For example, signed minimum is the inverse of signed maximum.
1185 SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
1186
1187 Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
1188
1189 /// Return the minimum or maximum constant value for the specified integer
1190 /// min/max flavor and type.
1191 APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1192
1193 /// Check if the values in \p VL are select instructions that can be converted
1194 /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1195 /// conversion is possible, together with a bool indicating whether all select
1196 /// conditions are only used by the selects. Otherwise return
1197 /// Intrinsic::not_intrinsic.
1198 std::pair<Intrinsic::ID, bool>
1199 canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1200
1201 /// Attempt to match a simple first order recurrence cycle of the form:
1202 /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1203 /// %inc = binop %iv, %step
1204 /// OR
1205 /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1206 /// %inc = binop %step, %iv
1207 ///
1208 /// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1209 ///
1210 /// A couple of notes on subtleties in that definition:
1211 /// * The Step does not have to be loop invariant. In math terms, it can
1212 /// be a free variable. We allow recurrences with both constant and
1213 /// variable coefficients. Callers may wish to filter cases where Step
1214 /// does not dominate P.
1215 /// * For non-commutative operators, we will match both forms. This
1216 /// results in some odd recurrence structures. Callers may wish to filter
1217 /// out recurrences where the phi is not the LHS of the returned operator.
1218 /// * Because of the structure matched, the caller can assume as a post
1219 /// condition of the match the presence of a Loop with P's parent as it's
1220 /// header *except* in unreachable code. (Dominance decays in unreachable
1221 /// code.)
1222 ///
1223 /// NOTE: This is intentional simple. If you want the ability to analyze
1224 /// non-trivial loop conditons, see ScalarEvolution instead.
1225 bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1226 Value *&Step);
1227
1228 /// Analogous to the above, but starting from the binary operator
1229 bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1230 Value *&Step);
1231
1232 /// Return true if RHS is known to be implied true by LHS. Return false if
1233 /// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if
1234 /// no implication can be made. A & B must be i1 (boolean) values or a vector of
1235 /// such values. Note that the truth table for implication is the same as <=u on
1236 /// i1 values (but not
1237 /// <=s!). The truth table for both is:
1238 /// | T | F (B)
1239 /// T | T | F
1240 /// F | T | T
1241 /// (A)
1242 std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1243 const DataLayout &DL,
1244 bool LHSIsTrue = true,
1245 unsigned Depth = 0);
1246 std::optional<bool> isImpliedCondition(const Value *LHS,
1247 CmpInst::Predicate RHSPred,
1248 const Value *RHSOp0, const Value *RHSOp1,
1249 const DataLayout &DL,
1250 bool LHSIsTrue = true,
1251 unsigned Depth = 0);
1252
1253 /// Return the boolean condition value in the context of the given instruction
1254 /// if it is known based on dominating conditions.
1255 std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1256 const Instruction *ContextI,
1257 const DataLayout &DL);
1258 std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
1259 const Value *LHS, const Value *RHS,
1260 const Instruction *ContextI,
1261 const DataLayout &DL);
1262
1263 /// Call \p InsertAffected on all Values whose known bits / value may be
1264 /// affected by the condition \p Cond. Used by AssumptionCache and
1265 /// DomConditionCache.
1266 void findValuesAffectedByCondition(Value *Cond, bool IsAssume,
1267 function_ref<void(Value *)> InsertAffected);
1268
1269 } // end namespace llvm
1270
1271 #endif // LLVM_ANALYSIS_VALUETRACKING_H
1272