xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/ValueTracking.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Analysis/SimplifyQuery.h"
19 #include "llvm/Analysis/WithCache.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/FMF.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include <cassert>
27 #include <cstdint>
28 
29 namespace llvm {
30 
31 class Operator;
32 class AddOperator;
33 class AllocaInst;
34 class APInt;
35 class AssumptionCache;
36 class DominatorTree;
37 class GEPOperator;
38 class LoadInst;
39 class WithOverflowInst;
40 struct KnownBits;
41 class Loop;
42 class LoopInfo;
43 class MDNode;
44 class StringRef;
45 class TargetLibraryInfo;
46 class Value;
47 
48 constexpr unsigned MaxAnalysisRecursionDepth = 6;
49 
50 /// Determine which bits of V are known to be either zero or one and return
51 /// them in the KnownZero/KnownOne bit sets.
52 ///
53 /// This function is defined on values with integer type, values with pointer
54 /// type, and vectors of integers.  In the case
55 /// where V is a vector, the known zero and known one values are the
56 /// same width as the vector element, and the bit is set only if it is true
57 /// for all of the elements in the vector.
58 void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
59                       unsigned Depth = 0, AssumptionCache *AC = nullptr,
60                       const Instruction *CxtI = nullptr,
61                       const DominatorTree *DT = nullptr,
62                       bool UseInstrInfo = true);
63 
64 /// Returns the known bits rather than passing by reference.
65 KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
66                            unsigned Depth = 0, AssumptionCache *AC = nullptr,
67                            const Instruction *CxtI = nullptr,
68                            const DominatorTree *DT = nullptr,
69                            bool UseInstrInfo = true);
70 
71 /// Returns the known bits rather than passing by reference.
72 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
73                            const DataLayout &DL, unsigned Depth = 0,
74                            AssumptionCache *AC = nullptr,
75                            const Instruction *CxtI = nullptr,
76                            const DominatorTree *DT = nullptr,
77                            bool UseInstrInfo = true);
78 
79 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
80                            unsigned Depth, const SimplifyQuery &Q);
81 
82 KnownBits computeKnownBits(const Value *V, unsigned Depth,
83                            const SimplifyQuery &Q);
84 
85 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
86                       const SimplifyQuery &Q);
87 
88 /// Compute known bits from the range metadata.
89 /// \p KnownZero the set of bits that are known to be zero
90 /// \p KnownOne the set of bits that are known to be one
91 void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
92 
93 /// Merge bits known from context-dependent facts into Known.
94 void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
95                                  unsigned Depth, const SimplifyQuery &Q);
96 
97 /// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
98 KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I,
99                                        const KnownBits &KnownLHS,
100                                        const KnownBits &KnownRHS,
101                                        unsigned Depth, const SimplifyQuery &SQ);
102 
103 /// Adjust \p Known for the given select \p Arm to include information from the
104 /// select \p Cond.
105 void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm,
106                                  bool Invert, unsigned Depth,
107                                  const SimplifyQuery &Q);
108 
109 /// Return true if LHS and RHS have no common bits set.
110 bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
111                          const WithCache<const Value *> &RHSCache,
112                          const SimplifyQuery &SQ);
113 
114 /// Return true if the given value is known to have exactly one bit set when
115 /// defined. For vectors return true if every element is known to be a power
116 /// of two when defined. Supports values with integer or pointer type and
117 /// vectors of integers. If 'OrZero' is set, then return true if the given
118 /// value is either a power of two or zero.
119 bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
120                             bool OrZero = false, unsigned Depth = 0,
121                             AssumptionCache *AC = nullptr,
122                             const Instruction *CxtI = nullptr,
123                             const DominatorTree *DT = nullptr,
124                             bool UseInstrInfo = true);
125 
126 bool isOnlyUsedInZeroComparison(const Instruction *CxtI);
127 
128 bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
129 
130 /// Return true if the given value is known to be non-zero when defined. For
131 /// vectors, return true if every element is known to be non-zero when
132 /// defined. For pointers, if the context instruction and dominator tree are
133 /// specified, perform context-sensitive analysis and return true if the
134 /// pointer couldn't possibly be null at the specified instruction.
135 /// Supports values with integer or pointer type and vectors of integers.
136 bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth = 0);
137 
138 /// Return true if the two given values are negation.
139 /// Currently can recoginze Value pair:
140 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
141 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
142 bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false,
143                      bool AllowPoison = true);
144 
145 /// Return true iff:
146 /// 1. X is poison implies Y is poison.
147 /// 2. X is true implies Y is false.
148 /// 3. X is false implies Y is true.
149 /// Otherwise, return false.
150 bool isKnownInversion(const Value *X, const Value *Y);
151 
152 /// Returns true if the give value is known to be non-negative.
153 bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
154                         unsigned Depth = 0);
155 
156 /// Returns true if the given value is known be positive (i.e. non-negative
157 /// and non-zero).
158 bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
159                      unsigned Depth = 0);
160 
161 /// Returns true if the given value is known be negative (i.e. non-positive
162 /// and non-zero).
163 bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
164                      unsigned Depth = 0);
165 
166 /// Return true if the given values are known to be non-equal when defined.
167 /// Supports scalar integer types only.
168 bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
169                      AssumptionCache *AC = nullptr,
170                      const Instruction *CxtI = nullptr,
171                      const DominatorTree *DT = nullptr,
172                      bool UseInstrInfo = true);
173 
174 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
175 /// simplify operations downstream. Mask is known to be zero for bits that V
176 /// cannot have.
177 ///
178 /// This function is defined on values with integer type, values with pointer
179 /// type, and vectors of integers.  In the case
180 /// where V is a vector, the mask, known zero, and known one values are the
181 /// same width as the vector element, and the bit is set only if it is true
182 /// for all of the elements in the vector.
183 bool MaskedValueIsZero(const Value *V, const APInt &Mask,
184                        const SimplifyQuery &DL, unsigned Depth = 0);
185 
186 /// Return the number of times the sign bit of the register is replicated into
187 /// the other bits. We know that at least 1 bit is always equal to the sign
188 /// bit (itself), but other cases can give us information. For example,
189 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
190 /// equal to each other, so we return 3. For vectors, return the number of
191 /// sign bits for the vector element with the mininum number of known sign
192 /// bits.
193 unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
194                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
195                             const Instruction *CxtI = nullptr,
196                             const DominatorTree *DT = nullptr,
197                             bool UseInstrInfo = true);
198 
199 /// Get the upper bound on bit size for this Value \p Op as a signed integer.
200 /// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
201 /// Similar to the APInt::getSignificantBits function.
202 unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
203                                    unsigned Depth = 0,
204                                    AssumptionCache *AC = nullptr,
205                                    const Instruction *CxtI = nullptr,
206                                    const DominatorTree *DT = nullptr);
207 
208 /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
209 /// intrinsics are treated as-if they were intrinsics.
210 Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
211                                       const TargetLibraryInfo *TLI);
212 
213 /// Given an exploded icmp instruction, return true if the comparison only
214 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
215 /// the result of the comparison is true when the input value is signed.
216 bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
217                     bool &TrueIfSigned);
218 
219 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
220 /// same result as an fcmp with the given operands.
221 ///
222 /// If \p LookThroughSrc is true, consider the input value when computing the
223 /// mask.
224 ///
225 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
226 /// element will always be LHS.
227 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
228                                                 const Function &F, Value *LHS,
229                                                 Value *RHS,
230                                                 bool LookThroughSrc = true);
231 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
232                                                 const Function &F, Value *LHS,
233                                                 const APFloat *ConstRHS,
234                                                 bool LookThroughSrc = true);
235 
236 /// Compute the possible floating-point classes that \p LHS could be based on
237 /// fcmp \Pred \p LHS, \p RHS.
238 ///
239 /// \returns { TestedValue, ClassesIfTrue, ClassesIfFalse }
240 ///
241 /// If the compare returns an exact class test, ClassesIfTrue == ~ClassesIfFalse
242 ///
243 /// This is a less exact version of fcmpToClassTest (e.g. fcmpToClassTest will
244 /// only succeed for a test of x > 0 implies positive, but not x > 1).
245 ///
246 /// If \p LookThroughSrc is true, consider the input value when computing the
247 /// mask. This may look through sign bit operations.
248 ///
249 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
250 /// element will always be LHS.
251 ///
252 std::tuple<Value *, FPClassTest, FPClassTest>
253 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
254                  Value *RHS, bool LookThroughSrc = true);
255 std::tuple<Value *, FPClassTest, FPClassTest>
256 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
257                  FPClassTest RHS, bool LookThroughSrc = true);
258 std::tuple<Value *, FPClassTest, FPClassTest>
259 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
260                  const APFloat &RHS, bool LookThroughSrc = true);
261 
262 struct KnownFPClass {
263   /// Floating-point classes the value could be one of.
264   FPClassTest KnownFPClasses = fcAllFlags;
265 
266   /// std::nullopt if the sign bit is unknown, true if the sign bit is
267   /// definitely set or false if the sign bit is definitely unset.
268   std::optional<bool> SignBit;
269 
270   bool operator==(KnownFPClass Other) const {
271     return KnownFPClasses == Other.KnownFPClasses && SignBit == Other.SignBit;
272   }
273 
274   /// Return true if it's known this can never be one of the mask entries.
isKnownNeverKnownFPClass275   bool isKnownNever(FPClassTest Mask) const {
276     return (KnownFPClasses & Mask) == fcNone;
277   }
278 
isKnownAlwaysKnownFPClass279   bool isKnownAlways(FPClassTest Mask) const { return isKnownNever(~Mask); }
280 
isUnknownKnownFPClass281   bool isUnknown() const {
282     return KnownFPClasses == fcAllFlags && !SignBit;
283   }
284 
285   /// Return true if it's known this can never be a nan.
isKnownNeverNaNKnownFPClass286   bool isKnownNeverNaN() const {
287     return isKnownNever(fcNan);
288   }
289 
290   /// Return true if it's known this must always be a nan.
isKnownAlwaysNaNKnownFPClass291   bool isKnownAlwaysNaN() const { return isKnownAlways(fcNan); }
292 
293   /// Return true if it's known this can never be an infinity.
isKnownNeverInfinityKnownFPClass294   bool isKnownNeverInfinity() const {
295     return isKnownNever(fcInf);
296   }
297 
298   /// Return true if it's known this can never be +infinity.
isKnownNeverPosInfinityKnownFPClass299   bool isKnownNeverPosInfinity() const {
300     return isKnownNever(fcPosInf);
301   }
302 
303   /// Return true if it's known this can never be -infinity.
isKnownNeverNegInfinityKnownFPClass304   bool isKnownNeverNegInfinity() const {
305     return isKnownNever(fcNegInf);
306   }
307 
308   /// Return true if it's known this can never be a subnormal
isKnownNeverSubnormalKnownFPClass309   bool isKnownNeverSubnormal() const {
310     return isKnownNever(fcSubnormal);
311   }
312 
313   /// Return true if it's known this can never be a positive subnormal
isKnownNeverPosSubnormalKnownFPClass314   bool isKnownNeverPosSubnormal() const {
315     return isKnownNever(fcPosSubnormal);
316   }
317 
318   /// Return true if it's known this can never be a negative subnormal
isKnownNeverNegSubnormalKnownFPClass319   bool isKnownNeverNegSubnormal() const {
320     return isKnownNever(fcNegSubnormal);
321   }
322 
323   /// Return true if it's known this can never be a zero. This means a literal
324   /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
isKnownNeverZeroKnownFPClass325   bool isKnownNeverZero() const {
326     return isKnownNever(fcZero);
327   }
328 
329   /// Return true if it's known this can never be a literal positive zero.
isKnownNeverPosZeroKnownFPClass330   bool isKnownNeverPosZero() const {
331     return isKnownNever(fcPosZero);
332   }
333 
334   /// Return true if it's known this can never be a negative zero. This means a
335   /// literal -0 and does not include denormal inputs implicitly treated as -0.
isKnownNeverNegZeroKnownFPClass336   bool isKnownNeverNegZero() const {
337     return isKnownNever(fcNegZero);
338   }
339 
340   /// Return true if it's know this can never be interpreted as a zero. This
341   /// extends isKnownNeverZero to cover the case where the assumed
342   /// floating-point mode for the function interprets denormals as zero.
343   bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
344 
345   /// Return true if it's know this can never be interpreted as a negative zero.
346   bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
347 
348   /// Return true if it's know this can never be interpreted as a positive zero.
349   bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
350 
351   static constexpr FPClassTest OrderedLessThanZeroMask =
352       fcNegSubnormal | fcNegNormal | fcNegInf;
353   static constexpr FPClassTest OrderedGreaterThanZeroMask =
354       fcPosSubnormal | fcPosNormal | fcPosInf;
355 
356   /// Return true if we can prove that the analyzed floating-point value is
357   /// either NaN or never less than -0.0.
358   ///
359   ///      NaN --> true
360   ///       +0 --> true
361   ///       -0 --> true
362   ///   x > +0 --> true
363   ///   x < -0 --> false
cannotBeOrderedLessThanZeroKnownFPClass364   bool cannotBeOrderedLessThanZero() const {
365     return isKnownNever(OrderedLessThanZeroMask);
366   }
367 
368   /// Return true if we can prove that the analyzed floating-point value is
369   /// either NaN or never greater than -0.0.
370   ///      NaN --> true
371   ///       +0 --> true
372   ///       -0 --> true
373   ///   x > +0 --> false
374   ///   x < -0 --> true
cannotBeOrderedGreaterThanZeroKnownFPClass375   bool cannotBeOrderedGreaterThanZero() const {
376     return isKnownNever(OrderedGreaterThanZeroMask);
377   }
378 
379   KnownFPClass &operator|=(const KnownFPClass &RHS) {
380     KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
381 
382     if (SignBit != RHS.SignBit)
383       SignBit = std::nullopt;
384     return *this;
385   }
386 
knownNotKnownFPClass387   void knownNot(FPClassTest RuleOut) {
388     KnownFPClasses = KnownFPClasses & ~RuleOut;
389     if (isKnownNever(fcNan) && !SignBit) {
390       if (isKnownNever(fcNegative))
391         SignBit = false;
392       else if (isKnownNever(fcPositive))
393         SignBit = true;
394     }
395   }
396 
fnegKnownFPClass397   void fneg() {
398     KnownFPClasses = llvm::fneg(KnownFPClasses);
399     if (SignBit)
400       SignBit = !*SignBit;
401   }
402 
fabsKnownFPClass403   void fabs() {
404     if (KnownFPClasses & fcNegZero)
405       KnownFPClasses |= fcPosZero;
406 
407     if (KnownFPClasses & fcNegInf)
408       KnownFPClasses |= fcPosInf;
409 
410     if (KnownFPClasses & fcNegSubnormal)
411       KnownFPClasses |= fcPosSubnormal;
412 
413     if (KnownFPClasses & fcNegNormal)
414       KnownFPClasses |= fcPosNormal;
415 
416     signBitMustBeZero();
417   }
418 
419   /// Return true if the sign bit must be 0, ignoring the sign of nans.
signBitIsZeroOrNaNKnownFPClass420   bool signBitIsZeroOrNaN() const {
421     return isKnownNever(fcNegative);
422   }
423 
424   /// Assume the sign bit is zero.
signBitMustBeZeroKnownFPClass425   void signBitMustBeZero() {
426     KnownFPClasses &= (fcPositive | fcNan);
427     SignBit = false;
428   }
429 
430   /// Assume the sign bit is one.
signBitMustBeOneKnownFPClass431   void signBitMustBeOne() {
432     KnownFPClasses &= (fcNegative | fcNan);
433     SignBit = true;
434   }
435 
copysignKnownFPClass436   void copysign(const KnownFPClass &Sign) {
437     // Don't know anything about the sign of the source. Expand the possible set
438     // to its opposite sign pair.
439     if (KnownFPClasses & fcZero)
440       KnownFPClasses |= fcZero;
441     if (KnownFPClasses & fcSubnormal)
442       KnownFPClasses |= fcSubnormal;
443     if (KnownFPClasses & fcNormal)
444       KnownFPClasses |= fcNormal;
445     if (KnownFPClasses & fcInf)
446       KnownFPClasses |= fcInf;
447 
448     // Sign bit is exactly preserved even for nans.
449     SignBit = Sign.SignBit;
450 
451     // Clear sign bits based on the input sign mask.
452     if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
453       KnownFPClasses &= (fcNegative | fcNan);
454     if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
455       KnownFPClasses &= (fcPositive | fcNan);
456   }
457 
458   // Propagate knowledge that a non-NaN source implies the result can also not
459   // be a NaN. For unconstrained operations, signaling nans are not guaranteed
460   // to be quieted but cannot be introduced.
461   void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
462     if (Src.isKnownNever(fcNan)) {
463       knownNot(fcNan);
464       if (PreserveSign)
465         SignBit = Src.SignBit;
466     } else if (Src.isKnownNever(fcSNan))
467       knownNot(fcSNan);
468   }
469 
470   /// Propagate knowledge from a source value that could be a denormal or
471   /// zero. We have to be conservative since output flushing is not guaranteed,
472   /// so known-never-zero may not hold.
473   ///
474   /// This assumes a copy-like operation and will replace any currently known
475   /// information.
476   void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
477 
478   /// Report known classes if \p Src is evaluated through a potentially
479   /// canonicalizing operation. We can assume signaling nans will not be
480   /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
481   ///
482   /// This assumes a copy-like operation and will replace any currently known
483   /// information.
484   void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
485                                   Type *Ty);
486 
resetAllKnownFPClass487   void resetAll() { *this = KnownFPClass(); }
488 };
489 
490 inline KnownFPClass operator|(KnownFPClass LHS, const KnownFPClass &RHS) {
491   LHS |= RHS;
492   return LHS;
493 }
494 
495 inline KnownFPClass operator|(const KnownFPClass &LHS, KnownFPClass &&RHS) {
496   RHS |= LHS;
497   return std::move(RHS);
498 }
499 
500 /// Determine which floating-point classes are valid for \p V, and return them
501 /// in KnownFPClass bit sets.
502 ///
503 /// This function is defined on values with floating-point type, values vectors
504 /// of floating-point type, and arrays of floating-point type.
505 
506 /// \p InterestedClasses is a compile time optimization hint for which floating
507 /// point classes should be queried. Queries not specified in \p
508 /// InterestedClasses should be reliable if they are determined during the
509 /// query.
510 KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts,
511                                  FPClassTest InterestedClasses, unsigned Depth,
512                                  const SimplifyQuery &SQ);
513 
514 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest InterestedClasses,
515                                  unsigned Depth, const SimplifyQuery &SQ);
516 
517 inline KnownFPClass computeKnownFPClass(
518     const Value *V, const DataLayout &DL,
519     FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
520     const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
521     const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
522     bool UseInstrInfo = true) {
523   return computeKnownFPClass(
524       V, InterestedClasses, Depth,
525       SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo));
526 }
527 
528 /// Wrapper to account for known fast math flags at the use instruction.
529 inline KnownFPClass
computeKnownFPClass(const Value * V,const APInt & DemandedElts,FastMathFlags FMF,FPClassTest InterestedClasses,unsigned Depth,const SimplifyQuery & SQ)530 computeKnownFPClass(const Value *V, const APInt &DemandedElts,
531                     FastMathFlags FMF, FPClassTest InterestedClasses,
532                     unsigned Depth, const SimplifyQuery &SQ) {
533   if (FMF.noNaNs())
534     InterestedClasses &= ~fcNan;
535   if (FMF.noInfs())
536     InterestedClasses &= ~fcInf;
537 
538   KnownFPClass Result =
539       computeKnownFPClass(V, DemandedElts, InterestedClasses, Depth, SQ);
540 
541   if (FMF.noNaNs())
542     Result.KnownFPClasses &= ~fcNan;
543   if (FMF.noInfs())
544     Result.KnownFPClasses &= ~fcInf;
545   return Result;
546 }
547 
computeKnownFPClass(const Value * V,FastMathFlags FMF,FPClassTest InterestedClasses,unsigned Depth,const SimplifyQuery & SQ)548 inline KnownFPClass computeKnownFPClass(const Value *V, FastMathFlags FMF,
549                                         FPClassTest InterestedClasses,
550                                         unsigned Depth,
551                                         const SimplifyQuery &SQ) {
552   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
553   APInt DemandedElts =
554       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
555   return computeKnownFPClass(V, DemandedElts, FMF, InterestedClasses, Depth,
556                              SQ);
557 }
558 
559 /// Return true if we can prove that the specified FP value is never equal to
560 /// -0.0. Users should use caution when considering PreserveSign
561 /// denormal-fp-math.
cannotBeNegativeZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)562 inline bool cannotBeNegativeZero(const Value *V, unsigned Depth,
563                                  const SimplifyQuery &SQ) {
564   KnownFPClass Known = computeKnownFPClass(V, fcNegZero, Depth, SQ);
565   return Known.isKnownNeverNegZero();
566 }
567 
568 /// Return true if we can prove that the specified FP value is either NaN or
569 /// never less than -0.0.
570 ///
571 ///      NaN --> true
572 ///       +0 --> true
573 ///       -0 --> true
574 ///   x > +0 --> true
575 ///   x < -0 --> false
cannotBeOrderedLessThanZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)576 inline bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth,
577                                         const SimplifyQuery &SQ) {
578   KnownFPClass Known =
579       computeKnownFPClass(V, KnownFPClass::OrderedLessThanZeroMask, Depth, SQ);
580   return Known.cannotBeOrderedLessThanZero();
581 }
582 
583 /// Return true if the floating-point scalar value is not an infinity or if
584 /// the floating-point vector value has no infinities. Return false if a value
585 /// could ever be infinity.
isKnownNeverInfinity(const Value * V,unsigned Depth,const SimplifyQuery & SQ)586 inline bool isKnownNeverInfinity(const Value *V, unsigned Depth,
587                                  const SimplifyQuery &SQ) {
588   KnownFPClass Known = computeKnownFPClass(V, fcInf, Depth, SQ);
589   return Known.isKnownNeverInfinity();
590 }
591 
592 /// Return true if the floating-point value can never contain a NaN or infinity.
isKnownNeverInfOrNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)593 inline bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth,
594                                  const SimplifyQuery &SQ) {
595   KnownFPClass Known = computeKnownFPClass(V, fcInf | fcNan, Depth, SQ);
596   return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
597 }
598 
599 /// Return true if the floating-point scalar value is not a NaN or if the
600 /// floating-point vector value has no NaN elements. Return false if a value
601 /// could ever be NaN.
isKnownNeverNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)602 inline bool isKnownNeverNaN(const Value *V, unsigned Depth,
603                             const SimplifyQuery &SQ) {
604   KnownFPClass Known = computeKnownFPClass(V, fcNan, Depth, SQ);
605   return Known.isKnownNeverNaN();
606 }
607 
608 /// Return false if we can prove that the specified FP value's sign bit is 0.
609 /// Return true if we can prove that the specified FP value's sign bit is 1.
610 /// Otherwise return std::nullopt.
computeKnownFPSignBit(const Value * V,unsigned Depth,const SimplifyQuery & SQ)611 inline std::optional<bool> computeKnownFPSignBit(const Value *V, unsigned Depth,
612                                                  const SimplifyQuery &SQ) {
613   KnownFPClass Known = computeKnownFPClass(V, fcAllFlags, Depth, SQ);
614   return Known.SignBit;
615 }
616 
617 /// If the specified value can be set by repeating the same byte in memory,
618 /// return the i8 value that it is represented with. This is true for all i8
619 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
620 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
621 /// i16 0x1234), return null. If the value is entirely undef and padding,
622 /// return undef.
623 Value *isBytewiseValue(Value *V, const DataLayout &DL);
624 
625 /// Given an aggregate and an sequence of indices, see if the scalar value
626 /// indexed is already around as a register, for example if it were inserted
627 /// directly into the aggregate.
628 ///
629 /// If InsertBefore is not empty, this function will duplicate (modified)
630 /// insertvalues when a part of a nested struct is extracted.
631 Value *FindInsertedValue(
632     Value *V, ArrayRef<unsigned> idx_range,
633     std::optional<BasicBlock::iterator> InsertBefore = std::nullopt);
634 
635 /// Analyze the specified pointer to see if it can be expressed as a base
636 /// pointer plus a constant offset. Return the base and offset to the caller.
637 ///
638 /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
639 /// creates and later unpacks the required APInt.
640 inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
641                                                const DataLayout &DL,
642                                                bool AllowNonInbounds = true) {
643   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
644   Value *Base =
645       Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
646 
647   Offset = OffsetAPInt.getSExtValue();
648   return Base;
649 }
650 inline const Value *
651 GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
652                                  const DataLayout &DL,
653                                  bool AllowNonInbounds = true) {
654   return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
655                                           AllowNonInbounds);
656 }
657 
658 /// Returns true if the GEP is based on a pointer to a string (array of
659 // \p CharSize integers) and is indexing into this string.
660 bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
661 
662 /// Represents offset+length into a ConstantDataArray.
663 struct ConstantDataArraySlice {
664   /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
665   /// initializer, it just doesn't fit the ConstantDataArray interface).
666   const ConstantDataArray *Array;
667 
668   /// Slice starts at this Offset.
669   uint64_t Offset;
670 
671   /// Length of the slice.
672   uint64_t Length;
673 
674   /// Moves the Offset and adjusts Length accordingly.
moveConstantDataArraySlice675   void move(uint64_t Delta) {
676     assert(Delta < Length);
677     Offset += Delta;
678     Length -= Delta;
679   }
680 
681   /// Convenience accessor for elements in the slice.
682   uint64_t operator[](unsigned I) const {
683     return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
684   }
685 };
686 
687 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
688 /// If successful \p Slice will point to a ConstantDataArray info object
689 /// with an appropriate offset.
690 bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
691                               unsigned ElementSize, uint64_t Offset = 0);
692 
693 /// This function computes the length of a null-terminated C string pointed to
694 /// by V. If successful, it returns true and returns the string in Str. If
695 /// unsuccessful, it returns false. This does not include the trailing null
696 /// character by default. If TrimAtNul is set to false, then this returns any
697 /// trailing null characters as well as any other characters that come after
698 /// it.
699 bool getConstantStringInfo(const Value *V, StringRef &Str,
700                            bool TrimAtNul = true);
701 
702 /// If we can compute the length of the string pointed to by the specified
703 /// pointer, return 'len+1'.  If we can't, return 0.
704 uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
705 
706 /// This function returns call pointer argument that is considered the same by
707 /// aliasing rules. You CAN'T use it to replace one value with another. If
708 /// \p MustPreserveNullness is true, the call must preserve the nullness of
709 /// the pointer.
710 const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
711                                                   bool MustPreserveNullness);
getArgumentAliasingToReturnedPointer(CallBase * Call,bool MustPreserveNullness)712 inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
713                                                    bool MustPreserveNullness) {
714   return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
715       const_cast<const CallBase *>(Call), MustPreserveNullness));
716 }
717 
718 /// {launder,strip}.invariant.group returns pointer that aliases its argument,
719 /// and it only captures pointer by returning it.
720 /// These intrinsics are not marked as nocapture, because returning is
721 /// considered as capture. The arguments are not marked as returned neither,
722 /// because it would make it useless. If \p MustPreserveNullness is true,
723 /// the intrinsic must preserve the nullness of the pointer.
724 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
725     const CallBase *Call, bool MustPreserveNullness);
726 
727 /// This method strips off any GEP address adjustments, pointer casts
728 /// or `llvm.threadlocal.address` from the specified value \p V, returning the
729 /// original object being addressed. Note that the returned value has pointer
730 /// type if the specified value does. If the \p MaxLookup value is non-zero, it
731 /// limits the number of instructions to be stripped off.
732 const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
733 inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
734   // Force const to avoid infinite recursion.
735   const Value *VConst = V;
736   return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
737 }
738 
739 /// Like getUnderlyingObject(), but will try harder to find a single underlying
740 /// object. In particular, this function also looks through selects and phis.
741 const Value *getUnderlyingObjectAggressive(const Value *V);
742 
743 /// This method is similar to getUnderlyingObject except that it can
744 /// look through phi and select instructions and return multiple objects.
745 ///
746 /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
747 /// accesses different objects in each iteration, we don't look through the
748 /// phi node. E.g. consider this loop nest:
749 ///
750 ///   int **A;
751 ///   for (i)
752 ///     for (j) {
753 ///        A[i][j] = A[i-1][j] * B[j]
754 ///     }
755 ///
756 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
757 /// of the outer loop:
758 ///
759 ///   Curr = A[0];          // Prev_0
760 ///   for (i: 1..N) {
761 ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
762 ///     Curr = A[i];
763 ///     for (j: 0..N) {
764 ///        Curr[j] = Prev[j] * B[j]
765 ///     }
766 ///   }
767 ///
768 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
769 /// should not assume that Curr and Prev share the same underlying object thus
770 /// it shouldn't look through the phi above.
771 void getUnderlyingObjects(const Value *V,
772                           SmallVectorImpl<const Value *> &Objects,
773                           LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
774 
775 /// This is a wrapper around getUnderlyingObjects and adds support for basic
776 /// ptrtoint+arithmetic+inttoptr sequences.
777 bool getUnderlyingObjectsForCodeGen(const Value *V,
778                                     SmallVectorImpl<Value *> &Objects);
779 
780 /// Returns unique alloca where the value comes from, or nullptr.
781 /// If OffsetZero is true check that V points to the begining of the alloca.
782 AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
783 inline const AllocaInst *findAllocaForValue(const Value *V,
784                                             bool OffsetZero = false) {
785   return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
786 }
787 
788 /// Return true if the only users of this pointer are lifetime markers.
789 bool onlyUsedByLifetimeMarkers(const Value *V);
790 
791 /// Return true if the only users of this pointer are lifetime markers or
792 /// droppable instructions.
793 bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
794 
795 /// Return true if speculation of the given load must be suppressed to avoid
796 /// ordering or interfering with an active sanitizer.  If not suppressed,
797 /// dereferenceability and alignment must be proven separately.  Note: This
798 /// is only needed for raw reasoning; if you use the interface below
799 /// (isSafeToSpeculativelyExecute), this is handled internally.
800 bool mustSuppressSpeculation(const LoadInst &LI);
801 
802 /// Return true if the instruction does not have any effects besides
803 /// calculating the result and does not have undefined behavior.
804 ///
805 /// This method never returns true for an instruction that returns true for
806 /// mayHaveSideEffects; however, this method also does some other checks in
807 /// addition. It checks for undefined behavior, like dividing by zero or
808 /// loading from an invalid pointer (but not for undefined results, like a
809 /// shift with a shift amount larger than the width of the result). It checks
810 /// for malloc and alloca because speculatively executing them might cause a
811 /// memory leak. It also returns false for instructions related to control
812 /// flow, specifically terminators and PHI nodes.
813 ///
814 /// If the CtxI is specified this method performs context-sensitive analysis
815 /// and returns true if it is safe to execute the instruction immediately
816 /// before the CtxI.
817 ///
818 /// If the CtxI is NOT specified this method only looks at the instruction
819 /// itself and its operands, so if this method returns true, it is safe to
820 /// move the instruction as long as the correct dominance relationships for
821 /// the operands and users hold.
822 ///
823 /// This method can return true for instructions that read memory;
824 /// for such instructions, moving them may change the resulting value.
825 bool isSafeToSpeculativelyExecute(const Instruction *I,
826                                   const Instruction *CtxI = nullptr,
827                                   AssumptionCache *AC = nullptr,
828                                   const DominatorTree *DT = nullptr,
829                                   const TargetLibraryInfo *TLI = nullptr,
830                                   bool UseVariableInfo = true);
831 
832 inline bool isSafeToSpeculativelyExecute(const Instruction *I,
833                                          BasicBlock::iterator CtxI,
834                                          AssumptionCache *AC = nullptr,
835                                          const DominatorTree *DT = nullptr,
836                                          const TargetLibraryInfo *TLI = nullptr,
837                                          bool UseVariableInfo = true) {
838   // Take an iterator, and unwrap it into an Instruction *.
839   return isSafeToSpeculativelyExecute(I, &*CtxI, AC, DT, TLI, UseVariableInfo);
840 }
841 
842 /// Don't use information from its non-constant operands. This helper is used
843 /// when its operands are going to be replaced.
844 inline bool
isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction * I)845 isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I) {
846   return isSafeToSpeculativelyExecute(I, nullptr, nullptr, nullptr, nullptr,
847                                       /*UseVariableInfo=*/false);
848 }
849 
850 /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
851 /// the actual opcode of Inst. If the provided and actual opcode differ, the
852 /// function (virtually) overrides the opcode of Inst with the provided
853 /// Opcode. There are come constraints in this case:
854 /// * If Opcode has a fixed number of operands (eg, as binary operators do),
855 ///   then Inst has to have at least as many leading operands. The function
856 ///   will ignore all trailing operands beyond that number.
857 /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
858 ///   do), then all operands are considered.
859 /// * The virtual instruction has to satisfy all typing rules of the provided
860 ///   Opcode.
861 /// * This function is pessimistic in the following sense: If one actually
862 ///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
863 ///   may say that the materialized instruction is speculatable whereas this
864 ///   function may have said that the instruction wouldn't be speculatable.
865 ///   This behavior is a shortcoming in the current implementation and not
866 ///   intentional.
867 bool isSafeToSpeculativelyExecuteWithOpcode(
868     unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
869     AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
870     const TargetLibraryInfo *TLI = nullptr, bool UseVariableInfo = true);
871 
872 /// Returns true if the result or effects of the given instructions \p I
873 /// depend values not reachable through the def use graph.
874 /// * Memory dependence arises for example if the instruction reads from
875 ///   memory or may produce effects or undefined behaviour. Memory dependent
876 ///   instructions generally cannot be reorderd with respect to other memory
877 ///   dependent instructions.
878 /// * Control dependence arises for example if the instruction may fault
879 ///   if lifted above a throwing call or infinite loop.
880 bool mayHaveNonDefUseDependency(const Instruction &I);
881 
882 /// Return true if it is an intrinsic that cannot be speculated but also
883 /// cannot trap.
884 bool isAssumeLikeIntrinsic(const Instruction *I);
885 
886 /// Return true if it is valid to use the assumptions provided by an
887 /// assume intrinsic, I, at the point in the control-flow identified by the
888 /// context instruction, CxtI. By default, ephemeral values of the assumption
889 /// are treated as an invalid context, to prevent the assumption from being used
890 /// to optimize away its argument. If the caller can ensure that this won't
891 /// happen, it can call with AllowEphemerals set to true to get more valid
892 /// assumptions.
893 bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
894                              const DominatorTree *DT = nullptr,
895                              bool AllowEphemerals = false);
896 
897 enum class OverflowResult {
898   /// Always overflows in the direction of signed/unsigned min value.
899   AlwaysOverflowsLow,
900   /// Always overflows in the direction of signed/unsigned max value.
901   AlwaysOverflowsHigh,
902   /// May or may not overflow.
903   MayOverflow,
904   /// Never overflows.
905   NeverOverflows,
906 };
907 
908 OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
909                                              const SimplifyQuery &SQ,
910                                              bool IsNSW = false);
911 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
912                                            const SimplifyQuery &SQ);
913 OverflowResult
914 computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
915                               const WithCache<const Value *> &RHS,
916                               const SimplifyQuery &SQ);
917 OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
918                                            const WithCache<const Value *> &RHS,
919                                            const SimplifyQuery &SQ);
920 /// This version also leverages the sign bit of Add if known.
921 OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
922                                            const SimplifyQuery &SQ);
923 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
924                                              const SimplifyQuery &SQ);
925 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
926                                            const SimplifyQuery &SQ);
927 
928 /// Returns true if the arithmetic part of the \p WO 's result is
929 /// used only along the paths control dependent on the computation
930 /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
931 bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
932                                const DominatorTree &DT);
933 
934 /// Determine the possible constant range of vscale with the given bit width,
935 /// based on the vscale_range function attribute.
936 ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
937 
938 /// Determine the possible constant range of an integer or vector of integer
939 /// value. This is intended as a cheap, non-recursive check.
940 ConstantRange computeConstantRange(const Value *V, bool ForSigned,
941                                    bool UseInstrInfo = true,
942                                    AssumptionCache *AC = nullptr,
943                                    const Instruction *CtxI = nullptr,
944                                    const DominatorTree *DT = nullptr,
945                                    unsigned Depth = 0);
946 
947 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
948 ConstantRange
949 computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
950                                        bool ForSigned, const SimplifyQuery &SQ);
951 
952 /// Return true if this function can prove that the instruction I will
953 /// always transfer execution to one of its successors (including the next
954 /// instruction that follows within a basic block). E.g. this is not
955 /// guaranteed for function calls that could loop infinitely.
956 ///
957 /// In other words, this function returns false for instructions that may
958 /// transfer execution or fail to transfer execution in a way that is not
959 /// captured in the CFG nor in the sequence of instructions within a basic
960 /// block.
961 ///
962 /// Undefined behavior is assumed not to happen, so e.g. division is
963 /// guaranteed to transfer execution to the following instruction even
964 /// though division by zero might cause undefined behavior.
965 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
966 
967 /// Returns true if this block does not contain a potential implicit exit.
968 /// This is equivelent to saying that all instructions within the basic block
969 /// are guaranteed to transfer execution to their successor within the basic
970 /// block. This has the same assumptions w.r.t. undefined behavior as the
971 /// instruction variant of this function.
972 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
973 
974 /// Return true if every instruction in the range (Begin, End) is
975 /// guaranteed to transfer execution to its static successor. \p ScanLimit
976 /// bounds the search to avoid scanning huge blocks.
977 bool isGuaranteedToTransferExecutionToSuccessor(
978     BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
979     unsigned ScanLimit = 32);
980 
981 /// Same as previous, but with range expressed via iterator_range.
982 bool isGuaranteedToTransferExecutionToSuccessor(
983     iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
984 
985 /// Return true if this function can prove that the instruction I
986 /// is executed for every iteration of the loop L.
987 ///
988 /// Note that this currently only considers the loop header.
989 bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
990                                             const Loop *L);
991 
992 /// Return true if \p PoisonOp's user yields poison or raises UB if its
993 /// operand \p PoisonOp is poison.
994 ///
995 /// If \p PoisonOp is a vector or an aggregate and the operation's result is a
996 /// single value, any poison element in /p PoisonOp should make the result
997 /// poison or raise UB.
998 ///
999 /// To filter out operands that raise UB on poison, you can use
1000 /// getGuaranteedNonPoisonOp.
1001 bool propagatesPoison(const Use &PoisonOp);
1002 
1003 /// Insert operands of I into Ops such that I will trigger undefined behavior
1004 /// if I is executed and that operand has a poison value.
1005 void getGuaranteedNonPoisonOps(const Instruction *I,
1006                                SmallVectorImpl<const Value *> &Ops);
1007 
1008 /// Insert operands of I into Ops such that I will trigger undefined behavior
1009 /// if I is executed and that operand is not a well-defined value
1010 /// (i.e. has undef bits or poison).
1011 void getGuaranteedWellDefinedOps(const Instruction *I,
1012                                  SmallVectorImpl<const Value *> &Ops);
1013 
1014 /// Return true if the given instruction must trigger undefined behavior
1015 /// when I is executed with any operands which appear in KnownPoison holding
1016 /// a poison value at the point of execution.
1017 bool mustTriggerUB(const Instruction *I,
1018                    const SmallPtrSetImpl<const Value *> &KnownPoison);
1019 
1020 /// Return true if this function can prove that if Inst is executed
1021 /// and yields a poison value or undef bits, then that will trigger
1022 /// undefined behavior.
1023 ///
1024 /// Note that this currently only considers the basic block that is
1025 /// the parent of Inst.
1026 bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
1027 bool programUndefinedIfPoison(const Instruction *Inst);
1028 
1029 /// canCreateUndefOrPoison returns true if Op can create undef or poison from
1030 /// non-undef & non-poison operands.
1031 /// For vectors, canCreateUndefOrPoison returns true if there is potential
1032 /// poison or undef in any element of the result when vectors without
1033 /// undef/poison poison are given as operands.
1034 /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
1035 /// true. If Op raises immediate UB but never creates poison or undef
1036 /// (e.g. sdiv I, 0), canCreatePoison returns false.
1037 ///
1038 /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
1039 /// metadata on the instruction are considered.  This can be used to see if the
1040 /// instruction could still introduce undef or poison even without poison
1041 /// generating flags and metadata which might be on the instruction.
1042 /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
1043 /// poison or undef)
1044 ///
1045 /// canCreatePoison returns true if Op can create poison from non-poison
1046 /// operands.
1047 bool canCreateUndefOrPoison(const Operator *Op,
1048                             bool ConsiderFlagsAndMetadata = true);
1049 bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
1050 
1051 /// Return true if V is poison given that ValAssumedPoison is already poison.
1052 /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
1053 /// impliesPoison returns true.
1054 bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
1055 
1056 /// Return true if this function can prove that V does not have undef bits
1057 /// and is never poison. If V is an aggregate value or vector, check whether
1058 /// all elements (except padding) are not undef or poison.
1059 /// Note that this is different from canCreateUndefOrPoison because the
1060 /// function assumes Op's operands are not poison/undef.
1061 ///
1062 /// If CtxI and DT are specified this method performs flow-sensitive analysis
1063 /// and returns true if it is guaranteed to be never undef or poison
1064 /// immediately before the CtxI.
1065 bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
1066                                       AssumptionCache *AC = nullptr,
1067                                       const Instruction *CtxI = nullptr,
1068                                       const DominatorTree *DT = nullptr,
1069                                       unsigned Depth = 0);
1070 
1071 /// Returns true if V cannot be poison, but may be undef.
1072 bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
1073                                const Instruction *CtxI = nullptr,
1074                                const DominatorTree *DT = nullptr,
1075                                unsigned Depth = 0);
1076 
1077 inline bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
1078                                       BasicBlock::iterator CtxI,
1079                                       const DominatorTree *DT = nullptr,
1080                                       unsigned Depth = 0) {
1081   // Takes an iterator as a position, passes down to Instruction *
1082   // implementation.
1083   return isGuaranteedNotToBePoison(V, AC, &*CtxI, DT, Depth);
1084 }
1085 
1086 /// Returns true if V cannot be undef, but may be poison.
1087 bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1088                               const Instruction *CtxI = nullptr,
1089                               const DominatorTree *DT = nullptr,
1090                               unsigned Depth = 0);
1091 
1092 /// Return true if undefined behavior would provable be executed on the path to
1093 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
1094 /// anything about whether OnPathTo is actually executed or whether Root is
1095 /// actually poison.  This can be used to assess whether a new use of Root can
1096 /// be added at a location which is control equivalent with OnPathTo (such as
1097 /// immediately before it) without introducing UB which didn't previously
1098 /// exist.  Note that a false result conveys no information.
1099 bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1100                                    Instruction *OnPathTo,
1101                                    DominatorTree *DT);
1102 
1103 /// Specific patterns of select instructions we can match.
1104 enum SelectPatternFlavor {
1105   SPF_UNKNOWN = 0,
1106   SPF_SMIN,    /// Signed minimum
1107   SPF_UMIN,    /// Unsigned minimum
1108   SPF_SMAX,    /// Signed maximum
1109   SPF_UMAX,    /// Unsigned maximum
1110   SPF_FMINNUM, /// Floating point minnum
1111   SPF_FMAXNUM, /// Floating point maxnum
1112   SPF_ABS,     /// Absolute value
1113   SPF_NABS     /// Negated absolute value
1114 };
1115 
1116 /// Behavior when a floating point min/max is given one NaN and one
1117 /// non-NaN as input.
1118 enum SelectPatternNaNBehavior {
1119   SPNB_NA = 0,        /// NaN behavior not applicable.
1120   SPNB_RETURNS_NAN,   /// Given one NaN input, returns the NaN.
1121   SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1122   SPNB_RETURNS_ANY    /// Given one NaN input, can return either (or
1123                       /// it has been determined that no operands can
1124                       /// be NaN).
1125 };
1126 
1127 struct SelectPatternResult {
1128   SelectPatternFlavor Flavor;
1129   SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1130                                         /// SPF_FMINNUM or SPF_FMAXNUM.
1131   bool Ordered; /// When implementing this min/max pattern as
1132                 /// fcmp; select, does the fcmp have to be
1133                 /// ordered?
1134 
1135   /// Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult1136   static bool isMinOrMax(SelectPatternFlavor SPF) {
1137     return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1138   }
1139 };
1140 
1141 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1142 /// and providing the out parameter results if we successfully match.
1143 ///
1144 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1145 /// the negation instruction from the idiom.
1146 ///
1147 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1148 /// not match that of the original select. If this is the case, the cast
1149 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
1150 /// type of LHS and RHS into the type of V is returned in CastOp.
1151 ///
1152 /// For example:
1153 ///   %1 = icmp slt i32 %a, i32 4
1154 ///   %2 = sext i32 %a to i64
1155 ///   %3 = select i1 %1, i64 %2, i64 4
1156 ///
1157 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1158 ///
1159 SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1160                                        Instruction::CastOps *CastOp = nullptr,
1161                                        unsigned Depth = 0);
1162 
matchSelectPattern(const Value * V,const Value * & LHS,const Value * & RHS)1163 inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
1164                                               const Value *&RHS) {
1165   Value *L = const_cast<Value *>(LHS);
1166   Value *R = const_cast<Value *>(RHS);
1167   auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1168   LHS = L;
1169   RHS = R;
1170   return Result;
1171 }
1172 
1173 /// Determine the pattern that a select with the given compare as its
1174 /// predicate and given values as its true/false operands would match.
1175 SelectPatternResult matchDecomposedSelectPattern(
1176     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1177     Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1178 
1179 /// Return the canonical comparison predicate for the specified
1180 /// minimum/maximum flavor.
1181 CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1182 
1183 /// Return the inverse minimum/maximum flavor of the specified flavor.
1184 /// For example, signed minimum is the inverse of signed maximum.
1185 SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
1186 
1187 Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
1188 
1189 /// Return the minimum or maximum constant value for the specified integer
1190 /// min/max flavor and type.
1191 APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1192 
1193 /// Check if the values in \p VL are select instructions that can be converted
1194 /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1195 /// conversion is possible, together with a bool indicating whether all select
1196 /// conditions are only used by the selects. Otherwise return
1197 /// Intrinsic::not_intrinsic.
1198 std::pair<Intrinsic::ID, bool>
1199 canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1200 
1201 /// Attempt to match a simple first order recurrence cycle of the form:
1202 ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1203 ///   %inc = binop %iv, %step
1204 /// OR
1205 ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1206 ///   %inc = binop %step, %iv
1207 ///
1208 /// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1209 ///
1210 /// A couple of notes on subtleties in that definition:
1211 /// * The Step does not have to be loop invariant.  In math terms, it can
1212 ///   be a free variable.  We allow recurrences with both constant and
1213 ///   variable coefficients. Callers may wish to filter cases where Step
1214 ///   does not dominate P.
1215 /// * For non-commutative operators, we will match both forms.  This
1216 ///   results in some odd recurrence structures.  Callers may wish to filter
1217 ///   out recurrences where the phi is not the LHS of the returned operator.
1218 /// * Because of the structure matched, the caller can assume as a post
1219 ///   condition of the match the presence of a Loop with P's parent as it's
1220 ///   header *except* in unreachable code.  (Dominance decays in unreachable
1221 ///   code.)
1222 ///
1223 /// NOTE: This is intentional simple.  If you want the ability to analyze
1224 /// non-trivial loop conditons, see ScalarEvolution instead.
1225 bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1226                            Value *&Step);
1227 
1228 /// Analogous to the above, but starting from the binary operator
1229 bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1230                            Value *&Step);
1231 
1232 /// Return true if RHS is known to be implied true by LHS.  Return false if
1233 /// RHS is known to be implied false by LHS.  Otherwise, return std::nullopt if
1234 /// no implication can be made. A & B must be i1 (boolean) values or a vector of
1235 /// such values. Note that the truth table for implication is the same as <=u on
1236 /// i1 values (but not
1237 /// <=s!).  The truth table for both is:
1238 ///    | T | F (B)
1239 ///  T | T | F
1240 ///  F | T | T
1241 /// (A)
1242 std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1243                                        const DataLayout &DL,
1244                                        bool LHSIsTrue = true,
1245                                        unsigned Depth = 0);
1246 std::optional<bool> isImpliedCondition(const Value *LHS,
1247                                        CmpInst::Predicate RHSPred,
1248                                        const Value *RHSOp0, const Value *RHSOp1,
1249                                        const DataLayout &DL,
1250                                        bool LHSIsTrue = true,
1251                                        unsigned Depth = 0);
1252 
1253 /// Return the boolean condition value in the context of the given instruction
1254 /// if it is known based on dominating conditions.
1255 std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1256                                             const Instruction *ContextI,
1257                                             const DataLayout &DL);
1258 std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
1259                                             const Value *LHS, const Value *RHS,
1260                                             const Instruction *ContextI,
1261                                             const DataLayout &DL);
1262 
1263 /// Call \p InsertAffected on all Values whose known bits / value may be
1264 /// affected by the condition \p Cond. Used by AssumptionCache and
1265 /// DomConditionCache.
1266 void findValuesAffectedByCondition(Value *Cond, bool IsAssume,
1267                                    function_ref<void(Value *)> InsertAffected);
1268 
1269 } // end namespace llvm
1270 
1271 #endif // LLVM_ANALYSIS_VALUETRACKING_H
1272