1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/cpuset.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/mutex.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45
46 #include <vm/vm.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_map.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_param.h>
53
54 #include <machine/armreg.h>
55 #include <machine/cpu.h>
56 #include <machine/fpu.h>
57 #include <machine/machdep.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/vm.h>
61 #include <machine/vmparam.h>
62 #include <machine/vmm.h>
63 #include <machine/vmm_instruction_emul.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/vmm/vmm_dev.h>
67 #include <dev/vmm/vmm_ktr.h>
68 #include <dev/vmm/vmm_mem.h>
69 #include <dev/vmm/vmm_stat.h>
70
71 #include "arm64.h"
72 #include "mmu.h"
73
74 #include "io/vgic.h"
75 #include "io/vtimer.h"
76
77 struct vcpu {
78 int flags;
79 enum vcpu_state state;
80 struct mtx mtx;
81 int hostcpu; /* host cpuid this vcpu last ran on */
82 int vcpuid;
83 void *stats;
84 struct vm_exit exitinfo;
85 uint64_t nextpc; /* (x) next instruction to execute */
86 struct vm *vm; /* (o) */
87 void *cookie; /* (i) cpu-specific data */
88 struct vfpstate *guestfpu; /* (a,i) guest fpu state */
89 };
90
91 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
92 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
93 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
94 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
95 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
96
97 struct vmm_mmio_region {
98 uint64_t start;
99 uint64_t end;
100 mem_region_read_t read;
101 mem_region_write_t write;
102 };
103 #define VM_MAX_MMIO_REGIONS 4
104
105 struct vmm_special_reg {
106 uint32_t esr_iss;
107 uint32_t esr_mask;
108 reg_read_t reg_read;
109 reg_write_t reg_write;
110 void *arg;
111 };
112 #define VM_MAX_SPECIAL_REGS 16
113
114 /*
115 * Initialization:
116 * (o) initialized the first time the VM is created
117 * (i) initialized when VM is created and when it is reinitialized
118 * (x) initialized before use
119 */
120 struct vm {
121 void *cookie; /* (i) cpu-specific data */
122 volatile cpuset_t active_cpus; /* (i) active vcpus */
123 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
124 int suspend; /* (i) stop VM execution */
125 bool dying; /* (o) is dying */
126 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
127 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
128 struct vm_mem mem; /* (i) guest memory */
129 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */
130 struct vcpu **vcpu; /* (i) guest vcpus */
131 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS];
132 /* (o) guest MMIO regions */
133 struct vmm_special_reg special_reg[VM_MAX_SPECIAL_REGS];
134 /* The following describe the vm cpu topology */
135 uint16_t sockets; /* (o) num of sockets */
136 uint16_t cores; /* (o) num of cores/socket */
137 uint16_t threads; /* (o) num of threads/core */
138 uint16_t maxcpus; /* (o) max pluggable cpus */
139 struct sx vcpus_init_lock; /* (o) */
140 };
141
142 static bool vmm_initialized = false;
143
144 static int vm_handle_wfi(struct vcpu *vcpu,
145 struct vm_exit *vme, bool *retu);
146
147 static MALLOC_DEFINE(M_VMM, "vmm", "vmm");
148
149 /* statistics */
150 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
151
152 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
153
154 static int vmm_ipinum;
155 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
156 "IPI vector used for vcpu notifications");
157
158 struct vmm_regs {
159 uint64_t id_aa64afr0;
160 uint64_t id_aa64afr1;
161 uint64_t id_aa64dfr0;
162 uint64_t id_aa64dfr1;
163 uint64_t id_aa64isar0;
164 uint64_t id_aa64isar1;
165 uint64_t id_aa64isar2;
166 uint64_t id_aa64mmfr0;
167 uint64_t id_aa64mmfr1;
168 uint64_t id_aa64mmfr2;
169 uint64_t id_aa64pfr0;
170 uint64_t id_aa64pfr1;
171 };
172
173 static const struct vmm_regs vmm_arch_regs_masks = {
174 .id_aa64dfr0 =
175 ID_AA64DFR0_CTX_CMPs_MASK |
176 ID_AA64DFR0_WRPs_MASK |
177 ID_AA64DFR0_BRPs_MASK |
178 ID_AA64DFR0_PMUVer_3 |
179 ID_AA64DFR0_DebugVer_8,
180 .id_aa64isar0 =
181 ID_AA64ISAR0_TLB_TLBIOSR |
182 ID_AA64ISAR0_SHA3_IMPL |
183 ID_AA64ISAR0_RDM_IMPL |
184 ID_AA64ISAR0_Atomic_IMPL |
185 ID_AA64ISAR0_CRC32_BASE |
186 ID_AA64ISAR0_SHA2_512 |
187 ID_AA64ISAR0_SHA1_BASE |
188 ID_AA64ISAR0_AES_PMULL,
189 .id_aa64mmfr0 =
190 ID_AA64MMFR0_TGran4_IMPL |
191 ID_AA64MMFR0_TGran64_IMPL |
192 ID_AA64MMFR0_TGran16_IMPL |
193 ID_AA64MMFR0_ASIDBits_16 |
194 ID_AA64MMFR0_PARange_4P,
195 .id_aa64mmfr1 =
196 ID_AA64MMFR1_SpecSEI_IMPL |
197 ID_AA64MMFR1_PAN_ATS1E1 |
198 ID_AA64MMFR1_HAFDBS_AF,
199 .id_aa64pfr0 =
200 ID_AA64PFR0_GIC_CPUIF_NONE |
201 ID_AA64PFR0_AdvSIMD_HP |
202 ID_AA64PFR0_FP_HP |
203 ID_AA64PFR0_EL3_64 |
204 ID_AA64PFR0_EL2_64 |
205 ID_AA64PFR0_EL1_64 |
206 ID_AA64PFR0_EL0_64,
207 };
208
209 /* Host registers masked by vmm_arch_regs_masks. */
210 static struct vmm_regs vmm_arch_regs;
211
212 u_int vm_maxcpu;
213 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 &vm_maxcpu, 0, "Maximum number of vCPUs");
215
216 static void vcpu_notify_event_locked(struct vcpu *vcpu);
217
218 /* global statistics */
219 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
220 VMM_STAT(VMEXIT_UNKNOWN, "number of vmexits for the unknown exception");
221 VMM_STAT(VMEXIT_WFI, "number of times wfi was intercepted");
222 VMM_STAT(VMEXIT_WFE, "number of times wfe was intercepted");
223 VMM_STAT(VMEXIT_HVC, "number of times hvc was intercepted");
224 VMM_STAT(VMEXIT_MSR, "number of times msr/mrs was intercepted");
225 VMM_STAT(VMEXIT_DATA_ABORT, "number of vmexits for a data abort");
226 VMM_STAT(VMEXIT_INSN_ABORT, "number of vmexits for an instruction abort");
227 VMM_STAT(VMEXIT_UNHANDLED_SYNC, "number of vmexits for an unhandled synchronous exception");
228 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq");
229 VMM_STAT(VMEXIT_FIQ, "number of vmexits for an interrupt");
230 VMM_STAT(VMEXIT_BRK, "number of vmexits for a breakpoint exception");
231 VMM_STAT(VMEXIT_SS, "number of vmexits for a single-step exception");
232 VMM_STAT(VMEXIT_UNHANDLED_EL2, "number of vmexits for an unhandled EL2 exception");
233 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception");
234
235 /*
236 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this
237 * is a safe value for now.
238 */
239 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
240
241 static int
vmm_regs_init(struct vmm_regs * regs,const struct vmm_regs * masks)242 vmm_regs_init(struct vmm_regs *regs, const struct vmm_regs *masks)
243 {
244 #define _FETCH_KERN_REG(reg, field) do { \
245 regs->field = vmm_arch_regs_masks.field; \
246 if (!get_kernel_reg_iss_masked(reg ## _ISS, ®s->field, \
247 masks->field)) \
248 regs->field = 0; \
249 } while (0)
250 _FETCH_KERN_REG(ID_AA64AFR0_EL1, id_aa64afr0);
251 _FETCH_KERN_REG(ID_AA64AFR1_EL1, id_aa64afr1);
252 _FETCH_KERN_REG(ID_AA64DFR0_EL1, id_aa64dfr0);
253 _FETCH_KERN_REG(ID_AA64DFR1_EL1, id_aa64dfr1);
254 _FETCH_KERN_REG(ID_AA64ISAR0_EL1, id_aa64isar0);
255 _FETCH_KERN_REG(ID_AA64ISAR1_EL1, id_aa64isar1);
256 _FETCH_KERN_REG(ID_AA64ISAR2_EL1, id_aa64isar2);
257 _FETCH_KERN_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0);
258 _FETCH_KERN_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1);
259 _FETCH_KERN_REG(ID_AA64MMFR2_EL1, id_aa64mmfr2);
260 _FETCH_KERN_REG(ID_AA64PFR0_EL1, id_aa64pfr0);
261 _FETCH_KERN_REG(ID_AA64PFR1_EL1, id_aa64pfr1);
262 #undef _FETCH_KERN_REG
263 return (0);
264 }
265
266 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)267 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
268 {
269 vmmops_vcpu_cleanup(vcpu->cookie);
270 vcpu->cookie = NULL;
271 if (destroy) {
272 vmm_stat_free(vcpu->stats);
273 fpu_save_area_free(vcpu->guestfpu);
274 vcpu_lock_destroy(vcpu);
275 free(vcpu, M_VMM);
276 }
277 }
278
279 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)280 vcpu_alloc(struct vm *vm, int vcpu_id)
281 {
282 struct vcpu *vcpu;
283
284 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
285 ("vcpu_alloc: invalid vcpu %d", vcpu_id));
286
287 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO);
288 vcpu_lock_init(vcpu);
289 vcpu->state = VCPU_IDLE;
290 vcpu->hostcpu = NOCPU;
291 vcpu->vcpuid = vcpu_id;
292 vcpu->vm = vm;
293 vcpu->guestfpu = fpu_save_area_alloc();
294 vcpu->stats = vmm_stat_alloc();
295 return (vcpu);
296 }
297
298 static void
vcpu_init(struct vcpu * vcpu)299 vcpu_init(struct vcpu *vcpu)
300 {
301 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
302 MPASS(vcpu->cookie != NULL);
303 fpu_save_area_reset(vcpu->guestfpu);
304 vmm_stat_init(vcpu->stats);
305 }
306
307 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)308 vm_exitinfo(struct vcpu *vcpu)
309 {
310 return (&vcpu->exitinfo);
311 }
312
313 static int
vmm_unsupported_quirk(void)314 vmm_unsupported_quirk(void)
315 {
316 /*
317 * Known to not load on Ampere eMAG
318 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=285051
319 */
320 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK, CPU_IMPL_APM,
321 CPU_PART_EMAG8180, 0, 0))
322 return (ENXIO);
323
324 return (0);
325 }
326
327 static int
vmm_init(void)328 vmm_init(void)
329 {
330 int error;
331
332 vm_maxcpu = mp_ncpus;
333 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
334
335 if (vm_maxcpu > VM_MAXCPU) {
336 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
337 vm_maxcpu = VM_MAXCPU;
338 }
339 if (vm_maxcpu == 0)
340 vm_maxcpu = 1;
341
342 error = vmm_regs_init(&vmm_arch_regs, &vmm_arch_regs_masks);
343 if (error != 0)
344 return (error);
345
346 return (vmmops_modinit(0));
347 }
348
349 static int
vmm_handler(module_t mod,int what,void * arg)350 vmm_handler(module_t mod, int what, void *arg)
351 {
352 int error;
353
354 switch (what) {
355 case MOD_LOAD:
356 error = vmm_unsupported_quirk();
357 if (error != 0)
358 break;
359 error = vmmdev_init();
360 if (error != 0)
361 break;
362 error = vmm_init();
363 if (error == 0)
364 vmm_initialized = true;
365 else
366 (void)vmmdev_cleanup();
367 break;
368 case MOD_UNLOAD:
369 error = vmmdev_cleanup();
370 if (error == 0 && vmm_initialized) {
371 error = vmmops_modcleanup();
372 if (error) {
373 /*
374 * Something bad happened - prevent new
375 * VMs from being created
376 */
377 vmm_initialized = false;
378 }
379 }
380 break;
381 default:
382 error = 0;
383 break;
384 }
385 return (error);
386 }
387
388 static moduledata_t vmm_kmod = {
389 "vmm",
390 vmm_handler,
391 NULL
392 };
393
394 /*
395 * vmm initialization has the following dependencies:
396 *
397 * - HYP initialization requires smp_rendezvous() and therefore must happen
398 * after SMP is fully functional (after SI_SUB_SMP).
399 * - vmm device initialization requires an initialized devfs.
400 */
401 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
402 MODULE_VERSION(vmm, 1);
403
404 static void
vm_init(struct vm * vm,bool create)405 vm_init(struct vm *vm, bool create)
406 {
407 int i;
408
409 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
410 MPASS(vm->cookie != NULL);
411
412 CPU_ZERO(&vm->active_cpus);
413 CPU_ZERO(&vm->debug_cpus);
414
415 vm->suspend = 0;
416 CPU_ZERO(&vm->suspended_cpus);
417
418 memset(vm->mmio_region, 0, sizeof(vm->mmio_region));
419 memset(vm->special_reg, 0, sizeof(vm->special_reg));
420
421 if (!create) {
422 for (i = 0; i < vm->maxcpus; i++) {
423 if (vm->vcpu[i] != NULL)
424 vcpu_init(vm->vcpu[i]);
425 }
426 }
427 }
428
429 void
vm_disable_vcpu_creation(struct vm * vm)430 vm_disable_vcpu_creation(struct vm *vm)
431 {
432 sx_xlock(&vm->vcpus_init_lock);
433 vm->dying = true;
434 sx_xunlock(&vm->vcpus_init_lock);
435 }
436
437 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)438 vm_alloc_vcpu(struct vm *vm, int vcpuid)
439 {
440 struct vcpu *vcpu;
441
442 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
443 return (NULL);
444
445 /* Some interrupt controllers may have a CPU limit */
446 if (vcpuid >= vgic_max_cpu_count(vm->cookie))
447 return (NULL);
448
449 vcpu = (struct vcpu *)
450 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
451 if (__predict_true(vcpu != NULL))
452 return (vcpu);
453
454 sx_xlock(&vm->vcpus_init_lock);
455 vcpu = vm->vcpu[vcpuid];
456 if (vcpu == NULL && !vm->dying) {
457 vcpu = vcpu_alloc(vm, vcpuid);
458 vcpu_init(vcpu);
459
460 /*
461 * Ensure vCPU is fully created before updating pointer
462 * to permit unlocked reads above.
463 */
464 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
465 (uintptr_t)vcpu);
466 }
467 sx_xunlock(&vm->vcpus_init_lock);
468 return (vcpu);
469 }
470
471 void
vm_lock_vcpus(struct vm * vm)472 vm_lock_vcpus(struct vm *vm)
473 {
474 sx_xlock(&vm->vcpus_init_lock);
475 }
476
477 void
vm_unlock_vcpus(struct vm * vm)478 vm_unlock_vcpus(struct vm *vm)
479 {
480 sx_unlock(&vm->vcpus_init_lock);
481 }
482
483 int
vm_create(const char * name,struct vm ** retvm)484 vm_create(const char *name, struct vm **retvm)
485 {
486 struct vm *vm;
487 int error;
488
489 /*
490 * If vmm.ko could not be successfully initialized then don't attempt
491 * to create the virtual machine.
492 */
493 if (!vmm_initialized)
494 return (ENXIO);
495
496 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
497 return (EINVAL);
498
499 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO);
500 error = vm_mem_init(&vm->mem, 0, 1ul << 39);
501 if (error != 0) {
502 free(vm, M_VMM);
503 return (error);
504 }
505 strcpy(vm->name, name);
506 sx_init(&vm->vcpus_init_lock, "vm vcpus");
507
508 vm->sockets = 1;
509 vm->cores = 1; /* XXX backwards compatibility */
510 vm->threads = 1; /* XXX backwards compatibility */
511 vm->maxcpus = vm_maxcpu;
512
513 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM,
514 M_WAITOK | M_ZERO);
515
516 vm_init(vm, true);
517
518 *retvm = vm;
519 return (0);
520 }
521
522 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)523 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
524 uint16_t *threads, uint16_t *maxcpus)
525 {
526 *sockets = vm->sockets;
527 *cores = vm->cores;
528 *threads = vm->threads;
529 *maxcpus = vm->maxcpus;
530 }
531
532 uint16_t
vm_get_maxcpus(struct vm * vm)533 vm_get_maxcpus(struct vm *vm)
534 {
535 return (vm->maxcpus);
536 }
537
538 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)539 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
540 uint16_t threads, uint16_t maxcpus)
541 {
542 /* Ignore maxcpus. */
543 if ((sockets * cores * threads) > vm->maxcpus)
544 return (EINVAL);
545 vm->sockets = sockets;
546 vm->cores = cores;
547 vm->threads = threads;
548 return(0);
549 }
550
551 static void
vm_cleanup(struct vm * vm,bool destroy)552 vm_cleanup(struct vm *vm, bool destroy)
553 {
554 pmap_t pmap __diagused;
555 int i;
556
557 if (destroy) {
558 vm_xlock_memsegs(vm);
559 pmap = vmspace_pmap(vm_vmspace(vm));
560 sched_pin();
561 PCPU_SET(curvmpmap, NULL);
562 sched_unpin();
563 CPU_FOREACH(i) {
564 MPASS(cpuid_to_pcpu[i]->pc_curvmpmap != pmap);
565 }
566 } else
567 vm_assert_memseg_xlocked(vm);
568
569
570 vgic_detach_from_vm(vm->cookie);
571
572 for (i = 0; i < vm->maxcpus; i++) {
573 if (vm->vcpu[i] != NULL)
574 vcpu_cleanup(vm->vcpu[i], destroy);
575 }
576
577 vmmops_cleanup(vm->cookie);
578
579 vm_mem_cleanup(vm);
580 if (destroy) {
581 vm_mem_destroy(vm);
582
583 free(vm->vcpu, M_VMM);
584 sx_destroy(&vm->vcpus_init_lock);
585 }
586 }
587
588 void
vm_destroy(struct vm * vm)589 vm_destroy(struct vm *vm)
590 {
591 vm_cleanup(vm, true);
592 free(vm, M_VMM);
593 }
594
595 int
vm_reinit(struct vm * vm)596 vm_reinit(struct vm *vm)
597 {
598 int error;
599
600 /*
601 * A virtual machine can be reset only if all vcpus are suspended.
602 */
603 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
604 vm_cleanup(vm, false);
605 vm_init(vm, false);
606 error = 0;
607 } else {
608 error = EBUSY;
609 }
610
611 return (error);
612 }
613
614 const char *
vm_name(struct vm * vm)615 vm_name(struct vm *vm)
616 {
617 return (vm->name);
618 }
619
620 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)621 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
622 uint64_t gla, int prot, uint64_t *gpa, int *is_fault)
623 {
624 return (vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault));
625 }
626
627 static int
vmm_reg_raz(struct vcpu * vcpu,uint64_t * rval,void * arg)628 vmm_reg_raz(struct vcpu *vcpu, uint64_t *rval, void *arg)
629 {
630 *rval = 0;
631 return (0);
632 }
633
634 static int
vmm_reg_read_arg(struct vcpu * vcpu,uint64_t * rval,void * arg)635 vmm_reg_read_arg(struct vcpu *vcpu, uint64_t *rval, void *arg)
636 {
637 *rval = *(uint64_t *)arg;
638 return (0);
639 }
640
641 static int
vmm_reg_wi(struct vcpu * vcpu,uint64_t wval,void * arg)642 vmm_reg_wi(struct vcpu *vcpu, uint64_t wval, void *arg)
643 {
644 return (0);
645 }
646
647 static int
vmm_write_oslar_el1(struct vcpu * vcpu,uint64_t wval,void * arg)648 vmm_write_oslar_el1(struct vcpu *vcpu, uint64_t wval, void *arg)
649 {
650 struct hypctx *hypctx;
651
652 hypctx = vcpu_get_cookie(vcpu);
653 /* All other fields are RES0 & we don't do anything with this */
654 /* TODO: Disable access to other debug state when locked */
655 hypctx->dbg_oslock = (wval & OSLAR_OSLK) == OSLAR_OSLK;
656 return (0);
657 }
658
659 static int
vmm_read_oslsr_el1(struct vcpu * vcpu,uint64_t * rval,void * arg)660 vmm_read_oslsr_el1(struct vcpu *vcpu, uint64_t *rval, void *arg)
661 {
662 struct hypctx *hypctx;
663 uint64_t val;
664
665 hypctx = vcpu_get_cookie(vcpu);
666 val = OSLSR_OSLM_1;
667 if (hypctx->dbg_oslock)
668 val |= OSLSR_OSLK;
669 *rval = val;
670
671 return (0);
672 }
673
674 static const struct vmm_special_reg vmm_special_regs[] = {
675 #define SPECIAL_REG(_reg, _read, _write) \
676 { \
677 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
678 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
679 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
680 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
681 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
682 .esr_mask = ISS_MSR_REG_MASK, \
683 .reg_read = (_read), \
684 .reg_write = (_write), \
685 .arg = NULL, \
686 }
687 #define ID_SPECIAL_REG(_reg, _name) \
688 { \
689 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
690 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
691 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
692 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
693 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
694 .esr_mask = ISS_MSR_REG_MASK, \
695 .reg_read = vmm_reg_read_arg, \
696 .reg_write = vmm_reg_wi, \
697 .arg = &(vmm_arch_regs._name), \
698 }
699
700 /* ID registers */
701 ID_SPECIAL_REG(ID_AA64PFR0_EL1, id_aa64pfr0),
702 ID_SPECIAL_REG(ID_AA64DFR0_EL1, id_aa64dfr0),
703 ID_SPECIAL_REG(ID_AA64ISAR0_EL1, id_aa64isar0),
704 ID_SPECIAL_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0),
705 ID_SPECIAL_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1),
706
707 /*
708 * All other ID registers are read as zero.
709 * They are all in the op0=3, op1=0, CRn=0, CRm={0..7} space.
710 */
711 {
712 .esr_iss = (3 << ISS_MSR_OP0_SHIFT) |
713 (0 << ISS_MSR_OP1_SHIFT) |
714 (0 << ISS_MSR_CRn_SHIFT) |
715 (0 << ISS_MSR_CRm_SHIFT),
716 .esr_mask = ISS_MSR_OP0_MASK | ISS_MSR_OP1_MASK |
717 ISS_MSR_CRn_MASK | (0x8 << ISS_MSR_CRm_SHIFT),
718 .reg_read = vmm_reg_raz,
719 .reg_write = vmm_reg_wi,
720 .arg = NULL,
721 },
722
723 /* Counter physical registers */
724 SPECIAL_REG(CNTP_CTL_EL0, vtimer_phys_ctl_read, vtimer_phys_ctl_write),
725 SPECIAL_REG(CNTP_CVAL_EL0, vtimer_phys_cval_read,
726 vtimer_phys_cval_write),
727 SPECIAL_REG(CNTP_TVAL_EL0, vtimer_phys_tval_read,
728 vtimer_phys_tval_write),
729 SPECIAL_REG(CNTPCT_EL0, vtimer_phys_cnt_read, vtimer_phys_cnt_write),
730
731 /* Debug registers */
732 SPECIAL_REG(DBGPRCR_EL1, vmm_reg_raz, vmm_reg_wi),
733 SPECIAL_REG(OSDLR_EL1, vmm_reg_raz, vmm_reg_wi),
734 /* TODO: Exceptions on invalid access */
735 SPECIAL_REG(OSLAR_EL1, vmm_reg_raz, vmm_write_oslar_el1),
736 SPECIAL_REG(OSLSR_EL1, vmm_read_oslsr_el1, vmm_reg_wi),
737 #undef SPECIAL_REG
738 };
739
740 void
vm_register_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask,reg_read_t reg_read,reg_write_t reg_write,void * arg)741 vm_register_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask,
742 reg_read_t reg_read, reg_write_t reg_write, void *arg)
743 {
744 int i;
745
746 for (i = 0; i < nitems(vm->special_reg); i++) {
747 if (vm->special_reg[i].esr_iss == 0 &&
748 vm->special_reg[i].esr_mask == 0) {
749 vm->special_reg[i].esr_iss = iss;
750 vm->special_reg[i].esr_mask = mask;
751 vm->special_reg[i].reg_read = reg_read;
752 vm->special_reg[i].reg_write = reg_write;
753 vm->special_reg[i].arg = arg;
754 return;
755 }
756 }
757
758 panic("%s: No free special register slot", __func__);
759 }
760
761 void
vm_deregister_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask)762 vm_deregister_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask)
763 {
764 int i;
765
766 for (i = 0; i < nitems(vm->special_reg); i++) {
767 if (vm->special_reg[i].esr_iss == iss &&
768 vm->special_reg[i].esr_mask == mask) {
769 memset(&vm->special_reg[i], 0,
770 sizeof(vm->special_reg[i]));
771 return;
772 }
773 }
774
775 panic("%s: Invalid special register: iss %lx mask %lx", __func__, iss,
776 mask);
777 }
778
779 static int
vm_handle_reg_emul(struct vcpu * vcpu,bool * retu)780 vm_handle_reg_emul(struct vcpu *vcpu, bool *retu)
781 {
782 struct vm *vm;
783 struct vm_exit *vme;
784 struct vre *vre;
785 int i, rv;
786
787 vm = vcpu->vm;
788 vme = &vcpu->exitinfo;
789 vre = &vme->u.reg_emul.vre;
790
791 for (i = 0; i < nitems(vm->special_reg); i++) {
792 if (vm->special_reg[i].esr_iss == 0 &&
793 vm->special_reg[i].esr_mask == 0)
794 continue;
795
796 if ((vre->inst_syndrome & vm->special_reg[i].esr_mask) ==
797 vm->special_reg[i].esr_iss) {
798 rv = vmm_emulate_register(vcpu, vre,
799 vm->special_reg[i].reg_read,
800 vm->special_reg[i].reg_write,
801 vm->special_reg[i].arg);
802 if (rv == 0) {
803 *retu = false;
804 }
805 return (rv);
806 }
807 }
808 for (i = 0; i < nitems(vmm_special_regs); i++) {
809 if ((vre->inst_syndrome & vmm_special_regs[i].esr_mask) ==
810 vmm_special_regs[i].esr_iss) {
811 rv = vmm_emulate_register(vcpu, vre,
812 vmm_special_regs[i].reg_read,
813 vmm_special_regs[i].reg_write,
814 vmm_special_regs[i].arg);
815 if (rv == 0) {
816 *retu = false;
817 }
818 return (rv);
819 }
820 }
821
822
823 *retu = true;
824 return (0);
825 }
826
827 void
vm_register_inst_handler(struct vm * vm,uint64_t start,uint64_t size,mem_region_read_t mmio_read,mem_region_write_t mmio_write)828 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size,
829 mem_region_read_t mmio_read, mem_region_write_t mmio_write)
830 {
831 int i;
832
833 for (i = 0; i < nitems(vm->mmio_region); i++) {
834 if (vm->mmio_region[i].start == 0 &&
835 vm->mmio_region[i].end == 0) {
836 vm->mmio_region[i].start = start;
837 vm->mmio_region[i].end = start + size;
838 vm->mmio_region[i].read = mmio_read;
839 vm->mmio_region[i].write = mmio_write;
840 return;
841 }
842 }
843
844 panic("%s: No free MMIO region", __func__);
845 }
846
847 void
vm_deregister_inst_handler(struct vm * vm,uint64_t start,uint64_t size)848 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size)
849 {
850 int i;
851
852 for (i = 0; i < nitems(vm->mmio_region); i++) {
853 if (vm->mmio_region[i].start == start &&
854 vm->mmio_region[i].end == start + size) {
855 memset(&vm->mmio_region[i], 0,
856 sizeof(vm->mmio_region[i]));
857 return;
858 }
859 }
860
861 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start,
862 start + size);
863 }
864
865 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)866 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
867 {
868 struct vm *vm;
869 struct vm_exit *vme;
870 struct vie *vie;
871 struct hyp *hyp;
872 uint64_t fault_ipa;
873 struct vm_guest_paging *paging;
874 struct vmm_mmio_region *vmr;
875 int error, i;
876
877 vm = vcpu->vm;
878 hyp = vm->cookie;
879 if (!hyp->vgic_attached)
880 goto out_user;
881
882 vme = &vcpu->exitinfo;
883 vie = &vme->u.inst_emul.vie;
884 paging = &vme->u.inst_emul.paging;
885
886 fault_ipa = vme->u.inst_emul.gpa;
887
888 vmr = NULL;
889 for (i = 0; i < nitems(vm->mmio_region); i++) {
890 if (vm->mmio_region[i].start <= fault_ipa &&
891 vm->mmio_region[i].end > fault_ipa) {
892 vmr = &vm->mmio_region[i];
893 break;
894 }
895 }
896 if (vmr == NULL)
897 goto out_user;
898
899 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging,
900 vmr->read, vmr->write, retu);
901 return (error);
902
903 out_user:
904 *retu = true;
905 return (0);
906 }
907
908 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)909 vm_suspend(struct vm *vm, enum vm_suspend_how how)
910 {
911 int i;
912
913 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
914 return (EINVAL);
915
916 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
917 VM_CTR2(vm, "virtual machine already suspended %d/%d",
918 vm->suspend, how);
919 return (EALREADY);
920 }
921
922 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
923
924 /*
925 * Notify all active vcpus that they are now suspended.
926 */
927 for (i = 0; i < vm->maxcpus; i++) {
928 if (CPU_ISSET(i, &vm->active_cpus))
929 vcpu_notify_event(vm_vcpu(vm, i));
930 }
931
932 return (0);
933 }
934
935 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t pc)936 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc)
937 {
938 struct vm *vm = vcpu->vm;
939 struct vm_exit *vmexit;
940
941 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
942 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
943
944 vmexit = vm_exitinfo(vcpu);
945 vmexit->pc = pc;
946 vmexit->inst_length = 4;
947 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
948 vmexit->u.suspended.how = vm->suspend;
949 }
950
951 void
vm_exit_debug(struct vcpu * vcpu,uint64_t pc)952 vm_exit_debug(struct vcpu *vcpu, uint64_t pc)
953 {
954 struct vm_exit *vmexit;
955
956 vmexit = vm_exitinfo(vcpu);
957 vmexit->pc = pc;
958 vmexit->inst_length = 4;
959 vmexit->exitcode = VM_EXITCODE_DEBUG;
960 }
961
962 int
vm_activate_cpu(struct vcpu * vcpu)963 vm_activate_cpu(struct vcpu *vcpu)
964 {
965 struct vm *vm = vcpu->vm;
966
967 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
968 return (EBUSY);
969
970 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
971 return (0);
972
973 }
974
975 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)976 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
977 {
978 if (vcpu == NULL) {
979 vm->debug_cpus = vm->active_cpus;
980 for (int i = 0; i < vm->maxcpus; i++) {
981 if (CPU_ISSET(i, &vm->active_cpus))
982 vcpu_notify_event(vm_vcpu(vm, i));
983 }
984 } else {
985 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
986 return (EINVAL);
987
988 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
989 vcpu_notify_event(vcpu);
990 }
991 return (0);
992 }
993
994 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)995 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
996 {
997
998 if (vcpu == NULL) {
999 CPU_ZERO(&vm->debug_cpus);
1000 } else {
1001 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
1002 return (EINVAL);
1003
1004 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
1005 }
1006 return (0);
1007 }
1008
1009 int
vcpu_debugged(struct vcpu * vcpu)1010 vcpu_debugged(struct vcpu *vcpu)
1011 {
1012
1013 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
1014 }
1015
1016 cpuset_t
vm_active_cpus(struct vm * vm)1017 vm_active_cpus(struct vm *vm)
1018 {
1019
1020 return (vm->active_cpus);
1021 }
1022
1023 cpuset_t
vm_debug_cpus(struct vm * vm)1024 vm_debug_cpus(struct vm *vm)
1025 {
1026
1027 return (vm->debug_cpus);
1028 }
1029
1030 cpuset_t
vm_suspended_cpus(struct vm * vm)1031 vm_suspended_cpus(struct vm *vm)
1032 {
1033
1034 return (vm->suspended_cpus);
1035 }
1036
1037
1038 void *
vcpu_stats(struct vcpu * vcpu)1039 vcpu_stats(struct vcpu *vcpu)
1040 {
1041
1042 return (vcpu->stats);
1043 }
1044
1045 /*
1046 * This function is called to ensure that a vcpu "sees" a pending event
1047 * as soon as possible:
1048 * - If the vcpu thread is sleeping then it is woken up.
1049 * - If the vcpu is running on a different host_cpu then an IPI will be directed
1050 * to the host_cpu to cause the vcpu to trap into the hypervisor.
1051 */
1052 static void
vcpu_notify_event_locked(struct vcpu * vcpu)1053 vcpu_notify_event_locked(struct vcpu *vcpu)
1054 {
1055 int hostcpu;
1056
1057 hostcpu = vcpu->hostcpu;
1058 if (vcpu->state == VCPU_RUNNING) {
1059 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
1060 if (hostcpu != curcpu) {
1061 ipi_cpu(hostcpu, vmm_ipinum);
1062 } else {
1063 /*
1064 * If the 'vcpu' is running on 'curcpu' then it must
1065 * be sending a notification to itself (e.g. SELF_IPI).
1066 * The pending event will be picked up when the vcpu
1067 * transitions back to guest context.
1068 */
1069 }
1070 } else {
1071 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
1072 "with hostcpu %d", vcpu->state, hostcpu));
1073 if (vcpu->state == VCPU_SLEEPING)
1074 wakeup_one(vcpu);
1075 }
1076 }
1077
1078 void
vcpu_notify_event(struct vcpu * vcpu)1079 vcpu_notify_event(struct vcpu *vcpu)
1080 {
1081 vcpu_lock(vcpu);
1082 vcpu_notify_event_locked(vcpu);
1083 vcpu_unlock(vcpu);
1084 }
1085
1086 struct vm_mem *
vm_mem(struct vm * vm)1087 vm_mem(struct vm *vm)
1088 {
1089 return (&vm->mem);
1090 }
1091
1092 static void
restore_guest_fpustate(struct vcpu * vcpu)1093 restore_guest_fpustate(struct vcpu *vcpu)
1094 {
1095
1096 /* flush host state to the pcb */
1097 vfp_save_state(curthread, curthread->td_pcb);
1098 /* Ensure the VFP state will be re-loaded when exiting the guest */
1099 PCPU_SET(fpcurthread, NULL);
1100
1101 /* restore guest FPU state */
1102 vfp_enable();
1103 vfp_restore(vcpu->guestfpu);
1104
1105 /*
1106 * The FPU is now "dirty" with the guest's state so turn on emulation
1107 * to trap any access to the FPU by the host.
1108 */
1109 vfp_disable();
1110 }
1111
1112 static void
save_guest_fpustate(struct vcpu * vcpu)1113 save_guest_fpustate(struct vcpu *vcpu)
1114 {
1115 if ((READ_SPECIALREG(cpacr_el1) & CPACR_FPEN_MASK) !=
1116 CPACR_FPEN_TRAP_ALL1)
1117 panic("VFP not enabled in host!");
1118
1119 /* save guest FPU state */
1120 vfp_enable();
1121 vfp_store(vcpu->guestfpu);
1122 vfp_disable();
1123
1124 KASSERT(PCPU_GET(fpcurthread) == NULL,
1125 ("%s: fpcurthread set with guest registers", __func__));
1126 }
1127 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1128 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1129 bool from_idle)
1130 {
1131 int error;
1132
1133 vcpu_assert_locked(vcpu);
1134
1135 /*
1136 * State transitions from the vmmdev_ioctl() must always begin from
1137 * the VCPU_IDLE state. This guarantees that there is only a single
1138 * ioctl() operating on a vcpu at any point.
1139 */
1140 if (from_idle) {
1141 while (vcpu->state != VCPU_IDLE) {
1142 vcpu_notify_event_locked(vcpu);
1143 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1144 }
1145 } else {
1146 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1147 "vcpu idle state"));
1148 }
1149
1150 if (vcpu->state == VCPU_RUNNING) {
1151 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1152 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1153 } else {
1154 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1155 "vcpu that is not running", vcpu->hostcpu));
1156 }
1157
1158 /*
1159 * The following state transitions are allowed:
1160 * IDLE -> FROZEN -> IDLE
1161 * FROZEN -> RUNNING -> FROZEN
1162 * FROZEN -> SLEEPING -> FROZEN
1163 */
1164 switch (vcpu->state) {
1165 case VCPU_IDLE:
1166 case VCPU_RUNNING:
1167 case VCPU_SLEEPING:
1168 error = (newstate != VCPU_FROZEN);
1169 break;
1170 case VCPU_FROZEN:
1171 error = (newstate == VCPU_FROZEN);
1172 break;
1173 default:
1174 error = 1;
1175 break;
1176 }
1177
1178 if (error)
1179 return (EBUSY);
1180
1181 vcpu->state = newstate;
1182 if (newstate == VCPU_RUNNING)
1183 vcpu->hostcpu = curcpu;
1184 else
1185 vcpu->hostcpu = NOCPU;
1186
1187 if (newstate == VCPU_IDLE)
1188 wakeup(&vcpu->state);
1189
1190 return (0);
1191 }
1192
1193 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1194 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1195 {
1196 int error;
1197
1198 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1199 panic("Error %d setting state to %d\n", error, newstate);
1200 }
1201
1202 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1203 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1204 {
1205 int error;
1206
1207 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1208 panic("Error %d setting state to %d", error, newstate);
1209 }
1210
1211 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1212 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1213 {
1214 if (type < 0 || type >= VM_CAP_MAX)
1215 return (EINVAL);
1216
1217 return (vmmops_getcap(vcpu->cookie, type, retval));
1218 }
1219
1220 int
vm_set_capability(struct vcpu * vcpu,int type,int val)1221 vm_set_capability(struct vcpu *vcpu, int type, int val)
1222 {
1223 if (type < 0 || type >= VM_CAP_MAX)
1224 return (EINVAL);
1225
1226 return (vmmops_setcap(vcpu->cookie, type, val));
1227 }
1228
1229 struct vm *
vcpu_vm(struct vcpu * vcpu)1230 vcpu_vm(struct vcpu *vcpu)
1231 {
1232 return (vcpu->vm);
1233 }
1234
1235 int
vcpu_vcpuid(struct vcpu * vcpu)1236 vcpu_vcpuid(struct vcpu *vcpu)
1237 {
1238 return (vcpu->vcpuid);
1239 }
1240
1241 void *
vcpu_get_cookie(struct vcpu * vcpu)1242 vcpu_get_cookie(struct vcpu *vcpu)
1243 {
1244 return (vcpu->cookie);
1245 }
1246
1247 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)1248 vm_vcpu(struct vm *vm, int vcpuid)
1249 {
1250 return (vm->vcpu[vcpuid]);
1251 }
1252
1253 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1254 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
1255 {
1256 int error;
1257
1258 vcpu_lock(vcpu);
1259 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1260 vcpu_unlock(vcpu);
1261
1262 return (error);
1263 }
1264
1265 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)1266 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
1267 {
1268 enum vcpu_state state;
1269
1270 vcpu_lock(vcpu);
1271 state = vcpu->state;
1272 if (hostcpu != NULL)
1273 *hostcpu = vcpu->hostcpu;
1274 vcpu_unlock(vcpu);
1275
1276 return (state);
1277 }
1278
1279 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1280 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1281 {
1282 if (reg < 0 || reg >= VM_REG_LAST)
1283 return (EINVAL);
1284
1285 return (vmmops_getreg(vcpu->cookie, reg, retval));
1286 }
1287
1288 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1289 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1290 {
1291 int error;
1292
1293 if (reg < 0 || reg >= VM_REG_LAST)
1294 return (EINVAL);
1295 error = vmmops_setreg(vcpu->cookie, reg, val);
1296 if (error || reg != VM_REG_GUEST_PC)
1297 return (error);
1298
1299 vcpu->nextpc = val;
1300
1301 return (0);
1302 }
1303
1304 void *
vm_get_cookie(struct vm * vm)1305 vm_get_cookie(struct vm *vm)
1306 {
1307 return (vm->cookie);
1308 }
1309
1310 int
vm_inject_exception(struct vcpu * vcpu,uint64_t esr,uint64_t far)1311 vm_inject_exception(struct vcpu *vcpu, uint64_t esr, uint64_t far)
1312 {
1313 return (vmmops_exception(vcpu->cookie, esr, far));
1314 }
1315
1316 int
vm_attach_vgic(struct vm * vm,struct vm_vgic_descr * descr)1317 vm_attach_vgic(struct vm *vm, struct vm_vgic_descr *descr)
1318 {
1319 return (vgic_attach_to_vm(vm->cookie, descr));
1320 }
1321
1322 int
vm_assert_irq(struct vm * vm,uint32_t irq)1323 vm_assert_irq(struct vm *vm, uint32_t irq)
1324 {
1325 return (vgic_inject_irq(vm->cookie, -1, irq, true));
1326 }
1327
1328 int
vm_deassert_irq(struct vm * vm,uint32_t irq)1329 vm_deassert_irq(struct vm *vm, uint32_t irq)
1330 {
1331 return (vgic_inject_irq(vm->cookie, -1, irq, false));
1332 }
1333
1334 int
vm_raise_msi(struct vm * vm,uint64_t msg,uint64_t addr,int bus,int slot,int func)1335 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot,
1336 int func)
1337 {
1338 /* TODO: Should we raise an SError? */
1339 return (vgic_inject_msi(vm->cookie, msg, addr));
1340 }
1341
1342 static int
vm_handle_smccc_call(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1343 vm_handle_smccc_call(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1344 {
1345 struct hypctx *hypctx;
1346 int i;
1347
1348 hypctx = vcpu_get_cookie(vcpu);
1349
1350 if ((hypctx->tf.tf_esr & ESR_ELx_ISS_MASK) != 0)
1351 return (1);
1352
1353 vme->exitcode = VM_EXITCODE_SMCCC;
1354 vme->u.smccc_call.func_id = hypctx->tf.tf_x[0];
1355 for (i = 0; i < nitems(vme->u.smccc_call.args); i++)
1356 vme->u.smccc_call.args[i] = hypctx->tf.tf_x[i + 1];
1357
1358 *retu = true;
1359 return (0);
1360 }
1361
1362 static int
vm_handle_wfi(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1363 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1364 {
1365 struct vm *vm;
1366
1367 vm = vcpu->vm;
1368 vcpu_lock(vcpu);
1369 while (1) {
1370 if (vm->suspend)
1371 break;
1372
1373 if (vgic_has_pending_irq(vcpu->cookie))
1374 break;
1375
1376 if (vcpu_should_yield(vcpu))
1377 break;
1378
1379 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1380 /*
1381 * XXX msleep_spin() cannot be interrupted by signals so
1382 * wake up periodically to check pending signals.
1383 */
1384 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz);
1385 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1386 }
1387 vcpu_unlock(vcpu);
1388
1389 *retu = false;
1390 return (0);
1391 }
1392
1393 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1394 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1395 {
1396 struct vm *vm = vcpu->vm;
1397 struct vm_exit *vme;
1398 struct vm_map *map;
1399 uint64_t addr, esr;
1400 pmap_t pmap;
1401 int ftype, rv;
1402
1403 vme = &vcpu->exitinfo;
1404
1405 pmap = vmspace_pmap(vm_vmspace(vcpu->vm));
1406 addr = vme->u.paging.gpa;
1407 esr = vme->u.paging.esr;
1408
1409 /* The page exists, but the page table needs to be updated. */
1410 if (pmap_fault(pmap, esr, addr) == KERN_SUCCESS)
1411 return (0);
1412
1413 switch (ESR_ELx_EXCEPTION(esr)) {
1414 case EXCP_INSN_ABORT_L:
1415 case EXCP_DATA_ABORT_L:
1416 ftype = VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
1417 break;
1418 default:
1419 panic("%s: Invalid exception (esr = %lx)", __func__, esr);
1420 }
1421
1422 map = &vm_vmspace(vm)->vm_map;
1423 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1424 if (rv != KERN_SUCCESS)
1425 return (EFAULT);
1426
1427 return (0);
1428 }
1429
1430 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1431 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1432 {
1433 struct vm *vm = vcpu->vm;
1434 int error, i;
1435 struct thread *td;
1436
1437 error = 0;
1438 td = curthread;
1439
1440 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1441
1442 /*
1443 * Wait until all 'active_cpus' have suspended themselves.
1444 *
1445 * Since a VM may be suspended at any time including when one or
1446 * more vcpus are doing a rendezvous we need to call the rendezvous
1447 * handler while we are waiting to prevent a deadlock.
1448 */
1449 vcpu_lock(vcpu);
1450 while (error == 0) {
1451 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0)
1452 break;
1453
1454 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1455 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1456 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1457 if (td_ast_pending(td, TDA_SUSPEND)) {
1458 vcpu_unlock(vcpu);
1459 error = thread_check_susp(td, false);
1460 vcpu_lock(vcpu);
1461 }
1462 }
1463 vcpu_unlock(vcpu);
1464
1465 /*
1466 * Wakeup the other sleeping vcpus and return to userspace.
1467 */
1468 for (i = 0; i < vm->maxcpus; i++) {
1469 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1470 vcpu_notify_event(vm_vcpu(vm, i));
1471 }
1472 }
1473
1474 *retu = true;
1475 return (error);
1476 }
1477
1478 int
vm_run(struct vcpu * vcpu)1479 vm_run(struct vcpu *vcpu)
1480 {
1481 struct vm *vm = vcpu->vm;
1482 struct vm_eventinfo evinfo;
1483 int error, vcpuid;
1484 struct vm_exit *vme;
1485 bool retu;
1486 pmap_t pmap;
1487
1488 vcpuid = vcpu->vcpuid;
1489
1490 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1491 return (EINVAL);
1492
1493 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1494 return (EINVAL);
1495
1496 pmap = vmspace_pmap(vm_vmspace(vm));
1497 vme = &vcpu->exitinfo;
1498 evinfo.rptr = NULL;
1499 evinfo.sptr = &vm->suspend;
1500 evinfo.iptr = NULL;
1501 restart:
1502 critical_enter();
1503
1504 restore_guest_fpustate(vcpu);
1505
1506 vcpu_require_state(vcpu, VCPU_RUNNING);
1507 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo);
1508 vcpu_require_state(vcpu, VCPU_FROZEN);
1509
1510 save_guest_fpustate(vcpu);
1511
1512 critical_exit();
1513
1514 if (error == 0) {
1515 retu = false;
1516 switch (vme->exitcode) {
1517 case VM_EXITCODE_INST_EMUL:
1518 vcpu->nextpc = vme->pc + vme->inst_length;
1519 error = vm_handle_inst_emul(vcpu, &retu);
1520 break;
1521
1522 case VM_EXITCODE_REG_EMUL:
1523 vcpu->nextpc = vme->pc + vme->inst_length;
1524 error = vm_handle_reg_emul(vcpu, &retu);
1525 break;
1526
1527 case VM_EXITCODE_HVC:
1528 /*
1529 * The HVC instruction saves the address for the
1530 * next instruction as the return address.
1531 */
1532 vcpu->nextpc = vme->pc;
1533 /*
1534 * The PSCI call can change the exit information in the
1535 * case of suspend/reset/poweroff/cpu off/cpu on.
1536 */
1537 error = vm_handle_smccc_call(vcpu, vme, &retu);
1538 break;
1539
1540 case VM_EXITCODE_WFI:
1541 vcpu->nextpc = vme->pc + vme->inst_length;
1542 error = vm_handle_wfi(vcpu, vme, &retu);
1543 break;
1544
1545 case VM_EXITCODE_PAGING:
1546 vcpu->nextpc = vme->pc;
1547 error = vm_handle_paging(vcpu, &retu);
1548 break;
1549
1550 case VM_EXITCODE_SUSPENDED:
1551 vcpu->nextpc = vme->pc;
1552 error = vm_handle_suspend(vcpu, &retu);
1553 break;
1554
1555 default:
1556 /* Handle in userland */
1557 vcpu->nextpc = vme->pc;
1558 retu = true;
1559 break;
1560 }
1561 }
1562
1563 if (error == 0 && retu == false)
1564 goto restart;
1565
1566 return (error);
1567 }
1568